US20190006130A1 - Controllable light source - Google Patents
Controllable light source Download PDFInfo
- Publication number
- US20190006130A1 US20190006130A1 US16/127,180 US201816127180A US2019006130A1 US 20190006130 A1 US20190006130 A1 US 20190006130A1 US 201816127180 A US201816127180 A US 201816127180A US 2019006130 A1 US2019006130 A1 US 2019006130A1
- Authority
- US
- United States
- Prior art keywords
- light source
- control device
- actuator
- housing
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004044 response Effects 0.000 claims abstract description 17
- 238000004891 communication Methods 0.000 claims description 21
- 230000000881 depressing effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007561 response to light intensity Effects 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/02—Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
-
- H05B37/02—
-
- H05B37/0218—
-
- H05B37/0272—
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/19—Controlling the light source by remote control via wireless transmission
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2300/00—Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
- H01H2300/03—Application domotique, e.g. for house automation, bus connected switches, sensors, loads or intelligent wiring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/196—Controlling the light source by remote control characterised by user interface arrangements
- H05B47/1965—Controlling the light source by remote control characterised by user interface arrangements using handheld communication devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/196—Controlling the light source by remote control characterised by user interface arrangements
- H05B47/197—Sound control or voice control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/196—Controlling the light source by remote control characterised by user interface arrangements
- H05B47/1975—Gesture control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/198—Grouping of control procedures or address assignation to light sources
- H05B47/1985—Creation of lighting zones or scenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
-
- Y02B20/46—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y02B90/224—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/14—Protecting elements, switches, relays or circuit breakers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y10T307/977—
Definitions
- a controllable light source may include an integrated lighting load, a wireless communication circuit configured to receive control signals transmitted to the controllable light source, and a load control circuit configured to control an amount of power delivered to the lighting load in accordance with the control signals.
- the controllable light source may adjust the intensity of the lighting load responsive to the control signals.
- the controllable light source may be configured to be screwed into a light socket, such as a standard Edison socket.
- the controllable light source may include a screw-in base and a housing supported by the base.
- the housing may enclose the lighting load.
- the housing may include a reflective portion and a translucent portion.
- the controllable light source may include an actuator configured to cause the controllable light source to associate with a remote control device configured to wirelessly communicate control signals to the controllable light source.
- the actuator may be operatively connected to the housing.
- the controllable light source may be configured to be installed in a fixture that surrounds the housing.
- the housing may support the actuator such that the actuator may be actuated when the controllable light source is installed in the fixture.
- FIG. 1 depicts an example load control system.
- FIG. 2 is a simplified block diagram of an example controllable light source.
- FIG. 3 is a perspective view of an example rotary remote control device attached to a switch.
- FIG. 4 is a perspective view of the rotary remote control device depicted in FIG. 3 , detached from the switch.
- FIG. 5 is a perspective view of the base portion of an example rotary remote control device.
- FIG. 6 is a simplified block diagram of an example rotary remote control device.
- FIG. 7A depicts a first encoder control signal and a second encoder control signal when an example rotary remote control device is actuated along a first direction.
- FIG. 7B depicts a first encoder control signal and a second encoder control signal when an example rotary remote control device is actuated along a second direction.
- FIG. 8 depicts another example load control system.
- FIG. 1 depicts an example load control system 100 .
- the load control system 100 is configured as a lighting control system that includes a controllable light source 110 and a battery-powered remote control device 120 , for example a rotary remote control device.
- the remote control device 120 includes a wireless transmitter.
- the load control system 100 includes a standard, single pole single throw (SPST) maintained mechanical switch 104 (i.e., a “toggle switch” or a “light switch”) that may be in place prior to installation of the remote control device 120 (e.g., pre-existing in the load control system 100 ).
- SPST standard, single pole single throw
- the switch 104 is coupled in series electrical connection between an alternating current (AC) power source 102 and the controllable light source 110 .
- AC alternating current
- the switch 104 includes a toggle actuator 106 that may be actuated to toggle, for example to turn on and/or turn off, the controllable light source 110 .
- the controllable light source 110 is electrically coupled to the AC power source 102 when the switch 104 is closed (i.e., conductive), and is disconnected from the AC power source 102 when the switch 104 is open (i.e., nonconductive).
- the remote control device 120 is configured to be attached to the toggle actuator 106 of the switch 104 when the toggle actuator 106 is in the on position (which is typically pointing upwards) and the switch 104 is closed (i.e., conductive). As shown, the remote control device 120 includes a base portion 125 configured to be mounted over the toggle actuator 106 of the switch 104 . The base portion 125 may operate to maintain the toggle actuator 106 stays in the on position, such that a user is not able to switch the toggle actuator 106 to the off position, which may disconnect the controllable light source 110 from the AC power source 102 .
- the remote control device 120 may be operable to transmit wireless signals, for example radio frequency (RF) signals 108 , to the controllable light source 110 for controlling the intensity of the controllable light source 110 .
- the controllable light source 110 may be associated with the remote control device 120 during a configuration procedure of the load control system 100 , such that the controllable light source 110 is then responsive to the RF signals 108 transmitted by the remote control device 120 .
- An example of a configuration procedure for associating a remote control device with a load control device is described in greater detail in commonly-assigned U.S. Patent Publication No. 2008/0111491, published May 15, 2008, entitled “Radio-Frequency Lighting Control System,” the entire disclosure of which is hereby incorporated by reference.
- the controllable light source 110 may include a lighting load, for example the lighting load 214 shown in FIG. 2 , such as an incandescent lamp, a halogen lamp, a compact fluorescent lamp, a light-emitting diode (LED) light engine, or other suitable light source.
- the controllable light source 110 includes a housing 111 that defines an end portion 114 and an intermediate portion 112 .
- the housing 111 may be made of any suitable material, for example glass.
- the lighting load may be integral with and/or substantially enclosed by the housing 111 .
- the lighting load may be located inside of the intermediate portion 112 of the housing 111 .
- the controllable light source 110 may be configured such that light emitted from the lighting load shines through at least a portion of the housing 111 .
- the intermediate portion 112 is configured to be reflective, such that the intermediate portion 112 functions as a reflector portion of the housing 111 .
- the intermediate portion 112 may include one or more reflective surfaces.
- the end portion 114 is configured as a light emitting portion configured to shine light emitted by the lighting load out of the housing 111 .
- the end portion 114 may be transparent or translucent.
- the end portion 114 of the housing 111 may define an end surface 113 .
- the housing 111 may define any suitable shape, for example the illustrated bulb shape.
- the end portion 114 defines a convex, domed shape, but may be configured to define any other suitable shape, for example flat.
- the housing 111 is not limited to the illustrated configuration of shining light emitted by the lighting load.
- the housing 111 may be configured to shine light emitted from the lighting load through the intermediate portion 112 (e.g., at least a part of the intermediate portion 112 ) and/or the end portion 114 (e.g., at least a part of the end portion 114 ).
- the controllable light source 110 includes an enclosure 115 that is configured to house one or more electrical components of the controllable light source 110 , such as an integral load control circuit (e.g., the load control circuit 212 shown in FIG. 2 ), for controlling the intensity of the lighting load between a low end intensity (e.g., approximately 1%) and a high-end intensity (e.g., approximately 100%).
- the controllable light source 110 may include a wireless communication circuit (e.g., wireless communication circuit 222 shown in FIG. 2 ) housed inside the enclosure 115 , such that the controllable light source 110 may be operable to receive the RF signals 108 transmitted by the remote control device 120 and control the intensity of the lighting load in response to the received RF signals.
- the enclosure 115 is attached to the intermediate portion 112 of the housing 111 and may function as an enclosure portion of the housing 111 .
- the enclosure 115 may be integral with, for example monolithic with, the housing 111 , such that the enclosure 115 defines an enclosure portion of the housing 111 .
- the controllable light source 110 may be configured as a screw-in, controllable light source. As shown, the controllable light source 110 includes a screw-in base 116 that is configured to be screwed into a standard Edison socket, such that the controllable light source may be coupled to the AC power source 102 . The screw-in base 116 may be attached to the enclosure 115 .
- the controllable light source 110 may be configured as a downlight (e.g., as shown in FIG. 1 ) that may be installed in a recessed light fixture. Alternatively, the controllable light source 110 may be configured as an A type lamp or any other type of screw-in lamp, for example.
- the controllable light source 110 is not limited to the illustrated screw-in base 116 , and may include any suitable base, for example a bayonet-style base or other suitable base providing electrical connections.
- suitable base for example a bayonet-style base or other suitable base providing electrical connections.
- screw-in luminaires are described in greater detail in commonly assigned U.S. Pat. No. 8,008,866, issued Aug. 30, 2011, entitled “Hybrid Light Source,” and U.S. Patent Application Publication No. 2012/0286689, published Nov. 15, 2012, entitled “Dimmable Screw-In Compact Fluorescent Lamp Having Integral Electronic Ballast Circuit,” the entire disclosures of which are hereby incorporated by reference.
- the controllable light source 110 may further comprise a transparent (e.g., translucent) actuator 118 , such as a clear button, that may be pressed to associate the controllable light source with the remote control device 120 .
- the actuator 118 may protrude from the end portion 114 of the housing 111 , for example below the end surface 113 , such that the actuator 118 may be pressed when the controllable light source 110 is installed, for example in a recessed downlight fixture.
- the actuator 118 may be flush with the end surface 113 of the end portion 114 or may be recessed in the end surface 113 of the end portion 114 (e.g., such that the actuator 118 may be actuated by a tool, such as a screwdriver).
- the intermediate portion 112 (e.g., the reflector portion) of the housing 111 and the enclosure 115 may be substantially enclosed within the downlight fixture, and at least a portion of the end portion 114 , for example the end surface 113 , may not be enclosed by the downlight fixture, such that actuator 118 may be actuated.
- the actuator 118 may alternatively be positioned along a perimeter of the end portion 114 .
- the controllable light source 110 may include an actuator supported by the enclosure 115 that may be actuated when the end portion 114 , for example the end surface 113 , is pressed towards the screw-in base 116 .
- the end surface 113 may alternatively include a touch sensitive surface, for example a resistive, capacitive, or other touch sensitive surface that may be touched to associate the controllable light source 110 with the remote control device 120 .
- a touch sensitive surface for example a resistive, capacitive, or other touch sensitive surface that may be touched to associate the controllable light source 110 with the remote control device 120 .
- the actuator 118 may be configured to be rotated to adjust a selectable maximum power rating of the controllable light source 110 , such that the controllable light source 110 operates the lighting load at the maximum power rating when the remote control device 120 controls the intensity of the controllable light source to the high-end intensity.
- the remote control device 120 may then be operable to control the controllable light source 110 to dim the intensity of the lighting load below the high-end intensity down to the low-end intensity.
- the load control system 100 may also include one or more other devices configured to wirelessly communicate with the controllable light source 110 .
- the load control system 100 includes a handheld, battery-powered, remote control device 130 for controlling the controllable light source 110 .
- the remote control device 130 may include one or more buttons, for example, an on button 132 , an off button 134 , a raise button 135 , a lower button 136 , and a preset button 138 , as shown in FIG. 1 .
- the remote control device 130 may include a wireless communication circuit (not shown) for transmitting digital messages (e.g., including commands to control the lighting load) to the controllable light source 110 , for example via the RF signals 108 , responsive to actuations of one or more of the buttons 132 , 134 , 135 , 136 , and 138 .
- the remote control device 130 may be mounted to a wall or supported by a pedestal, for example a pedestal configured to be mounted on a tabletop. Examples of handheld battery-powered remote controls are described in greater detail in commonly assigned U.S. Pat. No. 8,330,638, issued Dec. 11, 2012, entitled “Wireless Battery Powered Remote Control Having Multiple Mounting Means,” and U.S. Pat. No. 7,573,208, issued Aug. 22, 1009, entitled “Method Of Programming A Lighting Preset From A Radio-Frequency Remote Control,” the entire disclosures of which are hereby incorporated by reference.
- the load control system 100 may also include one or more of a remote occupancy sensor or a remote vacancy sensor (not shown) for detecting occupancy and/or vacancy conditions in a space surrounding the sensors.
- the occupancy or vacancy sensors may be configured to transmit digital messages to the controllable light source 110 , for example via the RF signals 108 , in response to detecting occupancy or vacancy conditions.
- Examples of RF load control systems having occupancy and vacancy sensors are described in greater detail in commonly-assigned U.S. Pat. No. 7,940,167, issued May 10, 2011, entitled “Battery Powered Occupancy Sensor,” U.S. Pat. No. 8,009,042, issued Aug. 30, 2011, entitled “Radio Frequency Lighting Control System With Occupancy Sensing,” and U.S. patent application Ser. No. 8,199,010, issued Jun. 12, 2012, entitled “Method And Apparatus For Configuring A Wireless Sensor,” the entire disclosures of which are hereby incorporated by reference.
- the load control system 100 may include a remote daylight sensor (not shown) for measuring a total light intensity in the space around the daylight sensor.
- the daylight sensor may be configured to transmit digital messages, such as a measured light intensity, to the controllable light source 110 , for example via the RF signals 108 , such that the controllable light source 110 is operable to control the intensity of the lighting load in response to the measured light intensity.
- Examples of RF load control systems having daylight sensors are described in greater detail in commonly assigned U.S. patent application Ser. No. 12/727,956, filed Mar. 19, 2010, entitled “Wireless Battery-Powered Daylight Sensor,” and U.S. patent application Ser. No. 12/727,923, filed Mar. 19, 2010, entitled “Method Of Calibrating A Daylight Sensor,” the entire disclosures of which are hereby incorporated by reference.
- the load control system 100 may include other types of input devices, for example, radiometers, cloudy-day sensors, temperature sensors, humidity sensors, pressure sensors, smoke detectors, carbon monoxide detectors, air-quality sensors, security sensors, proximity sensors, fixture sensors, partition sensors, keypads, kinetic or solar-powered remote controls, key fobs, cell phones, smart phones, tablets, personal digital assistants, personal computers, laptops, time clocks, audio-visual controls, safety devices, power monitoring devices (such as power meters, energy meters, utility submeters, utility rate meters), central control transmitters, residential, commercial, or industrial controllers, or any combination of these input devices.
- input devices for example, radiometers, cloudy-day sensors, temperature sensors, humidity sensors, pressure sensors, smoke detectors, carbon monoxide detectors, air-quality sensors, security sensors, proximity sensors, fixture sensors, partition sensors, keypads, kinetic or solar-powered remote controls, key fobs, cell phones, smart phones, tablets, personal digital assistants, personal computers, laptops, time clocks, audio-visual controls
- the controllable light source 110 may be associated with a wireless control device, for example the remote control device 120 , by actuating the actuator 118 on the controllable light source 110 and then actuating (e.g., pressing and holding) an actuator on the wireless remote control device (e.g., a rotating portion 322 of a rotary remote control device 320 shown in FIG. 3 ) for a predetermined amount of time (e.g., approximately 10 seconds).
- a wireless control device for example the remote control device 120
- an actuator on the wireless remote control device e.g., a rotating portion 322 of a rotary remote control device 320 shown in FIG. 3
- a predetermined amount of time e.g., approximately 10 seconds
- Digital messages transmitted by the remote control device 120 may include a command and identifying information, such as a unique identifier (e.g., a serial number) associated with the remote control device 120 .
- a unique identifier e.g., a serial number
- the controllable light source 110 may be responsive to messages containing the unique identifier of the remote control device 120 .
- the controllable light source 110 may be associated with one or more other wireless control devices of the load control system 100 (i.e., the remote control device 130 , the occupancy sensor, the vacancy sensor, and/or the daylight sensor), for example using similar association process.
- the remote control device may be used to associate the controllable light source 110 with the occupancy sensor, the vacancy sensor, and/or the daylight sensor, without actuating the actuator 118 of the controllable light source 110 , for example as described in greater detail in commonly-assigned U.S. patent application Ser. No. 13/598,529, filed Aug. 29, 2012, entitled “Two Part Load Control System Mountable To A Single Electrical Wallbox,” the entire disclosure of which is hereby incorporated by reference.
- the base portion 125 may function to secure the toggle actuator 106 from being toggled.
- the base portion 125 may be configured to maintain the toggle actuator 106 in an on position, such that a user of the remote control device 120 is not able to mistakenly switch the toggle actuator 106 to the off position, which may disconnect the controllable light source 110 from the AC power source 102 , such that controllable light source 110 may not be controlled by one or more remote control devices of the load control system 100 (e.g., the remote control devices 120 and/or 130 ), which may in turn cause user confusion.
- the remote control device 120 is battery-powered, not wired in series electrical connection between the AC power source 102 and the controllable light source 110 (e.g., does not replace the mechanical switch 104 ), such that the controllable light source 110 receives a full AC voltage waveform from the AC power source 102 (i.e., the controllable light source 110 does not receive a phase-control voltage that may be created by a standard dimmer switch). Because the controllable light source 110 receives the full AC voltage waveform, multiple controllable light sources (e.g., controllable light sources 110 ) may be coupled in parallel on a single electrical circuit (e.g., coupled to the mechanical switch 104 ).
- the multiple controllable light sources may include light sources of different types (e.g., incandescent lamps, fluorescent lamps, and/or LED light sources).
- the remote control device 120 may be configured to control one or more of the multiple controllable light sources, for example substantially in unison.
- each controllable light source may be zoned, for example to provide individual control of each controllable light source.
- a first controllable light 110 source may be controlled by the remote control device 120
- a second controllable light source 110 may be controlled by the remote control device 130 ).
- a mechanical switch typically controls such multiple light sources in unison (e.g., turns them on and/or off together).
- the controllable light source 110 and the remote control device 120 may be part of a larger RF load control system than that shown in FIG. 1 .
- Examples of RF load control systems are described in commonly-assigned U.S. Pat. No. 5,905,442, issued on May 18, 1999, entitled “Method And Apparatus For Controlling And Determining The Status Of Electrical Devices From Remote Locations,” and U.S. patent application Ser. No. 12/033,223, filed Feb. 19, 2008, entitled “Communication Protocol For A Radio Frequency Load Control System,” the entire disclosures of which are both hereby incorporated by reference.
- the load control system 100 was described with reference to the single-pole system shown in FIG. 1 , one or both of the controllable light source 110 and the remote control device 120 may be implemented in a “three-way” lighting system having two single-pole double-throw (SPDT) mechanical switches (i.e., a “three-way” switch) for controlling a single electrical load.
- the system could comprise two remote control devices 120 , with one remote control device 120 connected to the toggle actuator of each SPDT switch.
- the toggle actuators of each SPDT switch would be positioned, such that the SPDT switches form a complete circuit between the AC source and the electrical load before the remote control devices 120 are installed on the toggle actuators.
- the load control system 100 shown in FIG. 1 may provide a simple retrofit solution for an existing switched control system.
- the load control system 100 may provide energy savings and/or advanced control features, for example without requiring any electrical re-wiring and/or without requiring the replacement of any existing mechanical switches.
- a consumer may replace an existing lamp with the controllable light source 110 , switch the toggle actuator 106 of the mechanical switch 104 to the on position, install (e.g., mount) the remote control device 120 onto the toggle actuator 106 , and associate the remote control device 120 and the controllable light source 110 with each other, for example as described above.
- FIG. 2 is a simplified block diagram of an example controllable light source 210 that may be deployed as, for example, the controllable light source 110 of the load control system 100 shown in FIG. 1 .
- the controllable light source 210 includes a hot terminal H and a neutral terminal N that are configured to be electrically coupled to an AC power source, such as the AC power source 102 , for example via the screw-in base 116 .
- the controllable light source 210 includes a lighting load 214 and a load control circuit 212 for controlling the intensity of the lighting load 214 .
- the controllable light source 210 includes an electromagnetic interference (EMI) filter 216 that may operate to mitigate (e.g., prevent) noise generated by the load control circuit 212 from being conducted on the AC mains wiring.
- the controllable light source 210 may include a rectifier circuit 218 for generating a direct-current (DC) bus voltage V BUS across a bus capacitor C BUS . As shown, the load control circuit 212 receives the bus voltage V BUS and regulates the power delivered to the lighting load 214 in order to control the intensity of the lighting load 214 .
- DC direct-current
- the load control circuit 212 for controlling the lighting load 214 may include a dimmer circuit for an incandescent lamp, an electronic ballast circuit for a compact fluorescent lamp (CFL), a light-emitting diode (LED) driver for an LED light engine, or the like.
- a dimmer circuit for an incandescent lamp an electronic ballast circuit for a compact fluorescent lamp (CFL), a light-emitting diode (LED) driver for an LED light engine, or the like.
- CFL compact fluorescent lamp
- LED light-emitting diode
- the controllable light source 210 includes a control circuit 220 operatively coupled to the load control circuit 212 .
- the control circuit 220 may operate to control the intensity of the lighting load 214 .
- the control circuit 220 may include one or more of a processor (e.g., a microprocessor), a microcontroller, a programmable logic device (PLD), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or any suitable processing device.
- a processor e.g., a microprocessor
- PLD programmable logic device
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- the controllable light source 210 includes a wireless communication circuit 222 , for example an RF receiver coupled to an antenna for receiving the RF signals 108 from wireless remote control devices, such as the remote control device 120 , the remote control device 130 , the occupancy sensor, and the daylight sensor of the load control system 100 shown in FIG. 1 .
- the wireless communication circuit 222 may include an RF transmitter for transmitting RF signals, an RF transceiver for transmitting and receiving RF signals, or an infrared (IR) receiver for receiving IR signals.
- IR infrared
- the controllable light source 210 includes a memory 224 communicatively coupled to the control circuit 220 .
- the control circuit 220 may be configured to use the memory 224 for the storage and/or retrieval of, for example, unique identifiers (e.g., serial numbers) of the wireless remote control devices to which the controllable light source 210 is responsive.
- the memory 224 may be implemented as an external integrated circuit (IC) or as an internal circuit of the control circuit 220 .
- the controllable light source 210 includes an actuator 226 that is operatively coupled to the control circuit 220 .
- the actuator 226 may be actuated to associate the controllable light source 210 with one or more of the wireless remote control devices.
- the actuator 226 may be mechanically coupled to the actuator 118 shown in FIG. 1 .
- the controllable light source 210 includes a power supply 228 coupled to the bus voltage V BUS for generating a DC supply voltage V CC .
- the supply voltage V CC may be used to power one or more of the control circuit 220 , the wireless communication circuit 222 , the memory 224 , and other low-voltage circuitry of the controllable light source 210 .
- the controllable light source 210 may include an integral occupancy sensing circuit (not shown) configured to detect occupancy and/or vacancy conditions in a space surrounding the controllable light source 210 , for example in a similar manner as the remote occupancy sensor described above with reference to FIG. 1 .
- the control circuit 220 may be configured to control the lighting load 214 in response to occupancy and vacancy conditions detected by the occupancy sensing circuit.
- the controllable light source 210 may include an integral daylight (or ambient light) sensing circuit (not shown) configured to measure a light intensity (e.g., a total light intensity) in a space around the controllable light source 210 , for example in a similar manner as the remote daylight sensor described above with reference to FIG. 1 .
- the control circuit 220 may be configured to control the lighting load 214 in response to light intensity measured by the daylight sensing circuit.
- the controllable light source 210 may include an integral power measurement circuit (not shown) configured to measure a total amount of power consumed by the lighting load 214 and/or the controllable light source 210 .
- the control circuit 220 may be configured to control the lighting load 214 in response to power consumption measured by the power measurement circuit and/or to cause the wireless communication circuit 222 to transmit one or more RF signals that may include information pertaining to a measured power consumption.
- a load control device capable of power measurement is described in greater detail in commonly-assigned U.S. patent application Ser. No. 13/793,308, filed Mar. 11, 2013, entitled “Power Measurement in a Two-Wire Load Control Device,” the entire disclosure of which is hereby incorporated by reference.
- FIGS. 3 and 4 are perspective views of an example rotary remote control device 320 that may deployed as, for example, the remote control device 120 of the load control system 100 shown in FIG. 1 .
- the rotary remote control device 320 is configured to be mounted over the toggle actuator of a mechanical switch, for example the toggle actuator 106 of the switch 104 as shown in FIG. 1 , over which a standard, traditional-style faceplate 329 is installed.
- the rotary remote control device 320 includes an intensity adjustment actuator, configured as a rotating portion 322 that may be moved for example rotated, with respect to a base portion 325 .
- an intensity adjustment actuator configured as a rotating portion 322 that may be moved for example rotated, with respect to a base portion 325 .
- One or more components of the rotary remote control device 320 for example the rotating portion 322 and the base portion 325 , may be made of any suitable material, such as plastic.
- the rotating portion 322 may be supported by the base portion 325 so as to be rotatable in opposed directions about the base portion 325 , for example in the clockwise or counter-clockwise directions.
- the illustrated rotating portion 322 includes a body that defines a disc-shaped front portion 321 and an annular side portion 324 that extends around an entirety of an outer perimeter of the front portion 321 .
- the front portion 321 defines a front surface 323 .
- the front portion 321 of the rotating portion 322 may be made of a translucent material, so as to allow a night light that may be located in a toggle actuator to which the rotary remote control device 320 is attached to shine through the front portion 321 .
- the rotary remote control device 320 may include an internal night light circuit, for example, as described in greater detail in commonly-assigned U.S. Patent Application Publication No. 2012/0286940, published Nov. 15, 2012, entitled “Control Device Having a Night Light,” the entire disclosure of which is hereby incorporated by reference.
- the rotary remote control device 320 may be configured to be mounted on a mechanical switch having a designer-style faceplate or other faceplate style.
- the base portion 325 may be configured to be attached to the faceplate 329 .
- the base portion may define a rear surface 327 configured to be attached to the faceplate 329 .
- the rear surface 327 of the base portion 325 may protrude inwardly beyond a lower edge of the side portion 324 .
- the base portion 325 defines an opening 326 that extends into the rear surface 327 .
- the opening 326 is dimensioned to receive at least a portion of the toggle actuator of a switch, for example the toggle actuator 106 of the switch 104 as shown in FIG. 1 .
- the base portion 325 may be configured to be fixedly (e.g., permanently) attached to the toggle actuator or may be configured to be removably attached to the toggle actuator, so to allow access to the toggle actuator in order to disconnect power from an electrical load controlled by the mechanical switch, for example the controllable light source 110 of the load control system 100 shown in FIG. 1 .
- the base portion 325 defines a plurality of crush ribs 328 that extend into the opening 326 , the crush ribs 328 configured to engage one or more surfaces of a toggle actuator over which the rotary remote control device 320 is mounted.
- the base portion 325 may be alternatively configured to attach to the toggle actuator of a switch.
- the base portion 325 may be configured to attach to the toggle actuator via one or more mechanical fasteners, for example, a set screw, a camming clamp, or the like.
- the rotary remote control device 320 may be configured to transmit wireless signals, for example RF signals, to a load control device, for example the controllable light source 110 shown in FIG. 1 or the controllable light source 210 shown in FIG. 2 , for controlling the intensity of a respective lighting load, for example the lighting load 214 .
- the rotary remote control device 320 may transmit one or more wireless signals, for example, responsive to actuations of the rotating portion 322 , such as a rotational force applied to the side portion 324 of the rotating portion 322 along the clockwise or counter-clockwise directions.
- a controllable light source associated with the rotary remote control device 320 for example the controllable light source 110 , may adjust the intensity of the lighting load in response to rotation of the rotating portion 322 .
- the controllable light source may turn the lighting load on and off responsive to forces applied to (e.g., presses of) the front surface 323 of the front portion 321 that cause front portion 321 to be biased toward the base portion 325 .
- a speed at which the controllable light source adjusts the intensity of the lighting load in response to the rotation of the rotating portion 322 may be a function of the rotational speed at which the rotating portion 322 is rotated.
- the rotary remote control device 320 may be configured to cause the controllable light source to “jog” the intensity of the lighting load, for example to increase or decrease intensity of the lighting load, by a predetermined amount in response to a slight rotation of the rotating portion 322 in either direction, for example a rotation of approximately 45°.
- the rotary remote control device 320 may be configured to cause the controllable light source to continuously adjust the intensity of the lighting load in response to the rate and/or degree of rotation of the rotating portion 322 in either direction, for example rotations greater rotation than 45°.
- the rotating portion 322 may be configured to return to an idle position after the rotation of the rotating portion 322 .
- the front surface 323 of the front portion 321 of the rotating portion 322 could be marked with text and/or an image that remains upright when the rotating portion 322 is in the idle position.
- the rotary remote control device 320 may be configured such that the side portion 324 is rotatable and the front portion 321 is fixed relative to the base portion 325 , such that text and/or images on the front surface 323 of the front portion 321 remain upright.
- the base portion 325 may be configured to be attached (e.g., removably attached) to the faceplate 329 , for example, using double sided tape affixed to the rear surface 327 .
- the base portion 325 may define one or more snap fit catches (not shown) that extend inward from the base portion 325 relative to the rear surface 327 and are configured to engage within the actuator opening of a faceplate.
- the base portion 325 may define on more apertures that extend into the rear surface 327 and a complementary faceplate (not shown) may define one or more snap fit catches configured to be received in, and engage within, the apertures in the base portion 325 .
- the base portion 325 may be configured to be magnetically attached to the faceplate.
- the base portion 325 of the rotary remote control device 320 may be integral with a corresponding faceplate, for example the base portion 325 and the faceplate may be monolithic.
- a rotary remote control device 320 may be mounted over the toggle actuator of a switch by first removing a traditional style faceplate from the switch and replacing the traditional faceplate with the faceplate having an integrated rotary remote control device 320 .
- Such a rotary remote control device 320 may include a solar cell affixed to the integral faceplate, the solar cell configured to charge a battery of the rotary remote control device 320 and/or to power a controller and/or an RF transmitter of the rotary remote control device 320 .
- FIG. 5 is a perspective view of the base portion 425 of an example rotary remote control device.
- the base portion 425 may be deployed as, for example, the base portion 325 of the rotary remote control device 320 shown in FIGS. 3 and 4 .
- the base portion 425 defines an opening 426 that is dimensioned to receive at least a portion of the toggle actuator 406 of a switch, for example the switch 104 as shown in FIG. 1 .
- the base portion 425 includes a friction spring 440 configured to attach the base portion 425 to a toggle actuator 406 , for example the toggle actuator 106 of the switch 104 shown in FIG. 1 .
- the illustrated friction spring 440 includes a plurality of fingers 442 configured to capture at least a portion of the toggle actuator 406 . As shown, the fingers 442 of the friction spring 440 flank opposed sides of the opening 426 .
- FIG. 6 is a simplified block diagram of an example rotary remote control device 520 that may be implemented as, for example, the remote control device 120 shown in FIG. 1 and/or the rotary remote control device 320 shown in FIGS. 3 and 4 .
- the rotary remote control device 520 includes a control circuit 530 .
- the control circuit 530 may include one or more of a processor (e.g., a microprocessor), a microcontroller, a programmable logic device (PLD), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or any suitable processing device.
- a processor e.g., a microprocessor
- PLD programmable logic device
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- the rotary remote control device 520 includes a rotary encoder circuit 532 that may be operatively coupled to a rotary knob, for example the rotating portion 322 of the rotary remote control device 320 .
- the control circuit 530 is communicatively coupled to the rotary encoder circuit 532 .
- the rotary remote control device 520 includes a wireless communication circuit 534 , for example an RF transmitter coupled to an antenna, for transmitting wireless signals, such as the RF signals 108 , in response to actuations of the rotary knob coupled to the rotary encoder circuit 532 (e.g., the rotating portion 322 of the rotary remote control device 320 ).
- the control circuit 530 may cause the wireless communication circuit 534 to transmit one or more wireless signals to an associated load control device, for example the controllable light source 110 shown in FIG. 1 or the controllable light source 210 shown in FIG. 2 , for example responsive to actuations of the rotary knob coupled to the rotary encoder circuit 532 .
- the wireless communication circuit 534 may include an RF receiver for receiving RF signals, an RF transceiver for transmitting and receiving RF signals, or an infrared (IR) receiver for receiving IR signals.
- the rotary remote control device 520 includes a memory 536 communicatively coupled to the control circuit 530 .
- the control circuit 530 may be configured to use the memory 536 for the storage and/or retrieval of, for example, a unique identifier (e.g., a serial number) of the rotary remote control device 520 that may be included in the transmitted RF signals.
- the memory 536 may be implemented as an external integrated circuit (IC) or as an internal circuit of the control circuit 530 .
- the rotary remote control device 520 includes a battery 538 for producing a battery voltage V BATT that may be used to power one or more of the control circuit 530 , the rotary encoder circuit 532 , the wireless communication circuit 534 , the memory 536 , and other low-voltage circuitry of the rotary remote control device 520 .
- the rotary remote control device 520 may include a solar cell (not shown) configured to charge the battery 538 and/or another energy storage device, such as a capacitor.
- the solar cell may be located on a surface of the rotary remote control device 520 , for example on the front surface 323 of the front portion 321 of the rotating portion 322 of the rotary remote control device 320 shown in FIGS. 3 and 4 .
- the rotary remote control device 520 may include one or more visual indicators, for example one or more LEDs 540 , that are configured to provide feedback to a user of the rotary remote control device 520 .
- the LEDs 540 are operatively coupled to the control circuit 530 .
- the control circuit 530 may control the LEDs 540 to provide feedback indicating a status of the controllable light source 110 , for example if the controllable light source 110 is on, off, or a present intensity of the controllable light source 110 .
- the control circuit 530 may be configured to illuminate the LEDs 540 in order to provide an indication that the battery 538 is low on energy, to provide feedback during programming or association of the rotary remote control device 520 , and/or to provide a night light.
- the rotary encoder circuit 532 may generate three control signals that may be provided to the control circuit 530 .
- the rotary encoder circuit 532 may generate a toggle control signal V TOG that may be representative of instances when the front surface 323 of the front portion 321 of the rotating portion 322 is pushed towards the base portion 325 , so as to toggle a controlled electrical load on and/or off.
- the rotary encoder circuit 532 may also generate a first encoder control signal V E1 and a second encoder control signal V E2 .
- the first and second encoder control signals V E1 , V E2 may, in combination, be representative of an angular velocity ⁇ at which the rotating portion 322 is rotated and an angular direction (e.g., clockwise or counter-clockwise) in which the rotating portion 322 is rotated.
- the control circuit 530 may, responsive to receiving one or more of V TOG , V E1 , or V E2 , cause the wireless communication circuit 534 to transmit one or more signals, for example RF signals 108 , to a controllable light source associated with the rotary remote control device 520 , for example the lighting load of the controllable light source 110 shown in FIG. 1 .
- the controllable light source 110 responsive to receiving the RF signals 108 , may turn the lighting load on or off and/or may adjust the intensity of the lighting load, for example via a load control circuit such as the load control circuit 212 .
- FIG. 7A is a simplified diagram showing example waveforms of the first encoder control signal V E1 and the second encoder control signal V E2 when the rotating portion 322 is being rotated in the clockwise direction.
- the first encoder control signal V E1 lags the second encoder control signal V E2 by 90° when the rotating portion 322 is rotated clockwise.
- FIG. 7B is a simplified diagram showing example waveforms of the first encoder control signal V E1 and the second encoder control signal V E2 when the rotating portion 322 is being rotated in the counter-clockwise direction.
- the second encoder control signal V E2 lags the first encoder control signal V E1 by 90° when the rotating portion 322 is rotated counter-clockwise.
- the control circuit 530 may be configured to determine whether the second encoder control signal V E2 is low (i.e., at approximately circuit common) or high (i.e., at approximately the battery voltage V BATT ) at the times of the falling edges of the first encoder control signal V E1 (i.e., when the first encoder control signal V E1 transitions from high to low), in order to determine whether the rotating portion 322 is being rotated clockwise or counter-clockwise, respectively.
- FIG. 8 depicts another example load control system 600 .
- the load control system 600 is configured as a lighting control system that includes a lamp 610 and a battery-powered rotary remote control device 620 .
- the load control system 600 includes a plug-in load control device 630 (e.g., a “wall wart” plug-in device) configured to be plugged into a standard electrical receptacle 632 that is electrically connected to an AC power source 602 .
- the plug-in load control device 630 may include one or more electrical outlets, such as an electrical outlet 633 located on a side of the plug-in load control device 630 .
- the lamp 610 includes a lighting load 612 (e.g., an incandescent lamp, a halogen lamp, a compact fluorescent lamp, an LED lamp, or other screw-in lamp) and an electrical plug 614 that is configured to be plugged into an electrical outlet.
- the plug 614 is plugged into the electrical outlet 633 of the plug-in load control device 630 , such that the plug-in load control device 630 may control the amount of power delivered to, and thus the intensity of, the lighting load 612 of the lamp 610 .
- the lamp 610 may include a toggle actuator 616 operatively coupled to an internal mechanical switch 618 of the lamp 610 that is configured to turn the lighting load 612 on and off.
- the toggle actuator 616 may be a push-pull-type actuator that may be pushed and pulled to turn the lighting load 612 on and off, a push-push-type actuator that may be pushed to alternately turn the lighting load on and off, or a rotary-type actuator that may be rotated in opposed directions to turn the lighting load on and off.
- the lamp 610 is not limited to the illustrated table lamp configuration. Alternatively, the lamp 610 may be configured as a floor lamp, a wall mounted lamp, or any other lamp having a toggle actuator, such as the toggle actuator 616 .
- the rotary remote control device 620 is configured to mount over the toggle actuator 616 of the lamp 610 when the toggle actuator is in the on position and the switch 618 is closed (i.e., conductive).
- the rotary remote control device 620 may be configured to transmit wireless signals, for example RF signals 608 , to the plug-in load control device 630 for controlling the amount of power delivered to the lamp 610 , and thus the intensity of the lighting load 612 .
- the plug-in load control device 630 includes an actuator 634 that may be actuated to associate the plug-in load control device 630 with the rotary remote control device 620 during a configuration procedure of the load control system 600 , such that the plug-in load control device 630 may then be responsive to the RF signals 608 transmitted by the rotary remote control device 620 .
- the rotary remote control device 620 includes a rotating portion 622 and a base portion 625 .
- One or more components of the rotary remote control device 620 may be made of any suitable material, such as plastic.
- the rotating portion 622 may be supported by the base portion 625 so as to be rotatable in opposed directions about the base portion 625 , for example in the clockwise or counter-clockwise directions.
- the base portion 625 may be configured to be fixedly attached relative to the toggle actuator 616 of the lamp 610 when the rotary remote control device 620 is mounted over the toggle actuator 616 , such that rotation of the rotating portion 622 does not actuate the toggle actuator 616 .
- the base portion 625 may function to secure the toggle actuator 616 from being toggled.
- the base portion 625 may be configured to maintain the toggle actuator 616 in an on position, such that a user of the rotary remote control device 620 is not able to mistakenly switch the toggle actuator 616 to the off position, which may disconnect the lighting load 612 from the AC power source 602 , such that the plug-in load control device 630 is not able to control the lighting load 612 .
- the rotary remote control device 620 includes electrical components (not shown) that may be housed inside the rotary remote control device 620 .
- the electrical components of the rotary remote control device 620 may be configured similarly to those of the rotary remote control device 520 shown in FIG. 6 .
- components of the rotary remote control device 620 may include a control circuit, a rotary encoder circuit, a wireless communication circuit, a memory, and a battery.
- the rotary remote control device 620 may transmit one or more RF signals 608 to the plug-in load control device 630 for controlling the intensity of the lighting load 612 responsive to actuations of the rotating portion 622 .
- the plug-in load control device 630 may turn the lighting load 612 on or off and/or may adjust the intensity of the lighting load 612 , for example via a load control circuit.
- the plug-in load control device 630 may turn the lighting load 612 on and off responsive to forces applied to (e.g., presses of) the rotating portion 622 of the rotary remote control device 620 that cause rotating portion 622 to be biased toward the base portion 625 .
- the plug-in load control device 630 may adjust the intensity of the lighting load 612 responsive to one or more rotational forces applied to the rotating portion 622 , for example in the clockwise and/or counter-clockwise directions.
- the plug-in load control device 630 may adjust the intensity of the lighting load 612 in accordance with the rotational speed at which the rotating portion 622 is rotated.
- the load control system 600 need not include the plug-in load control device 630 for controlling the lighting load 612 .
- the load control system 600 may alternatively include a controllable light source that is associated with the rotary remote control device 620 , for example the controllable light source 110 shown in FIG. 1 , that is electrically connected to (e.g., screwed into the socket of) the lamp 610 , such that actuations of the rotating portion 622 of the rotary remote control device 620 may adjust the intensity of the lighting load of the controllable light source and/or cause the lighting load of the controllable light source to turn on and/or off.
- the load control system 100 shown in FIG. 1 may alternatively include a plug-in load control device (e.g., the plug-in load control device 630 shown in FIG. 8 ) that is configured to be controlled by the remote control device 120 .
- load control systems 100 and/or 600 may include other types of load control devices and/or electrical loads that are configured to be controlled by one or more remote control devices (e.g., one or more remote control devices 120 , 320 , 520 , and/or 620 ).
- the load control systems 100 and/or 600 may include one or more of: a dimming ballast for driving a gas-discharge lamp; a light-emitting diode (LED) driver for driving an LED light source; a dimming circuit for controlling the intensity of a lighting load; a screw-in luminaire including a dimmer circuit and an incandescent or halogen lamp; a screw-in luminaire including a ballast and a compact fluorescent lamp; a screw-in luminaire including an LED driver and an LED light source; an electronic switch, controllable circuit breaker, or other switching device for turning an appliance on and off; a plug-in load control device, controllable electrical receptacle, or controllable power strip for controlling one or more plug-in loads; a motor control unit for controlling a motor load, such as a ceiling fan or an exhaust fan; a drive unit for controlling a motorized window treatment or a projection screen; one or more motorized interior and/or exterior shutters; a thermostat for a heating
- remote control devices configured to transmit wireless control signals to associated electrical load control devices, for example controllable light sources such as the controllable light source 110 or the plug-in load control device 630 , are described herein with reference to the rotary remote control devices 320 , 520 , and 620 , such remote control devices may be alternatively configured with other suitable control interfaces (e.g., intensity adjustment actuators), for example a slider or the like.
- a remote control device may include, for example, a base portion configured to mount over the toggle actuator of a switch, a slider operably coupled to the base portion, a wireless communication circuit, and a control circuit communicatively coupled to the slider and to the wireless communication circuit.
- the slider may be configured to move, for example linearly, with respect to the base portion.
- the slider may be slidable, for example linearly, relative to the base portion.
- the base portion may thus be configured to slidably support the slider.
- the control circuit may be configured to translate a force applied to the intensity adjustment actuator, for example a force applied to the slider, into a signal for controlling the load control device.
- the control circuit may be configured to cause the wireless communication circuit to transmit the signal.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
- This application is a continuation of U.S. Non-Provisional Application No. 15/356,730, filed Nov. 21, 2016, which is a continuation of U.S. Non-Provisional Application No. 13/829,834, filed Mar. 14, 2013, now U.S. Pat. No. 9,538,619, issued on Jan. 3, 2017, which claims the benefit of U.S. Provisional Application No. 61/718,818, filed Oct. 26, 2012, the respective disclosures of which are incorporated herein by reference in their entireties.
- In prior art load control systems, standard mechanical toggle switches are often replaced by more advanced load control devices (such as dimmer switches) that control the amount of power delivered from an AC power source to an electrical load. This procedure requires that the old mechanical toggle switch be un-wired and removed from the load control system and the new load control device to be connected to the electrical wiring. Typically, such a procedure must be performed by an electrical contractor or other skilled installer. The average consumer may not feel comfortable to complete the installation of the load control device. Accordingly, there is a need for a load control system that may be installed in an existing installation having a mechanical toggle switch without requiring any electrical work.
- As described herein, a controllable light source may include an integrated lighting load, a wireless communication circuit configured to receive control signals transmitted to the controllable light source, and a load control circuit configured to control an amount of power delivered to the lighting load in accordance with the control signals. For example, the controllable light source may adjust the intensity of the lighting load responsive to the control signals.
- The controllable light source may be configured to be screwed into a light socket, such as a standard Edison socket. For example, the controllable light source may include a screw-in base and a housing supported by the base. The housing may enclose the lighting load. The housing may include a reflective portion and a translucent portion.
- The controllable light source may include an actuator configured to cause the controllable light source to associate with a remote control device configured to wirelessly communicate control signals to the controllable light source. The actuator may be operatively connected to the housing.
- The controllable light source may be configured to be installed in a fixture that surrounds the housing. The housing may support the actuator such that the actuator may be actuated when the controllable light source is installed in the fixture.
-
FIG. 1 depicts an example load control system. -
FIG. 2 is a simplified block diagram of an example controllable light source. -
FIG. 3 is a perspective view of an example rotary remote control device attached to a switch. -
FIG. 4 is a perspective view of the rotary remote control device depicted inFIG. 3 , detached from the switch. -
FIG. 5 is a perspective view of the base portion of an example rotary remote control device. -
FIG. 6 is a simplified block diagram of an example rotary remote control device. -
FIG. 7A depicts a first encoder control signal and a second encoder control signal when an example rotary remote control device is actuated along a first direction. -
FIG. 7B depicts a first encoder control signal and a second encoder control signal when an example rotary remote control device is actuated along a second direction. -
FIG. 8 depicts another example load control system. -
FIG. 1 depicts an exampleload control system 100. As shown, theload control system 100 is configured as a lighting control system that includes acontrollable light source 110 and a battery-poweredremote control device 120, for example a rotary remote control device. Theremote control device 120 includes a wireless transmitter. Theload control system 100 includes a standard, single pole single throw (SPST) maintained mechanical switch 104 (i.e., a “toggle switch” or a “light switch”) that may be in place prior to installation of the remote control device 120 (e.g., pre-existing in the load control system 100). Theswitch 104 is coupled in series electrical connection between an alternating current (AC)power source 102 and thecontrollable light source 110. Theswitch 104 includes atoggle actuator 106 that may be actuated to toggle, for example to turn on and/or turn off, thecontrollable light source 110. Thecontrollable light source 110 is electrically coupled to theAC power source 102 when theswitch 104 is closed (i.e., conductive), and is disconnected from theAC power source 102 when theswitch 104 is open (i.e., nonconductive). - The
remote control device 120 is configured to be attached to thetoggle actuator 106 of theswitch 104 when thetoggle actuator 106 is in the on position (which is typically pointing upwards) and theswitch 104 is closed (i.e., conductive). As shown, theremote control device 120 includes abase portion 125 configured to be mounted over thetoggle actuator 106 of theswitch 104. Thebase portion 125 may operate to maintain thetoggle actuator 106 stays in the on position, such that a user is not able to switch thetoggle actuator 106 to the off position, which may disconnect thecontrollable light source 110 from theAC power source 102. - The
remote control device 120 may be operable to transmit wireless signals, for example radio frequency (RF)signals 108, to thecontrollable light source 110 for controlling the intensity of thecontrollable light source 110. Thecontrollable light source 110 may be associated with theremote control device 120 during a configuration procedure of theload control system 100, such that thecontrollable light source 110 is then responsive to theRF signals 108 transmitted by theremote control device 120. An example of a configuration procedure for associating a remote control device with a load control device is described in greater detail in commonly-assigned U.S. Patent Publication No. 2008/0111491, published May 15, 2008, entitled “Radio-Frequency Lighting Control System,” the entire disclosure of which is hereby incorporated by reference. - The
controllable light source 110 may include a lighting load, for example thelighting load 214 shown inFIG. 2 , such as an incandescent lamp, a halogen lamp, a compact fluorescent lamp, a light-emitting diode (LED) light engine, or other suitable light source. Thecontrollable light source 110 includes ahousing 111 that defines anend portion 114 and anintermediate portion 112. Thehousing 111 may be made of any suitable material, for example glass. The lighting load may be integral with and/or substantially enclosed by thehousing 111. For example, the lighting load may be located inside of theintermediate portion 112 of thehousing 111. - The
controllable light source 110 may be configured such that light emitted from the lighting load shines through at least a portion of thehousing 111. As shown, theintermediate portion 112 is configured to be reflective, such that theintermediate portion 112 functions as a reflector portion of thehousing 111. Theintermediate portion 112 may include one or more reflective surfaces. Theend portion 114 is configured as a light emitting portion configured to shine light emitted by the lighting load out of thehousing 111. Theend portion 114 may be transparent or translucent. Theend portion 114 of thehousing 111 may define anend surface 113. Thehousing 111 may define any suitable shape, for example the illustrated bulb shape. As shown, theend portion 114 defines a convex, domed shape, but may be configured to define any other suitable shape, for example flat. Thehousing 111 is not limited to the illustrated configuration of shining light emitted by the lighting load. For example, thehousing 111 may be configured to shine light emitted from the lighting load through the intermediate portion 112 (e.g., at least a part of the intermediate portion 112) and/or the end portion 114 (e.g., at least a part of the end portion 114). - As shown, the
controllable light source 110 includes anenclosure 115 that is configured to house one or more electrical components of thecontrollable light source 110, such as an integral load control circuit (e.g., theload control circuit 212 shown inFIG. 2 ), for controlling the intensity of the lighting load between a low end intensity (e.g., approximately 1%) and a high-end intensity (e.g., approximately 100%). Thecontrollable light source 110 may include a wireless communication circuit (e.g.,wireless communication circuit 222 shown inFIG. 2 ) housed inside theenclosure 115, such that thecontrollable light source 110 may be operable to receive theRF signals 108 transmitted by theremote control device 120 and control the intensity of the lighting load in response to the received RF signals. As shown, theenclosure 115 is attached to theintermediate portion 112 of thehousing 111 and may function as an enclosure portion of thehousing 111. Alternatively, theenclosure 115 may be integral with, for example monolithic with, thehousing 111, such that theenclosure 115 defines an enclosure portion of thehousing 111. - The controllable
light source 110 may be configured as a screw-in, controllable light source. As shown, the controllablelight source 110 includes a screw-inbase 116 that is configured to be screwed into a standard Edison socket, such that the controllable light source may be coupled to theAC power source 102. The screw-inbase 116 may be attached to theenclosure 115. The controllablelight source 110 may be configured as a downlight (e.g., as shown inFIG. 1 ) that may be installed in a recessed light fixture. Alternatively, the controllablelight source 110 may be configured as an A type lamp or any other type of screw-in lamp, for example. The controllablelight source 110 is not limited to the illustrated screw-inbase 116, and may include any suitable base, for example a bayonet-style base or other suitable base providing electrical connections. Examples of screw-in luminaires are described in greater detail in commonly assigned U.S. Pat. No. 8,008,866, issued Aug. 30, 2011, entitled “Hybrid Light Source,” and U.S. Patent Application Publication No. 2012/0286689, published Nov. 15, 2012, entitled “Dimmable Screw-In Compact Fluorescent Lamp Having Integral Electronic Ballast Circuit,” the entire disclosures of which are hereby incorporated by reference. - The controllable
light source 110 may further comprise a transparent (e.g., translucent)actuator 118, such as a clear button, that may be pressed to associate the controllable light source with theremote control device 120. Theactuator 118 may protrude from theend portion 114 of thehousing 111, for example below theend surface 113, such that theactuator 118 may be pressed when the controllablelight source 110 is installed, for example in a recessed downlight fixture. Alternatively, theactuator 118 may be flush with theend surface 113 of theend portion 114 or may be recessed in theend surface 113 of the end portion 114 (e.g., such that theactuator 118 may be actuated by a tool, such as a screwdriver). When the controllablelight source 110 is installed in a recessed downlight fixture, the intermediate portion 112 (e.g., the reflector portion) of thehousing 111 and theenclosure 115 may be substantially enclosed within the downlight fixture, and at least a portion of theend portion 114, for example theend surface 113, may not be enclosed by the downlight fixture, such thatactuator 118 may be actuated. Theactuator 118 may alternatively be positioned along a perimeter of theend portion 114. Alternatively, the controllablelight source 110 may include an actuator supported by theenclosure 115 that may be actuated when theend portion 114, for example theend surface 113, is pressed towards the screw-inbase 116. Theend surface 113, and/or another surface of the controllablelight source 110, may alternatively include a touch sensitive surface, for example a resistive, capacitive, or other touch sensitive surface that may be touched to associate the controllablelight source 110 with theremote control device 120. - The
actuator 118 may be configured to be rotated to adjust a selectable maximum power rating of the controllablelight source 110, such that the controllablelight source 110 operates the lighting load at the maximum power rating when theremote control device 120 controls the intensity of the controllable light source to the high-end intensity. Theremote control device 120 may then be operable to control the controllablelight source 110 to dim the intensity of the lighting load below the high-end intensity down to the low-end intensity. - The
load control system 100 may also include one or more other devices configured to wirelessly communicate with the controllablelight source 110. As shown, theload control system 100 includes a handheld, battery-powered,remote control device 130 for controlling the controllablelight source 110. Theremote control device 130 may include one or more buttons, for example, an onbutton 132, an offbutton 134, araise button 135, alower button 136, and apreset button 138, as shown inFIG. 1 . Theremote control device 130 may include a wireless communication circuit (not shown) for transmitting digital messages (e.g., including commands to control the lighting load) to the controllablelight source 110, for example via the RF signals 108, responsive to actuations of one or more of thebuttons remote control device 130 may be mounted to a wall or supported by a pedestal, for example a pedestal configured to be mounted on a tabletop. Examples of handheld battery-powered remote controls are described in greater detail in commonly assigned U.S. Pat. No. 8,330,638, issued Dec. 11, 2012, entitled “Wireless Battery Powered Remote Control Having Multiple Mounting Means,” and U.S. Pat. No. 7,573,208, issued Aug. 22, 1009, entitled “Method Of Programming A Lighting Preset From A Radio-Frequency Remote Control,” the entire disclosures of which are hereby incorporated by reference. - The
load control system 100 may also include one or more of a remote occupancy sensor or a remote vacancy sensor (not shown) for detecting occupancy and/or vacancy conditions in a space surrounding the sensors. The occupancy or vacancy sensors may be configured to transmit digital messages to the controllablelight source 110, for example via the RF signals 108, in response to detecting occupancy or vacancy conditions. Examples of RF load control systems having occupancy and vacancy sensors are described in greater detail in commonly-assigned U.S. Pat. No. 7,940,167, issued May 10, 2011, entitled “Battery Powered Occupancy Sensor,” U.S. Pat. No. 8,009,042, issued Aug. 30, 2011, entitled “Radio Frequency Lighting Control System With Occupancy Sensing,” and U.S. patent application Ser. No. 8,199,010, issued Jun. 12, 2012, entitled “Method And Apparatus For Configuring A Wireless Sensor,” the entire disclosures of which are hereby incorporated by reference. - The
load control system 100 may include a remote daylight sensor (not shown) for measuring a total light intensity in the space around the daylight sensor. The daylight sensor may be configured to transmit digital messages, such as a measured light intensity, to the controllablelight source 110, for example via the RF signals 108, such that the controllablelight source 110 is operable to control the intensity of the lighting load in response to the measured light intensity. Examples of RF load control systems having daylight sensors are described in greater detail in commonly assigned U.S. patent application Ser. No. 12/727,956, filed Mar. 19, 2010, entitled “Wireless Battery-Powered Daylight Sensor,” and U.S. patent application Ser. No. 12/727,923, filed Mar. 19, 2010, entitled “Method Of Calibrating A Daylight Sensor,” the entire disclosures of which are hereby incorporated by reference. - The
load control system 100 may include other types of input devices, for example, radiometers, cloudy-day sensors, temperature sensors, humidity sensors, pressure sensors, smoke detectors, carbon monoxide detectors, air-quality sensors, security sensors, proximity sensors, fixture sensors, partition sensors, keypads, kinetic or solar-powered remote controls, key fobs, cell phones, smart phones, tablets, personal digital assistants, personal computers, laptops, time clocks, audio-visual controls, safety devices, power monitoring devices (such as power meters, energy meters, utility submeters, utility rate meters), central control transmitters, residential, commercial, or industrial controllers, or any combination of these input devices. - During the configuration procedure of the
load control system 100, the controllablelight source 110 may be associated with a wireless control device, for example theremote control device 120, by actuating theactuator 118 on the controllablelight source 110 and then actuating (e.g., pressing and holding) an actuator on the wireless remote control device (e.g., a rotatingportion 322 of a rotaryremote control device 320 shown inFIG. 3 ) for a predetermined amount of time (e.g., approximately 10 seconds). - Digital messages transmitted by the
remote control device 120, for example directed to the controllablelight source 110, may include a command and identifying information, such as a unique identifier (e.g., a serial number) associated with theremote control device 120. After being associated with theremote control device 120, the controllablelight source 110 may be responsive to messages containing the unique identifier of theremote control device 120. The controllablelight source 110 may be associated with one or more other wireless control devices of the load control system 100 (i.e., theremote control device 130, the occupancy sensor, the vacancy sensor, and/or the daylight sensor), for example using similar association process. - After a remote control device, for example the
remote control device 120 or theremote control device 130, is associated with the controllablelight source 110, the remote control device may be used to associate the controllablelight source 110 with the occupancy sensor, the vacancy sensor, and/or the daylight sensor, without actuating theactuator 118 of the controllablelight source 110, for example as described in greater detail in commonly-assigned U.S. patent application Ser. No. 13/598,529, filed Aug. 29, 2012, entitled “Two Part Load Control System Mountable To A Single Electrical Wallbox,” the entire disclosure of which is hereby incorporated by reference. - When the
remote control device 120 is mounted over the toggle actuator of a switch (e.g., the toggle actuator 106), thebase portion 125 may function to secure thetoggle actuator 106 from being toggled. For example, thebase portion 125 may be configured to maintain thetoggle actuator 106 in an on position, such that a user of theremote control device 120 is not able to mistakenly switch thetoggle actuator 106 to the off position, which may disconnect the controllablelight source 110 from theAC power source 102, such that controllablelight source 110 may not be controlled by one or more remote control devices of the load control system 100 (e.g., theremote control devices 120 and/or 130), which may in turn cause user confusion. - As shown, the
remote control device 120 is battery-powered, not wired in series electrical connection between theAC power source 102 and the controllable light source 110 (e.g., does not replace the mechanical switch 104), such that the controllablelight source 110 receives a full AC voltage waveform from the AC power source 102 (i.e., the controllablelight source 110 does not receive a phase-control voltage that may be created by a standard dimmer switch). Because the controllablelight source 110 receives the full AC voltage waveform, multiple controllable light sources (e.g., controllable light sources 110) may be coupled in parallel on a single electrical circuit (e.g., coupled to the mechanical switch 104). The multiple controllable light sources may include light sources of different types (e.g., incandescent lamps, fluorescent lamps, and/or LED light sources). Theremote control device 120 may be configured to control one or more of the multiple controllable light sources, for example substantially in unison. In addition, if there are multiple controllable light sources coupled in parallel on a single circuit, each controllable light source may be zoned, for example to provide individual control of each controllable light source. For example, a firstcontrollable light 110 source may be controlled by theremote control device 120, while a second controllablelight source 110 may be controlled by the remote control device 130). In prior art systems, a mechanical switch (such as theswitch 104, for example) typically controls such multiple light sources in unison (e.g., turns them on and/or off together). - The controllable
light source 110 and theremote control device 120 may be part of a larger RF load control system than that shown inFIG. 1 . Examples of RF load control systems are described in commonly-assigned U.S. Pat. No. 5,905,442, issued on May 18, 1999, entitled “Method And Apparatus For Controlling And Determining The Status Of Electrical Devices From Remote Locations,” and U.S. patent application Ser. No. 12/033,223, filed Feb. 19, 2008, entitled “Communication Protocol For A Radio Frequency Load Control System,” the entire disclosures of which are both hereby incorporated by reference. - While the
load control system 100 was described with reference to the single-pole system shown inFIG. 1 , one or both of the controllablelight source 110 and theremote control device 120 may be implemented in a “three-way” lighting system having two single-pole double-throw (SPDT) mechanical switches (i.e., a “three-way” switch) for controlling a single electrical load. For example, the system could comprise tworemote control devices 120, with oneremote control device 120 connected to the toggle actuator of each SPDT switch. The toggle actuators of each SPDT switch would be positioned, such that the SPDT switches form a complete circuit between the AC source and the electrical load before theremote control devices 120 are installed on the toggle actuators. - The
load control system 100 shown inFIG. 1 may provide a simple retrofit solution for an existing switched control system. Theload control system 100 may provide energy savings and/or advanced control features, for example without requiring any electrical re-wiring and/or without requiring the replacement of any existing mechanical switches. To install and use theload control system 100 ofFIG. 1 , a consumer may replace an existing lamp with the controllablelight source 110, switch thetoggle actuator 106 of themechanical switch 104 to the on position, install (e.g., mount) theremote control device 120 onto thetoggle actuator 106, and associate theremote control device 120 and the controllablelight source 110 with each other, for example as described above. -
FIG. 2 is a simplified block diagram of an example controllablelight source 210 that may be deployed as, for example, the controllablelight source 110 of theload control system 100 shown inFIG. 1 . As shown, the controllablelight source 210 includes a hot terminal H and a neutral terminal N that are configured to be electrically coupled to an AC power source, such as theAC power source 102, for example via the screw-inbase 116. - The controllable
light source 210 includes alighting load 214 and aload control circuit 212 for controlling the intensity of thelighting load 214. The controllablelight source 210 includes an electromagnetic interference (EMI)filter 216 that may operate to mitigate (e.g., prevent) noise generated by theload control circuit 212 from being conducted on the AC mains wiring. The controllablelight source 210 may include arectifier circuit 218 for generating a direct-current (DC) bus voltage VBUS across a bus capacitor CBUS. As shown, theload control circuit 212 receives the bus voltage VBUS and regulates the power delivered to thelighting load 214 in order to control the intensity of thelighting load 214. For example, theload control circuit 212 for controlling thelighting load 214 may include a dimmer circuit for an incandescent lamp, an electronic ballast circuit for a compact fluorescent lamp (CFL), a light-emitting diode (LED) driver for an LED light engine, or the like. - The controllable
light source 210 includes acontrol circuit 220 operatively coupled to theload control circuit 212. Thecontrol circuit 220 may operate to control the intensity of thelighting load 214. Thecontrol circuit 220 may include one or more of a processor (e.g., a microprocessor), a microcontroller, a programmable logic device (PLD), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or any suitable processing device. - The controllable
light source 210 includes awireless communication circuit 222, for example an RF receiver coupled to an antenna for receiving the RF signals 108 from wireless remote control devices, such as theremote control device 120, theremote control device 130, the occupancy sensor, and the daylight sensor of theload control system 100 shown inFIG. 1 . Alternatively, thewireless communication circuit 222 may include an RF transmitter for transmitting RF signals, an RF transceiver for transmitting and receiving RF signals, or an infrared (IR) receiver for receiving IR signals. - The controllable
light source 210 includes amemory 224 communicatively coupled to thecontrol circuit 220. Thecontrol circuit 220 may be configured to use thememory 224 for the storage and/or retrieval of, for example, unique identifiers (e.g., serial numbers) of the wireless remote control devices to which the controllablelight source 210 is responsive. Thememory 224 may be implemented as an external integrated circuit (IC) or as an internal circuit of thecontrol circuit 220. - The controllable
light source 210 includes anactuator 226 that is operatively coupled to thecontrol circuit 220. Theactuator 226 may be actuated to associate the controllablelight source 210 with one or more of the wireless remote control devices. For example, theactuator 226 may be mechanically coupled to theactuator 118 shown inFIG. 1 . - The controllable
light source 210 includes apower supply 228 coupled to the bus voltage VBUS for generating a DC supply voltage VCC. The supply voltage VCC may be used to power one or more of thecontrol circuit 220, thewireless communication circuit 222, thememory 224, and other low-voltage circuitry of the controllablelight source 210. - The controllable
light source 210 may include an integral occupancy sensing circuit (not shown) configured to detect occupancy and/or vacancy conditions in a space surrounding the controllablelight source 210, for example in a similar manner as the remote occupancy sensor described above with reference toFIG. 1 . Thecontrol circuit 220 may be configured to control thelighting load 214 in response to occupancy and vacancy conditions detected by the occupancy sensing circuit. - The controllable
light source 210 may include an integral daylight (or ambient light) sensing circuit (not shown) configured to measure a light intensity (e.g., a total light intensity) in a space around the controllablelight source 210, for example in a similar manner as the remote daylight sensor described above with reference toFIG. 1 . Thecontrol circuit 220 may be configured to control thelighting load 214 in response to light intensity measured by the daylight sensing circuit. - The controllable
light source 210 may include an integral power measurement circuit (not shown) configured to measure a total amount of power consumed by thelighting load 214 and/or the controllablelight source 210. Thecontrol circuit 220 may be configured to control thelighting load 214 in response to power consumption measured by the power measurement circuit and/or to cause thewireless communication circuit 222 to transmit one or more RF signals that may include information pertaining to a measured power consumption. A load control device capable of power measurement is described in greater detail in commonly-assigned U.S. patent application Ser. No. 13/793,308, filed Mar. 11, 2013, entitled “Power Measurement in a Two-Wire Load Control Device,” the entire disclosure of which is hereby incorporated by reference. -
FIGS. 3 and 4 are perspective views of an example rotaryremote control device 320 that may deployed as, for example, theremote control device 120 of theload control system 100 shown inFIG. 1 . As shown, the rotaryremote control device 320 is configured to be mounted over the toggle actuator of a mechanical switch, for example thetoggle actuator 106 of theswitch 104 as shown inFIG. 1 , over which a standard, traditional-style faceplate 329 is installed. - As shown, the rotary
remote control device 320 includes an intensity adjustment actuator, configured as arotating portion 322 that may be moved for example rotated, with respect to abase portion 325. One or more components of the rotaryremote control device 320, for example therotating portion 322 and thebase portion 325, may be made of any suitable material, such as plastic. The rotatingportion 322 may be supported by thebase portion 325 so as to be rotatable in opposed directions about thebase portion 325, for example in the clockwise or counter-clockwise directions. - The illustrated
rotating portion 322 includes a body that defines a disc-shapedfront portion 321 and anannular side portion 324 that extends around an entirety of an outer perimeter of thefront portion 321. Thefront portion 321 defines afront surface 323. Thefront portion 321 of therotating portion 322 may be made of a translucent material, so as to allow a night light that may be located in a toggle actuator to which the rotaryremote control device 320 is attached to shine through thefront portion 321. Alternatively, the rotaryremote control device 320 may include an internal night light circuit, for example, as described in greater detail in commonly-assigned U.S. Patent Application Publication No. 2012/0286940, published Nov. 15, 2012, entitled “Control Device Having a Night Light,” the entire disclosure of which is hereby incorporated by reference. The rotaryremote control device 320 may be configured to be mounted on a mechanical switch having a designer-style faceplate or other faceplate style. - The
base portion 325 may be configured to be attached to thefaceplate 329. For example, the base portion may define arear surface 327 configured to be attached to thefaceplate 329. With therotating portion 322 rotatably attached to thebase portion 325, therear surface 327 of thebase portion 325 may protrude inwardly beyond a lower edge of theside portion 324. Thebase portion 325 defines anopening 326 that extends into therear surface 327. Theopening 326 is dimensioned to receive at least a portion of the toggle actuator of a switch, for example thetoggle actuator 106 of theswitch 104 as shown inFIG. 1 . - The
base portion 325 may be configured to be fixedly (e.g., permanently) attached to the toggle actuator or may be configured to be removably attached to the toggle actuator, so to allow access to the toggle actuator in order to disconnect power from an electrical load controlled by the mechanical switch, for example the controllablelight source 110 of theload control system 100 shown inFIG. 1 . As shown, thebase portion 325 defines a plurality ofcrush ribs 328 that extend into theopening 326, thecrush ribs 328 configured to engage one or more surfaces of a toggle actuator over which the rotaryremote control device 320 is mounted. Thebase portion 325 may be alternatively configured to attach to the toggle actuator of a switch. For example, thebase portion 325 may be configured to attach to the toggle actuator via one or more mechanical fasteners, for example, a set screw, a camming clamp, or the like. - The rotary
remote control device 320 may be configured to transmit wireless signals, for example RF signals, to a load control device, for example the controllablelight source 110 shown inFIG. 1 or the controllablelight source 210 shown inFIG. 2 , for controlling the intensity of a respective lighting load, for example thelighting load 214. The rotaryremote control device 320 may transmit one or more wireless signals, for example, responsive to actuations of therotating portion 322, such as a rotational force applied to theside portion 324 of therotating portion 322 along the clockwise or counter-clockwise directions. A controllable light source associated with the rotaryremote control device 320, for example the controllablelight source 110, may adjust the intensity of the lighting load in response to rotation of therotating portion 322. The controllable light source may turn the lighting load on and off responsive to forces applied to (e.g., presses of) thefront surface 323 of thefront portion 321 that causefront portion 321 to be biased toward thebase portion 325. A speed at which the controllable light source adjusts the intensity of the lighting load in response to the rotation of therotating portion 322 may be a function of the rotational speed at which therotating portion 322 is rotated. An example of a load control device responsive to a rotary actuator is described in greater detail in commonly-assigned U.S. Pat. No. 8,212,486, issued Jul. 3, 2012, entitled “Smart Load Control Device Having A Rotary Actuator,” the entire disclosure of which is hereby incorporated by reference. - The rotary
remote control device 320 may be configured to cause the controllable light source to “jog” the intensity of the lighting load, for example to increase or decrease intensity of the lighting load, by a predetermined amount in response to a slight rotation of therotating portion 322 in either direction, for example a rotation of approximately 45°. The rotaryremote control device 320 may be configured to cause the controllable light source to continuously adjust the intensity of the lighting load in response to the rate and/or degree of rotation of therotating portion 322 in either direction, for example rotations greater rotation than 45°. The rotatingportion 322 may be configured to return to an idle position after the rotation of therotating portion 322. Thefront surface 323 of thefront portion 321 of therotating portion 322 could be marked with text and/or an image that remains upright when therotating portion 322 is in the idle position. Alternatively, the rotaryremote control device 320 may be configured such that theside portion 324 is rotatable and thefront portion 321 is fixed relative to thebase portion 325, such that text and/or images on thefront surface 323 of thefront portion 321 remain upright. - The
base portion 325 may be configured to be attached (e.g., removably attached) to thefaceplate 329, for example, using double sided tape affixed to therear surface 327. Alternatively, thebase portion 325 may define one or more snap fit catches (not shown) that extend inward from thebase portion 325 relative to therear surface 327 and are configured to engage within the actuator opening of a faceplate. Alternatively still, thebase portion 325 may define on more apertures that extend into therear surface 327 and a complementary faceplate (not shown) may define one or more snap fit catches configured to be received in, and engage within, the apertures in thebase portion 325. Alternatively still, thebase portion 325 may be configured to be magnetically attached to the faceplate. - Alternatively, the
base portion 325 of the rotaryremote control device 320 may be integral with a corresponding faceplate, for example thebase portion 325 and the faceplate may be monolithic. Such a rotaryremote control device 320 may be mounted over the toggle actuator of a switch by first removing a traditional style faceplate from the switch and replacing the traditional faceplate with the faceplate having an integrated rotaryremote control device 320. Such a rotaryremote control device 320 may include a solar cell affixed to the integral faceplate, the solar cell configured to charge a battery of the rotaryremote control device 320 and/or to power a controller and/or an RF transmitter of the rotaryremote control device 320. -
FIG. 5 is a perspective view of thebase portion 425 of an example rotary remote control device. Thebase portion 425 may be deployed as, for example, thebase portion 325 of the rotaryremote control device 320 shown inFIGS. 3 and 4 . Thebase portion 425 defines anopening 426 that is dimensioned to receive at least a portion of thetoggle actuator 406 of a switch, for example theswitch 104 as shown inFIG. 1 . Thebase portion 425 includes afriction spring 440 configured to attach thebase portion 425 to atoggle actuator 406, for example thetoggle actuator 106 of theswitch 104 shown inFIG. 1 . The illustratedfriction spring 440 includes a plurality offingers 442 configured to capture at least a portion of thetoggle actuator 406. As shown, thefingers 442 of thefriction spring 440 flank opposed sides of theopening 426. -
FIG. 6 is a simplified block diagram of an example rotaryremote control device 520 that may be implemented as, for example, theremote control device 120 shown inFIG. 1 and/or the rotaryremote control device 320 shown inFIGS. 3 and 4 . As shown, the rotaryremote control device 520 includes acontrol circuit 530. Thecontrol circuit 530 may include one or more of a processor (e.g., a microprocessor), a microcontroller, a programmable logic device (PLD), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or any suitable processing device. - The rotary
remote control device 520 includes arotary encoder circuit 532 that may be operatively coupled to a rotary knob, for example therotating portion 322 of the rotaryremote control device 320. Thecontrol circuit 530 is communicatively coupled to therotary encoder circuit 532. The rotaryremote control device 520 includes awireless communication circuit 534, for example an RF transmitter coupled to an antenna, for transmitting wireless signals, such as the RF signals 108, in response to actuations of the rotary knob coupled to the rotary encoder circuit 532 (e.g., the rotatingportion 322 of the rotary remote control device 320). Thecontrol circuit 530 may cause thewireless communication circuit 534 to transmit one or more wireless signals to an associated load control device, for example the controllablelight source 110 shown inFIG. 1 or the controllablelight source 210 shown inFIG. 2 , for example responsive to actuations of the rotary knob coupled to therotary encoder circuit 532. Alternatively, thewireless communication circuit 534 may include an RF receiver for receiving RF signals, an RF transceiver for transmitting and receiving RF signals, or an infrared (IR) receiver for receiving IR signals. - The rotary
remote control device 520 includes amemory 536 communicatively coupled to thecontrol circuit 530. Thecontrol circuit 530 may be configured to use thememory 536 for the storage and/or retrieval of, for example, a unique identifier (e.g., a serial number) of the rotaryremote control device 520 that may be included in the transmitted RF signals. Thememory 536 may be implemented as an external integrated circuit (IC) or as an internal circuit of thecontrol circuit 530. - The rotary
remote control device 520 includes abattery 538 for producing a battery voltage VBATT that may be used to power one or more of thecontrol circuit 530, therotary encoder circuit 532, thewireless communication circuit 534, thememory 536, and other low-voltage circuitry of the rotaryremote control device 520. The rotaryremote control device 520 may include a solar cell (not shown) configured to charge thebattery 538 and/or another energy storage device, such as a capacitor. The solar cell may be located on a surface of the rotaryremote control device 520, for example on thefront surface 323 of thefront portion 321 of therotating portion 322 of the rotaryremote control device 320 shown inFIGS. 3 and 4 . - The rotary
remote control device 520 may include one or more visual indicators, for example one ormore LEDs 540, that are configured to provide feedback to a user of the rotaryremote control device 520. As shown, theLEDs 540 are operatively coupled to thecontrol circuit 530. For example, thecontrol circuit 530 may control theLEDs 540 to provide feedback indicating a status of the controllablelight source 110, for example if the controllablelight source 110 is on, off, or a present intensity of the controllablelight source 110. Thecontrol circuit 530 may be configured to illuminate theLEDs 540 in order to provide an indication that thebattery 538 is low on energy, to provide feedback during programming or association of the rotaryremote control device 520, and/or to provide a night light. - In response to one or more actuations of the rotary knob coupled to the
rotary encoder circuit 532, for example therotating portion 322 of the rotaryremote control device 320, therotary encoder circuit 532 may generate three control signals that may be provided to thecontrol circuit 530. For example, therotary encoder circuit 532 may generate a toggle control signal VTOG that may be representative of instances when thefront surface 323 of thefront portion 321 of therotating portion 322 is pushed towards thebase portion 325, so as to toggle a controlled electrical load on and/or off. Therotary encoder circuit 532 may also generate a first encoder control signal VE1 and a second encoder control signal VE2. The first and second encoder control signals VE1, VE2 may, in combination, be representative of an angular velocity ω at which therotating portion 322 is rotated and an angular direction (e.g., clockwise or counter-clockwise) in which therotating portion 322 is rotated. - The
control circuit 530 may, responsive to receiving one or more of VTOG, VE1, or VE2, cause thewireless communication circuit 534 to transmit one or more signals, for example RF signals 108, to a controllable light source associated with the rotaryremote control device 520, for example the lighting load of the controllablelight source 110 shown inFIG. 1 . The controllablelight source 110, responsive to receiving the RF signals 108, may turn the lighting load on or off and/or may adjust the intensity of the lighting load, for example via a load control circuit such as theload control circuit 212. -
FIG. 7A is a simplified diagram showing example waveforms of the first encoder control signal VE1 and the second encoder control signal VE2 when therotating portion 322 is being rotated in the clockwise direction. The first encoder control signal VE1 lags the second encoder control signal VE2 by 90° when therotating portion 322 is rotated clockwise.FIG. 7B is a simplified diagram showing example waveforms of the first encoder control signal VE1 and the second encoder control signal VE2 when therotating portion 322 is being rotated in the counter-clockwise direction. The second encoder control signal VE2 lags the first encoder control signal VE1 by 90° when therotating portion 322 is rotated counter-clockwise. - The
control circuit 530 may be configured to determine whether the second encoder control signal VE2 is low (i.e., at approximately circuit common) or high (i.e., at approximately the battery voltage VBATT) at the times of the falling edges of the first encoder control signal VE1 (i.e., when the first encoder control signal VE1 transitions from high to low), in order to determine whether the rotatingportion 322 is being rotated clockwise or counter-clockwise, respectively. -
FIG. 8 depicts another exampleload control system 600. As shown, theload control system 600 is configured as a lighting control system that includes alamp 610 and a battery-powered rotaryremote control device 620. Theload control system 600 includes a plug-in load control device 630 (e.g., a “wall wart” plug-in device) configured to be plugged into a standardelectrical receptacle 632 that is electrically connected to anAC power source 602. The plug-inload control device 630 may include one or more electrical outlets, such as anelectrical outlet 633 located on a side of the plug-inload control device 630. - The
lamp 610 includes a lighting load 612 (e.g., an incandescent lamp, a halogen lamp, a compact fluorescent lamp, an LED lamp, or other screw-in lamp) and anelectrical plug 614 that is configured to be plugged into an electrical outlet. Theplug 614 is plugged into theelectrical outlet 633 of the plug-inload control device 630, such that the plug-inload control device 630 may control the amount of power delivered to, and thus the intensity of, thelighting load 612 of thelamp 610. - The
lamp 610 may include atoggle actuator 616 operatively coupled to an internalmechanical switch 618 of thelamp 610 that is configured to turn thelighting load 612 on and off. Thetoggle actuator 616 may be a push-pull-type actuator that may be pushed and pulled to turn thelighting load 612 on and off, a push-push-type actuator that may be pushed to alternately turn the lighting load on and off, or a rotary-type actuator that may be rotated in opposed directions to turn the lighting load on and off. Thelamp 610 is not limited to the illustrated table lamp configuration. Alternatively, thelamp 610 may be configured as a floor lamp, a wall mounted lamp, or any other lamp having a toggle actuator, such as thetoggle actuator 616. - As shown, the rotary
remote control device 620 is configured to mount over thetoggle actuator 616 of thelamp 610 when the toggle actuator is in the on position and theswitch 618 is closed (i.e., conductive). The rotaryremote control device 620 may be configured to transmit wireless signals, for example RF signals 608, to the plug-inload control device 630 for controlling the amount of power delivered to thelamp 610, and thus the intensity of thelighting load 612. The plug-inload control device 630 includes anactuator 634 that may be actuated to associate the plug-inload control device 630 with the rotaryremote control device 620 during a configuration procedure of theload control system 600, such that the plug-inload control device 630 may then be responsive to the RF signals 608 transmitted by the rotaryremote control device 620. - As shown, the rotary
remote control device 620 includes arotating portion 622 and abase portion 625. One or more components of the rotaryremote control device 620, for example therotating portion 622 and thebase portion 625, may be made of any suitable material, such as plastic. The rotatingportion 622 may be supported by thebase portion 625 so as to be rotatable in opposed directions about thebase portion 625, for example in the clockwise or counter-clockwise directions. Thebase portion 625 may be configured to be fixedly attached relative to thetoggle actuator 616 of thelamp 610 when the rotaryremote control device 620 is mounted over thetoggle actuator 616, such that rotation of therotating portion 622 does not actuate thetoggle actuator 616. - When the rotary
remote control device 620 is mounted over the toggle actuator of a switch (e.g., the toggle actuator 616), thebase portion 625 may function to secure thetoggle actuator 616 from being toggled. For example, thebase portion 625 may be configured to maintain thetoggle actuator 616 in an on position, such that a user of the rotaryremote control device 620 is not able to mistakenly switch thetoggle actuator 616 to the off position, which may disconnect thelighting load 612 from theAC power source 602, such that the plug-inload control device 630 is not able to control thelighting load 612. - The rotary
remote control device 620 includes electrical components (not shown) that may be housed inside the rotaryremote control device 620. The electrical components of the rotaryremote control device 620 may be configured similarly to those of the rotaryremote control device 520 shown inFIG. 6 . For example, components of the rotaryremote control device 620 may include a control circuit, a rotary encoder circuit, a wireless communication circuit, a memory, and a battery. The rotaryremote control device 620 may transmit one or more RF signals 608 to the plug-inload control device 630 for controlling the intensity of thelighting load 612 responsive to actuations of therotating portion 622. - The plug-in
load control device 630, responsive to receiving the RF signals 608, may turn thelighting load 612 on or off and/or may adjust the intensity of thelighting load 612, for example via a load control circuit. For example, the plug-inload control device 630 may turn thelighting load 612 on and off responsive to forces applied to (e.g., presses of) the rotatingportion 622 of the rotaryremote control device 620 that causerotating portion 622 to be biased toward thebase portion 625. The plug-inload control device 630 may adjust the intensity of thelighting load 612 responsive to one or more rotational forces applied to therotating portion 622, for example in the clockwise and/or counter-clockwise directions. The plug-inload control device 630 may adjust the intensity of thelighting load 612 in accordance with the rotational speed at which therotating portion 622 is rotated. - It should be appreciated that the
load control system 600 need not include the plug-inload control device 630 for controlling thelighting load 612. For example, theload control system 600 may alternatively include a controllable light source that is associated with the rotaryremote control device 620, for example the controllablelight source 110 shown inFIG. 1 , that is electrically connected to (e.g., screwed into the socket of) thelamp 610, such that actuations of therotating portion 622 of the rotaryremote control device 620 may adjust the intensity of the lighting load of the controllable light source and/or cause the lighting load of the controllable light source to turn on and/or off. It should further be appreciated that theload control system 100 shown inFIG. 1 may alternatively include a plug-in load control device (e.g., the plug-inload control device 630 shown inFIG. 8 ) that is configured to be controlled by theremote control device 120. - It should further still be appreciated that the
load control systems 100 and/or 600 may include other types of load control devices and/or electrical loads that are configured to be controlled by one or more remote control devices (e.g., one or moreremote control devices - It should further still be appreciated that while remote control devices configured to transmit wireless control signals to associated electrical load control devices, for example controllable light sources such as the controllable
light source 110 or the plug-inload control device 630, are described herein with reference to the rotaryremote control devices
Claims (23)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/127,180 US10418193B2 (en) | 2012-10-26 | 2018-09-10 | Controllable light source |
US16/542,219 US11102874B2 (en) | 2012-10-26 | 2019-08-15 | Controllable light source |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261718818P | 2012-10-26 | 2012-10-26 | |
US13/829,834 US9538619B2 (en) | 2012-10-26 | 2013-03-14 | Controllable light source |
US15/356,730 US10104750B2 (en) | 2012-10-26 | 2016-11-21 | Controllable light source |
US16/127,180 US10418193B2 (en) | 2012-10-26 | 2018-09-10 | Controllable light source |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/356,730 Continuation US10104750B2 (en) | 2012-10-26 | 2016-11-21 | Controllable light source |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/542,219 Continuation US11102874B2 (en) | 2012-10-26 | 2019-08-15 | Controllable light source |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190006130A1 true US20190006130A1 (en) | 2019-01-03 |
US10418193B2 US10418193B2 (en) | 2019-09-17 |
Family
ID=50546410
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/829,981 Active 2034-07-30 US9565742B2 (en) | 2012-10-26 | 2013-03-14 | Battery-powered retrofit remote control device |
US13/829,834 Active 2034-02-20 US9538619B2 (en) | 2012-10-26 | 2013-03-14 | Controllable light source |
US15/356,730 Active US10104750B2 (en) | 2012-10-26 | 2016-11-21 | Controllable light source |
US15/386,869 Active US10147560B2 (en) | 2012-10-26 | 2016-12-21 | Battery-powered retrofit remote control device |
US16/127,180 Active US10418193B2 (en) | 2012-10-26 | 2018-09-10 | Controllable light source |
US16/152,398 Active 2033-03-29 US10849206B2 (en) | 2012-10-26 | 2018-10-04 | Battery-powered retrofit remote control device |
US16/542,219 Active US11102874B2 (en) | 2012-10-26 | 2019-08-15 | Controllable light source |
US17/038,656 Active US11102875B2 (en) | 2012-10-26 | 2020-09-30 | Battery-powered retrofit remote control device |
US17/408,623 Active 2033-05-22 US11837418B2 (en) | 2012-10-26 | 2021-08-23 | Battery-powered retrofit remote control device |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/829,981 Active 2034-07-30 US9565742B2 (en) | 2012-10-26 | 2013-03-14 | Battery-powered retrofit remote control device |
US13/829,834 Active 2034-02-20 US9538619B2 (en) | 2012-10-26 | 2013-03-14 | Controllable light source |
US15/356,730 Active US10104750B2 (en) | 2012-10-26 | 2016-11-21 | Controllable light source |
US15/386,869 Active US10147560B2 (en) | 2012-10-26 | 2016-12-21 | Battery-powered retrofit remote control device |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/152,398 Active 2033-03-29 US10849206B2 (en) | 2012-10-26 | 2018-10-04 | Battery-powered retrofit remote control device |
US16/542,219 Active US11102874B2 (en) | 2012-10-26 | 2019-08-15 | Controllable light source |
US17/038,656 Active US11102875B2 (en) | 2012-10-26 | 2020-09-30 | Battery-powered retrofit remote control device |
US17/408,623 Active 2033-05-22 US11837418B2 (en) | 2012-10-26 | 2021-08-23 | Battery-powered retrofit remote control device |
Country Status (1)
Country | Link |
---|---|
US (9) | US9565742B2 (en) |
Families Citing this family (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10887956B2 (en) * | 2006-02-09 | 2021-01-05 | Led Smart Inc. | LED lighting system |
US8344666B1 (en) | 2010-07-30 | 2013-01-01 | John Joseph King | Circuit for and method of implementing a configurable light timer |
US9615428B2 (en) | 2011-02-01 | 2017-04-04 | John Joseph King | Arrangement for an outdoor light enabling motion detection |
US9148932B2 (en) * | 2012-04-11 | 2015-09-29 | Lutron Electronics Co., Inc. | Dimmer switch having an alternate fade rate when using in conjunction with a three-way switch |
US9565742B2 (en) | 2012-10-26 | 2017-02-07 | Lutron Electronics Co., Inc. | Battery-powered retrofit remote control device |
US9273840B1 (en) * | 2013-03-13 | 2016-03-01 | Marlin Braun | Integrated illumination system |
US9167669B2 (en) | 2013-03-14 | 2015-10-20 | Lutron Electronic Co., Inc. | State change devices for switched electrical receptacles |
US10027127B2 (en) * | 2013-03-14 | 2018-07-17 | Lutron Electronics Co., Inc. | Commissioning load control systems |
USRE48955E1 (en) | 2013-08-20 | 2022-03-01 | Lutron Technology Company Llc | Interference-resistant compensation for illumination devices having multiple emitter modules |
USRE48956E1 (en) | 2013-08-20 | 2022-03-01 | Lutron Technology Company Llc | Interference-resistant compensation for illumination devices using multiple series of measurement intervals |
US9578724B1 (en) | 2013-08-20 | 2017-02-21 | Ketra, Inc. | Illumination device and method for avoiding flicker |
US9736895B1 (en) | 2013-10-03 | 2017-08-15 | Ketra, Inc. | Color mixing optics for LED illumination device |
US10047912B2 (en) | 2013-10-15 | 2018-08-14 | LIFI Labs, Inc. | Lighting assembly |
US9226373B2 (en) | 2013-10-30 | 2015-12-29 | John Joseph King | Programmable light timer and a method of implementing a programmable light timer |
US11455884B2 (en) | 2014-09-02 | 2022-09-27 | LIFI Labs, Inc. | Lighting system |
US9198262B1 (en) | 2014-05-22 | 2015-11-24 | LIFI Labs, Inc. | Directional lighting system and method |
CN105900531B (en) | 2013-11-14 | 2019-03-29 | 莱弗实验室公司 | Reducible lighting system and method |
US10149369B2 (en) | 2013-11-21 | 2018-12-04 | Lutron Electronics Co., Inc. | Method of associating wireless control devices |
JP6534086B2 (en) * | 2013-11-28 | 2019-06-26 | パナソニックIpマネジメント株式会社 | lighting equipment |
KR20150072719A (en) * | 2013-12-20 | 2015-06-30 | 삼성전자주식회사 | Display apparatus and control method thereof |
US10339795B2 (en) | 2013-12-24 | 2019-07-02 | Lutron Technology Company Llc | Wireless communication diagnostics |
US9848479B2 (en) | 2013-12-26 | 2017-12-19 | Lutron Electronics Co., Inc. | Faceplate remote control device for use in a load control system |
US10317923B2 (en) | 2013-12-26 | 2019-06-11 | Lutron Technology Company Llc | Load-sensing remote control device for use in a load control system |
US10806010B2 (en) | 2013-12-26 | 2020-10-13 | Lutron Technology Company Llc | Control device for use with a three-way lamp socket |
US9699870B2 (en) | 2013-12-27 | 2017-07-04 | Lutron Electronics Co., Inc. | Wall-mountable wireless remote control device |
TWI523577B (en) * | 2014-01-14 | 2016-02-21 | 鉅東應用工程股份有限公司 | Light emitting device |
US10072942B2 (en) | 2016-05-03 | 2018-09-11 | Ivani, LLC | Electrical monitoring and network enabled electrical faceplate |
US11245285B2 (en) | 2014-01-27 | 2022-02-08 | Ivani, LLC | Faceplate switch |
US9843194B2 (en) | 2014-01-27 | 2017-12-12 | Ivani, LLC | Configurable mesh network for an electrical switching system |
US10361585B2 (en) | 2014-01-27 | 2019-07-23 | Ivani, LLC | Systems and methods to allow for a smart device |
EP3146254B1 (en) | 2014-05-22 | 2020-04-22 | Lifi Labs Inc. | Directional lighting system and method |
US9633557B2 (en) | 2014-06-24 | 2017-04-25 | Lutron Electronics Co., Inc. | Battery-powered retrofit remote control device |
US9557214B2 (en) | 2014-06-25 | 2017-01-31 | Ketra, Inc. | Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time |
WO2016007520A1 (en) | 2014-07-07 | 2016-01-14 | LIFI Labs, Inc. | Switch and method of operation |
US20160063824A1 (en) * | 2014-08-26 | 2016-03-03 | Paul Fiore | Emergency flashing light system |
US9392660B2 (en) | 2014-08-28 | 2016-07-12 | Ketra, Inc. | LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device |
US9510416B2 (en) | 2014-08-28 | 2016-11-29 | Ketra, Inc. | LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time |
US9648448B2 (en) | 2014-09-02 | 2017-05-09 | LIFI Labs, Inc. | Power outlet and method of use |
CA2963345C (en) | 2014-11-04 | 2023-03-28 | Ivani, LLC | Configurable mesh network for an electrical switching system |
US10168744B2 (en) | 2015-02-13 | 2019-01-01 | Hunter Douglas Inc. | Remote control device |
USD769227S1 (en) | 2015-02-13 | 2016-10-18 | Hunter Douglas Inc. | Remote control housing |
US20160290616A1 (en) * | 2015-04-02 | 2016-10-06 | Joe Pantaleo | Tree ornament light switch |
FR3036834A1 (en) * | 2015-05-26 | 2016-12-02 | Awox | CONTROL DEVICE |
US10070504B2 (en) | 2015-05-29 | 2018-09-04 | Lutron Electronics Co., Inc. | Associating wireless control devices |
CN105025626A (en) * | 2015-07-27 | 2015-11-04 | 漳州立达信灯具有限公司 | Upgradable light-emitting diode (LED) lamp driving module |
USD785573S1 (en) * | 2015-10-12 | 2017-05-02 | Ningbo Yinzhou Self Photoelectron Technology Co., Ltd. | Controller |
SE539633C2 (en) * | 2015-11-06 | 2017-10-24 | Inter Ikea Sys Bv | A control device for a lighting system |
US9657928B1 (en) * | 2015-12-15 | 2017-05-23 | Crestron Electronics, Inc. | Wireless replacement LED bulb with one or more accompanying control switches |
WO2017165824A1 (en) | 2016-03-24 | 2017-09-28 | Lutron Electronics Co., Inc. | Retrofit remote control devices |
CA3018751A1 (en) | 2016-03-24 | 2017-09-28 | Lutron Electronics Co., Inc. | Gesture-based control device for controlling an electrical load |
US10806008B2 (en) | 2016-05-25 | 2020-10-13 | Innovative Building Energy Control | Building energy control systems and methods |
US9927821B2 (en) * | 2016-05-25 | 2018-03-27 | Innovative Building Energy Control | Building energy control systems and methods |
USD814428S1 (en) | 2016-06-30 | 2018-04-03 | Lutron Electronics Co., Ltd. | Control device |
USD808912S1 (en) | 2016-06-03 | 2018-01-30 | Lutron Electronics Co., Inc. | Control device |
MX2018014817A (en) | 2016-06-03 | 2019-05-20 | Lutron Electronics Co | User interface for a control device. |
USD868009S1 (en) | 2016-06-03 | 2019-11-26 | Lutron Technology Company Llc | Illuminated control device |
EP3465711B1 (en) * | 2016-06-03 | 2021-10-06 | Lutron Technology Company LLC | Battery-powered retrofit remote control device |
CN109219988B (en) * | 2016-06-03 | 2020-08-07 | 路创技术有限责任公司 | Improved remote control device |
US10720274B2 (en) | 2016-06-30 | 2020-07-21 | Lutron Technology Company Llc | Magnetic sensing system for a rotary control device |
USD868010S1 (en) | 2016-06-30 | 2019-11-26 | Lutron Technology Company Llc | Illuminated control device |
US10772180B2 (en) | 2016-07-05 | 2020-09-08 | Lutron Technology Company Llc | State retention load control system |
US11437814B2 (en) | 2016-07-05 | 2022-09-06 | Lutron Technology Company Llc | State retention load control system |
WO2018009851A1 (en) * | 2016-07-08 | 2018-01-11 | Charlton Erik Allen | Intelligent lighting control system apparatuses, systems, and methods |
CN107800418A (en) * | 2016-08-31 | 2018-03-13 | 赵锦薇 | Intelligent switch with remote control function |
US10123397B2 (en) * | 2016-09-12 | 2018-11-06 | General Electric Company | Tracking and commissioning of light engines using near field communication |
WO2018075956A1 (en) | 2016-10-21 | 2018-04-26 | Lutron Electronics Co., Inc. | Battery-powered remote control device |
US10440794B2 (en) | 2016-11-02 | 2019-10-08 | LIFI Labs, Inc. | Lighting system and method |
USD837168S1 (en) | 2017-02-16 | 2019-01-01 | Lutron Electronics Co., Inc. | Control device |
USD837169S1 (en) | 2017-02-16 | 2019-01-01 | Lutron Electronics Co., Inc. | Control device |
USD951211S1 (en) | 2017-03-16 | 2022-05-10 | Lutron Technology Company Llc | Illuminated control device |
US10965019B1 (en) * | 2017-04-23 | 2021-03-30 | Innovative Dimmers, LLC | Wireless transceiver for controlling professional lights and special effects devices |
CN106898507B (en) * | 2017-04-27 | 2019-02-05 | 广东电网有限责任公司清远供电局 | Switch triggering equipment |
CA3068294C (en) | 2017-06-28 | 2022-09-13 | Lutron Technology Company Llc | Control device base that attaches to the paddle actuator of a mechanical switch |
AU2017423229B2 (en) * | 2017-07-10 | 2021-05-27 | Berker Gmbh & Co. Kg | Electrical equipment and additional functional module associated therewith |
AU2017423228B2 (en) * | 2017-07-10 | 2021-05-20 | Berker Gmbh & Co. Kg | Electrical equipment and additional functional module associated therewith |
SE543016C2 (en) | 2017-09-14 | 2020-09-29 | Zound Industries Int Ab | A detachable knob for controlling a function of a loudspeaker |
CN107705800B (en) * | 2017-11-13 | 2024-02-23 | 北京仁歌科技股份有限公司 | Wireless cloud intelligent control equalizer |
US10334706B1 (en) * | 2017-12-13 | 2019-06-25 | Abl Ip Holding Llc | Heuristic occupancy and non-occupancy detection in a lighting system |
US10334707B1 (en) | 2017-12-13 | 2019-06-25 | Abl Ip Holding Llc | Heuristic occupancy and non-occupancy detection in a lighting system with a single transmitter and multiple receivers |
US10321542B1 (en) | 2017-12-13 | 2019-06-11 | Abl Ip Holding Llc | Heuristic occupancy and non-occupancy detection in a lighting system with multiple transmitters and a single receiver |
CN111587322B (en) * | 2017-12-20 | 2022-11-15 | 豪倍公司 | Connected fan system |
CN108156715B (en) * | 2018-01-24 | 2019-09-24 | 上海华成实业有限公司 | A kind of actuation means for realizing acoustic control |
US11272599B1 (en) | 2018-06-22 | 2022-03-08 | Lutron Technology Company Llc | Calibration procedure for a light-emitting diode light source |
CN208444172U (en) * | 2018-06-28 | 2019-01-29 | 东莞市国盟电子有限公司 | The control circuit of novel intelligent switch on wall |
WO2020032863A1 (en) * | 2018-08-06 | 2020-02-13 | Inter Ikea Systems B.V. | A control device for a home ambience system |
CN112673714A (en) * | 2018-09-11 | 2021-04-16 | 路创技术有限责任公司 | Control device configured to provide visual feedback |
CN109309991B (en) * | 2018-10-23 | 2021-04-27 | 深圳市联控智能科技有限公司 | Control method, control device and control system |
US10764979B1 (en) | 2018-11-14 | 2020-09-01 | Lutron Ketra, Llc | Lighting device having an interim operable state |
CN113228827B (en) | 2018-12-17 | 2023-10-27 | 路创技术有限责任公司 | Light source with multiple emitters of different colors |
USD935422S1 (en) | 2019-05-01 | 2021-11-09 | Lutron Technology Company Llc | Control device having illumination applied thereto |
EP3970212B1 (en) | 2019-05-14 | 2024-04-24 | Lutron Technology Company LLC | Retrofit remote control device |
WO2020232275A1 (en) | 2019-05-14 | 2020-11-19 | Lutron Technology Company Llc | Base for a retrofit remote control device |
USD921598S1 (en) | 2019-05-20 | 2021-06-08 | Lutron Technology Company Llc | Circular knob and faceplate applied to control device |
EP3997770A1 (en) | 2019-07-12 | 2022-05-18 | Lutron Technology Company LLC | Retrofit remote control device mounting assembly |
USD892751S1 (en) | 2019-07-12 | 2020-08-11 | Lutron Technology Company Llc | Control device |
USD892750S1 (en) | 2019-07-12 | 2020-08-11 | Lutron Technology Company Llc | Control device |
USD933615S1 (en) | 2019-10-15 | 2021-10-19 | Lutron Technology Company Llc | Control device |
CN111292970B (en) * | 2020-02-05 | 2021-10-29 | 国网山东省电力公司新泰市供电公司 | Take insulating bar of electroscope |
US11744031B2 (en) * | 2020-02-28 | 2023-08-29 | Lutron Technology Company Llc | Pedestal for a tabletop retrofit remote control device |
DE112021006550A5 (en) * | 2021-03-03 | 2023-10-26 | Siemens Aktiengesellschaft | DEVICE FOR SWITCHING AN ELECTRICAL SWITCH HANDLE AND MULTIFUNCTIONAL DRIVE WITH SUCH A DEVICE |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100027180A1 (en) * | 2008-07-31 | 2010-02-04 | Honeywell International Inc. | Electronic circuit breaker apparatus and systems |
Family Cites Families (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3032688A (en) | 1959-07-15 | 1962-05-01 | Joel S Spira | Dimming device |
US5955796A (en) * | 1985-03-28 | 1999-09-21 | Nilssen; Ole K. | Programmable wall switch actuator/timer |
US5099193A (en) | 1987-07-30 | 1992-03-24 | Lutron Electronics Co., Inc. | Remotely controllable power control system |
US5162665A (en) | 1990-03-21 | 1992-11-10 | Steven Troyen | Elevator call button/annunciator assembly and circuit |
US5189412A (en) | 1990-05-11 | 1993-02-23 | Hunter Fan Company | Remote control for a ceiling fan |
US5281699A (en) | 1990-06-01 | 1994-01-25 | Tanox Biosystems, Inc. | Treating B cell lymphoma or leukemia by targeting specific epitopes on B cell bound immunoglobulins |
US5239205A (en) | 1991-05-02 | 1993-08-24 | Heath Company | Wireless multiple position switching system |
US5264761A (en) | 1991-09-12 | 1993-11-23 | Beacon Light Products, Inc. | Programmed control module for inductive coupling to a wall switch |
US5739775A (en) | 1993-07-22 | 1998-04-14 | Bourns, Inc. | Digital input and control device |
US5458311A (en) | 1994-02-25 | 1995-10-17 | Casablanca Fan Company | Wall mount for a wireless remote control |
US5744913A (en) | 1994-03-25 | 1998-04-28 | Pacific Scientific Company | Fluorescent lamp apparatus with integral dimming control |
US20030040361A1 (en) * | 1994-09-21 | 2003-02-27 | Craig Thorner | Method and apparatus for generating tactile feedback via relatively low-burden and/or zero burden telemetry |
US5905442A (en) | 1996-02-07 | 1999-05-18 | Lutron Electronics Co., Inc. | Method and apparatus for controlling and determining the status of electrical devices from remote locations |
US6608253B1 (en) | 1996-05-02 | 2003-08-19 | William J. Rintz | Light switch assembly |
US6528954B1 (en) | 1997-08-26 | 2003-03-04 | Color Kinetics Incorporated | Smart light bulb |
US6548967B1 (en) | 1997-08-26 | 2003-04-15 | Color Kinetics, Inc. | Universal lighting network methods and systems |
US6806659B1 (en) | 1997-08-26 | 2004-10-19 | Color Kinetics, Incorporated | Multicolored LED lighting method and apparatus |
US5962992A (en) | 1997-10-14 | 1999-10-05 | Chaw Khong Co., Ltd. | Lighting control system |
US6389139B1 (en) | 1997-11-18 | 2002-05-14 | Dana Innovations | Powered volume control for distributed audio system |
US6270239B1 (en) | 1998-04-27 | 2001-08-07 | Electronic Theatre Controls, Inc. | Fader wheel for lighting control console |
US6828733B1 (en) | 1998-10-30 | 2004-12-07 | David B. Crenshaw | Remote lamp control apparatus |
JP2002539590A (en) | 1999-03-11 | 2002-11-19 | パワー・サーキット・イノベーションズ・インコーポレーテッド | Networkable power controller |
US6801003B2 (en) * | 2001-03-13 | 2004-10-05 | Color Kinetics, Incorporated | Systems and methods for synchronizing lighting effects |
US7417556B2 (en) | 2001-04-24 | 2008-08-26 | Koninklijke Philips Electronics N.V. | Wireless addressable lighting method and apparatus |
US6828517B2 (en) | 2001-05-16 | 2004-12-07 | Bourns, Inc. | Position encoder |
US7092772B2 (en) | 2002-04-17 | 2006-08-15 | Black & Decker Inc. | Home automation system |
JP3941603B2 (en) | 2002-06-25 | 2007-07-04 | 松下電器産業株式会社 | Rotary encoder |
US7116061B2 (en) * | 2003-01-16 | 2006-10-03 | Surefire, Llc | Brightness controllable flashlights |
CN2596671Y (en) | 2003-02-10 | 2003-12-31 | 俞宝鑫 | Digital radio remote control switch |
US7178941B2 (en) | 2003-05-05 | 2007-02-20 | Color Kinetics Incorporated | Lighting methods and systems |
WO2005019766A2 (en) | 2003-08-21 | 2005-03-03 | Harald Philipp | Capacitive position sensor |
US20080302873A1 (en) * | 2003-11-13 | 2008-12-11 | Metrologic Instruments, Inc. | Digital image capture and processing system supporting automatic communication interface testing/detection and system configuration parameter (SCP) programming |
US7350720B2 (en) * | 2004-02-03 | 2008-04-01 | S.C. Johnson & Son, Inc. | Active material emitting device |
US7834856B2 (en) | 2004-04-30 | 2010-11-16 | Leviton Manufacturing Co., Inc. | Capacitive sense toggle touch dimmer |
CN1989792B (en) | 2004-07-21 | 2013-09-11 | 皇家飞利浦电子股份有限公司 | Color adjustable lamp |
US8153918B2 (en) * | 2005-01-27 | 2012-04-10 | Black & Decker Inc. | Automatic light switch with manual override |
US7486883B2 (en) * | 2005-06-01 | 2009-02-03 | Tamrac, Inc. | Radio remote control for photographic equipment |
EP1894075A4 (en) | 2005-06-06 | 2008-06-25 | Color Kinetics Inc | Methods and apparatus for implementing power cycle control of lighting devices based on network protocols |
EP1967048A1 (en) | 2005-12-22 | 2008-09-10 | Koninklijke Philips Electronics N.V. | Method and device for commissioning a remote controller |
US20080315798A1 (en) * | 2005-12-23 | 2008-12-25 | Koninklijke Philips Electronics N.V. | User Interface For Lighting Systems |
JP2007242566A (en) | 2006-03-10 | 2007-09-20 | Takashi Yamamoto | Wall surface switch remote control device |
US8669716B2 (en) | 2007-08-30 | 2014-03-11 | Wireless Environment, Llc | Wireless light bulb |
US8362713B2 (en) * | 2006-03-28 | 2013-01-29 | Wireless Environment, Llc | Wireless lighting devices and grid-shifting applications |
US8994276B2 (en) * | 2006-03-28 | 2015-03-31 | Wireless Environment, Llc | Grid shifting system for a lighting circuit |
US8829799B2 (en) * | 2006-03-28 | 2014-09-09 | Wireless Environment, Llc | Autonomous grid shifting lighting device |
US8491159B2 (en) * | 2006-03-28 | 2013-07-23 | Wireless Environment, Llc | Wireless emergency lighting system |
US20090256483A1 (en) * | 2006-06-08 | 2009-10-15 | Lutron Electronics Co., Inc. | Load Control Device Having a Visual Indication of an Energy Savings Mode |
US7872423B2 (en) | 2008-02-19 | 2011-01-18 | Lutron Electronics Co., Inc. | Smart load control device having a rotary actuator |
US20080094857A1 (en) | 2006-10-20 | 2008-04-24 | Smith Robert B | LED light bulb |
US20080111491A1 (en) | 2006-11-13 | 2008-05-15 | Spira Joel S | Radio-frequency lighting control system |
US7573208B2 (en) | 2007-03-05 | 2009-08-11 | Lutron Electronics Co., Inc. | Method of programming a lighting preset from a radio-frequency remote control |
US20090184652A1 (en) | 2007-04-23 | 2009-07-23 | Lutron Electronics Co., Inc. | Antenna for a Load Control Device Having a Modular Assembly |
WO2009145747A1 (en) | 2007-05-24 | 2009-12-03 | Face Bradbury R | Lighting fixture with low voltage transformer & self-powered switching system |
US20080303661A1 (en) * | 2007-06-06 | 2008-12-11 | Chick James S | Compact and self-contained security system |
US8344639B1 (en) | 2008-11-26 | 2013-01-01 | Farhad Bahrehmand | Programmable LED driver |
US20100295484A1 (en) | 2008-01-30 | 2010-11-25 | Carson Kelly Smith | Lock Light |
US20090206983A1 (en) | 2008-02-19 | 2009-08-20 | Lutron Electronics Co., Inc. | Communication System for a Radio-Frequency Load Control System |
US8330638B2 (en) | 2008-04-04 | 2012-12-11 | Lutron Electronics Co., Inc. | Wireless battery-powered remote control having multiple mounting means |
US7940167B2 (en) | 2008-09-03 | 2011-05-10 | Lutron Electronics Co., Inc. | Battery-powered occupancy sensor |
US8009042B2 (en) | 2008-09-03 | 2011-08-30 | Lutron Electronics Co., Inc. | Radio-frequency lighting control system with occupancy sensing |
US9148937B2 (en) | 2008-09-03 | 2015-09-29 | Lutron Electronics Co., Inc. | Radio-frequency lighting control system with occupancy sensing |
US8228184B2 (en) | 2008-09-03 | 2012-07-24 | Lutron Electronics Co., Inc. | Battery-powered occupancy sensor |
US8008866B2 (en) | 2008-09-05 | 2011-08-30 | Lutron Electronics Co., Inc. | Hybrid light source |
US8084700B1 (en) | 2008-09-18 | 2011-12-27 | Michael James Massaro | Programmable wall switch controller |
US8274233B2 (en) | 2008-11-25 | 2012-09-25 | Lutron Electronics Co., Inc. | Load control device having a visual indication of energy savings and usage information |
CA2744709C (en) | 2008-11-26 | 2017-03-14 | Wireless Environment, Llc | Wireless lighting devices and applications |
US8124898B2 (en) | 2009-01-15 | 2012-02-28 | Leviton Manufacturing Co., Inc. | Electrical device controller having a switch and a thumbwheel dimmer |
US8665090B2 (en) | 2009-01-26 | 2014-03-04 | Lutron Electronics Co., Inc. | Multi-modal load control system having occupancy sensing |
US8508148B1 (en) | 2009-02-01 | 2013-08-13 | MagicLux, LLC | System for light and appliance remote control |
US8199010B2 (en) | 2009-02-13 | 2012-06-12 | Lutron Electronics Co., Inc. | Method and apparatus for configuring a wireless sensor |
US8410706B2 (en) | 2009-03-27 | 2013-04-02 | Lutron Electronics Co., Inc. | Method of calibrating a daylight sensor |
US8451116B2 (en) | 2009-03-27 | 2013-05-28 | Lutron Electronics Co., Inc. | Wireless battery-powered daylight sensor |
TWM366780U (en) * | 2009-04-03 | 2009-10-11 | Hon Hai Prec Ind Co Ltd | Electrical connector |
RU2561494C2 (en) | 2009-04-09 | 2015-08-27 | Конинклейке Филипс Электроникс Н.В. | Smart lighting control system |
US8398268B2 (en) | 2009-10-01 | 2013-03-19 | David Elberbaum | Method and apparatus for attaching polyhedron cover to an illuminator and operating it |
US8138626B2 (en) | 2009-10-25 | 2012-03-20 | Greenwave Reality, Pte Ltd. | Power node for energy management |
US8430402B2 (en) | 2009-10-25 | 2013-04-30 | Greenwave Reality Pte Ltd. | Networked light bulb with color wheel for configuration |
US9122320B1 (en) | 2010-02-16 | 2015-09-01 | VisionQuest Imaging, Inc. | Methods and apparatus for user selectable digital mirror |
TWM385875U (en) | 2010-04-08 | 2010-08-01 | Eiko Pacific Ltd | Remote control device for lamp brightness |
US20110297522A1 (en) * | 2010-06-01 | 2011-12-08 | Elzing Ihab H | Motion controlled light switch control device |
CN201758471U (en) * | 2010-06-28 | 2011-03-09 | 秦兵 | Dimming LED illuminating lamp |
US10564613B2 (en) | 2010-11-19 | 2020-02-18 | Hubbell Incorporated | Control system and method for managing wireless and wired components |
GB2485805B (en) | 2010-11-24 | 2013-06-26 | Cp Electronics Ltd | A controller for use with a mechanical switch |
US9515840B2 (en) | 2010-12-22 | 2016-12-06 | Nokia Corporation | Light fitting apparatus interfacing with a data communications network |
US9286804B2 (en) * | 2011-05-03 | 2016-03-15 | Banner Engineering Corp. | Apparatus and method for power management of a system of indicator light devices |
US8803436B2 (en) | 2011-05-10 | 2014-08-12 | Lutron Electronics Co., Inc. | Dimmable screw-in compact fluorescent lamp having integral electronic ballast circuit |
US20120286940A1 (en) | 2011-05-13 | 2012-11-15 | Carmen Jr Lawrence R | Control device having a night light |
US9185783B2 (en) | 2011-05-15 | 2015-11-10 | Lighting Science Group Corporation | Wireless pairing system and associated methods |
GB2490932A (en) | 2011-05-19 | 2012-11-21 | Alexander Kalogroulis | Rocker switch actuator |
US9386666B2 (en) | 2011-06-30 | 2016-07-05 | Lutron Electronics Co., Inc. | Method of optically transmitting digital information from a smart phone to a control device |
US9544977B2 (en) | 2011-06-30 | 2017-01-10 | Lutron Electronics Co., Inc. | Method of programming a load control device using a smart phone |
US9368025B2 (en) | 2011-08-29 | 2016-06-14 | Lutron Electronics Co., Inc. | Two-part load control system mountable to a single electrical wallbox |
US8669484B1 (en) * | 2011-10-20 | 2014-03-11 | Arthur J. Benson | Motion sensing switch actuator assembly |
US9360198B2 (en) * | 2011-12-06 | 2016-06-07 | Express Imaging Systems, Llc | Adjustable output solid-state lighting device |
US9337943B2 (en) | 2011-12-28 | 2016-05-10 | Lutron Electronics Co., Inc. | Load control system having a broadcast controller with a diverse wireless communication system |
US9736911B2 (en) | 2012-01-17 | 2017-08-15 | Lutron Electronics Co. Inc. | Digital load control system providing power and communication via existing power wiring |
US9215779B2 (en) | 2012-03-30 | 2015-12-15 | Cooper Technologies Company | Light switch and control device having a touch screen interface |
US8568152B1 (en) * | 2012-04-19 | 2013-10-29 | Pass & Seymour, Inc. | Shutter assembly for electrical devices |
US9250669B2 (en) | 2012-09-14 | 2016-02-02 | Lutron Electronics Co., Inc. | Power measurement in a two-wire load control device |
US9565742B2 (en) | 2012-10-26 | 2017-02-07 | Lutron Electronics Co., Inc. | Battery-powered retrofit remote control device |
WO2014179531A2 (en) | 2013-05-01 | 2014-11-06 | Nusocket Inc. | Modular illumination device and associated systems and methods |
US9208965B2 (en) | 2013-08-06 | 2015-12-08 | Centralite Systems, Inc. | Switch cover and control for controllable lamp |
US9557043B2 (en) | 2013-09-16 | 2017-01-31 | Echostar Technologies L.L.C. | Easy-install home automation light switch |
KR20150053172A (en) | 2013-11-07 | 2015-05-15 | 삼성전자주식회사 | Wheel Circuit Using Electromagnetic Induction and Electronic Pen Including The Wheel |
US9520247B1 (en) | 2014-02-08 | 2016-12-13 | Switchmate Home Llc | Automated operation of fixtures |
US20170105176A1 (en) | 2014-02-08 | 2017-04-13 | Switchmate Home Llc | Home automation ecosystem devices and power management |
US9418802B2 (en) | 2014-02-08 | 2016-08-16 | Switchmate Home Llc | Switch automation device |
US9583288B2 (en) | 2014-04-15 | 2017-02-28 | Google Inc. | Interchangeable back system for programmable switches |
US9699836B2 (en) | 2014-06-18 | 2017-07-04 | Farhad Bahrehmand | Multifunctional universal LED driver |
US9633557B2 (en) | 2014-06-24 | 2017-04-25 | Lutron Electronics Co., Inc. | Battery-powered retrofit remote control device |
US9799469B2 (en) | 2014-08-12 | 2017-10-24 | Ecolink Intelligent Technology, Inc. | Remote controlled light switch cover assembly |
US9959997B2 (en) | 2014-08-12 | 2018-05-01 | Ecolink Intelligent Technology, Inc. | Remote controlled switch cover |
US20190035569A1 (en) * | 2016-01-23 | 2019-01-31 | Laurence P. Sadwick | Continuously Powered Load Switch Lock |
US10395865B2 (en) | 2016-12-30 | 2019-08-27 | Ecolink Intelligent Technology, Inc. | Remote-controlled switch cover assembly |
US20200043322A1 (en) * | 2018-08-01 | 2020-02-06 | Nien Made Enterprise Co., Ltd. | Remote control for window treatment |
-
2013
- 2013-03-14 US US13/829,981 patent/US9565742B2/en active Active
- 2013-03-14 US US13/829,834 patent/US9538619B2/en active Active
-
2016
- 2016-11-21 US US15/356,730 patent/US10104750B2/en active Active
- 2016-12-21 US US15/386,869 patent/US10147560B2/en active Active
-
2018
- 2018-09-10 US US16/127,180 patent/US10418193B2/en active Active
- 2018-10-04 US US16/152,398 patent/US10849206B2/en active Active
-
2019
- 2019-08-15 US US16/542,219 patent/US11102874B2/en active Active
-
2020
- 2020-09-30 US US17/038,656 patent/US11102875B2/en active Active
-
2021
- 2021-08-23 US US17/408,623 patent/US11837418B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100027180A1 (en) * | 2008-07-31 | 2010-02-04 | Honeywell International Inc. | Electronic circuit breaker apparatus and systems |
Also Published As
Publication number | Publication date |
---|---|
US20210383984A1 (en) | 2021-12-09 |
US20140117871A1 (en) | 2014-05-01 |
US20200045798A1 (en) | 2020-02-06 |
US10418193B2 (en) | 2019-09-17 |
US11102874B2 (en) | 2021-08-24 |
US20190037674A1 (en) | 2019-01-31 |
US20170103859A1 (en) | 2017-04-13 |
US20210014955A1 (en) | 2021-01-14 |
US10104750B2 (en) | 2018-10-16 |
US11102875B2 (en) | 2021-08-24 |
US9565742B2 (en) | 2017-02-07 |
US9538619B2 (en) | 2017-01-03 |
US10849206B2 (en) | 2020-11-24 |
US20170071049A1 (en) | 2017-03-09 |
US10147560B2 (en) | 2018-12-04 |
US11837418B2 (en) | 2023-12-05 |
US20140117859A1 (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11102874B2 (en) | Controllable light source | |
US11140756B2 (en) | Wall-mountable wireless remote control device | |
US11869710B2 (en) | Magnetic sensing system for a rotary control device | |
US11735897B2 (en) | Retrofit remote control device mounting assembly | |
US11515827B2 (en) | Load control device having an illuminated rotary knob | |
WO2014066269A1 (en) | Controllable light source | |
US20240038456A1 (en) | Battery-powered retrofit remote control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: LUTRON TECHNOLOGY COMPANY LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUTRON ELECTRONICS CO., INC.;REEL/FRAME:049286/0001 Effective date: 20190304 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |