US20180360281A1 - Suction structure of robot vacuum cleaner - Google Patents

Suction structure of robot vacuum cleaner Download PDF

Info

Publication number
US20180360281A1
US20180360281A1 US16/111,200 US201816111200A US2018360281A1 US 20180360281 A1 US20180360281 A1 US 20180360281A1 US 201816111200 A US201816111200 A US 201816111200A US 2018360281 A1 US2018360281 A1 US 2018360281A1
Authority
US
United States
Prior art keywords
unit
support unit
main body
suction structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/111,200
Other languages
English (en)
Inventor
Kyung Chul Shin
Seong Ju Park
No Soo Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yujin Robot Co Ltd
Original Assignee
Yujin Robot Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yujin Robot Co Ltd filed Critical Yujin Robot Co Ltd
Assigned to YUJIN ROBOT CO., LTD. reassignment YUJIN ROBOT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, NO SOO, PARK, SEONG JU, SHIN, KYUNG CHUL
Publication of US20180360281A1 publication Critical patent/US20180360281A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0494Height adjustment of dust-loosening tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning

Definitions

  • the present invention relates to a robot vacuum cleaner, and more particularly, to a suction structure of a robot vacuum cleaner in which a suction module is lifted up or down depending on a surface condition of a floor.
  • a robot vacuum cleaner refers to a device which autonomously moves a cleaning area to suck and remove foreign matters such as dust or trash on a floor even though a user does not operate the device.
  • the robot vacuum cleaner travels an outer periphery of the cleaning area surrounded by walls or obstacles to determine an area to be cleaned using a sensor installed in a main body, plans a cleaning route for cleaning the determined cleaning area, and travels the planned cleaning route while calculating a traveling distance and a current position during the cleaning process.
  • a cleaning state may vary depending on a surface condition of the floor, that is, there may be an area which is well cleaned and an area which is not well cleaned. The reason is because a suction structure which sucks foreign matters is fixed to a cleaner main body. Specifically, when the robot vacuum cleaner travels on a carpet, the cleaning is not smoothly performed so that a cleaning efficiency may be lowered.
  • an object to be achieved by the present invention is to provide a suction structure of a robot vacuum cleaner which is configured to lift up or down a suction module and includes a flow path inserting unit formed in a rectangular cross-sectional shape in the suction module to be inserted into a flow path unit of the main body.
  • Another object of the present invention is to provide a suction structure of a robot vacuum cleaner including a holding member for fixing a rotating shaft of the suction module.
  • a suction structure of a robot vacuum cleaner comprises a suction module which is located on a bottom surface of a main body of the robot vacuum cleaner and sucks foreign matters while rotating in accordance with a surface condition of the area to be cleaned and a holding member which fixes one side of the suction module to be rotatable within a predetermined distance.
  • the suction module may include a main brush which sucks the foreign matters while rotating in accordance with the surface condition of the area to be cleaned, a housing unit in which the main brush is disposed and a support unit which is formed at one side of the housing unit to be mounted in the main body and supports the main brush to rotate in accordance with the surface condition of the area to be cleaned.
  • the main brush may include a blade which rotates to guide the foreign substances into the main body and a rotating shaft which is coupled to the blade to rotate the blade.
  • One end of the rotating shaft may be open to be coupled to a motor which supplies power to rotate the blade.
  • the housing unit may include a deviation preventing unit which prevents the main brush from deviating while the blade rotates.
  • the holding member may fix the support unit to one side of the main body so that the main brush rotates within a predetermined distance and form a space where the support unit is lifted up or down.
  • the holding member may include a holder which covers the end of the support unit to be fixed to one side of the main body so that the main brush rotates within a predetermined distance.
  • the suction structure of a robot vacuum cleaner according to the present invention may further comprise an elastic member which is located in a space formed between the support unit and the holding member to enhance the contact between the main brush and the area to be cleaned.
  • the support unit may include a first support unit and a second support unit which are formed at one side of the housing unit to be mounted in the main body and are disposed in parallel to be spaced apart from each other.
  • the holding member may include a first holder which covers an end of the first support unit, a second holder which covers an end of the second support unit and a connecting unit which connects the first holder and the second holder, and the first holder and the second holder fix the first support unit and the second support unit to one side of the main body, respectively, so that the main brush rotates within a predetermined distance.
  • Ends of the first support unit and the second support unit may be formed in a cylindrical shape to allow the main brush to be lifted up or down.
  • the suction module may further include a flow path connecting unit which is formed at one side of the housing unit to be inserted into a flow path unit formed in the main body.
  • the flow path connecting unit may have a pipe shape having a rectangular cross section to form a flow path.
  • the flow path connecting unit may be inserted into the flow path unit formed in the main body to maintain a predetermined interval from an inside of the flow path into which the outside thereof is inserted.
  • the flow path connecting unit may be lifted up or down in the flow path unit formed in the main body as the suction module rotates in accordance with the surface condition of the floor.
  • a suction structure of a robot vacuum cleaner is configured to ascend or descend a suction module and includes a flow path inserting unit formed in a rectangular cross-sectional shape in the suction module to be inserted into a flow path unit of the main body, thereby minimizing a suction force loss even though a surface of the floor is uneven.
  • a suction structure of a robot vacuum cleaner includes a holding member for fixing a rotating shaft of the suction module so that the suction module is prevented from deviating beyond a limited distance.
  • the suction structure of the robot vacuum cleaner is configured to lift up or down the suction module depending on a surface condition of the floor to minimize the suction force loss, thereby improving the cleaning state.
  • FIG. 1 is a diagram illustrating an outward appearance of a robot vacuum cleaner according to an exemplary embodiment of the present invention
  • FIG. 2 is a diagram illustrating a bottom surface of a robot vacuum cleaner according to an exemplary embodiment of the present invention
  • FIG. 3 is an exploded perspective view illustrating a suction structure of a robot vacuum cleaner according to an exemplary embodiment of the present invention
  • FIG. 4 is a view for explaining a detailed structure of a suction module illustrated in FIG. 3 ;
  • FIG. 5 is a view for explaining a detailed structure of a holding member illustrated in FIG. 3 ;
  • FIGS. 6A and 6B are views illustrating a state in which a suction module is lifted up and down.
  • a component having the same name may be denoted by a different reference numeral in some drawings but may be denoted by the same reference numeral even in different drawings.
  • the component has different functions depending on the exemplary embodiment or the components have the same function in the different exemplary embodiments but the function of each of the components may be determined based on the description of the components in the corresponding exemplary embodiment.
  • a new suction structure of a robot vacuum cleaner which is configured to lift up or down the suction module depending on a surface condition of a floor and includes a flow path inserting unit formed in a rectangular cross-sectional shape in the suction module to be inserted into a flow path unit of the main body and a holding member for fixing a rotating shaft of the suction module has been suggested.
  • FIG. 1 is a diagram illustrating an outward appearance of a robot vacuum cleaner according to an exemplary embodiment of the present invention.
  • a robot vacuum cleaner 100 is formed in a circular shape and cleans an area to be cleaned while traveling the cleaning area using a sensor unit 111 installed in a main body.
  • the main body of the robot vacuum cleaner may include various components necessary for cleaning, such as a display unit, a controller, a driving unit, and a suction unit as well as the sensor unit.
  • the robot vacuum cleaner 100 may be formed not only in a circular shape, but also in various shapes.
  • FIG. 2 is a diagram illustrating a bottom surface of a robot vacuum cleaner according to an exemplary embodiment of the present invention.
  • a suction module 120 and a holding member 130 for fixing the suction module 120 may be provided on the bottom surface of the main body of the robot vacuum cleaner according to the present invention.
  • the suction module 120 is located on the bottom surface of the main body 110 and is lifted up or down depending on a surface condition of the floor to suck foreign matters such as dust as blades mounted therein rotates.
  • the suction module 120 may rotate according to the surface condition of the area to be cleaned and suck foreign matters such as dust in accordance with the rotation of the blades mounted in the suction module 120 .
  • the holding member 130 may fix one side of the suction module 120 so that the suction module 120 is lifted up or down within a predetermined distance. Therefore, the suction module 120 may rotate within a predetermined distance depending on the surface condition of an area to be cleaned, by the holding member 130 .
  • a plurality of wheels 141 , 142 , and 143 for traveling may be provided on a bottom surface of the main body. That is, one wheel 141 is mounted in a front region of the bottom surface of the main body and two wheels 142 and 143 are mounted in a center region of the bottom surface of the main body to be supplied with power from a motor.
  • auxiliary brushes 151 and 152 are mounted on the bottom surface of the main body to be rotatable.
  • the auxiliary brushes 151 and 152 may move the foreign matters such as dust on the peripheral floor to the center of the main body 110 and clean the dust accumulated in the boundary between the floor and the wall surface.
  • various types of sensors may be provided on at least one side of the holding member 130 to determine whether the suction module 120 or the holding member 130 is deviated.
  • a horizontal sensor is provided on at least one side of the holding member 130 to determine whether the suction module 120 or the holding member 130 is deviated from a movable range when the suction module 120 or the holding member 130 is lifted up or down, that is, by a predetermined angle or more.
  • FIG. 3 is an exploded perspective view illustrating a suction structure of a robot vacuum cleaner according to an exemplary embodiment of the present invention
  • FIG. 4 is a view for explaining a detailed structure of a suction module illustrated in FIG. 3
  • FIG. 5 is a view for explaining a detailed structure of a holding member illustrated in FIG. 3 .
  • the suction module 120 is located on the bottom surface of the robot vacuum cleaner according to the present invention.
  • the suction module 120 is fitted into a recess formed on the bottom surface to be located in the main body.
  • the suction module 120 may include a main brush 121 , a support unit 122 , a flow path connecting unit 123 , and a housing unit 124 .
  • the main brush 121 may be disposed in the housing unit 124 .
  • the main brush 121 may include a blade 121 a which guides the foreign matters into the main body so that the suction module 120 sucks the foreign matters such as dust and a rotating shaft 121 b which is coupled to the blade 121 a to rotate the blade 121 a . Therefore, when the blade 121 a which is coupled to the rotating shaft 121 b rotates, the main brush 121 sucks the foreign matters such as dust from the surface of the cleaning area.
  • the above-described blade 121 a may be implemented by a material having elasticity, such as plastic or rubber, but is not limited thereto.
  • the main brush 121 may be disposed in the housing unit 124 .
  • the blade 121 a which is coupled to the rotating shaft 121 b may be located.
  • the housing unit 124 may include a deviation preventing unit 124 a to prevent the main brush 121 from deviating from the housing unit 124 when the blade 121 a included in the main brush 121 located in the housing unit 124 rotates. Therefore, the deviation preventing unit 124 a fixes the main brush 121 in the housing unit 124 that even though the blade 121 a included in the main brush 121 rotates, the main brush 121 may not deviate from the housing unit 124 .
  • end 121 c of the rotating shaft 121 b may be open to be coupled to a motor which supplies power for rotating the blade 121 a . Further, the housing unit 124 to which the open end 121 c of the rotating shaft 121 b is fixed is also open so that the open end 121 c of the rotating shaft 121 b is coupled to the motor.
  • the main brush 121 includes the blade 121 a mounted therein and rotates the mounted blade 121 a to suck the foreign matters such as dust, from the passing floor surface.
  • the support unit 122 is formed to protrude from one side of the housing unit 124 to serve as a lever to allow the main brush 121 to be lifted up or down depending on the surface condition of the floor. That is, since the support unit 122 is fixed to one side of the main body, the main brush 121 may rotate.
  • the support unit 122 may be configured by a first support unit 122 a and a second support unit 122 b which are disposed in parallel to be spaced apart from each other.
  • the first support unit 122 a and the second support unit 122 may be formed in a cylindrical shape so that ends thoseof form a rotating shaft as the main brush 121 is lifted up or down.
  • each end of the support unit is formed in a cylindrical shape is to smoothly perform the rotation in accordance with the lifting up or down of the support unit.
  • two support units which serve as levers of the main brush 121 are provided, but the present invention is not limited thereto and one or a plurality of support units may be provided as needed.
  • the flow path connecting unit 123 is formed to protrude from one side of the housing unit 124 to be inserted into a flow path (not illustrated) formed in the main body to transmit the sucked foreign matters such as dust.
  • the flow path connecting unit 123 may be formed to be a pipe shape having a rectangular cross-section to collect air and then form a flow path. However, it is not limited thereto and may be formed to have a pipe shape having various shapes of cross-sections.
  • the flow path connecting unit 123 is inserted into the flow path unit formed in the main body.
  • An outside of the flow path connecting unit may have a size to maintain a predetermined interval from an inside of the inserted flow path unit. That is, an outer diameter of the flow path connecting unit 120 may be formed to be smaller than an inner diameter of the flow path unit.
  • the flow path connecting unit 123 may be formed such that the main brush 121 is lifted up or down without deviating from the flow path unit formed in the main body as the main brush 121 is lifted up or down depending on the surface condition of the floor.
  • the holding member 130 is provided to fix the support unit of the suction module 120 .
  • the holding member 130 may be mounted to be fitted to the recess formed on the bottom surface of the main body.
  • the holding member 130 may form a space where the support unit of the suction module is lifted up or down between the main body and the holding member 130 so that the suction module is lifted up or down within a predetermined distance.
  • the holding member 130 may include holders 132 a and 132 b which cover an end of the support unit of the suction module and a space may be formed between the holding member 130 and the main body by the holders 132 a and 132 b . Therefore, the support unit of the suction module may rotate between the formed spaces.
  • the holding member 130 may include recesses 131 a to 131 d to be fixed to the bottom surface of the main body, but it is not limited thereto and the holding member 130 may be fixed to the bottom surface of the main body by various methods.
  • the holding member 130 may include a first holder 132 a which covers the first support unit of the suction module and an end of the first support unit, a second holder 132 b which covers the second support unit of the suction module and an end of the second support unit, and a connecting unit 132 c which connects the first holder 132 a and the second holder 132 b . Therefore, the holding member 130 including the first holder 132 a and the second holder 132 b may fix the first support unit and the second support unit of the suction module to one side of the main body so as to allow the main brush to be rotatable within a predetermined distance, depending on the surface condition of the floor.
  • a thickness D 1 of a portion of the holder which covers the end of the support unit which is a rotating shaft for lifting up or down the suction module is larger than a thickness D 2 of a portion of the holder which lifts up or down the suction module so that a space where the support unit of the suction module is movable may be formed therein.
  • a movable distance of the suction module may be formed within the thickness D 2 . That is, a rotatable angle of the suction module may be formed within the thickness D 2 .
  • a holding member including two holders to fix two support units, which serve as a lever of the main brush, to one side of the main body has been described, but is not limited thereto and one or a plurality of holders may be provided depending on the number of support units.
  • a suction structure of a robot vacuum cleaner may include an elastic member (for example, a flat spring) which applies a restoring force directed toward the downward side of the ground to the suction module in addition to gravity when the suction module whose one side is fixed by the holding member 130 needs to be lifted up from the ground in accordance with the surface condition of the area to be cleaned and then lifted down again to the ground again in accordance with the surface condition of the area to be cleaned.
  • the support unit is located on the fixed holding member and the elastic member is disposed between the support unit and the holding member.
  • the elastic member desirably has a restoring force to be restored to a contracted state in a state in which the elastic member is expanded (a state in which the interval between the holding member and the support unit is widened). Therefore, the elastic member may enhance the contact between the main brush included in the suction module and the ground to improve the cleaning efficiency.
  • FIGS. 6A and 6B are views illustrating a state in which a suction module is lifted up or down.
  • FIGS. 6A and 6B the suction module mounted on the bottom surface of the robot vacuum cleaner is lifted up or down in accordance with the surface condition of the floor and FIG. 6A illustrates a state 610 in which the suction module is lifted up and FIG. 6B illustrates a state 620 in which the suction nodule is lifted down.
  • the suction module may be lifted up or down and the flow path connection unit connected to one side of the suction module is inserted into the flow path to be lifted up or down together in accordance with the lifting up or down of the suction module so that the cleaning efficiency is improved and a cleaning performance may be desirably maintained even on various types of carpets, regardless of the surface condition of the floor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
US16/111,200 2016-02-24 2018-08-23 Suction structure of robot vacuum cleaner Abandoned US20180360281A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0021961 2016-02-24
KR1020160021961A KR101802233B1 (ko) 2016-02-24 2016-02-24 로봇 청소기의 흡입 구조
PCT/KR2017/000456 WO2017146377A1 (ko) 2016-02-24 2017-01-13 로봇 청소기의 흡입 구조

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000456 Continuation WO2017146377A1 (ko) 2016-02-24 2017-01-13 로봇 청소기의 흡입 구조

Publications (1)

Publication Number Publication Date
US20180360281A1 true US20180360281A1 (en) 2018-12-20

Family

ID=59686435

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/111,200 Abandoned US20180360281A1 (en) 2016-02-24 2018-08-23 Suction structure of robot vacuum cleaner

Country Status (3)

Country Link
US (1) US20180360281A1 (ko)
KR (1) KR101802233B1 (ko)
WO (1) WO2017146377A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210186282A1 (en) * 2019-12-09 2021-06-24 Sharkninja Operating Llc Robotic cleaner
USD930298S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930299S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930300S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD935711S1 (en) * 2019-08-28 2021-11-09 Lg Electronics Inc. Robotic vacuum cleaner
USD936314S1 (en) * 2019-08-28 2021-11-16 Lg Electronics Inc. Robotic vacuum cleaner
USD936922S1 (en) * 2019-08-28 2021-11-23 Lg Electronics Inc. Robotic vacuum cleaner
USD938115S1 (en) * 2018-11-30 2021-12-07 Irobot Corporation Autonomous floor cleaning robot
USD938677S1 (en) * 2019-08-28 2021-12-14 Lg Electronics Inc. Robotic vacuum cleaner
USD943227S1 (en) * 2019-08-28 2022-02-08 Lg Electronics Inc. Robotic vacuum cleaner
USD946840S1 (en) * 2019-03-12 2022-03-22 Midea Robozone Technology Co., Ltd. Robot vacuum cleaner
USD947474S1 (en) * 2019-08-28 2022-03-29 Lg Electronics Inc. Robotic vacuum cleaner
US11638506B2 (en) 2019-11-29 2023-05-02 Lg Electronics Inc. Robot cleaner
DE102019209415B4 (de) 2019-06-27 2023-06-22 Volkswagen Aktiengesellschaft Saugeinrichtung und Saugroboter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3804599A4 (en) * 2018-06-08 2022-08-10 Positec Power Tools (Suzhou) Co., Ltd CLEANING ROBOT, METHOD OF CONTROL THEREOF AND CLEANING ROBOT SYSTEM
CN108991986B (zh) * 2018-09-11 2021-10-26 广东聚晨知识产权代理有限公司 一种吸尘机器人
KR102281134B1 (ko) 2019-08-26 2021-07-26 엘지전자 주식회사 로봇 청소기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517942B1 (ko) * 2003-12-22 2005-09-30 엘지전자 주식회사 로봇 청소기의 흡입헤드 높이조절장치 및 그 방법
KR101108049B1 (ko) * 2004-11-01 2012-01-25 엘지전자 주식회사 로봇 청소기
KR20070032838A (ko) * 2005-09-20 2007-03-23 엘지전자 주식회사 로봇 청소기의 흡입 헤드의 높이 조절 구조
KR20080087596A (ko) * 2007-03-27 2008-10-01 삼성전자주식회사 로봇청소기
KR101932045B1 (ko) * 2012-03-22 2018-12-24 엘지전자 주식회사 로봇청소기

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD938115S1 (en) * 2018-11-30 2021-12-07 Irobot Corporation Autonomous floor cleaning robot
USD1010959S1 (en) 2018-11-30 2024-01-09 Irobot Corporation Lid of an autonomous floor cleaning robot
USD961869S1 (en) 2018-11-30 2022-08-23 Irobot Corporation Top button and lid of an autonomous floor cleaning robot
USD946840S1 (en) * 2019-03-12 2022-03-22 Midea Robozone Technology Co., Ltd. Robot vacuum cleaner
DE102019209415B4 (de) 2019-06-27 2023-06-22 Volkswagen Aktiengesellschaft Saugeinrichtung und Saugroboter
USD935711S1 (en) * 2019-08-28 2021-11-09 Lg Electronics Inc. Robotic vacuum cleaner
USD936922S1 (en) * 2019-08-28 2021-11-23 Lg Electronics Inc. Robotic vacuum cleaner
USD936314S1 (en) * 2019-08-28 2021-11-16 Lg Electronics Inc. Robotic vacuum cleaner
USD938677S1 (en) * 2019-08-28 2021-12-14 Lg Electronics Inc. Robotic vacuum cleaner
USD943227S1 (en) * 2019-08-28 2022-02-08 Lg Electronics Inc. Robotic vacuum cleaner
USD947474S1 (en) * 2019-08-28 2022-03-29 Lg Electronics Inc. Robotic vacuum cleaner
USD930300S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930299S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930298S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
US11638506B2 (en) 2019-11-29 2023-05-02 Lg Electronics Inc. Robot cleaner
US20210186282A1 (en) * 2019-12-09 2021-06-24 Sharkninja Operating Llc Robotic cleaner
US11717120B2 (en) * 2019-12-09 2023-08-08 Sharkninja Operating Llc Robotic cleaner

Also Published As

Publication number Publication date
KR101802233B1 (ko) 2017-11-28
KR20170099627A (ko) 2017-09-01
WO2017146377A1 (ko) 2017-08-31

Similar Documents

Publication Publication Date Title
US20180360281A1 (en) Suction structure of robot vacuum cleaner
JP6706770B2 (ja) 自律走行型掃除機
KR101907161B1 (ko) 로봇청소기
CN103565373B (zh) 自主清洁装置
CN102525351B (zh) 自主式清洁装置
KR102320199B1 (ko) 구동유닛 및 이를 구비하는 로봇청소기
CN106793903B (zh) 机器人清洁器
US8733796B2 (en) Robot cleaner
WO2016056226A1 (ja) 自律走行型掃除機
US20210330153A1 (en) Cleaner
EP3644815B1 (en) Vacuum cleaning utensil having rotating brush
KR101618130B1 (ko) 로봇 청소기
AU2013201339B2 (en) Robot cleaner
US20220061610A1 (en) Surface cleaning utensil
JPWO2019087378A1 (ja) 自走式掃除機
KR101457959B1 (ko) 로봇청소기의 흡입구 지지장치
KR101558509B1 (ko) 로봇청소기
KR20120112292A (ko) 로봇청소기
KR101737485B1 (ko) 로봇 청소기
KR20140096599A (ko) 로봇청소기
KR101558510B1 (ko) 로봇청소기
KR20150075642A (ko) 로봇청소기의 흡입구
KR102482042B1 (ko) 물걸레 로봇청소기
US20220330769A1 (en) Robot cleaner
CN118121126A (zh) 具有旋转刷子的真空清洁用具

Legal Events

Date Code Title Description
AS Assignment

Owner name: YUJIN ROBOT CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIN, KYUNG CHUL;PARK, SEONG JU;LEE, NO SOO;REEL/FRAME:047577/0303

Effective date: 20180824

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION