US20180373099A1 - Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same - Google Patents

Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same Download PDF

Info

Publication number
US20180373099A1
US20180373099A1 US16/085,963 US201716085963A US2018373099A1 US 20180373099 A1 US20180373099 A1 US 20180373099A1 US 201716085963 A US201716085963 A US 201716085963A US 2018373099 A1 US2018373099 A1 US 2018373099A1
Authority
US
United States
Prior art keywords
liquid crystal
chemical formula
group
alignment film
aligning agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/085,963
Inventor
Hyeong Seuk YUN
Jung Ho Jo
Sung Joon Min
Hee Han
Hang Ah PARK
Sang Mi Lee
Soon Ho Kwon
Jun Young YOON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160159597A external-priority patent/KR102064989B1/en
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAN, HEE, JO, JUNG HO, KWON, SOON HO, LEE, SANG MI, MIN, SUNG JOON, PARK, HANG AH, YOON, JUN YOUNG, YUN, HYEONG SEUK
Publication of US20180373099A1 publication Critical patent/US20180373099A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal alignment film having not only an excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and high residual image property, and a liquid crystal display device using the same.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • a liquid crystal alignment film serves as a director in the arrangement of liquid crystal molecules, and thus, when the liquid crystals move by the electric field to form an image, it helps them to move in an appropriate direction.
  • a rubbing method of coating a polymer film such as a polyimide onto a substrate such as glass or the like and rubbing the surface thereof in a predetermined direction using fibers such as nylon or polyester has been used.
  • the rubbing method may cause serious problems during manufacturing of a liquid crystal panel because fine dust or electrostatic discharge (ESD) occurs when the fiber and polymer film are rubbed.
  • a polyimide As materials that can be used for the photo-alignment method, various materials have been introduced, among which a polyimide is mainly used for various superior performance of a liquid crystal alignment film.
  • a common polyimide is usually poor in solubility in a solvent, and so it is difficult to apply it directly to a manufacturing process for forming an alignment film by coating in a solution state. Accordingly, after coating in the form of a precursor such as a polyamic acid or a polyamic acid ester having excellent solubility, a high-temperature heat treatment process is performed to form the polyimide, which is then subjected to light irradiation to align liquid crystals.
  • the present invention provides a liquid crystal alignment film including: a polymer containing a first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 below; and a second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5 below, wherein the liquid crystal alignment film has a retardation value of 3 nm or higher:
  • R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms and the other is hydrogen, and
  • X 1 to X 5 are each independently a tetravalent organic group represented by Chemical Formula 6 below:
  • R 3 to R 8 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • L 1 is any one selected from the group consisting of a direct bond, —O—, —CO—, —COO—, —S—, —SO—, —CR 9 R 10 —, —(CH 2 ) Z —, —O(CH 2 ) Z O—, —COO(CH 2 ) Z OCO—, —CONH—, phenylene, or a combination thereof,
  • R 9 and R 10 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or a fluoroalkyl group,
  • Z is an integer of 1 to 10
  • Y 1 to Y 5 are each independently a divalent organic group represented by Chemical Formula 7 below:
  • A is a tetravalent organic group represented by Chemical Formula 6,
  • D 1 and D 2 are each independently an arylene group having 6 to 20 carbon atoms
  • R′ and R′′ are a functional group containing a mesogenic group in the molecule, and the other is hydrogen.
  • the liquid crystal alignment film according to the present invention includes the second repeating unit formed by reacting a common polyimide or a precursor repeating unit thereof with a reactive mesogenic epoxy additive, together with the first repeating unit including a common polyimide or a precursor repeating unit thereof, thereby preparing an alignment film having excellent film strength and good aligning properties.
  • each divalent organic group represented by Chemical Formula 7 is independently used for Y 1 to Y 5 functional groups derived from diamine, and thus the polymer including the first repeating unit can have anisotropy by UV exposure.
  • liquid crystal alignment is carried out from the mesogenic group-containing functional group included in the second repeating unit, thereby improving liquid crystal aligning performance.
  • the mesogenic group-containing functional group in the second repeating unit can improve the film strength while forming a bond through the reaction with the polyimide or a precursor thereof.
  • the liquid crystal alignment film according to the present invention can be prepared by a method for preparing a liquid crystal alignment film including the steps of: 1) coating a liquid crystal aligning agent composition onto a substrate to form a coating film; 2) drying the coating film; 3) irradiating the coating film immediately after the drying step with light to perform alignment treatment; 4) subjecting the alignment-treated coating film to low-temperature heat treatment at 200° C.
  • the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21 below, a repeating unit represented by Chemical Formula 22 below, and a repeating unit represented by Chemical Formula 23 below, wherein the repeating unit represented by Chemical Formula 21 below is contained in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23 below; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24 below; and iii) a reactive mesogenic epoxy:
  • R 22 and R 23 are each independently hydrogen or a C 1-10 alkyl, with the proviso that R 22 and R 23 are not all hydrogen,
  • R 24 and R 25 are each independently hydrogen or a C 1-10 alkyl
  • X 11 is a tetravalent organic group represented by Chemical Formula 25 below:
  • R 26 to R 29 are each independently hydrogen or a C 1-6 alkyl
  • X 12 , X 13 , and X 14 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, or a tetravalent organic group in which at least one hydrogen in the tetravalent organic groups is substituted with a halogen or in which at least one —CH 2 — is substituted with —O—, —CO—, —S—, —SO—, —SO 2 —, or —CONH—, so that it may not be directly bonded to oxygen or sulfur atoms, and
  • Y 11 , Y 12 , Y 13 , and Y 14 are each independently a divalent organic group represented by Chemical Formula 26 below:
  • R 30 and R 31 are each independently a halogen, a cyano, a C 1-10 alkyl, a C 2-10 alkenyl, a C 1-10 alkoxy, a C 1-10 fluoroalkyl, or a C 1-10 fluoroalkoxy,
  • h and i are each independently an integer of 0 to 4,
  • L 3 is a single bond, —O—, —CO—, —S—, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —CONH—, —COO—, —(CH 2 ) z —, —O(CH 2 ) z O—, —O(CH 2 ) z —, —OCH 2 —C(CH 3 ) 2 —CH 2 O—, —COO—(CH 2 ) z —OCO—, —OCO—(CH 2 ) z —COO—, or an imide-based functional group,
  • z is an integer of 1 to 10
  • j is an integer of 0 to 3.
  • the liquid crystal aligning agent composition according to the present invention is coated onto a substrate and dried to form a film, which is then immediately irradiated with linearly polarized light without an imidization process to induce initial anisotropy, and subsequently, alignment of the reactive mesogenic epoxy present in the alignment film is initially induced through a low-temperature heat treatment, followed by carrying out an epoxy reaction to prepare a reactive mesogenic liquid crystal film in the alignment film. Then, while carrying out a high-temperature heat treatment at a higher temperature than that of the low-temperature heat treatment to thereby proceed with imidization, the alignment stabilization can be achieved due to the anisotropy of the liquid crystal film prepared in the low-temperature heat treatment process. Accordingly, it is possible to prevent the occurrence of the residual image property while enhancing the film strength by using the reactive mesogenic epoxy.
  • the liquid crystal alignment film prepared according to the method for preparing a liquid crystal alignment as described above not only exhibits excellent alignment properties, but also has an excellent high-temperature AC brightness fluctuation rate, and in addition, it has a feature in that it can maintain a high voltage holding ratio for a long period of time.
  • the hydrocarbon having 4 to 20 carbon atoms may be an alkane having 4 to 20 carbon atoms, an alkene having 4 to 20 carbon atoms, an alkyne having 4 to 20 carbon atoms, a cycloalkane having 4 to 20 carbon atoms, a cycloalkane having 4 to 20 carbon atoms, an arene having 6 to 20 carbon atoms, or a fused ring in which at least one of the cyclic hydrocarbons shares two or more atoms, or a hydrocarbon to which at least one of the hydrogens is chemically bonded.
  • examples of the hydrocarbon having 4 to 20 carbon atoms may include n-butane, cyclobutane, 1-methylcyclobutane, 1,3-dimethylcyclobutane, 1,2,3,4-tetramethylcyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclohexene, 1-methyl-3-ethylcyclohexene, bicyclohexyl, benzene, biphenyl, diphenylmethane, 2,2-diphenylpropane, 1-ethyl-1,2,3,4-tetrahydronaphthalene, or 1,6-diphenylhexane, etc.
  • the alkyl group having 1 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkyl group.
  • the alkyl group having 1 to 10 carbon atoms may be a straight-chain alkyl group having 1 to 10 carbon atoms; a straight-chain alkyl group having 1 to 5 carbon atoms; a branched-chain or cyclic alkyl group having 3 to 10 carbon atoms; or a branched-chain or cyclic alkyl group having 3 to 6 carbon atoms.
  • examples of the alkyl group having 1 to 10 carbon atoms may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a neo-pentyl group, a cyclohexyl group, etc.
  • the alkoxy group having 1 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkoxy group.
  • the alkoxy group having 1 to 10 carbon atoms may be a straight-chain alkoxy group having 1 to 10 carbon atoms; a straight-chain alkoxy group having 1 to 5 carbon atoms; a branched-chain or cyclic alkoxy group having 3 to 10 carbon atoms; or a branched-chain or cyclic alkoxyl group having 3 to 6 carbon atoms.
  • examples of the alkoxy group having 1 to 10 carbon atoms may include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, an n-pentoxy group, an iso-pentoxy group, a neo-pentoxy group, a cyclohexoxy group, etc.
  • the fluoroalkyl group having 1 to 10 carbon atoms may be a group in which at least one hydrogen in the alkyl group having 1 to 10 carbon atoms is substituted with fluorine
  • the fluoroalkoxy group having 1 to 10 carbon atoms may be a group in which at least one hydrogen in the alkoxy group having 1 to 10 carbon atoms is substituted with fluorine.
  • the alkenyl group having 2 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkenyl group.
  • the alkenyl group having 2 to 10 carbon atoms may be a straight-chain alkenyl group having 2 to 10 carbon atoms, a straight-chain alkenyl group having 2 to 5 carbon atoms, a branched-chain alkenyl group having 3 to 10 carbon atoms, a branched-chain alkenyl group having 3 to 6 carbon atoms, a cyclic alkenyl group having 5 to 10 carbon atoms, or a cyclic alkenyl group having 6 to 8 carbon atoms.
  • examples of the alkenyl group having 2 to 10 carbon atoms may include an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a cyclohexenyl group, etc.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • an aryl group is not particularly limited, but an aryl group having 6 to 60 carbon atoms is preferred, and it may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has a carbon number of 6 to 30. According to one embodiment, the aryl group has a carbon number of 6 to 20.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrycenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • an alkylene group is a divalent functional group derived from an alkane, and examples thereof may include a straight-chain, branched-chain, or cyclic-chain of a methylene group, an ethylene group, a propylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, a pentylene group, a hexylene group, and the like.
  • an arylene group refers to a group having two bonding sites in the aryl group, that is, a divalent group.
  • the description of the aryl group described above can be applied, except that each of these is a divalent group.
  • the multivalent organic group derived from an arbitrary compound refers to a residue in which a plurality of hydrogen atoms bonded to the arbitrary compound are removed.
  • a tetravalent organic group derived from cyclobutane refers to a residue in which any four hydrogen atoms bonded to cyclobutane are removed.
  • the notation —* refers to a residue in which hydrogens at the relevant site are removed.
  • the notation —* refers to a residue in which hydrogens at the relevant site are removed.
  • a direct bond means that no other atoms are present in the parts represented as L 1 , L 2 , L, and the like.
  • the liquid crystal alignment film of one embodiment may include a polymer containing a first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3; and a second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5.
  • the first repeating unit may include one repeating unit of Chemical Formula 1, one repeating unit of Chemical Formula 2, one repeating unit of Chemical Formula 3, or a mixture of two or more thereof.
  • the second repeating unit may include one repeating unit of Chemical Formula 4, one repeating unit of Chemical Formula 5, or a mixture of two or more thereof.
  • the polymer may be prepared by curing a composition including reactive precursor compounds (monomers, oligomer, or polymers) capable of forming the first repeating unit and the second repeating unit, and the weight-average molecular weight of the polymer (measured by GPC) may be 5000 (MW) to 100,000 (MW).
  • the weight average molecular weight refers to a weight average molecular weight in terms of polystyrene measured by the GPC method, and g/mol may be used as a unit.
  • a detector and an analytical column such as a commonly known analysis apparatus and differential refractive index detector, can be used, and commonly applied temperature conditions, solvent, and flow rate can be used. Specific examples of the measurement conditions may include a temperature of 30° C., chloroform as a solvent, and a flow rate of 1 mL/min.
  • anisotropy can be produced by directly irradiating the light without a heat treatment process after the formation of the coating film, following by carrying out a heat treatment to complete the alignment film, and therefore, not only is it possible to prepare a liquid crystal alignment film capable of not only reducing a large amount of light irradiation energy, but also having an excellent aligning property and stability as well as a high voltage holding ratio and electrical characteristics.
  • the functional group containing a mesogenic group in the molecule may be presented by Chemical Formula 8 below:
  • Ar 1 and Ar 2 are each independently phenylene or naphthylene, Q 1 and Q 2 are a direct bond, an alkylene group having 1 to 10 carbon atoms, or an alkyleneoxy group having 1 to 10 carbon atoms, each L is independently a direct bond, —COO—, —C(CH 3 ) ⁇ CH—, or —C(CH 3 ) ⁇ N ⁇ N ⁇ C(CH 3 )—, n is an integer of 0, 1, or 2, and m is an integer of 1 to 10 or an integer of 1 to 5.
  • Ar 2 is phenylene and m is 2, it may become a biphenylene functional group.
  • the alkyleneoxy group having 1 to 10 carbon atoms is a functional group in which an alkylene group having 1 to 10 carbon atoms and an ether group are bonded, and specifically, it may be represented by the formula —RO—.
  • R is an alkylene group having 1 to 10 carbon atoms.
  • the functional group containing a mesogenic group in the molecule may be a functional group including an ester group in an aromatic ring in the molecule.
  • it may be a functional group, wherein Ar 1 and Ar 2 are each independently phenylene, Q 1 and Q 2 are each independently an alkyleneoxy group having 1 to 3 carbon atoms, L is —COO—, n is 1, and m is 1.
  • Chemical Formula 8 it may be a functional group derived from 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate where Ar 1 and Ar 2 are each independently phenylene, Q 1 and Q 2 are each independently a methyleneoxy group having 1 carbon atom, L is —COO—, and n is 1, the functional group being represented by Chemical Formula 8-1 below.
  • Chemical Formula 8 it may be a functional group, wherein Ar 1 and Ar 2 are each independently phenylene, Q 1 and Q 2 are each independently an alkyleneoxy group having 1 to 3 carbon atoms, L is —COO—, n is 2, and m is 1. More specifically, in Chemical Formula 8, it may be a functional group derived from 1,4-phenylene bis(4-(oxiran-2-ylmethoxy)benzoate where Ar 1 and Ar 2 are each independently phenylene, Q 1 and Q 2 are each independently a methyleneoxy group having 1 carbon atom, L is —COO—, and n is 2, the functional group being represented by Chemical Formula 8-2 below.
  • the polymer may further include a functional group represented by Chemical Formula 9 or a functional group represented by Chemical Formula 10 at at least one terminal end:
  • X 1 , Y 1 , and R′ and R′′ are as defined in Chemical Formulae 1, 4, and 5,
  • R 11 and R 12 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • X 2 , Y 2 , R′, and R′′ are as defined in Chemical Formulae 2, 4 and 5.
  • the polymer may further include a polymer containing a third repeating unit including at least one selected from the group consisting of Chemical Formulae 11 to 13; and a fourth repeating unit including at least one selected from the group consisting of Chemical Formulae 14 and 15:
  • R 13 and R 14 are an alkyl group having 1 to 10 carbon atoms, and the other is hydrogen,
  • X 6 to X 10 are each independently a tetravalent organic group represented by Chemical Formula 6, and
  • Y 6 to Y 10 are each independently a divalent organic group represented by Chemical Formula 16 below:
  • R 15 and R 16 are each independently hydrogen, a halogen, a cyano, a nitrile, an alkyl having 1 to 10 carbon atoms, an alkenyl having 1 to 10 carbon atoms, an alkoxy having 1 to 10 carbon atoms, a fluoroalkyl having 1 to 10 carbon atoms, or a fluoroalkoxy having 1 to 10 carbon atoms,
  • p are q are each independently an integer of 0 to 4,
  • L 2 is a direct bond, —O—, —CO—, —S—, —SO 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —CONH—, —COO—, —(CH 2 ) y —, —O(CH 2 ) y O—, —O(CH 2 ) y —, —NH—, —NH(CH 2 ) y —NH—, —NH(CH 2 ) y O—, —OCH 2 —C(CH 3 ) 2 —CH 2 O—, —COO—(CH 2 ) y —OCO—, or —OCO—(CH 2 ) y —COO—,
  • y is an integer of 1 to 10
  • k and m are each independently an integer of 0 to 3
  • n is an integer of 0 to 3
  • R′ and R′′ are as defined in Chemical Formulae 4 and 5.
  • a weight ratio between the polymer containing the third repeating unit including at least one selected from the group consisting of Chemical Formula 11 to Chemical Formula 13, and the fourth repeating unit including at least one selected from the group consisting of Chemical Formula 14 and Chemical Formula 15 and the polymer containing the first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 and the second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5, may be 10:90 to 90:10, 15:85 to 85:15, or 20:80 to 80:20.
  • the polymer containing the third repeating unit including at least one selected from the group consisting of Chemical Formula 11 to Chemical Formula 13, and the fourth repeating unit including at least one selected from the group consisting of Chemical Formula 14 and Chemical Formula 15, is used for the liquid crystal alignment film in the state in which the polymer containing the first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 and the second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5 is mixed, thereby significantly increasing the electrical characteristics of the alignment film such as the voltage holding ratio.
  • the liquid crystal alignment film may have an AC brightness fluctuation rate of 3.5% or less, 0.1% to 3.5%, 2% to 3%, or 2.5% to 2.9%, which is represented by Mathematical Formula 1 below.
  • Brightness fluctuation rate (%) [Initial brightness measured before driving the liquid crystal display device including the liquid crystal alignment film (L0) ⁇ Brightness measured after driving (L1)]/Initial brightness measured before driving (L0) ⁇ 100 [Mathematical Formula 1]
  • the initial brightness measured before driving the liquid crystal display device including the liquid crystal alignment film (L0) is a brightness in a black mode in which polarizing plates are adhered to the upper plate and the lower plate of the liquid crystal display device such that they are perpendicular to each other, and the polarizing plates are adhered to a backlight of 7000 cd/m 2 ;
  • the brightness measured after driving (L1) is a brightness in a black mode in which, after driving the liquid crystal display device at room temperature with an AC voltage of 5 V for 24 hours, polarizing plates are adhered to the upper plate and the lower plate of the liquid crystal display device such that they are perpendicular to each other, and the polarizing plates are adhered to a backlight of 7000 cd/m 2 .
  • Examples of the preparation method of the liquid crystal display device including the liquid crystal alignment film are not particularly limited, and various preparation methods of liquid crystal display devices, which are previously known, can be applied.
  • a sealing agent impregnated with a ball spacer having a size of 3 ⁇ m is applied to the edge of the upper plate except at the liquid crystal injection hole, and the alignment films of the present invention formed on the upper plate and the lower plate are aligned such that they face each other and the alignment directions are aligned with each other, then the upper and lower plates are bonded together and the sealing agent is cured to prepare an empty space, and subsequently, a liquid crystal is injected into the empty cells to prepare an IPS mode liquid crystal cell.
  • the liquid crystal alignment film may have a retardation value of 3 nm or higher, 4 nm or higher, 3 nm to 10 nm, 4 nm to 10 nm, 7 nm to 10 nm, or 7.9 nm to 8.7 nm.
  • the retardation for the liquid crystal alignment film can be measured, for example, by irradiating a polarized light having a wavelength of 550 nm using AxoStep equipment, manufactured by Axometrics.
  • the retardation of a birefringent material at a predetermined wavelength ⁇ can be defined by the multiplication of birefringence at the wavelength ⁇ and the layer thickness d.
  • the birefringence ⁇ can be obtained by the following Mathematical Formula 2.
  • ⁇ 0 is defined as the refractive index in a direction having a constant speed regardless of the polarization direction of light
  • ⁇ e is defined as the refractive index in a direction having a different speed depending on the polarization direction.
  • the liquid crystal alignment film has a relatively high retardation value of 3 nm or higher, 4 nm or higher, 3 nm to 10 nm, 4 nm to 10 nm, 7 nm to 10 nm, or 7.9 nm to 8.7 nm. This is because the liquid crystal alignment film is prepared using the liquid crystal aligning composition in which an epoxy additive with a specific structure (for example, a benzoate-based epoxy) is mixed together with a polyimide precursor.
  • an epoxy additive with a specific structure for example, a benzoate-based epoxy
  • the liquid crystal aligning agent composition described above is coated onto a substrate and dried to form a film, which is then directly irradiated with linearly polarized light without an imidization process to induce initial anisotropy, and subsequently, alignment of the reactive mesogenic epoxy present in the alignment film is initially induced through a low-temperature heat treatment, followed by carrying out an epoxy reaction to produce a reactive mesogenic liquid crystal film in the alignment film. Then, while carrying out a high-temperature heat treatment at a higher temperature than that of the low-temperature heat treatment to thereby proceed with imidization, the alignment stabilization can be achieved due to the anisotropy of the liquid crystal film prepared in the low-temperature heat treatment process. Accordingly, it is possible to prevent the occurrence of the residual image property while enhancing the film strength by using the reactive mesogenic epoxy.
  • the liquid crystal alignment film prepared according to the method for preparing a liquid crystal alignment as described above has features in that it not only exhibits excellent alignment properties, but also has excellent high-temperature AC brightness regulation, and in addition, it can maintain a high voltage holding ratio for a long period of time.
  • the liquid crystal alignment film may have a film strength of 2H or higher, 2H to 5H, or 3H to 4H.
  • Examples of the method for measuring the film strength are not particularly limited, but for example, it can be measured by a pencil hardness tester according to the ASTM D3363 test standard by loading a weight of 50 g and using pencils of various hardnesses.
  • the liquid crystal alignment film can be prepared by the specific method for preparing a liquid crystal alignment film described below.
  • the present invention provides a method for preparing a liquid crystal alignment film including the steps of: 1) coating a liquid crystal aligning agent composition onto a substrate to form a coating film; 2) drying the coating film; 3) irradiating the coating film immediately after the drying step with light to perform alignment treatment; 4) subjecting the alignment-treated coating film to a low-temperature heat treatment at 200° C.
  • the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21, a repeating unit represented by Chemical Formula 22, and a repeating unit represented by Chemical Formula 23, wherein the repeating unit represented by Chemical Formula 21 is contained in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24; and iii) a reactive mesogenic epoxy.
  • Step 1 is a step of coating a liquid crystal aligning agent composition onto a substrate to form a coating film.
  • the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21, a repeating unit represented by Chemical Formula 22, and a repeating unit represented by Chemical Formula 23, wherein the repeating unit represented by Chemical Formula 21 is included in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24; and iii) a reactive mesogenic epoxy.
  • a polyimide precursor, a polyamic acid, or a polyamic acid ester having excellent solubility is coated and dried to form a coating film, which is then converted to a polyimide through a heat treatment process at a high temperature, to which light irradiation is performed, and to which alignment treatment is performed.
  • a large amount of light irradiation energy is required for obtaining sufficient liquid crystal alignment properties by subjecting the layer in the form of polyimide to light irradiation, and additionally, an additional heat treatment process is undertaken for securing alignment stability after the light irradiation. Since the large amount of light irradiation energy and the additional high-temperature heat treatment process are very disadvantageous in view of the cost of the process and process time, a limitation in the application to a practical mass production process existed.
  • the present inventors found through experiments that, when the first polymer for the liquid crystal aligning agent, which essentially includes the repeating unit represented by Chemical Formula 21 and additionally includes at least one repeating unit selected from the group consisting of the repeating unit represented by Chemical Formula 22 and the repeating unit represented by Chemical Formula 23, and the second polymer for the liquid crystal aligning agent including the repeating unit represented by Chemical Formula 24, are mixed and used, the first polymer contains a certain amount of already imidized imide repeating units, and thus anisotropy can be produced by directly irradiating light without a heat-treatment process after the formation of the coating film, followed by carrying out a heat-treatment process to complete the alignment film, and therefore, it is possible to prepare a liquid crystal alignment film capable of not only reducing a large amount of light irradiation energy, but also having an excellent aligning property and stability as well as a high voltage holding ratio and electrical characteristics.
  • the first polymer for the liquid crystal aligning agent may include the repeating unit represented by Chemical Formula 21, which is an imide repeating unit, among the repeating units represented by Chemical Formula 21, Chemical Formula 22, and Chemical Formula 23, in an amount of 10 mol % to 74 mol %, preferably 20 mol % to 60 mol %, relative to the entire repeating units.
  • the first polymer for the liquid crystal including a specific amount of the imide repeating unit represented by Chemical Formula 21 since the polymer includes a predetermined amount of already imidized imide repeating units, it is possible to prepare a liquid crystal alignment film having an excellent aligning property and stability as well as an excellent voltage holding ratio and electrical characteristics even when the light is directly irradiated without carrying out a heat-treatment process at a high temperature.
  • the repeating unit represented by Chemical Formula 21 is included at less than the content range above, sufficient aligning properties are not exhibited, and alignment stability may be deteriorated.
  • the content of the repeating unit represented by Chemical Formula 21 exceeds the range above, it may be difficult to prepare a stable alignment solution capable of coating due to low solubility. Accordingly, it is preferred to include the repeating unit represented by Chemical Formula 21 within the content range described above so as to provide a polymer for a liquid crystal aligning agent having excellent storage stability, electrical characteristics, aligning properties, and alignment stability.
  • the imide-based functional group in L 3 of Chemical Formula 26 above may a functional group represented by Chemical Formula 30 below:
  • Q is a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, or a tetravalent organic group in which at least one hydrogen in the tetravalent organic groups is substituted with a halogen or in which at least one —CH 2 — is substituted with —O—, —CO—, —S—, —SO—, —SO 2 —, or —CONH—, so that it may not be directly bonded to oxygen or sulfur atoms.
  • the first polymer for the liquid crystal aligning agent may include the repeating unit represented by Chemical Formula 22 or the repeating unit represented by Chemical Formula 23 in an appropriate amount depending on the desired characteristics.
  • the repeating unit represented by Chemical Formula 22 may be included in an amount of 0 to 40 mol %, preferably 0 to 30 mol %, relative to the entire repeating units represented by Chemical Formulae 21 to 23.
  • the repeating unit represented by Chemical Formula 22 has a low rate of conversion to imide during the high-temperature heat treatment process after the light irradiation, and thus if the above range is exceeded, the overall imidization rate is insufficient, thereby deteriorating the alignment stability.
  • the repeating unit represented by Chemical Formula 22 exhibits appropriate solubility within the above-mentioned range and thus can provide a polymer for a liquid crystal aligning agent which can implement a high imidization rate, while having excellent processing properties.
  • the repeating unit represented by Chemical Formula 23 may be contained in an amount of 0 to 95 mol %, preferably 10 to 90 mol %, relative to the entire repeating units represented by Chemical Formulae 21 to 23. Within such a range, excellent coating properties can be exhibited, thereby providing a polymer for a liquid crystal aligning agent which can implement a high imidization rate, while having excellent processing properties.
  • the second polymer for the liquid crystal aligning agent is mixed with the first polymer for the liquid crystal aligning agent, which is a partially imidized polymer, and used as a liquid crystal aligning agent, and thus can significantly enhance the electrical characteristics of an alignment film such as the voltage holding ratio as compared to the case where only the first polymer for the liquid crystal aligning agent is used.
  • X 14 in the repeating unit represented by Chemical Formula 24 is derived from an aromatic structure in view of improving the voltage holding ratio.
  • Y 14 is a bivalent organic group represented by Chemical Formula 26.
  • R 30 and R 31 are each independently a short-chain functional group having 3 or less carbon atoms, or it is more preferable that R 30 and R 31 , which are branched structures, are not included (h and i are 0).
  • the Q, X 12 , X 13 , and X 14 are each independently a tetravalent organic group represented by Chemical Formula 27 below:
  • R 32 to R 35 are each independently hydrogen or a C 1-6 alkyl
  • L 4 is a single bond, —O—, —CO—, —S—, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —CONH—, —COO—, —(CH 2 ) z —, —O(CH 2 ) z O—, or —COO—(CH 2 ) z —OCO—, and
  • z is an integer of 1 to 10.
  • the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent may be mixed in a weight ratio of about 15:85 to 85:15, preferably about 20:80 to 80:20.
  • the first polymer for the liquid crystal aligning agent includes a certain amount of already imidized imide repeating units, and thus it has a feature in that anisotropy can be produced by directly irradiating the light without a high-temperature heat treatment process after the formation of the coating film, followed by carrying out a heat treatment to complete the alignment film.
  • the second polymer for the liquid crystal aligning agent has a feature in that it can enhance the electrical characteristics such as the voltage holding rate.
  • the excellent photo-reaction characteristics and liquid crystal alignment properties of the first polymer for the liquid crystal aligning agent and the excellent electrical characteristics of the second polymer for the liquid crystal aligning agent can complement each other, and thus a liquid crystal alignment film simultaneously having excellent alignment properties and electrical characteristics can be prepared.
  • the liquid crystal aligning agent composition according to the present invention includes a reactive mesogenic epoxy, and thus it is possible to improve the film strength of the liquid crystal alignment film prepared therefrom.
  • the reactive mesogenic epoxy refers to a compound in which a glycidyl group is substituted at both terminals of a mesogenic group.
  • the reactive mesogenic epoxy may be a compound represented by Chemical Formula 28 below:
  • R 36 is glycidyloxy or N(glycidyloxy) 2 .
  • MG is a divalent mesogenic group.
  • the MG is represented by Chemical Formula 29 below:
  • Ar 3 and Ar 4 are each independently phenylene or naphthylene
  • each L 5 is independently a single bond, an alkylene having 1 to 3 carbon atoms, —COO—, —C(CH 3 ) ⁇ CH—, or —C(CH 3 ) ⁇ N ⁇ N ⁇ C(CH 3 )—,
  • Ar 4 is phenylene and m is 2, it may become a biphenylene functional group.
  • the MG is any one selected from the group listed below.
  • the reactive mesogenic epoxy is contained in an amount of 0.1% by weight to 30% by weight relative to the total weight of the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent described above.
  • the method of coating the liquid crystal aligning agent composition onto a substrate is not particularly limited, and for example, a method such as screen printing, offset printing, flexographic printing, inkjet printing, and the like can be used.
  • the liquid crystal aligning agent composition may be a composition in which the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent are dissolved or dispersed in an organic solvent.
  • organic solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ket
  • the liquid crystal aligning agent composition may further include other components in addition to the polymers for the liquid crystal aligning agent and the organic solvent.
  • an additive capable of improving the uniformity of the thickness of a layer and or surface smoothness, improving the adhesion between a photo-alignment film and a substrate, changing the dielectric constant or conductivity of a photo-alignment film, or increasing the denseness of a photo-alignment film may further be included.
  • additives include various solvents, surfactants, silane-based compounds, dielectrics, crosslinking compounds, etc.
  • Step 2 is a step of drying the coating film prepared in Step 1.
  • the step of drying the coating film is for removing a solvent or the like used in the liquid crystal aligning agent composition, and for example, a method such as heating of a coating film or vacuum evaporation may be used.
  • the drying may be preferably carried out at 50 to 130° C., and more preferably at 70 to 120° C.
  • Step 3 is a step of irradiating the coating film dried in Step 2 with light to perform alignment treatment.
  • the “irradiating the film immediately after the drying step” refers to irradiating the light immediately after the drying step without carrying out a heat treatment at a temperature equal to or higher than that of the drying step, and other steps in addition to the heat treatment can be added.
  • a liquid crystal alignment film when a liquid crystal alignment film is prepared using a conventional liquid crystal aligning agent including polyamic acid or polyamic acid ester, it includes a step of irradiating light after essentially carrying out a high-temperature heat treatment for imidization of the polyamic acid.
  • a liquid crystal alignment film when a liquid crystal alignment film is prepared using the liquid crystal aligning agent of one embodiment described above, it does not include the heat treatment step, but light is directly irradiated to perform alignment treatment, and then the alignment-treated coating film is cured by a heat treatment, thereby preparing a liquid crystal alignment film having sufficient alignment properties and improved stability even under a small amount of light irradiation energy.
  • the light irradiation is preferably performed by irradiating polarized ultraviolet light having a wavelength of 150 to 450 nm.
  • the intensity of the light exposure varies depending on the kind of the polymer for the liquid crystal aligning agent, and preferably energy of 10 mJ/cm 2 to 10 J/cm 2 , and more preferably energy of 30 mJ/cm 2 to 2 J/cm 2 , may be irradiated.
  • polarized ultraviolet light selected from the ultraviolet light subjected to polarization treatment through a method of penetrating or reflecting (1) a polarizing device using a substrate coated with a dielectric anisotropic material on the surface of a transparent substrate such as quartz glass, soda lime glass, soda lime free glass, etc., (2) a polarizer plate on which aluminum or metal wires are finely deposited, or (3) a Brewster's polarizing device using reflection of quartz glass, etc., are irradiated to perform the alignment treatment.
  • the polarized ultraviolet light may be irradiated perpendicularly to the surface of the substrate, or may be irradiated by directing an angle of incidence at a specific angle. By this method, the alignment ability of the liquid crystal molecules is imparted to the coating film.
  • Step 4 Subjecting the Alignment-Treated Coating Film to Low-Temperature Heat Treatment (Step 4)
  • Step 4 is a step of subjecting the alignment-treated coating film in Step 3 to a low-temperature heat treatment.
  • this is a step of re-aligning a part of the alignment film and initially inducing alignment of the reactive mesogenic epoxy present in the alignment film through a low-temperature heat treatment, followed by carrying out an epoxy reaction to prepare a reactive mesogenic liquid crystal film in the alignment film.
  • a low-temperature heat treatment step is distinguished from the step of curing the alignment-treated coating film by heat treatment to be described later.
  • the temperature for the low-temperature heat treatment is preferably 200° C. or lower.
  • the temperature for the low-temperature heat treatment is 110 to 200° C., and more preferably 130 to 180° C.
  • the means of the heat treatment is not particularly limited, and may be carried out by a heating means such as a hot plate, a hot air circulation path, an infrared ray furnace, and the like.
  • Step 5 Subjecting the Heat-Treated Coating Film to Heat Treatment at a Higher Temperature than that of the Low-Temperature Heat Treatment to Cure it (Step 5)
  • Step 5 is a step of subjecting the coating film heat-treated at a low temperature in Step 4 to a high-temperature heat treatment to cure it.
  • the step of subjecting the alignment-treated coating film to a heat treatment to cure it is a step that is carried out after the irradiation of light even in the method for preparing a liquid crystal alignment film using a polymer for a liquid crystal aligning agent including a conventional polyamic acid or polyamic acid ester, and is distinguished from the heat treatment step which is carried out for the imidization of the liquid crystal aligning agent composition after coating the liquid crystal aligning agent composition onto a substrate and before irradiating the light or while irradiating the light.
  • the temperature for the heat treatment is a temperature at which the imidization of the polymers for the liquid crystal aligning agent and the epoxy reaction of the reactive mesogenic epoxy are carried out, and is preferably higher than the temperature for the low temperature heat treatment of Step 4.
  • the temperature for the heat treatment is carried out at 200 to 250° C., and more preferably at 210 to 240° C.
  • the means of the heat treatment is not particularly limited, and may be carried out by a heating means such as a hot plate, a hot air circulation path, an infrared ray furnace, and the like.
  • the present invention provides a liquid crystal display device including the liquid crystal alignment film described above.
  • the liquid crystal alignment film may be introduced into a liquid crystal cell by a known method, and likewise, the liquid crystal cell may be introduced into a liquid crystal display device by a known method.
  • the preparation method of the liquid crystal display device including the liquid crystal alignment film are not particularly limited, but various preparation methods of the liquid crystal display device, which are previously known, can be applied.
  • a sealing agent impregnated with a ball spacer having a size of 3 ⁇ m is applied to the edge of the upper plate except the liquid crystal injection hole, and the alignment films of the present invention formed on the upper plate and the lower plate are aligned such that they face each other and the alignment directions are aligned with each other, and then the upper and lower plates are bonded together and the sealing agent is cured to prepare an empty space.
  • a liquid crystal is injected into the empty cells to produce a parallel-alignment mode liquid crystal cell.
  • a liquid crystal alignment film not only having excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and a high residual image property, a method for preparing the same, and a liquid crystal display device using the same can be prepared.
  • Cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA) and 4-nitroaniline were dissolved in DMF (dimethylformamide) to prepare a mixture. Then, the mixture was reacted at about 80° C. for about 12 hours to prepare an amic acid. Subsequently, the amic acid was dissolved in DMF, and acetic anhydride and sodium acetate were added thereto to prepare a mixture. Then, the amic acid contained in the mixture was imidized at about 90° C. for about 4 hours. The thus-obtained imide was dissolved in DMAc (dimethylacetamide), and then Pd/C was added thereto to prepare a mixture. The mixture was reduced at 45° C. under hydrogen pressure of 6 bar for 20 minutes to prepare a diamine
  • NMP N-methyl pyrrolidone
  • Step 1 The solution obtained in Step 1 was poured into an excess amount of distilled water to form a precipitate. Then, the formed precipitate was filtered and washed twice with distilled water and three times with methanol. The thus-obtained solid product was dried in a vacuum oven at 40° C. for 24 hours to obtain 6.9 g of a polymer for a liquid crystal aligning agent P-1.
  • the number average molecular weight (Mn) was 15,500 g/mol
  • the weight average molecular weight (Mw) was 31,000 g/mol.
  • the monomer structure of the polymer P-1 was determined by the equivalent ratio of the monomers used, and the ratio of the imine structure in the molecule was 50.5%, while the ratio of the amic acid structure was 49.5%.
  • the liquid crystal aligning agent composition prepared in Example 1 was coated onto a substrate (lower plate) in which comb-shaped IPS mode-type ITO electrode patterns having a thickness of 60 nm, an electrode width of 3 ⁇ m, and spacing between the electrodes of 6 ⁇ m are formed on a rectangular glass substrate having a size of 2.5 cm ⁇ 2.7 cm and onto a glass substrate (upper plate) having no electrode pattern each using a spin coating method.
  • the substrates onto which the liquid crystal aligning agent composition was coated were placed on a hot plate at about 80° C. for one minute to evaporate the solvent.
  • ultraviolet light of 254 nm was irradiated with an intensity of 0.3 J/cm 2 using an exposure apparatus in which a linear polarizer was adhered to the coating film of each of the upper and lower plates.
  • the coating film was placed on a hot plate at 130° C. for 500 seconds, thereby subjecting it to a low-temperature heat treatment. Then, the coating film was calcinated (cured) in an oven at about 230° C. for 20 minutes to obtain a liquid crystal alignment film having a film thickness of 0.1 ⁇ m.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate was used in an amount of 1.0 part by weight (10% by weight relative to the polymer for the liquid crystal aligning agent).
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 1,4-phenylene bis(4-(oxiran-2-ylmethoxy)benzoate) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the following compound (BATG) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the following compound (CDMDG) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the low-temperature heat treatment was omitted and the calcination (curing) temperature was adjusted to 240° C.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 2, except that the low-temperature heat treatment was omitted and the calcination (curing) temperature was adjusted to 240° C.
  • a liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate was not used.
  • a sealing agent impregnated with a ball spacer having a size of 3 ⁇ m was applied to the edge of the upper plate except the liquid crystal injection hole. Further, the alignment films of the examples and comparative examples formed on the upper plate and the lower plate were aligned such that they faced each other and the alignment directions were aligned with each other, and then the upper and lower plates were bonded together and the sealing agent was cured to prepare an empty space. Subsequently, a liquid crystal was injected into the empty cells to produce a parallel-alignment mode liquid crystal cell.
  • the retardation (R) of the liquid crystal alignment films obtained in the examples and comparative examples was measured. Specifically, each retardation was measured by irradiating polarized light having a wavelength of 550 nm using AxoStep equipment, manufactured by Axometrics, and the average value of the measured values for 5 repeated measurements is shown in Table 1 below.
  • the film strength for the alignment films obtained in the examples and comparative examples was measured, and the results are shown in Table 1 below. Specifically, the film strength of the alignment films was measured via a pencil hardness tester according to the ASTM D3363 test standard by loading a weight of 50 g and using pencils of various hardnesses.
  • the brightness fluctuation rate of the prepared liquid crystal cells was measured using the liquid crystal alignment films obtained in the examples and comparative examples. Specifically, polarizing plates were adhered to the upper plate and the lower plate of the liquid crystal cells such that they were perpendicular to each other. Then, the liquid crystal cells, to which the polarizing plates were adhered, were adhered onto a backlight of 7000 cd/m 2 , and the brightness in a black mode was measured using PR-880 equipment, which is a device for measuring brightness. Then, the liquid crystal cells were driven at room temperature for 24 hours with an AC voltage of 5 V. Subsequently, the brightness in a black mode was measured in the same manner as described above in a state in which the voltage of the liquid crystal cells was turned off, and the results are shown in Table 1 below.
  • the difference between the initial luminance (L0) measured before driving the liquid crystal cell and the luminance (L1) measured after driving was divided by the initial luminance (L0) and multiplied by 100 to calculate the brightness fluctuation rate.
  • the thus-calculated brightness fluctuation rate is closer to 0%, it means that the alignment stability is excellent.
  • Example 1 A-1 8.3 3H 2.7% (8% by weight relative to the polymer for the liquid crystal aligning agent)
  • Example 2 A-1 7.9 4H 2.9% (10% by weight relative to the polymer for the liquid crystal aligning agent)
  • Example 3 A-2 8.7 3H 2.5% (8% by weight relative to the polymer for the liquid crystal aligning agent) Comparative B-1 2.6 3H 8.4%
  • Example 1 (8% by weight relative to the polymer for the liquid crystal aligning agent) Comparative B-2 2.4 3H 7%
  • Example 2 (8% by weight relative to the polymer for the liquid crystal aligning agent) Comparative A-1 2.3 3H 4%
  • Example 3 (8% by weight relative to the polymer for the liquid crystal aligning agent) Comparative A-1 2.8 4H 6%
  • Example 4 (10% by weight relative to the polymer for the liquid crystal aligning agent) Comparative — 3.9 0H 2.1%

Abstract

The present invention provides a liquid crystal alignment film not only having an excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and a high residual image property, a method for preparing the same, and a liquid crystal display device using the same.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims priority to and the benefit of Korean Patent Application No. 10-2016-0159597 filed on Nov. 28, 2016 and Korean Patent Application No. 10-2017-0134828 filed on Oct. 17, 2017 with the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The present invention relates to a liquid crystal alignment film having not only an excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and high residual image property, and a liquid crystal display device using the same.
  • BACKGROUND ART
  • In a liquid crystal display device, a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction. Specifically, a liquid crystal alignment film serves as a director in the arrangement of liquid crystal molecules, and thus, when the liquid crystals move by the electric field to form an image, it helps them to move in an appropriate direction. Generally, in order to obtain uniform brightness and a high contrast ratio in a liquid crystal display device, it is essential that the liquid crystals are uniformly aligned.
  • As a conventional method for aligning liquid crystals, a rubbing method of coating a polymer film such as a polyimide onto a substrate such as glass or the like and rubbing the surface thereof in a predetermined direction using fibers such as nylon or polyester has been used. However, the rubbing method may cause serious problems during manufacturing of a liquid crystal panel because fine dust or electrostatic discharge (ESD) occurs when the fiber and polymer film are rubbed.
  • In order to solve the problems of the rubbing method, a photo-alignment method for inducing anisotropy in a polymer film by light irradiation rather than the rubbing, and aligning liquid crystals using anisotropy, has been studied recently.
  • As materials that can be used for the photo-alignment method, various materials have been introduced, among which a polyimide is mainly used for various superior performance of a liquid crystal alignment film. However, a common polyimide is usually poor in solubility in a solvent, and so it is difficult to apply it directly to a manufacturing process for forming an alignment film by coating in a solution state. Accordingly, after coating in the form of a precursor such as a polyamic acid or a polyamic acid ester having excellent solubility, a high-temperature heat treatment process is performed to form the polyimide, which is then subjected to light irradiation to align liquid crystals.
  • However, as a large amount of energy is required for obtaining sufficient liquid crystal alignment properties by subjecting the film in the form of a polyimide to light irradiation, it is difficult to secure substantial productivity, and additionally, there is a limitation that an additional heat treatment process is required for securing alignment stability after the light irradiation.
  • DETAILED DESCRIPTION OF THE INVENTION Technical Problem
  • It is one object of the present invention to provide a liquid crystal alignment film having not only excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and a high residual image property.
  • It is another object of the present invention to provide a method for preparing a liquid crystal alignment film having not only excellent alignment property and stability, but also having high film strength, and further having enhanced electrical characteristics such as voltage holding ratio.
  • It is still another object of the present invention to provide a liquid crystal display device including the liquid crystal alignment film.
  • Technical Solution
  • In order to achieve the objects above, the present invention provides a liquid crystal alignment film including: a polymer containing a first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 below; and a second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5 below, wherein the liquid crystal alignment film has a retardation value of 3 nm or higher:
  • Figure US20180373099A1-20181227-C00001
  • wherein, in Chemical Formulae 1 to 5,
  • at least one of R1 and R2 is an alkyl group having 1 to 10 carbon atoms and the other is hydrogen, and
  • X1 to X5 are each independently a tetravalent organic group represented by Chemical Formula 6 below:
  • Figure US20180373099A1-20181227-C00002
  • wherein, in Chemical Formula 6,
  • R3 to R8 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • L1 is any one selected from the group consisting of a direct bond, —O—, —CO—, —COO—, —S—, —SO—, —CR9R10—, —(CH2)Z—, —O(CH2)ZO—, —COO(CH2)ZOCO—, —CONH—, phenylene, or a combination thereof,
  • wherein R9 and R10 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or a fluoroalkyl group,
  • Z is an integer of 1 to 10, and
  • Y1 to Y5 are each independently a divalent organic group represented by Chemical Formula 7 below:
  • Figure US20180373099A1-20181227-C00003
  • wherein, in Chemical Formula 7,
  • A is a tetravalent organic group represented by Chemical Formula 6,
  • D1 and D2 are each independently an arylene group having 6 to 20 carbon atoms; and
  • in Chemical Formulae 4 and 5,
  • at least one of R′ and R″ is a functional group containing a mesogenic group in the molecule, and the other is hydrogen.
  • As described above, the liquid crystal alignment film according to the present invention includes the second repeating unit formed by reacting a common polyimide or a precursor repeating unit thereof with a reactive mesogenic epoxy additive, together with the first repeating unit including a common polyimide or a precursor repeating unit thereof, thereby preparing an alignment film having excellent film strength and good aligning properties.
  • In particular, in the first repeating unit and the second repeating unit, each divalent organic group represented by Chemical Formula 7 is independently used for Y1 to Y5 functional groups derived from diamine, and thus the polymer including the first repeating unit can have anisotropy by UV exposure.
  • Herein, in the second repeating unit, through the anisotropy obtained during UV exposure by the divalent organic group represented by Chemical Formula 7, liquid crystal alignment is carried out from the mesogenic group-containing functional group included in the second repeating unit, thereby improving liquid crystal aligning performance. In addition, the mesogenic group-containing functional group in the second repeating unit can improve the film strength while forming a bond through the reaction with the polyimide or a precursor thereof.
  • More specifically, the liquid crystal alignment film according to the present invention can be prepared by a method for preparing a liquid crystal alignment film including the steps of: 1) coating a liquid crystal aligning agent composition onto a substrate to form a coating film; 2) drying the coating film; 3) irradiating the coating film immediately after the drying step with light to perform alignment treatment; 4) subjecting the alignment-treated coating film to low-temperature heat treatment at 200° C. or lower; and 5) subjecting the heat-treated coating film to heat treatment at a higher temperature than that of the low-temperature heat treatment to cure it, wherein the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21 below, a repeating unit represented by Chemical Formula 22 below, and a repeating unit represented by Chemical Formula 23 below, wherein the repeating unit represented by Chemical Formula 21 below is contained in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23 below; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24 below; and iii) a reactive mesogenic epoxy:
  • Figure US20180373099A1-20181227-C00004
  • wherein, in Chemical Formulae 21 to 24,
  • R22 and R23 are each independently hydrogen or a C1-10 alkyl, with the proviso that R22 and R23 are not all hydrogen,
  • R24 and R25 are each independently hydrogen or a C1-10 alkyl, and
  • X11 is a tetravalent organic group represented by Chemical Formula 25 below:
  • Figure US20180373099A1-20181227-C00005
  • wherein, in Chemical Formula 25,
  • R26 to R29 are each independently hydrogen or a C1-6 alkyl,
  • X12, X13, and X14 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, or a tetravalent organic group in which at least one hydrogen in the tetravalent organic groups is substituted with a halogen or in which at least one —CH2— is substituted with —O—, —CO—, —S—, —SO—, —SO2—, or —CONH—, so that it may not be directly bonded to oxygen or sulfur atoms, and
  • Y11, Y12, Y13, and Y14 are each independently a divalent organic group represented by Chemical Formula 26 below:
  • Figure US20180373099A1-20181227-C00006
  • wherein, in Chemical Formula 26,
  • R30 and R31 are each independently a halogen, a cyano, a C1-10 alkyl, a C2-10 alkenyl, a C1-10 alkoxy, a C1-10 fluoroalkyl, or a C1-10 fluoroalkoxy,
  • h and i are each independently an integer of 0 to 4,
  • L3 is a single bond, —O—, —CO—, —S—, —C(CH3)2—, —C(CF3)2—, —CONH—, —COO—, —(CH2)z—, —O(CH2)zO—, —O(CH2)z—, —OCH2—C(CH3)2—CH2O—, —COO—(CH2)z—OCO—, —OCO—(CH2)z—COO—, or an imide-based functional group,
  • z is an integer of 1 to 10, and
  • j is an integer of 0 to 3.
  • In general, it is known that when a reactive mesogenic epoxy is included in a liquid crystal aligning agent, the film strength of an alignment film is enhanced. It is also known that as the content thereof increases, the film strength increases. However, when the content of the reactive mesogenic epoxy increases, there is a problem that the residual image property while driving a liquid crystal device is induced. This is because, although the content thereof is not theoretically limited, the alignment of a liquid crystal aligning agent is carried out at a high temperature, and thus the alignment of the liquid crystal aligning agent and the reaction of the epoxy included in the reactive mesogenic epoxy are carried out at the same time.
  • Accordingly, in the present invention, the liquid crystal aligning agent composition according to the present invention is coated onto a substrate and dried to form a film, which is then immediately irradiated with linearly polarized light without an imidization process to induce initial anisotropy, and subsequently, alignment of the reactive mesogenic epoxy present in the alignment film is initially induced through a low-temperature heat treatment, followed by carrying out an epoxy reaction to prepare a reactive mesogenic liquid crystal film in the alignment film. Then, while carrying out a high-temperature heat treatment at a higher temperature than that of the low-temperature heat treatment to thereby proceed with imidization, the alignment stabilization can be achieved due to the anisotropy of the liquid crystal film prepared in the low-temperature heat treatment process. Accordingly, it is possible to prevent the occurrence of the residual image property while enhancing the film strength by using the reactive mesogenic epoxy.
  • The liquid crystal alignment film prepared according to the method for preparing a liquid crystal alignment as described above not only exhibits excellent alignment properties, but also has an excellent high-temperature AC brightness fluctuation rate, and in addition, it has a feature in that it can maintain a high voltage holding ratio for a long period of time.
  • Hereinafter, the present invention will be described in detail for each component.
  • Definition of Terms
  • Unless specified otherwise herein, the following terms can be defined as follows.
  • The hydrocarbon having 4 to 20 carbon atoms may be an alkane having 4 to 20 carbon atoms, an alkene having 4 to 20 carbon atoms, an alkyne having 4 to 20 carbon atoms, a cycloalkane having 4 to 20 carbon atoms, a cycloalkane having 4 to 20 carbon atoms, an arene having 6 to 20 carbon atoms, or a fused ring in which at least one of the cyclic hydrocarbons shares two or more atoms, or a hydrocarbon to which at least one of the hydrogens is chemically bonded. Specifically, examples of the hydrocarbon having 4 to 20 carbon atoms may include n-butane, cyclobutane, 1-methylcyclobutane, 1,3-dimethylcyclobutane, 1,2,3,4-tetramethylcyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclohexene, 1-methyl-3-ethylcyclohexene, bicyclohexyl, benzene, biphenyl, diphenylmethane, 2,2-diphenylpropane, 1-ethyl-1,2,3,4-tetrahydronaphthalene, or 1,6-diphenylhexane, etc.
  • The alkyl group having 1 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkyl group. Specifically, the alkyl group having 1 to 10 carbon atoms may be a straight-chain alkyl group having 1 to 10 carbon atoms; a straight-chain alkyl group having 1 to 5 carbon atoms; a branched-chain or cyclic alkyl group having 3 to 10 carbon atoms; or a branched-chain or cyclic alkyl group having 3 to 6 carbon atoms. More specifically, examples of the alkyl group having 1 to 10 carbon atoms may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a neo-pentyl group, a cyclohexyl group, etc.
  • The alkoxy group having 1 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkoxy group. Specifically, the alkoxy group having 1 to 10 carbon atoms may be a straight-chain alkoxy group having 1 to 10 carbon atoms; a straight-chain alkoxy group having 1 to 5 carbon atoms; a branched-chain or cyclic alkoxy group having 3 to 10 carbon atoms; or a branched-chain or cyclic alkoxyl group having 3 to 6 carbon atoms. More specifically, examples of the alkoxy group having 1 to 10 carbon atoms may include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, an n-pentoxy group, an iso-pentoxy group, a neo-pentoxy group, a cyclohexoxy group, etc.
  • The fluoroalkyl group having 1 to 10 carbon atoms may be a group in which at least one hydrogen in the alkyl group having 1 to 10 carbon atoms is substituted with fluorine, and the fluoroalkoxy group having 1 to 10 carbon atoms may be a group in which at least one hydrogen in the alkoxy group having 1 to 10 carbon atoms is substituted with fluorine.
  • The alkenyl group having 2 to 10 carbon atoms may be a straight-chain, branched-chain, or cyclic alkenyl group. Specifically, the alkenyl group having 2 to 10 carbon atoms may be a straight-chain alkenyl group having 2 to 10 carbon atoms, a straight-chain alkenyl group having 2 to 5 carbon atoms, a branched-chain alkenyl group having 3 to 10 carbon atoms, a branched-chain alkenyl group having 3 to 6 carbon atoms, a cyclic alkenyl group having 5 to 10 carbon atoms, or a cyclic alkenyl group having 6 to 8 carbon atoms. More specifically, examples of the alkenyl group having 2 to 10 carbon atoms may include an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a cyclohexenyl group, etc.
  • The halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • In the present specification, an aryl group is not particularly limited, but an aryl group having 6 to 60 carbon atoms is preferred, and it may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has a carbon number of 6 to 30. According to one embodiment, the aryl group has a carbon number of 6 to 20. The monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrycenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • In the present specification, an alkylene group is a divalent functional group derived from an alkane, and examples thereof may include a straight-chain, branched-chain, or cyclic-chain of a methylene group, an ethylene group, a propylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, a pentylene group, a hexylene group, and the like.
  • In the present specification, an arylene group refers to a group having two bonding sites in the aryl group, that is, a divalent group. The description of the aryl group described above can be applied, except that each of these is a divalent group.
  • The multivalent organic group derived from an arbitrary compound refers to a residue in which a plurality of hydrogen atoms bonded to the arbitrary compound are removed. In one example, a tetravalent organic group derived from cyclobutane refers to a residue in which any four hydrogen atoms bonded to cyclobutane are removed.
  • In the present specification, the notation —* refers to a residue in which hydrogens at the relevant site are removed. For example, the notation
  • Figure US20180373099A1-20181227-C00007
  • refers to a residue in which four hydrogen atoms bonded to carbon numbers 1, 2, 3, and 4 of cyclobutane are removed, that is, it refers to any one of tetravalent organic groups derived from cyclobutane. In the present specification, a direct bond means that no other atoms are present in the parts represented as L1, L2, L, and the like.
  • Liquid Crystal Alignment Film
  • The liquid crystal alignment film of one embodiment may include a polymer containing a first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3; and a second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5.
  • That is, the first repeating unit may include one repeating unit of Chemical Formula 1, one repeating unit of Chemical Formula 2, one repeating unit of Chemical Formula 3, or a mixture of two or more thereof. In addition, the second repeating unit may include one repeating unit of Chemical Formula 4, one repeating unit of Chemical Formula 5, or a mixture of two or more thereof.
  • The polymer may be prepared by curing a composition including reactive precursor compounds (monomers, oligomer, or polymers) capable of forming the first repeating unit and the second repeating unit, and the weight-average molecular weight of the polymer (measured by GPC) may be 5000 (MW) to 100,000 (MW).
  • The weight average molecular weight refers to a weight average molecular weight in terms of polystyrene measured by the GPC method, and g/mol may be used as a unit. In the process of measuring the weight average molecular weight in terms of polystyrene measured by the GPC method, a detector and an analytical column, such as a commonly known analysis apparatus and differential refractive index detector, can be used, and commonly applied temperature conditions, solvent, and flow rate can be used. Specific examples of the measurement conditions may include a temperature of 30° C., chloroform as a solvent, and a flow rate of 1 mL/min.
  • As the first repeating unit and the second repeating unit included in the polymer contain the divalent organic group represented by Chemical Formula 7, anisotropy can be produced by directly irradiating the light without a heat treatment process after the formation of the coating film, following by carrying out a heat treatment to complete the alignment film, and therefore, not only is it possible to prepare a liquid crystal alignment film capable of not only reducing a large amount of light irradiation energy, but also having an excellent aligning property and stability as well as a high voltage holding ratio and electrical characteristics.
  • The functional group containing a mesogenic group in the molecule may be presented by Chemical Formula 8 below:
  • Figure US20180373099A1-20181227-C00008
  • wherein, in Chemical Formula 8,
  • Ar1 and Ar2 are each independently phenylene or naphthylene, Q1 and Q2 are a direct bond, an alkylene group having 1 to 10 carbon atoms, or an alkyleneoxy group having 1 to 10 carbon atoms, each L is independently a direct bond, —COO—, —C(CH3)═CH—, or —C(CH3)═N═N═C(CH3)—, n is an integer of 0, 1, or 2, and m is an integer of 1 to 10 or an integer of 1 to 5.
  • For example, when Ar2 is phenylene and m is 2, it may become a biphenylene functional group.
  • The alkyleneoxy group having 1 to 10 carbon atoms is a functional group in which an alkylene group having 1 to 10 carbon atoms and an ether group are bonded, and specifically, it may be represented by the formula —RO—. In this formula, R is an alkylene group having 1 to 10 carbon atoms.
  • Preferably, the functional group containing a mesogenic group in the molecule may be a functional group including an ester group in an aromatic ring in the molecule. Specifically, for example, in Chemical Formula 8, it may be a functional group, wherein Ar1 and Ar2 are each independently phenylene, Q1 and Q2 are each independently an alkyleneoxy group having 1 to 3 carbon atoms, L is —COO—, n is 1, and m is 1. More specifically, in Chemical Formula 8, it may be a functional group derived from 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate where Ar1 and Ar2 are each independently phenylene, Q1 and Q2 are each independently a methyleneoxy group having 1 carbon atom, L is —COO—, and n is 1, the functional group being represented by Chemical Formula 8-1 below.
  • Figure US20180373099A1-20181227-C00009
  • In addition, in Chemical Formula 8, it may be a functional group, wherein Ar1 and Ar2 are each independently phenylene, Q1 and Q2 are each independently an alkyleneoxy group having 1 to 3 carbon atoms, L is —COO—, n is 2, and m is 1. More specifically, in Chemical Formula 8, it may be a functional group derived from 1,4-phenylene bis(4-(oxiran-2-ylmethoxy)benzoate where Ar1 and Ar2 are each independently phenylene, Q1 and Q2 are each independently a methyleneoxy group having 1 carbon atom, L is —COO—, and n is 2, the functional group being represented by Chemical Formula 8-2 below.
  • Figure US20180373099A1-20181227-C00010
  • As described above, in Chemical Formulae 4 and 5, as the functional group containing an ester group in an aromatic ring is used as the functional group containing a mesogenic group in the molecule, the liquid crystal aligning properties are enhanced, and accordingly, the retardation value of the liquid crystal cells prepared using the liquid crystal alignment film increases, thereby implementing excellent AC residual image properties.
  • Meanwhile, the polymer may further include a functional group represented by Chemical Formula 9 or a functional group represented by Chemical Formula 10 at at least one terminal end:
  • Figure US20180373099A1-20181227-C00011
  • wherein, in Chemical Formula 9,
  • X1, Y1, and R′ and R″ are as defined in Chemical Formulae 1, 4, and 5,
  • Figure US20180373099A1-20181227-C00012
  • wherein, in Chemical Formula 10,
  • R11 and R12 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, and
  • X2, Y2, R′, and R″ are as defined in Chemical Formulae 2, 4 and 5.
  • Meanwhile, the polymer may further include a polymer containing a third repeating unit including at least one selected from the group consisting of Chemical Formulae 11 to 13; and a fourth repeating unit including at least one selected from the group consisting of Chemical Formulae 14 and 15:
  • Figure US20180373099A1-20181227-C00013
  • wherein, in Chemical Formulae 11 to 15,
  • at least one of R13 and R14 is an alkyl group having 1 to 10 carbon atoms, and the other is hydrogen,
  • X6 to X10 are each independently a tetravalent organic group represented by Chemical Formula 6, and
  • Y6 to Y10 are each independently a divalent organic group represented by Chemical Formula 16 below:
  • Figure US20180373099A1-20181227-C00014
  • wherein, in Chemical Formula 16,
  • R15 and R16 are each independently hydrogen, a halogen, a cyano, a nitrile, an alkyl having 1 to 10 carbon atoms, an alkenyl having 1 to 10 carbon atoms, an alkoxy having 1 to 10 carbon atoms, a fluoroalkyl having 1 to 10 carbon atoms, or a fluoroalkoxy having 1 to 10 carbon atoms,
  • p are q are each independently an integer of 0 to 4,
  • L2 is a direct bond, —O—, —CO—, —S—, —SO2—, —C(CH3)2—, —C(CF3)2—, —CONH—, —COO—, —(CH2)y—, —O(CH2)yO—, —O(CH2)y—, —NH—, —NH(CH2)y—NH—, —NH(CH2)yO—, —OCH2—C(CH3)2—CH2O—, —COO—(CH2)y—OCO—, or —OCO—(CH2)y—COO—,
  • y is an integer of 1 to 10,
  • k and m are each independently an integer of 0 to 3,
  • n is an integer of 0 to 3, and
  • R′ and R″ are as defined in Chemical Formulae 4 and 5.
  • In the liquid crystal alignment film, a weight ratio between the polymer containing the third repeating unit including at least one selected from the group consisting of Chemical Formula 11 to Chemical Formula 13, and the fourth repeating unit including at least one selected from the group consisting of Chemical Formula 14 and Chemical Formula 15 and the polymer containing the first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 and the second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5, may be 10:90 to 90:10, 15:85 to 85:15, or 20:80 to 80:20.
  • Meanwhile, the polymer containing the third repeating unit including at least one selected from the group consisting of Chemical Formula 11 to Chemical Formula 13, and the fourth repeating unit including at least one selected from the group consisting of Chemical Formula 14 and Chemical Formula 15, is used for the liquid crystal alignment film in the state in which the polymer containing the first repeating unit including at least one selected from the group consisting of Chemical Formula 1 to Chemical Formula 3 and the second repeating unit including at least one selected from the group consisting of Chemical Formula 4 and Chemical Formula 5 is mixed, thereby significantly increasing the electrical characteristics of the alignment film such as the voltage holding ratio.
  • Meanwhile, the liquid crystal alignment film may have an AC brightness fluctuation rate of 3.5% or less, 0.1% to 3.5%, 2% to 3%, or 2.5% to 2.9%, which is represented by Mathematical Formula 1 below.

  • Brightness fluctuation rate (%)=[Initial brightness measured before driving the liquid crystal display device including the liquid crystal alignment film (L0)−Brightness measured after driving (L1)]/Initial brightness measured before driving (L0)×100  [Mathematical Formula 1]
  • In Mathematical Formula 1:
  • the initial brightness measured before driving the liquid crystal display device including the liquid crystal alignment film (L0) is a brightness in a black mode in which polarizing plates are adhered to the upper plate and the lower plate of the liquid crystal display device such that they are perpendicular to each other, and the polarizing plates are adhered to a backlight of 7000 cd/m2; and
  • the brightness measured after driving (L1) is a brightness in a black mode in which, after driving the liquid crystal display device at room temperature with an AC voltage of 5 V for 24 hours, polarizing plates are adhered to the upper plate and the lower plate of the liquid crystal display device such that they are perpendicular to each other, and the polarizing plates are adhered to a backlight of 7000 cd/m2.
  • Examples of the preparation method of the liquid crystal display device including the liquid crystal alignment film are not particularly limited, and various preparation methods of liquid crystal display devices, which are previously known, can be applied. Preferably, a sealing agent impregnated with a ball spacer having a size of 3 μm is applied to the edge of the upper plate except at the liquid crystal injection hole, and the alignment films of the present invention formed on the upper plate and the lower plate are aligned such that they face each other and the alignment directions are aligned with each other, then the upper and lower plates are bonded together and the sealing agent is cured to prepare an empty space, and subsequently, a liquid crystal is injected into the empty cells to prepare an IPS mode liquid crystal cell.
  • Further, the liquid crystal alignment film may have a retardation value of 3 nm or higher, 4 nm or higher, 3 nm to 10 nm, 4 nm to 10 nm, 7 nm to 10 nm, or 7.9 nm to 8.7 nm. The retardation for the liquid crystal alignment film can be measured, for example, by irradiating a polarized light having a wavelength of 550 nm using AxoStep equipment, manufactured by Axometrics.
  • In general, the retardation of a birefringent material at a predetermined wavelength λ can be defined by the multiplication of birefringence at the wavelength Δη and the layer thickness d. At this time, the birefringence Δη can be obtained by the following Mathematical Formula 2.

  • Δη=ηe−η0  [Mathematical Formula 2]
  • In Mathematical Formula 2, η0 is defined as the refractive index in a direction having a constant speed regardless of the polarization direction of light, and ηe is defined as the refractive index in a direction having a different speed depending on the polarization direction.
  • The liquid crystal alignment film has a relatively high retardation value of 3 nm or higher, 4 nm or higher, 3 nm to 10 nm, 4 nm to 10 nm, 7 nm to 10 nm, or 7.9 nm to 8.7 nm. This is because the liquid crystal alignment film is prepared using the liquid crystal aligning composition in which an epoxy additive with a specific structure (for example, a benzoate-based epoxy) is mixed together with a polyimide precursor.
  • Specifically, the liquid crystal aligning agent composition described above is coated onto a substrate and dried to form a film, which is then directly irradiated with linearly polarized light without an imidization process to induce initial anisotropy, and subsequently, alignment of the reactive mesogenic epoxy present in the alignment film is initially induced through a low-temperature heat treatment, followed by carrying out an epoxy reaction to produce a reactive mesogenic liquid crystal film in the alignment film. Then, while carrying out a high-temperature heat treatment at a higher temperature than that of the low-temperature heat treatment to thereby proceed with imidization, the alignment stabilization can be achieved due to the anisotropy of the liquid crystal film prepared in the low-temperature heat treatment process. Accordingly, it is possible to prevent the occurrence of the residual image property while enhancing the film strength by using the reactive mesogenic epoxy.
  • The liquid crystal alignment film prepared according to the method for preparing a liquid crystal alignment as described above has features in that it not only exhibits excellent alignment properties, but also has excellent high-temperature AC brightness regulation, and in addition, it can maintain a high voltage holding ratio for a long period of time.
  • Furthermore, the liquid crystal alignment film may have a film strength of 2H or higher, 2H to 5H, or 3H to 4H. Examples of the method for measuring the film strength are not particularly limited, but for example, it can be measured by a pencil hardness tester according to the ASTM D3363 test standard by loading a weight of 50 g and using pencils of various hardnesses.
  • The liquid crystal alignment film can be prepared by the specific method for preparing a liquid crystal alignment film described below.
  • Method for Preparing Liquid Crystal Alignment Film
  • In addition, the present invention provides a method for preparing a liquid crystal alignment film including the steps of: 1) coating a liquid crystal aligning agent composition onto a substrate to form a coating film; 2) drying the coating film; 3) irradiating the coating film immediately after the drying step with light to perform alignment treatment; 4) subjecting the alignment-treated coating film to a low-temperature heat treatment at 200° C. or lower; and 5) subjecting the heat-treated coating film to heat treatment at a higher temperature than that of the low-temperature heat treatment to cure it, wherein the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21, a repeating unit represented by Chemical Formula 22, and a repeating unit represented by Chemical Formula 23, wherein the repeating unit represented by Chemical Formula 21 is contained in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24; and iii) a reactive mesogenic epoxy.
  • Coating a liquid crystal aligning agent composition onto a substrate to form a coating film (Step 1)
  • Step 1 is a step of coating a liquid crystal aligning agent composition onto a substrate to form a coating film. The liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21, a repeating unit represented by Chemical Formula 22, and a repeating unit represented by Chemical Formula 23, wherein the repeating unit represented by Chemical Formula 21 is included in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24; and iii) a reactive mesogenic epoxy.
  • When a conventional polyimide is used as a liquid crystal alignment film, a polyimide precursor, a polyamic acid, or a polyamic acid ester having excellent solubility is coated and dried to form a coating film, which is then converted to a polyimide through a heat treatment process at a high temperature, to which light irradiation is performed, and to which alignment treatment is performed. However, a large amount of light irradiation energy is required for obtaining sufficient liquid crystal alignment properties by subjecting the layer in the form of polyimide to light irradiation, and additionally, an additional heat treatment process is undertaken for securing alignment stability after the light irradiation. Since the large amount of light irradiation energy and the additional high-temperature heat treatment process are very disadvantageous in view of the cost of the process and process time, a limitation in the application to a practical mass production process existed.
  • Accordingly, the present inventors found through experiments that, when the first polymer for the liquid crystal aligning agent, which essentially includes the repeating unit represented by Chemical Formula 21 and additionally includes at least one repeating unit selected from the group consisting of the repeating unit represented by Chemical Formula 22 and the repeating unit represented by Chemical Formula 23, and the second polymer for the liquid crystal aligning agent including the repeating unit represented by Chemical Formula 24, are mixed and used, the first polymer contains a certain amount of already imidized imide repeating units, and thus anisotropy can be produced by directly irradiating light without a heat-treatment process after the formation of the coating film, followed by carrying out a heat-treatment process to complete the alignment film, and therefore, it is possible to prepare a liquid crystal alignment film capable of not only reducing a large amount of light irradiation energy, but also having an excellent aligning property and stability as well as a high voltage holding ratio and electrical characteristics.
  • The first polymer for the liquid crystal aligning agent may include the repeating unit represented by Chemical Formula 21, which is an imide repeating unit, among the repeating units represented by Chemical Formula 21, Chemical Formula 22, and Chemical Formula 23, in an amount of 10 mol % to 74 mol %, preferably 20 mol % to 60 mol %, relative to the entire repeating units. As described above, when the first polymer for the liquid crystal including a specific amount of the imide repeating unit represented by Chemical Formula 21 is used, since the polymer includes a predetermined amount of already imidized imide repeating units, it is possible to prepare a liquid crystal alignment film having an excellent aligning property and stability as well as an excellent voltage holding ratio and electrical characteristics even when the light is directly irradiated without carrying out a heat-treatment process at a high temperature. When the repeating unit represented by Chemical Formula 21 is included at less than the content range above, sufficient aligning properties are not exhibited, and alignment stability may be deteriorated. When the content of the repeating unit represented by Chemical Formula 21 exceeds the range above, it may be difficult to prepare a stable alignment solution capable of coating due to low solubility. Accordingly, it is preferred to include the repeating unit represented by Chemical Formula 21 within the content range described above so as to provide a polymer for a liquid crystal aligning agent having excellent storage stability, electrical characteristics, aligning properties, and alignment stability.
  • Specifically, the imide-based functional group in L3 of Chemical Formula 26 above may a functional group represented by Chemical Formula 30 below:
  • Figure US20180373099A1-20181227-C00015
  • wherein, in Chemical Formula 30,
  • Q is a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, or a tetravalent organic group in which at least one hydrogen in the tetravalent organic groups is substituted with a halogen or in which at least one —CH2— is substituted with —O—, —CO—, —S—, —SO—, —SO2—, or —CONH—, so that it may not be directly bonded to oxygen or sulfur atoms.
  • Further, the first polymer for the liquid crystal aligning agent may include the repeating unit represented by Chemical Formula 22 or the repeating unit represented by Chemical Formula 23 in an appropriate amount depending on the desired characteristics. Specifically, the repeating unit represented by Chemical Formula 22 may be included in an amount of 0 to 40 mol %, preferably 0 to 30 mol %, relative to the entire repeating units represented by Chemical Formulae 21 to 23. The repeating unit represented by Chemical Formula 22 has a low rate of conversion to imide during the high-temperature heat treatment process after the light irradiation, and thus if the above range is exceeded, the overall imidization rate is insufficient, thereby deteriorating the alignment stability. Accordingly, the repeating unit represented by Chemical Formula 22 exhibits appropriate solubility within the above-mentioned range and thus can provide a polymer for a liquid crystal aligning agent which can implement a high imidization rate, while having excellent processing properties. Furthermore, the repeating unit represented by Chemical Formula 23 may be contained in an amount of 0 to 95 mol %, preferably 10 to 90 mol %, relative to the entire repeating units represented by Chemical Formulae 21 to 23. Within such a range, excellent coating properties can be exhibited, thereby providing a polymer for a liquid crystal aligning agent which can implement a high imidization rate, while having excellent processing properties.
  • Meanwhile, the second polymer for the liquid crystal aligning agent is mixed with the first polymer for the liquid crystal aligning agent, which is a partially imidized polymer, and used as a liquid crystal aligning agent, and thus can significantly enhance the electrical characteristics of an alignment film such as the voltage holding ratio as compared to the case where only the first polymer for the liquid crystal aligning agent is used.
  • In order to exhibit such an effect, it is preferred that X14 in the repeating unit represented by Chemical Formula 24 is derived from an aromatic structure in view of improving the voltage holding ratio.
  • In addition, in the repeating unit represented by Chemical Formula 24, it is preferred that Y14 is a bivalent organic group represented by Chemical Formula 26. Herein, R30 and R31 are each independently a short-chain functional group having 3 or less carbon atoms, or it is more preferable that R30 and R31, which are branched structures, are not included (h and i are 0).
  • Preferably, the Q, X12, X13, and X14 are each independently a tetravalent organic group represented by Chemical Formula 27 below:
  • Figure US20180373099A1-20181227-C00016
  • wherein, in Chemical Formula 27,
  • R32 to R35 are each independently hydrogen or a C1-6 alkyl,
  • L4 is a single bond, —O—, —CO—, —S—, —C(CH3)2—, —C(CF3)2—, —CONH—, —COO—, —(CH2)z—, —O(CH2)zO—, or —COO—(CH2)z—OCO—, and
  • z is an integer of 1 to 10.
  • Further, the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent may be mixed in a weight ratio of about 15:85 to 85:15, preferably about 20:80 to 80:20. As described above, the first polymer for the liquid crystal aligning agent includes a certain amount of already imidized imide repeating units, and thus it has a feature in that anisotropy can be produced by directly irradiating the light without a high-temperature heat treatment process after the formation of the coating film, followed by carrying out a heat treatment to complete the alignment film. The second polymer for the liquid crystal aligning agent has a feature in that it can enhance the electrical characteristics such as the voltage holding rate. When the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent having such characteristics are mixed in the weight ratio range above and used, the excellent photo-reaction characteristics and liquid crystal alignment properties of the first polymer for the liquid crystal aligning agent and the excellent electrical characteristics of the second polymer for the liquid crystal aligning agent can complement each other, and thus a liquid crystal alignment film simultaneously having excellent alignment properties and electrical characteristics can be prepared.
  • In addition to the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent described above, the liquid crystal aligning agent composition according to the present invention includes a reactive mesogenic epoxy, and thus it is possible to improve the film strength of the liquid crystal alignment film prepared therefrom.
  • The reactive mesogenic epoxy refers to a compound in which a glycidyl group is substituted at both terminals of a mesogenic group. Specifically, the reactive mesogenic epoxy may be a compound represented by Chemical Formula 28 below:

  • R36-MG-R36  [Chemical Formula 28]
  • wherein, in Chemical Formula 28,
  • R36 is glycidyloxy or N(glycidyloxy)2, and
  • MG is a divalent mesogenic group.
  • Preferably, the MG is represented by Chemical Formula 29 below:
  • Figure US20180373099A1-20181227-C00017
  • wherein, in Chemical Formula 29,
  • Ar3 and Ar4 are each independently phenylene or naphthylene,
  • each L5 is independently a single bond, an alkylene having 1 to 3 carbon atoms, —COO—, —C(CH3)═CH—, or —C(CH3)═N═N═C(CH3)—,
      • n is 0, 1, or 2, and m is an integer of 1 to 10 or an integer of 1 to 5.
  • For example, when Ar4 is phenylene and m is 2, it may become a biphenylene functional group.
  • More preferably, the MG is any one selected from the group listed below.
  • Figure US20180373099A1-20181227-C00018
  • In addition, it is preferable that the reactive mesogenic epoxy is contained in an amount of 0.1% by weight to 30% by weight relative to the total weight of the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent described above.
  • Meanwhile, the method of coating the liquid crystal aligning agent composition onto a substrate is not particularly limited, and for example, a method such as screen printing, offset printing, flexographic printing, inkjet printing, and the like can be used.
  • Furthermore, the liquid crystal aligning agent composition may be a composition in which the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent are dissolved or dispersed in an organic solvent. Specific examples of the organic solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether, ethylene glycol monopropyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monoisopropyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, and the like. They can be used alone or in combination.
  • In addition, the liquid crystal aligning agent composition may further include other components in addition to the polymers for the liquid crystal aligning agent and the organic solvent. In a non-limiting example, when the liquid crystal aligning agent composition is coated, an additive capable of improving the uniformity of the thickness of a layer and or surface smoothness, improving the adhesion between a photo-alignment film and a substrate, changing the dielectric constant or conductivity of a photo-alignment film, or increasing the denseness of a photo-alignment film may further be included. Examples of such additives include various solvents, surfactants, silane-based compounds, dielectrics, crosslinking compounds, etc.
  • Drying the Coating Film (Step 2)
  • Step 2 is a step of drying the coating film prepared in Step 1.
  • The step of drying the coating film is for removing a solvent or the like used in the liquid crystal aligning agent composition, and for example, a method such as heating of a coating film or vacuum evaporation may be used. The drying may be preferably carried out at 50 to 130° C., and more preferably at 70 to 120° C.
  • Irradiating the Coating Film with Light Immediately after the Drying Step to Perform Alignment Treatment (Step 3)
  • Step 3 is a step of irradiating the coating film dried in Step 2 with light to perform alignment treatment.
  • In the present specification, the “irradiating the film immediately after the drying step” refers to irradiating the light immediately after the drying step without carrying out a heat treatment at a temperature equal to or higher than that of the drying step, and other steps in addition to the heat treatment can be added.
  • More specifically, when a liquid crystal alignment film is prepared using a conventional liquid crystal aligning agent including polyamic acid or polyamic acid ester, it includes a step of irradiating light after essentially carrying out a high-temperature heat treatment for imidization of the polyamic acid. However, when a liquid crystal alignment film is prepared using the liquid crystal aligning agent of one embodiment described above, it does not include the heat treatment step, but light is directly irradiated to perform alignment treatment, and then the alignment-treated coating film is cured by a heat treatment, thereby preparing a liquid crystal alignment film having sufficient alignment properties and improved stability even under a small amount of light irradiation energy.
  • In addition, in the alignment treatment step, the light irradiation is preferably performed by irradiating polarized ultraviolet light having a wavelength of 150 to 450 nm. Herein, the intensity of the light exposure varies depending on the kind of the polymer for the liquid crystal aligning agent, and preferably energy of 10 mJ/cm2 to 10 J/cm2, and more preferably energy of 30 mJ/cm2 to 2 J/cm2, may be irradiated. As for the ultraviolet light, polarized ultraviolet light selected from the ultraviolet light subjected to polarization treatment through a method of penetrating or reflecting (1) a polarizing device using a substrate coated with a dielectric anisotropic material on the surface of a transparent substrate such as quartz glass, soda lime glass, soda lime free glass, etc., (2) a polarizer plate on which aluminum or metal wires are finely deposited, or (3) a Brewster's polarizing device using reflection of quartz glass, etc., are irradiated to perform the alignment treatment. Herein, the polarized ultraviolet light may be irradiated perpendicularly to the surface of the substrate, or may be irradiated by directing an angle of incidence at a specific angle. By this method, the alignment ability of the liquid crystal molecules is imparted to the coating film.
  • Subjecting the Alignment-Treated Coating Film to Low-Temperature Heat Treatment (Step 4)
  • Step 4 is a step of subjecting the alignment-treated coating film in Step 3 to a low-temperature heat treatment.
  • As described above, since the initial anisotropy is induced by directly irradiating linearly polarized light without an imidization process in Step 3, this is a step of re-aligning a part of the alignment film and initially inducing alignment of the reactive mesogenic epoxy present in the alignment film through a low-temperature heat treatment, followed by carrying out an epoxy reaction to prepare a reactive mesogenic liquid crystal film in the alignment film. Further, such a low-temperature heat treatment step is distinguished from the step of curing the alignment-treated coating film by heat treatment to be described later.
  • The temperature for the low-temperature heat treatment is preferably 200° C. or lower. Preferably, the temperature for the low-temperature heat treatment is 110 to 200° C., and more preferably 130 to 180° C. Herein, the means of the heat treatment is not particularly limited, and may be carried out by a heating means such as a hot plate, a hot air circulation path, an infrared ray furnace, and the like.
  • Subjecting the Heat-Treated Coating Film to Heat Treatment at a Higher Temperature than that of the Low-Temperature Heat Treatment to Cure it (Step 5)
  • Step 5 is a step of subjecting the coating film heat-treated at a low temperature in Step 4 to a high-temperature heat treatment to cure it.
  • The step of subjecting the alignment-treated coating film to a heat treatment to cure it is a step that is carried out after the irradiation of light even in the method for preparing a liquid crystal alignment film using a polymer for a liquid crystal aligning agent including a conventional polyamic acid or polyamic acid ester, and is distinguished from the heat treatment step which is carried out for the imidization of the liquid crystal aligning agent composition after coating the liquid crystal aligning agent composition onto a substrate and before irradiating the light or while irradiating the light.
  • In addition, the epoxy reaction of the reactive mesogenic epoxy is carried out, and thus the alignment stabilization can be improved. Accordingly, the temperature for the heat treatment is a temperature at which the imidization of the polymers for the liquid crystal aligning agent and the epoxy reaction of the reactive mesogenic epoxy are carried out, and is preferably higher than the temperature for the low temperature heat treatment of Step 4. Preferably, the temperature for the heat treatment is carried out at 200 to 250° C., and more preferably at 210 to 240° C. Herein, the means of the heat treatment is not particularly limited, and may be carried out by a heating means such as a hot plate, a hot air circulation path, an infrared ray furnace, and the like.
  • Liquid Crystal Display Device
  • In addition, the present invention provides a liquid crystal display device including the liquid crystal alignment film described above.
  • The liquid crystal alignment film may be introduced into a liquid crystal cell by a known method, and likewise, the liquid crystal cell may be introduced into a liquid crystal display device by a known method. Examples of the preparation method of the liquid crystal display device including the liquid crystal alignment film are not particularly limited, but various preparation methods of the liquid crystal display device, which are previously known, can be applied. Preferably, a sealing agent impregnated with a ball spacer having a size of 3 μm is applied to the edge of the upper plate except the liquid crystal injection hole, and the alignment films of the present invention formed on the upper plate and the lower plate are aligned such that they face each other and the alignment directions are aligned with each other, and then the upper and lower plates are bonded together and the sealing agent is cured to prepare an empty space. Subsequently, a liquid crystal is injected into the empty cells to produce a parallel-alignment mode liquid crystal cell.
  • Advantageous Effects
  • According to the present invention, a liquid crystal alignment film not only having excellent alignment property and stability, but also having high film strength, and thus exhibiting excellent durability and a high residual image property, a method for preparing the same, and a liquid crystal display device using the same can be prepared.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, the present invention will be described in more detail by way of examples. However, these examples are given for illustrative purposes only, and the scope of the invention is not intended to be limited by these examples.
  • Preparation Example 1: Synthesis of Diamine
  • Figure US20180373099A1-20181227-C00019
  • Cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA) and 4-nitroaniline were dissolved in DMF (dimethylformamide) to prepare a mixture. Then, the mixture was reacted at about 80° C. for about 12 hours to prepare an amic acid. Subsequently, the amic acid was dissolved in DMF, and acetic anhydride and sodium acetate were added thereto to prepare a mixture. Then, the amic acid contained in the mixture was imidized at about 90° C. for about 4 hours. The thus-obtained imide was dissolved in DMAc (dimethylacetamide), and then Pd/C was added thereto to prepare a mixture. The mixture was reduced at 45° C. under hydrogen pressure of 6 bar for 20 minutes to prepare a diamine
  • Preparation Example 2: Preparation of Polymer for Liquid Crystal Aligning Agent P-1
  • (Step 1)
  • 5.0 g (13.3 mmol) of the diamine prepared in Preparation Example 1 was completely dissolved in 71.27 g of anhydrous N-methyl pyrrolidone (NMP).
  • Then, 2.92 g (13.03 mmol) of 1,3-dimethyl-cyclobutane-1,2,3,4-tetracarboxylic dianhydride was added to the solution under an ice bath and stirred at room temperature for 16 hours.
  • (Step 2)
  • The solution obtained in Step 1 was poured into an excess amount of distilled water to form a precipitate. Then, the formed precipitate was filtered and washed twice with distilled water and three times with methanol. The thus-obtained solid product was dried in a vacuum oven at 40° C. for 24 hours to obtain 6.9 g of a polymer for a liquid crystal aligning agent P-1.
  • As a result of confirming the molecular weight of P-1 through GPC, the number average molecular weight (Mn) was 15,500 g/mol, and the weight average molecular weight (Mw) was 31,000 g/mol. Further, the monomer structure of the polymer P-1 was determined by the equivalent ratio of the monomers used, and the ratio of the imine structure in the molecule was 50.5%, while the ratio of the amic acid structure was 49.5%.
  • Preparation Example 3: Preparation of Polymer for Liquid Crystal Aligning Agent Q-1
  • 5.00 g of 4,4′-methylenedianiline and 5.05 g of 4,4′-oxydianiline were completely dissolved in 221.4 g of NMP. Then, 14.55 g of 4,4′-biphthalic anhydride was added to the solution under an ice bath and stirred at room temperature for 16 hours. Subsequently, the polymer Q-1 was prepared in the same manner as in Step 2 of Preparation Example 2.
  • Example 1
  • (1) Preparation of Liquid Crystal Aligning Agent Composition
  • 5 parts by weight of P-1 prepared in Preparation Example 2, 5 parts by weight of Q-1 prepared in Preparation Example 3, and 0.8 parts by weight of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate (8% by weight relative to the polymer for the liquid crystal aligning agent) were completely dissolved in a mixed solvent of NMP and n-butoxyethanol in a weight ratio of 8:2. Then, the resultant was subjected to pressure filtration with a filter made of poly(tetrafluoroethylene) having a pore size of 0.2 μm to prepare a liquid crystal aligning agent composition.
  • (2) Preparation of Liquid Crystal Alignment Film
  • The liquid crystal aligning agent composition prepared in Example 1 was coated onto a substrate (lower plate) in which comb-shaped IPS mode-type ITO electrode patterns having a thickness of 60 nm, an electrode width of 3 μm, and spacing between the electrodes of 6 μm are formed on a rectangular glass substrate having a size of 2.5 cm×2.7 cm and onto a glass substrate (upper plate) having no electrode pattern each using a spin coating method.
  • Then, the substrates onto which the liquid crystal aligning agent composition was coated were placed on a hot plate at about 80° C. for one minute to evaporate the solvent. In order to align the thus-obtained coating film, ultraviolet light of 254 nm was irradiated with an intensity of 0.3 J/cm2 using an exposure apparatus in which a linear polarizer was adhered to the coating film of each of the upper and lower plates.
  • Subsequently, the coating film was placed on a hot plate at 130° C. for 500 seconds, thereby subjecting it to a low-temperature heat treatment. Then, the coating film was calcinated (cured) in an oven at about 230° C. for 20 minutes to obtain a liquid crystal alignment film having a film thickness of 0.1 μm.
  • Example 2
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate was used in an amount of 1.0 part by weight (10% by weight relative to the polymer for the liquid crystal aligning agent).
  • Example 3
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 1,4-phenylene bis(4-(oxiran-2-ylmethoxy)benzoate) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • Comparative Example 1
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the following compound (BATG) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • Figure US20180373099A1-20181227-C00020
  • Comparative Example 2
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the following compound (CDMDG) was used instead of 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate.
  • Figure US20180373099A1-20181227-C00021
  • Comparative Example 3
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that the low-temperature heat treatment was omitted and the calcination (curing) temperature was adjusted to 240° C.
  • Comparative Example 4
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 2, except that the low-temperature heat treatment was omitted and the calcination (curing) temperature was adjusted to 240° C.
  • Comparative Example 5
  • A liquid crystal aligning agent composition and liquid crystal alignment film were prepared in the same manner as in Example 1, except that 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate was not used.
  • Experimental Example
  • A sealing agent impregnated with a ball spacer having a size of 3 μm was applied to the edge of the upper plate except the liquid crystal injection hole. Further, the alignment films of the examples and comparative examples formed on the upper plate and the lower plate were aligned such that they faced each other and the alignment directions were aligned with each other, and then the upper and lower plates were bonded together and the sealing agent was cured to prepare an empty space. Subsequently, a liquid crystal was injected into the empty cells to produce a parallel-alignment mode liquid crystal cell.
  • (1) Retardation (R)
  • The retardation (R) of the liquid crystal alignment films obtained in the examples and comparative examples was measured. Specifically, each retardation was measured by irradiating polarized light having a wavelength of 550 nm using AxoStep equipment, manufactured by Axometrics, and the average value of the measured values for 5 repeated measurements is shown in Table 1 below.
  • (2) Film Strength
  • The film strength for the alignment films obtained in the examples and comparative examples was measured, and the results are shown in Table 1 below. Specifically, the film strength of the alignment films was measured via a pencil hardness tester according to the ASTM D3363 test standard by loading a weight of 50 g and using pencils of various hardnesses.
  • (3) Brightness Fluctuation Rate
  • The brightness fluctuation rate of the prepared liquid crystal cells was measured using the liquid crystal alignment films obtained in the examples and comparative examples. Specifically, polarizing plates were adhered to the upper plate and the lower plate of the liquid crystal cells such that they were perpendicular to each other. Then, the liquid crystal cells, to which the polarizing plates were adhered, were adhered onto a backlight of 7000 cd/m2, and the brightness in a black mode was measured using PR-880 equipment, which is a device for measuring brightness. Then, the liquid crystal cells were driven at room temperature for 24 hours with an AC voltage of 5 V. Subsequently, the brightness in a black mode was measured in the same manner as described above in a state in which the voltage of the liquid crystal cells was turned off, and the results are shown in Table 1 below.
  • The difference between the initial luminance (L0) measured before driving the liquid crystal cell and the luminance (L1) measured after driving was divided by the initial luminance (L0) and multiplied by 100 to calculate the brightness fluctuation rate. As the thus-calculated brightness fluctuation rate is closer to 0%, it means that the alignment stability is excellent.
  • TABLE 1
    Retar- Brightness
    Epoxy dation Film fluctuation
    Category additives (nm) strength rate
    Example 1 A-1 8.3 3H 2.7%
    (8% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Example 2 A-1 7.9 4H 2.9%
    (10% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Example 3 A-2 8.7 3H 2.5%
    (8% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Comparative B-1 2.6 3H 8.4%
    Example 1 (8% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Comparative B-2 2.4 3H   7%
    Example 2 (8% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Comparative A-1 2.3 3H   4%
    Example 3 (8% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Comparative A-1 2.8 4H   6%
    Example 4 (10% by weight relative to
    the polymer for the liquid
    crystal aligning agent)
    Comparative 3.9 0H 2.1%
    Example 5
    *A-1: 4-(oxiran-2-ylmethoxy)phenyl 4-(oxiran-2-ylmethoxy)benzoate
    *A-2: 1,4-phenylene bis(4-(oxiran-2-ylmethoxy)benzoate)
    *B-1: BATG
    Figure US20180373099A1-20181227-C00022
    *B-2: CDMDG
    Figure US20180373099A1-20181227-C00023
  • As shown in Table 1 above, when the epoxy additives with different structures compared to those of the examples were used similarly to Comparative Examples 1 and 2, it was confirmed that the retardation value was significantly lower than those of the examples, and the brightness fluctuation rate was increased. From this, it was confirmed that, in the case of the liquid crystal alignment films obtained by using the phenyl benzoate-based RM (reactive mesogen) epoxy additive, the retardation is increased, thereby implementing excellent AC residual image properties, and also the brightness fluctuation rate is reduced, thereby implementing excellent aligning stability.
  • In addition, in Table 1, similarly to Comparative Examples 3 and 4, although the same amount of the phenyl benzoate-based epoxy additive was used, when the low-temperature heat treatment was omitted and the calcination (curing) temperature was adjusted to 240° C., it was confirmed that the retardation value was significantly lower than those of the examples, and the brightness fluctuation rate was increased. From this, it was confirmed that, similarly to the examples, as curing was carried out after heat treatment, the retardation of the finally prepared alignment film is increased, thereby implementing excellent AC residual properties, and also the brightness fluctuation rate is reduced, thereby implementing excellent aligning stability.
  • Meanwhile, similarly to Comparative Example 5, when no phenyl benzoate-based epoxy additives were added, it was confirmed that the film strength was significantly reduced compared to those of the examples, and thus the strength of the liquid crystal alignment films can be enhanced by using the specific epoxy additives in the examples.

Claims (13)

1-8. (canceled)
9. A method for preparing a liquid crystal alignment film including the steps of:
1) coating a liquid crystal aligning agent composition onto a substrate to form a coating film;
2) drying the coating film;
3) irradiating the coating film with light immediately after the drying step to perform alignment treatment;
4) subjecting the alignment-treated coating film to a low-temperature heat treatment at 200° C. or lower; and
5) subjecting the heat-treated coating film to heat treatment at a higher temperature than that of the low-temperature heat treatment to cure it,
wherein the liquid crystal aligning agent composition includes: i) a first polymer for a liquid crystal aligning agent including at least two repeating units selected from the group consisting of a repeating unit represented by Chemical Formula 21 below, a repeating unit represented by Chemical Formula 22 below, and a repeating unit represented by Chemical Formula 23 below, wherein the repeating unit represented by Chemical Formula 21 below is contained in an amount of 5 mol % to 74 mol % relative to the entire repeating units represented by Chemical Formulae 21 to 23 below; ii) a second polymer for a liquid crystal aligning agent including a repeating unit represented by Chemical Formula 24 below; and iii) a reactive mesogenic epoxy:
Figure US20180373099A1-20181227-C00024
wherein, in Chemical Formulae 21 to 24,
R22 and R23 are each independently hydrogen or a C1-10 alkyl, with the proviso that R22 and R23 are not all hydrogen,
R24 and R25 are each independently hydrogen or a C1-10 alkyl, and
X11 is a tetravalent organic group represented by Chemical Formula 25 below:
Figure US20180373099A1-20181227-C00025
wherein, in Chemical Formula 25,
R26 to R29 are each independently hydrogen or a C1-6 alkyl,
X12, X13, and X14 are each independently a tetravalent organic group derived from a hydrocarbon having 4 to 20 carbon atoms, or a tetravalent organic group in which at least one hydrogen in the tetravalent organic groups is substituted with a halogen or in which at least one —CH2— is substituted with —O—, —CO—, —S—, —SO—, —SO2—, or —CONH—, so that it is not directly bonded to oxygen or sulfur atoms, and
Y11, Y12, Y13, and Y14 are each independently a divalent organic group represented by Chemical Formula 26 below:
Figure US20180373099A1-20181227-C00026
wherein, in Chemical Formula 26,
R30 and R31 are each independently a halogen, a cyano, a C1-10 alkyl, a C2-10 alkenyl, a C1-10 alkoxy, a C1-10 fluoroalkyl, or a C1-10 fluoroalkoxy,
h and i are each independently an integer of 0 to 4,
L3 is a single bond, —O—, —CO—, —S—, —SO2—, —C(CH3)2 , —C(CF3)2—, —CONH—, —COO—, —(CH2)z—, —O(CH2)zO—, —O(CH2)z—, —OCH2—C(CH3)2—CH2O—, —COO—(CH2)z—OCO—, or —OCO—(CH2)z—COO—,
z is an integer of 1 to 10, and
j is an integer of 0 to 3.
10. The method for preparing a liquid crystal alignment film of claim 9, wherein the X12, X13, and X14 are each independently a tetravalent organic group represented by Chemical Formula 27 below:
Figure US20180373099A1-20181227-C00027
wherein, in Chemical Formula 27,
R32 to R35 are each independently hydrogen or a C1-6 alkyl,
L4 is a single bond, —O—, —CO—, —S—, —C(CH3)2—, —C(CF3)2—, —CONH—, —COO—, —(CH2)z—, —O(CH2)zO—, or —COO—(CH2)z—OCO—, and
z is an integer of 1 to 10.
11. The method for preparing a liquid crystal alignment film of claim 9, wherein the reactive mesogenic epoxy is represented by Chemical Formula 28 below:

R36-MG-R36  [Chemical Formula 28]
wherein, in Chemical Formula 28,
R36 is glycidyloxy or N(glycidyloxy)2, and
MG is a divalent mesogenic group.
12. The method for preparing a liquid crystal alignment film of claim 11, wherein the MG is represented by Chemical Formula 29 below:
Figure US20180373099A1-20181227-C00028
wherein, in Chemical Formula 29,
Ar3 and Ar4 are each independently phenylene or naphthylene,
each L5 is independently a single bond, an alkylene having 1 to 3 carbon atoms, —COO—, —C(CH3)═CH—, or —C(CH3)═N═N═C(CH3)—,
n is 0, 1, or 2, and
m is an integer of 1.
13. The method for preparing a liquid crystal alignment film of claim 11, wherein the MG is any one selected from the groups listed below:
Figure US20180373099A1-20181227-C00029
14. The method for preparing a liquid crystal alignment film of claim 9, wherein the mesogenic epoxy is included in an amount of 0.1% by weight to 30% by weight relative to the weight of the polymers for the liquid crystal aligning agent.
15. The method for preparing a liquid crystal alignment film of claim 9, wherein the first polymer for the liquid crystal aligning agent and the second polymer for the liquid crystal aligning agent may be mixed in a weight ratio of 15:85 to 85:15.
16. The method for preparing a liquid crystal alignment film of claim 9, wherein the drying of Step 2 is performed at 50° C. to 130° C.
17. The method for preparing a liquid crystal alignment film of claim 9, wherein the alignment treatment of Step 3 is performed by irradiating polarized ultraviolet light having a wavelength of 150 nm to 450 nm.
18. The method for preparing a liquid crystal alignment film of claim 9, wherein the low-temperature heat treatment of Step 4 is performed at 110° C. to 200° C.
19. The method for preparing a liquid crystal alignment film of claim 9, wherein the heat treatment of Step 5 is performed at 200° C. to 250° C.
20. (canceled)
US16/085,963 2016-11-28 2017-11-23 Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same Abandoned US20180373099A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020160159597A KR102064989B1 (en) 2016-11-28 2016-11-28 Method for preparation of liquid crystal alignment
KR10-2016-0159597 2016-11-28
KR20170134828 2017-10-17
KR10-2017-0134828 2017-10-17
PCT/KR2017/013433 WO2018097625A2 (en) 2016-11-28 2017-11-23 Liquid crystal alignment layer, method for manufacturing same, and liquid crystal display device using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013433 A-371-Of-International WO2018097625A2 (en) 2016-11-28 2017-11-23 Liquid crystal alignment layer, method for manufacturing same, and liquid crystal display device using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/164,043 Continuation US11073728B2 (en) 2016-11-28 2018-10-18 Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same

Publications (1)

Publication Number Publication Date
US20180373099A1 true US20180373099A1 (en) 2018-12-27

Family

ID=62195511

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/085,963 Abandoned US20180373099A1 (en) 2016-11-28 2017-11-23 Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same
US16/164,043 Active 2038-04-24 US11073728B2 (en) 2016-11-28 2018-10-18 Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/164,043 Active 2038-04-24 US11073728B2 (en) 2016-11-28 2018-10-18 Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same

Country Status (5)

Country Link
US (2) US20180373099A1 (en)
JP (1) JP6776498B2 (en)
CN (1) CN108885375B (en)
TW (1) TWI646179B (en)
WO (1) WO2018097625A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073728B2 (en) 2016-11-28 2021-07-27 Lg Chem, Ltd. Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same
US11370971B2 (en) 2017-10-17 2022-06-28 Lg Chem, Ltd. Liquid crystal alignment film and liquid crystal display device using the same

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036464A1 (en) * 1998-12-15 2000-06-22 Ppg Industries Ohio, Inc. Aromatic glycidyl amine-based epoxy edge seals for electrooptic devices
KR20070071997A (en) * 2005-12-30 2007-07-04 제일모직주식회사 Alignment agent of liquid crystal
US7435357B2 (en) * 2003-04-08 2008-10-14 Merck Patent Gmbh Polymerised liquid crystal film with retardation or orientation pattern
US20100060834A1 (en) * 2007-01-09 2010-03-11 Xing-Zhong Fang Copolyimide, liquid crystal aligning layer comprising the same , and liquid crystal display comprising the same
US20100069520A1 (en) * 2008-07-09 2010-03-18 Lg Chem, Ltd. Block copolymer of polyimide and polyamic acid, method for producing the block copolymer, photosensitive resin composition comprising the block copolymer and protective film formed using the block copolymer
US20110111341A1 (en) * 2009-07-16 2011-05-12 Lg Chem, Ltd. Polyimide and photoresist resin composition comprising thereof
US20110200939A1 (en) * 2009-08-28 2011-08-18 Lg Chem, Ltd. Polyamic acid, polyimide, photosensitive resin composition comprising the same and dry film manufactured by the same
WO2011115078A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester and polyamic acid, and liquid crystal alignment film
US8232366B2 (en) * 2003-03-24 2012-07-31 Lg Chem, Ltd. Transparent, highly heat-resistant polyimide precursor and photosensitive polyimide composition thereof
JP2013235130A (en) * 2012-05-09 2013-11-21 Jnc Corp Liquid crystal aligning agent for forming optical alignment liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element using the same
US20140072730A1 (en) * 2012-09-07 2014-03-13 Lg Chem, Ltd. Photoalignment Polyimide Copolymer and Liquid Crystal Alignment Layer
JP2015040950A (en) * 2013-08-21 2015-03-02 シャープ株式会社 Liquid crystal display device manufacturing method and liquid crystal display device
KR20160074567A (en) * 2013-10-23 2016-06-28 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20160095801A (en) * 2015-02-04 2016-08-12 주식회사 엘지화학 Composition for liquid crystal alignment and liquid crystal alignment layer
US20170017155A1 (en) * 2014-03-20 2017-01-19 Zeon Corporation Radiation-sensitive resin composition and electronic device
US20170226257A1 (en) * 2015-09-15 2017-08-10 Lg Chem, Ltd. Modified polyimide and curable resin composition
US20180348578A1 (en) * 2016-06-21 2018-12-06 Lg Chem, Ltd. Liquid crystal alignment composition, method for preparing liquid crystal alignment film, and liquid crystal alignment film using the same
US20200024521A1 (en) * 2018-01-22 2020-01-23 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same
US20200124922A1 (en) * 2018-03-30 2020-04-23 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film and liquid crystal display using same

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255502A (en) 1991-08-14 1993-10-05 Internatl Business Mach Corp <Ibm> Preparation of polyimide
KR100565739B1 (en) 2000-10-28 2006-03-29 엘지.필립스 엘시디 주식회사 Photo-alignment Characteristic Material and Liquid Crystal Display Device fabricated with it
US6841654B2 (en) 2001-05-15 2005-01-11 Rockwell Scientific Licensing, Llc Polymide-free alignment layer for LCD fabrication and method
JP2003015135A (en) 2001-07-03 2003-01-15 Jsr Corp Vertical alignment type liquid crystal aligning agent
US20040138408A1 (en) * 2002-01-02 2004-07-15 Harris Frank W. Polymide lcd alignment layer
JP2004281148A (en) 2003-03-13 2004-10-07 Sumitomo Bakelite Co Ltd Material for insulating film, coating varnish for insulating film, and insulating film using these, and semiconductor device
US8409674B2 (en) * 2003-08-08 2013-04-02 Merck Patent Gmbh Alignment layer with reactive mesogens for aligning liquid crystal molecules
JP4617838B2 (en) 2003-12-25 2011-01-26 チッソ株式会社 Liquid crystalline (meth) acrylate derivatives and compositions containing them
JP4968422B2 (en) 2004-12-15 2012-07-04 Jsr株式会社 Method for producing liquid crystal alignment film
KR20060082106A (en) 2005-01-11 2006-07-14 삼성전자주식회사 Alignment material and liquid crystal display
JP5055757B2 (en) 2005-01-28 2012-10-24 Jnc株式会社 Liquid crystalline polyfunctional acrylate derivative and polymer thereof
JP2007034284A (en) 2005-06-23 2007-02-08 Hitachi Cable Ltd Polyimide resin composition and electric insulated wire or liquid crystal aligning agent using the same
KR100711901B1 (en) 2005-09-08 2007-04-27 주식회사 엘지화학 Polymer for liquid crystal aligning and liquid crystal display using the same
JP4900571B2 (en) 2006-03-20 2012-03-21 Jsr株式会社 Vertical liquid crystal aligning agent and vertical liquid crystal display element
JP2008015497A (en) 2006-06-05 2008-01-24 Jsr Corp Liquid crystal alignment agent and transverse electric field type liquid crystal display device
KR101333592B1 (en) * 2007-04-05 2013-11-26 엘지디스플레이 주식회사 Method of forming alignment layer of liquid crystal display device
JP5577591B2 (en) 2007-12-27 2014-08-27 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101466778B1 (en) 2008-06-13 2014-11-28 제이엔씨 주식회사 Polymerizable liquid crystal composition
JP5434490B2 (en) 2008-12-01 2014-03-05 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5884258B2 (en) * 2009-09-18 2016-03-15 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
US20120194771A1 (en) 2009-10-09 2012-08-02 Masanobu Mizusaki Liquid crystal display device and method for manufacturing same
JP5750861B2 (en) 2009-12-17 2015-07-22 Jnc株式会社 Polymerizable liquid crystal compound having oxiranyl group, polymerizable liquid crystal composition and polymer
JP5625384B2 (en) * 2010-02-25 2014-11-19 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101555010B1 (en) * 2010-07-16 2015-10-01 주식회사 엘지화학 Photoreactive polymer and preparation method thereof
KR101317642B1 (en) 2010-12-30 2013-10-15 웅진케미칼 주식회사 High oriented polyimide film, manufacturing method thereof and substrate for flexible display using the same
US20120172541A1 (en) 2010-12-30 2012-07-05 Cheil Industries Inc. Liquid Crystal Alignment Agent, Liquid Crystal Alignment Film Manufactured Using the Same, and Liquid Crystal Display Device Including the Liquid Crystal Alignment Film
KR20120077467A (en) 2010-12-30 2012-07-10 제일모직주식회사 Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device including the liquid crystal alignment film
JP5853728B2 (en) 2011-02-28 2016-02-09 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI452088B (en) 2011-04-14 2014-09-11 Daxin Materials Corp Liquid crystal aligning agent
KR101387735B1 (en) 2011-12-22 2014-04-25 제일모직주식회사 Liquid crystal alignment agent, liquid crystal alignment film using the same, and liquid crystal display device including the liquid crystal alignment film
JP6098818B2 (en) * 2012-11-07 2017-03-22 Jsr株式会社 Liquid crystal alignment agent
TWI480314B (en) 2013-03-26 2015-04-11 Daxin Materials Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device having thereof
US20160178969A1 (en) 2013-07-30 2016-06-23 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display device
KR101593196B1 (en) 2013-09-30 2016-02-05 주식회사 엘지화학 Composition for in-cell photo-alignment layer and liquid crstal display device
KR101597124B1 (en) 2014-05-29 2016-02-25 한국생산기술연구원 Photoalignment material and the synthetic method thereof
WO2015182894A1 (en) 2014-05-30 2015-12-03 주식회사 동진쎄미켐 Photoreactive diamine monomer polymerization and lcd alignment film using same
JP2016139121A (en) * 2015-01-22 2016-08-04 Jsr株式会社 Production method of liquid crystal alignment film and method for manufacturing liquid crystal element
KR102413935B1 (en) 2015-09-03 2022-06-28 삼성디스플레이 주식회사 Composition for alignment layer, array substrate for display device comprising the same
KR101879834B1 (en) 2015-11-11 2018-07-18 주식회사 엘지화학 Prapapation method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
JP2017161602A (en) 2016-03-07 2017-09-14 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and compound
KR101856725B1 (en) 2016-05-13 2018-05-10 주식회사 엘지화학 Composition for photoinduced liquid crystal alignment, prapapation method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
KR101959515B1 (en) 2016-08-19 2019-03-18 주식회사 엘지화학 Method for preparation of liquid crystal alignment
CN108885375B (en) 2016-11-28 2021-05-18 株式会社Lg化学 Liquid crystal alignment film, method for preparing the same, and liquid crystal display device using the same
KR102065718B1 (en) * 2017-10-17 2020-02-11 주식회사 엘지화학 Liquid crystal alignment film and liquid crystal display using the same
KR102273687B1 (en) 2018-05-17 2021-07-05 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036464A1 (en) * 1998-12-15 2000-06-22 Ppg Industries Ohio, Inc. Aromatic glycidyl amine-based epoxy edge seals for electrooptic devices
US8232366B2 (en) * 2003-03-24 2012-07-31 Lg Chem, Ltd. Transparent, highly heat-resistant polyimide precursor and photosensitive polyimide composition thereof
US7435357B2 (en) * 2003-04-08 2008-10-14 Merck Patent Gmbh Polymerised liquid crystal film with retardation or orientation pattern
KR20070071997A (en) * 2005-12-30 2007-07-04 제일모직주식회사 Alignment agent of liquid crystal
US20100060834A1 (en) * 2007-01-09 2010-03-11 Xing-Zhong Fang Copolyimide, liquid crystal aligning layer comprising the same , and liquid crystal display comprising the same
US20100069520A1 (en) * 2008-07-09 2010-03-18 Lg Chem, Ltd. Block copolymer of polyimide and polyamic acid, method for producing the block copolymer, photosensitive resin composition comprising the block copolymer and protective film formed using the block copolymer
US20110111341A1 (en) * 2009-07-16 2011-05-12 Lg Chem, Ltd. Polyimide and photoresist resin composition comprising thereof
US20110200939A1 (en) * 2009-08-28 2011-08-18 Lg Chem, Ltd. Polyamic acid, polyimide, photosensitive resin composition comprising the same and dry film manufactured by the same
WO2011115078A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester and polyamic acid, and liquid crystal alignment film
JP2013235130A (en) * 2012-05-09 2013-11-21 Jnc Corp Liquid crystal aligning agent for forming optical alignment liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element using the same
US20140072730A1 (en) * 2012-09-07 2014-03-13 Lg Chem, Ltd. Photoalignment Polyimide Copolymer and Liquid Crystal Alignment Layer
US9791745B2 (en) * 2012-09-07 2017-10-17 Lg Chem, Ltd. Photoalignment polyimide copolymer and liquid crystal alignment layer
US9034567B2 (en) * 2013-08-21 2015-05-19 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display device, and liquid crystal display device
JP2015040950A (en) * 2013-08-21 2015-03-02 シャープ株式会社 Liquid crystal display device manufacturing method and liquid crystal display device
KR20160074567A (en) * 2013-10-23 2016-06-28 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US20170017155A1 (en) * 2014-03-20 2017-01-19 Zeon Corporation Radiation-sensitive resin composition and electronic device
KR20160095801A (en) * 2015-02-04 2016-08-12 주식회사 엘지화학 Composition for liquid crystal alignment and liquid crystal alignment layer
US20170226257A1 (en) * 2015-09-15 2017-08-10 Lg Chem, Ltd. Modified polyimide and curable resin composition
US10316128B2 (en) * 2015-09-15 2019-06-11 Lg Chem, Ltd. Modified polyimide and curable resin composition
US20190309118A1 (en) * 2015-09-15 2019-10-10 Lg Chem, Ltd. Modified polyimide and curable resin composition
US10556979B2 (en) * 2015-09-15 2020-02-11 Lg Chem, Ltd. Modified polyimide and curable resin composition
US20180348578A1 (en) * 2016-06-21 2018-12-06 Lg Chem, Ltd. Liquid crystal alignment composition, method for preparing liquid crystal alignment film, and liquid crystal alignment film using the same
US20200024521A1 (en) * 2018-01-22 2020-01-23 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same
US20200124922A1 (en) * 2018-03-30 2020-04-23 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film and liquid crystal display using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073728B2 (en) 2016-11-28 2021-07-27 Lg Chem, Ltd. Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same
US11370971B2 (en) 2017-10-17 2022-06-28 Lg Chem, Ltd. Liquid crystal alignment film and liquid crystal display device using the same

Also Published As

Publication number Publication date
WO2018097625A2 (en) 2018-05-31
JP6776498B2 (en) 2020-10-28
CN108885375A (en) 2018-11-23
JP2019511745A (en) 2019-04-25
CN108885375B (en) 2021-05-18
WO2018097625A3 (en) 2018-07-19
TW201827580A (en) 2018-08-01
US20190049798A1 (en) 2019-02-14
TWI646179B (en) 2019-01-01
US11073728B2 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
US11347110B2 (en) Composition for liquid crystal alignment agent, manufacturing method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
KR101879834B1 (en) Prapapation method of liquid crystal alignment film, liquid crystal alignment film using the same and liquid crystal display device
US11630350B2 (en) Liquid crystal alignment composition, method for preparing liquid crystal alignment film, and liquid crystal alignment film using the same
KR101959515B1 (en) Method for preparation of liquid crystal alignment
US11137644B2 (en) Polymer for liquid crystal aligning agent, liquid crystal aligning agent composition comprising the same, and liquid crystal aligning film and liquid crystal display device using the same
US11370971B2 (en) Liquid crystal alignment film and liquid crystal display device using the same
US11230670B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
JP2021516365A (en) Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
US11142697B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
US11073728B2 (en) Liquid crystal alignment film, method for preparing the same and liquid crystal display device using the same
US11345856B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
KR20180060279A (en) Method for preparation of liquid crystal alignment
US11359144B2 (en) Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, alignment film, and liquid crystal display device using same
KR20190017257A (en) Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUN, HYEONG SEUK;JO, JUNG HO;MIN, SUNG JOON;AND OTHERS;REEL/FRAME:046892/0828

Effective date: 20180611

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION