US20180322175A1 - Methods and systems for analyzing entity performance - Google Patents

Methods and systems for analyzing entity performance Download PDF

Info

Publication number
US20180322175A1
US20180322175A1 US16/023,251 US201816023251A US2018322175A1 US 20180322175 A1 US20180322175 A1 US 20180322175A1 US 201816023251 A US201816023251 A US 201816023251A US 2018322175 A1 US2018322175 A1 US 2018322175A1
Authority
US
United States
Prior art keywords
entity
category
provisioning
information
entities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/023,251
Inventor
Feridun Arda Kara
Eli Bingham
John GARROD
Daniel ERENRICH
Anirvan Mukherjee
Ted MABREY
Andrew Ash
Zachary Bush
Allen Cai
Winnie CHAI
Greg Cohan
Chris DORSEY
William Dwyer
Gilad GRAY
Sean Kelley
Dennis KWON
Chris Lewis
Greg Martin
Parvathy Menon
Brian Ngo
Asli OZYAR
Mike Reilly
Jacob Scott
Ankit Shankar
Matt SILLS
Spencer STAMATS
Geoff Stowe
Samir TALWAR
Engin URAL
Patricio Jose Velez
Holt WILKINS
Diane WU
Drausin WULSIN
Di Wu
Yu-hsin Joyce Chen
Baris Kaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palantir Technologies Inc
Original Assignee
Palantir Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palantir Technologies Inc filed Critical Palantir Technologies Inc
Priority to US16/023,251 priority Critical patent/US20180322175A1/en
Assigned to Palantir Technologies Inc. reassignment Palantir Technologies Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Gray, Gilad, VELEZ, PATRICIO JOSE, Mabrey, Ted, Kwon, Dennis, MARTIN, GREG, MENON, PARVATHY, CAI, ALLEN, Talwar, Samir, CHEN, YU-HSIN JOYCE, Kaya, Baris, Chai, Winnie, ASH, ANDREW, MUKHERJEE, ANIRVAN, KARA, FERIDUN ARDA, DWYER, WILLIAM, KELLEY, SEAN, LEWIS, CHRIS, SCOTT, JACOB, Wu, Diane, Ozyar, Asli, Stamats, Spencer, Ural, Engin, Wilkins, Holt, WU, DI, BUSH, ZACHARY, Dorsey, Chris, STOWE, GEOFF, Bingham, Eli, Cohan, Greg, NGO, BRIAN, Sills, Matt, Wulsin, Drausin, ERENRICH, DANIEL, Garrod, John, Reilly, Mike, SHANKAR, ANKIT
Publication of US20180322175A1 publication Critical patent/US20180322175A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Palantir Technologies Inc.
Assigned to ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT reassignment ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Palantir Technologies Inc.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Palantir Technologies Inc.
Assigned to Palantir Technologies Inc. reassignment Palantir Technologies Inc. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ROYAL BANK OF CANADA
Assigned to Palantir Technologies Inc. reassignment Palantir Technologies Inc. CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY LISTED PATENT BY REMOVING APPLICATION NO. 16/832267 FROM THE RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 052856 FRAME 0382. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: ROYAL BANK OF CANADA
Assigned to WELLS FARGO BANK, N.A. reassignment WELLS FARGO BANK, N.A. ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to WELLS FARGO BANK, N.A. reassignment WELLS FARGO BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Palantir Technologies Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • G06F17/30554
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • G06F17/30572
    • G06F17/30598
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations

Definitions

  • data stores For example, one common type of data store is a so-called “flat” file such as a spreadsheet, plain-text document, or XML document.
  • Another common type of data store is a relational database comprising one or more tables.
  • Other examples of data stores that comprise structured data include, without limitation, files systems, object collections, record collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.
  • FIG. 1 illustrates, in block diagram form, an exemplary data fusion system for providing interactive data analysis, consistent with embodiments of the present disclosure.
  • FIG. 2 is a block diagram of an exemplary system for analyzing performance of an entity, consistent with embodiments of the present disclosure.
  • FIG. 3 is a block diagram of an exemplary computer system, consistent with embodiments of the present disclosure.
  • FIG. 4 is a block diagram of an exemplary data structure accessed in the process of analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 6 is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 7 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 8 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 9 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 10A is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 10B is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 11 is a flowchart representing an exemplary process for comparing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 12 is a screenshot of an exemplary user interface representing a comparison of entity performance, consistent with embodiments of the present disclosure
  • FIG. 13 is a flowchart representing an exemplary process for estimating a consuming entity's location, consistent with the embodiments of the present disclosure.
  • FIG. 14 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
  • FIG. 15 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
  • FIGS. 16A, 16B, and 16C are block diagrams representing a method of computing travel times between two provisioning entities, consistent with the embodiments of the present disclosure.
  • FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure.
  • FIG. 1 illustrates, in block diagram form, an exemplary data fusion system 100 for providing interactive data analysis, consistent with embodiments of the present disclosure.
  • data fusion system 100 facilitates transformation of one or more data sources, such as data sources 130 (e.g., financial services systems 220 , geographic data systems 230 , provisioning entity management systems 240 and/or consuming entity data systems 250 , as shown in FIG. 2 ) into an object model 160 whose semantics are defined by an ontology 150 .
  • the transformation can be performed for a variety of reasons. For example, a database administrator can import data from data sources 130 into a database 170 for persistently storing object model 160 .
  • a data presentation component (not depicted) can transform input data from data sources 130 “on the fly” into object model 160 .
  • the object model 160 can then be utilized, in conjunction with ontology 150 , for analysis through graphs and/or other data visualization techniques.
  • Data fusion system 100 comprises a definition component 110 and a translation component 120 , both implemented by one or more processors of one or more computing devices or systems executing hardware and/or software-based logic for providing various functionality and features of the present disclosure, as described herein.
  • data fusion system 100 can comprise fewer or additional components that provide the various functionalities and features described herein.
  • the number and arrangement of the components of data fusion system 100 responsible for providing the various functionalities and features described herein can further vary from embodiment to embodiment.
  • Definition component 110 generates and/or modifies ontology 150 and a schema map 140 .
  • an ontology such as ontology 150
  • a dynamic ontology may be used to create a database.
  • object types may be defined, where each object type includes one or more properties.
  • the attributes of object types or property types of the ontology can be edited or modified at any time.
  • at least one parser definition may be created. The attributes of a parser definition can be edited or modified at any time.
  • each property type is declared to be representative of one or more object types.
  • a property type is representative of an object type when the property type is intuitively associated with the object type.
  • each property type has one or more components and a base type.
  • a property type can comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements.
  • property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.
  • An example of a property having multiple components is an Address property having a City component and a State component.
  • An example of raw input data is “Los Angeles, Calif.”
  • An example parser definition specifies an association of imported input data to object property components as follows: ⁇ CITY ⁇ , ⁇ STATE ⁇ Address:State, Address:City.
  • the association ⁇ CITY ⁇ , ⁇ STATE ⁇ is defined in a parser definition using regular expression symbology.
  • the association ⁇ CITY ⁇ , ⁇ STATE ⁇ indicates that a city string followed by a state string, and separated by a comma, comprises valid input data for a property of type Address.
  • schema map 140 can define how various elements of schemas 135 for data sources 130 map to various elements of ontology 150 .
  • Definition component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data sources 130 .
  • Schemas 135 define the structure of data sources 130 ; for example, the names and other characteristics of tables, files, columns, fields, properties, and so forth.
  • Definition component 110 furthermore optionally identifies sample data 136 from data sources 130 .
  • Definition component 110 can further identify object type, relationship, and property definitions from ontology 150 , if any already exist.
  • Definition component 110 can further identify pre-existing mappings from schema map 140 , if such mappings exist.
  • definition component 110 can generate a graphical user interface 115 .
  • Graphical user interface 115 can be presented to users of a computing device via any suitable output mechanism (e.g., a display screen, an image projection, etc.), and can further accept input from users of the computing device via any suitable input mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.).
  • Graphical user interface 115 features a visual workspace that visually depicts representations of the elements of ontology 150 for which mappings are defined in schema map 140 .
  • transformation component 120 can be invoked after schema map 140 and ontology 150 have been defined or redefined. Transformation component 120 identifies schema map 140 and ontology 150 . Transformation component 120 further reads data sources 130 and identifies schemas 135 for data sources 130 . For each element of ontology 150 described in schema map 140 , transformation component 120 iterates through some or all of the data items of data sources 130 , generating elements of object model 160 in the manner specified by schema map 140 . In some embodiments, transformation component 120 can store a representation of each generated element of object model 160 in a database 170 . In some embodiments, transformation component 120 is further configured to synchronize changes in object model 160 back to data sources 130 .
  • Data sources 130 can be one or more sources of data, including, without limitation, spreadsheet files, databases, email folders, document collections, media collections, contact directories, and so forth. Data sources 130 can include data structures stored persistently in non-volatile memory. Data sources 130 can also or alternatively include temporary data structures generated from underlying data sources via data extraction components, such as a result set returned from a database server executing an database query.
  • Schema map 140 , ontology 150 , and schemas 135 can be stored in any suitable structures, such as XML files, database tables, and so forth. In some embodiments, ontology 150 is maintained persistently. Schema map 140 can or cannot be maintained persistently, depending on whether the transformation process is perpetual or a one-time event. Schemas 135 need not be maintained in persistent memory, but can be cached for optimization.
  • Object model 160 comprises collections of elements such as typed objects, properties, and relationships.
  • the collections can be structured in any suitable manner.
  • a database 170 stores the elements of object model 160 , or representations thereof.
  • the elements of object model 160 are stored within database 170 in a different underlying format, such as in a series of object, property, and relationship tables in a relational database.
  • the functionalities, techniques, and components described herein are implemented by one or more special-purpose computing devices.
  • the special-purpose computing devices can be hard-wired to perform the techniques, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or can include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination.
  • ASICs application-specific integrated circuits
  • FPGAs field programmable gate arrays
  • Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques.
  • the special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques.
  • a provisioning entity can include, for example, a merchant, a retail provisioning entity or the like
  • a consuming entity can include, for example, a consumer user buying products or services from a provisioning entity.
  • a consuming entity can represent either individual persons or can represent a group of persons (e.g., a group of persons living under one roof as part of a family).
  • a consuming entity can be a credit card number of an individual or a credit card number for an entire family sharing one credit card.
  • a provisioning entity can represent either the entity itself or individual persons involved with the entity.
  • data fusion system 100 can provide a provisioning entity, such as a retail provisioning entity, to analyze information to identify behaviors to allow that provisioning entity to make more informed decisions.
  • a provisioning entity such as a retail provisioning entity
  • Such information can allow retail entities, such as a retail provisioning entity, to determine where to place their retail locations.
  • Provisioning entities having more than one location e.g., a merchant with a chain store or a franchise model
  • provisioning entities typically evaluate the performance of their locations and may adjust their business models or work flows when the locations under-perform.
  • provisioning entities evaluate the performance of their locations based on period-to-period metrics. For example, a provisioning entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales.
  • provisioning entitles can evaluate each of its locations' performance using comparative analysis. For example, a provisioning entity might compare the sales at an area location with the sales at a second location. As provisioning entities generally measure the performance of its locations based on their own interaction data (e.g., the entity's sales across some or all of its locations), current methods of measuring performance do not consider sales made by competitors or demographic features of the areas of the provisioning entity's locations.
  • measured performance may not represent the true performance of a provisioning entity. For instance, although a provisioning entity location in a low consumer spend capacity area might have less sales than a provisioning entity location in a high consumer spend capacity area, it may be performing better than what could be expected for that area in light of, for example, the low number of consumers residing in the area or the low income of the area. A performance of a provisioning entity at an area location can be adversely impacted by the close proximity of a second location of the provisioning entity, but the provisioning entity at the area location can be performing better than expected given the competition from the provisioning entity's second location. Conversely, while a provisioning entity location in a dense, high-income area might have the highest sales of all provisioning entity locations, it can still be under-performing because, for instance, consumer spend capacity is high and the provisioning entity location could generate more sales.
  • the performance of provisioning entities can be analyzed based on how the provisioning entity is expected to perform given the location of the provisioning entity.
  • the disclosed embodiments may be implemented to consider, for example, consumer demographic features of the provisioning entity location's area and the proximity of competitors to the provisioning entity location (including the proximity of the provisioning entity's other close-by locations).
  • the provisioning entity can be a merchant.
  • exemplary embodiments for analyzing entity performance are described herein with reference to “merchants.” The exemplary embodiments and techniques described herein, however, may be applied to other types of entities (e.g., service providers, governmental agencies, etc.) within the spirit and scope of this disclosure.
  • FIG. 2 is a block diagram of an exemplary system 200 for performing one or more operations for analyzing performance of a provisioning entity and/or a consuming entity, consistent with disclosed embodiments.
  • the provisioning entity is a merchant and system 200 can include provisioning entity analysis system 210 , one or more financial services systems 220 , one or more geographic data systems 230 , one or more provisioning entity management systems 240 , and one or more consuming entity data systems 250 .
  • the components and arrangement of the components included in system 200 can vary depending on the embodiment. For example, the functionality described below with respect to financial services systems 220 can be embodied in consuming entity data systems 250 , or vice-versa.
  • system 200 can include fewer or additional components that perform or assist in the performance of one or more processes to analyze provisioning entity's, consistent with the disclosed embodiments.
  • One or more components of system 200 can be computing systems configured to analyze provisioning entity performance.
  • components of system 200 can include one or more computing devices (e.g., computer(s), server(s), etc.), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.), and other known computing components.
  • the one or more computing devices are configured to execute software or a set of programmable instructions stored on one or more memory devices to perform one or more operations, consistent with the disclosed embodiments.
  • Components of system 200 can be configured to communicate with one or more other components of system 200 , including provisioning entity analysis system 210 , one or more financial services systems 220 , one or more geographic data systems 230 , one or more provisioning entity management systems 240 , and one or more consumer data systems 250 .
  • users can operate one or more components of system 200 .
  • the one or more users can be employees of, or associated with, the entity corresponding to the respective component(s) (e.g., someone authorized to use the underlying computing systems or otherwise act on behalf of the entity).
  • Provisioning entity analysis system 210 can be a computing system configured to analyze provisioning entity performance.
  • provisioning entity analysis system 210 can be a computer system configured to execute software or a set of programmable instructions that collect or receive financial interaction data, consumer data, and provisioning entity data and process it to determine the actual transaction amount of each transaction associated with the provisioning entity.
  • Provisioning entity analysis system 210 can be configured, in some embodiments, to utilize, include, or be a data fusion system 100 (see, e.g., FIG. 1 ) to transform data from various data sources (such as, financial services systems 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 ) for processing.
  • provisioning entity analysis system 210 can be implemented using a computer system 300 , as shown in FIG. 3 and described below.
  • Provisioning entity analysis system 210 can include one or more computing devices (e.g., server(s)), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.) and other known computing components.
  • provisioning entity analysis system 210 can include one or more networked computers that execute processing in parallel or use a distributed computing architecture.
  • Provisioning entity analysis system 210 can be configured to communicate with one or more components of system 200 , and it can be configured to provide analysis of provisioning entities via an interface(s) accessible by users over a network (e.g., the Internet).
  • provisioning entity analysis system 210 can include a web server that hosts a web page accessible through network 260 by provisioning entity management systems 240 .
  • provisioning entity analysis system 210 can include an application server configured to provide data to one or more client applications executing on computing systems connected to provisioning entity analysis system 210 via network 260 .
  • provisioning entity analysis system 210 can be configured to determine the actual sales for a provisioning entity or specific provisioning entity location by processing and analyzing data collected from one or more components of system 200 . For example, provisioning entity analysis system 210 can determine that the Big Box Merchant store located at 123 Main St, in Burbank, Calif. is actually generating $60,000 of sales per month. Provisioning entity analysis system 210 can provide an analysis of a provisioning entity or provisioning entity location's performance based on a target for sales and the actual sales for the provisioning entity or provisioning entity location. For example, for the Big Box Merchant store located at 123 Main St., Burbank, Calif., the provisioning entity analysis system 210 can provide an analysis that the store is performing above expectations. Exemplary processes that can be used by provisioning entity analysis system 210 are described below with respect to FIGS. 6, 10A, 11, 13, 14, and 15 .
  • Provisioning entity analysis system 210 can, in some embodiments, generate a user interface communicating data related to one or more provisioning entities or provisioning entity locations.
  • provisioning entity analysis system 210 includes a web server that generates HTML code, or scripts capable of generating HTML code, that can be displayed in a web browser executing on computing device.
  • Provisioning entity analysis system 210 can also execute an application server that provides user interface objects to a client application executing on a computing device, or it can provide data that is capable of being displayed in a user interface in a client application executing on a computing device.
  • provisioning entity analysis system 210 can generate user interfaces that can be displayed within another user interface.
  • provisioning entity analysis system 210 can generate a user interface for display within a parent user interface that is part of a word processing application, a presentation development application, a web browser, or an illustration application, among others.
  • generating a user interface can include generating the code that when executed displays information (e.g., HTML) on the user interface.
  • generating interface can include providing commands and/or data to a set of instructions that when executed render a user interface capable of being shown on a display connected to a computing device.
  • the user interface can include a map, indications of the provisioning entity locations on a map, and indications of the sales or interactions associated with the provisioning entity locations. Examples of some (although not all) user interfaces that can be generated by provisioning entity analysis system 210 are described below with respect to FIGS. 7-9, 10B and 12 .
  • financial services system 220 can be a computing system associated with a financial service provider, such as a bank, credit card issuer, credit bureau, credit agency, or other entity that generates, provides, manages, and/or maintains financial service accounts for one or more users.
  • Financial services system 220 can generate, maintain, store, provide, and/or process financial data associated with one or more financial service accounts.
  • Financial data can include, for example, financial service account data, such as financial service account identification data, account balance, available credit, existing fees, reward points, user profile information, and financial service account interaction data, such as interaction dates, interaction amounts, interaction types, and location of interaction.
  • each interaction of financial data can include several categories of information associated with the interaction.
  • each interaction can include categories such as number category; consuming entity identification category; consuming entity location category; provisioning entity identification category; provisioning entity location category; type of provisioning entity category; interaction amount category; and time of interaction category, as described in FIG. 4 .
  • financial data can comprise either additional or fewer categories than the exemplary categories listed above.
  • Financial services system 220 can include infrastructure and components that are configured to generate and/or provide financial service accounts such as credit card accounts, checking accounts, savings account, debit card accounts, loyalty or reward programs, lines of credit, and the like.
  • Geographic data systems 230 can include one or more computing devices configured to provide geographic data to other computing systems in system 200 such as provisioning entity analysis system 210 .
  • geographic data systems 230 can provide geodetic coordinates when provided with a street address of vice-versa.
  • geographic data systems 230 exposes an application programming interface (API) including one or more methods or functions that can be called remotely over a network, such as network 260 .
  • API application programming interface
  • geographic data systems 230 can provide information concerning routes between two geographic points.
  • provisioning entity analysis system 210 can provide two addresses and geographic data systems 230 can provide, in response, the aerial distance between the two addresses, the distance between the two addresses using roads, and/or a suggested route between the two addresses and the route's distance.
  • geographic data systems 230 can also provide map data to provisioning entity analysis system 210 and/or other components of system 200 .
  • the map data can include, for example, satellite or overhead images of a geographic region or a graphic representing a geographic region.
  • the map data can also include points of interest, such as landmarks, malls, shopping centers, schools, or popular restaurants or retailers, for example.
  • Provisioning entity management systems 240 can be one or more computing devices configured to perform one or more operations consistent with disclosed embodiments.
  • provisioning entity management systems 240 can be a desktop computer, a laptop, a server, a mobile device (e.g., tablet, smart phone, etc.), or any other type of computing device configured to request provisioning entity analysis from provisioning entity analysis system 210 .
  • provisioning entity management systems 240 can comprise a network-enabled computing device operably connected to one or more other presentation devices, which can themselves constitute a computing system.
  • provisioning entity management systems 240 can be connected to a mobile device, telephone, laptop, tablet, or other computing device.
  • Provisioning entity management systems 240 can include one or more processors configured to execute software instructions stored in memory. Provisioning entity management systems 240 can include software or a set of programmable instructions that when executed by a processor performs known Internet-related communication and content presentation processes. For example, provisioning entity management systems 240 can execute software or a set of instructions that generates and displays interfaces and/or content on a presentation device included in, or connected to, provisioning entity management systems 240 . In some embodiments, provisioning entity management systems 240 can be a mobile device that executes mobile device applications and/or mobile device communication software that allows provisioning entity management systems 240 to communicate with components of system 200 over network 260 . The disclosed embodiments are not limited to any particular configuration of provisioning entity management systems 240 .
  • Provisioning entity management systems 240 can be one or more computing systems associated with a provisioning entity that provides products (e.g., goods and/or services), such as a restaurant (e.g., Outback Steakhouse®, Burger King®, etc.), retailer (e.g., Amazon.com®, Target®, etc.), grocery store, mall, shopping center, service provider (e.g., utility company, insurance company, financial service provider, automobile repair services, movie theater, etc.), non-profit organization (ACLUTM, AARP®, etc.) or any other type of entity that provides goods, services, and/or information that consuming entities (i.e., end-users or other business entities) can purchase, consume, use, etc.
  • consuming entities i.e., end-users or other business entities
  • the exemplary embodiments presented herein relate to purchase interactions involving goods from retail provisioning entity systems.
  • Provisioning entity management systems 240 is not limited to systems associated with retail provisioning entities that conduct business in any particular industry or field.
  • Provisioning entity management systems 240 can be associated with computer systems installed and used at a brick and mortar provisioning entity locations where a consumer can physically visit and purchase goods and services. Such locations can include computing devices that perform financial service interactions with consumers (e.g., Point of Sale (POS) terminal(s), kiosks, etc.). Provisioning entity management systems 240 can also include back- and/or front-end computing components that store data and execute software or a set of instructions to perform operations consistent with disclosed embodiments, such as computers that are operated by employees of the provisioning entity (e.g., back office systems, etc.). Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions.
  • POS Point of Sale
  • Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions.
  • Provisioning entity management systems 240 can include one or more servers that are configured to execute stored software or a set of instructions to perform operations associated with a provisioning entity, including one or more processes associated with processing purchase interactions, generating interaction data, generating product data (e.g., SKU data) relating to purchase interactions, for example.
  • Consuming entity data systems 250 can include one or more computing devices configured to provide demographic data regarding consumers. For example, consuming entity data systems 250 can provide information regarding the name, address, gender, income level, age, email address, or other information about consumers.
  • Consuming entity data systems 250 can include public computing systems such as computing systems affiliated with the U.S. Bureau of the Census, the U.S. Bureau of Labor Statistics, or FedStats, or it can include private computing systems such as computing systems affiliated with financial institutions, credit bureaus, social media sites, marketing services, or some other organization that collects and provides demographic data.
  • Network 260 can be any type of network or combination of networks configured to provide electronic communications between components of system 200 .
  • network 260 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information, such as the Internet, a Local Area Network, or other suitable connection(s) that enables the sending and receiving of information between the components of system 200 .
  • Network 260 may also comprise any combination of wired and wireless networks.
  • one or more components of system 200 can communicate directly through a dedicated communication link(s), such as links between provisioning entity analysis system 210 , financial services system 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 .
  • provisioning entity analysis system 210 can include a data fusion system (e.g., data fusion system 100 ) for organizing data received from one or more of the components of system 200 .
  • a data fusion system e.g., data fusion system 100
  • FIG. 3 is a block diagram of an exemplary computer system 300 , consistent with embodiments of the present disclosure.
  • the components of system 200 such as provisioning entity analysis system 210 , financial service systems 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 may include the architecture based on or similar to that of computer system 300 .
  • computer system 300 includes a bus 302 or other communication mechanism for communicating information, and one or more hardware processors 304 (denoted as processor 304 for purposes of simplicity) coupled with bus 302 for processing information.
  • Hardware processor 304 can be, for example, one or more general-purpose microprocessors or it can be a reduced instruction set of one or more microprocessors.
  • Computer system 300 also includes a main memory 306 , such as a random access memory (RAM) or other dynamic storage device, coupled to bus 302 for storing information and instructions to be executed by processor 304 .
  • Main memory 306 also can be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 304 .
  • Such instructions after being stored in non-transitory storage media accessible to processor 304 , render computer system 300 into a special-purpose machine that is customized to perform the operations specified in the instructions.
  • Computer system 300 further includes a read only memory (ROM) 308 or other static storage device coupled to bus 302 for storing static information and instructions for processor 304 .
  • ROM read only memory
  • a storage device 310 such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc. is provided and coupled to bus 302 for storing information and instructions.
  • Computer system 300 can be coupled via bus 302 to a display 312 , such as a cathode ray tube (CRT), liquid crystal display, or touch screen, for displaying information to a computer user.
  • a display 312 such as a cathode ray tube (CRT), liquid crystal display, or touch screen
  • An input device 314 is coupled to bus 302 for communicating information and command selections to processor 304 .
  • cursor control 316 is Another type of user input device, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 304 and for controlling cursor movement on display 312 .
  • the input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane.
  • a first axis for example, x
  • a second axis for example, y
  • the same direction information and command selections as cursor control can be implemented via receiving touches on a touch screen without a cursor.
  • Computing system 300 can include a user interface module to implement a graphical user interface that can be stored in a mass storage device as executable software codes that are executed by the one or more computing devices.
  • This and other modules can include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • module refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++.
  • a software module can be compiled and linked into an executable program, installed in a dynamic link library, or written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts.
  • Software modules configured for execution on computing devices can be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution).
  • a computer readable medium such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution).
  • Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device.
  • Software instructions can be embedded in firmware, such as an EPROM.
  • hardware modules can be comprised of connected logic units, such as gates and flip-flops, and/or can be comprised of programmable units, such as programmable gate arrays or processors.
  • the modules or computing device functionality described herein are
  • Computer system 300 can implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 300 to be a special-purpose machine. According to some embodiments, the operations, functionalities, and techniques and other features described herein are performed by computer system 300 in response to processor 304 executing one or more sequences of one or more instructions contained in main memory 306 . Such instructions can be read into main memory 306 from another storage medium, such as storage device 310 . Execution of the sequences of instructions contained in main memory 306 causes processor 304 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.
  • non-transitory media refers to any non-transitory media storing data and/or instructions that cause a machine to operate in a specific fashion.
  • Such non-transitory media can comprise non-volatile media and/or volatile media.
  • Non-volatile media can include, for example, optical or magnetic disks, such as storage device 310 .
  • Volatile media can include dynamic memory, such as main memory 306 .
  • non-transitory media can include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
  • Non-transitory media is distinct from, but can be used in conjunction with, transmission media.
  • Transmission media can participate in transferring information between storage media.
  • transmission media can include coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302 .
  • Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
  • Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 304 for execution.
  • the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer.
  • the remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem.
  • a modem local to computer system 300 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
  • An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 302 .
  • Bus 302 carries the data to main memory 306 , from which processor 304 retrieves and executes the instructions.
  • the instructions received by main memory 306 can optionally be stored on storage device 310 either before or after execution by processor 304 .
  • Computer system 300 can also include a communication interface 318 coupled to bus 302 .
  • Communication interface 318 can provide a two-way data communication coupling to a network link 320 that can be connected to a local network 322 .
  • communication interface 318 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line.
  • ISDN integrated services digital network
  • communication interface 318 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN.
  • LAN local area network
  • Wireless links can also be implemented.
  • communication interface 318 can send and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
  • Network link 320 can typically provide data communication through one or more networks to other data devices.
  • network link 320 can provide a connection through local network 322 to a host computer 324 or to data equipment operated by an Internet Service Provider (ISP) 326 .
  • ISP 326 in turn can provide data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 328 .
  • Internet 328 can both use electrical, electromagnetic or optical signals that carry digital data streams.
  • the signals through the various networks and the signals on network link 320 and through communication interface 318 which carry the digital data to and from computer system 300 , can be example forms of transmission media.
  • Computer system 300 can send messages and receive data, including program code, through the network(s), network link 320 and communication interface 318 .
  • a server 330 can transmit a requested code for an application program through Internet 328 , ISP 326 , local network 322 and communication interface 318 .
  • the received code can be executed by processor 304 as it is received, and/or stored in storage device 310 , or other non-volatile storage for later execution.
  • server 330 can provide information for being displayed on a display.
  • FIG. 4 is a block diagram of an exemplary data structure 400 , consistent with embodiments of the present disclosure.
  • Data structure 400 can store data records associated with interactions involving multiple entities.
  • Data structure 400 can be, for example, a database (e.g., database 170 ) that can store elements of an object model (e.g., object model 160 ).
  • data structure 400 can be a Relational Database Management System (RDBMS) that stores interaction data as sections of rows of data in relational tables.
  • RDBMS Relational Database Management System
  • An RDBMS can be designed to efficiently return data for an entire row, or record, in as few operations as possible.
  • An RDBMS can store data by serializing each row of data of data structure 400 . For example, in an RDBMS, data associated with interaction 1 of FIG. 4 can be stored serially such that data associated with all categories of interaction 1 can be accessed in one operation.
  • data structure 400 can be a column-oriented database management system that stores data as sections of columns of data rather than rows of data.
  • This column-oriented DBMS can have advantages, for example, for data warehouses, customer relationship management systems, and library card catalogs, and other ad hoc inquiry systems where aggregates are computed over large numbers of similar data items.
  • a column-oriented DBMS can be more efficient than an RDBMS when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
  • a column-oriented DBMS can be designed to efficiently return data for an entire column, in as few operations as possible.
  • a column-oriented DBMS can store data by serializing each column of data of data structure 400 . For example, in a column-oriented DBMS, data associated with a category (e.g., consuming entity identification category 420 ) can be stored serially such that data associated with that category for all interactions of data structure 400 can be accessed
  • data structure 400 can comprise data associated with a very large number of interactions associated with multiple entities.
  • data structure 400 can include 50 billion interactions.
  • interactions associated with multiple entities can be referred to as transactions between multiple entities.
  • the terms interactions and transactions are intended to convey the same meaning and can be used interchangeably throughout this disclosure. While each interaction of data structure 400 is depicted as a separate row in FIG. 4 , it will be understood that each such interaction can be represented by a column or any other known technique in the art. Each interaction data can include several categories of information.
  • the several categories can include, number category 410 ; consuming entity identification category 420 ; consuming entity location category 430 ; provisioning entity identification category 440 ; provisioning entity location category 450 ; type of provisioning entity category 460 ; interaction amount category 470 ; and time of interaction category 480 .
  • FIG. 4 is merely exemplary and that data structure 400 can include even more categories of information associated with an interaction.
  • Number category 410 can uniquely identify each interaction of data structure 400 .
  • data structure 400 depicts 50 billion interactions as illustrated by number category 410 of the last row of data structure 400 as 50,000,000,000.
  • each row depicting a interaction can be identified by an element number.
  • interaction number 1 can be identified by element 401 ; interaction number 2 can be identified by element 402 ; and so on such that interaction 50,000,000,000 can be identified by 499 B.
  • this disclosure is not limited to any number of interactions and further that this disclosure can extend to a data structure with more or fewer than 50 billion interactions. It is also appreciated that number category 410 need not exist in data structure 400 .
  • Consuming entity identification category 420 can identify a consuming entity.
  • consuming entity identification category 420 can represent a name (e.g., User 1 for interaction 401 ; User N for interaction 499 B) of the consuming entity.
  • consuming entity identification category 420 can represent a code uniquely identifying the consuming entity (e.g., CE002 for interaction 402 ).
  • the identifiers under the consuming entity identification category 420 can be a credit card number that can identify a person or a family, a social security number that can identify a person, a phone number or a MAC address associated with a cell phone of a user or family, or any other identifier.
  • Consuming entity location category 430 can represent a location information of the consuming entity.
  • consuming entity location category 430 can represent the location information by providing at least one of: a state of residence (e.g., state sub-category 432 ; California for element 401 ; unknown for interaction 405 ) of the consuming entity; a city of residence (e.g., city sub-category 434 ; Palo Alto for interaction 401 ; unknown for interaction 405 ) of the consuming entity; a zip code of residence (e.g., zip code sub-category 436 ; 94304 for interaction 401 ; unknown for interaction 405 ) of the consuming entity; and a street address of residence (e.g., street address sub-category 438 ; 123 Main St. for interaction 401 ; unknown for interaction 405 ) of the consuming entity.
  • a state of residence e.g., state sub-category 432 ; California for element 401 ; unknown for interaction 405
  • Provisioning entity identification category 440 can identify a provisioning entity (e.g., a merchant or a coffee shop). In some embodiments, provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402 ). Alternatively, provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401 ). Provisioning entity location category 450 can represent a location information of the provisioning entity.
  • a provisioning entity e.g., a merchant or a coffee shop.
  • provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402 ).
  • provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401 ).
  • Provisioning entity location category 450 can represent a location information of the provisioning entity.
  • provisioning entity location category 450 can represent the location information by providing at least one of: a state where the provisioning entity is located (e.g., state sub-category 452 ; California for interaction 401 ; unknown for interaction 402 ); a city where the provisioning entity is located (e.g., city sub-category 454 ; Palo Alto for interaction 401 ; unknown for interaction 402 ); a zip code where the provisioning entity is located (e.g., zip code sub-category 456 ; 94304 for interaction 401 ; unknown for interaction 402 ); and a street address where the provisioning entity is located (e.g., street address sub-category 458 ; 234 University Ave. for interaction 401 ; unknown for interaction 402 ).
  • a state where the provisioning entity is located e.g., state sub-category 452 ; California for interaction 401 ; unknown for interaction 402
  • a city where the provisioning entity is located e.g., city sub-
  • Type of provisioning entity category 460 can identify a type of the provisioning entity involved in each interaction.
  • type of provisioning entity category 460 of the provisioning entity can be identified by a category name customarily used in the industry (e.g., Gas Station for interaction 401 ) or by an identification code that can identify a type of the provisioning entity (e.g., TPE123 for interaction 403 ).
  • type of the provisioning entity category 460 can include a merchant category code (“MCC”) used by credit card companies to identify any business that accepts one of their credit cards as a form of payment.
  • MCC can be a four-digit number assigned to a business by credit card companies (e.g., American ExpressTM, MasterCardTM, VISATM) when the business first starts accepting one of their credit cards as a form of payment.
  • type of provisioning entity category 460 can further include a sub-category (not shown in FIG. 4 ), for example, type of provisioning entity sub-category 461 that can further identify a particular sub-category of provisioning entity.
  • an interaction can comprise a type of provisioning entity category 460 as a hotel and type of provisioning entity sub-category 461 as either a bed and breakfast hotel or a transit hotel. It will be understood that the above-described examples for type of provisioning entity category 460 and type of provisioning entity sub-category 461 are non-limiting and that data structure 400 can include other kinds of such categories and sub-categories associated with an interaction.
  • Interaction amount category 470 can represent a transaction amount (e.g., $74.56 for interaction 401 ) involved in each interaction.
  • Time of interaction category 480 can represent a time at which the interaction was executed.
  • time of interaction category 480 can be represented by a date (e.g., date sub-category 482 ; Nov. 23, 2013, for interaction 401 ) and time of the day (e.g., time sub-category 484 ; 10:32 AM local time for interaction 401 ).
  • Time sub-category 484 can be represented in either military time or some other format.
  • time sub-category 484 can be represented with a local time zone of either provisioning entity location category 450 or consuming entity location category 430 .
  • each interaction data can include categories of information including (not shown in FIG. 4 ), for example, consuming entity loyalty membership category, consuming entity credit card type category, consuming entity age category, consuming entity gender category, consuming entity income category, consuming entity with children category, product information category, and service information category.
  • Consuming entity loyalty membership category can represent whether the consuming entity is part of a loyalty membership program associated with a provisioning entity. For example, consuming entity loyalty membership category can represent that the consuming entity is a member of one of CostcoTM membership programs including Goldstar MemberTM, Executive MemberTM, and Business MemberTM.
  • Consuming entity credit card type category can represent the type of credit card used by the consuming entity for a particular interaction. For example, consuming entity credit card type category can represent that the credit card used by the consuming entity for that particular interaction can be one either American ExpressTM, MasterCardTM, VISATM, or DiscoverTM credit cards. In some embodiments, consuming entity credit card type category can represent a kind of MasterCardTM (e.g., Gold MasterCardTM or Platinum MasterCardTM) used for a particular interaction.
  • MasterCardTM e.g., Gold MasterCardTM or Platinum MasterCardTM
  • consuming entity demographic information can be stored in each interaction.
  • consuming entity demographic information can include at least one of: consuming entity age category, consuming entity gender category, consuming entity income category, and consuming entity with children category.
  • consuming entity age category can represent age information associated with the consuming entity;
  • consuming entity gender category can represent gender information (e.g., Male or Female) associated with the consuming entity;
  • consuming entity income category can represent income information (e.g., greater than $100,000 per year) associated with the consuming entity; and consuming entity with children category can represent whether the consuming entity has any children under 18 or not.
  • consuming entity with children category can store information representing a number of children associated with the consuming entity.
  • Product information category can represent information associated with a product that is involved in an interaction.
  • product information category can represent that the product involved in the interaction is a particular type of product based on a stock keeping unit (“SKU”) of the product.
  • SKU stock keeping unit
  • the product's SKU can be unique to a particular provisioning entity involved in that particular interaction.
  • product information category can represent the product involved in the interaction with a at least one of a Universal Product Code, International Article Number, Global Trade Item Number, and Australian Product Number.
  • Service information category can represent information associated with a service that is involved in an interaction.
  • service information category can represent that the service involved in the interaction is a particular type of service based on an SKU of the service. It will be appreciated that an SKU can uniquely represent either a product or a service.
  • Some examples of services can be warranties, delivery fees, installation fees, and licenses.
  • FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with embodiments of the present disclosure.
  • System 500 depicts a scenario where a consuming entity (e.g., user of cell phone 505 ) can attempt to access a service at one or more provisioning entities (e.g., Website 1 542 , Website 2 544 , and/or Website 3 546 ).
  • the consuming entity can initiate an access request from cell phone 505 .
  • the access request can include a consuming entity identification such as, for example, a cell phone number or a MAC address associated with cell phone 505 .
  • the access request can then reach a cellular base station 515 through a communication link 510 .
  • communication link 510 can either be a wireless link (as shown in the exemplary embodiment of FIG. 5 ) or a wired link (not shown).
  • the access request can reach server 525 through network 520 .
  • Network 520 can be, for example, the Internet.
  • network 520 can be one of either a local area network, a wide area network, or an entity's intranet.
  • Server 525 can be a server located at a service provider (e.g., Verizon WirelessTM).
  • Server 525 can be, in some embodiments, an authentication, authorization, and accounting server (AAA server).
  • AAA server 525 can be a proxy server that can facilitate a communication between cell phone 505 and a server device at the provisioning entities (e.g., Website 1 542 ).
  • Access request can reach one of the provisioning entities after an authorization, authentication, and accounting process is complete. Access request can traverse to one of the provisioning entities through network 530 .
  • Network 530 can be similar to network 520 , as described above. After the authorized and authenticated access request reaches one of the provisioning entities, the consuming entity is allowed to access the provisioning entities.
  • user of cell phone 505 can access either Website 1 542 , Website 2 544 , or Website 3 546 , depending on details of the access request.
  • provisioning entities can be one of the websites GoogleTM, FacebookTM, and TwitterTM.
  • server 525 can store information regarding the user and/or cell phone accessing these provisioning entities.
  • Each access by a user of a website can be stored as an interaction in a data structure in Server 525 .
  • Server 525 can store such information in a data structure (e.g., data structure 400 ) comprising several categories of information including, but not limited to, an interaction number; consuming entity identification; consuming entity location; provisioning entity identification; provisioning entity location; type of provisioning entity; duration of interaction; and time of interaction.
  • the data structure can be analyzed to analyze a performance of provisioning entities, for example, to estimate a number of unique consuming entities (e.g., users) per month, average amount of time a consuming entity spends on their website, time of the day where consuming entity traffic is highest or lowest, etc. It will be understood that any number of useful insights can be drawn by analyzing the data structure comprising interactions associated with consuming entities and provisioning entities. While FIG.
  • FIG. 5 depicts a use case scenario of a cell phone user (exemplary consuming entity) accessing a website (exemplary provisioning entity), it will be understood that a process of analyzing interaction between a consuming entity and a provisioning entity can be extended to any number of scenarios, including, financial transactions between consumers and banks; credit card transactions between a consumer and a provisioning entity like a grocery store, movie theatre, gas station, mall, etc.
  • FIG. 6 depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • the analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • a request having one or more filter selections can be received at a provisioning entity analysis system implementing a process for analyzing a performance of one or more entities of multiple entities.
  • the request can be received from a provisioning entity (e.g., a merchant like LowesTM), which can be interested in analyzing its performance with regards the one or more filter selections.
  • a provisioning entity e.g., a merchant like LowesTM
  • one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; geographic; time; and transactions.
  • the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time.
  • the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction.
  • An exemplary screenshot of a user interface with exemplary filter selections is shown in FIGS. 7 and 8 , described below.
  • the process for analyzing a performance of one or more entities of multiple entities can be implemented without having to receive one or more filter selections.
  • Such a process can be implemented, for example, by having the provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) comprise one or more predetermined filter selections.
  • These exemplary one or more predetermined filter selections can include the same selections as the one or more filters (e.g., add new filter 705 shown in FIG. 7 ) that can be selected by a user as described above.
  • the one or more predetermined filter selections can comprise at least one of: cohorts; demographics; geographic; time; and transactions.
  • the one or more predetermined filter selections can comprise at least one of: charts; histograms; maps; numbers; and time.
  • a data structure (e.g., data structure 400 ) comprising several categories of information showing interactions associated with multiple entities can be accessed.
  • the data structure can represent information associated with a very large number of interactions.
  • the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions).
  • the data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
  • accessing step 620 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • some categories of the several categories within the data structure can be identified based on the one or more filter selections of the received request.
  • the identified categories can be one or more of the several categories of the data structure (e.g., data structure 400 ).
  • Another exemplary mapping can exist between a filter selection for gender and a category or a sub-category associated with a gender of consuming entity (not shown in FIG. 4 ).
  • one or more filter selections can include “demographics and customer zip code” selections, as depicted in FIG. 8 .
  • the provisioning entity e.g., a home improvement store such as LowesTM
  • the provisioning entity can select one or more filters such as demographics 820 and further zip code 824 (associated with a zip code representing location of consuming entity).
  • the provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can identify some categories of the data structure that are relevant for analyzing the performance of the one or more entities (e.g., provisioning entity) regarding customer demographics including a location (e.g., zip code) of the consuming entities.
  • the provisioning entity analysis system can identify categories associated with a number of interaction (e.g., number category 410 ), an identity of consuming entities (e.g., consuming entity identification category 420 ), and a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436 ).
  • consuming entity location category 430 can be identified along with one or more categories of state sub-category 432 , city sub-category 434 , zip code sub-category 436 , and street address sub-category 438 .
  • identifying step 630 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as LowesTM).
  • One or more entities of the multiple entities can comprise one or more groups of entities of the multiple entities. For example, a group of entities can be defined such that the group of entities can have similar characteristics such as all grocery stores within a given zip code or all SafewayTM locations within a city (e.g., San Jose, Calif.).
  • a group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
  • Processing the identified categories can comprise creating a new data structure that is different from the data structure of step 620 , and comprising only the identified categories of step 630 or one or more subsets of those categories. Alternatively, processing the identified categories can be performed on the existing data structure of step 620 (e.g., data structure 400 ).
  • the system can process information that is associated with identified categories based on the filter selections such as a number of interaction (e.g., number category 410 ), an identity of consuming entities (e.g., consuming entity identification category 420 ), a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436 ), and categories associated with consuming entity demographics including consuming entity age category, consuming entity gender category, and consuming entity income category.
  • data associated with identified categories can be stored in either a row-oriented database or a column-oriented database, as described above with respect to data structure 400 .
  • Processing information can involve performing statistical analysis on data stored in the identified categories.
  • Performing statistical analysis can include various computations of data associated with identified categories.
  • processing information can include performing an aggregate of the interaction amount to compute a total amount for all interactions associated with the provisioning entity. It will be understood that processing information can include other examples of performing statistical analysis, including but not limited to, computing an average, mean, maximum, minimum, or standard deviation for a series of data.
  • processing the information of the identified categories can result in a multitude of useful insights regarding the behavior of consuming entities.
  • Some of such insights can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • processing the information of the identified categories can result in a multitude of useful insights regarding the performance of provisioning entities.
  • Some of such insights can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity.
  • processing step 640 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • step 640 can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 640 .
  • step 640 can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 640 .
  • processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
  • the processed information can be provided for displaying the performance of the one or more entities (e.g., provisioning entity) on a user interface.
  • the user interface can comprise a representation of a geographic region.
  • the user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region.
  • the user interface can include a representation of the performance of the one or more entities over geographic or sub-geographic regions associated with a location of the one or more entities.
  • geographic or sub-geographic regions can be associated with a location of either a consuming entity or a provisioning entity.
  • providing step 650 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • Exemplary user interfaces are depicted in FIGS. 7-9 that illustrate a performance of a provisioning entity based on one or more filter selections. As shown in FIGS. 7-9 , user interface can either be a graph-based, map-based, or any other related interface.
  • FIGS. 7-9 illustrate several exemplary user interfaces that can be generated by provisioning entity analysis system, consistent with embodiments of the present disclosure.
  • the exemplary user interfaces of FIGS. 7-9 are meant to help illustrate and describe certain features of disclosed embodiments, and are not meant to limit the scope of the user interfaces that can be generated or provided by the provisioning entity analysis system.
  • FIG. 7 shows an exemplary user interface 700 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
  • User interface 700 includes an option to add one or more new filters (e.g., add new filter 705 ).
  • a provisioning entity or a user of a provisioning entity
  • a consuming entity can select the option to select the one or more filters.
  • the option to add one or more filters can include adding filters associated with charts 710 , histograms 720 , maps 730 , numbers 740 , and time 750 .
  • Each of the above-recited filters can further comprise sub-filters.
  • filter maps 730 can further comprise sub-filters associated with Map-Consuming Entity Source 732 , Map-Provisioning Entity Revenue 734 , and Regional Chart-Spend by Region 736 . It will be understood that one or more filters (and sub-filters) can include any other filters associated with interactions associated with multiple entities stored in a data structure (e.g., data structure 400 ).
  • User interface 700 can include map 760 , which shows consuming entity source and geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
  • a geohash region, or geohash bucket is a region associated with a latitude/longitude, hierarchal geocode system that subdivides regions of the Earth into grid shaped buckets. The level of granularity of geohash regions can vary depending on the length of the geohash code corresponding to that region. For example, a geohash code that is one bit in length can correspond to a geohash region of roughly 20 million square kilometers, and a geohash code that is six bits in length can correspond to a geohash region of roughly 1.2 square kilometers.
  • a geohash region of five bits is preferred, although the size of the geohash region can depend on the character of the overall region which is being geohashed. For example, a six bit geohash can be more suitable for a densely populated urban area, while a four bit geohash can be more suitable for a sparsely populated rural area.
  • location information of an entity can be represented by a geohash region.
  • a geohash region of five bits representing San Jose, Calif. can comprise the latitude/longitude coordinates, N 37.3394° W 121.8950°, and can be depicted as shaded region 775 as illustrated on map 770 .
  • location information can be represented using a zip code.
  • a portion of San Jose, Calif. can be represented by using a zip code, 95113.
  • location information can be represented in other ways such as street address, city, state, Global Positioning Satellite coordinates, etc.
  • the provisioning entity analysis system receives a message to regenerate or modify the user interface. For example, if a user entered Maps 730 and then Map-Consuming Entity Source 732 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with a location of each consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 760 showing a location information for each consuming entity. For example, map 760 can display consuming entity location as shaded and unshaded rectangles in geo-hash regions. In some embodiments, a region of the map can be selected by a user by using an input device such as mouse, key board, or touch pad.
  • an input device such as mouse, key board, or touch pad.
  • the provisioning entity analysis system could receive a message indicating that a user interface should display a map with revenue information of provisioning entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 770 showing revenue information of provisioning entity over the given region of map.
  • map 770 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions.
  • user interface 700 can further comprise representations associated with other filter (and sub-filter) selections, including but not limited to, charts 710 , histograms 720 , numbers 740 , and time 750 .
  • FIG. 8 shows an exemplary user interface 800 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
  • User interface 800 includes an option to add one or more new filters (e.g., add new filter 805 .
  • the option to add one or more filters can include adding filters to display an entity's performance comprising either cohort analysis (e.g., cohorts 810 ), demographic analysis (e.g., demographics 820 ), geographic analysis (e.g., geographics 830 ), time-based analysis (e.g., time 840 ), and interaction analysis (e.g., interactions 850 ).
  • Each of the above-recited filters can further comprise sub-filters.
  • filter demographics 820 can further comprise sub-filters associated with age of consuming entity (e.g., age 822 ), location of consuming entity (e.g., consuming entity zipcode 824 ), gender of consuming entity (e.g., gender 826 ), and income of consuming entity (e.g., income 828 ).
  • age of consuming entity e.g., age 822
  • location of consuming entity e.g., consuming entity zipcode 824
  • gender of consuming entity e.g., gender 826
  • income of consuming entity e.g., income 828 .
  • User interface 800 can include map 860 , which can show, for example, a representation of income of consuming entities in terms of geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
  • map 860 can show, for example, a representation of income of consuming entities in terms of geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
  • the provisioning entity analysis system receives a message to regenerate or modify the user interface.
  • the provisioning entity analysis system would receive a message indicating that a user interface should display a map with income information of consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 860 showing a representation of income information of consuming entity using geohash regions.
  • map 860 displays consuming entity income as shaded and unshaded rectangles in geo-hash regions.
  • the provisioning entity analysis system would receive a request indicating that a user interface should display a map with revenue information of provisioning entity revenue for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 870 showing a representation of revenue information of provisioning entity revenue using geohash regions.
  • map 870 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions.
  • FIG. 9 shows an exemplary user interface 900 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • map-based representation e.g., map 910 and map 920
  • user interface 900 can also depict an entity performance as either a graph-based representation (e.g., graph 930 ) or a heat-map representation (e.g., heat-map 940 ).
  • a user can select one or more filters (e.g., add new filter 905 ) to display a timeline of an aggregate spending by consuming entities.
  • provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate a user interface (e.g., graph 930 ) that can represent an aggregate of consuming entity spending on a daily basis at a given provisioning entity.
  • the aggregate consuming entity spending on a daily basis can be displayed as a graph-based representation where the independent axis (e.g., x-axis) can represent a day and the other axis can represent aggregate consuming entity spending on a daily basis, as depicted in graph 930 .
  • a user can select one or more filters (e.g., add new filter 905 ) to display an hourly spending by consuming entities.
  • provisioning entity analysis system e.g., provisioning entity analysis system 210
  • can generate a user interface e.g., heat map 940
  • the consuming entity spending on an hourly basis can be displayed as a heat-map representation where different shades of gray-scale can be used to show different amount of spending on an hourly basis.
  • a color coded heat-map can be used where different colors can be used to show different amount of spending on an hourly basis. While FIG. 9 depicts a few representations of entity performance, it will be understood that those representations are merely exemplary and other representations are possible within the spirit and scope of this disclosure.
  • FIG. 10A depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • the analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • an identifier associated with an entity can be recognized.
  • the entity can be a provisioning entity.
  • the entity can be a consuming entity.
  • the identifier can be information associated with a provisioning entity identification category.
  • the identifier can be information associated with a consuming entity identification category. It will be appreciated that other methods for recognizing an identifier associated with an entity are possible.
  • a data structure (e.g., data structure 400 ) comprising several categories of information and one or more interactions associated with a plurality of entities can be accessed.
  • the data structure can represent information associated with a very large number of interactions.
  • the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions).
  • the data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
  • one or more interactions of the plurality of interactions can be identified based on the recognized identifier.
  • the identified interactions can be one or more interactions of the data structure that are associated with the recognized identifier of the entity.
  • the identified interactions can be one or more interactions associated with a provisioning entity identification information (e.g., provisioning entity identification category 440 ) or a consuming entity identification information category (e.g., consuming entity identification category 420 ).
  • provisioning entity identification information e.g., provisioning entity identification category 440
  • a consuming entity identification information category e.g., consuming entity identification category 420 .
  • step 1030 can identify one or more interactions that are associated with a provisioning entity that can be identified with a name or code “Merchant 1 .”
  • the accessed data structure can comprise several categories of information showing interactions associated with multiple entities.
  • the provisioning entity analysis system e.g., provisioning entity analysis system 210
  • the provisioning entity analysis system can identify some categories of the data structure that are relevant for analyzing the performance of the entity (e.g., provisioning entity) associated with the recognized identifier.
  • processing the identified interactions can comprise creating a new data structure that is different from the data structure of step 1020 A, and can comprise only the identified interactions of step 1030 A or one or more subsets of those categories.
  • processing the identified interactions is performed on the existing data structure of step 1020 A (e.g., data structure 400 ).
  • processing the information of the identified interactions can result in a multitude of useful insights regarding the behavior of consuming entities.
  • Some of such insights can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • processing the information of the identified interactions can result in a multitude of useful insights regarding the performance of provisioning entities.
  • Some of such insights can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity, and performance comparison between competing provisioning entities. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • step 1040 A can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 1040 A.
  • step 1040 A can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 1040 A. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
  • the processed information can comprise analysis information of a first entity or a first group of entities of the plurality of entities and a second entity or a second group of entities of a plurality of entities.
  • a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as LowesTM) and a second entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Home DepotTM).
  • the second entity can be a competitor of the first entity.
  • the first or second group of entities of the plurality of entities can be defined such that the first or second group of entities can comprise similar characteristics.
  • the first or second group of entities can be all grocery stores within a given zip code or all SafewayTM locations within a city (e.g., San Jose, Calif.).
  • the first or second group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
  • a group of entities e.g., a first group of entities of the plurality of entities
  • the group of entities can include a group of provisioning entities.
  • the group of provisioning entities associated with a first provisioning entity can be identified based on at least one of: a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities; a location information associated with the first provisioning entity and associated with other provisioning entities; information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities; and information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities.
  • the group of entities can be referred to as, for example, a cohort of entities, a set of entities, or an associated set of entities. It will be appreciated that the group of entities can be referred to by using other names.
  • a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities can be used to determine a group of provisioning entities associated with the first provisioning entity.
  • customer entity demographic information e.g., age, gender, income, and/or location
  • location information associated with the first provisioning entity and with other provisioning entities can be analyzed to identify a group of provisioning entities associated with the first provisioning entity.
  • other provisioning entities that are located within a specified distance to a location of the first provisioning entity can be identified as part of the group of provisioning entities.
  • other distance criteria such as, for example, same zip code, can be used to identify the group of provisioning entities.
  • a restaurant situated in an airport can be interested in analyzing its own performance relative to other restaurants situated within the same airport.
  • Information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity.
  • a high-end bicycle store can be interested in comparing its performance against other high-end bicycle stores.
  • a group of high-end bicycle stores can be identified based on a market share analysis of high-end bicycle stores.
  • Information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity.
  • a novelty late-night theatre can be interested in comparing its performance against other provisioning entities that also operate late-night (e.g., bars or clubs) and hence can likely compete with those entities for a consuming entity's time and money.
  • An exemplary definition of wallet share can be a percentage of consuming entity spending over a period of time such as on a daily basis or a weekly basis etc.
  • the group of provisioning entities can be identified by using a multi-timescale correlation comparison.
  • One method of implementing the multi-timescale correlation comparison can be by analyzing interactions between a consuming entity and a first provisioning entity (“first provisioning entity interactions”) with that of interactions between the consuming entity and a second provisioning entity (“second provisioning entity interactions”). For example, if the first provisioning entity interactions are correlated with the second provisioning entity interactions on a daily timescale but anti-correlated (or inversely correlated) on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as complementary entities rather than competitive entities. In such scenarios, the second provisioning entity need not be part of a group of provisioning entities the first provisioning entity is interested in comparing against.
  • the first provisioning entity interactions are anti-correlated with the second provisioning entity interactions on a daily timescale but correlated on an hourly timescale
  • the first provisioning entity and the second provisioning entity can be defined as competitive entities.
  • the second provisioning entity can be included in a group of provisioning entities the first provisioning entity is interested in comparing against.
  • a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
  • an identity of the first entity can be known and an identity of the second entity can be unknown.
  • the recognized identifier can be associated with the first entity and accordingly, an identify of the first entity can be known.
  • an identity of the second entity can be estimated based on information representing at least two attributes of the first entity.
  • the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity.
  • the data structure e.g., data structure 400
  • the data structure can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria can be used to select from the more than one possible choices. In some embodiments, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
  • the processed information can be provided for displaying the performance of the entity (e.g., provisioning entity) on a user interface.
  • the user interface can comprise a representation of a geographic region.
  • the user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region.
  • An exemplary user interface is depicted in FIG. 10B .
  • the user interface can include a dashboard showing a graphical representation of the performance of an entity based on recognizing an identifier for the entity.
  • FIG. 10B shows an exemplary user interface 1000 B that a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate, according to some embodiments.
  • User interface 1000 B can include a dashboard (e.g., dashboard 1010 B) that can depict a performance of an entity over a metric.
  • dashboard 1010 B represents information of sales of the entity (e.g., a provisioning entity) over a 7-day period for the current week (May 25, 2013- May 31, 2013) compared to the same week of the previous year (May 25, 2012- May 31, 2012).
  • dashboard 1010 B can represent information comparing the entity's actual revenue with the entity's expected revenue.
  • the provisioning entity can input an expected revenue for a period of time (e.g., weekly, quarterly, or yearly).
  • the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the expected revenue.
  • An outcome of such comparative analysis can be represented with an exemplary bar graph or a pie chart on user interface 1000 B.
  • the entity's expected revenue information can be inferred without having to receive an external input representing the expected revenue.
  • the provisioning analysis system can analyze interaction data of the data structure to estimate a number for the entity's expected revenue.
  • dashboard 1010 B can be represented as a bar graph using two different fills, one fill representing sales of the current week and another representing sales from last year. It will be understood that other representations of dashboard 1010 A are possible.
  • the dashboard can be preconfigured to analyze interaction data for a period of time such as, for example, 7-days, one month, one quarter, one year, etc.
  • user interface 1000 B can also include a box for representing an alert (e.g., latest alert 1020 B) that can indicate certain performance metrics of the entity.
  • latest alert 1020 B includes information to indicate that the entity's worst day within the preconfigured period of time is May 31, 2013. A different entity performance metric can be included in latest alert 1020 B.
  • user interface 1000 B can include user interface elements representing information associated with entity performance metrics such as revenue (e.g, revenue 1025 B), amount of interaction (e.g., ticket size 1030 B), new consuming entities (new consuming entities 1035 B), returning consuming entities (e.g., returning consuming entities 1040 B), time of interaction in a day (e.g., time of day 1045 B), and interactions during a day of the week (e.g., day of week 1050 B).
  • entity performance metrics such as revenue (e.g, revenue 1025 B), amount of interaction (e.g., ticket size 1030 B), new consuming entities (new consuming entities 1035 B), returning consuming entities (e.g., returning consuming entities 1040 B), time of interaction in a day (e.g., time of day 1045 B), and interactions during a day of the week (e.g., day of week 1050 B).
  • revenue e.g, revenue 1025 B
  • amount of interaction e.g., ticket size 1030 B
  • FIG. 11 depicts a flowchart representing an exemplary process for comparing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • the comparing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • an input for at least one category of information to be compared between a first entity and a second entity can be received at a provisioning entity analysis system implementing a process for comparing a performance between the first entity and a second entity.
  • the input can be received from a provisioning entity (e.g., a merchant like LowesTM), which can be interested in analyzing their performance relative to a competitor (e.g., HomeDepotTM)
  • a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
  • the input can be received from a first entity, where an identity of the first entity can be known.
  • an identity of the second entity can be provided.
  • the user of the first entity can provide an identity of the second entity.
  • an identity of the second entity is not provided.
  • an identity of the second entity can be estimated as described below.
  • the received input can comprise a selection to represent data associated with at least one of: demographics; geographic; time; and transactions.
  • the received input can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time.
  • the received input can be similar to one or more filter selections (e.g., add new filter 705 ) described in FIG. 6 .
  • An exemplary screenshot of a user interface comparing a performance of the first entity with that of the second entity can be shown in FIG. 12 , described below.
  • a data structure (e.g., data structure 400 ) comprising several categories of information showing interactions associated with multiple entities can be accessed.
  • the data structure can represent information associated with a very large number of interactions (e.g., data structure 400 of FIG. 4 . depicting 50 billion interactions).
  • the multiple entities can include at least the first entity (e.g., a first provisioning entity such as LowesTM) and the second entity (e.g., a second provisioning entity such as HomeDepotTM)
  • an identity of the second entity can be estimated based on information representing at least two attributes of the first entity.
  • the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400 ) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity.
  • a type of the first entity e.g., gas station
  • location of the first entity e.g., zip code
  • the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity.
  • criteria including, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
  • step 1140 relevant interaction information associated with the at least one category of the data structure can be processed to compare a performance of the first entity with that of the second entity.
  • the processing step 1140 can be very similar to processing step 640 described above.
  • step 1140 can involve two processing operations (e.g., processing operation of step 640 ), one for processing the information associated with the at least one category of the first entity and another one for processing the information associated with the at least one category of the second entity. After performing such operations, step 1140 can then compare the processed information from processing the first entity with that of the second entity.
  • the processed information can be provided for displaying a comparison between a performance of the first entity with that of the second entity.
  • Exemplary user interface is depicted in FIG. 12 that illustrates a performance comparison between the first and second entities.
  • FIG. 12 shows a user interface 1200 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
  • user interface 1200 includes an option to add one or more inputs for categories to be compared between entities.
  • user interface 1200 can include categories representing timeline 1211 , revenue 1212 , total transactions 1213 , ticket size 1214 , and time/day 1215 . It will be understood that other categories can be included in user interface 1200 .
  • User interface 1200 can depict two graphs (e.g., graph 1252 and graph 1262 ) to represent a performance comparison between the first entity and the second entity.
  • graph 1252 can represent a performance of the first entity for the selected category revenue 1212 .
  • the first entity intends to compare its own revenue performance with that of one of its competitor over a given period of time (e.g., over the current quarter).
  • Graph 1252 can represent revenue of the first entity over the current quarter
  • graph 1262 can represent revenue of the second entity (competitor to the first entity) over the same current quarter.
  • entity performance can be represented using different approaches such as, for example, charts, maps, histograms, numbers etc.
  • an identity of the second entity can be estimated using the exemplary process described in FIG. 11 .
  • FIG. 13 depicts a flowchart representing an exemplary process 1300 for estimating a location of a consuming entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • Process 1300 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • provisioning entity analysis system e.g., provisioning entity analysis system 210
  • a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
  • the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
  • the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
  • the plurality of interactions of the data structure can include information associated with a consuming entity and a provisioning entity (e.g., a first provisioning entity). Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
  • the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
  • the at least one attribute of the provisioning entity can include an identification information of the provisioning entity.
  • the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity, such as a type of the provisioning entity.
  • step 1320 an interaction of the data structure can be evaluated.
  • step 1330 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the consuming entity.
  • the determination can include analyzing whether the categories of information associated with a location information of the consuming entity (e.g., consuming entity location category 430 ) are populated or not. If it turns out that the categories of information associated with a location information of the consuming entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the consuming entity includes a location information of the consuming entity and the process can then move to step 1360 .
  • the determination can return a negative indication to signify that the interaction does not include a location information of the consuming entity and the process can then move to step 1340 .
  • the determination can further include verifying that the populated data is valid data that signifies a location information before the process can move to step 1360 .
  • the category of information representing zip code e.g., zip code sub-category 456
  • the populated data is 94085, it can be verified as a valid data and the process can then move step 1360 .
  • the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits, and the process can then move to step 1340 described below. It will be understood that other methods to determine whether the interaction includes a location information of the consuming entity can be implemented within the scope and spirit of this disclosure.
  • an estimation can be performed to determine location information of the consuming entity based on its interactions with one or more provisioning entities (e.g., second provisioning entity, for purposes of simplicity) of a particular type (e.g., type of provisioning entity category 460 ).
  • the second provisioning entity can be of the type including a gas station, a pharmacy, restaurant, or a grocery store.
  • location information of the consuming entity can be estimated by analyzing interactions between the consuming entity and the second provisioning entity.
  • interactions between the consumer entity and a type of provisioning entity that represents gas stations can be analyzed such that the gas station at which the consuming entity most frequently fills up gas can be identified as a location of the consuming entity. This is because it can be reasonable to assume that the consuming entity can frequently fill up gas at a gas station that is in a proximity to the residential location of the consuming entity.
  • interactions between the consumer entity and a type of provisioning entities that represent gas stations can result in similar number of interactions between two different gas stations in two different locations (e.g., zip codes).
  • one method of estimating a location of the consuming entity is to then analyze interactions between the consuming entity and a third provisioning entity that can represent grocery stores because it can be reasonable to assume that the consuming entity would more often than not shop for groceries at a location closer to residential location of the consuming entity.
  • the estimating of a location can take into consideration the date (e.g., weekend) and or time (e.g., typical times before or after work) of an interaction with a type of provisioning entity. Based on analyzing interactions with the third provisioning entity (such as grocery stores) and combining such analysis with that of the interactions with the second provisioning entity (such as gas stations), an estimation can be made regarding a location of the consuming entity.
  • step 1340 can estimate a location information of the consuming entity after the determination returns that the at least one attribute of the consuming entity includes an invalid location information of the consuming entity by using similar techniques as described above. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
  • the data structure can be updated with an estimated location information of the consuming entity.
  • data associated with only the evaluated interaction can be updated.
  • data associated with all interactions associated with the consuming entity can be updated irrespective of whether those interactions were previously evaluated or not.
  • step 1360 a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1320 to evaluate another interaction and further to repeat the process comprising steps 1320 through 1360 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • a provisioning entity analysis system can resolve the name of a provisioning entity.
  • a data structure storing information associated with billions of interactions can include millions of provisioning entities and it is possible that some of the names of the provisioning entities are not consistent.
  • the name of provisioning entity “McDonalds's” can be indicated by a number of combinations such as, “McDonald's,” “Mc Donalds,” “mcdonalds,” “Mcdonald's,” etc. While each of the above-recited names can be intended to indicate the same entity, some processing can be necessary before the system can analyze all such names as the same entity. Exemplary methods for resolving a name of provisioning entities are described in U.S. Non-Provisional patent application Ser. No. 13/827,491, titled Resolving Similar Entities From A Transaction Database filed on Mar. 14, 2013, the entirety of which is expressly incorporated herein by reference.
  • An exemplary method of resolving a provisioning entity name can include a number of factors including, but not limited to, categories of information associated with interactions, analyzing interactions associated with competitive and/or complementary provisioning entities. Such exemplary method can result in a significant uplift in accuracy in resolving the name of provisioning entities. In some embodiments, a percentage accuracy in resolving the name of provisioning entities can be increased to high nineties (e.g., 97%).
  • FIG. 14 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • Process 1400 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
  • the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
  • the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
  • the plurality of interactions of the data structure can include a consuming entity and a provisioning entity. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
  • the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
  • the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. In some embodiments, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
  • step 1420 an interaction of the data structure can be evaluated.
  • step 1430 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity.
  • the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1460 .
  • the determination can return a negative indication to signify that the interaction does not include a location information of the provisioning entity and the process can move to step 1440 .
  • the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1460 .
  • the category of information representing zip code e.g., zip code sub-category 456
  • the populated data is 94085, it can be verified as a valid data and the process can then move to step 1460 .
  • the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits and the process can then move to step 1440 as described below. It will be understood that other methods to determine whether the interaction includes a location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
  • step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities.
  • step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity.
  • the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440 ).
  • a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google SearchTM).
  • a search engine e.g., Google SearchTM
  • a location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out a location information of the provisioning entity that is closest to the location of the consuming entity. In some embodiments, the location information returned by the search query can be an estimated location information of the provisioning entity.
  • a location information of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each location of the provisioning entity.
  • a provisioning entity can be the grocery store, SafewayTM, which can have multiple locations in a given zip code (e.g., 94086) of the consuming entity. If the location of the SafewayTM where one or more interactions with a consuming entity occurred is unknown, interactions between the same consuming entity and all SafewayTM locations within the given zip code of the consuming entity can be analyzed such that the SafewayTM location that is involved with the most number of interactions can be selected as an estimated location of the SafewayTM for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
  • the data structure can be updated with an estimated location information of the provisioning entity.
  • data associated with only the evaluated interaction can be updated.
  • data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not.
  • step 1460 a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1420 to evaluate another interaction and further to repeat the process comprising steps 1420 through 1460 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • FIG. 15 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
  • Process 1500 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
  • the exemplary process of FIG. 15 can depict a multi-step process for estimating location information of a provisioning entity.
  • an area location information can be estimated to represent a location information of the provisioning entity broadly.
  • an area location information for a grocery store like SafewayTM can be as broad as a state (e.g., California) or county (e.g., Santa Clara County) such that SafewayTM can comprise multiple possible locations within the area location.
  • a location information can be estimated to identify a specific location of the provisioning entity from its multiple possible locations within the area location.
  • the estimated location information can represent one of the ten possible locations within Santa Clara County using either a street address or other unique identifier for the location (e.g., zip code if there is only one store location for the zip code).
  • a street address or other unique identifier for the location e.g., zip code if there is only one store location for the zip code.
  • a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
  • the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
  • the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
  • the plurality of interactions of the data structure can include consuming entities and provisioning entities. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
  • the at least one attribute of the consuming entity can include location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
  • the at least one attribute of the provisioning entity can include an identification information of the provisioning entity.
  • the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
  • the provisioning entity analysis system can receive an input that can be used in a process to fill in any missing categories of information associated with an interaction.
  • the received input can be “canonical data” that can be used to estimate identification information of the provisioning entity.
  • An exemplary canonical data can comprise data that can be received from external to the provisioning entity analysis system (e.g., YelpTM).
  • YelpTM e.g., YelpTM
  • canonical data such as YelpTM review information can be analyzed to further identify the provisioning entity as an Italian restaurant.
  • canonical data can be received from an external source (e.g., FactualTM) that can comprise a “status” flag as part of its data, which can signify whether the entity is no longer in business.
  • FactualTM an external source
  • step 1510 an interaction of the data structure can be evaluated.
  • step 1515 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity.
  • the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1555 . If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include location information of the provisioning entity and the process can move to step 1520 .
  • the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1555 .
  • the category of information representing zip code e.g., zip code sub-category 456
  • the populated data is 94085, it can be verified as a valid data and the process can then move to step 1555 .
  • the populated data is 094085, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are typically only five decimal numerical digits and the process can then move to step 1520 as described below. It will be appreciated that other methods to determine whether the interaction includes location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
  • step 1520 can estimate an area location information of the provisioning entity based on one or more attributes of one or more consuming entities.
  • step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities.
  • step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity.
  • the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440 ).
  • a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google SearchTM) and such information can be identified as an estimated first location information of the provisioning entity.
  • a search engine e.g., Google SearchTM
  • an area location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out the area location information of the provisioning entity that is within a predetermined distance (e.g., within the same zip code) to the location of the consuming entity.
  • the location information returned by the search query can be an estimated first location information of the provisioning entity.
  • the plurality of interactions can be filtered to identify other interactions (e.g., interactions other than the first interaction) between the one or more consuming entities and other provisioning entities (i.e., provisioning entities other than the provisioning entity associated with the interaction and with an unidentified location).
  • step 1525 can filter other interactions such that interactions without an indication of location information associated with the other provisioning entities need not be analyzed.
  • the filtered interactions can be analyzed to filter provisioning entities based on a received canonical input data.
  • the system can filter the interactions further to only analyze those interactions associated with provisioning entities with an identification information that meet the criteria set by the received canonical data. It will be appreciated that other forms of canonical data can be received within the scope of this disclosure.
  • a travel time can be computed between a location of a first provisioning entity to that of a location of a second provisioning entity.
  • the first provisioning entity can be the provisioning entity with an estimated area location and the second provisioning entity can be any provisioning entity other than the first provisioning entity.
  • Provisioning entities S1 and S2 can be two different locations within a chain of stores associated with the same provisioning entity and situated within an area location information estimated in step 1520 .
  • S1 and S2 can be two different locations of SafewayTM situated within an estimated area location (e.g., zip code 94086).
  • the area location information can be depicted with a shaded region and labeled as element 1605 A in FIGS. 16A, 16B, and 16C . As shown in FIG.
  • the five interactions, X1-X5 can represent interactions between the consuming entity associated with the interaction of step 1510 and a provisioning entity other than S1 or S2. While FIGS. 16A, 16B, and 16C , depict locations of two provisioning entities and locations of five interactions, it will be appreciated that this disclosure is applicable to embodiments involving any number of provisioning entities and any number of interactions.
  • FIG. 16B depicts travel times between the SafewayTM location, S1, and a provisioning entity involved in each of the interactions, X1-X5. While the travel times are illustrated as aerial travel times, it is appreciated that the travel times can take into consideration roads, sidewalks, bike lanes, etc. For example, travel time between the location S1 and location of provisioning entity involved in interaction X1, can be represented by the line T S1-X1 . Travel time T S1-X1 can be computed using real-time traffic conditions or based on historical traffic conditions. Similarly, travel times can be computed between S1 and each location of provisioning entities associated with interactions X2 through X5. Such travel times can be labeled as T s1-x2 through T S1-X5 , as depicted in FIG. 16B .
  • FIG. 16C depicts travel times between the other possible SafewayTM location, S2, and a provisioning entity involved in each of the interactions, X1-X5.
  • This process can be very similar to that of FIG. 16B described above.
  • travel time between the location S2 and location of provisioning entity involved in interaction X1 can be represented by the line T S2-X1 .
  • Travel time T S2-X1 can be computed using real-time traffic conditions or based on historical traffic conditions.
  • travel times can be computed between S2 and each location of provisioning entities associated with interactions X2 through X5.
  • Such travel times can be labeled as T S2-X2 through T S2-X5 , as depicted in FIG. 16C .
  • an affinity score can be computed.
  • an affinity score can be computed for each possible location of the provisioning entity within the estimated area location.
  • the computed affinity score can be based on the computed travel times such that the affinity score can have an inverse proportionality with computed travel times such that the lower the travel time the higher an affinity score. For example, based on the exemplary travel times depicted in FIGS. 16A, 16B, and 16C , it is possible that the affinity score associated with location S1 is likely higher than that of location S2 because travel times associated with S1 are lower than that of S2.
  • Affinity score can be computed based on an average travel time for all interactions.
  • affinity score can be computed by aggregating travel times of all interactions for each location S1 and S2. It will be appreciated that the above-described methods are merely exemplary and other methods of computing an affinity score based on travel times are possible within the scope of this disclosure.
  • the computed affinity score can be normalized (e.g., can be normalized to comprise a value between 0 and 1, with 0 representing no affinity and 1 representing maximum possible affinity).
  • the affinity score can have an inverse relationship with the computed travel times, it is appreciated that the affinity score can have a proportional relationship to the computed travel times.
  • the computed affinity score can be used to estimate a location information within the estimated area location for the provisioning entity without an identified location information.
  • a location can be estimated by selecting the location which has the highest affinity score amongst all possible locations within the area location. That is, in the exemplary embodiment of FIG. 16 , location S1 can be selected as the affinity score associated with location S1 is likely higher than that of location S2, as described above. It will be appreciated that other methods of estimating a second location information based on an affinity score are possible. Alternatively, the computed affinity score can be used in conjunction with an algorithm to estimate a second location information within the area location information.
  • a location information within the area location of the provisioning entity can be estimated by analyzing interactions between the consuming entity and other provisioning entities within the location of the consuming entity (e.g., zip code of the consuming entity) that are closely spaced in time relative to the interaction that does not include an identified location information of the provisioning entity.
  • a first interaction that does not include an identified location information of the provisioning entity can include a timestamp (e.g., time of interaction category 480 ) associated with the first interaction.
  • the system can analyze other interactions (e.g., interactions other than the first interaction) associated with the consuming entity that occurred within the same location of the consuming entity (e.g., zip code of the consuming entity), occurred within a short time interval of the timestamp of the first interaction (e.g., within 10 minutes of the timestamp), and which further include an identified location information for the provisioning entities associated with the other interactions.
  • interactions e.g., interactions other than the first interaction
  • the consuming entity e.g., interactions other than the first interaction
  • a short time interval of the timestamp of the first interaction e.g., within 10 minutes of the timestamp
  • a location information within the area location of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each possible location of the provisioning entity.
  • a provisioning entity can be the grocery store, SafewayTM, which can have multiple locations in a given city (e.g., Sunnyvale Calif.) of the consuming entity. Interactions between the consuming entity and all SafewayTM locations within the given city of the consuming entity can be analyzed such that the SafewayTM location that is involved with the most number of interactions can be selected as an estimated location within the area location of the SafewayTM for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting
  • an accuracy check of the estimated location information within the area location can be performed.
  • the accuracy check can comprise verification that the estimated location information is one of the possible locations within the estimated area location of the provisioning entity.
  • the accuracy check can comprise verification that the estimated location information is a valid location information. For example, if the estimated location information is a street address, then the accuracy check can involve verifying that the estimated street address is a valid street address based on an Internet-based search using a search engine (e.g., Google SearchTM).
  • a search engine e.g., Google SearchTM
  • the data structure can be updated with an estimated location information of the provisioning entity.
  • the data structure can be updated with either an estimated area location information or an estimated location within the area location information.
  • the data structure can be updated with both the estimated area location information and the estimated location information within the area location.
  • data associated with only the evaluated interaction can be updated.
  • data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not.
  • a determination can be made whether the data structure comprises additional interactions that are to be evaluated.
  • step 1510 If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1510 to evaluate another interaction and further to repeat the process comprising steps 1510 through 1550 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • a provisioning entity analysis system can predict a purchasing pattern of consuming entities.
  • a provisioning entity e.g., a large national retailer in the grocery business like SafewayTM
  • SafewayTM can be interested in predicting purchasing patterns of consuming entities in order to make decision such as opening new stores or closing existing stores.
  • One method of predicting purchasing patterns can be to analyze interactions of consuming entities with the provisioning entity. For example, if SafewayTM is interested in opening new store by predicting purchasing patterns of their customers of an existing location, the customer interactions at the existing location can be analyzed to understand where the customers are located by processing location information of the customers. Based on the processed location information of the customers of the existing location, SafewayTM might be able to make a decision on a location for their new location.
  • Another method of predicting purchasing patterns can be to analyze interactions between the consuming entities and other provisioning entities, where the other provisioning entities can be either a competitor of or complementary to the provisioning entity.
  • the other provisioning entities can be either a competitor of or complementary to the provisioning entity.
  • An exemplary complementary entity can be a gas station or a pharmacy because it can be reasonable to assume that consumers frequently shop at a pharmacy or a gas station that is close to their residential location. Accordingly, by analyzing interactions that are associated with a complementary entity to estimate a residential location information of consumers, SafewayTM can make a decision on a location for their new location.
  • FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure. These user interfaces can be provided based on an analysis of a data structure (e.g., data structure 400 of FIG. 4 ) performed by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ).
  • FIG. 17 illustrates an exemplary user interface 1700 that a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate, according to some embodiments.
  • the exemplary user interface includes a dashboard, e.g a small business portal dashboard (SBP) dashboard, that can depict a performance of an entity over a metric.
  • SBP small business portal dashboard
  • the SBP dashboard represents revenue information of the entity (e.g., a provisioning entity) for the current week (May 26, 2013-Jun. 2, 2013).
  • the SBP dashboard represents revenue information comparing the entity's actual revenue to the entity's goal revenue for the week.
  • the provisioning entity can enter a goal revenue for a period of time (e.g., weekly, quarterly, or yearly).
  • the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the goal revenue.
  • An outcome of such comparative analysis can be represented with an exemplary bar graph or pie chart. For example, the middle portion of FIG. 17 depicts that the entity has received $48,078 in revenues for the current week, and the entity's goal revenue for that week is $63,933.
  • user interface 1700 can include a plurality of user interface elements representing information associated with entity performance metrics such as revenue, ticket size, new customers, and returning customers.
  • entity performance metrics such as revenue, ticket size, new customers, and returning customers.
  • each of the above-described user interface elements can be depicted as a rectangular box with an icon and some information representing the performance metric of the entity.
  • the entity can customize what metrics are displayed and how those metrics are displayed.
  • the user interface elements when clicked on, can provide access to other user interfaces, depicting additional information for the selected performance metric.
  • User interface 1700 can include a sidebar with expandable labels depicting, for example, “My Store,” “My Customers,” and “My Neighborhood.” Each of these labels can provide access to additional user interfaces that depict additional information for these metrics. For example, clicking on the “My Store” label can expand the label to show submenus corresponding to “Revenue,” “Total Transactions,” “Ticket Size,” “Busiest Days,” and “Busiest Hours.” Each of these submenus can provide access to another user interface, providing additional information for each category.
  • FIG. 18 shows a screenshot of an exemplary user interface 1800 that represents revenue depicted temporally, consistent with some embodiments.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • User interface 1800 can be accessed by an entity selecting “Revenue” in the sidebar (e.g., “Revenue” submenu of user interface 1700 of FIG. 17 ).
  • User interface 1800 can represent revenue information in a chart, such as the bar chart shown in the top panel of FIG. 18 .
  • each bar in the bar chart can represent revenues for a period of time (e.g., a day, week, month, quarter, or year). The granularity or time period for each bar based on the selection of the “Monthly,” “Weekly,” and “Daily” boxes in the top left portion of the bar chart.
  • user interface 1800 allows an entity to select a particular bar or time period of interest. For example, the entity can select the “May” bar. To indicate that “May” has been selected, user interface 1800 can display that month in a different color. In some embodiments, user interface 1800 can also display additional information for the selected bar. For example, as shown in FIG. 18 , user interface 1800 can display the month selected, the revenue for that month, the average ticket size, the number of transactions, and the names of holidays in that month, if any. In some embodiments, user interface 1800 can depict comparisons of revenue information. For example, user interface 1800 can display additional lines or bars (not shown), which represent revenue competitor revenue, industry revenue, or entity revenue from another time period.
  • user interface 1800 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months.
  • User interface 1800 can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel.
  • user interface 1800 can allow an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
  • User interface 1800 can also allow an entity to access additional user interfaces by selecting, for example, the “Total Transactions,” “Ticket Size,” “Busiest Days,” or “Busiest Hours” submenus in the sidebar.
  • these user interfaces can display information in the same manner as user interface 1800 .
  • a user interface for “Total Transaction” can represent transaction information in a chart, such as a bar chart shown in the top panel of FIG. 18 .
  • the bars in the bar chart can represent the total number of transactions for a period time (e.g., one month).
  • User interfaces accessed through the “Ticket Size,” “Busiest Days,” and “Busiest Hours” can display information similarly.
  • the bars in these user interfaces can represent a percentage for a period time (e.g., 15% of sales occur on Tuesday).
  • FIG. 19 depicts a screenshot of an exemplary user interface representing new customer acquisition numbers over a selected period, consistent with some embodiments.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • user interface 1900 is accessible by expanding “My Customers” in the sidebar and selecting the “New Customers” submenu.
  • User interface 1900 can depict customer metrics for a selected period of time. For example, user interface 1900 can display customer metrics for a selected quarter.
  • User interface 1900 can use, for example, a bar graph to represent the customer metrics wherein each bar represents the number of customers for a subset period of time, (e.g., a week) within the longer period of time (e.g., a quarter).
  • User interface 1900 can also depict new customers in one color and returning customers in a different color to distinguish between the different types of customers. As an example, in FIG. 19 , returning customers are represented by the upper, lighter portions of the bar, whereas new customers are represented by the lower, darker portions. In some embodiments, user interface 1900 can depict the total number of new customers and returning customers for a selected time period, as shown in the top right portion of user interface 1900 . User interface 1900 can also allow an entity to access additional user interfaces (such as user interface 2000 and user interface 2100 described below) by selecting, for example, the “Loyal Customers” or “Where do they spend?” submenus.
  • additional user interfaces such as user interface 2000 and user interface 2100 described below
  • FIG. 20 depicts a screenshot of an exemplary user interface 2000 representing loyal customer information, consistent with some embodiments.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • user interface 2000 can be accessed based on the selection of the “Loyal Customers” submenu in the sidebar.
  • User interface 2000 can depict performance metrics relating to revenue from returning customers.
  • user interface 2000 represents this information as a stacked bar graph.
  • a section of the stacked graph can represent the number of customers who visited an entity a certain number of times. For example, the bottom section of the stacked bar chart depicted in FIG. 20 can represent the number of customers who visited once.
  • a section of the stacked graph can represent the number of customers whose visits fall within a range of times, (e.g., “3-4 times” or “9+ times”).
  • User interface 2000 can depict each section as a percentage (e.g. 7.0% of customers), as a number (e.g. 149 customers), or as a combination thereof (e.g., 149 customers, 7.0%).
  • user interface 2000 can depict additional information for a section selected by the entity.
  • the entity can select the “9+ times” section at the top of the stacked bar graph in FIG. 20 to display additional information about those customers.
  • This information can include the total revenue from those customers, the total number of transactions with those customers, and the average ticket size of those customers.
  • FIG. 21 depicts a screenshot of an exemplary user interface 2100 representing customer spending habits for specific geographic regions.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • user interface 2100 can be accessed based on the selection of the “Where do they spend” submenu in the sidebar.
  • User interface 2100 can depict a geographic region.
  • User interface 2100 can also depict locations where customers spend overlaid on the geographic region, e.g. a heat map. For example, the shaded regions overlaid on the geographic region in FIG. 21 can depict the regions where customers spend.
  • Different shades of gray-scale can be used to show different amounts of spending (e.g., darker shaded regions can depict regions where customers spend more).
  • a color coded heat-map can be used where different colors can be used to show different amounts of spending.
  • the geographic granularity e.g., district, city, county, metropolitan area, state
  • User interface 2100 can also depict spending habits for the geographic region for different temporal periods. For example, user interface 2100 can depict customer spending for the current month, quarter, previous quarter, or any other time period.
  • FIG. 22 depicts a screenshot of an exemplary user interface 2200 representing entity performance using one or more filter selections including demographics, geographic location, time period, and transactions.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • an entity can utilize user interface 2200 to compare how different variables (e.g., time, demographics, location, etc.) affect entity performance metrics (e.g., revenues, ticket size, etc.).
  • user interface 2200 can depict entity performance using a bar chart or histograms. For example, the bar charts in the middle of FIG. 22 depict the average ticket size based on the number of times a customer visits. The bar chart on the left side of FIG.
  • user interface 2200 can depict additional customer information, such as income, as a histogram. As shown in FIG. 22 , the histogram can represent customer demographics for the selected filters. In some embodiments, user interface 220 can depict a delta (not shown in FIG. 22 ) representing a difference between similar categories in each histogram. The depiction of the delta can be in the area between the left and right histograms such as shown in U.S. application Ser. No. 14/289,596 at FIG. 17 , the depiction of which is incorporated by reference.
  • user interface 2200 can display a 5% delta to the left, representing the difference between the filter selections.
  • FIG. 23 depicts a screenshot of an two exemplary user interfaces.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • the left panel of FIG. 23 shows a user interface that can depict business insights for the entity (e.g., what customers buy, where they buy, when they buy, how often they buy, where they live, how much they make, etc.).
  • user interface 2300 can depict insights such as temporal trends, temporal summaries, geographical trends, whether customers are on vacation, and customer demographics. An entity can use these insights to predict future spending, to target specific customers, to determine when to have sales, to determine when to order additional inventory, etc.
  • the user interface in the right panel can allow an entity to compare its revenues to other entities.
  • the lines on each bar in the right panel of FIG. 23 represent competitor revenue for the selected time period. In some embodiments, these lines can represent industry revenue or entity revenue from another time period.
  • the user interface shown in the right panel of FIG. 23 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months. The user interface can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel. In some embodiments, the user interface allows an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
  • FIG. 24 depicts a screenshot of an exemplary user interface 2400 including a heat-map representation (e.g., the left panel) and graph-based representation (e.g., the right panel) of entity performance.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • the entity can select one or more filters (e.g. “Add New Filter” shown in the sidebar) to display a timeline of customer.
  • user interface 2400 can represent customer spending on a daily basis.
  • user interface 2400 can represent customer spending with a heat map, such as the heat map shown in the left panel of FIG. 24 .
  • the heat map can be used to accurately predict the geographic locations of future customer spending.
  • customer spending can be represented as a graph-based representation where the independent axis (e.g., x-axis) can represent a period of time and the dependent axis can represent customer spending, as depicted in the right panel of FIG. 24 .
  • the graph-based representation can be used as a predictive chart to predict future customer spending.
  • FIG. 25 depicts a screenshot of an exemplary user interface 2500 representing inferred customer location.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • user interface 2500 can represent customer location inferred from persistent information (e.g., the centroid of the customer's medical transactions or the median of the customer's retail food and pharmacy stores transactions).
  • user interface 2500 can represent customer location inferred from contextual information (e.g. localized small-ticket spending in severe weather or spending after an inferred move).
  • user interface 2500 can represent temporal customer location (e.g., permanent, temporary, seasonal, etc.).
  • customer location can be represented by a circle of a particular distance, wherein the provisioning entity analysis system infers that the customer is located within that circle.
  • the inner circle represents a two mile range and the outer circle represents a five mile range.
  • user interface 2500 can depict a confidence metric corresponding to the accuracy of inferred customer location (e.g., 75-80% confident that the customer is within the inner circle and 90-95% confident that the customer is located in the outer circle).
  • FIG. 26 depicts a screenshot of an exemplary user interface 2600 representing predictive travel and vacation spending.
  • Entities such as resorts and travel destinations, can use this information to predict vacation patterns, enabling them to develop targeted marketing and to inform future restaurant and service selection.
  • a provisioning entity analysis system e.g., provisioning entity analysis system 210
  • the provisioning entity analysis system can use the inferred customer locations described above to determine whether certain transactions qualify as travel or vacation spending.
  • user interface 2600 can depict travel or vacation spending as a chart. For example, as shown in FIG. 26 , user interface 2600 can represent this information as a scatter chart with confidence intervals.
  • the independent axis (e.g., x-axis) of the chart can represent the day of vacation.
  • the dependent axis can represent the average range of percentage of travel spending that is spent on restaurants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Computational Linguistics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

Systems and methods are provided for analyzing entity performance. In one implementation, a method is provided that includes recognizing an identifier associated with an entity and accessing a data structure comprising information associated with a plurality of interactions. The method also comprises identifying one or more interactions of the plurality of interactions based on the recognized identifier. The method further comprises processing the information of the identified interactions to analyze a performance of the entity and providing the processed information to display the performance of the entity on a user interface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 61/916,795, U.S. Provisional Patent Application No. 61/916,796, and U.S. Provisional Patent Application No. 61/916,797, each of which were filed on Dec. 16, 2013, and the disclosures of which are expressly incorporated herein by reference in their entirety.
  • BACKGROUND
  • The amount of information being processed and stored is rapidly increasing as technology advances present an ever-increasing ability to generate and store data. This data is commonly stored in computer-based systems in structured data stores. For example, one common type of data store is a so-called “flat” file such as a spreadsheet, plain-text document, or XML document. Another common type of data store is a relational database comprising one or more tables. Other examples of data stores that comprise structured data include, without limitation, files systems, object collections, record collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.
  • Numerous organizations, including industry, retail, and government entities, recognize that important information and decisions can be drawn if massive data sets can be analyzed to identify patterns of behavior. Collecting and classifying large sets of data in an appropriate manner allows these entities to more quickly and efficiently identify these patterns, thereby allowing them to make more informed decisions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference will now be made to the accompanying drawings which illustrate exemplary embodiments of the present disclosure and in which:
  • FIG. 1 illustrates, in block diagram form, an exemplary data fusion system for providing interactive data analysis, consistent with embodiments of the present disclosure.
  • FIG. 2 is a block diagram of an exemplary system for analyzing performance of an entity, consistent with embodiments of the present disclosure.
  • FIG. 3 is a block diagram of an exemplary computer system, consistent with embodiments of the present disclosure.
  • FIG. 4 is a block diagram of an exemplary data structure accessed in the process of analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 6 is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 7 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 8 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 9 is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 10A is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 10B is a screenshot of an exemplary user interface representing an entity performance, consistent with embodiments of the present disclosure.
  • FIG. 11 is a flowchart representing an exemplary process for comparing entity performance, consistent with the embodiments of the present disclosure.
  • FIG. 12 is a screenshot of an exemplary user interface representing a comparison of entity performance, consistent with embodiments of the present disclosure
  • FIG. 13 is a flowchart representing an exemplary process for estimating a consuming entity's location, consistent with the embodiments of the present disclosure.
  • FIG. 14 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
  • FIG. 15 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
  • FIGS. 16A, 16B, and 16C are block diagrams representing a method of computing travel times between two provisioning entities, consistent with the embodiments of the present disclosure.
  • FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • This application expressly incorporates herein by reference the entirety of U.S. Non-Provisional patent application Ser. No. 14/045,720, titled “Systems and Methods for Analyzing Performance of an Entity”, filed on Oct. 3, 2013.
  • Reference will now be made in detail to the embodiments, the examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The terms interactions and transactions are intended to covey the same meaning and can be used interchangeably throughout this disclosure.
  • FIG. 1 illustrates, in block diagram form, an exemplary data fusion system 100 for providing interactive data analysis, consistent with embodiments of the present disclosure. Among other things, data fusion system 100 facilitates transformation of one or more data sources, such as data sources 130 (e.g., financial services systems 220, geographic data systems 230, provisioning entity management systems 240 and/or consuming entity data systems 250, as shown in FIG. 2) into an object model 160 whose semantics are defined by an ontology 150. The transformation can be performed for a variety of reasons. For example, a database administrator can import data from data sources 130 into a database 170 for persistently storing object model 160. As another example, a data presentation component (not depicted) can transform input data from data sources 130 “on the fly” into object model 160. The object model 160 can then be utilized, in conjunction with ontology 150, for analysis through graphs and/or other data visualization techniques.
  • Data fusion system 100 comprises a definition component 110 and a translation component 120, both implemented by one or more processors of one or more computing devices or systems executing hardware and/or software-based logic for providing various functionality and features of the present disclosure, as described herein. As will be appreciated from the present disclosure, data fusion system 100 can comprise fewer or additional components that provide the various functionalities and features described herein. Moreover, the number and arrangement of the components of data fusion system 100 responsible for providing the various functionalities and features described herein can further vary from embodiment to embodiment.
  • Definition component 110 generates and/or modifies ontology 150 and a schema map 140. Exemplary embodiments for defining an ontology (such as ontology 150) are described in U.S. Pat. No. 7,962,495 (the '495 patent), issued on Jun. 14, 2011, the entire contents of which are expressly incorporated herein by reference for all purposes. Consistent with certain embodiments disclosed in the '495 patent, a dynamic ontology may be used to create a database. To create a database ontology, one or more object types may be defined, where each object type includes one or more properties. The attributes of object types or property types of the ontology can be edited or modified at any time. And, for each property type, at least one parser definition may be created. The attributes of a parser definition can be edited or modified at any time.
  • In some embodiments, each property type is declared to be representative of one or more object types. A property type is representative of an object type when the property type is intuitively associated with the object type. Alternatively, each property type has one or more components and a base type. In some embodiments, a property type can comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements. Thus, property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.
  • An example of a property having multiple components is an Address property having a City component and a State component. An example of raw input data is “Los Angeles, Calif.” An example parser definition specifies an association of imported input data to object property components as follows: {CITY}, {STATE}→Address:State, Address:City. In some embodiments, the association {CITY}, {STATE} is defined in a parser definition using regular expression symbology. The association {CITY}, {STATE} indicates that a city string followed by a state string, and separated by a comma, comprises valid input data for a property of type Address. In contrast, input data of “Los Angeles Calif.” would not be valid for the specified parser definition, but a user could create a second parser definition that does match input data of “Los Angeles Calif.” The definition Address:City, Address:State specifies that matching input data values map to components named “City” and “State” of the Address property. As a result, parsing the input data using the parser definition results in assigning the value “Los Angeles” to the Address:City component of the Address property, and the value “CA” to the Address:State component of the Address property.
  • According to some embodiments, schema map 140 can define how various elements of schemas 135 for data sources 130 map to various elements of ontology 150. Definition component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data sources 130. Schemas 135 define the structure of data sources 130; for example, the names and other characteristics of tables, files, columns, fields, properties, and so forth. Definition component 110 furthermore optionally identifies sample data 136 from data sources 130. Definition component 110 can further identify object type, relationship, and property definitions from ontology 150, if any already exist. Definition component 110 can further identify pre-existing mappings from schema map 140, if such mappings exist.
  • Based on the identified information, definition component 110 can generate a graphical user interface 115. Graphical user interface 115 can be presented to users of a computing device via any suitable output mechanism (e.g., a display screen, an image projection, etc.), and can further accept input from users of the computing device via any suitable input mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.). Graphical user interface 115 features a visual workspace that visually depicts representations of the elements of ontology 150 for which mappings are defined in schema map 140.
  • In some embodiments, transformation component 120 can be invoked after schema map 140 and ontology 150 have been defined or redefined. Transformation component 120 identifies schema map 140 and ontology 150. Transformation component 120 further reads data sources 130 and identifies schemas 135 for data sources 130. For each element of ontology 150 described in schema map 140, transformation component 120 iterates through some or all of the data items of data sources 130, generating elements of object model 160 in the manner specified by schema map 140. In some embodiments, transformation component 120 can store a representation of each generated element of object model 160 in a database 170. In some embodiments, transformation component 120 is further configured to synchronize changes in object model 160 back to data sources 130.
  • Data sources 130 can be one or more sources of data, including, without limitation, spreadsheet files, databases, email folders, document collections, media collections, contact directories, and so forth. Data sources 130 can include data structures stored persistently in non-volatile memory. Data sources 130 can also or alternatively include temporary data structures generated from underlying data sources via data extraction components, such as a result set returned from a database server executing an database query.
  • Schema map 140, ontology 150, and schemas 135 can be stored in any suitable structures, such as XML files, database tables, and so forth. In some embodiments, ontology 150 is maintained persistently. Schema map 140 can or cannot be maintained persistently, depending on whether the transformation process is perpetual or a one-time event. Schemas 135 need not be maintained in persistent memory, but can be cached for optimization.
  • Object model 160 comprises collections of elements such as typed objects, properties, and relationships. The collections can be structured in any suitable manner. In some embodiments, a database 170 stores the elements of object model 160, or representations thereof. Alternatively, the elements of object model 160 are stored within database 170 in a different underlying format, such as in a series of object, property, and relationship tables in a relational database.
  • According to some embodiments, the functionalities, techniques, and components described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices can be hard-wired to perform the techniques, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or can include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques.
  • Throughout this disclosure, reference will be made to an entity such as, for example, a provisioning entity and a consuming entity. It will be understood that a provisioning entity can include, for example, a merchant, a retail provisioning entity or the like, and a consuming entity can include, for example, a consumer user buying products or services from a provisioning entity. It will be understood that a consuming entity can represent either individual persons or can represent a group of persons (e.g., a group of persons living under one roof as part of a family). In some embodiments, a consuming entity can be a credit card number of an individual or a credit card number for an entire family sharing one credit card. It will also be understood that a provisioning entity can represent either the entity itself or individual persons involved with the entity.
  • In embodiments described herein, data fusion system 100 can provide a provisioning entity, such as a retail provisioning entity, to analyze information to identify behaviors to allow that provisioning entity to make more informed decisions. Such information can allow retail entities, such as a retail provisioning entity, to determine where to place their retail locations. Provisioning entities having more than one location (e.g., a merchant with a chain store or a franchise model) typically evaluate the performance of their locations and may adjust their business models or work flows when the locations under-perform. Typically, provisioning entities evaluate the performance of their locations based on period-to-period metrics. For example, a provisioning entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales. In addition, provisioning entitles can evaluate each of its locations' performance using comparative analysis. For example, a provisioning entity might compare the sales at an area location with the sales at a second location. As provisioning entities generally measure the performance of its locations based on their own interaction data (e.g., the entity's sales across some or all of its locations), current methods of measuring performance do not consider sales made by competitors or demographic features of the areas of the provisioning entity's locations.
  • Since current performance evaluation methods do not consider the sales of competitors or the demographic features of the region of the provisioning entity location, measured performance may not represent the true performance of a provisioning entity. For instance, although a provisioning entity location in a low consumer spend capacity area might have less sales than a provisioning entity location in a high consumer spend capacity area, it may be performing better than what could be expected for that area in light of, for example, the low number of consumers residing in the area or the low income of the area. A performance of a provisioning entity at an area location can be adversely impacted by the close proximity of a second location of the provisioning entity, but the provisioning entity at the area location can be performing better than expected given the competition from the provisioning entity's second location. Conversely, while a provisioning entity location in a dense, high-income area might have the highest sales of all provisioning entity locations, it can still be under-performing because, for instance, consumer spend capacity is high and the provisioning entity location could generate more sales.
  • Consistent with embodiments of the present disclosure, the performance of provisioning entities can be analyzed based on how the provisioning entity is expected to perform given the location of the provisioning entity. For a given provisioning entity location, the disclosed embodiments may be implemented to consider, for example, consumer demographic features of the provisioning entity location's area and the proximity of competitors to the provisioning entity location (including the proximity of the provisioning entity's other close-by locations). In some embodiments, the provisioning entity can be a merchant. For purposes of illustration, exemplary embodiments for analyzing entity performance are described herein with reference to “merchants.” The exemplary embodiments and techniques described herein, however, may be applied to other types of entities (e.g., service providers, governmental agencies, etc.) within the spirit and scope of this disclosure.
  • FIG. 2 is a block diagram of an exemplary system 200 for performing one or more operations for analyzing performance of a provisioning entity and/or a consuming entity, consistent with disclosed embodiments. In some embodiments, the provisioning entity is a merchant and system 200 can include provisioning entity analysis system 210, one or more financial services systems 220, one or more geographic data systems 230, one or more provisioning entity management systems 240, and one or more consuming entity data systems 250. The components and arrangement of the components included in system 200 can vary depending on the embodiment. For example, the functionality described below with respect to financial services systems 220 can be embodied in consuming entity data systems 250, or vice-versa. Thus, system 200 can include fewer or additional components that perform or assist in the performance of one or more processes to analyze provisioning entity's, consistent with the disclosed embodiments.
  • One or more components of system 200 can be computing systems configured to analyze provisioning entity performance. As further described herein, components of system 200 can include one or more computing devices (e.g., computer(s), server(s), etc.), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.), and other known computing components. In some embodiments, the one or more computing devices are configured to execute software or a set of programmable instructions stored on one or more memory devices to perform one or more operations, consistent with the disclosed embodiments. Components of system 200 can be configured to communicate with one or more other components of system 200, including provisioning entity analysis system 210, one or more financial services systems 220, one or more geographic data systems 230, one or more provisioning entity management systems 240, and one or more consumer data systems 250. In certain aspects, users can operate one or more components of system 200. The one or more users can be employees of, or associated with, the entity corresponding to the respective component(s) (e.g., someone authorized to use the underlying computing systems or otherwise act on behalf of the entity).
  • Provisioning entity analysis system 210 can be a computing system configured to analyze provisioning entity performance. For example, provisioning entity analysis system 210 can be a computer system configured to execute software or a set of programmable instructions that collect or receive financial interaction data, consumer data, and provisioning entity data and process it to determine the actual transaction amount of each transaction associated with the provisioning entity. Provisioning entity analysis system 210 can be configured, in some embodiments, to utilize, include, or be a data fusion system 100 (see, e.g., FIG. 1) to transform data from various data sources (such as, financial services systems 220, geographic data systems 230, provisioning entity management systems 240, and consuming entity data systems 250) for processing. In some embodiments, provisioning entity analysis system 210 can be implemented using a computer system 300, as shown in FIG. 3 and described below.
  • Provisioning entity analysis system 210 can include one or more computing devices (e.g., server(s)), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.) and other known computing components. According to some embodiments, provisioning entity analysis system 210 can include one or more networked computers that execute processing in parallel or use a distributed computing architecture. Provisioning entity analysis system 210 can be configured to communicate with one or more components of system 200, and it can be configured to provide analysis of provisioning entities via an interface(s) accessible by users over a network (e.g., the Internet). For example, provisioning entity analysis system 210 can include a web server that hosts a web page accessible through network 260 by provisioning entity management systems 240. In some embodiments, provisioning entity analysis system 210 can include an application server configured to provide data to one or more client applications executing on computing systems connected to provisioning entity analysis system 210 via network 260.
  • In some embodiments, provisioning entity analysis system 210 can be configured to determine the actual sales for a provisioning entity or specific provisioning entity location by processing and analyzing data collected from one or more components of system 200. For example, provisioning entity analysis system 210 can determine that the Big Box Merchant store located at 123 Main St, in Burbank, Calif. is actually generating $60,000 of sales per month. Provisioning entity analysis system 210 can provide an analysis of a provisioning entity or provisioning entity location's performance based on a target for sales and the actual sales for the provisioning entity or provisioning entity location. For example, for the Big Box Merchant store located at 123 Main St., Burbank, Calif., the provisioning entity analysis system 210 can provide an analysis that the store is performing above expectations. Exemplary processes that can be used by provisioning entity analysis system 210 are described below with respect to FIGS. 6, 10A, 11, 13, 14, and 15.
  • Provisioning entity analysis system 210 can, in some embodiments, generate a user interface communicating data related to one or more provisioning entities or provisioning entity locations. For example, in some embodiments, provisioning entity analysis system 210 includes a web server that generates HTML code, or scripts capable of generating HTML code, that can be displayed in a web browser executing on computing device. Provisioning entity analysis system 210 can also execute an application server that provides user interface objects to a client application executing on a computing device, or it can provide data that is capable of being displayed in a user interface in a client application executing on a computing device. In some embodiments, provisioning entity analysis system 210 can generate user interfaces that can be displayed within another user interface. For example, provisioning entity analysis system 210 can generate a user interface for display within a parent user interface that is part of a word processing application, a presentation development application, a web browser, or an illustration application, among others. In some embodiments, generating a user interface can include generating the code that when executed displays information (e.g., HTML) on the user interface. Alternatively, generating interface can include providing commands and/or data to a set of instructions that when executed render a user interface capable of being shown on a display connected to a computing device. In some embodiments, the user interface can include a map, indications of the provisioning entity locations on a map, and indications of the sales or interactions associated with the provisioning entity locations. Examples of some (although not all) user interfaces that can be generated by provisioning entity analysis system 210 are described below with respect to FIGS. 7-9, 10B and 12.
  • Referring again to FIG. 2, financial services system 220 can be a computing system associated with a financial service provider, such as a bank, credit card issuer, credit bureau, credit agency, or other entity that generates, provides, manages, and/or maintains financial service accounts for one or more users. Financial services system 220 can generate, maintain, store, provide, and/or process financial data associated with one or more financial service accounts. Financial data can include, for example, financial service account data, such as financial service account identification data, account balance, available credit, existing fees, reward points, user profile information, and financial service account interaction data, such as interaction dates, interaction amounts, interaction types, and location of interaction. In some embodiments, each interaction of financial data can include several categories of information associated with the interaction. For example, each interaction can include categories such as number category; consuming entity identification category; consuming entity location category; provisioning entity identification category; provisioning entity location category; type of provisioning entity category; interaction amount category; and time of interaction category, as described in FIG. 4. It will be appreciated that financial data can comprise either additional or fewer categories than the exemplary categories listed above. Financial services system 220 can include infrastructure and components that are configured to generate and/or provide financial service accounts such as credit card accounts, checking accounts, savings account, debit card accounts, loyalty or reward programs, lines of credit, and the like.
  • Geographic data systems 230 can include one or more computing devices configured to provide geographic data to other computing systems in system 200 such as provisioning entity analysis system 210. For example, geographic data systems 230 can provide geodetic coordinates when provided with a street address of vice-versa. In some embodiments, geographic data systems 230 exposes an application programming interface (API) including one or more methods or functions that can be called remotely over a network, such as network 260. According to some embodiments, geographic data systems 230 can provide information concerning routes between two geographic points. For example, provisioning entity analysis system 210 can provide two addresses and geographic data systems 230 can provide, in response, the aerial distance between the two addresses, the distance between the two addresses using roads, and/or a suggested route between the two addresses and the route's distance.
  • According to some embodiments, geographic data systems 230 can also provide map data to provisioning entity analysis system 210 and/or other components of system 200. The map data can include, for example, satellite or overhead images of a geographic region or a graphic representing a geographic region. The map data can also include points of interest, such as landmarks, malls, shopping centers, schools, or popular restaurants or retailers, for example.
  • Provisioning entity management systems 240 can be one or more computing devices configured to perform one or more operations consistent with disclosed embodiments. For example, provisioning entity management systems 240 can be a desktop computer, a laptop, a server, a mobile device (e.g., tablet, smart phone, etc.), or any other type of computing device configured to request provisioning entity analysis from provisioning entity analysis system 210. According to some embodiments, provisioning entity management systems 240 can comprise a network-enabled computing device operably connected to one or more other presentation devices, which can themselves constitute a computing system. For example, provisioning entity management systems 240 can be connected to a mobile device, telephone, laptop, tablet, or other computing device.
  • Provisioning entity management systems 240 can include one or more processors configured to execute software instructions stored in memory. Provisioning entity management systems 240 can include software or a set of programmable instructions that when executed by a processor performs known Internet-related communication and content presentation processes. For example, provisioning entity management systems 240 can execute software or a set of instructions that generates and displays interfaces and/or content on a presentation device included in, or connected to, provisioning entity management systems 240. In some embodiments, provisioning entity management systems 240 can be a mobile device that executes mobile device applications and/or mobile device communication software that allows provisioning entity management systems 240 to communicate with components of system 200 over network 260. The disclosed embodiments are not limited to any particular configuration of provisioning entity management systems 240.
  • Provisioning entity management systems 240 can be one or more computing systems associated with a provisioning entity that provides products (e.g., goods and/or services), such as a restaurant (e.g., Outback Steakhouse®, Burger King®, etc.), retailer (e.g., Amazon.com®, Target®, etc.), grocery store, mall, shopping center, service provider (e.g., utility company, insurance company, financial service provider, automobile repair services, movie theater, etc.), non-profit organization (ACLU™, AARP®, etc.) or any other type of entity that provides goods, services, and/or information that consuming entities (i.e., end-users or other business entities) can purchase, consume, use, etc. For ease of discussion, the exemplary embodiments presented herein relate to purchase interactions involving goods from retail provisioning entity systems. Provisioning entity management systems 240, however, is not limited to systems associated with retail provisioning entities that conduct business in any particular industry or field.
  • Provisioning entity management systems 240 can be associated with computer systems installed and used at a brick and mortar provisioning entity locations where a consumer can physically visit and purchase goods and services. Such locations can include computing devices that perform financial service interactions with consumers (e.g., Point of Sale (POS) terminal(s), kiosks, etc.). Provisioning entity management systems 240 can also include back- and/or front-end computing components that store data and execute software or a set of instructions to perform operations consistent with disclosed embodiments, such as computers that are operated by employees of the provisioning entity (e.g., back office systems, etc.). Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions. For example, such a provisioning entity can sell products via a website using known online or e-commerce systems and solutions to market, sell, and process online interactions. Provisioning entity management systems 240 can include one or more servers that are configured to execute stored software or a set of instructions to perform operations associated with a provisioning entity, including one or more processes associated with processing purchase interactions, generating interaction data, generating product data (e.g., SKU data) relating to purchase interactions, for example.
  • Consuming entity data systems 250 can include one or more computing devices configured to provide demographic data regarding consumers. For example, consuming entity data systems 250 can provide information regarding the name, address, gender, income level, age, email address, or other information about consumers. Consuming entity data systems 250 can include public computing systems such as computing systems affiliated with the U.S. Bureau of the Census, the U.S. Bureau of Labor Statistics, or FedStats, or it can include private computing systems such as computing systems affiliated with financial institutions, credit bureaus, social media sites, marketing services, or some other organization that collects and provides demographic data.
  • Network 260 can be any type of network or combination of networks configured to provide electronic communications between components of system 200. For example, network 260 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information, such as the Internet, a Local Area Network, or other suitable connection(s) that enables the sending and receiving of information between the components of system 200. Network 260 may also comprise any combination of wired and wireless networks. In other embodiments, one or more components of system 200 can communicate directly through a dedicated communication link(s), such as links between provisioning entity analysis system 210, financial services system 220, geographic data systems 230, provisioning entity management systems 240, and consuming entity data systems 250.
  • As noted above, provisioning entity analysis system 210 can include a data fusion system (e.g., data fusion system 100) for organizing data received from one or more of the components of system 200.
  • FIG. 3 is a block diagram of an exemplary computer system 300, consistent with embodiments of the present disclosure. The components of system 200 such as provisioning entity analysis system 210, financial service systems 220, geographic data systems 230, provisioning entity management systems 240, and consuming entity data systems 250 may include the architecture based on or similar to that of computer system 300.
  • As illustrated in FIG. 3, computer system 300 includes a bus 302 or other communication mechanism for communicating information, and one or more hardware processors 304 (denoted as processor 304 for purposes of simplicity) coupled with bus 302 for processing information. Hardware processor 304 can be, for example, one or more general-purpose microprocessors or it can be a reduced instruction set of one or more microprocessors.
  • Computer system 300 also includes a main memory 306, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 302 for storing information and instructions to be executed by processor 304. Main memory 306 also can be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 304. Such instructions, after being stored in non-transitory storage media accessible to processor 304, render computer system 300 into a special-purpose machine that is customized to perform the operations specified in the instructions.
  • Computer system 300 further includes a read only memory (ROM) 308 or other static storage device coupled to bus 302 for storing static information and instructions for processor 304. A storage device 310, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc. is provided and coupled to bus 302 for storing information and instructions.
  • Computer system 300 can be coupled via bus 302 to a display 312, such as a cathode ray tube (CRT), liquid crystal display, or touch screen, for displaying information to a computer user. An input device 314, including alphanumeric and other keys, is coupled to bus 302 for communicating information and command selections to processor 304. Another type of user input device is cursor control 316, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 304 and for controlling cursor movement on display 312. The input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control can be implemented via receiving touches on a touch screen without a cursor.
  • Computing system 300 can include a user interface module to implement a graphical user interface that can be stored in a mass storage device as executable software codes that are executed by the one or more computing devices. This and other modules can include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module can be compiled and linked into an executable program, installed in a dynamic link library, or written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices can be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution). Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions can be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules can be comprised of connected logic units, such as gates and flip-flops, and/or can be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but can be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that can be combined with other modules or divided into sub-modules despite their physical organization or storage.
  • Computer system 300 can implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 300 to be a special-purpose machine. According to some embodiments, the operations, functionalities, and techniques and other features described herein are performed by computer system 300 in response to processor 304 executing one or more sequences of one or more instructions contained in main memory 306. Such instructions can be read into main memory 306 from another storage medium, such as storage device 310. Execution of the sequences of instructions contained in main memory 306 causes processor 304 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.
  • The term “non-transitory media” as used herein refers to any non-transitory media storing data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media can comprise non-volatile media and/or volatile media. Non-volatile media can include, for example, optical or magnetic disks, such as storage device 310. Volatile media can include dynamic memory, such as main memory 306. Common forms of non-transitory media can include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
  • Non-transitory media is distinct from, but can be used in conjunction with, transmission media. Transmission media can participate in transferring information between storage media. For example, transmission media can include coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
  • Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 304 for execution. For example, the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 300 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 302. Bus 302 carries the data to main memory 306, from which processor 304 retrieves and executes the instructions. The instructions received by main memory 306 can optionally be stored on storage device 310 either before or after execution by processor 304.
  • Computer system 300 can also include a communication interface 318 coupled to bus 302. Communication interface 318 can provide a two-way data communication coupling to a network link 320 that can be connected to a local network 322. For example, communication interface 318 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 318 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented. In any such implementation, communication interface 318 can send and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
  • Network link 320 can typically provide data communication through one or more networks to other data devices. For example, network link 320 can provide a connection through local network 322 to a host computer 324 or to data equipment operated by an Internet Service Provider (ISP) 326. ISP 326 in turn can provide data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 328. Local network 322 and Internet 328 can both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 320 and through communication interface 318, which carry the digital data to and from computer system 300, can be example forms of transmission media.
  • Computer system 300 can send messages and receive data, including program code, through the network(s), network link 320 and communication interface 318. In the Internet example, a server 330 can transmit a requested code for an application program through Internet 328, ISP 326, local network 322 and communication interface 318. The received code can be executed by processor 304 as it is received, and/or stored in storage device 310, or other non-volatile storage for later execution. In some embodiments, server 330 can provide information for being displayed on a display.
  • FIG. 4 is a block diagram of an exemplary data structure 400, consistent with embodiments of the present disclosure. Data structure 400 can store data records associated with interactions involving multiple entities. Data structure 400 can be, for example, a database (e.g., database 170) that can store elements of an object model (e.g., object model 160). In some embodiments, data structure 400 can be a Relational Database Management System (RDBMS) that stores interaction data as sections of rows of data in relational tables. An RDBMS can be designed to efficiently return data for an entire row, or record, in as few operations as possible. An RDBMS can store data by serializing each row of data of data structure 400. For example, in an RDBMS, data associated with interaction 1 of FIG. 4 can be stored serially such that data associated with all categories of interaction 1 can be accessed in one operation.
  • Alternatively, data structure 400 can be a column-oriented database management system that stores data as sections of columns of data rather than rows of data. This column-oriented DBMS can have advantages, for example, for data warehouses, customer relationship management systems, and library card catalogs, and other ad hoc inquiry systems where aggregates are computed over large numbers of similar data items. A column-oriented DBMS can be more efficient than an RDBMS when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data. A column-oriented DBMS can be designed to efficiently return data for an entire column, in as few operations as possible. A column-oriented DBMS can store data by serializing each column of data of data structure 400. For example, in a column-oriented DBMS, data associated with a category (e.g., consuming entity identification category 420) can be stored serially such that data associated with that category for all interactions of data structure 400 can be accessed in one operation.
  • As shown in FIG. 4, data structure 400 can comprise data associated with a very large number of interactions associated with multiple entities. For example, data structure 400 can include 50 billion interactions. In some embodiments, interactions associated with multiple entities can be referred to as transactions between multiple entities. Where appropriate, the terms interactions and transactions are intended to convey the same meaning and can be used interchangeably throughout this disclosure. While each interaction of data structure 400 is depicted as a separate row in FIG. 4, it will be understood that each such interaction can be represented by a column or any other known technique in the art. Each interaction data can include several categories of information. For example, the several categories can include, number category 410; consuming entity identification category 420; consuming entity location category 430; provisioning entity identification category 440; provisioning entity location category 450; type of provisioning entity category 460; interaction amount category 470; and time of interaction category 480. It will be understood that FIG. 4 is merely exemplary and that data structure 400 can include even more categories of information associated with an interaction.
  • Number category 410 can uniquely identify each interaction of data structure 400. For example, data structure 400 depicts 50 billion interactions as illustrated by number category 410 of the last row of data structure 400 as 50,000,000,000. In FIG. 4, each row depicting a interaction can be identified by an element number. For example, interaction number 1 can be identified by element 401; interaction number 2 can be identified by element 402; and so on such that interaction 50,000,000,000 can be identified by 499B. It will be understood that this disclosure is not limited to any number of interactions and further that this disclosure can extend to a data structure with more or fewer than 50 billion interactions. It is also appreciated that number category 410 need not exist in data structure 400.
  • Consuming entity identification category 420 can identify a consuming entity. In some embodiments, consuming entity identification category 420 can represent a name (e.g., User 1 for interaction 401; User N for interaction 499B) of the consuming entity. Alternatively, consuming entity identification category 420 can represent a code uniquely identifying the consuming entity (e.g., CE002 for interaction 402). For example, the identifiers under the consuming entity identification category 420 can be a credit card number that can identify a person or a family, a social security number that can identify a person, a phone number or a MAC address associated with a cell phone of a user or family, or any other identifier.
  • Consuming entity location category 430 can represent a location information of the consuming entity. In some embodiments, consuming entity location category 430 can represent the location information by providing at least one of: a state of residence (e.g., state sub-category 432; California for element 401; unknown for interaction 405) of the consuming entity; a city of residence (e.g., city sub-category 434; Palo Alto for interaction 401; unknown for interaction 405) of the consuming entity; a zip code of residence (e.g., zip code sub-category 436; 94304 for interaction 401; unknown for interaction 405) of the consuming entity; and a street address of residence (e.g., street address sub-category 438; 123 Main St. for interaction 401; unknown for interaction 405) of the consuming entity.
  • Provisioning entity identification category 440 can identify a provisioning entity (e.g., a merchant or a coffee shop). In some embodiments, provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402). Alternatively, provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401). Provisioning entity location category 450 can represent a location information of the provisioning entity. In some embodiments, provisioning entity location category 450 can represent the location information by providing at least one of: a state where the provisioning entity is located (e.g., state sub-category 452; California for interaction 401; unknown for interaction 402); a city where the provisioning entity is located (e.g., city sub-category 454; Palo Alto for interaction 401; unknown for interaction 402); a zip code where the provisioning entity is located (e.g., zip code sub-category 456; 94304 for interaction 401; unknown for interaction 402); and a street address where the provisioning entity is located (e.g., street address sub-category 458; 234 University Ave. for interaction 401; unknown for interaction 402).
  • Type of provisioning entity category 460 can identify a type of the provisioning entity involved in each interaction. In some embodiments, type of provisioning entity category 460 of the provisioning entity can be identified by a category name customarily used in the industry (e.g., Gas Station for interaction 401) or by an identification code that can identify a type of the provisioning entity (e.g., TPE123 for interaction 403). Alternatively, type of the provisioning entity category 460 can include a merchant category code (“MCC”) used by credit card companies to identify any business that accepts one of their credit cards as a form of payment. For example, MCC can be a four-digit number assigned to a business by credit card companies (e.g., American Express™, MasterCard™, VISA™) when the business first starts accepting one of their credit cards as a form of payment.
  • In some embodiments, type of provisioning entity category 460 can further include a sub-category (not shown in FIG. 4), for example, type of provisioning entity sub-category 461 that can further identify a particular sub-category of provisioning entity. For example, an interaction can comprise a type of provisioning entity category 460 as a hotel and type of provisioning entity sub-category 461 as either a bed and breakfast hotel or a transit hotel. It will be understood that the above-described examples for type of provisioning entity category 460 and type of provisioning entity sub-category 461 are non-limiting and that data structure 400 can include other kinds of such categories and sub-categories associated with an interaction.
  • Interaction amount category 470 can represent a transaction amount (e.g., $74.56 for interaction 401) involved in each interaction. Time of interaction category 480 can represent a time at which the interaction was executed. In some embodiments, time of interaction category 480 can be represented by a date (e.g., date sub-category 482; Nov. 23, 2013, for interaction 401) and time of the day (e.g., time sub-category 484; 10:32 AM local time for interaction 401). Time sub-category 484 can be represented in either military time or some other format. Alternatively, time sub-category 484 can be represented with a local time zone of either provisioning entity location category 450 or consuming entity location category 430.
  • In some embodiments, each interaction data can include categories of information including (not shown in FIG. 4), for example, consuming entity loyalty membership category, consuming entity credit card type category, consuming entity age category, consuming entity gender category, consuming entity income category, consuming entity with children category, product information category, and service information category.
  • Consuming entity loyalty membership category can represent whether the consuming entity is part of a loyalty membership program associated with a provisioning entity. For example, consuming entity loyalty membership category can represent that the consuming entity is a member of one of Costco™ membership programs including Goldstar Member™, Executive Member™, and Business Member™. Consuming entity credit card type category can represent the type of credit card used by the consuming entity for a particular interaction. For example, consuming entity credit card type category can represent that the credit card used by the consuming entity for that particular interaction can be one either American Express™, MasterCard™, VISA™, or Discover™ credit cards. In some embodiments, consuming entity credit card type category can represent a kind of MasterCard™ (e.g., Gold MasterCard™ or Platinum MasterCard™) used for a particular interaction.
  • In some embodiments, consuming entity demographic information can be stored in each interaction. For example, consuming entity demographic information can include at least one of: consuming entity age category, consuming entity gender category, consuming entity income category, and consuming entity with children category. In some embodiments, consuming entity age category can represent age information associated with the consuming entity; consuming entity gender category can represent gender information (e.g., Male or Female) associated with the consuming entity; consuming entity income category can represent income information (e.g., greater than $100,000 per year) associated with the consuming entity; and consuming entity with children category can represent whether the consuming entity has any children under 18 or not. For example, if the consuming entity has children under 18, a positive indication can be stored and if the consuming entity does not has children under 18, a negative indication can be stored. In some embodiments, consuming entity with children category can store information representing a number of children associated with the consuming entity.
  • Product information category can represent information associated with a product that is involved in an interaction. For example, product information category can represent that the product involved in the interaction is a particular type of product based on a stock keeping unit (“SKU”) of the product. In some embodiments, the product's SKU can be unique to a particular provisioning entity involved in that particular interaction. Alternatively, product information category can represent the product involved in the interaction with a at least one of a Universal Product Code, International Article Number, Global Trade Item Number, and Australian Product Number. Service information category can represent information associated with a service that is involved in an interaction. For example, service information category can represent that the service involved in the interaction is a particular type of service based on an SKU of the service. It will be appreciated that an SKU can uniquely represent either a product or a service. Some examples of services can be warranties, delivery fees, installation fees, and licenses.
  • FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with embodiments of the present disclosure. System 500 depicts a scenario where a consuming entity (e.g., user of cell phone 505) can attempt to access a service at one or more provisioning entities (e.g., Website 1 542, Website 2 544, and/or Website 3 546). To access one of the provisioning entities, the consuming entity can initiate an access request from cell phone 505. The access request can include a consuming entity identification such as, for example, a cell phone number or a MAC address associated with cell phone 505. The access request can then reach a cellular base station 515 through a communication link 510. It will be understood that communication link 510 can either be a wireless link (as shown in the exemplary embodiment of FIG. 5) or a wired link (not shown). Next, the access request can reach server 525 through network 520. Network 520 can be, for example, the Internet. In some embodiments, network 520 can be one of either a local area network, a wide area network, or an entity's intranet. Server 525 can be a server located at a service provider (e.g., Verizon Wireless™). Server 525 can be, in some embodiments, an authentication, authorization, and accounting server (AAA server). In some embodiments, server 525 can be a proxy server that can facilitate a communication between cell phone 505 and a server device at the provisioning entities (e.g., Website 1 542).
  • Access request can reach one of the provisioning entities after an authorization, authentication, and accounting process is complete. Access request can traverse to one of the provisioning entities through network 530. Network 530 can be similar to network 520, as described above. After the authorized and authenticated access request reaches one of the provisioning entities, the consuming entity is allowed to access the provisioning entities. In this exemplary embodiment, user of cell phone 505 can access either Website 1 542, Website 2 544, or Website 3 546, depending on details of the access request. For example, provisioning entities can be one of the websites Google™, Facebook™, and Twitter™.
  • After a consuming entity (e.g., user of cell phone 505 or cell phone 505) accesses one of the provisioning entities, server 525 can store information regarding the user and/or cell phone accessing these provisioning entities. Each access by a user of a website can be stored as an interaction in a data structure in Server 525. Server 525 can store such information in a data structure (e.g., data structure 400) comprising several categories of information including, but not limited to, an interaction number; consuming entity identification; consuming entity location; provisioning entity identification; provisioning entity location; type of provisioning entity; duration of interaction; and time of interaction. The data structure can be analyzed to analyze a performance of provisioning entities, for example, to estimate a number of unique consuming entities (e.g., users) per month, average amount of time a consuming entity spends on their website, time of the day where consuming entity traffic is highest or lowest, etc. It will be understood that any number of useful insights can be drawn by analyzing the data structure comprising interactions associated with consuming entities and provisioning entities. While FIG. 5, depicts a use case scenario of a cell phone user (exemplary consuming entity) accessing a website (exemplary provisioning entity), it will be understood that a process of analyzing interaction between a consuming entity and a provisioning entity can be extended to any number of scenarios, including, financial transactions between consumers and banks; credit card transactions between a consumer and a provisioning entity like a grocery store, movie theatre, gas station, mall, etc.
  • FIG. 6 depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. The analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • In step 610, a request having one or more filter selections can be received at a provisioning entity analysis system implementing a process for analyzing a performance of one or more entities of multiple entities. In some embodiments, the request can be received from a provisioning entity (e.g., a merchant like Lowes™), which can be interested in analyzing its performance with regards the one or more filter selections. In some embodiments, one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; geographic; time; and transactions. Alternatively, the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time. In some embodiments, the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction. An exemplary screenshot of a user interface with exemplary filter selections is shown in FIGS. 7 and 8, described below.
  • In some embodiments, the process for analyzing a performance of one or more entities of multiple entities can be implemented without having to receive one or more filter selections. Such a process can be implemented, for example, by having the provisioning entity analysis system (e.g., provisioning entity analysis system 210) comprise one or more predetermined filter selections. These exemplary one or more predetermined filter selections can include the same selections as the one or more filters (e.g., add new filter 705 shown in FIG. 7) that can be selected by a user as described above. For example, the one or more predetermined filter selections can comprise at least one of: cohorts; demographics; geographic; time; and transactions. In another exemplary embodiment, the one or more predetermined filter selections can comprise at least one of: charts; histograms; maps; numbers; and time.
  • Next, in step 620, a data structure (e.g., data structure 400) comprising several categories of information showing interactions associated with multiple entities can be accessed. The data structure can represent information associated with a very large number of interactions. In some embodiments, the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions). The data structure can be similar to the exemplary data structure 400 described in FIG. 4 above. In exemplary embodiments comprising one or more predetermined filter selections, accessing step 620 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • Next, in step 630, some categories of the several categories within the data structure can be identified based on the one or more filter selections of the received request. The identified categories, for example, can be one or more of the several categories of the data structure (e.g., data structure 400). In some embodiments, there can be a mapping between the one or more filter selections and the several categories. For example, a filter selection for customer zip code can be mapped to consuming entity location category 430 and further to zip code sub-category 436. Another exemplary mapping can exist between a filter selection for gender and a category or a sub-category associated with a gender of consuming entity (not shown in FIG. 4). It will be appreciated that the exemplary mapping techniques described above are merely exemplary and other mapping techniques can be defined within the scope of this disclosure. In some embodiments, one or more filter selections can include “demographics and customer zip code” selections, as depicted in FIG. 8. When the provisioning entity (e.g., a home improvement store such as Lowes™) is interested in analyzing its performance at a particular location with respect to consuming entities (e.g., a consumer buying home improvement products at Lowes™) that buy products at the location, the provisioning entity can select one or more filters such as demographics 820 and further zip code 824 (associated with a zip code representing location of consuming entity).
  • Based on the one or more filter selections, the provisioning entity analysis system (e.g., provisioning entity analysis system 210) can identify some categories of the data structure that are relevant for analyzing the performance of the one or more entities (e.g., provisioning entity) regarding customer demographics including a location (e.g., zip code) of the consuming entities. In this example, the provisioning entity analysis system can identify categories associated with a number of interaction (e.g., number category 410), an identity of consuming entities (e.g., consuming entity identification category 420), and a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436). In some embodiments, consuming entity location category 430 can be identified along with one or more categories of state sub-category 432, city sub-category 434, zip code sub-category 436, and street address sub-category 438. In exemplary embodiments comprising one or more predetermined filter selections, identifying step 630 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • Next, in step 640, information associated with the identified categories can be processed to analyze a performance of one or more entities of the multiple entities in accordance with the one or more filter selections. In some embodiments, a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Lowes™). One or more entities of the multiple entities can comprise one or more groups of entities of the multiple entities. For example, a group of entities can be defined such that the group of entities can have similar characteristics such as all grocery stores within a given zip code or all Safeway™ locations within a city (e.g., San Jose, Calif.). In some embodiments, a group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code. Processing the identified categories can comprise creating a new data structure that is different from the data structure of step 620, and comprising only the identified categories of step 630 or one or more subsets of those categories. Alternatively, processing the identified categories can be performed on the existing data structure of step 620 (e.g., data structure 400).
  • By way of example, when the one or more filter selections is “demographics and customer zip code,” the system can process information that is associated with identified categories based on the filter selections such as a number of interaction (e.g., number category 410), an identity of consuming entities (e.g., consuming entity identification category 420), a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436), and categories associated with consuming entity demographics including consuming entity age category, consuming entity gender category, and consuming entity income category. In some embodiments, data associated with identified categories can be stored in either a row-oriented database or a column-oriented database, as described above with respect to data structure 400. Processing information can involve performing statistical analysis on data stored in the identified categories. Performing statistical analysis, for example, can include various computations of data associated with identified categories. For example, if an identified category is interaction amount category 470, processing information can include performing an aggregate of the interaction amount to compute a total amount for all interactions associated with the provisioning entity. It will be understood that processing information can include other examples of performing statistical analysis, including but not limited to, computing an average, mean, maximum, minimum, or standard deviation for a series of data.
  • In some embodiments, processing the information of the identified categories can result in a multitude of useful insights regarding the behavior of consuming entities. Some of such insights, for example, can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • In some embodiments, processing the information of the identified categories can result in a multitude of useful insights regarding the performance of provisioning entities. Some of such insights, for example, can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure. In exemplary embodiments comprising one or more predetermined filter selections, processing step 640 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
  • In some embodiments, step 640 can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 640. Alternatively, step 640 can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 640. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
  • Next, in step 650, the processed information can be provided for displaying the performance of the one or more entities (e.g., provisioning entity) on a user interface. In some embodiments, the user interface can comprise a representation of a geographic region. The user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region. Alternatively, the user interface can include a representation of the performance of the one or more entities over geographic or sub-geographic regions associated with a location of the one or more entities. For example, geographic or sub-geographic regions can be associated with a location of either a consuming entity or a provisioning entity.
  • In exemplary embodiments comprising one or more predetermined filter selections, providing step 650 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user. Exemplary user interfaces are depicted in FIGS. 7-9 that illustrate a performance of a provisioning entity based on one or more filter selections. As shown in FIGS. 7-9, user interface can either be a graph-based, map-based, or any other related interface.
  • FIGS. 7-9 illustrate several exemplary user interfaces that can be generated by provisioning entity analysis system, consistent with embodiments of the present disclosure. The exemplary user interfaces of FIGS. 7-9 are meant to help illustrate and describe certain features of disclosed embodiments, and are not meant to limit the scope of the user interfaces that can be generated or provided by the provisioning entity analysis system.
  • FIG. 7 shows an exemplary user interface 700 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210), according to some embodiments. User interface 700 includes an option to add one or more new filters (e.g., add new filter 705). In some embodiments, a provisioning entity (or a user of a provisioning entity) can select the option to select the one or more new filters. Alternatively, a consuming entity can select the option to select the one or more filters. In some embodiments, the option to add one or more filters can include adding filters associated with charts 710, histograms 720, maps 730, numbers 740, and time 750. Each of the above-recited filters can further comprise sub-filters. For example, filter maps 730 can further comprise sub-filters associated with Map-Consuming Entity Source 732, Map-Provisioning Entity Revenue 734, and Regional Chart-Spend by Region 736. It will be understood that one or more filters (and sub-filters) can include any other filters associated with interactions associated with multiple entities stored in a data structure (e.g., data structure 400).
  • User interface 700 can include map 760, which shows consuming entity source and geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles). A geohash region, or geohash bucket, is a region associated with a latitude/longitude, hierarchal geocode system that subdivides regions of the Earth into grid shaped buckets. The level of granularity of geohash regions can vary depending on the length of the geohash code corresponding to that region. For example, a geohash code that is one bit in length can correspond to a geohash region of roughly 20 million square kilometers, and a geohash code that is six bits in length can correspond to a geohash region of roughly 1.2 square kilometers. In some embodiments, a geohash region of five bits (roughly 18 square kilometers) is preferred, although the size of the geohash region can depend on the character of the overall region which is being geohashed. For example, a six bit geohash can be more suitable for a densely populated urban area, while a four bit geohash can be more suitable for a sparsely populated rural area. In some embodiments, location information of an entity can be represented by a geohash region. For example, a geohash region of five bits representing San Jose, Calif., can comprise the latitude/longitude coordinates, N 37.3394° W 121.8950°, and can be depicted as shaded region 775 as illustrated on map 770. Alternatively, location information can be represented using a zip code. For example, a portion of San Jose, Calif., can be represented by using a zip code, 95113. It will be appreciated that location information can be represented in other ways such as street address, city, state, Global Positioning Satellite coordinates, etc.
  • In some embodiments, after a user enters information into the add new filter (e.g., add new filter 705), the provisioning entity analysis system receives a message to regenerate or modify the user interface. For example, if a user entered Maps 730 and then Map-Consuming Entity Source 732 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with a location of each consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 760 showing a location information for each consuming entity. For example, map 760 can display consuming entity location as shaded and unshaded rectangles in geo-hash regions. In some embodiments, a region of the map can be selected by a user by using an input device such as mouse, key board, or touch pad.
  • In some embodiments, after a user selects Maps 730 and then Map-Provisioning Entity Revenue 734 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with revenue information of provisioning entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 770 showing revenue information of provisioning entity over the given region of map. For example, map 770 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions. It will be understood that user interface 700 can further comprise representations associated with other filter (and sub-filter) selections, including but not limited to, charts 710, histograms 720, numbers 740, and time 750.
  • FIG. 8 shows an exemplary user interface 800 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210), according to some embodiments. User interface 800 includes an option to add one or more new filters (e.g., add new filter 805. In some embodiments, the option to add one or more filters can include adding filters to display an entity's performance comprising either cohort analysis (e.g., cohorts 810), demographic analysis (e.g., demographics 820), geographic analysis (e.g., geographics 830), time-based analysis (e.g., time 840), and interaction analysis (e.g., interactions 850). Each of the above-recited filters can further comprise sub-filters. For example, filter demographics 820 can further comprise sub-filters associated with age of consuming entity (e.g., age 822), location of consuming entity (e.g., consuming entity zipcode 824), gender of consuming entity (e.g., gender 826), and income of consuming entity (e.g., income 828).
  • User interface 800 can include map 860, which can show, for example, a representation of income of consuming entities in terms of geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles). In some embodiments, after a user enters information into the add new filter (e.g., add new filter 805), the provisioning entity analysis system receives a message to regenerate or modify the user interface. For example, if a user entered demographics 820 and then income 828 into the add new filter box, the provisioning entity analysis system would receive a message indicating that a user interface should display a map with income information of consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 860 showing a representation of income information of consuming entity using geohash regions. For example, map 860 displays consuming entity income as shaded and unshaded rectangles in geo-hash regions. In some embodiments, if a user selects geograhics 830 and then revenue 828 (to display a provisioning entity's revenue over the selected region) into the add new filter box, the provisioning entity analysis system would receive a request indicating that a user interface should display a map with revenue information of provisioning entity revenue for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 870 showing a representation of revenue information of provisioning entity revenue using geohash regions. For example, map 870 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions.
  • FIG. 9 shows an exemplary user interface 900 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210), according to some embodiments. In addition to map-based representation (e.g., map 910 and map 920), user interface 900 can also depict an entity performance as either a graph-based representation (e.g., graph 930) or a heat-map representation (e.g., heat-map 940). In some embodiments, a user can select one or more filters (e.g., add new filter 905) to display a timeline of an aggregate spending by consuming entities. In such exemplary scenarios, provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate a user interface (e.g., graph 930) that can represent an aggregate of consuming entity spending on a daily basis at a given provisioning entity. Alternatively, the aggregate consuming entity spending on a daily basis can be displayed as a graph-based representation where the independent axis (e.g., x-axis) can represent a day and the other axis can represent aggregate consuming entity spending on a daily basis, as depicted in graph 930.
  • In some embodiments, a user can select one or more filters (e.g., add new filter 905) to display an hourly spending by consuming entities. In such exemplary scenarios, provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate a user interface (e.g., heat map 940) that can represent consuming entity spending on an hourly basis at a given provisioning entity. Alternatively, the consuming entity spending on an hourly basis can be displayed as a heat-map representation where different shades of gray-scale can be used to show different amount of spending on an hourly basis. In some embodiments, a color coded heat-map can be used where different colors can be used to show different amount of spending on an hourly basis. While FIG. 9 depicts a few representations of entity performance, it will be understood that those representations are merely exemplary and other representations are possible within the spirit and scope of this disclosure.
  • FIG. 10A depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. The analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • In step 1010A, an identifier associated with an entity can be recognized. In some embodiments, the entity can be a provisioning entity. Alternatively, the entity can be a consuming entity. In some embodiments, the identifier can be information associated with a provisioning entity identification category. Alternatively, the identifier can be information associated with a consuming entity identification category. It will be appreciated that other methods for recognizing an identifier associated with an entity are possible.
  • Next, in step 1020A, a data structure (e.g., data structure 400) comprising several categories of information and one or more interactions associated with a plurality of entities can be accessed. The data structure can represent information associated with a very large number of interactions. In some embodiments, the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions). The data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
  • Next, in step 1030A, one or more interactions of the plurality of interactions can be identified based on the recognized identifier. In some embodiments, the identified interactions can be one or more interactions of the data structure that are associated with the recognized identifier of the entity. For example, the identified interactions can be one or more interactions associated with a provisioning entity identification information (e.g., provisioning entity identification category 440) or a consuming entity identification information category (e.g., consuming entity identification category 420). For an exemplary provisioning entity identification information of “Merchant 1,” step 1030 can identify one or more interactions that are associated with a provisioning entity that can be identified with a name or code “Merchant 1.”
  • In some embodiments, the accessed data structure can comprise several categories of information showing interactions associated with multiple entities. In such embodiments, the provisioning entity analysis system (e.g., provisioning entity analysis system 210) can identify some categories of the data structure that are relevant for analyzing the performance of the entity (e.g., provisioning entity) associated with the recognized identifier.
  • Next, in step 1040A, information associated with the identified interactions can be processed to analyze a performance of the entity. In some embodiments, processing the identified interactions can comprise creating a new data structure that is different from the data structure of step 1020A, and can comprise only the identified interactions of step 1030A or one or more subsets of those categories. Alternatively, processing the identified interactions is performed on the existing data structure of step 1020A (e.g., data structure 400).
  • In some embodiments, processing the information of the identified interactions can result in a multitude of useful insights regarding the behavior of consuming entities. Some of such insights, for example, can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • Alternatively, processing the information of the identified interactions can result in a multitude of useful insights regarding the performance of provisioning entities. Some of such insights, for example, can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity, and performance comparison between competing provisioning entities. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
  • In some embodiments, step 1040A can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 1040A. Alternatively, step 1040A can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 1040A. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
  • In some embodiments, the processed information can comprise analysis information of a first entity or a first group of entities of the plurality of entities and a second entity or a second group of entities of a plurality of entities. For example, a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Lowes™) and a second entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Home Depot™). In some embodiments, the second entity can be a competitor of the first entity. In some embodiments, the first or second group of entities of the plurality of entities can be defined such that the first or second group of entities can comprise similar characteristics. For example, the first or second group of entities can be all grocery stores within a given zip code or all Safeway™ locations within a city (e.g., San Jose, Calif.). Alternatively, the first or second group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
  • In some embodiments, for each entity of a plurality of entities, a group of entities (e.g., a first group of entities of the plurality of entities) associated with the entity can be identified or estimated such that the entity can analyze its own performance against the group of entities in aggregate. The group of entities can include a group of provisioning entities. For example, the group of provisioning entities associated with a first provisioning entity can be identified based on at least one of: a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities; a location information associated with the first provisioning entity and associated with other provisioning entities; information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities; and information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities. In some embodiments, the group of entities can be referred to as, for example, a cohort of entities, a set of entities, or an associated set of entities. It will be appreciated that the group of entities can be referred to by using other names.
  • A similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities can be used to determine a group of provisioning entities associated with the first provisioning entity. For example, customer entity demographic information (e.g., age, gender, income, and/or location) can be analyzed between customer entities of the first provisioning entity and customer entities of the other provisioning entities to identify a group of provisioning entities that have similar customer entity demographic information. Location information associated with the first provisioning entity and with other provisioning entities can be analyzed to identify a group of provisioning entities associated with the first provisioning entity. For example, other provisioning entities that are located within a specified distance to a location of the first provisioning entity can be identified as part of the group of provisioning entities. Alternatively, other distance criteria such as, for example, same zip code, can be used to identify the group of provisioning entities. For example, a restaurant situated in an airport can be interested in analyzing its own performance relative to other restaurants situated within the same airport.
  • Information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity. For example, a high-end bicycle store can be interested in comparing its performance against other high-end bicycle stores. In other words, a group of high-end bicycle stores can be identified based on a market share analysis of high-end bicycle stores. Information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity. For example, a novelty late-night theatre can be interested in comparing its performance against other provisioning entities that also operate late-night (e.g., bars or clubs) and hence can likely compete with those entities for a consuming entity's time and money. An exemplary definition of wallet share can be a percentage of consuming entity spending over a period of time such as on a daily basis or a weekly basis etc.
  • In some embodiments, the group of provisioning entities can be identified by using a multi-timescale correlation comparison. One method of implementing the multi-timescale correlation comparison can be by analyzing interactions between a consuming entity and a first provisioning entity (“first provisioning entity interactions”) with that of interactions between the consuming entity and a second provisioning entity (“second provisioning entity interactions”). For example, if the first provisioning entity interactions are correlated with the second provisioning entity interactions on a daily timescale but anti-correlated (or inversely correlated) on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as complementary entities rather than competitive entities. In such scenarios, the second provisioning entity need not be part of a group of provisioning entities the first provisioning entity is interested in comparing against. Alternatively, if the first provisioning entity interactions are anti-correlated with the second provisioning entity interactions on a daily timescale but correlated on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as competitive entities. In such scenarios, the second provisioning entity can be included in a group of provisioning entities the first provisioning entity is interested in comparing against.
  • In some embodiments, a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
  • In some embodiments, an identity of the first entity can be known and an identity of the second entity can be unknown. For example, the recognized identifier can be associated with the first entity and accordingly, an identify of the first entity can be known. In such embodiments, an identity of the second entity can be estimated based on information representing at least two attributes of the first entity. In some embodiments, the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria can be used to select from the more than one possible choices. In some embodiments, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
  • Next, in step 1050A, the processed information can be provided for displaying the performance of the entity (e.g., provisioning entity) on a user interface. In some embodiments, the user interface can comprise a representation of a geographic region. The user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region. An exemplary user interface is depicted in FIG. 10B. As shown in FIG. 10B, the user interface can include a dashboard showing a graphical representation of the performance of an entity based on recognizing an identifier for the entity.
  • More particularly, FIG. 10B shows an exemplary user interface 1000B that a provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate, according to some embodiments. User interface 1000B can include a dashboard (e.g., dashboard 1010B) that can depict a performance of an entity over a metric. For example, dashboard 1010B represents information of sales of the entity (e.g., a provisioning entity) over a 7-day period for the current week (May 25, 2013-May 31, 2013) compared to the same week of the previous year (May 25, 2012-May 31, 2012). In some embodiments, dashboard 1010B can represent information comparing the entity's actual revenue with the entity's expected revenue. For example, the provisioning entity can input an expected revenue for a period of time (e.g., weekly, quarterly, or yearly). After receiving information regarding the expected revenue, the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the expected revenue. An outcome of such comparative analysis can be represented with an exemplary bar graph or a pie chart on user interface 1000B. Alternatively, the entity's expected revenue information can be inferred without having to receive an external input representing the expected revenue. For example, the provisioning analysis system can analyze interaction data of the data structure to estimate a number for the entity's expected revenue.
  • In some embodiments, dashboard 1010B can be represented as a bar graph using two different fills, one fill representing sales of the current week and another representing sales from last year. It will be understood that other representations of dashboard 1010A are possible. Alternatively, the dashboard can be preconfigured to analyze interaction data for a period of time such as, for example, 7-days, one month, one quarter, one year, etc.
  • In some embodiments, user interface 1000B can also include a box for representing an alert (e.g., latest alert 1020B) that can indicate certain performance metrics of the entity. For example, latest alert 1020B includes information to indicate that the entity's worst day within the preconfigured period of time is May 31, 2013. A different entity performance metric can be included in latest alert 1020B. Alternatively, user interface 1000B can include user interface elements representing information associated with entity performance metrics such as revenue (e.g, revenue 1025B), amount of interaction (e.g., ticket size 1030B), new consuming entities (new consuming entities 1035B), returning consuming entities (e.g., returning consuming entities 1040B), time of interaction in a day (e.g., time of day 1045B), and interactions during a day of the week (e.g., day of week 1050B). For example, each of the above-described user interface elements can be depicted as rectangular box with an icon and some information representing the performance metric of the entity. It will be understood that in some embodiments, user interface elements can be depicted using different approaches such as, for example, charts, maps, histograms, numbers etc.
  • FIG. 11 depicts a flowchart representing an exemplary process for comparing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. The comparing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • In step 1110, an input for at least one category of information to be compared between a first entity and a second entity can be received at a provisioning entity analysis system implementing a process for comparing a performance between the first entity and a second entity. In some embodiments, the input can be received from a provisioning entity (e.g., a merchant like Lowes™), which can be interested in analyzing their performance relative to a competitor (e.g., HomeDepot™) Alternatively, a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
  • In some embodiments, the input can be received from a first entity, where an identity of the first entity can be known. In some embodiments, an identity of the second entity can be provided. For example, the user of the first entity can provide an identity of the second entity. Alternatively, an identity of the second entity is not provided. In exemplary embodiments where an identity of the second entity is not provided, an identity of the second entity can be estimated as described below.
  • In some embodiments, the received input can comprise a selection to represent data associated with at least one of: demographics; geographic; time; and transactions. Alternatively, the received input can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time. In some embodiments, the received input can be similar to one or more filter selections (e.g., add new filter 705) described in FIG. 6. An exemplary screenshot of a user interface comparing a performance of the first entity with that of the second entity can be shown in FIG. 12, described below.
  • Next, in step 1120, a data structure (e.g., data structure 400) comprising several categories of information showing interactions associated with multiple entities can be accessed. The data structure can represent information associated with a very large number of interactions (e.g., data structure 400 of FIG. 4. depicting 50 billion interactions). In some embodiments, the multiple entities can include at least the first entity (e.g., a first provisioning entity such as Lowes™) and the second entity (e.g., a second provisioning entity such as HomeDepot™)
  • Next, in step 1130, an identity of the second entity can be estimated based on information representing at least two attributes of the first entity. In some embodiments, the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria including, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
  • Next, in step 1140, relevant interaction information associated with the at least one category of the data structure can be processed to compare a performance of the first entity with that of the second entity. In some embodiments, the processing step 1140 can be very similar to processing step 640 described above. For example, step 1140 can involve two processing operations (e.g., processing operation of step 640), one for processing the information associated with the at least one category of the first entity and another one for processing the information associated with the at least one category of the second entity. After performing such operations, step 1140 can then compare the processed information from processing the first entity with that of the second entity.
  • Next, in step 1150, the processed information can be provided for displaying a comparison between a performance of the first entity with that of the second entity. Exemplary user interface is depicted in FIG. 12 that illustrates a performance comparison between the first and second entities.
  • FIG. 12 shows a user interface 1200 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210), according to some embodiments. In some embodiments, user interface 1200 includes an option to add one or more inputs for categories to be compared between entities. For example, user interface 1200 can include categories representing timeline 1211, revenue 1212, total transactions 1213, ticket size 1214, and time/day 1215. It will be understood that other categories can be included in user interface 1200.
  • User interface 1200 can depict two graphs (e.g., graph 1252 and graph 1262) to represent a performance comparison between the first entity and the second entity. For example, graph 1252 can represent a performance of the first entity for the selected category revenue 1212. In the exemplary embodiment depicted in user interface 1200, the first entity intends to compare its own revenue performance with that of one of its competitor over a given period of time (e.g., over the current quarter). Graph 1252 can represent revenue of the first entity over the current quarter whereas graph 1262 can represent revenue of the second entity (competitor to the first entity) over the same current quarter. It will be understood that in some embodiments, entity performance can be represented using different approaches such as, for example, charts, maps, histograms, numbers etc. In some embodiments, where an identity of the second entity is not known, an identity of the second entity can be estimated using the exemplary process described in FIG. 11.
  • FIG. 13 depicts a flowchart representing an exemplary process 1300 for estimating a location of a consuming entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. Process 1300 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • In step 1310, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include information associated with a consuming entity and a provisioning entity (e.g., a first provisioning entity). Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. In some embodiments, the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
  • Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. Alternatively, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity, such as a type of the provisioning entity.
  • Next, in step 1320, an interaction of the data structure can be evaluated. Next, in step 1330, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the consuming entity. In some embodiments, the determination can include analyzing whether the categories of information associated with a location information of the consuming entity (e.g., consuming entity location category 430) are populated or not. If it turns out that the categories of information associated with a location information of the consuming entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the consuming entity includes a location information of the consuming entity and the process can then move to step 1360. If, on the other hand, the categories of information associated with a location information of the consuming entity are not populated, then the determination can return a negative indication to signify that the interaction does not include a location information of the consuming entity and the process can then move to step 1340.
  • In some embodiments, where the categories of information associated with a location information of the consuming entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process can move to step 1360. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move step 1360. On the other hand, if the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits, and the process can then move to step 1340 described below. It will be understood that other methods to determine whether the interaction includes a location information of the consuming entity can be implemented within the scope and spirit of this disclosure.
  • Next, if the interaction of the data structure does not include an identified location information of the consuming entity, at step 1340, an estimation can be performed to determine location information of the consuming entity based on its interactions with one or more provisioning entities (e.g., second provisioning entity, for purposes of simplicity) of a particular type (e.g., type of provisioning entity category 460). For example, the second provisioning entity can be of the type including a gas station, a pharmacy, restaurant, or a grocery store. In some embodiments, location information of the consuming entity can be estimated by analyzing interactions between the consuming entity and the second provisioning entity. For example, interactions between the consumer entity and a type of provisioning entity that represents gas stations can be analyzed such that the gas station at which the consuming entity most frequently fills up gas can be identified as a location of the consuming entity. This is because it can be reasonable to assume that the consuming entity can frequently fill up gas at a gas station that is in a proximity to the residential location of the consuming entity. In some embodiments, interactions between the consumer entity and a type of provisioning entities that represent gas stations can result in similar number of interactions between two different gas stations in two different locations (e.g., zip codes). In such embodiments, one method of estimating a location of the consuming entity is to then analyze interactions between the consuming entity and a third provisioning entity that can represent grocery stores because it can be reasonable to assume that the consuming entity would more often than not shop for groceries at a location closer to residential location of the consuming entity. Moreover, in some embodiments, the estimating of a location can take into consideration the date (e.g., weekend) and or time (e.g., typical times before or after work) of an interaction with a type of provisioning entity. Based on analyzing interactions with the third provisioning entity (such as grocery stores) and combining such analysis with that of the interactions with the second provisioning entity (such as gas stations), an estimation can be made regarding a location of the consuming entity.
  • In some embodiments, step 1340 can estimate a location information of the consuming entity after the determination returns that the at least one attribute of the consuming entity includes an invalid location information of the consuming entity by using similar techniques as described above. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
  • Next, in step 1350, the data structure can be updated with an estimated location information of the consuming entity. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1360, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1320 to evaluate another interaction and further to repeat the process comprising steps 1320 through 1360, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • In some embodiments, a provisioning entity analysis system can resolve the name of a provisioning entity. A data structure storing information associated with billions of interactions can include millions of provisioning entities and it is possible that some of the names of the provisioning entities are not consistent. For example, the name of provisioning entity “McDonalds's” can be indicated by a number of combinations such as, “McDonald's,” “Mc Donalds,” “mcdonalds,” “Mcdonald's,” etc. While each of the above-recited names can be intended to indicate the same entity, some processing can be necessary before the system can analyze all such names as the same entity. Exemplary methods for resolving a name of provisioning entities are described in U.S. Non-Provisional patent application Ser. No. 13/827,491, titled Resolving Similar Entities From A Transaction Database filed on Mar. 14, 2013, the entirety of which is expressly incorporated herein by reference.
  • An exemplary method of resolving a provisioning entity name can include a number of factors including, but not limited to, categories of information associated with interactions, analyzing interactions associated with competitive and/or complementary provisioning entities. Such exemplary method can result in a significant uplift in accuracy in resolving the name of provisioning entities. In some embodiments, a percentage accuracy in resolving the name of provisioning entities can be increased to high nineties (e.g., 97%).
  • FIG. 14 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. Process 1400 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • In step 1410, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include a consuming entity and a provisioning entity. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. In some embodiments, the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
  • Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. In some embodiments, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
  • Next, in step 1420, an interaction of the data structure can be evaluated. Next, in step 1430, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity. In some embodiments, similar to the step 1330 of FIG. 13, the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1460. If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include a location information of the provisioning entity and the process can move to step 1440.
  • In some embodiments, where the categories of information associated with a location information of the provisioning entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1460. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move to step 1460. On the other hand, if the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits and the process can then move to step 1440 as described below. It will be understood that other methods to determine whether the interaction includes a location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
  • Next, if the interaction of the data structure does not include an identified location information of the provisioning entity, step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities. In some embodiments, step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity. For example, the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440). In some embodiments, a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google Search™).
  • In some embodiments, when the determination returns an answer in the positive, signifying that there is more than one location for the provisioning entity, a location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out a location information of the provisioning entity that is closest to the location of the consuming entity. In some embodiments, the location information returned by the search query can be an estimated location information of the provisioning entity. Alternatively, when there is more than one location for the provisioning entity, a location information of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each location of the provisioning entity. For example, a provisioning entity can be the grocery store, Safeway™, which can have multiple locations in a given zip code (e.g., 94086) of the consuming entity. If the location of the Safeway™ where one or more interactions with a consuming entity occurred is unknown, interactions between the same consuming entity and all Safeway™ locations within the given zip code of the consuming entity can be analyzed such that the Safeway™ location that is involved with the most number of interactions can be selected as an estimated location of the Safeway™ for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
  • Next, in step 1450, the data structure can be updated with an estimated location information of the provisioning entity. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1460, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1420 to evaluate another interaction and further to repeat the process comprising steps 1420 through 1460, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • FIG. 15 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. Process 1500 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2).
  • The exemplary process of FIG. 15 can depict a multi-step process for estimating location information of a provisioning entity. Initially, an area location information can be estimated to represent a location information of the provisioning entity broadly. For example, an area location information for a grocery store like Safeway™ can be as broad as a state (e.g., California) or county (e.g., Santa Clara County) such that Safeway™ can comprise multiple possible locations within the area location. Later, a location information can be estimated to identify a specific location of the provisioning entity from its multiple possible locations within the area location. For example, if the area location information represents Santa Clara County comprising of ten possible Safeway™ locations, the estimated location information can represent one of the ten possible locations within Santa Clara County using either a street address or other unique identifier for the location (e.g., zip code if there is only one store location for the zip code). An exemplary multi-step process is described below.
  • In step 1505, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include consuming entities and provisioning entities. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. The at least one attribute of the consuming entity can include location information of the consuming entity. For some consuming entities, the location information may not be known or identified. Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. Alternatively, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
  • The provisioning entity analysis system can receive an input that can be used in a process to fill in any missing categories of information associated with an interaction. For example, the received input can be “canonical data” that can be used to estimate identification information of the provisioning entity. An exemplary canonical data can comprise data that can be received from external to the provisioning entity analysis system (e.g., Yelp™). For example, if a provisioning entity associated with an interaction is an Italian restaurant, the provisioning entity category 460 can be represented by an MCC 5812 signifying it as a restaurant but might not be able to signify that it is an Italian restaurant. In such a scenario, canonical data such as Yelp™ review information can be analyzed to further identify the provisioning entity as an Italian restaurant. Another example for applying received canonical data can be to differentiate between an entity that is no longer in business from an entity that might have changed its name. In this example, canonical data can be received from an external source (e.g., Factual™) that can comprise a “status” flag as part of its data, which can signify whether the entity is no longer in business.
  • Next, in step 1510, an interaction of the data structure can be evaluated. Next, in step 1515, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity. In some embodiments, similar to the step 1430 of FIG. 14, the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1555. If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include location information of the provisioning entity and the process can move to step 1520.
  • In some embodiments, where the categories of information associated with location information of the provisioning entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1555. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move to step 1555. On the other hand, if the populated data is 094085, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are typically only five decimal numerical digits and the process can then move to step 1520 as described below. It will be appreciated that other methods to determine whether the interaction includes location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
  • Next, if the interaction of the data structure does not include identified location information of the provisioning entity, step 1520 can estimate an area location information of the provisioning entity based on one or more attributes of one or more consuming entities. In some embodiments, step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities. Alternatively, step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity. For example, the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440). Alternatively, a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google Search™) and such information can be identified as an estimated first location information of the provisioning entity.
  • In some embodiments, when the determination returns an answer in the positive, signifying that there is more than one possible location for the provisioning entity, an area location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out the area location information of the provisioning entity that is within a predetermined distance (e.g., within the same zip code) to the location of the consuming entity. The location information returned by the search query can be an estimated first location information of the provisioning entity.
  • Next, in step 1525, the plurality of interactions can be filtered to identify other interactions (e.g., interactions other than the first interaction) between the one or more consuming entities and other provisioning entities (i.e., provisioning entities other than the provisioning entity associated with the interaction and with an unidentified location). For example, step 1525 can filter other interactions such that interactions without an indication of location information associated with the other provisioning entities need not be analyzed. In some embodiments, the filtered interactions can be analyzed to filter provisioning entities based on a received canonical input data. For example, if the received canonical input data comprises an identification information that might be missing in data structure 400, the system can filter the interactions further to only analyze those interactions associated with provisioning entities with an identification information that meet the criteria set by the received canonical data. It will be appreciated that other forms of canonical data can be received within the scope of this disclosure.
  • Next, in step 1530, a travel time can be computed between a location of a first provisioning entity to that of a location of a second provisioning entity. In some embodiments, the first provisioning entity can be the provisioning entity with an estimated area location and the second provisioning entity can be any provisioning entity other than the first provisioning entity. For each interaction of step 1510 and its associated consuming entity, the second provisioning entity can be any provisioning entity other than the first provisioning entity that is associated with other interactions of the consuming entity. Step 1530 can be explained with the block diagrams of FIGS. 16A, 16B, and 16C, which depicts two provisioning entities, S1 and S2, five interactions, X1-X5, and exemplary travel times (e.g., TS1-X1). Provisioning entities S1 and S2 can be two different locations within a chain of stores associated with the same provisioning entity and situated within an area location information estimated in step 1520. For example, S1 and S2 can be two different locations of Safeway™ situated within an estimated area location (e.g., zip code 94086). The area location information can be depicted with a shaded region and labeled as element 1605A in FIGS. 16A, 16B, and 16C. As shown in FIG. 16A, the five interactions, X1-X5, can represent interactions between the consuming entity associated with the interaction of step 1510 and a provisioning entity other than S1 or S2. While FIGS. 16A, 16B, and 16C, depict locations of two provisioning entities and locations of five interactions, it will be appreciated that this disclosure is applicable to embodiments involving any number of provisioning entities and any number of interactions.
  • FIG. 16B depicts travel times between the Safeway™ location, S1, and a provisioning entity involved in each of the interactions, X1-X5. While the travel times are illustrated as aerial travel times, it is appreciated that the travel times can take into consideration roads, sidewalks, bike lanes, etc. For example, travel time between the location S1 and location of provisioning entity involved in interaction X1, can be represented by the line TS1-X1. Travel time TS1-X1 can be computed using real-time traffic conditions or based on historical traffic conditions. Similarly, travel times can be computed between S1 and each location of provisioning entities associated with interactions X2 through X5. Such travel times can be labeled as Ts1-x2 through TS1-X5, as depicted in FIG. 16B.
  • FIG. 16C depicts travel times between the other possible Safeway™ location, S2, and a provisioning entity involved in each of the interactions, X1-X5. This process can be very similar to that of FIG. 16B described above. For example, travel time between the location S2 and location of provisioning entity involved in interaction X1, can be represented by the line TS2-X1. Travel time TS2-X1 can be computed using real-time traffic conditions or based on historical traffic conditions. Similarly, travel times can be computed between S2 and each location of provisioning entities associated with interactions X2 through X5. Such travel times can be labeled as TS2-X2 through TS2-X5, as depicted in FIG. 16C.
  • Next, referring back to FIG. 15, in step 1535, an affinity score can be computed. In some embodiments, an affinity score can be computed for each possible location of the provisioning entity within the estimated area location. The computed affinity score can be based on the computed travel times such that the affinity score can have an inverse proportionality with computed travel times such that the lower the travel time the higher an affinity score. For example, based on the exemplary travel times depicted in FIGS. 16A, 16B, and 16C, it is possible that the affinity score associated with location S1 is likely higher than that of location S2 because travel times associated with S1 are lower than that of S2. Affinity score can be computed based on an average travel time for all interactions. Alternatively, affinity score can be computed by aggregating travel times of all interactions for each location S1 and S2. It will be appreciated that the above-described methods are merely exemplary and other methods of computing an affinity score based on travel times are possible within the scope of this disclosure. Alternatively, the computed affinity score can be normalized (e.g., can be normalized to comprise a value between 0 and 1, with 0 representing no affinity and 1 representing maximum possible affinity). Moreover, while the affinity score can have an inverse relationship with the computed travel times, it is appreciated that the affinity score can have a proportional relationship to the computed travel times.
  • Next, in step 1540, the computed affinity score can be used to estimate a location information within the estimated area location for the provisioning entity without an identified location information. For example, a location can be estimated by selecting the location which has the highest affinity score amongst all possible locations within the area location. That is, in the exemplary embodiment of FIG. 16, location S1 can be selected as the affinity score associated with location S1 is likely higher than that of location S2, as described above. It will be appreciated that other methods of estimating a second location information based on an affinity score are possible. Alternatively, the computed affinity score can be used in conjunction with an algorithm to estimate a second location information within the area location information.
  • In some embodiments, when there is more than one possible location for the provisioning entity without an identified location information, a location information within the area location of the provisioning entity can be estimated by analyzing interactions between the consuming entity and other provisioning entities within the location of the consuming entity (e.g., zip code of the consuming entity) that are closely spaced in time relative to the interaction that does not include an identified location information of the provisioning entity. For example, a first interaction that does not include an identified location information of the provisioning entity can include a timestamp (e.g., time of interaction category 480) associated with the first interaction. To estimate a location information for the provisioning entity associated with the first interaction, the system can analyze other interactions (e.g., interactions other than the first interaction) associated with the consuming entity that occurred within the same location of the consuming entity (e.g., zip code of the consuming entity), occurred within a short time interval of the timestamp of the first interaction (e.g., within 10 minutes of the timestamp), and which further include an identified location information for the provisioning entities associated with the other interactions.
  • Alternatively, when there is more than one possible location for the provisioning entity, a location information within the area location of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each possible location of the provisioning entity. For example, a provisioning entity can be the grocery store, Safeway™, which can have multiple locations in a given city (e.g., Sunnyvale Calif.) of the consuming entity. Interactions between the consuming entity and all Safeway™ locations within the given city of the consuming entity can be analyzed such that the Safeway™ location that is involved with the most number of interactions can be selected as an estimated location within the area location of the Safeway™ for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting
  • Next, an accuracy check of the estimated location information within the area location can be performed. In some embodiments, the accuracy check can comprise verification that the estimated location information is one of the possible locations within the estimated area location of the provisioning entity. Alternatively, the accuracy check can comprise verification that the estimated location information is a valid location information. For example, if the estimated location information is a street address, then the accuracy check can involve verifying that the estimated street address is a valid street address based on an Internet-based search using a search engine (e.g., Google Search™).
  • Next, in step 1545, the data structure can be updated with an estimated location information of the provisioning entity. In some embodiments, the data structure can be updated with either an estimated area location information or an estimated location within the area location information. Alternatively, the data structure can be updated with both the estimated area location information and the estimated location information within the area location. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1550, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1510 to evaluate another interaction and further to repeat the process comprising steps 1510 through 1550, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
  • In some embodiments, a provisioning entity analysis system can predict a purchasing pattern of consuming entities. For example, a provisioning entity (e.g., a large national retailer in the grocery business like Safeway™) can be interested in predicting purchasing patterns of consuming entities in order to make decision such as opening new stores or closing existing stores. One method of predicting purchasing patterns can be to analyze interactions of consuming entities with the provisioning entity. For example, if Safeway™ is interested in opening new store by predicting purchasing patterns of their customers of an existing location, the customer interactions at the existing location can be analyzed to understand where the customers are located by processing location information of the customers. Based on the processed location information of the customers of the existing location, Safeway™ might be able to make a decision on a location for their new location.
  • Another method of predicting purchasing patterns can be to analyze interactions between the consuming entities and other provisioning entities, where the other provisioning entities can be either a competitor of or complementary to the provisioning entity. For example, if Safeway™ is interested in opening new store by predicting purchasing patterns of their customers of an existing location, interactions of the customers of the existing locations that are associated with a competitive entity or a complementary entity can be analyzed. An exemplary complementary entity can be a gas station or a pharmacy because it can be reasonable to assume that consumers frequently shop at a pharmacy or a gas station that is close to their residential location. Accordingly, by analyzing interactions that are associated with a complementary entity to estimate a residential location information of consumers, Safeway™ can make a decision on a location for their new location.
  • FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure. These user interfaces can be provided based on an analysis of a data structure (e.g., data structure 400 of FIG. 4) performed by a provisioning entity analysis system (e.g., provisioning entity analysis system 210). FIG. 17 illustrates an exemplary user interface 1700 that a provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate, according to some embodiments. In some embodiments, the exemplary user interface includes a dashboard, e.g a small business portal dashboard (SBP) dashboard, that can depict a performance of an entity over a metric. For example, the SBP dashboard represents revenue information of the entity (e.g., a provisioning entity) for the current week (May 26, 2013-Jun. 2, 2013). In some embodiments, the SBP dashboard represents revenue information comparing the entity's actual revenue to the entity's goal revenue for the week. For example, the provisioning entity can enter a goal revenue for a period of time (e.g., weekly, quarterly, or yearly). After receiving information regarding the expected revenue, the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the goal revenue. An outcome of such comparative analysis can be represented with an exemplary bar graph or pie chart. For example, the middle portion of FIG. 17 depicts that the entity has received $48,078 in revenues for the current week, and the entity's goal revenue for that week is $63,933.
  • In some embodiments, user interface 1700 can include a plurality of user interface elements representing information associated with entity performance metrics such as revenue, ticket size, new customers, and returning customers. For example, as shown in FIG. 17, each of the above-described user interface elements can be depicted as a rectangular box with an icon and some information representing the performance metric of the entity. The entity can customize what metrics are displayed and how those metrics are displayed. The user interface elements, when clicked on, can provide access to other user interfaces, depicting additional information for the selected performance metric.
  • User interface 1700 can include a sidebar with expandable labels depicting, for example, “My Store,” “My Customers,” and “My Neighborhood.” Each of these labels can provide access to additional user interfaces that depict additional information for these metrics. For example, clicking on the “My Store” label can expand the label to show submenus corresponding to “Revenue,” “Total Transactions,” “Ticket Size,” “Busiest Days,” and “Busiest Hours.” Each of these submenus can provide access to another user interface, providing additional information for each category.
  • FIG. 18 shows a screenshot of an exemplary user interface 1800 that represents revenue depicted temporally, consistent with some embodiments. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 1800. User interface 1800, for example, can be accessed by an entity selecting “Revenue” in the sidebar (e.g., “Revenue” submenu of user interface 1700 of FIG. 17). User interface 1800 can represent revenue information in a chart, such as the bar chart shown in the top panel of FIG. 18. In some embodiments, each bar in the bar chart can represent revenues for a period of time (e.g., a day, week, month, quarter, or year). The granularity or time period for each bar based on the selection of the “Monthly,” “Weekly,” and “Daily” boxes in the top left portion of the bar chart.
  • In some embodiments, user interface 1800 allows an entity to select a particular bar or time period of interest. For example, the entity can select the “May” bar. To indicate that “May” has been selected, user interface 1800 can display that month in a different color. In some embodiments, user interface 1800 can also display additional information for the selected bar. For example, as shown in FIG. 18, user interface 1800 can display the month selected, the revenue for that month, the average ticket size, the number of transactions, and the names of holidays in that month, if any. In some embodiments, user interface 1800 can depict comparisons of revenue information. For example, user interface 1800 can display additional lines or bars (not shown), which represent revenue competitor revenue, industry revenue, or entity revenue from another time period. In some embodiments, user interface 1800 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months. User interface 1800 can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel. In some embodiments, user interface 1800 can allow an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
  • User interface 1800 can also allow an entity to access additional user interfaces by selecting, for example, the “Total Transactions,” “Ticket Size,” “Busiest Days,” or “Busiest Hours” submenus in the sidebar. In some embodiments, these user interfaces (not shown) can display information in the same manner as user interface 1800. For example, a user interface for “Total Transaction” can represent transaction information in a chart, such as a bar chart shown in the top panel of FIG. 18. In this user interface, the bars in the bar chart can represent the total number of transactions for a period time (e.g., one month). User interfaces accessed through the “Ticket Size,” “Busiest Days,” and “Busiest Hours” can display information similarly. In some embodiments, the bars in these user interfaces can represent a percentage for a period time (e.g., 15% of sales occur on Tuesday).
  • FIG. 19 depicts a screenshot of an exemplary user interface representing new customer acquisition numbers over a selected period, consistent with some embodiments. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 1900. In some embodiments, user interface 1900 is accessible by expanding “My Customers” in the sidebar and selecting the “New Customers” submenu. User interface 1900 can depict customer metrics for a selected period of time. For example, user interface 1900 can display customer metrics for a selected quarter. User interface 1900 can use, for example, a bar graph to represent the customer metrics wherein each bar represents the number of customers for a subset period of time, (e.g., a week) within the longer period of time (e.g., a quarter).
  • User interface 1900 can also depict new customers in one color and returning customers in a different color to distinguish between the different types of customers. As an example, in FIG. 19, returning customers are represented by the upper, lighter portions of the bar, whereas new customers are represented by the lower, darker portions. In some embodiments, user interface 1900 can depict the total number of new customers and returning customers for a selected time period, as shown in the top right portion of user interface 1900. User interface 1900 can also allow an entity to access additional user interfaces (such as user interface 2000 and user interface 2100 described below) by selecting, for example, the “Loyal Customers” or “Where do they spend?” submenus.
  • FIG. 20 depicts a screenshot of an exemplary user interface 2000 representing loyal customer information, consistent with some embodiments. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2000 In some embodiments, user interface 2000 can be accessed based on the selection of the “Loyal Customers” submenu in the sidebar. User interface 2000 can depict performance metrics relating to revenue from returning customers. In some embodiments, user interface 2000 represents this information as a stacked bar graph. A section of the stacked graph can represent the number of customers who visited an entity a certain number of times. For example, the bottom section of the stacked bar chart depicted in FIG. 20 can represent the number of customers who visited once. In some embodiments, a section of the stacked graph can represent the number of customers whose visits fall within a range of times, (e.g., “3-4 times” or “9+ times”). User interface 2000 can depict each section as a percentage (e.g. 7.0% of customers), as a number (e.g. 149 customers), or as a combination thereof (e.g., 149 customers, 7.0%).
  • In some embodiments, user interface 2000 can depict additional information for a section selected by the entity. For example, the entity can select the “9+ times” section at the top of the stacked bar graph in FIG. 20 to display additional information about those customers. This information can include the total revenue from those customers, the total number of transactions with those customers, and the average ticket size of those customers.
  • FIG. 21 depicts a screenshot of an exemplary user interface 2100 representing customer spending habits for specific geographic regions. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2100. In some embodiments, user interface 2100 can be accessed based on the selection of the “Where do they spend” submenu in the sidebar. User interface 2100 can depict a geographic region. User interface 2100 can also depict locations where customers spend overlaid on the geographic region, e.g. a heat map. For example, the shaded regions overlaid on the geographic region in FIG. 21 can depict the regions where customers spend.
  • Different shades of gray-scale can be used to show different amounts of spending (e.g., darker shaded regions can depict regions where customers spend more). Alternatively, a color coded heat-map can be used where different colors can be used to show different amounts of spending. In some embodiments, the geographic granularity (e.g., district, city, county, metropolitan area, state) of user interface 2100 is selectable. User interface 2100 can also depict spending habits for the geographic region for different temporal periods. For example, user interface 2100 can depict customer spending for the current month, quarter, previous quarter, or any other time period.
  • FIG. 22 depicts a screenshot of an exemplary user interface 2200 representing entity performance using one or more filter selections including demographics, geographic location, time period, and transactions. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2200. In some embodiments, an entity can utilize user interface 2200 to compare how different variables (e.g., time, demographics, location, etc.) affect entity performance metrics (e.g., revenues, ticket size, etc.). In some embodiments, user interface 2200 can depict entity performance using a bar chart or histograms. For example, the bar charts in the middle of FIG. 22 depict the average ticket size based on the number of times a customer visits. The bar chart on the left side of FIG. 22 depicts this information for the current quarter, for customers aged 31 to 49, for sales on Saturday, whereas the bar chart on the right depicts the same information for the current quarter, for customers, aged 31 to 49, for every day of the week. User interface 220 allows an entity to use these bar charts to determine the effect the day of the week has on the number of tickets and the average ticket size.
  • In some embodiments, user interface 2200 can depict additional customer information, such as income, as a histogram. As shown in FIG. 22, the histogram can represent customer demographics for the selected filters. In some embodiments, user interface 220 can depict a delta (not shown in FIG. 22) representing a difference between similar categories in each histogram. The depiction of the delta can be in the area between the left and right histograms such as shown in U.S. application Ser. No. 14/289,596 at FIG. 17, the depiction of which is incorporated by reference. For example, if 16% of the entity's customers had an income less than $30,000 for the first filter selections, and only 11% had an income less than $30,000 for the second filter selections, user interface 2200 can display a 5% delta to the left, representing the difference between the filter selections.
  • FIG. 23 depicts a screenshot of an two exemplary user interfaces. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate these exemplary user interfaces. The left panel of FIG. 23 shows a user interface that can depict business insights for the entity (e.g., what customers buy, where they buy, when they buy, how often they buy, where they live, how much they make, etc.). For example, user interface 2300 can depict insights such as temporal trends, temporal summaries, geographical trends, whether customers are on vacation, and customer demographics. An entity can use these insights to predict future spending, to target specific customers, to determine when to have sales, to determine when to order additional inventory, etc. The right panel of FIG. 23 shows a user interface that can depict an exemplary temporal graph of revenues. This bar chart is similar to the bar chart described above with respect to FIG. 18. In some embodiments, the user interface in the right panel can allow an entity to compare its revenues to other entities. For example, the lines on each bar in the right panel of FIG. 23 represent competitor revenue for the selected time period. In some embodiments, these lines can represent industry revenue or entity revenue from another time period. In some embodiments, the user interface shown in the right panel of FIG. 23 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months. The user interface can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel. In some embodiments, the user interface allows an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
  • FIG. 24 depicts a screenshot of an exemplary user interface 2400 including a heat-map representation (e.g., the left panel) and graph-based representation (e.g., the right panel) of entity performance. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2400. In some embodiments, the entity can select one or more filters (e.g. “Add New Filter” shown in the sidebar) to display a timeline of customer. For example, user interface 2400 can represent customer spending on a daily basis. In some embodiments, user interface 2400 can represent customer spending with a heat map, such as the heat map shown in the left panel of FIG. 24. The heat map can be used to accurately predict the geographic locations of future customer spending. In some embodiments, customer spending can be represented as a graph-based representation where the independent axis (e.g., x-axis) can represent a period of time and the dependent axis can represent customer spending, as depicted in the right panel of FIG. 24. In some embodiments, the graph-based representation can be used as a predictive chart to predict future customer spending.
  • FIG. 25 depicts a screenshot of an exemplary user interface 2500 representing inferred customer location. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2500. In some embodiments, user interface 2500 can represent customer location inferred from persistent information (e.g., the centroid of the customer's medical transactions or the median of the customer's retail food and pharmacy stores transactions). In some embodiments, user interface 2500 can represent customer location inferred from contextual information (e.g. localized small-ticket spending in severe weather or spending after an inferred move). In some embodiments, user interface 2500 can represent temporal customer location (e.g., permanent, temporary, seasonal, etc.).
  • In some embodiments, customer location can be represented by a circle of a particular distance, wherein the provisioning entity analysis system infers that the customer is located within that circle. For example, in FIG. 25, the inner circle represents a two mile range and the outer circle represents a five mile range. In some embodiments, user interface 2500 can depict a confidence metric corresponding to the accuracy of inferred customer location (e.g., 75-80% confident that the customer is within the inner circle and 90-95% confident that the customer is located in the outer circle).
  • FIG. 26 depicts a screenshot of an exemplary user interface 2600 representing predictive travel and vacation spending. Entities, such as resorts and travel destinations, can use this information to predict vacation patterns, enabling them to develop targeted marketing and to inform future restaurant and service selection. A provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate exemplary user interface 2600. The provisioning entity analysis system can use the inferred customer locations described above to determine whether certain transactions qualify as travel or vacation spending. In some embodiments, user interface 2600 can depict travel or vacation spending as a chart. For example, as shown in FIG. 26, user interface 2600 can represent this information as a scatter chart with confidence intervals. The independent axis (e.g., x-axis) of the chart can represent the day of vacation. The dependent axis can represent the average range of percentage of travel spending that is spent on restaurants.
  • In the foregoing specification, embodiments have been described with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the embodiments described herein can be made. Therefore, the above embodiments are considered to be illustrative and not restrictive.

Claims (20)

What is claimed is:
1. A system comprising:
one or more processors;
memory storing instructions that, when executed by the one or more processors, cause the system to perform:
receiving input for at least one category of a plurality of categories of information to be compared between a first entity and a second entity;
accessing a data structure in the memory comprising the plurality of categories of information, the plurality of categories of information showing a plurality of interactions between multiple entities, the multiple entities including at least the first entity and the second entity;
estimating an identity of the second entity based on information in the data structure representing at least a type of the first entity and a location of the first entity;
processing information associated with one or more particular interactions of the data structure for comparing data between the first entity and the second entity, the one or more particular interactions being associated with the at least one category of the plurality of categories of information; and
providing the processed information for displaying a comparison between a performance of the first entity and the second entity on a user interface.
2. The system of claim 1, wherein the first entity comprises a first provisioning entity, and the second entity comprises a second provisioning entity.
3. The system of claim 1, wherein an identity of the first entity is known, and the identity of the second entity is unknown.
4. The system of claim 1, wherein the estimating the identity of the second entity comprises analyzing the data structure in the memory to identify a set of entities having the type of the first entity and being within a predetermined proximity of the location of the first entity.
5. The system of claim 4, wherein the instructions further cause the system to select a particular entity of the set of entities as the estimated identity of the second entity, the particular entity of the set of entities being closer in proximity to the location of the first entity than the other entities of the set of entities.
6. The system of claim 1, wherein each of the plurality of interactions comprises categories of information including at least one of: an interaction number category, a consuming entity identification category; a consuming entity location category, a provisioning entity identification category, a provisioning entity location category, a type of provisioning entity category, an interaction amount category, and a time of interaction category.
7. The system of claim 1; wherein the processing information associated with one or more particular interactions of the data structure for comparing data between the first entity and the second entity comprises:
processing information associated with the at least one category of information of the first entity; and
processing information associated with the at least one category of the second entity.
8. The system of claim 7, wherein the comparison between the performance of the first entity and the second entity comprises a comparison of the processed information associated with the at least one category of information of the first entity and the processed information associated with the at least one category of the second entity.
9. The system of claim 8; wherein the user interface includes a dashboard showing a graphical representation associated with the comparison of the processed information associated with the at least one category of information of the first entity and the processed information associated with the at least one category of the second entity.
10. A method implemented by a computing system including one or more processors and storage media storing machine-readable instructions; wherein the method is performed using the one or more processors, the method comprising:
receiving input for at least one category of a plurality of categories of information to be compared between a first entity and a second entity;
accessing a data structure in the memory comprising the plurality of categories of information; the plurality of categories of information showing a plurality of interactions between multiple entities; the multiple entities including at least the first entity and the second entity;
estimating an identity of the second entity based on information in the data structure representing at least a type of the first entity and a location of the first entity;
processing information associated with one or more particular interactions of the data structure for comparing data between the first entity and the second entity, the one or more particular interactions being associated with the at least one category of the plurality of categories of information; and
providing the processed information for displaying a comparison between a performance of the first entity and the second entity on a user interface.
11. The method of claim 10, wherein the first entity comprises a first provisioning entity, and the second entity comprises a second provisioning entity.
12. The method of claim 10, wherein an identity of the first entity is known, and the identity of the second entity is unknown.
13. The method of claim 10, wherein the estimating the identity of the second entity comprises analyzing the data structure in the memory to identify a set of entities having the type of the first entity and being within a predetermined proximity of the location of the first entity.
14. The method of claim 13, further comprising selecting a particular entity of the set of entities as the estimated identity of the second entity, the particular entity of the set of entities being closer in proximity to the location of the first entity than the other entities of the set of entities.
15. The method of claim 10, wherein each of the plurality of interactions comprises categories of information including at least one of: an interaction number category, a consuming entity identification category, a consuming entity location category, a provisioning entity identification category, a provisioning entity location category, a type of provisioning entity category, an interaction amount category, and a time of interaction category.
16. The method of claim 10, wherein the processing information associated with one or more particular interactions of the data structure for comparing data between the first entity and the second entity comprises:
processing information associated with the at least one category of information of the first entity; and
processing information associated with the at least one category of the second entity.
17. The method of claim 16, wherein the comparison between the performance of the first entity and the second entity comprises a comparison of the processed information associated with the at least one category of information of the first entity and the processed information associated with the at least one category of the second entity.
18. The method of claim 17, wherein the user interface includes a dashboard showing a graphical representation associated with the comparison of the processed information associated with the at least one category of information of the first entity and the processed information associated with the at least one category of the second entity.
19. A non-transitory computer readable medium comprising instructions that, when executed, cause one or more processors to perform:
receiving input for at least one category of a plurality of categories of information to be compared between a first entity and a second entity;
accessing a data structure in the memory comprising the plurality of categories of information, the plurality of categories of information showing a plurality of interactions between multiple entities, the multiple entities including at least the first entity and the second entity;
estimating an identity of the second entity based on information in the data structure representing at least a type of the first entity and a location of the first entity;
processing information associated with one or more particular interactions of the data structure for comparing data between the first entity and the second entity, the one or more particular interactions being associated with the at least one category of the plurality of categories of information; and
providing the processed information for displaying a comparison between a performance of the first entity and the second entity on a user interface.
20. The non-transitory computer readable medium of claim 19, wherein the estimating the identity of the second entity comprises analyzing the data structure in the memory to identify a set of entities having the type of the first entity and being within a predetermined proximity of the location of the first entity.
US16/023,251 2013-12-16 2018-06-29 Methods and systems for analyzing entity performance Abandoned US20180322175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/023,251 US20180322175A1 (en) 2013-12-16 2018-06-29 Methods and systems for analyzing entity performance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361916796P 2013-12-16 2013-12-16
US201361916795P 2013-12-16 2013-12-16
US201361916797P 2013-12-16 2013-12-16
US14/306,147 US10025834B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US16/023,251 US20180322175A1 (en) 2013-12-16 2018-06-29 Methods and systems for analyzing entity performance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/306,147 Continuation US10025834B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance

Publications (1)

Publication Number Publication Date
US20180322175A1 true US20180322175A1 (en) 2018-11-08

Family

ID=53368741

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/306,138 Active US9734217B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US14/306,147 Active US10025834B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US14/306,154 Active US9727622B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US16/023,251 Abandoned US20180322175A1 (en) 2013-12-16 2018-06-29 Methods and systems for analyzing entity performance

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/306,138 Active US9734217B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US14/306,147 Active US10025834B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance
US14/306,154 Active US9727622B2 (en) 2013-12-16 2014-06-16 Methods and systems for analyzing entity performance

Country Status (1)

Country Link
US (4) US9734217B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025671A1 (en) * 2019-08-02 2021-02-11 Visa International Service Association Real-time geo-intelligent aggregation engine
US20240338601A1 (en) * 2023-04-04 2024-10-10 Broadridge Financial Solutions, Inc. Computer-based systems configured to automatically generate a interaction session based on an internal identification token and methods of use thereof
US12124484B2 (en) 2019-08-02 2024-10-22 Visa International Service Association Real-time geo-intelligent aggregation engine

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930331B2 (en) 2007-02-21 2015-01-06 Palantir Technologies Providing unique views of data based on changes or rules
US10275569B2 (en) * 2007-10-15 2019-04-30 22andMe, Inc. Family inheritance
US8984390B2 (en) 2008-09-15 2015-03-17 Palantir Technologies, Inc. One-click sharing for screenshots and related documents
US8799240B2 (en) 2011-06-23 2014-08-05 Palantir Technologies, Inc. System and method for investigating large amounts of data
US9547693B1 (en) 2011-06-23 2017-01-17 Palantir Technologies Inc. Periodic database search manager for multiple data sources
US9092482B2 (en) 2013-03-14 2015-07-28 Palantir Technologies, Inc. Fair scheduling for mixed-query loads
US8732574B2 (en) 2011-08-25 2014-05-20 Palantir Technologies, Inc. System and method for parameterizing documents for automatic workflow generation
US8504542B2 (en) 2011-09-02 2013-08-06 Palantir Technologies, Inc. Multi-row transactions
US9348677B2 (en) 2012-10-22 2016-05-24 Palantir Technologies Inc. System and method for batch evaluation programs
US9380431B1 (en) 2013-01-31 2016-06-28 Palantir Technologies, Inc. Use of teams in a mobile application
US10037314B2 (en) 2013-03-14 2018-07-31 Palantir Technologies, Inc. Mobile reports
US8917274B2 (en) 2013-03-15 2014-12-23 Palantir Technologies Inc. Event matrix based on integrated data
US20140278800A1 (en) * 2013-03-15 2014-09-18 Taco Bell, Corp. Systems, devices, and methods for generating location establishment severity identification
US8788405B1 (en) 2013-03-15 2014-07-22 Palantir Technologies, Inc. Generating data clusters with customizable analysis strategies
US10275778B1 (en) 2013-03-15 2019-04-30 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive investigation based on automatic malfeasance clustering of related data in various data structures
US8909656B2 (en) 2013-03-15 2014-12-09 Palantir Technologies Inc. Filter chains with associated multipath views for exploring large data sets
US8937619B2 (en) 2013-03-15 2015-01-20 Palantir Technologies Inc. Generating an object time series from data objects
US8868486B2 (en) 2013-03-15 2014-10-21 Palantir Technologies Inc. Time-sensitive cube
US9965937B2 (en) 2013-03-15 2018-05-08 Palantir Technologies Inc. External malware data item clustering and analysis
US8799799B1 (en) 2013-05-07 2014-08-05 Palantir Technologies Inc. Interactive geospatial map
USD757028S1 (en) 2013-08-01 2016-05-24 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
AU355184S (en) 2013-08-01 2014-05-01 Palantir Tech Display screen
USD781869S1 (en) 2013-08-01 2017-03-21 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
US8713467B1 (en) * 2013-08-09 2014-04-29 Palantir Technologies, Inc. Context-sensitive views
US8938686B1 (en) 2013-10-03 2015-01-20 Palantir Technologies Inc. Systems and methods for analyzing performance of an entity
US8924872B1 (en) 2013-10-18 2014-12-30 Palantir Technologies Inc. Overview user interface of emergency call data of a law enforcement agency
US9116975B2 (en) 2013-10-18 2015-08-25 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores
US9021384B1 (en) 2013-11-04 2015-04-28 Palantir Technologies Inc. Interactive vehicle information map
US8868537B1 (en) 2013-11-11 2014-10-21 Palantir Technologies, Inc. Simple web search
US9105000B1 (en) 2013-12-10 2015-08-11 Palantir Technologies Inc. Aggregating data from a plurality of data sources
US9734217B2 (en) 2013-12-16 2017-08-15 Palantir Technologies Inc. Methods and systems for analyzing entity performance
US10356032B2 (en) 2013-12-26 2019-07-16 Palantir Technologies Inc. System and method for detecting confidential information emails
US20150186941A1 (en) * 2013-12-27 2015-07-02 Radius Networks Inc. Portal for Sending Merchant Offers to Users and User Interactions with Merchant Offers
US8832832B1 (en) 2014-01-03 2014-09-09 Palantir Technologies Inc. IP reputation
US9483162B2 (en) 2014-02-20 2016-11-01 Palantir Technologies Inc. Relationship visualizations
US9727376B1 (en) 2014-03-04 2017-08-08 Palantir Technologies, Inc. Mobile tasks
US8924429B1 (en) 2014-03-18 2014-12-30 Palantir Technologies Inc. Determining and extracting changed data from a data source
US9857958B2 (en) 2014-04-28 2018-01-02 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive access of, investigation of, and analysis of data objects stored in one or more databases
US9009171B1 (en) 2014-05-02 2015-04-14 Palantir Technologies Inc. Systems and methods for active column filtering
WO2015192091A1 (en) * 2014-06-13 2015-12-17 Koverse, Inc. System and method for data organization, optimization and analytics
US9619557B2 (en) 2014-06-30 2017-04-11 Palantir Technologies, Inc. Systems and methods for key phrase characterization of documents
US9535974B1 (en) 2014-06-30 2017-01-03 Palantir Technologies Inc. Systems and methods for identifying key phrase clusters within documents
US9256664B2 (en) 2014-07-03 2016-02-09 Palantir Technologies Inc. System and method for news events detection and visualization
US9202249B1 (en) 2014-07-03 2015-12-01 Palantir Technologies Inc. Data item clustering and analysis
US9454281B2 (en) 2014-09-03 2016-09-27 Palantir Technologies Inc. System for providing dynamic linked panels in user interface
US9501851B2 (en) 2014-10-03 2016-11-22 Palantir Technologies Inc. Time-series analysis system
US9767172B2 (en) 2014-10-03 2017-09-19 Palantir Technologies Inc. Data aggregation and analysis system
US9785328B2 (en) 2014-10-06 2017-10-10 Palantir Technologies Inc. Presentation of multivariate data on a graphical user interface of a computing system
US9984133B2 (en) 2014-10-16 2018-05-29 Palantir Technologies Inc. Schematic and database linking system
USD779503S1 (en) * 2014-11-05 2017-02-21 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
USD780770S1 (en) * 2014-11-05 2017-03-07 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
US9229952B1 (en) 2014-11-05 2016-01-05 Palantir Technologies, Inc. History preserving data pipeline system and method
US9043894B1 (en) 2014-11-06 2015-05-26 Palantir Technologies Inc. Malicious software detection in a computing system
US9367872B1 (en) 2014-12-22 2016-06-14 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures
US10362133B1 (en) 2014-12-22 2019-07-23 Palantir Technologies Inc. Communication data processing architecture
US9348920B1 (en) 2014-12-22 2016-05-24 Palantir Technologies Inc. Concept indexing among database of documents using machine learning techniques
US10552994B2 (en) 2014-12-22 2020-02-04 Palantir Technologies Inc. Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items
US9870205B1 (en) 2014-12-29 2018-01-16 Palantir Technologies Inc. Storing logical units of program code generated using a dynamic programming notebook user interface
US9335911B1 (en) 2014-12-29 2016-05-10 Palantir Technologies Inc. Interactive user interface for dynamic data analysis exploration and query processing
US9817563B1 (en) 2014-12-29 2017-11-14 Palantir Technologies Inc. System and method of generating data points from one or more data stores of data items for chart creation and manipulation
US10372879B2 (en) 2014-12-31 2019-08-06 Palantir Technologies Inc. Medical claims lead summary report generation
US9727560B2 (en) 2015-02-25 2017-08-08 Palantir Technologies Inc. Systems and methods for organizing and identifying documents via hierarchies and dimensions of tags
EP3070622A1 (en) 2015-03-16 2016-09-21 Palantir Technologies, Inc. Interactive user interfaces for location-based data analysis
US9886467B2 (en) 2015-03-19 2018-02-06 Plantir Technologies Inc. System and method for comparing and visualizing data entities and data entity series
US20160299973A1 (en) * 2015-04-10 2016-10-13 Ralph Willard Oakeson Interactive Internet Interfaces
US20160335650A1 (en) 2015-05-15 2016-11-17 Mastercard International Incorporated Systems and methods for generating aggregated merchant analytics for a sector location
US9392008B1 (en) 2015-07-23 2016-07-12 Palantir Technologies Inc. Systems and methods for identifying information related to payment card breaches
US9454785B1 (en) 2015-07-30 2016-09-27 Palantir Technologies Inc. Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data
US9996595B2 (en) 2015-08-03 2018-06-12 Palantir Technologies, Inc. Providing full data provenance visualization for versioned datasets
US9456000B1 (en) 2015-08-06 2016-09-27 Palantir Technologies Inc. Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications
US9600146B2 (en) * 2015-08-17 2017-03-21 Palantir Technologies Inc. Interactive geospatial map
US10489391B1 (en) 2015-08-17 2019-11-26 Palantir Technologies Inc. Systems and methods for grouping and enriching data items accessed from one or more databases for presentation in a user interface
US10853378B1 (en) 2015-08-25 2020-12-01 Palantir Technologies Inc. Electronic note management via a connected entity graph
US11150917B2 (en) 2015-08-26 2021-10-19 Palantir Technologies Inc. System for data aggregation and analysis of data from a plurality of data sources
CA2939729A1 (en) * 2015-08-28 2017-02-28 Wal-Mart Stores, Inc. Correlating data from satellite images with retail location performance
US10706434B1 (en) 2015-09-01 2020-07-07 Palantir Technologies Inc. Methods and systems for determining location information
CN108352029A (en) * 2015-09-08 2018-07-31 万事达卡国际股份有限公司 Polymerization business analysis is generated using the initial position of online transaction
US9576015B1 (en) 2015-09-09 2017-02-21 Palantir Technologies, Inc. Domain-specific language for dataset transformations
US11276006B2 (en) * 2015-10-02 2022-03-15 Outlier AI, Inc. System, apparatus, and method to identify intelligence using a data processing platform
US10296617B1 (en) 2015-10-05 2019-05-21 Palantir Technologies Inc. Searches of highly structured data
US9424669B1 (en) 2015-10-21 2016-08-23 Palantir Technologies Inc. Generating graphical representations of event participation flow
US20170116621A1 (en) * 2015-10-27 2017-04-27 Mastercard International Incorporated Method and system for predicting service provider performance based on industry data
US10613722B1 (en) 2015-10-27 2020-04-07 Palantir Technologies Inc. Distorting a graph on a computer display to improve the computer's ability to display the graph to, and interact with, a user
US9542446B1 (en) 2015-12-17 2017-01-10 Palantir Technologies, Inc. Automatic generation of composite datasets based on hierarchical fields
EP3398088A4 (en) * 2015-12-28 2019-08-21 Sixgill Ltd. Dark web monitoring, analysis and alert system and method
US10268735B1 (en) 2015-12-29 2019-04-23 Palantir Technologies Inc. Graph based resolution of matching items in data sources
US9823818B1 (en) 2015-12-29 2017-11-21 Palantir Technologies Inc. Systems and interactive user interfaces for automatic generation of temporal representation of data objects
US9612723B1 (en) 2015-12-30 2017-04-04 Palantir Technologies Inc. Composite graphical interface with shareable data-objects
US10475057B2 (en) * 2016-01-04 2019-11-12 American Express Travel Related Services Company, Inc. System and method for transaction volume determination
US20170200176A1 (en) * 2016-01-07 2017-07-13 Vantiv, Llc Systems and methods for tracking consumer spend behaviors
US10698938B2 (en) 2016-03-18 2020-06-30 Palantir Technologies Inc. Systems and methods for organizing and identifying documents via hierarchies and dimensions of tags
US10650558B2 (en) 2016-04-04 2020-05-12 Palantir Technologies Inc. Techniques for displaying stack graphs
US10007674B2 (en) 2016-06-13 2018-06-26 Palantir Technologies Inc. Data revision control in large-scale data analytic systems
EP3475889A4 (en) * 2016-06-23 2020-01-08 Capital One Services, LLC Neural network systems and methods for generating distributed representations of electronic transaction information
USD802000S1 (en) 2016-06-29 2017-11-07 Palantir Technologies, Inc. Display screen or portion thereof with an animated graphical user interface
USD826269S1 (en) 2016-06-29 2018-08-21 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD803246S1 (en) 2016-06-29 2017-11-21 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD802016S1 (en) 2016-06-29 2017-11-07 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD858572S1 (en) 2016-06-29 2019-09-03 Palantir Technologies Inc. Display screen or portion thereof with icon
EP3264343A1 (en) * 2016-06-30 2018-01-03 Honeywell International Inc. Devices, methods, and systems for airside performance analysis
USD847144S1 (en) 2016-07-13 2019-04-30 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
USD835646S1 (en) 2016-07-13 2018-12-11 Palantir Technologies Inc. Display screen or portion thereof with an animated graphical user interface
USD811424S1 (en) 2016-07-20 2018-02-27 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
US10719188B2 (en) 2016-07-21 2020-07-21 Palantir Technologies Inc. Cached database and synchronization system for providing dynamic linked panels in user interface
US10324609B2 (en) 2016-07-21 2019-06-18 Palantir Technologies Inc. System for providing dynamic linked panels in user interface
US10437840B1 (en) 2016-08-19 2019-10-08 Palantir Technologies Inc. Focused probabilistic entity resolution from multiple data sources
US9881066B1 (en) 2016-08-31 2018-01-30 Palantir Technologies, Inc. Systems, methods, user interfaces and algorithms for performing database analysis and search of information involving structured and/or semi-structured data
US10831743B2 (en) 2016-09-02 2020-11-10 PFFA Acquisition LLC Database and system architecture for analyzing multiparty interactions
CA3035277C (en) 2016-09-02 2024-05-14 FutureVault Inc. Real-time document filtering systems and methods
US20190294140A1 (en) * 2016-11-16 2019-09-26 Mitsubishi Electric Corporation Work condition visualization apparatus
US10318630B1 (en) 2016-11-21 2019-06-11 Palantir Technologies Inc. Analysis of large bodies of textual data
USD808991S1 (en) 2016-12-22 2018-01-30 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
US10552436B2 (en) 2016-12-28 2020-02-04 Palantir Technologies Inc. Systems and methods for retrieving and processing data for display
US10460602B1 (en) 2016-12-28 2019-10-29 Palantir Technologies Inc. Interactive vehicle information mapping system
USD868827S1 (en) 2017-02-15 2019-12-03 Palantir Technologies, Inc. Display screen or portion thereof with set of icons
US10475219B1 (en) 2017-03-30 2019-11-12 Palantir Technologies Inc. Multidimensional arc chart for visual comparison
US11164198B2 (en) * 2017-03-31 2021-11-02 ASK Chemicals LLC Graphical user interface for visualizing market share analysis
US10853399B2 (en) 2017-04-05 2020-12-01 Splunk Inc. User interface search tool for locating and summarizing data
US11061918B2 (en) 2017-04-05 2021-07-13 Splunk Inc. Locating and categorizing data using inverted indexes
US11106713B2 (en) 2017-04-05 2021-08-31 Splunk Inc. Sampling data using inverted indexes in response to grouping selection
USD834039S1 (en) 2017-04-12 2018-11-20 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD839298S1 (en) 2017-04-19 2019-01-29 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
USD822705S1 (en) 2017-04-20 2018-07-10 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD872736S1 (en) 2017-05-04 2020-01-14 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD861713S1 (en) 2017-05-22 2019-10-01 Reveal Usa, Inc. Display screen with a graphical user interface
USD837234S1 (en) 2017-05-25 2019-01-01 Palantir Technologies Inc. Display screen or portion thereof with transitional graphical user interface
US10956406B2 (en) 2017-06-12 2021-03-23 Palantir Technologies Inc. Propagated deletion of database records and derived data
US10403011B1 (en) 2017-07-18 2019-09-03 Palantir Technologies Inc. Passing system with an interactive user interface
US11170408B2 (en) * 2017-07-28 2021-11-09 Ncr Corporation Geofenced selection with targeted interaction
USD874472S1 (en) 2017-08-01 2020-02-04 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
US10922727B2 (en) * 2017-08-29 2021-02-16 Mastercard International Incorporated System and method for automated distribution to selected multiple receivers
US10902445B2 (en) * 2017-11-13 2021-01-26 International Business Machines Corporation Location evaluation
USD872121S1 (en) 2017-11-14 2020-01-07 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
US20190172129A1 (en) * 2017-12-06 2019-06-06 Mastercard International Incorporated Systems and methods for using aggregated merchant analytics to analyze merchant loan risk
US10929476B2 (en) 2017-12-14 2021-02-23 Palantir Technologies Inc. Systems and methods for visualizing and analyzing multi-dimensional data
USD883997S1 (en) 2018-02-12 2020-05-12 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
USD883301S1 (en) 2018-02-19 2020-05-05 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
WO2019173550A1 (en) * 2018-03-07 2019-09-12 Acxiom Llc Machine for audience propensity ranking using internet of things (iot) inputs
US11599369B1 (en) 2018-03-08 2023-03-07 Palantir Technologies Inc. Graphical user interface configuration system
USD886848S1 (en) 2018-04-03 2020-06-09 Palantir Technologies Inc. Display screen or portion thereof with transitional graphical user interface
USD888082S1 (en) 2018-04-03 2020-06-23 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
USD869488S1 (en) 2018-04-03 2019-12-10 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
USD885413S1 (en) 2018-04-03 2020-05-26 Palantir Technologies Inc. Display screen or portion thereof with transitional graphical user interface
US10754822B1 (en) 2018-04-18 2020-08-25 Palantir Technologies Inc. Systems and methods for ontology migration
US10885021B1 (en) 2018-05-02 2021-01-05 Palantir Technologies Inc. Interactive interpreter and graphical user interface
US11036751B2 (en) * 2018-05-07 2021-06-15 Servicenow, Inc. Advanced insights explorer
US10754946B1 (en) * 2018-05-08 2020-08-25 Palantir Technologies Inc. Systems and methods for implementing a machine learning approach to modeling entity behavior
USD879821S1 (en) 2018-08-02 2020-03-31 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
WO2020033553A1 (en) * 2018-08-07 2020-02-13 Walmart Apollo, Llc System and method for anomaly detection and deduplication of electronic data feeds
US10861203B1 (en) 2018-09-10 2020-12-08 Palantir Technologies Inc. Ontology-backed automatic chart creation
USD900857S1 (en) * 2018-11-21 2020-11-03 Yokogawa Electric Corporation Display screen or portion thereof with graphical user interface
USD919645S1 (en) 2019-01-02 2021-05-18 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
USD916789S1 (en) 2019-02-13 2021-04-20 Palantir Technologies, Inc. Display screen or portion thereof with transitional graphical user interface
USD953345S1 (en) 2019-04-23 2022-05-31 Palantir Technologies, Inc. Display screen or portion thereof with graphical user interface
US11966430B2 (en) * 2019-07-31 2024-04-23 Palantir Technologies Inc. Determining geolocations of composite entities based on heterogeneous data sources
US11586660B2 (en) 2019-07-31 2023-02-21 Palantir Technologies Inc. Determining object geolocations based on heterogeneous data sources
US11023879B2 (en) * 2019-08-30 2021-06-01 Advanced New Technologies Co., Ltd. Recommending target transaction code setting region
US11481793B2 (en) * 2020-02-26 2022-10-25 Visa International Service Association System, method, and computer program product for providing real-time offers based on geolocation and merchant category
US11907182B2 (en) * 2021-09-09 2024-02-20 Sap Se Schema-based data retrieval from knowledge graphs
USD1020795S1 (en) * 2021-12-01 2024-04-02 Coinbase, Inc. Display screen with icon group and display screen with icon set

Family Cites Families (608)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109399A (en) 1989-08-18 1992-04-28 Alamo City Technologies, Inc. Emergency call locating system
US5632987A (en) 1992-12-31 1997-05-27 Mycogen Corporation Bacillus thuringiensis toxins active against corn rootworm larvae
FR2684214B1 (en) 1991-11-22 1997-04-04 Sepro Robotique INDEXING CARD FOR GEOGRAPHIC INFORMATION SYSTEM AND SYSTEM INCLUDING APPLICATION.
US5632009A (en) 1993-09-17 1997-05-20 Xerox Corporation Method and system for producing a table image showing indirect data representations
US5670987A (en) 1993-09-21 1997-09-23 Kabushiki Kaisha Toshiba Virtual manipulating apparatus and method
US6877137B1 (en) 1998-04-09 2005-04-05 Rose Blush Software Llc System, method and computer program product for mediating notes and note sub-notes linked or otherwise associated with stored or networked web pages
EP0663645A3 (en) 1994-01-13 1996-07-03 Eastman Kodak Co Bitmap registration by gradient descent.
US5777549A (en) 1995-03-29 1998-07-07 Cabletron Systems, Inc. Method and apparatus for policy-based alarm notification in a distributed network management environment
US6366933B1 (en) 1995-10-27 2002-04-02 At&T Corp. Method and apparatus for tracking and viewing changes on the web
US5845300A (en) 1996-06-05 1998-12-01 Microsoft Corporation Method and apparatus for suggesting completions for a partially entered data item based on previously-entered, associated data items
US5798769A (en) 1996-08-15 1998-08-25 Xerox Corporation Method and apparatus for maintaining links between graphic objects in a free-form graphics display system
CA2187704C (en) 1996-10-11 1999-05-04 Darcy Kim Rossmo Expert system method of performing crime site analysis
US5974572A (en) 1996-10-15 1999-10-26 Mercury Interactive Corporation Software system and methods for generating a load test using a server access log
US5870559A (en) 1996-10-15 1999-02-09 Mercury Interactive Software system and associated methods for facilitating the analysis and management of web sites
US6430305B1 (en) 1996-12-20 2002-08-06 Synaptics, Incorporated Identity verification methods
US6026233A (en) 1997-05-27 2000-02-15 Microsoft Corporation Method and apparatus for presenting and selecting options to modify a programming language statement
US6091956A (en) 1997-06-12 2000-07-18 Hollenberg; Dennis D. Situation information system
JP3636272B2 (en) 1998-02-09 2005-04-06 富士通株式会社 Icon display method, apparatus thereof, and recording medium
US6247019B1 (en) 1998-03-17 2001-06-12 Prc Public Sector, Inc. Object-based geographic information system (GIS)
US7168039B2 (en) 1998-06-02 2007-01-23 International Business Machines Corporation Method and system for reducing the horizontal space required for displaying a column containing text data
US6742003B2 (en) 2001-04-30 2004-05-25 Microsoft Corporation Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications
US6577304B1 (en) 1998-08-14 2003-06-10 I2 Technologies Us, Inc. System and method for visually representing a supply chain
US6161098A (en) 1998-09-14 2000-12-12 Folio (Fn), Inc. Method and apparatus for enabling small investors with a portfolio of securities to manage taxable events within the portfolio
US6232971B1 (en) 1998-09-23 2001-05-15 International Business Machines Corporation Variable modality child windows
US6279018B1 (en) 1998-12-21 2001-08-21 Kudrollis Software Inventions Pvt. Ltd. Abbreviating and compacting text to cope with display space constraint in computer software
US6631496B1 (en) 1999-03-22 2003-10-07 Nec Corporation System for personalizing, organizing and managing web information
US6369835B1 (en) 1999-05-18 2002-04-09 Microsoft Corporation Method and system for generating a movie file from a slide show presentation
US6714936B1 (en) 1999-05-25 2004-03-30 Nevin, Iii Rocky Harry W. Method and apparatus for displaying data stored in linked nodes
US6307573B1 (en) 1999-07-22 2001-10-23 Barbara L. Barros Graphic-information flow method and system for visually analyzing patterns and relationships
US7039863B1 (en) 1999-07-23 2006-05-02 Adobe Systems Incorporated Computer generation of documents using layout elements and content elements
US7373592B2 (en) 1999-07-30 2008-05-13 Microsoft Corporation Modeless child windows for application programs
US6560620B1 (en) 1999-08-03 2003-05-06 Aplix Research, Inc. Hierarchical document comparison system and method
US6976210B1 (en) 1999-08-31 2005-12-13 Lucent Technologies Inc. Method and apparatus for web-site-independent personalization from multiple sites having user-determined extraction functionality
WO2001022285A2 (en) 1999-09-21 2001-03-29 Borthwick Andrew E A probabilistic record linkage model derived from training data
US20020174201A1 (en) 1999-09-30 2002-11-21 Ramer Jon E. Dynamic configuration of context-sensitive personal sites and membership channels
US6674434B1 (en) 1999-10-25 2004-01-06 Navigation Technologies Corp. Method and system for automatic generation of shape and curvature data for a geographic database
US7716077B1 (en) 1999-11-22 2010-05-11 Accenture Global Services Gmbh Scheduling and planning maintenance and service in a network-based supply chain environment
FR2806183B1 (en) 1999-12-01 2006-09-01 Cartesis S A DEVICE AND METHOD FOR INSTANT CONSOLIDATION, ENRICHMENT AND "REPORTING" OR BACKGROUND OF INFORMATION IN A MULTIDIMENSIONAL DATABASE
US7194680B1 (en) 1999-12-07 2007-03-20 Adobe Systems Incorporated Formatting content by example
US6859909B1 (en) 2000-03-07 2005-02-22 Microsoft Corporation System and method for annotating web-based documents
US6456997B1 (en) 2000-04-12 2002-09-24 International Business Machines Corporation System and method for dynamically generating an invisible hierarchy in a planning system
JP4325075B2 (en) 2000-04-21 2009-09-02 ソニー株式会社 Data object management device
US6642945B1 (en) 2000-05-04 2003-11-04 Microsoft Corporation Method and system for optimizing a visual display for handheld computer systems
US7269786B1 (en) 2000-05-04 2007-09-11 International Business Machines Corporation Navigating an index to access a subject multi-dimensional database
US6915289B1 (en) 2000-05-04 2005-07-05 International Business Machines Corporation Using an index to access a subject multi-dimensional database
US6594672B1 (en) 2000-06-01 2003-07-15 Hyperion Solutions Corporation Generating multidimensional output using meta-models and meta-outlines
US6839745B1 (en) 2000-07-19 2005-01-04 Verizon Corporate Services Group Inc. System and method for generating reports in a telecommunication system
US7278105B1 (en) 2000-08-21 2007-10-02 Vignette Corporation Visualization and analysis of user clickpaths
US6795868B1 (en) 2000-08-31 2004-09-21 Data Junction Corp. System and method for event-driven data transformation
US20030172014A1 (en) * 2000-09-01 2003-09-11 Chris Quackenbush System and method for online valuation and analysis
US20020065708A1 (en) 2000-09-22 2002-05-30 Hikmet Senay Method and system for interactive visual analyses of organizational interactions
AUPR033800A0 (en) 2000-09-25 2000-10-19 Telstra R & D Management Pty Ltd A document categorisation system
US6829621B2 (en) 2000-10-06 2004-12-07 International Business Machines Corporation Automatic determination of OLAP cube dimensions
US8707185B2 (en) 2000-10-10 2014-04-22 Addnclick, Inc. Dynamic information management system and method for content delivery and sharing in content-, metadata- and viewer-based, live social networking among users concurrently engaged in the same and/or similar content
US8117281B2 (en) 2006-11-02 2012-02-14 Addnclick, Inc. Using internet content as a means to establish live social networks by linking internet users to each other who are simultaneously engaged in the same and/or similar content
JP2002123530A (en) 2000-10-12 2002-04-26 Hitachi Ltd Method and device for visualizing multidimensional data
US6754640B2 (en) 2000-10-30 2004-06-22 William O. Bozeman Universal positive pay match, authentication, authorization, settlement and clearing system
US6738770B2 (en) 2000-11-04 2004-05-18 Deep Sky Software, Inc. System and method for filtering and sorting data
US6978419B1 (en) 2000-11-15 2005-12-20 Justsystem Corporation Method and apparatus for efficient identification of duplicate and near-duplicate documents and text spans using high-discriminability text fragments
US20020103705A1 (en) 2000-12-06 2002-08-01 Forecourt Communication Group Method and apparatus for using prior purchases to select activities to present to a customer
US7529698B2 (en) 2001-01-16 2009-05-05 Raymond Anthony Joao Apparatus and method for providing transaction history information, account history information, and/or charge-back information
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
AUPR313301A0 (en) 2001-02-15 2001-03-08 Topshop Holdings Pty Ltd Method & system for avoiding channel conflict in electronic commerce
US6516268B2 (en) 2001-02-16 2003-02-04 Wizeguides.Com Inc. Bundled map guide
US20100057622A1 (en) 2001-02-27 2010-03-04 Faith Patrick L Distributed Quantum Encrypted Pattern Generation And Scoring
US6985950B1 (en) 2001-03-06 2006-01-10 Microsoft Corporation System for creating a space-efficient document categorizer for training and testing of automatic categorization engines
US7043702B2 (en) 2001-03-15 2006-05-09 Xerox Corporation Method for visualizing user path through a web site and a path's associated information scent
US9256356B2 (en) 2001-03-29 2016-02-09 International Business Machines Corporation Method and system for providing feedback for docking a content pane in a host window
US6775675B1 (en) 2001-04-04 2004-08-10 Sagemetrics Corporation Methods for abstracting data from various data structures and managing the presentation of the data
DE60237200D1 (en) 2001-05-11 2010-09-16 Computer Ass Think Inc METHOD AND SYSTEM FOR CONVERTING LEGACY SOFTWARE APPLICATIONS TO MODERN, OBJECT-ORIENTED SYSTEMS
US6980984B1 (en) 2001-05-16 2005-12-27 Kanisa, Inc. Content provider systems and methods using structured data
US7865427B2 (en) 2001-05-30 2011-01-04 Cybersource Corporation Method and apparatus for evaluating fraud risk in an electronic commerce transaction
US6828920B2 (en) 2001-06-04 2004-12-07 Lockheed Martin Orincon Corporation System and method for classifying vehicles
US8001465B2 (en) 2001-06-26 2011-08-16 Kudrollis Software Inventions Pvt. Ltd. Compacting an information array display to cope with two dimensional display space constraint
US20030039948A1 (en) 2001-08-09 2003-02-27 Donahue Steven J. Voice enabled tutorial system and method
US20040205524A1 (en) 2001-08-15 2004-10-14 F1F9 Spreadsheet data processing system
US7082365B2 (en) * 2001-08-16 2006-07-25 Networks In Motion, Inc. Point of interest spatial rating search method and system
EP1435058A4 (en) 2001-10-11 2005-12-07 Visualsciences Llc System, method, and computer program product for processing and visualization of information
US7611602B2 (en) 2001-12-13 2009-11-03 Urban Mapping, Llc Method of producing maps and other objects configured for presentation of spatially-related layers of data
US20070203771A1 (en) 2001-12-17 2007-08-30 Caballero Richard J System and method for processing complex orders
US7970240B1 (en) 2001-12-17 2011-06-28 Google Inc. Method and apparatus for archiving and visualizing digital images
US7454466B2 (en) 2002-01-16 2008-11-18 Xerox Corporation Method and system for flexible workflow management
US7139800B2 (en) 2002-01-16 2006-11-21 Xerox Corporation User interface for a message-based system having embedded information management capabilities
US7546245B2 (en) 2002-01-17 2009-06-09 Amsapplied Medical Software, Inc. Method and system for gainsharing of physician services
US7640173B2 (en) 2002-01-17 2009-12-29 Applied Medical Software, Inc. Method and system for evaluating a physician's economic performance and gainsharing of physician services
US7305444B2 (en) 2002-01-23 2007-12-04 International Business Machines Corporation Method and system for controlling delivery of information in a forum
CA2470239C (en) 2002-03-20 2020-06-16 Catalina Marketing International, Inc. Targeted incentives based upon predicted behavior
US7533026B2 (en) 2002-04-12 2009-05-12 International Business Machines Corporation Facilitating management of service elements usable in providing information technology service offerings
US7162475B2 (en) 2002-04-17 2007-01-09 Ackerman David M Method for user verification and authentication and multimedia processing for interactive database management and method for viewing the multimedia
US20040126840A1 (en) 2002-12-23 2004-07-01 Affymetrix, Inc. Method, system and computer software for providing genomic ontological data
US20040012633A1 (en) 2002-04-26 2004-01-22 Affymetrix, Inc., A Corporation Organized Under The Laws Of Delaware System, method, and computer program product for dynamic display, and analysis of biological sequence data
US7171427B2 (en) 2002-04-26 2007-01-30 Oracle International Corporation Methods of navigating a cube that is implemented as a relational object
US7703021B1 (en) 2002-05-24 2010-04-20 Sparta Systems, Inc. Defining user access in highly-configurable systems
JP2003345810A (en) 2002-05-28 2003-12-05 Hitachi Ltd Method and system for document retrieval and document retrieval result display system
US20030229848A1 (en) 2002-06-05 2003-12-11 Udo Arend Table filtering in a computer user interface
US7103854B2 (en) 2002-06-27 2006-09-05 Tele Atlas North America, Inc. System and method for associating text and graphical views of map information
US7272489B2 (en) * 2002-07-18 2007-09-18 Alpine Electronics, Inc. Navigation method and system for extracting, sorting and displaying POI information
CA2398103A1 (en) 2002-08-14 2004-02-14 March Networks Corporation Multi-dimensional table filtering system
US7127352B2 (en) 2002-09-30 2006-10-24 Lucent Technologies Inc. System and method for providing accurate local maps for a central service
WO2004036461A2 (en) 2002-10-14 2004-04-29 Battelle Memorial Institute Information reservoir
US20040143602A1 (en) 2002-10-18 2004-07-22 Antonio Ruiz Apparatus, system and method for automated and adaptive digital image/video surveillance for events and configurations using a rich multimedia relational database
US20040085318A1 (en) 2002-10-31 2004-05-06 Philipp Hassler Graphics generation and integration
US20040111480A1 (en) 2002-12-09 2004-06-10 Yue Jonathan Zhanjun Message screening system and method
US8589273B2 (en) 2002-12-23 2013-11-19 Ge Corporate Financial Services, Inc. Methods and systems for managing risk management information
US7752117B2 (en) 2003-01-31 2010-07-06 Trading Technologies International, Inc. System and method for money management in electronic trading environment
US20040153418A1 (en) 2003-02-05 2004-08-05 Hanweck Gerald Alfred System and method for providing access to data from proprietary tools
US7627552B2 (en) 2003-03-27 2009-12-01 Microsoft Corporation System and method for filtering and organizing items based on common elements
US7280038B2 (en) 2003-04-09 2007-10-09 John Robinson Emergency response data transmission system
KR100996029B1 (en) 2003-04-29 2010-11-22 삼성전자주식회사 Apparatus and method for coding of low density parity check code
US20050027705A1 (en) 2003-05-20 2005-02-03 Pasha Sadri Mapping method and system
US9607092B2 (en) 2003-05-20 2017-03-28 Excalibur Ip, Llc Mapping method and system
US7620648B2 (en) 2003-06-20 2009-11-17 International Business Machines Corporation Universal annotation configuration and deployment
US20040267746A1 (en) 2003-06-26 2004-12-30 Cezary Marcjan User interface for controlling access to computer objects
US8412566B2 (en) 2003-07-08 2013-04-02 Yt Acquisition Corporation High-precision customer-based targeting by individual usage statistics
US7055110B2 (en) 2003-07-28 2006-05-30 Sig G Kupka Common on-screen zone for menu activation and stroke input
US7363581B2 (en) 2003-08-12 2008-04-22 Accenture Global Services Gmbh Presentation generator
WO2005036319A2 (en) 2003-09-22 2005-04-21 Catalina Marketing International, Inc. Assumed demographics, predicted behaviour, and targeted incentives
US7516086B2 (en) * 2003-09-24 2009-04-07 Idearc Media Corp. Business rating placement heuristic
US7454045B2 (en) 2003-10-10 2008-11-18 The United States Of America As Represented By The Department Of Health And Human Services Determination of feature boundaries in a digital representation of an anatomical structure
US7334195B2 (en) 2003-10-14 2008-02-19 Microsoft Corporation System and process for presenting search results in a histogram/cluster format
US7584172B2 (en) 2003-10-16 2009-09-01 Sap Ag Control for selecting data query and visual configuration
US20050125715A1 (en) 2003-12-04 2005-06-09 Fabrizio Di Franco Method of saving data in a graphical user interface
US7818658B2 (en) 2003-12-09 2010-10-19 Yi-Chih Chen Multimedia presentation system
US7917376B2 (en) 2003-12-29 2011-03-29 Montefiore Medical Center System and method for monitoring patient care
US20050154769A1 (en) 2004-01-13 2005-07-14 Llumen, Inc. Systems and methods for benchmarking business performance data against aggregated business performance data
US20050154628A1 (en) * 2004-01-13 2005-07-14 Illumen, Inc. Automated management of business performance information
US7872669B2 (en) 2004-01-22 2011-01-18 Massachusetts Institute Of Technology Photo-based mobile deixis system and related techniques
US20050166144A1 (en) 2004-01-22 2005-07-28 Mathcom Inventions Ltd. Method and system for assigning a background to a document and document having a background made according to the method and system
US7343552B2 (en) 2004-02-12 2008-03-11 Fuji Xerox Co., Ltd. Systems and methods for freeform annotations
US20050180330A1 (en) 2004-02-17 2005-08-18 Touchgraph Llc Method of animating transitions and stabilizing node motion during dynamic graph navigation
US20050182793A1 (en) 2004-02-18 2005-08-18 Keenan Viktor M. Map structure and method for producing
US7596285B2 (en) 2004-02-26 2009-09-29 International Business Machines Corporation Providing a portion of an electronic mail message at a reduced resolution
US20050210409A1 (en) 2004-03-19 2005-09-22 Kenny Jou Systems and methods for class designation in a computerized social network application
US7865301B2 (en) 2004-03-23 2011-01-04 Google Inc. Secondary map in digital mapping system
US7158878B2 (en) 2004-03-23 2007-01-02 Google Inc. Digital mapping system
US7599790B2 (en) 2004-03-23 2009-10-06 Google Inc. Generating and serving tiles in a digital mapping system
US20060026120A1 (en) 2004-03-24 2006-02-02 Update Publications Lp Method and system for collecting, processing, and distributing residential property data
US7269801B2 (en) 2004-03-30 2007-09-11 Autodesk, Inc. System for managing the navigational usability of an interactive map
US10713301B2 (en) 2004-04-26 2020-07-14 Right90, Inc. Flexible baselines in an operating plan data aggregation system
US20050246327A1 (en) 2004-04-30 2005-11-03 Yeung Simon D User interfaces and methods of using the same
US20050251786A1 (en) 2004-05-07 2005-11-10 International Business Machines Corporation System and method for dynamic software installation instructions
EP1761863A4 (en) 2004-05-25 2009-11-18 Postini Inc Electronic message source information reputation system
GB2415317B (en) 2004-06-15 2007-08-15 Orange Personal Comm Serv Ltd Provision of group services in a telecommunications network
FR2872653B1 (en) 2004-06-30 2006-12-29 Skyrecon Systems Sa SYSTEM AND METHODS FOR SECURING COMPUTER STATIONS AND / OR COMMUNICATIONS NETWORKS
US8289390B2 (en) 2004-07-28 2012-10-16 Sri International Method and apparatus for total situational awareness and monitoring
US7290698B2 (en) 2004-08-25 2007-11-06 Sony Corporation Progress bar with multiple portions
US7617232B2 (en) 2004-09-02 2009-11-10 Microsoft Corporation Centralized terminology and glossary development
US7480567B2 (en) * 2004-09-24 2009-01-20 Nokia Corporation Displaying a map having a close known location
US7933862B2 (en) 2004-09-27 2011-04-26 Microsoft Corporation One click conditional formatting method and system for software programs
US7712049B2 (en) 2004-09-30 2010-05-04 Microsoft Corporation Two-dimensional radial user interface for computer software applications
US7788589B2 (en) 2004-09-30 2010-08-31 Microsoft Corporation Method and system for improved electronic task flagging and management
US20060074881A1 (en) 2004-10-02 2006-04-06 Adventnet, Inc. Structure independent searching in disparate databases
US7284198B2 (en) 2004-10-07 2007-10-16 International Business Machines Corporation Method and system for document draft reminder based on inactivity
US7574409B2 (en) 2004-11-04 2009-08-11 Vericept Corporation Method, apparatus, and system for clustering and classification
US7797197B2 (en) * 2004-11-12 2010-09-14 Amazon Technologies, Inc. Method and system for analyzing the performance of affiliate sites
US7529734B2 (en) 2004-11-12 2009-05-05 Oracle International Corporation Method and apparatus for facilitating a database query using a query criteria template
US7899796B1 (en) 2004-11-23 2011-03-01 Andrew Borthwick Batch automated blocking and record matching
US7620628B2 (en) 2004-12-06 2009-11-17 Yahoo! Inc. Search processing with automatic categorization of queries
US20060129746A1 (en) 2004-12-14 2006-06-15 Ithink, Inc. Method and graphic interface for storing, moving, sending or printing electronic data to two or more locations, in two or more formats with a single save function
US7849395B2 (en) 2004-12-15 2010-12-07 Microsoft Corporation Filter and sort by color
US7451397B2 (en) 2004-12-15 2008-11-11 Microsoft Corporation System and method for automatically completing spreadsheet formulas
US8700414B2 (en) 2004-12-29 2014-04-15 Sap Ag System supported optimization of event resolution
US20060143079A1 (en) 2004-12-29 2006-06-29 Jayanta Basak Cross-channel customer matching
US7660823B2 (en) 2004-12-30 2010-02-09 Sas Institute Inc. Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format
US9436945B2 (en) 2005-02-01 2016-09-06 Redfin Corporation Interactive map-based search and advertising
US7614006B2 (en) 2005-02-11 2009-11-03 International Business Machines Corporation Methods and apparatus for implementing inline controls for transposing rows and columns of computer-based tables
US8646080B2 (en) 2005-09-16 2014-02-04 Avg Technologies Cy Limited Method and apparatus for removing harmful software
US8091784B1 (en) 2005-03-09 2012-01-10 Diebold, Incorporated Banking system controlled responsive to data bearing records
US20060242630A1 (en) 2005-03-09 2006-10-26 Maxis Co., Ltd. Process for preparing design procedure document and apparatus for the same
US7483028B2 (en) 2005-03-15 2009-01-27 Microsoft Corporation Providing 1D and 2D connectors in a connected diagram
US7676845B2 (en) 2005-03-24 2010-03-09 Microsoft Corporation System and method of selectively scanning a file on a computing device for malware
US7596528B1 (en) 2005-03-31 2009-09-29 Trading Technologies International, Inc. System and method for dynamically regulating order entry in an electronic trading environment
US7426654B2 (en) 2005-04-14 2008-09-16 Verizon Business Global Llc Method and system for providing customer controlled notifications in a managed network services system
US7525422B2 (en) 2005-04-14 2009-04-28 Verizon Business Global Llc Method and system for providing alarm reporting in a managed network services environment
US20060242040A1 (en) 2005-04-20 2006-10-26 Aim Holdings Llc Method and system for conducting sentiment analysis for securities research
US8639757B1 (en) * 2011-08-12 2014-01-28 Sprint Communications Company L.P. User localization using friend location information
US8082172B2 (en) 2005-04-26 2011-12-20 The Advisory Board Company System and method for peer-profiling individual performance
US7958120B2 (en) 2005-05-10 2011-06-07 Netseer, Inc. Method and apparatus for distributed community finding
US7672968B2 (en) 2005-05-12 2010-03-02 Apple Inc. Displaying a tooltip associated with a concurrently displayed database object
US8024778B2 (en) 2005-05-24 2011-09-20 CRIF Corporation System and method for defining attributes, decision rules, or both, for remote execution, claim set I
US8825370B2 (en) 2005-05-27 2014-09-02 Yahoo! Inc. Interactive map-based travel guide
US8161122B2 (en) 2005-06-03 2012-04-17 Messagemind, Inc. System and method of dynamically prioritized electronic mail graphical user interface, and measuring email productivity and collaboration trends
EP1732034A1 (en) 2005-06-06 2006-12-13 First Data Corporation System and method for authorizing electronic payment transactions
US8341259B2 (en) 2005-06-06 2012-12-25 Adobe Systems Incorporated ASP for web analytics including a real-time segmentation workbench
CA2613782A1 (en) 2005-06-28 2007-01-04 Metacarta, Inc. User interface for geographic search
US8560413B1 (en) 2005-07-14 2013-10-15 John S. Quarterman Method and system for detecting distributed internet crime
US20070016363A1 (en) 2005-07-15 2007-01-18 Oracle International Corporation Interactive map-based user interface for transportation planning
WO2007052285A2 (en) 2005-07-22 2007-05-10 Yogesh Chunilal Rathod Universal knowledge management and desktop search system
JP3989527B2 (en) 2005-08-04 2007-10-10 松下電器産業株式会社 Search article estimation apparatus and method, and search article estimation apparatus server
US7421429B2 (en) 2005-08-04 2008-09-02 Microsoft Corporation Generate blog context ranking using track-back weight, context weight and, cumulative comment weight
CA2620870C (en) 2005-08-23 2016-04-26 R.A. Smith & Associates, Inc. High accuracy survey-grade gis system
US7917841B2 (en) 2005-08-29 2011-03-29 Edgar Online, Inc. System and method for rendering data
JP2007079641A (en) 2005-09-09 2007-03-29 Canon Inc Information processor and processing method, program, and storage medium
US8095866B2 (en) 2005-09-09 2012-01-10 Microsoft Corporation Filtering user interface for a data summary table
US7716226B2 (en) 2005-09-27 2010-05-11 Patentratings, Llc Method and system for probabilistically quantifying and visualizing relevance between two or more citationally or contextually related data objects
US20070078832A1 (en) 2005-09-30 2007-04-05 Yahoo! Inc. Method and system for using smart tags and a recommendation engine using smart tags
US7870493B2 (en) 2005-10-03 2011-01-11 Microsoft Corporation Distributed clipboard
US7574428B2 (en) 2005-10-11 2009-08-11 Telmap Ltd Geometry-based search engine for navigation systems
US7487139B2 (en) 2005-10-12 2009-02-03 International Business Machines Corporation Method and system for filtering a table
US7933897B2 (en) 2005-10-12 2011-04-26 Google Inc. Entity display priority in a distributed geographic information system
US20070094389A1 (en) 2005-10-23 2007-04-26 Bill Nussey Provision of rss feeds based on classification of content
US7627812B2 (en) 2005-10-27 2009-12-01 Microsoft Corporation Variable formatting of cells
US20090168163A1 (en) 2005-11-01 2009-07-02 Global Bionic Optics Pty Ltd. Optical lens systems
US20100198858A1 (en) 2005-11-21 2010-08-05 Anti-Gang Enforcement Networking Technology, Inc. System and Methods for Linking Multiple Events Involving Firearms and Gang Related Activities
US7725530B2 (en) 2005-12-12 2010-05-25 Google Inc. Proxy server collection of data for module incorporation into a container document
US8185819B2 (en) 2005-12-12 2012-05-22 Google Inc. Module specification for a module to be incorporated into a container document
US7730082B2 (en) 2005-12-12 2010-06-01 Google Inc. Remote module incorporation into a container document
US7730109B2 (en) 2005-12-12 2010-06-01 Google, Inc. Message catalogs for remote modules
US8726144B2 (en) 2005-12-23 2014-05-13 Xerox Corporation Interactive learning-based document annotation
US20070150369A1 (en) 2005-12-28 2007-06-28 Zivin Michael A Method and system for determining the optimal travel route by which customers can purchase local goods at the lowest total cost
US8712828B2 (en) 2005-12-30 2014-04-29 Accenture Global Services Limited Churn prediction and management system
CN100481077C (en) 2006-01-12 2009-04-22 国际商业机器公司 Visual method and device for strengthening search result guide
US7634717B2 (en) 2006-01-23 2009-12-15 Microsoft Corporation Multiple conditional formatting
US7818291B2 (en) 2006-02-03 2010-10-19 The General Electric Company Data object access system and method using dedicated task object
US20070185867A1 (en) 2006-02-03 2007-08-09 Matteo Maga Statistical modeling methods for determining customer distribution by churn probability within a customer population
US7770100B2 (en) 2006-02-27 2010-08-03 Microsoft Corporation Dynamic thresholds for conditional formats
US20070208498A1 (en) 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US7899611B2 (en) 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US7579965B2 (en) 2006-03-03 2009-08-25 Andrew Bucholz Vehicle data collection and processing system
US20080052142A1 (en) 2006-03-13 2008-02-28 Bailey Maurice G T System and method for real-time display of emergencies, resources and personnel
US7743056B2 (en) * 2006-03-31 2010-06-22 Aol Inc. Identifying a result responsive to a current location of a client device
EP1840520B1 (en) 2006-03-31 2008-09-24 Research In Motion Limited User interface methods and apparatus for controlling the visual display of maps having selectable map elements in mobile communications devices
US20070240062A1 (en) 2006-04-07 2007-10-11 Christena Jennifer Y Method and System for Restricting User Operations in a Graphical User Inerface Window
US20080040275A1 (en) 2006-04-25 2008-02-14 Uc Group Limited Systems and methods for identifying potentially fraudulent financial transactions and compulsive spending behavior
US8739278B2 (en) 2006-04-28 2014-05-27 Oracle International Corporation Techniques for fraud monitoring and detection using application fingerprinting
US7756843B1 (en) 2006-05-25 2010-07-13 Juniper Networks, Inc. Identifying and processing confidential information on network endpoints
US9195985B2 (en) 2006-06-08 2015-11-24 Iii Holdings 1, Llc Method, system, and computer program product for customer-level data verification
US7657626B1 (en) 2006-09-19 2010-02-02 Enquisite, Inc. Click fraud detection
US7468662B2 (en) 2006-06-16 2008-12-23 International Business Machines Corporation Method for spatio-temporal event detection using composite definitions for camera systems
US8290943B2 (en) 2006-07-14 2012-10-16 Raytheon Company Geographical information display system and method
US20080278311A1 (en) 2006-08-10 2008-11-13 Loma Linda University Medical Center Advanced Emergency Geographical Information System
US20130150004A1 (en) 2006-08-11 2013-06-13 Michael Rosen Method and apparatus for reducing mobile phone usage while driving
US20080040684A1 (en) 2006-08-14 2008-02-14 Richard Crump Intelligent Pop-Up Window Method and Apparatus
US20080077597A1 (en) 2006-08-24 2008-03-27 Lance Butler Systems and methods for photograph mapping
US20080051989A1 (en) 2006-08-25 2008-02-28 Microsoft Corporation Filtering of data layered on mapping applications
US8230332B2 (en) 2006-08-30 2012-07-24 Compsci Resources, Llc Interactive user interface for converting unstructured documents
JP4778865B2 (en) 2006-08-30 2011-09-21 株式会社ソニー・コンピュータエンタテインメント Image viewer, image display method and program
US7725547B2 (en) 2006-09-06 2010-05-25 International Business Machines Corporation Informing a user of gestures made by others out of the user's line of sight
US8271429B2 (en) 2006-09-11 2012-09-18 Wiredset Llc System and method for collecting and processing data
US8054756B2 (en) 2006-09-18 2011-11-08 Yahoo! Inc. Path discovery and analytics for network data
US7945582B2 (en) * 2006-09-23 2011-05-17 Gis Planning, Inc. Web-based interactive geographic information systems mapping analysis and methods of using thereof
US20080082486A1 (en) 2006-09-29 2008-04-03 Yahoo! Inc. Platform for user discovery experience
US7698336B2 (en) 2006-10-26 2010-04-13 Microsoft Corporation Associating geographic-related information with objects
US20080148398A1 (en) 2006-10-31 2008-06-19 Derek John Mezack System and Method for Definition and Automated Analysis of Computer Security Threat Models
US7792353B2 (en) 2006-10-31 2010-09-07 Hewlett-Packard Development Company, L.P. Retraining a machine-learning classifier using re-labeled training samples
US8229902B2 (en) 2006-11-01 2012-07-24 Ab Initio Technology Llc Managing storage of individually accessible data units
US7792868B2 (en) 2006-11-10 2010-09-07 Microsoft Corporation Data object linking and browsing tool
US7962495B2 (en) 2006-11-20 2011-06-14 Palantir Technologies, Inc. Creating data in a data store using a dynamic ontology
US7680939B2 (en) 2006-12-20 2010-03-16 Yahoo! Inc. Graphical user interface to manipulate syndication data feeds
US7809703B2 (en) 2006-12-22 2010-10-05 International Business Machines Corporation Usage of development context in search operations
US20080162616A1 (en) 2006-12-29 2008-07-03 Sap Ag Skip relation pattern for graph structures
US8290838B1 (en) 2006-12-29 2012-10-16 Amazon Technologies, Inc. Indicating irregularities in online financial transactions
US7812717B1 (en) 2007-02-02 2010-10-12 Resource Consortium Limited Situational network
US8368695B2 (en) 2007-02-08 2013-02-05 Microsoft Corporation Transforming offline maps into interactive online maps
US8196184B2 (en) 2007-02-16 2012-06-05 Microsoft Corporation Efficient data structures for multi-dimensional security
US7920963B2 (en) 2007-02-22 2011-04-05 Iac Search & Media, Inc. Map interface with a movable marker
US8352881B2 (en) 2007-03-08 2013-01-08 International Business Machines Corporation Method, apparatus and program storage device for providing customizable, immediate and radiating menus for accessing applications and actions
WO2008115519A1 (en) 2007-03-20 2008-09-25 President And Fellows Of Harvard College A system for estimating a distribution of message content categories in source data
JP5268274B2 (en) 2007-03-30 2013-08-21 キヤノン株式会社 Search device, method, and program
US8036971B2 (en) 2007-03-30 2011-10-11 Palantir Technologies, Inc. Generating dynamic date sets that represent market conditions
US8229458B2 (en) 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US20080255973A1 (en) 2007-04-10 2008-10-16 Robert El Wade Sales transaction analysis tool and associated method of use
AU2008242910A1 (en) 2007-04-17 2008-10-30 Emd Millipore Corporation Graphical user interface for analysis and comparison of location-specific multiparameter data sets
US8312546B2 (en) 2007-04-23 2012-11-13 Mcafee, Inc. Systems, apparatus, and methods for detecting malware
US20080267107A1 (en) 2007-04-27 2008-10-30 Outland Research, Llc Attraction wait-time inquiry apparatus, system and method
WO2008134595A1 (en) * 2007-04-27 2008-11-06 Pelago, Inc. Determining locations of interest based on user visits
DE102008010419A1 (en) 2007-05-03 2008-11-13 Navigon Ag Apparatus and method for creating a text object
US8090603B2 (en) 2007-05-11 2012-01-03 Fansnap, Inc. System and method for selecting event tickets
US8515207B2 (en) 2007-05-25 2013-08-20 Google Inc. Annotations in panoramic images, and applications thereof
WO2009038822A2 (en) 2007-05-25 2009-03-26 The Research Foundation Of State University Of New York Spectral clustering for multi-type relational data
US7809785B2 (en) 2007-05-28 2010-10-05 Google Inc. System using router in a web browser for inter-domain communication
US8739123B2 (en) 2007-05-28 2014-05-27 Google Inc. Incorporating gadget functionality on webpages
US7930547B2 (en) 2007-06-15 2011-04-19 Alcatel-Lucent Usa Inc. High accuracy bloom filter using partitioned hashing
WO2009009623A1 (en) 2007-07-09 2009-01-15 Tailwalker Technologies, Inc. Integrating a methodology management system with project tasks in a project management system
US20090027418A1 (en) 2007-07-24 2009-01-29 Maru Nimit H Map-based interfaces for storing and locating information about geographical areas
US8234298B2 (en) 2007-07-25 2012-07-31 International Business Machines Corporation System and method for determining driving factor in a data cube
US10698886B2 (en) 2007-08-14 2020-06-30 John Nicholas And Kristin Gross Trust U/A/D Temporal based online search and advertising
US20090055251A1 (en) * 2007-08-20 2009-02-26 Weblistic, Inc., A California Corporation Directed online advertising system and method
US8631015B2 (en) 2007-09-06 2014-01-14 Linkedin Corporation Detecting associates
US20090088964A1 (en) 2007-09-28 2009-04-02 Dave Schaaf Map scrolling method and apparatus for navigation system for selectively displaying icons
US8849728B2 (en) 2007-10-01 2014-09-30 Purdue Research Foundation Visual analytics law enforcement tools
US8484115B2 (en) 2007-10-03 2013-07-09 Palantir Technologies, Inc. Object-oriented time series generator
US8214308B2 (en) 2007-10-23 2012-07-03 Sas Institute Inc. Computer-implemented systems and methods for updating predictive models
US20090125369A1 (en) 2007-10-26 2009-05-14 Crowe Horwath Llp System and method for analyzing and dispositioning money laundering suspicious activity alerts
US7650310B2 (en) 2007-10-30 2010-01-19 Intuit Inc. Technique for reducing phishing
US8510743B2 (en) 2007-10-31 2013-08-13 Google Inc. Terminating computer applications
US8200618B2 (en) 2007-11-02 2012-06-12 International Business Machines Corporation System and method for analyzing data in a report
WO2009061501A1 (en) 2007-11-09 2009-05-14 Telecommunication Systems, Inc. Points-of-interest panning on a displayed map with a persistent search on a wireless phone
US8019709B2 (en) 2007-11-09 2011-09-13 Vantrix Corporation Method and system for rule-based content filtering
US9898767B2 (en) * 2007-11-14 2018-02-20 Panjiva, Inc. Transaction facilitating marketplace platform
US8626618B2 (en) * 2007-11-14 2014-01-07 Panjiva, Inc. Using non-public shipper records to facilitate rating an entity based on public records of supply transactions
KR20090050577A (en) 2007-11-16 2009-05-20 삼성전자주식회사 User interface for displaying and playing multimedia contents and apparatus comprising the same and control method thereof
US20090132953A1 (en) 2007-11-16 2009-05-21 Iac Search & Media, Inc. User interface and method in local search system with vertical search results and an interactive map
US8145703B2 (en) 2007-11-16 2012-03-27 Iac Search & Media, Inc. User interface and method in a local search system with related search results
US20090143052A1 (en) 2007-11-29 2009-06-04 Michael Bates Systems and methods for personal information management and contact picture synchronization and distribution
US20090144262A1 (en) 2007-12-04 2009-06-04 Microsoft Corporation Search query transformation using direct manipulation
US8001482B2 (en) 2007-12-21 2011-08-16 International Business Machines Corporation Method of displaying tab titles
US8230333B2 (en) 2007-12-26 2012-07-24 Vistracks, Inc. Analysis of time-based geospatial mashups using AD HOC visual queries
US7865308B2 (en) 2007-12-28 2011-01-04 Yahoo! Inc. User-generated activity maps
US8010886B2 (en) 2008-01-04 2011-08-30 Microsoft Corporation Intelligently representing files in a view
US8055633B2 (en) 2008-01-21 2011-11-08 International Business Machines Corporation Method, system and computer program product for duplicate detection
US8239245B2 (en) 2008-01-22 2012-08-07 International Business Machines Corporation Method and apparatus for end-to-end retail store site optimization
KR100915295B1 (en) 2008-01-22 2009-09-03 성균관대학교산학협력단 System and method for search service having a function of automatic classification of search results
US7805457B1 (en) 2008-02-14 2010-09-28 Securus Technologies, Inc. System and method for identifying members of a gang or security threat group
WO2009115921A2 (en) 2008-02-22 2009-09-24 Ipath Technologies Private Limited Techniques for enterprise resource mobilization
US8606807B2 (en) 2008-02-28 2013-12-10 Red Hat, Inc. Integration of triple tags into a tagging tool and text browsing
US20090222760A1 (en) 2008-02-29 2009-09-03 Halverson Steven G Method, System and Computer Program Product for Automating the Selection and Ordering of Column Data in a Table for a User
WO2009111581A1 (en) 2008-03-04 2009-09-11 Nextbio Categorization and filtering of scientific data
US20090234720A1 (en) 2008-03-15 2009-09-17 Gridbyte Method and System for Tracking and Coaching Service Professionals
US9830366B2 (en) 2008-03-22 2017-11-28 Thomson Reuters Global Resources Online analytic processing cube with time stamping
AU2009229679A1 (en) 2008-03-24 2009-10-01 Min Soo Kang Keyword-advertisement method using meta-information related to digital contents and system thereof
US20090254970A1 (en) 2008-04-04 2009-10-08 Avaya Inc. Multi-tier security event correlation and mitigation
WO2009132106A2 (en) 2008-04-22 2009-10-29 Oxford J Craig System and method for interactive map, database, and social networking engine
US8121962B2 (en) 2008-04-25 2012-02-21 Fair Isaac Corporation Automated entity identification for efficient profiling in an event probability prediction system
US8620641B2 (en) 2008-05-16 2013-12-31 Blackberry Limited Intelligent elision
US20090307049A1 (en) 2008-06-05 2009-12-10 Fair Isaac Corporation Soft Co-Clustering of Data
US8452790B1 (en) 2008-06-13 2013-05-28 Ustringer LLC Method and apparatus for distributing content
US8860754B2 (en) 2008-06-22 2014-10-14 Tableau Software, Inc. Methods and systems of automatically generating marks in a graphical view
US8301904B1 (en) 2008-06-24 2012-10-30 Mcafee, Inc. System, method, and computer program product for automatically identifying potentially unwanted data as unwanted
EP2308024A4 (en) 2008-07-02 2016-03-30 Pacific Knowledge Systems Pty Ltd Method and system for generating text
GB2461771A (en) 2008-07-11 2010-01-20 Icyte Pty Ltd Annotation of electronic documents with preservation of document as originally annotated
WO2010006334A1 (en) 2008-07-11 2010-01-14 Videosurf, Inc. Apparatus and software system for and method of performing a visual-relevance-rank subsequent search
US8301464B1 (en) 2008-07-18 2012-10-30 Cave Consulting Group, Inc. Method and system for producing statistical analysis of medical care information
US8554709B2 (en) 2008-08-04 2013-10-08 Quid, Inc. Entity performance analysis engines
US8010545B2 (en) 2008-08-28 2011-08-30 Palo Alto Research Center Incorporated System and method for providing a topic-directed search
US20110078055A1 (en) 2008-09-05 2011-03-31 Claude Faribault Methods and systems for facilitating selecting and/or purchasing of items
US8984390B2 (en) 2008-09-15 2015-03-17 Palantir Technologies, Inc. One-click sharing for screenshots and related documents
US8041714B2 (en) 2008-09-15 2011-10-18 Palantir Technologies, Inc. Filter chains with associated views for exploring large data sets
US20100070845A1 (en) 2008-09-17 2010-03-18 International Business Machines Corporation Shared web 2.0 annotations linked to content segments of web documents
US20100076812A1 (en) * 2008-09-24 2010-03-25 Bank Of America Corporation Business performance measurements
US8214361B1 (en) 2008-09-30 2012-07-03 Google Inc. Organizing search results in a topic hierarchy
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
US20100114887A1 (en) 2008-10-17 2010-05-06 Google Inc. Textual Disambiguation Using Social Connections
US8391584B2 (en) 2008-10-20 2013-03-05 Jpmorgan Chase Bank, N.A. Method and system for duplicate check detection
US8108933B2 (en) 2008-10-21 2012-01-31 Lookout, Inc. System and method for attack and malware prevention
US8411046B2 (en) 2008-10-23 2013-04-02 Microsoft Corporation Column organization of content
WO2010056133A1 (en) 2008-11-15 2010-05-20 Business Intelligence Solutions Safe B.V. Improved data visualization methods
US20100131502A1 (en) 2008-11-25 2010-05-27 Fordham Bradley S Cohort group generation and automatic updating
US20100131457A1 (en) 2008-11-26 2010-05-27 Microsoft Corporation Flattening multi-dimensional data sets into de-normalized form
US8719350B2 (en) 2008-12-23 2014-05-06 International Business Machines Corporation Email addressee verification
US8762869B2 (en) 2008-12-23 2014-06-24 Intel Corporation Reduced complexity user interface
US8566197B2 (en) * 2009-01-21 2013-10-22 Truaxis, Inc. System and method for providing socially enabled rewards through a user financial instrument
US20100262688A1 (en) 2009-01-21 2010-10-14 Daniar Hussain Systems, methods, and devices for detecting security vulnerabilities in ip networks
US20100191563A1 (en) 2009-01-23 2010-07-29 Doctors' Administrative Solutions, Llc Physician Practice Optimization Tracking
US20110213655A1 (en) 2009-01-24 2011-09-01 Kontera Technologies, Inc. Hybrid contextual advertising and related content analysis and display techniques
US8601401B2 (en) 2009-01-30 2013-12-03 Navico Holding As Method, apparatus and computer program product for synchronizing cursor events
US20100228752A1 (en) 2009-02-25 2010-09-09 Microsoft Corporation Multi-condition filtering of an interactive summary table
US9177264B2 (en) * 2009-03-06 2015-11-03 Chiaramail, Corp. Managing message categories in a network
US8473454B2 (en) 2009-03-10 2013-06-25 Xerox Corporation System and method of on-demand document processing
US20100235915A1 (en) 2009-03-12 2010-09-16 Nasir Memon Using host symptoms, host roles, and/or host reputation for detection of host infection
US8447722B1 (en) 2009-03-25 2013-05-21 Mcafee, Inc. System and method for data mining and security policy management
IL197961A0 (en) 2009-04-05 2009-12-24 Guy Shaked Methods for effective processing of time series
US9767427B2 (en) 2009-04-30 2017-09-19 Hewlett Packard Enterprise Development Lp Modeling multi-dimensional sequence data over streams
US8719249B2 (en) 2009-05-12 2014-05-06 Microsoft Corporation Query classification
US8856691B2 (en) 2009-05-29 2014-10-07 Microsoft Corporation Gesture tool
US8495151B2 (en) 2009-06-05 2013-07-23 Chandra Bodapati Methods and systems for determining email addresses
US9268761B2 (en) 2009-06-05 2016-02-23 Microsoft Technology Licensing, Llc In-line dynamic text with variable formatting
US20100321399A1 (en) 2009-06-18 2010-12-23 Patrik Ellren Maps from Sparse Geospatial Data Tiles
KR101076887B1 (en) 2009-06-26 2011-10-25 주식회사 하이닉스반도체 Method of fabricating landing plug in semiconductor device
US20110004498A1 (en) 2009-07-01 2011-01-06 International Business Machines Corporation Method and System for Identification By A Cardholder of Credit Card Fraud
US9104695B1 (en) 2009-07-27 2015-08-11 Palantir Technologies, Inc. Geotagging structured data
US8572084B2 (en) 2009-07-28 2013-10-29 Fti Consulting, Inc. System and method for displaying relationships between electronically stored information to provide classification suggestions via nearest neighbor
WO2011020101A2 (en) 2009-08-14 2011-02-17 Telogis, Inc. Real time map rendering with data clustering and expansion and overlay
US8560548B2 (en) 2009-08-19 2013-10-15 International Business Machines Corporation System, method, and apparatus for multidimensional exploration of content items in a content store
JP5431235B2 (en) 2009-08-28 2014-03-05 株式会社日立製作所 Equipment condition monitoring method and apparatus
US8334773B2 (en) 2009-08-28 2012-12-18 Deal Magic, Inc. Asset monitoring and tracking system
US9280777B2 (en) 2009-09-08 2016-03-08 Target Brands, Inc. Operations dashboard
US8214490B1 (en) 2009-09-15 2012-07-03 Symantec Corporation Compact input compensating reputation data tracking mechanism
US20110066472A1 (en) * 2009-09-17 2011-03-17 Pedro Cabrera Scheider Internet-Based Benchmarking System and Method for Evaluating and Comparing Businesses Using Metrics
US8756489B2 (en) 2009-09-17 2014-06-17 Adobe Systems Incorporated Method and system for dynamic assembly of form fragments
US20110074811A1 (en) 2009-09-25 2011-03-31 Apple Inc. Map Layout for Print Production
US20110078173A1 (en) 2009-09-30 2011-03-31 Avaya Inc. Social Network User Interface
US8595058B2 (en) 2009-10-15 2013-11-26 Visa U.S.A. Systems and methods to match identifiers
US20110119100A1 (en) 2009-10-20 2011-05-19 Jan Matthias Ruhl Method and System for Displaying Anomalies in Time Series Data
WO2011050248A2 (en) 2009-10-23 2011-04-28 Cadio, Inc. Analyzing consumer behavior using electronically-captured consumer location data
CN102054015B (en) 2009-10-28 2014-05-07 财团法人工业技术研究院 System and method of organizing community intelligent information by using organic matter data model
US20110112995A1 (en) 2009-10-28 2011-05-12 Industrial Technology Research Institute Systems and methods for organizing collective social intelligence information using an organic object data model
US8312367B2 (en) 2009-10-30 2012-11-13 Synopsys, Inc. Technique for dynamically sizing columns in a table
JP5869490B2 (en) 2009-11-13 2016-02-24 ゾール メディカル コーポレイションZOLL Medical Corporation Community-based response system
US20110131547A1 (en) 2009-12-01 2011-06-02 International Business Machines Corporation Method and system defining and interchanging diagrams of graphical modeling languages
US11122009B2 (en) 2009-12-01 2021-09-14 Apple Inc. Systems and methods for identifying geographic locations of social media content collected over social networks
JP5445085B2 (en) 2009-12-04 2014-03-19 ソニー株式会社 Information processing apparatus and program
US8645478B2 (en) 2009-12-10 2014-02-04 Mcafee, Inc. System and method for monitoring social engineering in a computer network environment
US20110153384A1 (en) 2009-12-17 2011-06-23 Matthew Donald Horne Visual comps builder
US8676597B2 (en) 2009-12-28 2014-03-18 General Electric Company Methods and systems for mapping healthcare services analytics for volume and trends
CN102906686A (en) 2010-01-11 2013-01-30 潘吉瓦公司 Evaluating public records of supply transactions for financial investment decisions
US8564596B2 (en) 2010-01-12 2013-10-22 Palantir Technologies, Inc. Techniques for density mapping
US20110167710A1 (en) 2010-01-14 2011-07-14 Boys Donald R Trap
US8271461B2 (en) 2010-01-18 2012-09-18 Battelle Memorial Institute Storing and managing information artifacts collected by information analysts using a computing device
US9026552B2 (en) 2010-01-18 2015-05-05 Salesforce.Com, Inc. System and method for linking contact records to company locations
US8290926B2 (en) 2010-01-21 2012-10-16 Microsoft Corporation Scalable topical aggregation of data feeds
US8843855B2 (en) 2010-01-25 2014-09-23 Linx Systems, Inc. Displaying maps of measured events
US8683363B2 (en) 2010-01-26 2014-03-25 Apple Inc. Device, method, and graphical user interface for managing user interface content and user interface elements
US20110208565A1 (en) 2010-02-23 2011-08-25 Michael Ross complex process management
US20110219321A1 (en) 2010-03-02 2011-09-08 Microsoft Corporation Web-based control using integrated control interface having dynamic hit zones
US20110218934A1 (en) 2010-03-03 2011-09-08 Jeremy Elser System and methods for comparing real properties for purchase and for generating heat maps to aid in identifying price anomalies of such real properties
US8478709B2 (en) 2010-03-08 2013-07-02 Hewlett-Packard Development Company, L.P. Evaluation of client status for likelihood of churn
US8863279B2 (en) 2010-03-08 2014-10-14 Raytheon Company System and method for malware detection
US20110231296A1 (en) 2010-03-16 2011-09-22 UberMedia, Inc. Systems and methods for interacting with messages, authors, and followers
US8577911B1 (en) 2010-03-23 2013-11-05 Google Inc. Presenting search term refinements
US20110238553A1 (en) 2010-03-26 2011-09-29 Ashwin Raj Electronic account-to-account funds transfer
US8306846B2 (en) 2010-04-12 2012-11-06 First Data Corporation Transaction location analytics systems and methods
US8572023B2 (en) 2010-04-14 2013-10-29 Bank Of America Corporation Data services framework workflow processing
US8874432B2 (en) 2010-04-28 2014-10-28 Nec Laboratories America, Inc. Systems and methods for semi-supervised relationship extraction
US8255399B2 (en) 2010-04-28 2012-08-28 Microsoft Corporation Data classifier
US8489331B2 (en) 2010-04-29 2013-07-16 Microsoft Corporation Destination maps user interface
US8799812B2 (en) 2010-04-29 2014-08-05 Cheryl Parker System and method for geographic based data visualization and extraction
US20120116828A1 (en) * 2010-05-10 2012-05-10 Shannon Jeffrey L Promotions and advertising system
US8595234B2 (en) 2010-05-17 2013-11-26 Wal-Mart Stores, Inc. Processing data feeds
US20110289407A1 (en) 2010-05-18 2011-11-24 Naik Devang K Font recommendation engine
US20110289397A1 (en) 2010-05-19 2011-11-24 Mauricio Eastmond Displaying Table Data in a Limited Display Area
JP5161267B2 (en) 2010-05-19 2013-03-13 株式会社日立製作所 Screen customization support system, screen customization support method, and screen customization support program
US8723679B2 (en) 2010-05-25 2014-05-13 Public Engines, Inc. Systems and methods for transmitting alert messages relating to events that occur within a pre-defined area
US20110295649A1 (en) 2010-05-31 2011-12-01 International Business Machines Corporation Automatic churn prediction
US8756224B2 (en) 2010-06-16 2014-06-17 Rallyverse, Inc. Methods, systems, and media for content ranking using real-time data
US20110310005A1 (en) 2010-06-17 2011-12-22 Qualcomm Incorporated Methods and apparatus for contactless gesture recognition
US8380719B2 (en) 2010-06-18 2013-02-19 Microsoft Corporation Semantic content searching
KR101196935B1 (en) 2010-07-05 2012-11-05 엔에이치엔(주) Method and system for providing reprsentation words of real-time popular keyword
US8489641B1 (en) 2010-07-08 2013-07-16 Google Inc. Displaying layers of search results on a map
US8407341B2 (en) 2010-07-09 2013-03-26 Bank Of America Corporation Monitoring communications
US8885942B2 (en) 2010-07-09 2014-11-11 Panasonic Intellectual Property Corporation Of America Object mapping device, method of mapping object, program and recording medium
US20120019559A1 (en) 2010-07-20 2012-01-26 Siler Lucas C Methods and Apparatus for Interactive Display of Images and Measurements
US8554653B2 (en) 2010-07-22 2013-10-08 Visa International Service Association Systems and methods to identify payment accounts having business spending activities
DE102010036906A1 (en) 2010-08-06 2012-02-09 Tavendo Gmbh Configurable pie menu
US20120036013A1 (en) 2010-08-09 2012-02-09 Brent Lee Neuhaus System and method for determining a consumer's location code from payment transaction data
US8775530B2 (en) 2010-08-25 2014-07-08 International Business Machines Corporation Communication management method and system
US20120050293A1 (en) 2010-08-25 2012-03-01 Apple, Inc. Dynamically smoothing a curve
US20120066166A1 (en) 2010-09-10 2012-03-15 International Business Machines Corporation Predictive Analytics for Semi-Structured Case Oriented Processes
US8661335B2 (en) 2010-09-20 2014-02-25 Blackberry Limited Methods and systems for identifying content elements
US9069842B2 (en) 2010-09-28 2015-06-30 The Mitre Corporation Accessing documents using predictive word sequences
US8549004B2 (en) 2010-09-30 2013-10-01 Hewlett-Packard Development Company, L.P. Estimation of unique database values
US8463036B1 (en) 2010-09-30 2013-06-11 A9.Com, Inc. Shape-based search of a collection of content
US20120084118A1 (en) 2010-09-30 2012-04-05 International Business Machines Corporation Sales predication for a new store based on on-site market survey data and high resolution geographical information
EP2444134A1 (en) 2010-10-19 2012-04-25 Travian Games GmbH Methods, server system and browser clients for providing a game map of a browser-based online multi-player game
US8781169B2 (en) 2010-11-03 2014-07-15 Endeavoring, Llc Vehicle tracking and locating system
US8316030B2 (en) 2010-11-05 2012-11-20 Nextgen Datacom, Inc. Method and system for document classification or search using discrete words
JP5706137B2 (en) 2010-11-22 2015-04-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and computer program for displaying a plurality of posts (groups of data) on a computer screen in real time along a plurality of axes
EP2643759B1 (en) 2010-11-24 2019-10-16 Logrhythm, Inc. Advanced intelligence engine
SG190383A1 (en) 2010-11-26 2013-06-28 Agency Science Tech & Res Method for creating a report from radiological images using electronic report templates
US8839133B2 (en) 2010-12-02 2014-09-16 Microsoft Corporation Data visualizations including interactive time line representations
CN102546446A (en) 2010-12-13 2012-07-04 太仓市浏河镇亿网行网络技术服务部 Email device
US9141405B2 (en) 2010-12-15 2015-09-22 International Business Machines Corporation User interface construction
US20120159399A1 (en) 2010-12-17 2012-06-21 International Business Machines Corporation System for organizing and navigating data within a table
US9378294B2 (en) 2010-12-17 2016-06-28 Microsoft Technology Licensing, Llc Presenting source regions of rendered source web pages in target regions of target web pages
US9881257B2 (en) 2010-12-29 2018-01-30 Tickr, Inc. Multi-dimensional visualization of temporal information
US20120173381A1 (en) 2011-01-03 2012-07-05 Stanley Benjamin Smith Process and system for pricing and processing weighted data in a federated or subscription based data source
US8510154B2 (en) 2011-01-27 2013-08-13 Leroy Robinson Method and system for searching for, and monitoring assessment of, original content creators and the original content thereof
US8437731B2 (en) 2011-01-28 2013-05-07 Don Reich Emergency call analysis system
US8447263B2 (en) 2011-01-28 2013-05-21 Don Reich Emergency call analysis system
IL211163A0 (en) 2011-02-10 2011-04-28 Univ Ben Gurion A method for generating a randomized data structure for representing sets, based on bloom filters
JP6002159B2 (en) 2011-02-24 2016-10-05 レクシスネクシス ア ディヴィジョン オブ リード エルザヴィア インコーポレイテッド Electronic document search method and electronic document search graphical display method
US20120246148A1 (en) 2011-03-22 2012-09-27 Intergraph Technologies Company Contextual Display and Scrolling of Search Results in Graphical Environment
US9449010B2 (en) 2011-04-02 2016-09-20 Open Invention Network, Llc System and method for managing sensitive data using intelligent mobile agents on a network
US10185932B2 (en) 2011-05-06 2019-01-22 Microsoft Technology Licensing, Llc Setting permissions for links forwarded in electronic messages
US20120311162A1 (en) 2011-06-03 2012-12-06 Uc Group Limited Systems and methods for validating transaction activity with at least one session identifier
US9104765B2 (en) 2011-06-17 2015-08-11 Robert Osann, Jr. Automatic webpage characterization and search results annotation
US8640246B2 (en) 2011-06-27 2014-01-28 Raytheon Company Distributed malware detection
US8725307B2 (en) 2011-06-28 2014-05-13 Schneider Electric It Corporation System and method for measurement aided prediction of temperature and airflow values in a data center
US20130006725A1 (en) 2011-06-30 2013-01-03 Accenture Global Services Limited Tolling integration technology
WO2013006341A1 (en) * 2011-07-01 2013-01-10 Truecar, Inc. Method and system for selection, filtering or presentation of available sales outlets
US9026944B2 (en) 2011-07-14 2015-05-05 Microsoft Technology Licensing, Llc Managing content through actions on context based menus
US8982130B2 (en) 2011-07-15 2015-03-17 Green Charge Networks Cluster mapping to highlight areas of electrical congestion
US8726379B1 (en) 2011-07-15 2014-05-13 Norse Corporation Systems and methods for dynamic protection from electronic attacks
US8751399B2 (en) 2011-07-15 2014-06-10 Wal-Mart Stores, Inc. Multi-channel data driven, real-time anti-money laundering system for electronic payment cards
US20130024268A1 (en) 2011-07-22 2013-01-24 Ebay Inc. Incentivizing the linking of internet content to products for sale
US8666919B2 (en) 2011-07-29 2014-03-04 Accenture Global Services Limited Data quality management for profiling, linking, cleansing and migrating data
EP2560134A1 (en) 2011-08-19 2013-02-20 Agor Services BVBA A platform and method enabling collaboration between value chain partners
US20130046635A1 (en) 2011-08-19 2013-02-21 Bank Of America Corporation Triggering offers based on detected location of a mobile point of sale device
US8630892B2 (en) 2011-08-31 2014-01-14 Accenture Global Services Limited Churn analysis system
US8854371B2 (en) 2011-08-31 2014-10-07 Sap Ag Method and system for generating a columnar tree map
US8533204B2 (en) 2011-09-02 2013-09-10 Xerox Corporation Text-based searching of image data
US10031646B2 (en) 2011-09-07 2018-07-24 Mcafee, Llc Computer system security dashboard
US8949164B1 (en) 2011-09-08 2015-02-03 George O. Mohler Event forecasting system
US10140620B2 (en) 2011-09-15 2018-11-27 Stephan HEATH Mobile device system and method providing combined delivery system using 3D geo-target location-based mobile commerce searching/purchases, discounts/coupons products, goods, and services, or service providers-geomapping-company/local and socially-conscious information/social networking (“PS-GM-C/LandSC/I-SN”)
WO2013044141A2 (en) 2011-09-22 2013-03-28 Capgemini U.S. Llc Process transformation and transitioning apparatuses, methods and systems
CA2791350C (en) 2011-09-26 2019-10-01 Solacom Technologies Inc. Answering or releasing emergency calls from a map display for an emergency services platform
US20130086482A1 (en) 2011-09-30 2013-04-04 Cbs Interactive, Inc. Displaying plurality of content items in window
WO2013052872A2 (en) 2011-10-05 2013-04-11 Mastercard International Incorporated Nomination engine
US20130097482A1 (en) 2011-10-13 2013-04-18 Microsoft Corporation Search result entry truncation using pixel-based approximation
US20130101159A1 (en) 2011-10-21 2013-04-25 Qualcomm Incorporated Image and video based pedestrian traffic estimation
WO2013063088A2 (en) 2011-10-26 2013-05-02 Google Inc. Indicating location status
US9411797B2 (en) 2011-10-31 2016-08-09 Microsoft Technology Licensing, Llc Slicer elements for filtering tabular data
US8918424B2 (en) 2011-10-31 2014-12-23 Advanced Community Services Managing homeowner association messages
US8843421B2 (en) 2011-11-01 2014-09-23 Accenture Global Services Limited Identification of entities likely to engage in a behavior
US9009183B2 (en) 2011-11-03 2015-04-14 Microsoft Technology Licensing, Llc Transformation of a system change set from machine-consumable form to a form that is readily consumable by a human
US9053083B2 (en) 2011-11-04 2015-06-09 Microsoft Technology Licensing, Llc Interaction between web gadgets and spreadsheets
US8498984B1 (en) 2011-11-21 2013-07-30 Google Inc. Categorization of search results
US9159024B2 (en) 2011-12-07 2015-10-13 Wal-Mart Stores, Inc. Real-time predictive intelligence platform
CN103167093A (en) 2011-12-08 2013-06-19 青岛海信移动通信技术股份有限公司 Filling method of mobile phone email address
US20130151388A1 (en) 2011-12-12 2013-06-13 Visa International Service Association Systems and methods to identify affluence levels of accounts
US9026364B2 (en) 2011-12-12 2015-05-05 Toyota Jidosha Kabushiki Kaisha Place affinity estimation
US20130157234A1 (en) 2011-12-14 2013-06-20 Microsoft Corporation Storyline visualization
US9026480B2 (en) 2011-12-21 2015-05-05 Telenav, Inc. Navigation system with point of interest classification mechanism and method of operation thereof
US20130166550A1 (en) 2011-12-21 2013-06-27 Sap Ag Integration of Tags and Object Data
US8880420B2 (en) 2011-12-27 2014-11-04 Grubhub, Inc. Utility for creating heatmaps for the study of competitive advantage in the restaurant marketplace
US9189556B2 (en) 2012-01-06 2015-11-17 Google Inc. System and method for displaying information local to a selected area
WO2013102892A1 (en) 2012-01-06 2013-07-11 Technologies Of Voice Interface Ltd A system and method for generating personalized sensor-based activation of software
US9116994B2 (en) 2012-01-09 2015-08-25 Brightedge Technologies, Inc. Search engine optimization for category specific search results
US8843431B2 (en) 2012-01-16 2014-09-23 International Business Machines Corporation Social network analysis for churn prediction
US8909648B2 (en) 2012-01-18 2014-12-09 Technion Research & Development Foundation Limited Methods and systems of supervised learning of semantic relatedness
US9279898B2 (en) 2012-02-09 2016-03-08 Pgs Geophysical As Methods and systems for correction of streamer-depth bias in marine seismic surveys
US8965422B2 (en) 2012-02-23 2015-02-24 Blackberry Limited Tagging instant message content for retrieval using mobile communication devices
WO2013126887A2 (en) 2012-02-24 2013-08-29 Jerry Wolfe System and method for providing flavor advisement and enhancement
US9158860B2 (en) 2012-02-29 2015-10-13 Google Inc. Interactive query completion templates
JP2013191187A (en) 2012-03-15 2013-09-26 Fujitsu Ltd Processing device, program and processing system
US8787939B2 (en) 2012-03-27 2014-07-22 Facebook, Inc. Dynamic geographic beacons for geographic-positioning-capable devices
US20130262203A1 (en) * 2012-03-27 2013-10-03 Sirqul, Inc. Location-based task and game functionality
US8818715B2 (en) * 2012-03-29 2014-08-26 Yahoo! Inc. Systems and methods to suggest travel itineraries based on users' current location
US20130263019A1 (en) 2012-03-30 2013-10-03 Maria G. Castellanos Analyzing social media
US8738665B2 (en) 2012-04-02 2014-05-27 Apple Inc. Smart progress indicator
US8983936B2 (en) 2012-04-04 2015-03-17 Microsoft Corporation Incremental visualization for structured data in an enterprise-level data store
US9071653B2 (en) 2012-04-05 2015-06-30 Verizon Patent And Licensing Inc. Reducing cellular network traffic
US8792677B2 (en) 2012-04-19 2014-07-29 Intelligence Based Integrated Security Systems, Inc. Large venue security method
US9298856B2 (en) 2012-04-23 2016-03-29 Sap Se Interactive data exploration and visualization tool
US9043710B2 (en) 2012-04-26 2015-05-26 Sap Se Switch control in report generation
US8742934B1 (en) 2012-04-29 2014-06-03 Intel-Based Solutions, LLC System and method for facilitating the execution of law enforcement duties and enhancing anti-terrorism and counter-terrorism capabilities
US10304036B2 (en) 2012-05-07 2019-05-28 Nasdaq, Inc. Social media profiling for one or more authors using one or more social media platforms
EP2662782A1 (en) 2012-05-10 2013-11-13 Siemens Aktiengesellschaft Method and system for storing data in a database
US20140032506A1 (en) 2012-06-12 2014-01-30 Quality Attributes Software, Inc. System and methods for real-time detection, correction, and transformation of time series data
US8966441B2 (en) 2012-07-12 2015-02-24 Oracle International Corporation Dynamic scripts to extend static applications
US8698896B2 (en) 2012-08-06 2014-04-15 Cloudparc, Inc. Controlling vehicle use of parking spaces and parking violations within the parking spaces using multiple cameras
US8554875B1 (en) 2012-08-13 2013-10-08 Ribbon Labs, Inc. Communicating future locations in a social network
US10311062B2 (en) 2012-08-21 2019-06-04 Microsoft Technology Licensing, Llc Filtering structured data using inexact, culture-dependent terms
US8676857B1 (en) 2012-08-23 2014-03-18 International Business Machines Corporation Context-based search for a data store related to a graph node
US10163158B2 (en) 2012-08-27 2018-12-25 Yuh-Shen Song Transactional monitoring system
JP5904909B2 (en) 2012-08-31 2016-04-20 株式会社日立製作所 Supplier search device and supplier search program
US20140068487A1 (en) 2012-09-05 2014-03-06 Roche Diagnostics Operations, Inc. Computer Implemented Methods For Visualizing Correlations Between Blood Glucose Data And Events And Apparatuses Thereof
US20140074855A1 (en) 2012-09-13 2014-03-13 Verance Corporation Multimedia content tags
US20140095273A1 (en) 2012-09-28 2014-04-03 Catalina Marketing Corporation Basket aggregator and locator
US20140095509A1 (en) 2012-10-02 2014-04-03 Banjo, Inc. Method of tagging content lacking geotags with a location
US10444949B2 (en) 2012-10-08 2019-10-15 Fisher-Rosemount Systems, Inc. Configurable user displays in a process control system
US9104786B2 (en) 2012-10-12 2015-08-11 International Business Machines Corporation Iterative refinement of cohorts using visual exploration and data analytics
US8688573B1 (en) 2012-10-16 2014-04-01 Intuit Inc. Method and system for identifying a merchant payee associated with a cash transaction
US20140108068A1 (en) * 2012-10-17 2014-04-17 Jonathan A. Williams System and Method for Scheduling Tee Time
US8914886B2 (en) 2012-10-29 2014-12-16 Mcafee, Inc. Dynamic quarantining for malware detection
US9501799B2 (en) 2012-11-08 2016-11-22 Hartford Fire Insurance Company System and method for determination of insurance classification of entities
US9378030B2 (en) 2013-10-01 2016-06-28 Aetherpal, Inc. Method and apparatus for interactive mobile device guidance
US10504127B2 (en) 2012-11-15 2019-12-10 Home Depot Product Authority, Llc System and method for classifying relevant competitors
US20140143009A1 (en) 2012-11-16 2014-05-22 International Business Machines Corporation Risk reward estimation for company-country pairs
US9146969B2 (en) 2012-11-26 2015-09-29 The Boeing Company System and method of reduction of irrelevant information during search
US20140157172A1 (en) 2012-11-30 2014-06-05 Drillmap Geographic layout of petroleum drilling data and methods for processing data
US20140156527A1 (en) * 2012-11-30 2014-06-05 Bank Of America Corporation Pre-payment authorization categorization
US10672008B2 (en) 2012-12-06 2020-06-02 Jpmorgan Chase Bank, N.A. System and method for data analytics
US9497289B2 (en) 2012-12-07 2016-11-15 Genesys Telecommunications Laboratories, Inc. System and method for social message classification based on influence
US9294576B2 (en) 2013-01-02 2016-03-22 Microsoft Technology Licensing, Llc Social media impact assessment
US20140195515A1 (en) 2013-01-10 2014-07-10 I3 Analytics Methods and systems for querying and displaying data using interactive three-dimensional representations
US20140222521A1 (en) 2013-02-07 2014-08-07 Ibms, Llc Intelligent management and compliance verification in distributed work flow environments
US20140222793A1 (en) 2013-02-07 2014-08-07 Parlance Corporation System and Method for Automatically Importing, Refreshing, Maintaining, and Merging Contact Sets
US9264393B2 (en) 2013-02-13 2016-02-16 International Business Machines Corporation Mail server-based dynamic workflow management
US8744890B1 (en) 2013-02-14 2014-06-03 Aktana, Inc. System and method for managing system-level workflow strategy and individual workflow activity
US20140244388A1 (en) 2013-02-28 2014-08-28 MetroStar Systems, Inc. Social Content Synchronization
US9286618B2 (en) 2013-03-08 2016-03-15 Mastercard International Incorporated Recognizing and combining redundant merchant designations in a transaction database
US10140664B2 (en) 2013-03-14 2018-11-27 Palantir Technologies Inc. Resolving similar entities from a transaction database
US8868486B2 (en) 2013-03-15 2014-10-21 Palantir Technologies Inc. Time-sensitive cube
US8924388B2 (en) 2013-03-15 2014-12-30 Palantir Technologies Inc. Computer-implemented systems and methods for comparing and associating objects
US8937619B2 (en) 2013-03-15 2015-01-20 Palantir Technologies Inc. Generating an object time series from data objects
GB2513720A (en) 2013-03-15 2014-11-05 Palantir Technologies Inc Computer-implemented systems and methods for comparing and associating objects
US8917274B2 (en) 2013-03-15 2014-12-23 Palantir Technologies Inc. Event matrix based on integrated data
US9740369B2 (en) 2013-03-15 2017-08-22 Palantir Technologies Inc. Systems and methods for providing a tagging interface for external content
US8788405B1 (en) 2013-03-15 2014-07-22 Palantir Technologies, Inc. Generating data clusters with customizable analysis strategies
GB2513721A (en) 2013-03-15 2014-11-05 Palantir Technologies Inc Computer-implemented systems and methods for comparing and associating objects
US9501202B2 (en) 2013-03-15 2016-11-22 Palantir Technologies, Inc. Computer graphical user interface with genomic workflow
US9372929B2 (en) 2013-03-20 2016-06-21 Securboration, Inc. Methods and systems for node and link identification
US20140310266A1 (en) 2013-04-10 2014-10-16 Google Inc. Systems and Methods for Suggesting Places for Persons to Meet
US8799799B1 (en) 2013-05-07 2014-08-05 Palantir Technologies Inc. Interactive geospatial map
GB2542517B (en) 2013-05-07 2018-01-24 Palantir Technologies Inc Interactive Geospatial map
US20140351070A1 (en) 2013-05-22 2014-11-27 Cube, Co. Role-based transaction management system for multi-point merchants
US20140358603A1 (en) * 2013-05-29 2014-12-04 Google Inc. Iterative public transit scoring
US9576248B2 (en) 2013-06-01 2017-02-21 Adam M. Hurwitz Record linkage sharing using labeled comparison vectors and a machine learning domain classification trainer
US20150019394A1 (en) * 2013-07-11 2015-01-15 Mastercard International Incorporated Merchant information correction through transaction history or detail
US8620790B2 (en) 2013-07-11 2013-12-31 Scvngr Systems and methods for dynamic transaction-payment routing
US9477372B2 (en) 2013-08-08 2016-10-25 Palantir Technologies Inc. Cable reader snippets and postboard
GB2518745A (en) 2013-08-08 2015-04-01 Palantir Technologies Inc Template system for custom document generation
US9223773B2 (en) 2013-08-08 2015-12-29 Palatir Technologies Inc. Template system for custom document generation
US9565152B2 (en) 2013-08-08 2017-02-07 Palantir Technologies Inc. Cable reader labeling
US9335897B2 (en) 2013-08-08 2016-05-10 Palantir Technologies Inc. Long click display of a context menu
US8713467B1 (en) 2013-08-09 2014-04-29 Palantir Technologies, Inc. Context-sensitive views
US8689108B1 (en) 2013-09-24 2014-04-01 Palantir Technologies, Inc. Presentation and analysis of user interaction data
US9785317B2 (en) 2013-09-24 2017-10-10 Palantir Technologies Inc. Presentation and analysis of user interaction data
US8938686B1 (en) 2013-10-03 2015-01-20 Palantir Technologies Inc. Systems and methods for analyzing performance of an entity
US8812960B1 (en) 2013-10-07 2014-08-19 Palantir Technologies Inc. Cohort-based presentation of user interaction data
US8924872B1 (en) 2013-10-18 2014-12-30 Palantir Technologies Inc. Overview user interface of emergency call data of a law enforcement agency
US9116975B2 (en) 2013-10-18 2015-08-25 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores
US9021384B1 (en) 2013-11-04 2015-04-28 Palantir Technologies Inc. Interactive vehicle information map
US8832594B1 (en) 2013-11-04 2014-09-09 Palantir Technologies Inc. Space-optimized display of multi-column tables with selective text truncation based on a combined text width
US8868537B1 (en) 2013-11-11 2014-10-21 Palantir Technologies, Inc. Simple web search
US9235638B2 (en) 2013-11-12 2016-01-12 International Business Machines Corporation Document retrieval using internal dictionary-hierarchies to adjust per-subject match results
US9356937B2 (en) 2013-11-13 2016-05-31 International Business Machines Corporation Disambiguating conflicting content filter rules
EP2884441A1 (en) 2013-12-16 2015-06-17 Palantir Technologies, Inc. Methods and systems for analyzing entity performance
US9734217B2 (en) 2013-12-16 2017-08-15 Palantir Technologies Inc. Methods and systems for analyzing entity performance
US10356032B2 (en) 2013-12-26 2019-07-16 Palantir Technologies Inc. System and method for detecting confidential information emails
US20150186821A1 (en) 2014-01-02 2015-07-02 Palantir Technologies Inc. Computer-implemented methods and systems for analyzing healthcare data
US9043696B1 (en) 2014-01-03 2015-05-26 Palantir Technologies Inc. Systems and methods for visual definition of data associations
US8832832B1 (en) 2014-01-03 2014-09-09 Palantir Technologies Inc. IP reputation
US9009827B1 (en) 2014-02-20 2015-04-14 Palantir Technologies Inc. Security sharing system
US9857958B2 (en) 2014-04-28 2018-01-02 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive access of, investigation of, and analysis of data objects stored in one or more databases
US9009171B1 (en) 2014-05-02 2015-04-14 Palantir Technologies Inc. Systems and methods for active column filtering
US20150324868A1 (en) 2014-05-12 2015-11-12 Quixey, Inc. Query Categorizer
US9536329B2 (en) 2014-05-30 2017-01-03 Adobe Systems Incorporated Method and apparatus for performing sentiment analysis based on user reactions to displayable content
US9619557B2 (en) 2014-06-30 2017-04-11 Palantir Technologies, Inc. Systems and methods for key phrase characterization of documents
US9129219B1 (en) 2014-06-30 2015-09-08 Palantir Technologies, Inc. Crime risk forecasting
US9256664B2 (en) 2014-07-03 2016-02-09 Palantir Technologies Inc. System and method for news events detection and visualization
US9021260B1 (en) 2014-07-03 2015-04-28 Palantir Technologies Inc. Malware data item analysis
US20160026923A1 (en) 2014-07-22 2016-01-28 Palantir Technologies Inc. System and method for determining a propensity of entity to take a specified action
US20160055501A1 (en) 2014-08-19 2016-02-25 Palantir Technologies Inc. System and method for determining a cohort
US9785328B2 (en) 2014-10-06 2017-10-10 Palantir Technologies Inc. Presentation of multivariate data on a graphical user interface of a computing system
US9146954B1 (en) 2014-10-09 2015-09-29 Splunk, Inc. Creating entity definition from a search result set
US9043894B1 (en) 2014-11-06 2015-05-26 Palantir Technologies Inc. Malicious software detection in a computing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025671A1 (en) * 2019-08-02 2021-02-11 Visa International Service Association Real-time geo-intelligent aggregation engine
US12124484B2 (en) 2019-08-02 2024-10-22 Visa International Service Association Real-time geo-intelligent aggregation engine
US20240338601A1 (en) * 2023-04-04 2024-10-10 Broadridge Financial Solutions, Inc. Computer-based systems configured to automatically generate a interaction session based on an internal identification token and methods of use thereof

Also Published As

Publication number Publication date
US9734217B2 (en) 2017-08-15
US20150169709A1 (en) 2015-06-18
US10025834B2 (en) 2018-07-17
US20150169726A1 (en) 2015-06-18
US9727622B2 (en) 2017-08-08
US20150170077A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US20180322175A1 (en) Methods and systems for analyzing entity performance
EP2884440A1 (en) Methods and systems for analyzing entity performance
US20180292959A1 (en) Systems and methods for analyzing performance of an entity
US11989789B2 (en) Systems and methods for locating merchant terminals based on transaction data
EP2988258A1 (en) System and method for determining a cohort
US10579647B1 (en) Methods and systems for analyzing entity performance
US20190020557A1 (en) Methods and systems for analyzing entity performance
US20160335649A1 (en) Systems and methods for determining an impact event on a sector location
US11782936B2 (en) Entity data attribution using disparate data sets
JP6232495B2 (en) Digital receipt economy
US10706434B1 (en) Methods and systems for determining location information
US10810261B2 (en) Visualization of transaction data
US9269049B2 (en) Methods, apparatus, and systems for using a reduced attribute vector of panel data to determine an attribute of a user
CN105405047A (en) Community O2O-based data analysis system and implementation method thereof
US20200065894A1 (en) Scalable architecture for managing transactions
KR102137230B1 (en) Server for providing artificial intelligence based real estate auction information service using analysis of real estate title and deeds
KR20220121422A (en) Customer-tailored store linkage discount rate and store recommendation system and method
KR102350467B1 (en) Method and system for providing integrated financial service
US20150170161A1 (en) Systems and methods for assessing market saturation
Shoshani et al. Analyzing Purchase Decisions Using Dynamic Location Data

Legal Events

Date Code Title Description
AS Assignment

Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BINGHAM, ELI;CAI, ALLEN;CHAI, WINNIE;AND OTHERS;SIGNING DATES FROM 20140630 TO 20141216;REEL/FRAME:046491/0510

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT, CANADA

Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:051709/0471

Effective date: 20200127

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:051713/0149

Effective date: 20200127

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052856/0382

Effective date: 20200604

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:052856/0817

Effective date: 20200604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY LISTED PATENT BY REMOVING APPLICATION NO. 16/832267 FROM THE RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 052856 FRAME 0382. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:057335/0753

Effective date: 20200604

AS Assignment

Owner name: WELLS FARGO BANK, N.A., NORTH CAROLINA

Free format text: ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:060572/0640

Effective date: 20220701

Owner name: WELLS FARGO BANK, N.A., NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:PALANTIR TECHNOLOGIES INC.;REEL/FRAME:060572/0506

Effective date: 20220701