US20190019655A1 - Plasma resistant semiconductor processing chamber components - Google Patents

Plasma resistant semiconductor processing chamber components Download PDF

Info

Publication number
US20190019655A1
US20190019655A1 US16/132,832 US201816132832A US2019019655A1 US 20190019655 A1 US20190019655 A1 US 20190019655A1 US 201816132832 A US201816132832 A US 201816132832A US 2019019655 A1 US2019019655 A1 US 2019019655A1
Authority
US
United States
Prior art keywords
component
yttrium
oxyfluoride
fluoride
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/132,832
Inventor
Jennifer Y. Sun
Ren-Guan Duan
Kenneth S. Collins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/590,200 external-priority patent/US9017765B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US16/132,832 priority Critical patent/US20190019655A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLLINS, KENNETH S., DUAN, REN-GUAN, SUN, JENNIFER Y.
Publication of US20190019655A1 publication Critical patent/US20190019655A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5055Fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • Embodiments of the invention relate to compositions of metal oxyfluoride comprising glazes, glass ceramics, and combinations thereof which are useful as plasma-resistant protective solid substrates or plasma resistant coatings over other substrates.
  • embodiments of the invention relate to methods of applying bulk materials or coatings of the compositions over a substrate to provide various processing components which are useful as part of reactive plasma processing apparatus.
  • a glaze is a specialized form of glass and therefore can be described as an amorphous solid. Glazing is the process of coating the part with a layer of glaze.
  • a glass ceramic is a specialized form of ceramics, which is formed first as a glass and then made to crystallize partly through a designed heat treatment which involves controlled cooling.
  • glass ceramics do not have pores between crystal grains. The spacing between grains is filled with the glass. Glass ceramics share many properties with both glass and traditional crystalline ceramics. After adjusting the composition of glass ceramics by processing technique, the final material may exhibit a number of advanced properties that the traditional ceramics do not have.
  • Glazes and glass ceramics have long been used to provide protective coatings.
  • a powder of an oxide which may be in combination with a non-oxide, is placed into a suspending medium, to which a binder composition may be added, this combination of ingredients produces a slurry which is applied over a substrate which is to be coated, and then the slurry is sintered under controlled time, temperature and environmental conditions.
  • a glaze is produced; when the coating material is cooled slowly, a glass-ceramic is obtained.
  • the physical properties of the coating obtained can be adjusted by changing the composition of the ceramic powder, and/or the processing technique.
  • the thickness of the coating, for a given application process may be “fine tuned” by adjusting the slurry viscosity, pH, and binder, for example.
  • a transition layer may be formed between the substrate and portion of the coating which is in contact with the substrate. A transition layer formed in-situ during application of the coating to the substrate surface may provide better chemical bonding between the substrate and the coating and may also dissipate the stress due to thermal expansion difference between the substrate and the coating.
  • a slurry containing the ceramic powder, suspension medium, binder and possibly dopants of various kinds is typically applied over the surface of a substrate using a technique known in the art, such as painting, dipping, spraying, screen printing, or spin-on, by way of example.
  • the substrate must be able to withstand the sintering temperature required to form the coating.
  • the coating is then sintered at a sufficient temperature and for a period of time to permit the coating to form.
  • the coating performance in a given application is limited by the composition of the coating and the processing conditions used to apply the coating.
  • a yttrium oxide solid component substrate typically comprises at least 99.9% by volume yttrium oxide, has a density of at least 4.92 g/cm 3 , and a water absorbency of about 0.02% or less.
  • the average crystalline grain size of the yttrium oxide is within a range of about 10 ⁇ m to about 25 ⁇ m.
  • the co-inventors of the present invention developed a yttrium oxide-containing substrate which includes impurities which are equal to or less than the following maximum concentrations: 90 ppm Al; 10 ppm Ca; 5 ppm Cr; 5 ppm Cu; 10 ppm Fe; 5 ppm K; 5 ppm Mg; 5 ppm Na; 5 ppm Ni; 120 ppm Si; and 5 ppm Ti.
  • This yttrium oxide-comprising substrate provided improvements over substrates previously known in the art.
  • a yttrium oxide-comprising substrate of this general composition which included up to about 10% by volume of aluminum oxide was also developed.
  • a solid Yttrium oxide substrate component resists etch by the plasma better than solid aluminum oxide substrate or solid aluminum nitride substrate, but not as well as the components of the present invention either in solid form or as coatings over underlying substrates.
  • FIG. 1 is a schematic 100 representative of the use of a glaze/glass ceramic as a coating layer over a ceramic substrate such as aluminum oxide or aluminum nitride.
  • FIG. 2A shows a photomicrograph 200 illustrating the crystal structure of an aluminum substrate 202 directly adjacent a transition area 204 , which is directly adjacent a yttrium fluoride glass ceramic 206 .
  • FIG. 2B shows a photomicrograph 220 illustrating the crystal structure of the yttrium fluoride glass ceramic 206 at a magnification which is two times that shown in FIG. 2A .
  • FIG. 3A shows a photomicrograph 300 of the crystalline structure of an aluminum oxide substrate 302 directly adjacent a transition area 304 , which is directly adjacent a yttrium fluoride glass ceramic doped with neodium fluoride 306 .
  • FIG. 3B shows a photomicrograph 320 of the crystalline structure of the neodium fluoride-doped yttrium fluoride glass ceramic 306 at a magnification which is five times that shown in FIG. 3A .
  • FIG. 4 shows a bar graph 400 which illustrates the relative normalized erosion rates of various solid substrates including aluminum nitride 402 , aluminum oxide 404 , a series of three yttrium oxides ( 404 , 408 , 410 , and 412 ) available from different vendors, and a yttrium oxyfluoride glass ceramic 414 .
  • FIG. 5 shows a photomicrograph 500 which illustrates a transition layer 502 directly adjacent an aluminum oxide substrate (not shown on the left), which is directly adjacent a yttrium oxyfluoride glass ceramic 504 .
  • a crack 506 passing through transition area 502 stops at the yttrium oxyfluoride glass ceramic coating.
  • FIG. 6 shows a sintering profile 600 for a coating of yttrium oxyfluoride glass ceramic applied over an aluminum oxide substrate.
  • the sintering time is shown in minutes on axis 602 and the temperature is shown on axis 604 .
  • FIG. 7 shows a sintering profile 700 for a coating of neodium fluoride doped yttrium oxyfluoride glass ceramic applied over an aluminum oxide substrate.
  • the sintering time is shown in minutes on axis 702 and the temperature is shown on axis 704 .
  • the materials and methods described herein are useful in designing and in fabrication of component apparatus parts for semiconductor and MEMS processing equipment.
  • the materials and methods of fabricating components produce component apparatus which is resistant to halogen plasmas in general and to the fluorine-containing plasmas which are so problematic in terms of reaction with and erosion of surfaces of the components.
  • Example component parts of the kind which particularly benefit from the materials and methods described herein include plasma processing chamber apparatus such as shower heads for gas distribution, process chamber lid interiors, process chamber liners, and electrostatic chuck surfaces, by way of example and not by way of limitation.
  • Use of the materials described herein and the method of fabricating parts from these materials will decrease the amount of particles formed and metal contamination which occurs during the performance lifetime of the component part, and extend the lifetime of the component part as well.
  • a protective coating composition of the kind described herein is useful over a surface of an aluminum oxide, aluminum nitride, quartz, silicon carbide, silicon nitride, and other ceramic or glass substrates with a melting point higher than about 1600° C.
  • the protective coating is a sintered composition including a yttrium-based fluoride crystal, or a yttrium-based oxyfluoride crystal, or an oxyfluoride amorphous phase, or a combination thereof.
  • the materials which are selected for formation of the coating depend on the plasma resistance and mechanical, thermal, and electrical properties required for a given component.
  • the starting materials typically comprise compound powders, a suspension medium, and a binder.
  • a majority % of the compound powders (typically about 30% by weight or greater) is a yttrium compound, which may be an oxyfluoride, a fluoride, or combinations of these.
  • This majority compound may be doped with a minority component powder, for example, an oxide, fluoride, or oxyfluoride of: neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium, hafnium, and combinations thereof.
  • Properties such as thermal conductivity, thermal expansion coefficient, hardness, toughness, dielectric strength, dielectric constant, loss tangent, electrical resistivity, and erosion resistance will be determined in large part by the compounds selected for combination in forming a sintered coating.
  • the suspension medium may be selected from water or organic chemicals, including but not limited to methanol and ethanol, and combinations thereof, by way of example. Typically, when the suspension medium is methanol or ethanol, the concentration of this suspension medium in the suspension ranges from about 30 weight % to about 90 weight %.
  • the binder may be selected from polyvinyl alcohol (PVA) and polymeric cellulose ether, or combinations thereof, by way of example and not by way of limitation.
  • the materials have been selected, there are a number of other variables which must be determined. These include the relative weight or volume percentages (or ratios) of the powdered materials, and the size of the starting powdered materials; the relative weight percentage of suspension medium; and the relative weight % of binder. Determination of these variables will affect the properties of the suspension such as the viscosity and the manner in which the suspension may be applied over a substrate surface. All of these variables affect the properties including thickness of the coating on the substrate prior to sintering, and ultimately affect the properties including thickness of the sintered coating. The sintering time and temperature profile determines the composition which is formed and the final crystalline structure of the sintered coating.
  • the ambient environment in which the sintering takes place may introduce additional elements into the coating surface.
  • oxygen when oxygen is present in the sintering atmosphere, oxygen will be introduced into the sintered body.
  • the time and temperature profile of the sintering will affect the depth to which the oxygen penetrates into the coating and the compounds which are formed. Initially, a large amount of empirical work was required to establish the guidelines from which satisfactory products of the present invention were produced.
  • the thickness of the sintered coating may be adjusted by changing the slurry viscosity, which depends on the variables discussed above and also on the final pH of the slurry, which may be adjusted by adding an acid or a base.
  • a glass-ceramic structured coating makes possible adjustment of the coefficient of expansion, so that the difference between the substrate and the coating approaches zero.
  • the transition area may be used to dissipate the stress due to differential in thermal expansion between the substrate and the coating.
  • the transition area may be used to provide a stronger bond between the substrate and the coating.
  • a substrate that may be protected by a coating which is resistant to a halogen-comprising plasma.
  • the coated substrate may include a sintered composition including a yttrium-based fluoride (e.g., having a crystal phase), or a yttrium-based oxyfluoride (e.g., having a crystal), or an oxyfluoride phase (e.g., amorphous), or a combination thereof, wherein the coating is present over a surface of the substrate which has a melting point higher than about 1600° C.
  • a portion of the yttrium-based oxyfluoride or the yttrium-based fluoride is present as a crystalline phase and the oxyfluoride phase is present as an amorphous phase.
  • additional crystalline phase compounds are present in the coated substrate and are formed during sintering of the composition due to the presence of a dopant selected from an oxide, or fluoride, or oxyfluoride of neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium, and combinations of an oxide, or fluoride or oxyfluoride of at least one of these elements.
  • the crystalline portion of the coating composition ranges from about 70% by weight to about 100% by weight.
  • the component structure includes a solid structure having an overall uniform composition.
  • the composition includes crystal grains selected from yttrium oxide, yttrium fluoride and yttrium oxyfluoride, and at least one additional compound selected from an oxide, fluoride, or oxyfluoride of a rare earth metal (e.g., neodymium, cerium, samarium, erbium, scandium, lanthanum, hafnium, niobium, ytterbium, hafnium), aluminum, zirconium, and combinations thereof.
  • a rare earth metal e.g., neodymium, cerium, samarium, erbium, scandium, lanthanum, hafnium, niobium, ytterbium, hafnium
  • the first system is a pure YF 3 powder system.
  • the second system is a YF 3 —NdF 3 doped powder system.
  • the suspension media used was ethanol. There was no binder used during sintering of the powder compositions which were sintered in the embodiment examples described herein.
  • the suspension media could be water, used in combination with a polyvinyl alcohol (PVC) binding agent, for example and not by way of limitation.
  • PVC polyvinyl alcohol
  • FIG. 1 is a schematic 100 representative of the use of a glaze/glass ceramic as a coating layer over a ceramic substrate such as aluminum oxide or aluminum nitride.
  • FIG. 1 shows the coating 106 overlying a transition layer (transition area) 104 , which overlies the substrate 102 .
  • the substrate was aluminum oxide, Al 2 O 3 , but one of skill in the art will recognize that the substrate could be AlN.
  • the powder used to form the glaze/glass-ceramic coating layer 106 was pure YF 3 . We discovered that a different sintering time and temperature profile led to different phase compositions for the sintered coating. The sintering was carried out in flowing argon protective gas at atmospheric pressure.
  • the glass ceramic coating described in this example was sintered from pure YF 3 powder having an average powder size of about 100 nm. Powder having an average particle size within the range of about 30 nm up to about 1 ⁇ m may be used.
  • the YF 3 powder was suspended in an ethanol suspension media, where the weight % YF 3 powder was about 30%, and the weight % ethanol in the suspension was about 70%.
  • the suspension media may be water where a binder is used.
  • a binder such as PVA works well.
  • the coating was applied over an aluminum oxide substrate using a dipping technique of the kind known in the art. The substrate can be dipped in the suspension a number of times to achieve a desired coating thickness. In the present instance, the coating thickness prior to sintering was about 100 ⁇ m.
  • the sintering process was carried out in flowing argon protective gas at atmospheric pressure.
  • the sintering time/temperature profile for the coating present over an aluminum oxide substrate having a thickness of about 25 ⁇ m is shown in FIG. 6 .
  • the graph 600 shows the time period in minutes on axis 602 and the temperature in ° C. on axis 604 .
  • the substrate with coating applied was rapidly increased in temperature at a linear rate from room temperature to 1000° C. over a time period of about 60 minutes as illustrated in area 606 .
  • the heating rate was then slowed, as indicated by region 608 of the curve, during which the temperature was increased from 1000° C. to 1410° C. over a time period of about 140 minutes.
  • the sintering was then held at a constant temperature of 1410° C. as illustrated in area 610 of the curve for a time period of about 180 minutes. Finally, the coated substrate was cooled at a linear rate from 1410° C. to room temperature over a time period of about 275 minutes, as indicated by region 612 of the curve.
  • the thickness of the sintered coating produced was about 25 ⁇ m.
  • the coating layer composition near and at the coating surface included YOF and Y 2 O 3 .
  • the Composition of Phases, Phase Composition %, and Grain Size for the coating structure are shown below in Table One.
  • the composition of the starting suspension was the same for Example Two as described for Example One.
  • the thickness of the unsintered coating on the substrate was about 100 ⁇ m.
  • the sintering was carried out in flowing argon protective gas at atmospheric pressure.
  • the sintering time/temperature profile is shown in FIG. 7 .
  • the graph 700 shows the time period in minutes on axis 702 and the temperature in .degree. C. on axis 704 .
  • the substrate with coating applied was rapidly increased in temperature at a linear rate from room temperature to 1000° C. over a time period of about 58 minutes as illustrated in area 706 .
  • the heating rate was then slowed, as indicated by region 708 of the curve, during which the temperature was increased from 1000° C. to 1430° C.
  • the sintering was then held at a constant temperature of 1430° C. as illustrated in area 610 of the curve for a time period of about 120 minutes. Finally, the coated substrate was cooled at a linear rate from 1430° C. to room temperature over a time period of about 265 minutes, as indicated by region 712 of the curve.
  • the thickness of the sintered coating produced was about 25 ⁇ m.
  • the coating layer included YOF, Y 2 O 3 , and crystalline YF 3 . There was a transition area between the coating and the aluminum oxide substrate which was AlF 3 , followed by Al 2 O 3 adjacent to the substrate. X-ray diffraction was unable to detect an amorphous phase in this glass ceramic, indicating that the amorphous phase content is lower than 1% by weight.
  • the Phase Composition and Grain Size analyzed by XRD for the coating structure are shown below in Table Two.
  • the sintering profile including heat up rate and cool down rate were the same as for Example One. However, the sintering temperature increase to 1430° C., and the reduction in dwell time to 2 hours had a very significant and surprising effect on the overall structure of the coating.
  • FIG. 7 shows the sintering conditions, which produced a coating where there is no amorphous material present, and the grain sizes of the various compounds is significantly altered. For example, the grain size of the YOF phase increased from about 46 nm to greater than 100 nm. The YF 3 crystalline phase did not forth in the previous sintering profile where the maximum temperature was 1410° C., but did form when the sintering profile where the maximum temperature was 1430° C.
  • the grain size for YF 3 crystalline phase was greater than 100 nm.
  • the AlF 3 grain size has increased from 2.9 nm to 58.6 nm. While the grain sizes of all of these crystalline components increased, the grain size of the Al 2 O 3 crystalline component decreased from greater than 100 nm to about 59.4 nm.
  • the difference in composition of the resulting glass-ceramic coating produced was surprising, in terms of the amount of shifting in phase composition and grain size for the various phases.
  • the transition area from the substrate to the coating has significantly changed, where the composition of the transition area has become mainly AlF 3 (23.88% AlF 3 and 9.13% Al 2 O 3 ) compared with the transition area of the coating discussed in Example One, where the transition area was mainly Al 2 O 3 (28.7% Al 2 O 3 and 3.89% AlF 3 ). This difference in composition led to the different thermal and mechanical properties of the transition layer.
  • This change in the transition area determines both the ability of the coating to withstand temperature fluctuations which cause stress due to differences in coefficient of expansion between the substrate. The stresses created can cause cracking of the coating, as will be discussed subsequently.
  • FIGS. 2A and 2B show photomicrographs which illustrate the fracture surface observation for a coated aluminum oxide substrate which was produced in the manner described in Example One.
  • the structure 200 includes the aluminum oxide substrate 202 which is comprised of crystals which demonstrate obvious porosity potential. The average crystal size of the aluminum oxide is greater than 100 nm. In direct contact with these crystals is transition area 204 . Transition area 204 comprises some aluminum oxide adjacent the aluminum oxide substrate 202 , but extending away from the substrate is an AlF 3 composition which has a much smaller crystal size, on the average of about 2.9 nm. This smaller crystal is able to provide a more densely packed structure, as shown in the photomicrograph.
  • the coating layer 206 which includes a combination of Y 2 O 3 and YOF.
  • the average crystal size of the Y 2 O 3 is about 18.6 nm and the average crystal size of the YOF is about 46 nm.
  • the presence of the amorphous Y—Al—O—F phase, which acts as a matrix to surround the Y 2 O 3 and YOF crystals provides an impervious coating.
  • FIG. 2B shows a photomicrograph of structure 220 , where the coating 202 is the Y 2 O 3 and YOF crystal grains interspersed with amorphous Y—Al—O—F phase, shown at a magnification of 2 ⁇ the magnification shown for area 206 in FIG. 2A .
  • the finished coating surface (not shown) is dense and free from loose particulates, as would be expected looking at the non-fractured area 206 toward the right of structure 220 .
  • the oxygen present in the Y 2 O 3 and YOF crystalline portion of the coating matrix was generally supplied from the oxide substrate.
  • flowing argon was circulated through the sintering furnace.
  • the AlF 3 transition layer was formed according to the following mechanism: The 1410° C. to 1430° C. sintering temperature is higher than the melting temperature of YF 3 .
  • a Y—Al—O—F melt is formed.
  • the melt composition is not homogeneous and, in the area close to the Al 2 O 3 substrate, there is a higher Al content.
  • the nucleation of AlF 3 starts in the location of the boundary between the Al 2 O 3 substrate and the melt, and the growth continues during cooling, to produce the AlF 3 crystal grains.
  • the substrate was also Al 2 O 3 , but one of skill in the art will recognize that the substrate could be aluminum oxide or aluminum nitride.
  • the ceramic powder used to produce the coating was a mixture of 80% by weight YF 3 and 20% by weight NdF 3 . Again, we determined that a different sintering time/temperature profile led to different phase compositions for the sintered ceramic coating.
  • the sintering was carried out in flowing argon protective gas at atmospheric pressure.
  • the glass-ceramic coatings sintered from the 80% by weight YF 3 and 20% by weight NdF 3 mixture were first sintered using the sintering profile described with respect to Example One and illustrated in FIG. 6 .
  • the YF 3 powder had an average powder size of about 100 nm.
  • the NdF 3 powder had an average powder size of about 100 nm.
  • the powders were suspended in an ethanol suspension media, where the weight % of the powder mixture was about 30%, and the ethanol in the suspension was about 70 weight %.
  • the coating was applied over an aluminum oxide substrate using a dipping technique, to produce a resulting unsintered coating thickness over the substrate of about 100 ⁇ m.
  • the sintering time/temperature profile for the coating present over an aluminum oxide substrate having a thickness of about 25 ⁇ m is shown in FIG. 6 .
  • the coating layer included YOF, Nd 6 O 11 , Nd 4 Al 2 O 9 , NdAlO 3 , and Al 2 O 3 .
  • the YOF and Nd 6 O 11 were from the upper portion of the coating, nearer the surface of the coating.
  • the NdAlO 3 and Nd 4 Al 2 O 9 were from the transition layer, and the Al 2 O 3 was adjacent the Al 2 O 3 substrate surface.
  • Amorphous Y—Nd—Al—O—F phase was present throughout the upper portion and the transition area of the coating.
  • the Phase Composition and Grain Size analyzed by XRD for the coating structure are shown below in Table three.
  • composition of the starting materials were the same for Example Four.
  • the sintering time/temperature profile is shown in FIG. 7 , where the coating was sintered at 1430° C. for 120 minutes (2 hours).
  • the coating layer included YOF and Nd 2 O 3 .
  • There was a transition area between the coating and the aluminum oxide substrate which was Nd ⁇ 5Y 2 ⁇ 5Al 3 O 12 , Nd 4 Al 2 O 9 , and AlF 3 , followed by Al 2 O 3 adjacent to the substrate.
  • Nd—Al—O phase Nd 4 Al 2 O 9
  • Nd—Y—Al—O phase Nd 2 ⁇ 5Y 2 ⁇ 5Al 3 O 12
  • AlF 3 phase one AlF 3 phase in the transition area between the glass-ceramic coating and the substrate provided particularly strong binding between the coating and the substrate.
  • the surface of the coating remains impervious to erosion despite the fact that X-ray diffraction cannot detect an amorphous phase, as there is still a low content of amorphous phase which makes up the grain boundaries between crystals.
  • the substrate was also Al 2 O 3 , but one of skill in the art will recognize that the substrate could be either aluminum oxide or aluminum nitride.
  • the ceramic powder used to produce the coating was a mixture of 90% by weight YF 3 and 10% by weight NdF 3 .
  • the YF 3 powder had an average powder size of about 100 nm.
  • the NdF 3 powder had an average powder size of about 100 nm.
  • the powders were suspended in an ethanol suspension media, where the weight % of the powder mixture was about 30%, and the ethanol in the suspension was about 70 weight %.
  • the coating was applied over an aluminum oxide substrate using a dipping technique, to produce an unsintered coating thickness over the substrate of about 100 ⁇ m.
  • the sintering process was carried out in flowing argon protective gas at atmospheric pressure using a sintering profile as shown in FIG. 7 , where the sintering temperature was 1430° C. for a time period of 120 minutes.
  • the upper portion of the coating is YOF and Nd2O3 (or Nd 6 O 11 ).
  • the transition layer is composed of Nd ⁇ 5Y 2 ⁇ 5Al 3 O 12 , Nd 4 Al 2 O 9 , and AlF 3 , with an Al 2 O 3 phase being present near the surface of the Al 2 O 3 substrate.
  • the upper portion of the coating was YOF and Nd 2 O 3 (or Nd 6 O 11 ) and amorphous Y—Nd—Al—O—F phase.
  • the transition layer was Nd 2 ⁇ 5Y 2 ⁇ 5Al 3 O 12 , Nd 4 Al 2 O 9 , AlF 3 , and amorphous Y—Nd—Al—O—F phase, with an Al 2 O 3 phase being present near the surface of the Al 2 O 3 substrate.
  • FIGS. 3A and 3B illustrate the coating structure obtained for a coating of the kind produced as described in Example Six.
  • FIG. 3A shows a photomicrograph of the structure 300 , with the Al 2 O 3 substrate 302 , the transition area 304 , and the coating 306 having phases of crystalline YOF and Nd 2 O 3 , in combination with amorphous Y—Md—Al—O—F phase.
  • FIG. 3B shows an enlargement of the coating 306 including the three phases where the magnification is 5.times. that shown in FIG. 3A .
  • FIG. 5 shows the lower portion of the photomicrograph from FIG. 3A near the area marked with the scale of dimension in .mu.m.
  • the magnification has been increased 2 ⁇ from that in FIG. 3A , to show a crack which has progressed through the transition layer and stopped at the upper portion of the coating layer which is the glass-ceramic matrix.
  • the structure 500 illustrated shows the transition area 502 , a crack 506 progressing through the transition area 502 and the end of the crack 508 at the point the crack would progress into the glass-ceramic coating 504 .
  • This photomicrograph illustrates the ability of the glass-ceramic structure to provide integrity for the coating even when the coating is put under extreme stress, such as when the structure is fractured to provide a photomicrograph sample.
  • FIG. 4 shows a bar graph 400 which illustrates the relative normalized erosion rates of various solid substrates including aluminum nitride 402 , aluminum oxide 404 , a series of three yttrium oxides ( 404 , 408 , 410 , and 412 ) available from different vendors, and yttrium oxyfluoride glass ceramic 414 .
  • the yttrium oxyfluoride glass-ceramic test specimen was an aluminum oxide substrate protected by a coating of the kind described in Example One, above.
  • the test specimens were processed in an etchant plasma created from a CF 4 /CHF 3 plasma source gas.
  • the etch processing was of the kind typically used during plasma etching of a silicon substrate.
  • the erosion rate of the yttrium oxyfluoride glass ceramic coating provides better than a 25% improvement over the erosion rate of solid Y 2 O 3 substrates, better than a 600% improvement over the erosion rate of an Al 2 O 3 substrate, and better than an 800% improvement over an A/N substrate.
  • This improved erosion rate combined with the improved mechanical, thermal, and electrical properties described above, and the resistance to cracking under stress illustrated in FIG. 5 , supports the inventors' assertion that the materials they have developed provide a surprising improvement over competitive materials previously known in the art.

Abstract

Described herein are components of a semiconductor processing apparatus, where at least one surface of the component is resistant to a halogen-containing reactive plasma. The component includes a solid structure having a composition containing crystal grains of yttrium oxide, yttrium fluoride or yttrium oxyfluoride and at least one additional compound selected from an oxide, fluoride, or oxyfluoride of neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium, hafnium, and combinations thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a division of U.S. application Ser. No. 14/545,042 filed on Mar. 19, 2015, which is a division of U.S. application Ser. No. 12/590,200 filed on Nov. 3, 2009 and issued as U.S. Pat. No. 9,017,765 on Apr. 28, 2015, which claims the benefit of U.S. Provisional Application Ser. No. 61/199,127 filed on Nov. 12, 2008.
  • FIELD
  • Embodiments of the invention relate to compositions of metal oxyfluoride comprising glazes, glass ceramics, and combinations thereof which are useful as plasma-resistant protective solid substrates or plasma resistant coatings over other substrates. In addition, embodiments of the invention relate to methods of applying bulk materials or coatings of the compositions over a substrate to provide various processing components which are useful as part of reactive plasma processing apparatus.
  • BACKGROUND
  • This section describes background subject matter related to the disclosed embodiments of the present invention. There is no intention, either express or implied, that the background art discussed in this section legally constitutes prior art.
  • A glaze is a specialized form of glass and therefore can be described as an amorphous solid. Glazing is the process of coating the part with a layer of glaze. A glass ceramic is a specialized form of ceramics, which is formed first as a glass and then made to crystallize partly through a designed heat treatment which involves controlled cooling.
  • Unlike traditional sintered ceramics, glass ceramics do not have pores between crystal grains. The spacing between grains is filled with the glass. Glass ceramics share many properties with both glass and traditional crystalline ceramics. After adjusting the composition of glass ceramics by processing technique, the final material may exhibit a number of advanced properties that the traditional ceramics do not have.
  • Glazes and glass ceramics have long been used to provide protective coatings. To form the protective coatings, typically a powder of an oxide, which may be in combination with a non-oxide, is placed into a suspending medium, to which a binder composition may be added, this combination of ingredients produces a slurry which is applied over a substrate which is to be coated, and then the slurry is sintered under controlled time, temperature and environmental conditions. During sintering, when the fluid coating material is cooled rapidly, typically a glaze is produced; when the coating material is cooled slowly, a glass-ceramic is obtained.
  • The physical properties of the coating obtained, such as thermal conductivity, thermal expansion coefficient, hardness, and toughness, for example, can be adjusted by changing the composition of the ceramic powder, and/or the processing technique. The thickness of the coating, for a given application process, may be “fine tuned” by adjusting the slurry viscosity, pH, and binder, for example. Depending on the composition of the coating and the substrate, and the application process, a transition layer may be formed between the substrate and portion of the coating which is in contact with the substrate. A transition layer formed in-situ during application of the coating to the substrate surface may provide better chemical bonding between the substrate and the coating and may also dissipate the stress due to thermal expansion difference between the substrate and the coating.
  • To apply a coating, a slurry containing the ceramic powder, suspension medium, binder and possibly dopants of various kinds is typically applied over the surface of a substrate using a technique known in the art, such as painting, dipping, spraying, screen printing, or spin-on, by way of example. The substrate must be able to withstand the sintering temperature required to form the coating. The coating is then sintered at a sufficient temperature and for a period of time to permit the coating to form. The coating performance in a given application is limited by the composition of the coating and the processing conditions used to apply the coating.
  • Processing chamber liners and component apparatus present within processing chambers which are used in the fabrication of electronic devices and micro-electro-mechanical structures (MEMS), for example and not by way of limitation, are frequently constructed from ceramics such as aluminum oxide and aluminum nitride. While the plasma erosion resistance for these materials in a fluorine containing plasma of the kind typically used for etching silicon-containing electronic device structures is better than a number of materials which were used in the processing art even 5 years ago, there is constantly an effort to try to improve the erosion resistance of etch processing components, as a means of extending the lifetime of the processing apparatus and of reducing metal contamination and particle formation during device processing. Not only is the processing apparatus very expensive, the production down time caused by the need to replace apparatus which is not functioning well due to erosion is also very expensive.
  • Solid yttrium oxide component structures have demonstrated considerable advantages when used as semiconductor apparatus components in reactive plasma processing. A yttrium oxide solid component substrate typically comprises at least 99.9% by volume yttrium oxide, has a density of at least 4.92 g/cm3, and a water absorbency of about 0.02% or less. The average crystalline grain size of the yttrium oxide is within a range of about 10 μm to about 25 μm. The co-inventors of the present invention developed a yttrium oxide-containing substrate which includes impurities which are equal to or less than the following maximum concentrations: 90 ppm Al; 10 ppm Ca; 5 ppm Cr; 5 ppm Cu; 10 ppm Fe; 5 ppm K; 5 ppm Mg; 5 ppm Na; 5 ppm Ni; 120 ppm Si; and 5 ppm Ti. This yttrium oxide-comprising substrate provided improvements over substrates previously known in the art. A yttrium oxide-comprising substrate of this general composition which included up to about 10% by volume of aluminum oxide was also developed.
  • In a reactive plasma etch rate test, where the reactive etchant plasma contains plasma species generated from a plasma source gas of CF4 and CHF3, a solid Yttrium oxide substrate component resists etch by the plasma better than solid aluminum oxide substrate or solid aluminum nitride substrate, but not as well as the components of the present invention either in solid form or as coatings over underlying substrates.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the exemplary embodiments of the present invention are attained is clear and can be understood in detail, with reference to the particular description provided above, and with reference to the detailed description of exemplary embodiments, applicants have provided illustrating drawings. It is to be appreciated that drawings are provided only when necessary to understand exemplary embodiments of the invention and that certain well known processes and apparatus are not illustrated herein in order not to obscure the inventive nature of the subject matter of the disclosure.
  • FIG. 1 is a schematic 100 representative of the use of a glaze/glass ceramic as a coating layer over a ceramic substrate such as aluminum oxide or aluminum nitride.
  • FIG. 2A shows a photomicrograph 200 illustrating the crystal structure of an aluminum substrate 202 directly adjacent a transition area 204, which is directly adjacent a yttrium fluoride glass ceramic 206.
  • FIG. 2B shows a photomicrograph 220 illustrating the crystal structure of the yttrium fluoride glass ceramic 206 at a magnification which is two times that shown in FIG. 2A.
  • FIG. 3A shows a photomicrograph 300 of the crystalline structure of an aluminum oxide substrate 302 directly adjacent a transition area 304, which is directly adjacent a yttrium fluoride glass ceramic doped with neodium fluoride 306.
  • FIG. 3B shows a photomicrograph 320 of the crystalline structure of the neodium fluoride-doped yttrium fluoride glass ceramic 306 at a magnification which is five times that shown in FIG. 3A.
  • FIG. 4 shows a bar graph 400 which illustrates the relative normalized erosion rates of various solid substrates including aluminum nitride 402, aluminum oxide 404, a series of three yttrium oxides (404, 408, 410, and 412) available from different vendors, and a yttrium oxyfluoride glass ceramic 414.
  • FIG. 5 shows a photomicrograph 500 which illustrates a transition layer 502 directly adjacent an aluminum oxide substrate (not shown on the left), which is directly adjacent a yttrium oxyfluoride glass ceramic 504. A crack 506 passing through transition area 502 stops at the yttrium oxyfluoride glass ceramic coating.
  • FIG. 6 shows a sintering profile 600 for a coating of yttrium oxyfluoride glass ceramic applied over an aluminum oxide substrate. The sintering time is shown in minutes on axis 602 and the temperature is shown on axis 604.
  • FIG. 7 shows a sintering profile 700 for a coating of neodium fluoride doped yttrium oxyfluoride glass ceramic applied over an aluminum oxide substrate. The sintering time is shown in minutes on axis 702 and the temperature is shown on axis 704.
  • DETAILED DESCRIPTION
  • As a preface to the detailed description, it should be noted that, as used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents, unless the context clearly dictates otherwise.
  • When the word “about” is used herein, this is intended to mean that the nominal value presented is precise within ±10%.
  • The materials and methods described herein are useful in designing and in fabrication of component apparatus parts for semiconductor and MEMS processing equipment. In particular, the materials and methods of fabricating components produce component apparatus which is resistant to halogen plasmas in general and to the fluorine-containing plasmas which are so problematic in terms of reaction with and erosion of surfaces of the components. Example component parts of the kind which particularly benefit from the materials and methods described herein include plasma processing chamber apparatus such as shower heads for gas distribution, process chamber lid interiors, process chamber liners, and electrostatic chuck surfaces, by way of example and not by way of limitation. Use of the materials described herein and the method of fabricating parts from these materials will decrease the amount of particles formed and metal contamination which occurs during the performance lifetime of the component part, and extend the lifetime of the component part as well.
  • A protective coating composition of the kind described herein is useful over a surface of an aluminum oxide, aluminum nitride, quartz, silicon carbide, silicon nitride, and other ceramic or glass substrates with a melting point higher than about 1600° C. The protective coating is a sintered composition including a yttrium-based fluoride crystal, or a yttrium-based oxyfluoride crystal, or an oxyfluoride amorphous phase, or a combination thereof. The materials which are selected for formation of the coating depend on the plasma resistance and mechanical, thermal, and electrical properties required for a given component. The starting materials typically comprise compound powders, a suspension medium, and a binder. A majority % of the compound powders (typically about 30% by weight or greater) is a yttrium compound, which may be an oxyfluoride, a fluoride, or combinations of these. This majority compound may be doped with a minority component powder, for example, an oxide, fluoride, or oxyfluoride of: neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium, hafnium, and combinations thereof. Properties such as thermal conductivity, thermal expansion coefficient, hardness, toughness, dielectric strength, dielectric constant, loss tangent, electrical resistivity, and erosion resistance will be determined in large part by the compounds selected for combination in forming a sintered coating.
  • The suspension medium may be selected from water or organic chemicals, including but not limited to methanol and ethanol, and combinations thereof, by way of example. Typically, when the suspension medium is methanol or ethanol, the concentration of this suspension medium in the suspension ranges from about 30 weight % to about 90 weight %. The binder may be selected from polyvinyl alcohol (PVA) and polymeric cellulose ether, or combinations thereof, by way of example and not by way of limitation.
  • Once the materials have been selected, there are a number of other variables which must be determined. These include the relative weight or volume percentages (or ratios) of the powdered materials, and the size of the starting powdered materials; the relative weight percentage of suspension medium; and the relative weight % of binder. Determination of these variables will affect the properties of the suspension such as the viscosity and the manner in which the suspension may be applied over a substrate surface. All of these variables affect the properties including thickness of the coating on the substrate prior to sintering, and ultimately affect the properties including thickness of the sintered coating. The sintering time and temperature profile determines the composition which is formed and the final crystalline structure of the sintered coating. As was discussed initially, when the cooling rate is fast, a glaze is formed, and when the cooling rate is slow, a glass-ceramic is formed. In addition, the ambient environment (atmosphere) in which the sintering takes place may introduce additional elements into the coating surface. For example, when oxygen is present in the sintering atmosphere, oxygen will be introduced into the sintered body. The time and temperature profile of the sintering will affect the depth to which the oxygen penetrates into the coating and the compounds which are formed. Initially, a large amount of empirical work was required to establish the guidelines from which satisfactory products of the present invention were produced.
  • The thickness of the sintered coating may be adjusted by changing the slurry viscosity, which depends on the variables discussed above and also on the final pH of the slurry, which may be adjusted by adding an acid or a base.
  • A glass-ceramic structured coating makes possible adjustment of the coefficient of expansion, so that the difference between the substrate and the coating approaches zero. However, in cases where other desired properties would be sacrificed in an attempt to reduce the coefficient of expansion difference, we have discovered that by controlling the variables discussed above, it is possible to produce, in-situ, a transition area between the substrate and the coating. The transition area may be used to dissipate the stress due to differential in thermal expansion between the substrate and the coating. In addition, the transition area may be used to provide a stronger bond between the substrate and the coating.
  • According to certain embodiments, described herein is a substrate that may be protected by a coating which is resistant to a halogen-comprising plasma. The coated substrate may include a sintered composition including a yttrium-based fluoride (e.g., having a crystal phase), or a yttrium-based oxyfluoride (e.g., having a crystal), or an oxyfluoride phase (e.g., amorphous), or a combination thereof, wherein the coating is present over a surface of the substrate which has a melting point higher than about 1600° C. In some embodiments, a portion of the yttrium-based oxyfluoride or the yttrium-based fluoride is present as a crystalline phase and the oxyfluoride phase is present as an amorphous phase. In certain embodiments, additional crystalline phase compounds are present in the coated substrate and are formed during sintering of the composition due to the presence of a dopant selected from an oxide, or fluoride, or oxyfluoride of neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium, and combinations of an oxide, or fluoride or oxyfluoride of at least one of these elements. In some embodiments, the crystalline portion of the coating composition ranges from about 70% by weight to about 100% by weight.
  • According to certain embodiments, described herein is a component of a semiconductor processing apparatus, wherein a surface of the apparatus is exposed to a halogen-containing reactive plasma, the component structure includes a solid structure having an overall uniform composition. The composition includes crystal grains selected from yttrium oxide, yttrium fluoride and yttrium oxyfluoride, and at least one additional compound selected from an oxide, fluoride, or oxyfluoride of a rare earth metal (e.g., neodymium, cerium, samarium, erbium, scandium, lanthanum, hafnium, niobium, ytterbium, hafnium), aluminum, zirconium, and combinations thereof.
  • Exemplary Slurry Compositions and Methods of Applying a Coating of Glass/Glass-Ceramic Over a Ceramic Substrate
  • To establish the boundaries of variables which should be adjusted, two systems were selected for illustration in examples. The first system is a pure YF3 powder system. The second system is a YF3—NdF3 doped powder system. The suspension media used was ethanol. There was no binder used during sintering of the powder compositions which were sintered in the embodiment examples described herein. As an alternative to the described embodiments, the suspension media could be water, used in combination with a polyvinyl alcohol (PVC) binding agent, for example and not by way of limitation.
  • Example One
  • FIG. 1 is a schematic 100 representative of the use of a glaze/glass ceramic as a coating layer over a ceramic substrate such as aluminum oxide or aluminum nitride. FIG. 1 shows the coating 106 overlying a transition layer (transition area) 104, which overlies the substrate 102. In Example One, the substrate was aluminum oxide, Al2O3, but one of skill in the art will recognize that the substrate could be AlN. The powder used to form the glaze/glass-ceramic coating layer 106 was pure YF3. We discovered that a different sintering time and temperature profile led to different phase compositions for the sintered coating. The sintering was carried out in flowing argon protective gas at atmospheric pressure. The glass ceramic coating described in this example was sintered from pure YF3 powder having an average powder size of about 100 nm. Powder having an average particle size within the range of about 30 nm up to about 1 μm may be used. The YF3 powder was suspended in an ethanol suspension media, where the weight % YF3 powder was about 30%, and the weight % ethanol in the suspension was about 70%. As previously mentioned, as an alternative, the suspension media may be water where a binder is used. A binder such as PVA works well. The coating was applied over an aluminum oxide substrate using a dipping technique of the kind known in the art. The substrate can be dipped in the suspension a number of times to achieve a desired coating thickness. In the present instance, the coating thickness prior to sintering was about 100 μm.
  • The sintering process was carried out in flowing argon protective gas at atmospheric pressure. The sintering time/temperature profile for the coating present over an aluminum oxide substrate having a thickness of about 25 μm is shown in FIG. 6. The graph 600 shows the time period in minutes on axis 602 and the temperature in ° C. on axis 604. As indicated, the substrate with coating applied was rapidly increased in temperature at a linear rate from room temperature to 1000° C. over a time period of about 60 minutes as illustrated in area 606. The heating rate was then slowed, as indicated by region 608 of the curve, during which the temperature was increased from 1000° C. to 1410° C. over a time period of about 140 minutes. The sintering was then held at a constant temperature of 1410° C. as illustrated in area 610 of the curve for a time period of about 180 minutes. Finally, the coated substrate was cooled at a linear rate from 1410° C. to room temperature over a time period of about 275 minutes, as indicated by region 612 of the curve. The thickness of the sintered coating produced was about 25 μm.
  • Four crystal phases were found in the x-ray diffraction of the glass-ceramic coating structure which was sintered at 1410° C. The coating layer composition near and at the coating surface included YOF and Y2O3. There was a transition area between the coating and the aluminum oxide substrate which was AlF3, followed by Al2O3 adjacent to and in contact with the substrate. There is about 22 molar % of Y—Al—O—F amorphous phase distributed between crystal grains in the surface layer and the transition layer. The Composition of Phases, Phase Composition %, and Grain Size for the coating structure are shown below in Table One.
  • TABLE ONE
    Composition Phase Composition molar % Grain Size (nm)
    Amorphous 22.04
    Y—Al—O—F
    Y2O3 3.79 18.6
    YOF 41.58 46
    AlF3 3.89 2.9
    Al2O3 28.7 >100
  • Example Two
  • The composition of the starting suspension was the same for Example Two as described for Example One. The thickness of the unsintered coating on the substrate was about 100 μm. The sintering was carried out in flowing argon protective gas at atmospheric pressure. The sintering time/temperature profile is shown in FIG. 7. The graph 700 shows the time period in minutes on axis 702 and the temperature in .degree. C. on axis 704. As indicated, the substrate with coating applied was rapidly increased in temperature at a linear rate from room temperature to 1000° C. over a time period of about 58 minutes as illustrated in area 706. The heating rate was then slowed, as indicated by region 708 of the curve, during which the temperature was increased from 1000° C. to 1430° C. over a time period of about 145 minutes. The sintering was then held at a constant temperature of 1430° C. as illustrated in area 610 of the curve for a time period of about 120 minutes. Finally, the coated substrate was cooled at a linear rate from 1430° C. to room temperature over a time period of about 265 minutes, as indicated by region 712 of the curve. The thickness of the sintered coating produced was about 25 μm.
  • Five crystal phases were found in the x-ray diffraction of the glass-ceramic coating structure. The coating layer included YOF, Y2O3, and crystalline YF3. There was a transition area between the coating and the aluminum oxide substrate which was AlF3, followed by Al2O3 adjacent to the substrate. X-ray diffraction was unable to detect an amorphous phase in this glass ceramic, indicating that the amorphous phase content is lower than 1% by weight. The Phase Composition and Grain Size analyzed by XRD for the coating structure are shown below in Table Two.
  • TABLE TWO
    Composition Phase Composition molar % Grain Size (nm)
    Amorphous 0.0
    Y—Al—O—F
    Y2O3 11.46 17.5
    YOF 37.43 >100
    YF3 18.1 >100
    AlF3 23.88 58.6
    Al2O3 9.13 59.4
  • The sintering profile, including heat up rate and cool down rate were the same as for Example One. However, the sintering temperature increase to 1430° C., and the reduction in dwell time to 2 hours had a very significant and surprising effect on the overall structure of the coating. FIG. 7 shows the sintering conditions, which produced a coating where there is no amorphous material present, and the grain sizes of the various compounds is significantly altered. For example, the grain size of the YOF phase increased from about 46 nm to greater than 100 nm. The YF3 crystalline phase did not forth in the previous sintering profile where the maximum temperature was 1410° C., but did form when the sintering profile where the maximum temperature was 1430° C. The grain size for YF3 crystalline phase was greater than 100 nm. The AlF3 grain size has increased from 2.9 nm to 58.6 nm. While the grain sizes of all of these crystalline components increased, the grain size of the Al2O3 crystalline component decreased from greater than 100 nm to about 59.4 nm. The difference in composition of the resulting glass-ceramic coating produced was surprising, in terms of the amount of shifting in phase composition and grain size for the various phases. In addition, the transition area from the substrate to the coating has significantly changed, where the composition of the transition area has become mainly AlF3 (23.88% AlF3 and 9.13% Al2O3) compared with the transition area of the coating discussed in Example One, where the transition area was mainly Al2O3 (28.7% Al2O3 and 3.89% AlF3). This difference in composition led to the different thermal and mechanical properties of the transition layer.
  • This change in the transition area determines both the ability of the coating to withstand temperature fluctuations which cause stress due to differences in coefficient of expansion between the substrate. The stresses created can cause cracking of the coating, as will be discussed subsequently.
  • Example Three
  • FIGS. 2A and 2B show photomicrographs which illustrate the fracture surface observation for a coated aluminum oxide substrate which was produced in the manner described in Example One. In FIG. 2A, the structure 200 includes the aluminum oxide substrate 202 which is comprised of crystals which demonstrate obvious porosity potential. The average crystal size of the aluminum oxide is greater than 100 nm. In direct contact with these crystals is transition area 204. Transition area 204 comprises some aluminum oxide adjacent the aluminum oxide substrate 202, but extending away from the substrate is an AlF3 composition which has a much smaller crystal size, on the average of about 2.9 nm. This smaller crystal is able to provide a more densely packed structure, as shown in the photomicrograph. Moving away from the transition area 204 is the coating layer 206 which includes a combination of Y2O3 and YOF. The average crystal size of the Y2O3 is about 18.6 nm and the average crystal size of the YOF is about 46 nm. The presence of the amorphous Y—Al—O—F phase, which acts as a matrix to surround the Y2O3 and YOF crystals provides an impervious coating. FIG. 2B shows a photomicrograph of structure 220, where the coating 202 is the Y2O3 and YOF crystal grains interspersed with amorphous Y—Al—O—F phase, shown at a magnification of 2× the magnification shown for area 206 in FIG. 2A. The finished coating surface (not shown) is dense and free from loose particulates, as would be expected looking at the non-fractured area 206 toward the right of structure 220.
  • The oxygen present in the Y2O3 and YOF crystalline portion of the coating matrix was generally supplied from the oxide substrate. During the sintering process, flowing argon was circulated through the sintering furnace. The AlF3 transition layer was formed according to the following mechanism: The 1410° C. to 1430° C. sintering temperature is higher than the melting temperature of YF3. A Y—Al—O—F melt is formed. However, the melt composition is not homogeneous and, in the area close to the Al2O3 substrate, there is a higher Al content. During cooling of the melt, the nucleation of AlF3 (heterogeneous) starts in the location of the boundary between the Al2O3 substrate and the melt, and the growth continues during cooling, to produce the AlF3 crystal grains.
  • Example Four
  • In Example Four, the substrate was also Al2O3, but one of skill in the art will recognize that the substrate could be aluminum oxide or aluminum nitride. The ceramic powder used to produce the coating was a mixture of 80% by weight YF3 and 20% by weight NdF3. Again, we determined that a different sintering time/temperature profile led to different phase compositions for the sintered ceramic coating. The sintering was carried out in flowing argon protective gas at atmospheric pressure. The glass-ceramic coatings sintered from the 80% by weight YF3 and 20% by weight NdF3 mixture were first sintered using the sintering profile described with respect to Example One and illustrated in FIG. 6. The YF3 powder had an average powder size of about 100 nm. The NdF3 powder had an average powder size of about 100 nm. The powders were suspended in an ethanol suspension media, where the weight % of the powder mixture was about 30%, and the ethanol in the suspension was about 70 weight %. The coating was applied over an aluminum oxide substrate using a dipping technique, to produce a resulting unsintered coating thickness over the substrate of about 100 μm.
  • As previously mentioned, the sintering time/temperature profile for the coating present over an aluminum oxide substrate having a thickness of about 25 μm is shown in FIG. 6.
  • Five crystal phases were found in the x-ray diffraction of the glass-ceramic coating structure. The coating layer included YOF, Nd6O11, Nd4Al2O9, NdAlO3, and Al2O3. There is about 20 molar % of amorphous Y—Nd—Al—O—F phase distributed between the crystal grains. The YOF and Nd6O11 were from the upper portion of the coating, nearer the surface of the coating. The NdAlO3 and Nd4Al2O9 were from the transition layer, and the Al2O3 was adjacent the Al2O3 substrate surface. Amorphous Y—Nd—Al—O—F phase was present throughout the upper portion and the transition area of the coating. The Phase Composition and Grain Size analyzed by XRD for the coating structure are shown below in Table three.
  • TABLE THREE
    Composition Phase Composition molar % Grain Size (nm)
    Amorphous 20.26
    Y—Nd—Al—O—F
    YOF 23.92 5.9
    Nd6O11 36.27 22.2
    NdAlO3 1.48 16.5
    Nd4Al2O9 16.72 >100
    Al2O3 1.35 60.9
  • Example Five
  • The composition of the starting materials were the same for Example Four. The sintering time/temperature profile is shown in FIG. 7, where the coating was sintered at 1430° C. for 120 minutes (2 hours).
  • Five crystal phases were found in the x-ray diffraction of the glass-ceramic coating structure. The coating layer included YOF and Nd2O3. There was a transition area between the coating and the aluminum oxide substrate which was Nd⋅5Y2⋅5Al3O12, Nd4Al2O9, and AlF3, followed by Al2O3 adjacent to the substrate. There was no amorphous phase indicated. This means that the amorphous phase content is lower than 1% by weight and X-ray diffraction cannot detect a presence. The presence of one Nd—Al—O phase (Nd4Al2O9) with one Nd—Y—Al—O phase (Nd2⋅5Y2⋅5Al3O12) and one AlF3 phase in the transition area between the glass-ceramic coating and the substrate provided particularly strong binding between the coating and the substrate. The surface of the coating remains impervious to erosion despite the fact that X-ray diffraction cannot detect an amorphous phase, as there is still a low content of amorphous phase which makes up the grain boundaries between crystals.
  • Example Six
  • In Example Six, the substrate was also Al2O3, but one of skill in the art will recognize that the substrate could be either aluminum oxide or aluminum nitride. The ceramic powder used to produce the coating was a mixture of 90% by weight YF3 and 10% by weight NdF3. The YF3 powder had an average powder size of about 100 nm. The NdF3 powder had an average powder size of about 100 nm. The powders were suspended in an ethanol suspension media, where the weight % of the powder mixture was about 30%, and the ethanol in the suspension was about 70 weight %. The coating was applied over an aluminum oxide substrate using a dipping technique, to produce an unsintered coating thickness over the substrate of about 100 μm. The sintering process was carried out in flowing argon protective gas at atmospheric pressure using a sintering profile as shown in FIG. 7, where the sintering temperature was 1430° C. for a time period of 120 minutes.
  • Six crystal phases were found in the x-ray diffraction of the glass-ceramic coating structure. The upper portion of the coating is YOF and Nd2O3 (or Nd6O11). The transition layer is composed of Nd⋅5Y2⋅5Al3O12, Nd4Al2O9, and AlF3, with an Al2O3 phase being present near the surface of the Al2O3 substrate. There is about 4 molar % of amorphous Y—Nd—Al—O—F phase distributed between crystal grains. The presence of one Na—Al—O phase (Nd4Al2O9) with one Nd—Y—Al—O phase (Nd2⋅5Y2⋅5Al3O12) and one AlF3 phase in the transition area between the glass-ceramic coating and the substrate provides particularly strong binding between the coating and the substrate. The Phase Composition and Grain Size analyzed by XRD for the coating structure are shown below in Table Four.
  • TABLE FOUR
    Composition Phase Composition molar % Grain Size (nm)
    Amorphous 4.48
    Y—Nd—Al—O—F
    YOF 11.14 7.1
    Nd2•5Y2•5Al3O12 14.64 >100
    Nd4Al2O9 10.49 77.1
    Nd2O3 49.58 2.4
    AlF3 4.47 47
    Al2O3 5.2 >100
  • The upper portion of the coating was YOF and Nd2O3 (or Nd6O11) and amorphous Y—Nd—Al—O—F phase. The transition layer was Nd2⋅5Y2⋅5Al3O12, Nd4Al2O9, AlF3, and amorphous Y—Nd—Al—O—F phase, with an Al2O3 phase being present near the surface of the Al2O3 substrate.
  • Example Seven
  • FIGS. 3A and 3B illustrate the coating structure obtained for a coating of the kind produced as described in Example Six. FIG. 3A shows a photomicrograph of the structure 300, with the Al2O3 substrate 302, the transition area 304, and the coating 306 having phases of crystalline YOF and Nd2O3, in combination with amorphous Y—Md—Al—O—F phase. FIG. 3B shows an enlargement of the coating 306 including the three phases where the magnification is 5.times. that shown in FIG. 3A.
  • FIG. 5 shows the lower portion of the photomicrograph from FIG. 3A near the area marked with the scale of dimension in .mu.m. The magnification has been increased 2× from that in FIG. 3A, to show a crack which has progressed through the transition layer and stopped at the upper portion of the coating layer which is the glass-ceramic matrix. The structure 500 illustrated shows the transition area 502, a crack 506 progressing through the transition area 502 and the end of the crack 508 at the point the crack would progress into the glass-ceramic coating 504. This photomicrograph illustrates the ability of the glass-ceramic structure to provide integrity for the coating even when the coating is put under extreme stress, such as when the structure is fractured to provide a photomicrograph sample.
  • FIG. 4 shows a bar graph 400 which illustrates the relative normalized erosion rates of various solid substrates including aluminum nitride 402, aluminum oxide 404, a series of three yttrium oxides (404, 408, 410, and 412) available from different vendors, and yttrium oxyfluoride glass ceramic 414. The yttrium oxyfluoride glass-ceramic test specimen was an aluminum oxide substrate protected by a coating of the kind described in Example One, above. The test specimens were processed in an etchant plasma created from a CF4/CHF3 plasma source gas. The etch processing was of the kind typically used during plasma etching of a silicon substrate. The erosion rate of the yttrium oxyfluoride glass ceramic coating provides better than a 25% improvement over the erosion rate of solid Y2O3 substrates, better than a 600% improvement over the erosion rate of an Al2O3 substrate, and better than an 800% improvement over an A/N substrate. This improved erosion rate, combined with the improved mechanical, thermal, and electrical properties described above, and the resistance to cracking under stress illustrated in FIG. 5, supports the inventors' assertion that the materials they have developed provide a surprising improvement over competitive materials previously known in the art.
  • While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised in view of the present disclosure, without departing from the basic scope of the invention, and the scope thereof is determined by the claims which follow.

Claims (20)

I/We claim:
1. A component of a semiconductor processing apparatus, wherein a surface of the component is resistant to a halogen-comprising reactive plasma, the component comprising:
a solid structure having an overall uniform composition, wherein the composition comprises:
crystal grains selected from a group consisting of yttrium oxide, yttrium fluoride and yttrium oxyfluoride, and
at least one additional compound selected from a group consisting of an oxide, fluoride, or oxyfluoride of neodymium, cerium, samarium, erbium, aluminum, scandium, lanthanum, hafnium, niobium, zirconium, ytterbium and combinations of an oxide, fluoride or oxyfluoride of at least one of these elements.
2. The component of claim 1, wherein the composition further comprises an amorphous phase comprising yttrium and fluorine.
3. The component of claim 1, wherein the composition comprises a yttrium aluminum oxyfluoride (Y—Al—O—F) amorphous phase.
4. The component of claim 1, wherein the composition comprises a yttrium oxide.
5. The component of claim 1, wherein in the composition comprises a yttrium fluoride.
6. The component of claim 1, wherein the composition comprises a yttrium oxyfluoride.
7. The component of claim 1, wherein the at least one additional compound comprises aluminum oxide, aluminum fluoride or aluminum oxyfluoride.
8. The component of claim 1, wherein the at least one additional compound comprises zirconium oxide, zirconium fluoride or zirconium oxyfluoride.
9. The component of claim 1, wherein the at least one additional compound comprises an oxide, fluoride or oxyfluoride of neodymium, cerium, samarium, erbium, scandium, lanthanum, hafnium, niobium, ytterbium or hafnium.
10. The component in accordance with claim 1, wherein the component is selected from a group consisting of a shower head for gas distribution, a process chamber lid interior, a process chamber liner and an electrostatic chuck.
11. A component of a processing apparatus, comprising:
a solid structure having a surface resistant to a halogen-comprising reactive plasma, wherein the composition comprises:
crystal grains selected from a group consisting of yttrium oxide, yttrium fluoride, and yttrium oxyfluoride, and
at least one additional compound selected from a group consisting of erbium oxide, erbium fluoride, erbium oxyfluoride, aluminum oxide, aluminum fluoride, aluminum oxyfluoride, hafnium oxide, hafnium fluoride, hafnium oxyfluoride, zirconium oxide, zirconium fluoride, zirconium oxyfluoride, and combinations thereof.
12. The component of claim 11, wherein the composition further comprises an amorphous phase comprising yttrium and fluorine.
13. The component of claim 11, wherein the composition comprises a yttrium aluminum oxyfluoride (Y—Al—O—F) amorphous phase.
14. The component of claim 11, wherein the composition comprises a yttrium oxide.
15. The component of claim 11, wherein in the composition comprises a yttrium fluoride.
16. The component of claim 11, wherein the composition comprises a yttrium oxyfluoride.
17. The component of claim 11, wherein the at least one additional compound comprises aluminum oxide, aluminum fluoride or aluminum oxyfluoride.
18. The component of claim 11, wherein the at least one additional compound comprises zirconium oxide, zirconium fluoride or zirconium oxyfluoride.
19. The component in accordance with claim 11, wherein the component is selected from a group consisting of a shower head for gas distribution, a process chamber lid interior, a process chamber liner and an electrostatic chuck.
20. The component in accordance with claim 11, wherein the composition comprises about 22 molar % Y—Al—O—F amorphous phase.
US16/132,832 2008-11-12 2018-09-17 Plasma resistant semiconductor processing chamber components Abandoned US20190019655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/132,832 US20190019655A1 (en) 2008-11-12 2018-09-17 Plasma resistant semiconductor processing chamber components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19912708P 2008-11-12 2008-11-12
US12/590,200 US9017765B2 (en) 2008-11-12 2009-11-03 Protective coatings resistant to reactive plasma processing
US14/545,042 US10157731B2 (en) 2008-11-12 2015-03-19 Semiconductor processing apparatus with protective coating including amorphous phase
US16/132,832 US20190019655A1 (en) 2008-11-12 2018-09-17 Plasma resistant semiconductor processing chamber components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/545,042 Division US10157731B2 (en) 2008-11-12 2015-03-19 Semiconductor processing apparatus with protective coating including amorphous phase

Publications (1)

Publication Number Publication Date
US20190019655A1 true US20190019655A1 (en) 2019-01-17

Family

ID=56925302

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/545,042 Active 2031-03-30 US10157731B2 (en) 2008-11-12 2015-03-19 Semiconductor processing apparatus with protective coating including amorphous phase
US16/132,832 Abandoned US20190019655A1 (en) 2008-11-12 2018-09-17 Plasma resistant semiconductor processing chamber components

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/545,042 Active 2031-03-30 US10157731B2 (en) 2008-11-12 2015-03-19 Semiconductor processing apparatus with protective coating including amorphous phase

Country Status (1)

Country Link
US (2) US10157731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572617B2 (en) 2016-05-03 2023-02-07 Applied Materials, Inc. Protective metal oxy-fluoride coatings
US10443125B2 (en) 2017-05-10 2019-10-15 Applied Materials, Inc. Flourination process to create sacrificial oxy-flouride layer
JP7304799B2 (en) * 2019-11-28 2023-07-07 東京エレクトロン株式会社 Substrate processing equipment and piping assemblies

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051278A (en) * 1989-07-10 1991-09-24 Eastman Kodak Company Method of forming metal fluoride films by the decomposition of metallo-organic compounds in the presence of a fluorinating agent
US5541012A (en) 1992-05-08 1996-07-30 Nippon Telegraph And Telephone Corporation Infrared-to-visible up-conversion material
US6447937B1 (en) 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
JP3362113B2 (en) * 1997-07-15 2003-01-07 日本碍子株式会社 Corrosion-resistant member, wafer mounting member, and method of manufacturing corrosion-resistant member
US6383964B1 (en) * 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
DE69920152T2 (en) * 1998-12-21 2005-09-22 Shin-Etsu Chemical Co., Ltd. Corrosion resistant mixed oxide material
US6316377B1 (en) 1999-09-10 2001-11-13 Battelle Memorial Institute Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles
TW503449B (en) 2000-04-18 2002-09-21 Ngk Insulators Ltd Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP4387563B2 (en) 2000-06-05 2009-12-16 住友大阪セメント株式会社 Susceptor and method of manufacturing susceptor
JP4601160B2 (en) 2000-12-26 2010-12-22 京セラ株式会社 Corrosion resistant material
US7670688B2 (en) * 2001-06-25 2010-03-02 Applied Materials, Inc. Erosion-resistant components for plasma process chambers
US20080264564A1 (en) 2007-04-27 2008-10-30 Applied Materials, Inc. Method of reducing the erosion rate of semiconductor processing apparatus exposed to halogen-containing plasmas
US8067067B2 (en) * 2002-02-14 2011-11-29 Applied Materials, Inc. Clean, dense yttrium oxide coating protecting semiconductor processing apparatus
US6776873B1 (en) 2002-02-14 2004-08-17 Jennifer Y Sun Yttrium oxide based surface coating for semiconductor IC processing vacuum chambers
US6789498B2 (en) 2002-02-27 2004-09-14 Applied Materials, Inc. Elements having erosion resistance
JP2007116088A (en) 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
US7968205B2 (en) * 2005-10-21 2011-06-28 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
US7655328B2 (en) * 2006-04-20 2010-02-02 Shin-Etsu Chemical Co., Ltd. Conductive, plasma-resistant member
US7696117B2 (en) 2007-04-27 2010-04-13 Applied Materials, Inc. Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
US9017765B2 (en) * 2008-11-12 2015-04-28 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing

Also Published As

Publication number Publication date
US20180226232A9 (en) 2018-08-09
US20160276141A1 (en) 2016-09-22
US10157731B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
US9017765B2 (en) Protective coatings resistant to reactive plasma processing
US9896376B2 (en) Ceramic component formed ceramic portions bonded together with a halogen plasma resistant bonding agent
EP1899508B1 (en) Crucible for the crystallization of silicon and process for its preparation
TWI695822B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JP3261044B2 (en) Components for plasma processing equipment
WO2009085117A2 (en) Erosion resistant yttrium comprising metal with oxidized coating for plasma chamber components
US20190019655A1 (en) Plasma resistant semiconductor processing chamber components
JP2009068067A (en) Plasma resistant ceramics sprayed coating
JP2023532002A (en) Ceramic sintered body containing magnesium aluminate spinel
JP2000086344A (en) High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
KR20100031463A (en) Ceramics for plasma treatment apparatus
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2009234877A (en) Member used for plasma processing apparatus
US20230373862A1 (en) Zirconia toughened alumina ceramic sintered bodies
KR20220158635A (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
WO2014183943A1 (en) Sio2-based barrier layer for high temperature diffusion and coating processes
JP2023145143A (en) Member for plasma processing device
JP4095345B2 (en) Corrosion resistant material
JP2002179457A (en) Corrosion-resisting member

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUN, JENNIFER Y.;DUAN, REN-GUAN;COLLINS, KENNETH S.;SIGNING DATES FROM 20091102 TO 20091103;REEL/FRAME:047433/0747

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION