US20180331238A1 - Solar cell and method for preparing same - Google Patents
Solar cell and method for preparing same Download PDFInfo
- Publication number
- US20180331238A1 US20180331238A1 US15/777,213 US201715777213A US2018331238A1 US 20180331238 A1 US20180331238 A1 US 20180331238A1 US 201715777213 A US201715777213 A US 201715777213A US 2018331238 A1 US2018331238 A1 US 2018331238A1
- Authority
- US
- United States
- Prior art keywords
- layer
- solar cell
- compound
- light absorbing
- impurity material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 56
- 239000012535 impurity Substances 0.000 claims abstract description 95
- 239000000463 material Substances 0.000 claims abstract description 84
- 150000001875 compounds Chemical class 0.000 claims abstract description 74
- 230000005684 electric field Effects 0.000 claims description 23
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 239000010409 thin film Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 17
- 239000010408 film Substances 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 238000004544 sputter deposition Methods 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 238000000231 atomic layer deposition Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 229910016417 CuxSy Inorganic materials 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 38
- 239000004065 semiconductor Substances 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 10
- 238000005215 recombination Methods 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000005118 spray pyrolysis Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- -1 for example Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000001552 radio frequency sputter deposition Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910017612 Cu(In,Ga)Se2 Inorganic materials 0.000 description 1
- 229910002475 Cu2ZnSnS4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0296—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
- H01L31/02963—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/028—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
- H01L31/0288—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0321—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0326—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
- H01L31/0327—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4 characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0328—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
- H01L31/0336—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0328—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
- H01L31/0336—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
- H01L31/03365—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table comprising only Cu2X / CdX heterojunctions, X being an element of Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03925—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/073—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1828—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0322—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
- H01L31/0323—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/543—Solar cells from Group II-VI materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solar cell and a method for preparing the same, and more particularly, to a solar cell structure in which an internal electric field such as a p-n junction is formed by forming an impurity doping layer containing Ti or Si impurities in a Cu compound or Cd compound solar cell which includes an amorphous, polycrystalline or single crystal solar cell to improve the photoelectric conversion efficiency of the solar cell, and to a preparation method thereof.
- a silicon solar cell is a crystalline solar cell including a single crystal solar cell and a polycrystalline solar cell and has the largest market share at present. Technologies for preparing silicon solar cells with high efficiency at low costs are being developed.
- a high quality amorphous silicon film is formed on a crystalline silicon wafer so as to prevent damage to a surface of the wafer, thereby minimizing the occurrence of recombination of carriers on front and rear surfaces, achieving an efficiency of 25.6% exceeding an efficiency wall of 25%.
- a thin film solar cell technology is a next generation solar cell technology as compared with that of a crystalline Si solar cell.
- a thin film solar cell is a solar cell which has higher efficiency than a crystalline Si solar cell and which can be prepared at lower costs.
- a CIGS solar cell is a cell composed of a general glass substrate-a rear electrode-a light absorbing layer-a buffer layer-a transparent front electrode, and the like.
- the light absorbing layer which absorbs sunlight is composed of CIGS or CIS(CuIn(S, Se) 2 ).
- CIGS may be used by replacing Cu, In, and Ga which are cations, and Se which is an anion with different metal ions or anions, respectively, each of which may be called as a CIGS-based compound semiconductor.
- the representative example thereof is Cu(In,Ga)Se 2 and such a CIGS-based compound semiconductor is a material of which the energy band gap as well as the crystal lattice constant may be controlled by changing the type and the composition of cations (for example: Cu, Ag, In, Ga, Al, Zn, Ge, Sn, and the like) and anions (for example: Se and S), both constituting the CIGS-based compound semiconductor.
- a material such as Cu 2 ZnSnS 4 (CZTS) or Cu 2 Sn x Ge y S 3 (CTGS) (wherein, x and y are any positive numbers) is used as a low-cost compound semiconductor material.
- Such a composite compound semiconductor containing Cu has a multi-component structure, and therefore, there is a disadvantage in that it is difficult to have uniformity and reproducibility since it is difficult to optimize the composition by controlling each component material.
- a typical structure has a limitation in improving efficiency through the reduction in recombination of carriers, and the like.
- An object of the present invention is to provide a solar cell structure capable of improving photoelectric conversion efficiency by forming an internal electric field layer such as a p-n junction in a Cu compound or Cd compound semiconductor by doping Ti or Si impurities as a donor so as to reduce the recombination of electrons and holes both generated in the semiconductor by means of light absorption while improving collection efficiency to an electrode, and a preparation method thereof.
- Another object of the present invention is to provide a Cu compound or Cd compound semiconductor solar cell applying an internal electric field formed by the impurity doping as a means for preventing recombination, and a preparation method thereof.
- another object of the present invention is to provide a solar cell which enables the improvement of uniformity and reproducibility by applying a Cu compound or Cd compound semiconductor having a binary composition as a light absorbing layer.
- the first aspect of the present invention to solve the above mentioned task provides a solar cell including a light absorbing layer composed of a Cu compound or Cd compound and formed between two electrodes facing each other, an impurity material layer formed on any one side or both sides between the two electrodes and the light absorbing layer and including an impurity element to be provided to the Cu compound or Cd compound, and a doping layer formed on a portion of the light absorbing layer by means of the impurity element being diffused into the light absorbing layer.
- the second aspect of the present invention to solve the above mentioned task provides a method for preparing a solar cell, including forming a first electrode on a substrate, forming a light absorbing layer on the first electrode, and forming a second electrode on the light absorbing layer, wherein the method further includes forming an impurity material layer including an impurity element on the light absorbing layer adjacent to any one side or both sides of the first electrode or the second electrode, and forming a doping layer by diffusing the impurity element into a portion of the light absorbing layer.
- a solar cell according to the present invention is capable of improving efficiency by reducing the recombination of electrons and holes generated in a semiconductor light absorbing layer and at the same time improving the collection efficiency to an electrode by arranging a material layer capable of impurity doping so as to be adjacent to a light absorbing layer and forming an internal electric field such as a p-n junction through the impurity doping.
- a solar cell according to the present invention is capable of simplifying a process by replacing a typical recombination preventing layer by disposing an impurity material layer so as to be adjacent to a conductive material such as an electrode of a cell.
- an impurity material layer may be formed by applying a vacuum deposition method such as reactive ion sputtering or electron beam evaporation, or by a non-vacuum method such as electroplating, ink printing, and spray pyrolysis.
- a vacuum deposition method such as reactive ion sputtering or electron beam evaporation
- a non-vacuum method such as electroplating, ink printing, and spray pyrolysis.
- a binary compound semiconductor containing Cu or Cd is applied as a light absorbing layer so that the light absorbing layer may be further simplified to facilitate the control of physical properties and be stably maintained. As a result, the efficiency of a solar cell is expected to be maintained for a longer time.
- FIG. 1 is a schematic view showing a cross-sectional structure of a Cu compound semiconductor solar cell including an impurity material layer according to an embodiment of the present invention.
- FIG. 2 is a graph showing a result of measurement of a change in photoelectric conversion current, that is, a short-circuit current according to the application of a reverse bias in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention.
- FIG. 3 shows a case (A) in which a current-voltage characteristic is measured in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention.
- FIG. 4 shows a case (B) in which a current-voltage characteristic is measured after poling by applying a negative voltage ( ⁇ 5 V) in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention.
- the present invention is characterized in providing a solar cell including a light absorbing layer composed of a Cu compound or Cd compound and formed between two electrodes facing each other, an impurity material layer formed on any one side or both sides between the two electrodes and the light absorbing layer and including a donor element to be provided to the Cu compound or Cd compound, and a doping layer formed on a portion of the light absorbing layer by means of the donor element being diffused into the light absorbing layer.
- a p-n junction or an internal electric field layer may be formed in the Cu compound or Cd compound by the doping layer.
- a light absorbing layer material may include, for example, a binary compound containing Cu and having an energy band gap of 1.0-2.1 eV, such as CuO, Cu 2 O, CuS, and Cu 2 S as a p-type semiconductor.
- Cu x O y , and Cu x S y (x and y are any positive numbers) may be preferably used.
- Cd x Te y (wherein, x and y are any positive numbers) may also be preferably used.
- the impurity material layer may include a material which belongs to a group IV or containing an element having four valence electrons or an oxidation number of +4, and may be preferably composed of a metal oxide containing any one or more of Ti and Si.
- the solar cell may exhibit a fluctuation in current as voltage is applied in a light irradiation state.
- the fluctuation in current may be a current variation of 20% or more with respect to a voltage variation of within 5%.
- the fluctuation in current can be reduced to as a current variation to be within 10% with respect to a voltage variation of within 10% through polling which intensifies an internal electric field. That is, according to the present invention, the fluctuation in current can be reduced to as a current variation to be within a certain range with respect to a voltage variation through polling which intensifies the internal electric field of the doping layer.
- the fluctuation in current can be reduced to as the number of times a fluctuation appears decrease through polling which intensifies the internal electric field.
- the present invention is characterized in providing a method for preparing a solar cell, including forming a first electrode on a substrate, forming a light absorbing layer on the first electrode, and forming a second electrode on the light absorbing layer, wherein the method further includes forming an impurity material layer including a donor element on the light absorbing layer adjacent to any one side or both sides of the first electrode or the second electrode, and forming a doping layer by diffusing the donor element into a portion of the light absorbing layer.
- the impurity material layer may be formed by a vacuum deposition process such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD), a non-vacuum thin film process such as plating, ink printing, and spray pyrolysis, or by a method of attaching a film containing an impurity material.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- ALD atomic layer deposition
- non-vacuum thin film process such as plating, ink printing, and spray pyrolysis, or by a method of attaching a film containing an impurity material.
- the method of attaching a film may include preparing a solution by dispersing particles of the impurity material in an organic solvent, applying the solution on the light absorbing layer, and forming a particle layer of the impurity material by evaporating the solvent.
- the method of attaching a film may include forming a film by impregnating the particles of the impurity material into a solvent of thermoplastic resin and then curing the impregnated particles, and attaching the film on the light absorbing layer.
- the size of the particles of the impurity material may be 10 nm to 100 nm, and a preferable size of the particles is about 50 nm.
- the impurity material layer is formed by reactive ion sputtering, and when the impurity material layer is formed, a negative voltage may be applied in a range of 0 V to ⁇ 5 V to accelerate the doping of the donor element contained in impurities into the light absorbing layer.
- the reactive ion sputtering may include providing a target having a component of the impurity material and injecting an inert gas and a reactive gas in a vacuum state, and forming an oxide by generating plasma to cause the impurity material emitted by means of an Ar ion colliding with the target to react with oxygen plasma.
- the impurity material layer is composed of a metal oxide preferably including any one of a Ti oxide (Ti x O y ), a composite oxide of Cu and Ti (Cu x Ti y O z ), and a composite oxide of Cu and Si (Cu x Si y O z ), and may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD).
- a metal oxide preferably including any one of a Ti oxide (Ti x O y ), a composite oxide of Cu and Ti (Cu x Ti y O z ), and a composite oxide of Cu and Si (Cu x Si y O z ), and may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD).
- the Ti oxide may be formed by atomic layer deposition using a precursor containing Ti.
- the doping layer may be formed through a heat treatment simultaneously forming an impurity doping layer.
- the impurity material layer may be applied to replace a typical insulating layer of Al 2 O 3 , and the like which is used as a recombination preventing layer in a compound semiconductor solar cell.
- FIG. 1 is a schematic view of a Cu compound solar cell including an impurity material layer for doping an impurity material according to an embodiment of the present invention.
- a Cu compound solar cell includes a substrate, an Al electrode formed on the substrate, a Cu compound semiconductor layer formed on the Al electrode and serving as a light absorbing layer, an impurity material layer formed on the Cu compound semiconductor layer, a transparent electrode formed on the impurity material layer, and an Al grid formed on the transparent electrode, and a diffusion layer of a donor element such as Ti or Si which the impurity material layer includes is formed in a predetermined region from an interface in contact with the impurity material layer to the inside of the Cu compound semiconductor layer.
- a preparation process of a solar cell having the above-described structure is as follows.
- soda lime glass having a thickness of 3 mm was used as a substrate.
- an Al thin film was formed to a thickness of about 1 to 2 ⁇ m by using a sputtering method.
- a conductive material such as Mo and W may be used in addition to Al.
- a conductive material such as Al may be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- a thin film of Cu x O y or Cu x S y (wherein, x and y are any positive numbers), which is a p-type semiconductor, was formed to a thickness of 1 to pm by applying a sputtering method which has a high deposition rate to form a light absorbing layer composed of a binary Cu compound semiconductor.
- the light absorption layer is formed by using a material having a purity of 99.99% or more and having a compound composition containing Cu, O, or S as a sputtering target, and by performing a deposition step of an electric polarization layer by reactive ion sputtering, the step of which is divided into four sections for each time period.
- a sputtering target material is provided using a material containing Cu or S, for example, Cu, or CuS, and the like.
- Ar as a carrier gas
- O 2 or S 2 as a reaction gas
- a Cu compound containing Cu and O, or Cu and S is formed by means of oxygen or sulfur ions generated from the reaction gases reacted with the emitted metal atoms to form a Cu compound thin film containing Cu x O y or Cu x S y .
- the light absorbing layer may be formed to a thickness of about 1 to 5 ⁇ m by the sputtering, under the conditions of a process temperature of 200° C. or less, a process pressure of 2 mTorr, an Ar flow rate of 20 to 50 sccm, a O 2 flow rate of 10 to 30 sccm, and a direct current voltage of 500 to 800 V.
- the most preferable process conditions of 300° C. and 30 minutes may be applied to form a light absorbing layer of a thickness of about 2 ⁇ m containing a Cu compound such as Cu x O y or Cu x S y .
- the light absorbing layer may also be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- an impurity material layer is formed to a thickness of about 100 nm or less by deposition.
- the thickness of the impurity material layer is less than 10 nm, doping amount is insufficient, and when greater than 100 nm, resistance is increased due to a residual thickness. Therefore, it is most preferable to form the impurity material layer at a thickness of 10 to 100 nm.
- a thin film of a Ti oxide, a Cu and Ti composite oxide, or a Cu and Si composite oxide is formed to a thickness of about 50 nm by an RF sputtering method, which is advantageous in deposition rate, to form an impurity material layer.
- a material having a purity of 99.99% or more and having a compound composition containing Cu, Ti, and S is used as the sputtering target.
- the deposition step of the impurity material layer by a reactive ion RF sputtering method is divided into four sections for each time period.
- a sputtering target material is provided using a material containing Cu, TI, and O, for example, CuTiO 3 , and the like.
- Ar as a carrier gas
- O 2 as a reaction gas
- plasma is generated to emit metal atoms from the target material using Ar ions.
- an oxide containing Cu and Ti is formed by means of oxygen ions reacted with the emitted metal atoms to form a thin film containing a Cu and TI composite compound (Cu x Ti y O z ).
- the impurity material layer of a thickness of about 10 nm to 100 nm may be formed by the RF-sputtering under the conditions of a process temperature of 200° C. or less, a process pressure of 5 mTorr, an Ar flow rate of 20 to 50 sccm, a O 2 flow rate of 10 to 30 sccm, an AC frequency of 2.5 to 3 MHz, a voltage of 300 to 500 V, and time of within 10 minutes.
- an impurity material layer of 50 nm including a Cu x Ti y O z composite oxide such as CuTiO 3 and the like may be formed by applying the conditions of 200° C. and 4 minutes.
- an impurity material layer may be formed in a similar manner as in the case of a Cu x Ti y O z thin film.
- a p-n junction or an internal electric field may be formed by forming a Cu x Ti y O z thin film or a Cu x Si y O z thin film on a Cu compound semiconductor, or by a method in which Ti atoms or ions are diffused to be doped into a portion of the light absorbing layer through a heat treatment after the formation.
- an impurity material layer may be formed through, for example, a step of adsorbing a precursor in which a Ti compound is mixed to the light absorbing layer by using atomic layer deposition, and a step of forming an oxide by oxidizing the adsorbing layer of the precursor in which a Ti compound is mixed.
- tetrakis(dimethylamino)titanium(TDMAT:Ti[N(CH 3 ) 2 ] 4 ), tetrakis(diethylamido) titanium(TDEAT:Ti[N(C 2 H 5 ) 2 ] 4 ), tetrakis(ethylmethylamido)titanium(TEMAT:Ti[N (C 2 H 5 ) (CH 3 )] 4 ), titanium tetraisopropoxide(TTIP:Ti[OCH(CH 3 ) 2 ] 4 ), and the like may be used as a Ti compound precursor.
- the atomic layer deposition step is performed by repeating a process divided into four sections for each time period.
- an adsorbing layer of a precursor material (a Ti compound) is formed by adsorbing the precursor material using a Ti compound precursor having Ar as a diluent gas (the first step). Then, by-products and residual gas are removed using an Ar gas (the second step). Next, plasma is generated while oxygen is injected to be subjected to an oxidation reaction with the adsorbing layer (the third step). Finally, by-products and residual gas are removed using an Ar gas (the fourth step) to form a TiO 2 thin film or an oxide film of a Ti compound.
- the first step is performed for 0.3 to 5 seconds
- the second step is performed for 10 to 20 seconds
- the third step is performed for 3 to 5 seconds
- the fourth step is performed for 10 to 20 seconds.
- the four steps are considered to be one cycle, and by repeating 100 to 500 cycles according to a film formation thickness and a film formation rate (about 0.1 nm/sec) under a reaction temperature of 100 to 300° C., the impurity material layer may be formed to a thickness of 50 nm.
- an impurity material layer of about 50 nm composed of an oxidized material of a Ti compound is formed by causing TiO 2 and a Cu compound semiconductor formed by applying 500 cycles of atomic layer deposition which is composed of 1 second of the first step, 10 seconds of the second step, 3 seconds of the third step, and 5 seconds of the fourth step to react with each other chemically.
- a gas injection rate of 50 sccm may be applied at each step, and in the first step, hydrogen (H 2 ) gas may be simultaneously applied together with the Ti compound precursor.
- a p-n junction or an internal electric field may be formed by forming a TiO 2 layer on the Cu compound semiconductor, or by a method in which Ti atoms and ions of the TiO 2 layer are diffused to be doped into the light absorbing layer through a heat treatment after the formation.
- the impurity material layer may be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- a transparent electrode is formed by depositing a transparent conductive material on the electric polarization layer.
- a transparent conductive material a material such as indium tin oxide (ITO), zinc oxide (ZnO), aluminum-doped zinc oxide (Al-doped ZnO), and fluorine-doped tin oxide (F-doped SnO 2 ) may be formed by sputtering.
- Ag is printed by screen printing and then firing heat treated to form an Ag grid, completing the preparation of the solar cell.
- the impurity material layer is formed by first forming an electrode pattern, and then before performing the firing heat treatment, forming an impurity material on a front surface, a rear surface, or both surfaces by a vacuum deposition method such as sputtering, or a low cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis. Thereafter, the firing heat treatment is performed to complete the preparation of the solar cell.
- a vacuum deposition method such as sputtering, or a low cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis.
- the impurity material layer may be formed using a method of first forming an electrode pattern, and then attaching a particle layer or a film containing the impurity material on a front surface, a rear surface, or both surfaces so as to be in contact with the electrode before or after the firing heat treatment.
- the size of the impurity particles may be 10 nm to 100 nm, preferably about 50 nm.
- poling may be applied to enhance the internal electric field by applying reverse bias to the substrate.
- a reverse bias voltage is within a range of the reverse breakdown voltage of a Cu compound semiconductor diode, and may be preferably a negative voltage within 0 to ⁇ 5 V.
- FIG. 2 is a graph showing a result of measuring a short-circuit current while applying reverse bias in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention, and showing that the short-circuit current increases as polling is increased by the reverse bias.
- the present invention exhibits an effect of increasing photoelectric conversion current by forming an internal electric field such as a p-n junction through a process of doping impurities into a Cu compound semiconductor to which an impurity material layer is adjacent so that the recombination of photo-excited charge carriers is reduced.
- the magnitude of such fluctuations may vary such that a variation of 20% to 120% (increase or decrease) in current may be exhibited, for example, with respect to a voltage variation (increase or decrease) of within 5%.
- the irregular fluctuations are reduced if polling is performed which intensifies the internal electric field by applying an arbitrary reverse voltage or negative voltage to the internal electric field layer.
- a current variation can be reduced to as 10% or less with respect to a voltage variation of within 10%, and the number of times that a fluctuation, that is, an irregular increase or decrease, appears, is reduced.
- a Cu compound solar cell including an impurity material layer including an impurity material layer according to the embodiment of the present invention
- the reproducibility and the uniformity in the physical properties of the compound may be improved when the light absorbing layer is formed. Therefore, it is advantageous in terms of the uniformity, reproducibility and performance optimization of a solar cell that a binary Cu compound semiconductor of the present invention is applied as a light absorbing layer compared with a case in which a multi-component system is applied.
- a solar cell including a binary semiconductor light absorbing layer containing Cd such as CdTe and Cd x Te y (wherein, x and y are positive numbers) also has effects of forming an internal electric field, and increasing an efficiency by introducing an impurity material layer.
- a light absorbing layer composed of a binary semiconductor containing Cu or Cd, such as Cu x O y , Cu x S y , and Cd x Te y (wherein, x and y are any positive numbers) is a p-type semiconductor
- a solar cell having an impurity material layer capable of doping a donor element is described.
- a light absorbing layer is composed of an n-type semiconductor
- an internal electric field such as a p-n junction is formed to reduce the recombination of electrons and holes generated in a semiconductor light absorbing layer and at the same time, the collection efficiency to an electrode is improved, thereby increasing the efficiency of a solar cell.
- the present invention includes a case in which the method for forming an internal electric field layer by doping an impurity layer proposed in an embodiment is applied to a single type solar cell composed of only a single element such as Si or Ge, in addition to a compound solar cell.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
A solar cell includes a light-absorbing layer, comprising a Cu compound or Cd compound, between two electrodes facing each other, has an impurity material layer, comprising an impurity element to be provided to the Cu compound or Cd compound, formed on any one side or both sides between the two electrodes and the light absorbing layer, and has a doping layer formed on one part of the light absorbing layer by means of the impurity element being diffused on the light absorbing layer.
Description
- The present invention relates to a solar cell and a method for preparing the same, and more particularly, to a solar cell structure in which an internal electric field such as a p-n junction is formed by forming an impurity doping layer containing Ti or Si impurities in a Cu compound or Cd compound solar cell which includes an amorphous, polycrystalline or single crystal solar cell to improve the photoelectric conversion efficiency of the solar cell, and to a preparation method thereof.
- A silicon solar cell is a crystalline solar cell including a single crystal solar cell and a polycrystalline solar cell and has the largest market share at present. Technologies for preparing silicon solar cells with high efficiency at low costs are being developed.
- For the past 20 years, the most efficient silicon solar cell in the world has been a cell with 25% efficiency using the PERL (Passive Emitter Rear Locally Diffused) structure developed by University of New South Wales, Australia. However, at the IEEE Photovoltaic Specialists Conference in April 2014, Panasonic Corporation announced that they achieved a solar cell efficiency of 25.6% by adopting a new structure. In this solar cell, a front contact for blocking some of the sunlight entering the solar cell is changed such that both positive and negative contacts are located on a rear surface of the solar cell. In addition, a high quality amorphous silicon film is formed on a crystalline silicon wafer so as to prevent damage to a surface of the wafer, thereby minimizing the occurrence of recombination of carriers on front and rear surfaces, achieving an efficiency of 25.6% exceeding an efficiency wall of 25%.
- However, all the designs related to this new efficiency record have the disadvantage of using a high quality silicon crystal, which makes it difficult to obtain economical efficiency.
- On the other hand, a thin film solar cell technology is a next generation solar cell technology as compared with that of a crystalline Si solar cell. A thin film solar cell is a solar cell which has higher efficiency than a crystalline Si solar cell and which can be prepared at lower costs.
- Many different types of thin film solar cells are being developed, and the representative example thereof is a CIGS(Cu(In,Ga) Se2) solar cell.
- A CIGS solar cell is a cell composed of a general glass substrate-a rear electrode-a light absorbing layer-a buffer layer-a transparent front electrode, and the like. Among the components, the light absorbing layer which absorbs sunlight is composed of CIGS or CIS(CuIn(S, Se)2). CIGS may be used by replacing Cu, In, and Ga which are cations, and Se which is an anion with different metal ions or anions, respectively, each of which may be called as a CIGS-based compound semiconductor. The representative example thereof is Cu(In,Ga)Se2 and such a CIGS-based compound semiconductor is a material of which the energy band gap as well as the crystal lattice constant may be controlled by changing the type and the composition of cations (for example: Cu, Ag, In, Ga, Al, Zn, Ge, Sn, and the like) and anions (for example: Se and S), both constituting the CIGS-based compound semiconductor. For example, recently, a material such as Cu2ZnSnS4(CZTS) or Cu2SnxGeyS3(CTGS) (wherein, x and y are any positive numbers) is used as a low-cost compound semiconductor material.
- However, such a composite compound semiconductor containing Cu has a multi-component structure, and therefore, there is a disadvantage in that it is difficult to have uniformity and reproducibility since it is difficult to optimize the composition by controlling each component material. In addition, a typical structure has a limitation in improving efficiency through the reduction in recombination of carriers, and the like.
- An object of the present invention is to provide a solar cell structure capable of improving photoelectric conversion efficiency by forming an internal electric field layer such as a p-n junction in a Cu compound or Cd compound semiconductor by doping Ti or Si impurities as a donor so as to reduce the recombination of electrons and holes both generated in the semiconductor by means of light absorption while improving collection efficiency to an electrode, and a preparation method thereof.
- In addition, another object of the present invention is to provide a Cu compound or Cd compound semiconductor solar cell applying an internal electric field formed by the impurity doping as a means for preventing recombination, and a preparation method thereof.
- In particular, another object of the present invention is to provide a solar cell which enables the improvement of uniformity and reproducibility by applying a Cu compound or Cd compound semiconductor having a binary composition as a light absorbing layer.
- The first aspect of the present invention to solve the above mentioned task provides a solar cell including a light absorbing layer composed of a Cu compound or Cd compound and formed between two electrodes facing each other, an impurity material layer formed on any one side or both sides between the two electrodes and the light absorbing layer and including an impurity element to be provided to the Cu compound or Cd compound, and a doping layer formed on a portion of the light absorbing layer by means of the impurity element being diffused into the light absorbing layer.
- The second aspect of the present invention to solve the above mentioned task provides a method for preparing a solar cell, including forming a first electrode on a substrate, forming a light absorbing layer on the first electrode, and forming a second electrode on the light absorbing layer, wherein the method further includes forming an impurity material layer including an impurity element on the light absorbing layer adjacent to any one side or both sides of the first electrode or the second electrode, and forming a doping layer by diffusing the impurity element into a portion of the light absorbing layer.
- A solar cell according to the present invention is capable of improving efficiency by reducing the recombination of electrons and holes generated in a semiconductor light absorbing layer and at the same time improving the collection efficiency to an electrode by arranging a material layer capable of impurity doping so as to be adjacent to a light absorbing layer and forming an internal electric field such as a p-n junction through the impurity doping.
- In addition, a solar cell according to the present invention is capable of simplifying a process by replacing a typical recombination preventing layer by disposing an impurity material layer so as to be adjacent to a conductive material such as an electrode of a cell.
- In addition, according to a method for preparing a solar cell according to the present invention, an impurity material layer may be formed by applying a vacuum deposition method such as reactive ion sputtering or electron beam evaporation, or by a non-vacuum method such as electroplating, ink printing, and spray pyrolysis.
- In addition, according to a method for preparing a solar cell according to the present invention, a binary compound semiconductor containing Cu or Cd is applied as a light absorbing layer so that the light absorbing layer may be further simplified to facilitate the control of physical properties and be stably maintained. As a result, the efficiency of a solar cell is expected to be maintained for a longer time.
-
FIG. 1 is a schematic view showing a cross-sectional structure of a Cu compound semiconductor solar cell including an impurity material layer according to an embodiment of the present invention. -
FIG. 2 is a graph showing a result of measurement of a change in photoelectric conversion current, that is, a short-circuit current according to the application of a reverse bias in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention. -
FIG. 3 shows a case (A) in which a current-voltage characteristic is measured in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention. -
FIG. 4 shows a case (B) in which a current-voltage characteristic is measured after poling by applying a negative voltage (−5 V) in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention. - Hereinafter, the configuration and the operation of embodiments of the present invention will be described with reference to the accompanying drawings.
- In describing the present invention, a detailed description of related known functions and configurations will be omitted when it may unnecessarily make the gist of the present invention obscure. Also, when a certain portion is referred to “include” a certain element, it is understood that it may further include other elements, not excluding the other elements, unless specifically stated otherwise.
- The present invention is characterized in providing a solar cell including a light absorbing layer composed of a Cu compound or Cd compound and formed between two electrodes facing each other, an impurity material layer formed on any one side or both sides between the two electrodes and the light absorbing layer and including a donor element to be provided to the Cu compound or Cd compound, and a doping layer formed on a portion of the light absorbing layer by means of the donor element being diffused into the light absorbing layer.
- A p-n junction or an internal electric field layer may be formed in the Cu compound or Cd compound by the doping layer.
- A light absorbing layer material may include, for example, a binary compound containing Cu and having an energy band gap of 1.0-2.1 eV, such as CuO, Cu2O, CuS, and Cu2S as a p-type semiconductor. CuxOy, and CuxSy (x and y are any positive numbers) may be preferably used. In addition, CdxTey (wherein, x and y are any positive numbers) may also be preferably used.
- The impurity material layer may include a material which belongs to a group IV or containing an element having four valence electrons or an oxidation number of +4, and may be preferably composed of a metal oxide containing any one or more of Ti and Si.
- In addition, the solar cell may exhibit a fluctuation in current as voltage is applied in a light irradiation state. The fluctuation in current may be a current variation of 20% or more with respect to a voltage variation of within 5%. In addition, the fluctuation in current can be reduced to as a current variation to be within 10% with respect to a voltage variation of within 10% through polling which intensifies an internal electric field. That is, according to the present invention, the fluctuation in current can be reduced to as a current variation to be within a certain range with respect to a voltage variation through polling which intensifies the internal electric field of the doping layer. In addition, the fluctuation in current can be reduced to as the number of times a fluctuation appears decrease through polling which intensifies the internal electric field.
- In addition, the present invention is characterized in providing a method for preparing a solar cell, including forming a first electrode on a substrate, forming a light absorbing layer on the first electrode, and forming a second electrode on the light absorbing layer, wherein the method further includes forming an impurity material layer including a donor element on the light absorbing layer adjacent to any one side or both sides of the first electrode or the second electrode, and forming a doping layer by diffusing the donor element into a portion of the light absorbing layer.
- The impurity material layer may be formed by a vacuum deposition process such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD), a non-vacuum thin film process such as plating, ink printing, and spray pyrolysis, or by a method of attaching a film containing an impurity material.
- The method of attaching a film may include preparing a solution by dispersing particles of the impurity material in an organic solvent, applying the solution on the light absorbing layer, and forming a particle layer of the impurity material by evaporating the solvent.
- In addition, the method of attaching a film may include forming a film by impregnating the particles of the impurity material into a solvent of thermoplastic resin and then curing the impregnated particles, and attaching the film on the light absorbing layer.
- At this time, the size of the particles of the impurity material may be 10 nm to 100 nm, and a preferable size of the particles is about 50 nm.
- The impurity material layer is formed by reactive ion sputtering, and when the impurity material layer is formed, a negative voltage may be applied in a range of 0 V to −5 V to accelerate the doping of the donor element contained in impurities into the light absorbing layer.
- At this time, the reactive ion sputtering may include providing a target having a component of the impurity material and injecting an inert gas and a reactive gas in a vacuum state, and forming an oxide by generating plasma to cause the impurity material emitted by means of an Ar ion colliding with the target to react with oxygen plasma.
- The impurity material layer is composed of a metal oxide preferably including any one of a Ti oxide (TixOy), a composite oxide of Cu and Ti (CuxTiyOz), and a composite oxide of Cu and Si (CuxSiyOz), and may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD).
- The Ti oxide may be formed by atomic layer deposition using a precursor containing Ti.
- In addition, the doping layer may be formed through a heat treatment simultaneously forming an impurity doping layer.
- In addition, the impurity material layer may be applied to replace a typical insulating layer of Al2O3, and the like which is used as a recombination preventing layer in a compound semiconductor solar cell.
-
FIG. 1 is a schematic view of a Cu compound solar cell including an impurity material layer for doping an impurity material according to an embodiment of the present invention. - As shown in
FIG. 1 , a Cu compound solar cell according to an embodiment of the present invention includes a substrate, an Al electrode formed on the substrate, a Cu compound semiconductor layer formed on the Al electrode and serving as a light absorbing layer, an impurity material layer formed on the Cu compound semiconductor layer, a transparent electrode formed on the impurity material layer, and an Al grid formed on the transparent electrode, and a diffusion layer of a donor element such as Ti or Si which the impurity material layer includes is formed in a predetermined region from an interface in contact with the impurity material layer to the inside of the Cu compound semiconductor layer. - A preparation process of a solar cell having the above-described structure is as follows.
- First, as a substrate, soda lime glass having a thickness of 3 mm was used.
- Next, as a rear electrode, an Al thin film was formed to a thickness of about 1 to 2 μm by using a sputtering method. As a rear electrode material, a conductive material such as Mo and W may be used in addition to Al. In addition, a conductive material such as Al may be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- Thereafter, on the Al thin film, a thin film of CuxOy or CuxSy (wherein, x and y are any positive numbers), which is a p-type semiconductor, was formed to a thickness of 1 to pm by applying a sputtering method which has a high deposition rate to form a light absorbing layer composed of a binary Cu compound semiconductor.
- Specifically, the light absorption layer is formed by using a material having a purity of 99.99% or more and having a compound composition containing Cu, O, or S as a sputtering target, and by performing a deposition step of an electric polarization layer by reactive ion sputtering, the step of which is divided into four sections for each time period. First, a sputtering target material is provided using a material containing Cu or S, for example, Cu, or CuS, and the like. Thereafter, Ar, as a carrier gas, and O2 or S2, as a reaction gas, are injected. Next, plasma is generated to emit metal atoms from the target material using Ar ions. Finally, a Cu compound containing Cu and O, or Cu and S is formed by means of oxygen or sulfur ions generated from the reaction gases reacted with the emitted metal atoms to form a Cu compound thin film containing CuxOy or CuxSy.
- The light absorbing layer may be formed to a thickness of about 1 to 5 μm by the sputtering, under the conditions of a process temperature of 200° C. or less, a process pressure of 2 mTorr, an Ar flow rate of 20 to 50 sccm, a O2 flow rate of 10 to 30 sccm, and a direct current voltage of 500 to 800 V. The most preferable process conditions of 300° C. and 30 minutes may be applied to form a light absorbing layer of a thickness of about 2 μm containing a Cu compound such as CuxOy or CuxSy.
- The light absorbing layer may also be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- Thereafter, on the light absorption layer, an impurity material layer is formed to a thickness of about 100 nm or less by deposition.
- When the thickness of the impurity material layer is less than 10 nm, doping amount is insufficient, and when greater than 100 nm, resistance is increased due to a residual thickness. Therefore, it is most preferable to form the impurity material layer at a thickness of 10 to 100 nm.
- Specifically, when an oxide is applied as the impurity material, a thin film of a Ti oxide, a Cu and Ti composite oxide, or a Cu and Si composite oxide is formed to a thickness of about 50 nm by an RF sputtering method, which is advantageous in deposition rate, to form an impurity material layer.
- Specifically, when forming the thin film of a Cu and Ti composite oxide, a material having a purity of 99.99% or more and having a compound composition containing Cu, Ti, and S is used as the sputtering target.
- The deposition step of the impurity material layer by a reactive ion RF sputtering method is divided into four sections for each time period. First, a sputtering target material is provided using a material containing Cu, TI, and O, for example, CuTiO3, and the like. Thereafter, Ar as a carrier gas, and O2 as a reaction gas, are injected. Next, plasma is generated to emit metal atoms from the target material using Ar ions. Finally, an oxide containing Cu and Ti is formed by means of oxygen ions reacted with the emitted metal atoms to form a thin film containing a Cu and TI composite compound (CuxTiyOz).
- The impurity material layer of a thickness of about 10 nm to 100 nm may be formed by the RF-sputtering under the conditions of a process temperature of 200° C. or less, a process pressure of 5 mTorr, an Ar flow rate of 20 to 50 sccm, a O2 flow rate of 10 to 30 sccm, an AC frequency of 2.5 to 3 MHz, a voltage of 300 to 500 V, and time of within 10 minutes. Preferably, an impurity material layer of 50 nm including a CuxTiyOz composite oxide such as CuTiO3 and the like may be formed by applying the conditions of 200° C. and 4 minutes.
- In addition, when forming a thin film of a Cu and Si composition oxide (CuxSiyOz), an impurity material layer may be formed in a similar manner as in the case of a CuxTiyOz thin film.
- In addition, a p-n junction or an internal electric field may be formed by forming a CuxTiyOz thin film or a CuxSiyOz thin film on a Cu compound semiconductor, or by a method in which Ti atoms or ions are diffused to be doped into a portion of the light absorbing layer through a heat treatment after the formation.
- On the other hand, in the case of forming a Ti oxide (TixOy) thin film, an impurity material layer may be formed through, for example, a step of adsorbing a precursor in which a Ti compound is mixed to the light absorbing layer by using atomic layer deposition, and a step of forming an oxide by oxidizing the adsorbing layer of the precursor in which a Ti compound is mixed.
- More specifically, in the case of forming a TixOy thin film, tetrakis(dimethylamino)titanium(TDMAT:Ti[N(CH3)2]4), tetrakis(diethylamido) titanium(TDEAT:Ti[N(C2H5)2]4), tetrakis(ethylmethylamido)titanium(TEMAT:Ti[N (C2H5) (CH3)]4), titanium tetraisopropoxide(TTIP:Ti[OCH(CH3)2]4), and the like may be used as a Ti compound precursor.
- The atomic layer deposition step is performed by repeating a process divided into four sections for each time period.
- First, an adsorbing layer of a precursor material (a Ti compound) is formed by adsorbing the precursor material using a Ti compound precursor having Ar as a diluent gas (the first step). Then, by-products and residual gas are removed using an Ar gas (the second step). Next, plasma is generated while oxygen is injected to be subjected to an oxidation reaction with the adsorbing layer (the third step). Finally, by-products and residual gas are removed using an Ar gas (the fourth step) to form a TiO2 thin film or an oxide film of a Ti compound.
- For example, the first step is performed for 0.3 to 5 seconds, the second step is performed for 10 to 20 seconds, the third step is performed for 3 to 5 seconds, and the fourth step is performed for 10 to 20 seconds. The four steps are considered to be one cycle, and by repeating 100 to 500 cycles according to a film formation thickness and a film formation rate (about 0.1 nm/sec) under a reaction temperature of 100 to 300° C., the impurity material layer may be formed to a thickness of 50 nm.
- Preferably, under a temperature of 200° C., an impurity material layer of about 50 nm composed of an oxidized material of a Ti compound is formed by causing TiO2 and a Cu compound semiconductor formed by applying 500 cycles of atomic layer deposition which is composed of 1 second of the first step, 10 seconds of the second step, 3 seconds of the third step, and 5 seconds of the fourth step to react with each other chemically. At this time, a gas injection rate of 50 sccm may be applied at each step, and in the first step, hydrogen (H2) gas may be simultaneously applied together with the Ti compound precursor.
- In addition, a p-n junction or an internal electric field may be formed by forming a TiO2 layer on the Cu compound semiconductor, or by a method in which Ti atoms and ions of the TiO2 layer are diffused to be doped into the light absorbing layer through a heat treatment after the formation.
- In addition, the impurity material layer may be formed by applying a low-cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis in addition to a vacuum deposition method such as sputtering.
- Next, as an upper portion electrode of the solar cell, a transparent electrode is formed by depositing a transparent conductive material on the electric polarization layer. At this time, as the transparent conductive material, a material such as indium tin oxide (ITO), zinc oxide (ZnO), aluminum-doped zinc oxide (Al-doped ZnO), and fluorine-doped tin oxide (F-doped SnO2) may be formed by sputtering.
- Finally, as an additional upper portion electrode, Ag is printed by screen printing and then firing heat treated to form an Ag grid, completing the preparation of the solar cell.
- On the other hand, the impurity material layer is formed by first forming an electrode pattern, and then before performing the firing heat treatment, forming an impurity material on a front surface, a rear surface, or both surfaces by a vacuum deposition method such as sputtering, or a low cost non-vacuum method such as electroplating, ink printing, and spray pyrolysis. Thereafter, the firing heat treatment is performed to complete the preparation of the solar cell.
- In addition, the impurity material layer may be formed using a method of first forming an electrode pattern, and then attaching a particle layer or a film containing the impurity material on a front surface, a rear surface, or both surfaces so as to be in contact with the electrode before or after the firing heat treatment.
- In this case, a method of dispersing impurity particles containing a complex oxide such as CuTiO3 or CuSiO3 in an organic solvent such as acetone or toluene, coating the solution by a spray method, and evaporating the solvent to form a particle layer of impurities, and a method of impregnating strong impurity particles with a solvent of thermoplastic resin having a softening point of 120° C. or higher, such as polyethylene, polystyrene, and polyphenylene ether, followed by hardening to form a polymer film, and then laminating the film on a surface of the solar cell may be applied. At this time, the size of the impurity particles may be 10 nm to 100 nm, preferably about 50 nm.
- In addition, during or after the formation of the impurity material layer, poling may be applied to enhance the internal electric field by applying reverse bias to the substrate. At this time, a reverse bias voltage is within a range of the reverse breakdown voltage of a Cu compound semiconductor diode, and may be preferably a negative voltage within 0 to −5 V.
-
FIG. 2 is a graph showing a result of measuring a short-circuit current while applying reverse bias in a light irradiation state in a Cu compound solar cell including an impurity material layer according to an embodiment of the present invention, and showing that the short-circuit current increases as polling is increased by the reverse bias. - As a result, the present invention exhibits an effect of increasing photoelectric conversion current by forming an internal electric field such as a p-n junction through a process of doping impurities into a Cu compound semiconductor to which an impurity material layer is adjacent so that the recombination of photo-excited charge carriers is reduced.
- On the other hand, due to the characteristics of an internal electric field layer, when the change in current is measured while increasing or decreasing the range of voltage including operating voltage in a light irradiation state, the direction and the magnitude of an electric field in the internal electric field layer changes according to the applied voltage. Therefore, as shown in
FIG. 3 , current does not increase or decrease regularly with respect to the change in voltage, and irregular fluctuations appear. - The magnitude of such fluctuations may vary such that a variation of 20% to 120% (increase or decrease) in current may be exhibited, for example, with respect to a voltage variation (increase or decrease) of within 5%.
- The irregular fluctuations are reduced if polling is performed which intensifies the internal electric field by applying an arbitrary reverse voltage or negative voltage to the internal electric field layer. As shown in
FIG. 4 , for example, a current variation can be reduced to as 10% or less with respect to a voltage variation of within 10%, and the number of times that a fluctuation, that is, an irregular increase or decrease, appears, is reduced. - On the other hand, in a Cu compound solar cell including an impurity material layer according to the embodiment of the present invention, as the number of types of components of a light absorbing layer is decreased from CIGS of four-component system, CIS(CuInS2) of three-component system, Cu2S of binary system, and the like, the reproducibility and the uniformity in the physical properties of the compound may be improved when the light absorbing layer is formed. Therefore, it is advantageous in terms of the uniformity, reproducibility and performance optimization of a solar cell that a binary Cu compound semiconductor of the present invention is applied as a light absorbing layer compared with a case in which a multi-component system is applied.
- In addition, although a solar cell in which a binary semiconductor containing Cu is applied as a light absorbing layer is described in an embodiment of the present invention, a solar cell including a binary semiconductor light absorbing layer containing Cd, such as CdTe and CdxTey (wherein, x and y are positive numbers) also has effects of forming an internal electric field, and increasing an efficiency by introducing an impurity material layer.
- In addition, in the embodiment of the present invention, since a light absorbing layer composed of a binary semiconductor containing Cu or Cd, such as CuxOy, CuxSy, and CdxTey (wherein, x and y are any positive numbers) is a p-type semiconductor, a solar cell having an impurity material layer capable of doping a donor element is described. However, when a light absorbing layer is composed of an n-type semiconductor, as in the case of forming a doping layer in a light absorbing layer through an impurity material layer capable of doping an acceptor element, an internal electric field such as a p-n junction is formed to reduce the recombination of electrons and holes generated in a semiconductor light absorbing layer and at the same time, the collection efficiency to an electrode is improved, thereby increasing the efficiency of a solar cell.
- The present invention includes a case in which the method for forming an internal electric field layer by doping an impurity layer proposed in an embodiment is applied to a single type solar cell composed of only a single element such as Si or Ge, in addition to a compound solar cell.
Claims (20)
1. A solar cell comprising: a light absorbing layer composed of a Cu compound or Cd compound between two electrodes facing each other;
an impurity material layer formed on any one side or both sides between the two electrodes and the light absorbing layer and including an impurity elements to be provided to the Cu compound or Cd compound; and
a doping layer formed on a portion of the light absorbing layer by means of the impurity elements being diffused into the light absorbing layer.
2. The solar cell of claim 1 , wherein a p-n junction or an internal electric field layer is formed in the Cu compound or Cd compound by the doping layer.
3. The solar cell of claim 1 , wherein the Cu compound or Cd compound has a binary composition.
4. The solar cell of claim 3 , wherein the Cu compound is CuxOy (wherein, x and y are any positive numbers) or CuxSy (wherein, x and y are any positive numbers), and the Cd compound is CdxTey (wherein, x and y are any positive numbers).
5. The solar cell of claim 1 , wherein the impurity material layer is composed of a metal oxide containing any one or more of Ti and Si.
6. The solar cell of claim 1 , exhibiting a fluctuation in current as voltage is applied in a light irradiation state.
7. The solar cell of claim 6 , wherein the fluctuation in current is a current variation of 20% or more with respect to a voltage variation of within 5%.
8. The solar cell of claim 6 , wherein the fluctuation in current can be reduced to as a current variation to be within 10% with respect to a voltage variation of within 10% through polling which intensifies an internal electric field.
9. The solar cell of claim 6 , wherein the fluctuation in current can be reduced to as the number of times a fluctuation appears decrease through polling which intensifies the internal electric field.
10. A method for preparing a solar cell, comprising: forming a first electrode on a substrate; forming a light absorbing layer on the first electrode; and forming a second electrode on the light absorbing layer, wherein the method further comprises forming an impurity material layer including an impurity element on the light absorbing layer adjacent to the first electrode or the second electrode in any one side or both sides thereof, and forming a doping layer by diffusing the impurity element into a portion of the light absorbing layer.
11. The method of claim 10 , wherein the impurity material layer is formed through a thin film process, or formed by a method of attaching a film containing an impurity material.
12. The method of claim 11 , wherein the method of attaching a film comprises: preparing a solution by dispersing particles of the impurity material in an organic solvent; applying the solution on the light absorbing layer; and forming a particle layer of the impurity material by evaporating the solvent.
13. The method of claim 11 , wherein the method of attaching a film comprises: forming a film by impregnating the particles of the impurity material into a solvent of a thermoplastic resin and then curing the impregnated particles; and adhering the film on the light absorbing layer.
14. The method of claim 12 , wherein the size of the particles of the impurity material is 10 to 100 nm.
15. The method of claim 10 , wherein the impurity material layer is formed by reactive ion sputtering, and when the impurity material layer is formed, a negative voltage is applied in a range of 0 V to −5 V to accelerate the doping of the impurity element contained in impurities into the light absorbing layer.
16. The method of claim 15 , wherein the reactive ion sputtering comprises: providing a target having a component of the impurity material and injecting an inert gas and a reactive gas in a vacuum state; and forming an oxide by generating plasma to cause the impurity material emitted by means of an Ar ion colliding with the target to react with oxygen plasma.
17. The method of claim 10 , wherein the impurity material layer is composed of a metal oxide, and formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD).
18. The method of claim 17 , wherein a metal oxide layer is formed by atomic layer deposition using a precursor containing Ti.
19. The method of claim 17 , wherein the metal oxide layer comprises any one of a Ti oxide, a composite oxide of Cu and Ti, and a composite oxide of Cu and Si.
20. The method of claim 13 , wherein the size of the particles of the impurity material is 10 to 100 nm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160019191A KR20170097440A (en) | 2016-02-18 | 2016-02-18 | Solar cells and manufacturing method for the same |
KR10-2016-0019191 | 2016-02-18 | ||
PCT/KR2017/001840 WO2017142380A1 (en) | 2016-02-18 | 2017-02-20 | Solar cell and method for preparing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001840 A-371-Of-International WO2017142380A1 (en) | 2016-02-18 | 2017-02-20 | Solar cell and method for preparing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/724,397 Division US10991843B2 (en) | 2016-02-18 | 2019-12-23 | Solar cell and method for preparing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180331238A1 true US20180331238A1 (en) | 2018-11-15 |
Family
ID=59626026
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/777,213 Abandoned US20180331238A1 (en) | 2016-02-18 | 2017-02-20 | Solar cell and method for preparing same |
US16/724,397 Active US10991843B2 (en) | 2016-02-18 | 2019-12-23 | Solar cell and method for preparing same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/724,397 Active US10991843B2 (en) | 2016-02-18 | 2019-12-23 | Solar cell and method for preparing same |
Country Status (7)
Country | Link |
---|---|
US (2) | US20180331238A1 (en) |
EP (1) | EP3419057B1 (en) |
JP (1) | JP6686159B2 (en) |
KR (1) | KR20170097440A (en) |
CN (1) | CN108323212B (en) |
CA (1) | CA3005728C (en) |
WO (1) | WO2017142380A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969084A (en) * | 2020-09-24 | 2020-11-20 | 成都中建材光电材料有限公司 | Method for improving stability of cadmium telluride cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102302996B1 (en) | 2020-08-04 | 2021-09-16 | 주식회사 포스코 | Descaling header for preventing scattered water interference |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3423280B2 (en) * | 2000-09-25 | 2003-07-07 | 科学技術振興事業団 | Organic / inorganic composite thin film solar cell |
CN101578709A (en) * | 2007-09-28 | 2009-11-11 | Stion太阳能电池有限公司 | Thin film metal oxide bearing semiconductor material for single junction solar cell devices |
CN101997056B (en) * | 2009-08-10 | 2012-04-25 | 北京有色金属研究总院 | Preparation method of sulfide material for thin film solar cell absorption layer |
US8241945B2 (en) * | 2010-02-08 | 2012-08-14 | Suniva, Inc. | Solar cells and methods of fabrication thereof |
US8628997B2 (en) * | 2010-10-01 | 2014-01-14 | Stion Corporation | Method and device for cadmium-free solar cells |
US8440497B2 (en) * | 2010-10-26 | 2013-05-14 | International Business Machines Corporation | Fabricating kesterite solar cells and parts thereof |
CN102477549B (en) * | 2010-11-25 | 2014-04-16 | 中国电子科技集团公司第十八研究所 | Method for depositing semiconductor film on flexible substrate |
KR101219835B1 (en) * | 2011-01-25 | 2013-01-21 | 엘지이노텍 주식회사 | Solar cell apparatus and method of fabricating the same |
KR101210110B1 (en) * | 2011-10-20 | 2012-12-07 | 엘지이노텍 주식회사 | Solar cell and method of fabricating the same |
CN102610687A (en) * | 2012-03-09 | 2012-07-25 | 天津理工大学 | p-CuO-n-ZnO solar cell and preparation method of p-CuO-n-ZnO solar cell |
KR101432478B1 (en) * | 2012-04-23 | 2014-08-22 | 한국세라믹기술원 | CIGS thin film solar cell |
CN102637777A (en) * | 2012-05-04 | 2012-08-15 | 云南师范大学 | Chemical preparation technology for solar cell light absorption layer Cu2O nano film |
JP2014048556A (en) * | 2012-09-03 | 2014-03-17 | Sumitomo Chemical Co Ltd | Photosensitive resin composition |
EP2727951A1 (en) | 2012-11-06 | 2014-05-07 | Solvay Specialty Polymers USA, LLC. | Mobile electronic devices made of amorphous polyamides |
CN103137768B (en) * | 2013-02-07 | 2015-07-08 | 湖北大学 | Photovoltaic device in double-absorption-layer PIN structure and manufacture method thereof |
KR20140146998A (en) * | 2013-06-17 | 2014-12-29 | 전영권 | Solar cells and manufacturing method for the same |
KR20150050315A (en) * | 2013-10-31 | 2015-05-08 | 전영권 | Solar cells and manufacturing method for the same |
-
2016
- 2016-02-18 KR KR1020160019191A patent/KR20170097440A/en not_active Application Discontinuation
-
2017
- 2017-02-20 JP JP2018545797A patent/JP6686159B2/en active Active
- 2017-02-20 US US15/777,213 patent/US20180331238A1/en not_active Abandoned
- 2017-02-20 WO PCT/KR2017/001840 patent/WO2017142380A1/en active Application Filing
- 2017-02-20 CN CN201780004145.0A patent/CN108323212B/en active Active
- 2017-02-20 EP EP17753541.6A patent/EP3419057B1/en active Active
- 2017-02-20 CA CA3005728A patent/CA3005728C/en active Active
-
2019
- 2019-12-23 US US16/724,397 patent/US10991843B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969084A (en) * | 2020-09-24 | 2020-11-20 | 成都中建材光电材料有限公司 | Method for improving stability of cadmium telluride cell |
Also Published As
Publication number | Publication date |
---|---|
US10991843B2 (en) | 2021-04-27 |
KR20170097440A (en) | 2017-08-28 |
CN108323212A (en) | 2018-07-24 |
US20200152819A1 (en) | 2020-05-14 |
JP6686159B2 (en) | 2020-04-22 |
JP2018535564A (en) | 2018-11-29 |
WO2017142380A1 (en) | 2017-08-24 |
CN108323212B (en) | 2022-08-23 |
EP3419057A4 (en) | 2019-12-11 |
EP3419057B1 (en) | 2022-05-18 |
CA3005728C (en) | 2020-08-18 |
EP3419057A1 (en) | 2018-12-26 |
CA3005728A1 (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3012875B1 (en) | Solar cell and manufacturing method therefor | |
US8916767B2 (en) | Solar cell and method of fabricating the same | |
US9082903B2 (en) | Photovoltaic device with a zinc magnesium oxide window layer | |
US20190355860A1 (en) | Solar cell | |
CN105206690B (en) | Solar battery and its manufacturing method including multi-buffer layer | |
EP4322235A1 (en) | Perovskite solar cell and tandem solar cell comprising same | |
KR20100098008A (en) | Solar cell | |
US10991843B2 (en) | Solar cell and method for preparing same | |
KR20130052476A (en) | Solar cell and method of fabricating the same | |
KR102218417B1 (en) | Silicon solar cell including a carrier seletive thin layer and method of manufacturing the same | |
US9935229B2 (en) | Solar cell and method of fabricating the same | |
KR101660311B1 (en) | Solar cell and method of preparing same | |
KR101925263B1 (en) | Solar cells and manufacturing method for the same | |
WO2011090134A1 (en) | Solar battery | |
KR20120037320A (en) | Solar cell and method for manufacturing the same | |
US20150107661A1 (en) | Solar cell and method of fabricating the same | |
KR20150108289A (en) | Solar cells and manufacturing method for the same | |
KR101276888B1 (en) | Solar cell | |
KR20160130196A (en) | Solar cells and manufacturing method for the same | |
KR20160065612A (en) | Solar cells and manufacturing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |