US20180283366A1 - Double-piston compressor of a compressed air supply device - Google Patents
Double-piston compressor of a compressed air supply device Download PDFInfo
- Publication number
- US20180283366A1 US20180283366A1 US15/763,463 US201615763463A US2018283366A1 US 20180283366 A1 US20180283366 A1 US 20180283366A1 US 201615763463 A US201615763463 A US 201615763463A US 2018283366 A1 US2018283366 A1 US 2018283366A1
- Authority
- US
- United States
- Prior art keywords
- sliding block
- piston
- double
- pressure stage
- drive shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B25/00—Multi-stage pumps
- F04B25/005—Multi-stage pumps with two cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B25/00—Multi-stage pumps
- F04B25/02—Multi-stage pumps of stepped piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/04—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B27/0404—Details, component parts specially adapted for such pumps
- F04B27/0428—Arrangements for pressing or connecting the pistons against the actuated cam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/14—Pistons, piston-rods or piston-rod connections
- F04B53/144—Adaptation of piston-rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/02—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
- F04B9/04—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/02—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
- F04D25/0613—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
- F04D25/062—Details of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
- F16H21/22—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
Definitions
- the invention relates to a double-piston compressor of a compressed air supply device.
- Double-piston compressors having two pistons which are rigidly connected to one another via a piston rod and are guided in an axially movable manner in cylinders arranged radially opposite with respect to the axis of rotation of a drive shaft have long been known in embodiments which differ in terms of their drive technology.
- the piston rod is drivingly connected to the drive shaft via a con rod.
- the con rod is connected in an articulated manner to the drive shaft and the piston rod, on the one hand via a crank pin, which engages in a first end-side bore and is secured eccentrically on the drive shaft, and on the other hand via a drive pin which engages in a second end-side bore and is secured off-center on the piston rod.
- the piston rod is drivingly connected to the drive shaft merely via a sliding block guide.
- the sliding block guide comprises a recess, which is constructed in the piston rod, is provided with two parallel sliding block tracks and is aligned perpendicularly to the axis of rotation of the drive shaft, and a drive element, which is in engagement with the recess and is eccentrically secured on the drive shaft such that it is axially parallel with respect to the axis of rotation of the drive shaft.
- the recess in the piston rod can be constructed in a U shape, as is known for example from DE 918 042 B.
- the side walls of the recess form the parallel sliding block tracks and the two parts of the piston rod are connected to one another via the base wall of the recess.
- the recess can be constructed as a slot-shaped through opening, as is known for example from FIG. 8 of DE 44 33 068 C2 and DE 10 2012 223 114 A1.
- the side walls of the recess form the parallel sliding block tracks.
- end-side webs are required in this embodiment of the sliding block guide, which are usually designed in the shape of a circular arc but, with an appropriate spacing, can also be designed linearly.
- the drive element can be a crank pin, which is eccentrically secured on the drive shaft such that it is axially parallel with respect to the axis of rotation of the drive shaft and which, as is known for example from FIG. 8 of DE 44 33 068 C2, is guided in a directly slideable manner on the parallel sliding block tracks of the sliding block guide.
- the driving element can, as is known for example from DE 918 042 B, DE 1 932 737 U and DE 197 15 291 C2, also be constructed as the outer ring of a rolling bearing, which is arranged on a crank pin eccentrically secured on the drive shaft and whereof the outer ring is guided in a rollable manner on the sliding block tracks of the sliding block guide.
- EP 0 389 414 B1 describes a relatively large reciprocating compressor provided for stationary use, having four cylinders which are radially opposite in pairs and pistons which are connected to one another, in which an externally substantially rectangular sliding body in each case is mounted on a crank pin, which is eccentrically secured on the drive shaft, such that it is rotatable with relatively low resistance via a rolling bearing, and is guided in a rollingly displaceable manner between sliding block tracks of the sliding block guide via a linear guide having a rolling body.
- the present invention provides a double-piston compressor of a compressed air supply device.
- the double-piston compressor includes a low pressure stage and a high pressure stage, each of the low pressure stage and the high pressure stage having a cylinder with a piston guided in an axially movable manner therein.
- the cylinder of the low pressure stage and the cylinder of the high pressure stage are arranged radially opposite with respect to an axis of rotation of a drive shaft.
- the piston of the cylinder of the low pressure stage and the piston of the cylinder of the high pressure stage are rigidly connected to one another by a piston rod.
- the piston of the cylinder of the low pressure stage and the piston of the cylinder of the high pressure stage are drivingly connected to the drive shaft via a sliding block guide.
- the sliding block guide has a recess which is arranged in the piston rod, is provided with two parallel sliding block tracks, and is aligned perpendicularly to the axis of rotation of the drive shaft.
- the sliding block guide has a drive element in engagement with the recess, arranged axially parallel with respect to the axis of rotation of the drive shaft, and secured on the drive shaft with an eccentricity.
- the sliding block tracks of the sliding block guide are constructed and arranged such that, during operation of the double-piston compressor, a movement of the pistons follows a stroke curve that deviates from a regular sinusoidal stroke curve, which has an amplitude corresponding to the eccentricity of the drive element.
- FIG. 1 illustrates a double-piston compressor according to an embodiment of the invention in a schematic cross-sectional view
- FIG. 1 a is a graph of the stroke curve of the pistons of the double-piston compressor according to FIG. 1 in a graph;
- FIG. 2 illustrates a double-piston compressor according to a second embodiment of the invention in a schematic cross-sectional view
- FIG. 2 a is a graph of the stroke curve of the pistons of the double-piston compressor according to FIG. 2 ;
- FIG. 3 illustrates a double-piston compressor according to a third embodiment of the invention in a schematic cross-sectional view
- FIG. 3 a is a graph of the stroke curve of the pistons of the double-piston compressor according to FIG. 3 ;
- FIG. 4 illustrates a double-piston compressor according to a fourth embodiment of the invention in a schematic cross-sectional view
- FIG. 4 a is a graph of the stroke curve of the pistons of the double-piston compressor according to FIG. 4 ;
- FIG. 5 illustrates a known embodiment of a double-piston compressor in a schematic cross-sectional view
- FIG. 5 a is a graph of the stroke curve of the pistons of the double-piston compressor according to FIG. 5 ;
- FIG. 6 a is a detailed cross-sectional view of a first embodiment of a drive element of a sliding block guide of the double-piston compressors according to FIGS. 1 to 5 ;
- FIG. 6 b is a detailed cross-sectional view of a second embodiment of the drive element of a sliding block guide of the double-piston compressors according to FIGS. 1 to 5 ;
- FIG. 6 c is a detailed cross-sectional view of a third embodiment of the drive element of a sliding block guide of the double-piston compressors according to FIGS. 1 to 5 ;
- FIG. 6 d is a detailed cross-sectional view of a fourth embodiment of the drive element of a sliding block guide of the double-piston compressors according to FIGS. 1 to 5 .
- Embodiments of the present invention provide a double-piston compressor of a compressed air supply device, having a low pressure stage and a high pressure stage, which each have a cylinder with a piston guided in an axially movable manner therein, wherein the two cylinders are arranged radially opposite with respect to an axis of rotation of a drive shaft, wherein the two pistons are rigidly connected to one another by means of a piston rod, wherein the two pistons are drivingly connected to the drive shaft via a sliding block guide, wherein the sliding block guide has a recess which is arranged in the piston rod, is provided with two parallel sliding block tracks and is aligned perpendicularly to the axis of rotation of the drive shaft, and in which the sliding block guide has a drive element which is in engagement with the recess, is arranged axially parallel with respect to the axis of rotation of the drive shaft and is secured on the drive shaft with an eccentricity.
- Embodiments of the present invention provide a double-piston compressor having a sliding block guide of the type mentioned at the outset, which has two parallel sliding block tracks.
- a regular sinusoidal stroke curve of pistons can be modified in a desired manner by a suitable alteration to the alignment and/or the contour of the parallel sliding block tracks of the sliding block guide.
- Embodiments of the invention therefore provide a double-piston compressor of a compressed air supply device, which has a low pressure stage and a high pressure stage.
- the two pressure stages each have a cylinder with a piston guided in an axially movable manner therein, wherein the two cylinders are arranged radially opposite with respect to an axis of rotation of a drive shaft.
- the two pistons are rigidly connected to one another by means of a piston rod and are drivingly connected to the drive shaft via a sliding block guide.
- the sliding block guide has a recess which is arranged in the piston rod, is provided with two parallel sliding block tracks and is aligned perpendicularly to the axis of rotation of the drive shaft.
- the sliding block guide has a drive element which is in engagement with the recess in the piston rod, is arranged axially parallel with respect to the axis of rotation of the drive shaft and is secured on the drive shaft with an eccentricity.
- the sliding block tracks of the sliding block guide are constructed and arranged such that, during operation of the double-piston compressor, the movement of the pistons follows a stroke curve which deviates from a regular sinusoidal stroke curve, which has an amplitude corresponding to the eccentricity of the drive element.
- a first modification of the sliding block guide provides that the sliding block tracks of the sliding block guide are arranged at an inclination in the direction of rotation of the drive shaft relative to a perpendicular on a longitudinal axis of the piston rod. It is thus achieved that the stroke curve of the pistons is phase-shifted towards late and that the amplitude of the stroke curve is increased beyond the eccentricity of the drive element. In contrast, the stroke width, i.e. the angle of rotation range of the intake and pressure strokes of the pistons, remains unaltered.
- An alternative second modification of the sliding block guide provides that the sliding block tracks of the sliding block guide are arranged at an inclination in opposition to the direction of rotation of the drive shaft relative to the perpendicular on the longitudinal axis of the piston rod. It is thus achieved that the stroke curve of the pistons is phase-shifted towards early and that the amplitude of the stroke curve is increased beyond the eccentricity of the drive element. The stroke width of the intake and pressure strokes of the pistons also remains unaltered in this case.
- the angle of inclination of the sliding block tracks relative to the perpendicular on the longitudinal axis of the piston rod should be a maximum of 45°.
- a third modification of the sliding block guide which can be applied both to a perpendicular and an inclined alignment of the sliding block tracks, provides that at least one of the sliding block tracks of the sliding block guide has a circular-arc-shaped indentation in a central portion.
- the peak of the stroke curve is capped, or the maximum amplitude is reduced, and the pressure stroke of the piston facing the indentation and the intake stroke of the piston facing away from the indentation are therefore reduced accordingly.
- the radius and the depth of the circular-arc-shaped indentation of the at least one sliding block track are dimensioned such that the stroke height of the piston rod when the drive element passes through the indentation is kept constant. With such a geometry of the indentation, it is ensured that the piston rod is not displaced when the drive element passes through the indentation, so that the progression of the stroke curve of the pistons in the relevant portion is linear and not wavy.
- a fourth modification of the sliding block guide which can be applied both to a perpendicular alignment of the sliding block tracks and in combination with the above-mentioned modifications of the sliding block guide, provides that the sliding block tracks of the sliding block guide are curved in the shape of a circular arc in the direction of one of the two pistons.
- the stroke width i.e. the angle of rotation range of the piston rod, during the stroke movement is increased in the direction of the cylinder facing the curvature of the sliding block tracks and the stroke width of the piston rod during the stroke movement is reduced by the same amount in the direction of the cylinder facing away from the curvature of the sliding block tracks.
- FIG. 5 An embodiment, known per se, of a double-piston compressor 1 . 5 of a compressed air supply device is shown in FIG. 5 in a schematic cross-sectional view.
- the double-piston compressor 1 . 5 has a low pressure stage 2 and a high pressure stage 3 which each comprise a cylinder 4 , 6 with a piston 5 , 7 guided in an axially movable manner therein.
- the two cylinders 4 , 6 are arranged radially opposite in a housing with respect to an axis of rotation 11 of a drive shaft 10 .
- the two pistons 5 , 7 are rigidly connected to one another via a piston rod 8 and are drivingly connected to the drive shaft 10 via a sliding block guide 14 . 5 .
- the sliding block guide 14 The sliding block guide 14 .
- the 5 comprises a recess 15 , which is constructed in the piston rod 8 , is provided with two parallel sliding block tracks 16 , 17 and is aligned perpendicularly to the axis of rotation 11 of the drive shaft 10 , and a drive element 12 which is in engagement with the recess 15 and is eccentrically secured on the drive shaft 10 such that it is axially parallel with respect to the axis of rotation 11 of the drive shaft 10 .
- the two sliding block guides 16 , 17 here are aligned perpendicularly to a longitudinal axis 9 of the piston rod 8 .
- the drive element 12 is formed by a crank pin 13 which is secured on the drive shaft 10 such that it is radially spaced from the axis of rotation 11 by the amount of an eccentricity e and is guided in a directly slideable manner on the parallel sliding block tracks 16 , 17 of the sliding block guide 14 . 5 .
- a stroke curve Z H ( ⁇ )_ 1 . 5 illustrates the movement of the pistons 5 , 7 or the piston rod 8 of the known double-piston compressor 1 . 5 during a revolution of the drive shaft 10 .
- the angle of rotation of the drive shaft 10 here is denoted by ⁇
- the direction of rotation of the drive shaft 10 is assumed to be clockwise according to the direction of rotation arrow 18 shown in FIG. 5
- the 0° position of the drive shaft 10 or the crank pin 13 corresponds to the position shown in FIG. 5
- the stroke height of the pistons 5 , 7 is denoted by Z H and the stroke direction of the pistons 5 , 7 is assumed to be positive according to the stroke direction arrow 19 , shown in FIG.
- the stroke curve Z H ( ⁇ ) of the pistons 5 , 7 which is shown in the graph of FIG. 5 a , has a regular sinusoidal progression with the amplitude which corresponds to the eccentricity e of the crank pin 13 .
- FIG. 1 illustrates a double-piston compressor 1 . 1 of a compressed air supply device according to a first embodiment in a schematic cross-sectional view, which differs from the embodiment of the double-piston compressor 1 . 5 according to FIG. 5 due to an altered arrangement of the sliding block guide 14 . 1 .
- the stroke curve Z H ( ⁇ )_ 1 . 1 shown in the graph of FIG. 1 a , of the pistons 5 , 7 or the piston rod 8 of the double-piston compressor 1 . 1 likewise has a regular sinusoidal progression. However, owing to the inclined arrangement of the sliding block tracks 16 , 17 in the direction of rotation 18 of the drive shaft 10 , the stroke curve Z H ( ⁇ )_ 1 . 1 has a phase shift towards late and a stroke height exceeding the eccentricity e of the crank pin 13 . The progression of the stroke curve Z H ( ⁇ )_ 1 . 1 of the pistons 5 , 7 of the double-piston compressor 1 .
- FIG. 2 illustrates a double-piston compressor 1 . 2 of a compressed air supply device according to a second embodiment of the invention in a schematic cross-sectional view, which differs from the embodiment of the double-piston compressor 1 . 5 according to FIG. 5 due to a differently altered arrangement of the sliding block guide 14 . 2 .
- the stroke curve Z H ( ⁇ )_ 1 . 2 shown in the graph of FIG. 2 a , of the pistons 5 , 7 or the piston rod 8 of the double-piston compressor 1 . 2 in turn has a regular sinusoidal progression which, owing to the inclined arrangement of the sliding block tracks 16 , 17 in opposition to the direction of rotation 18 of the drive shaft 10 , now has a phase shift towards early and likewise a stroke height exceeding the eccentricity e of the crank pin 13 . Taking the minus sign of the angle of inclination a into account, the progression of the stroke curve Z H ( ⁇ )_ 1 . 2 of the pistons 5 , 7 of the double-piston compressor 1 .
- FIG. 3 illustrates a double-piston compressor 1 . 3 of a compressed air supply device according to a third embodiment of the invention in a schematic cross-sectional view, which differs from the embodiment of the double-piston compressor 1 . 5 according to FIG. 5 due to a geometrically altered construction of the sliding block guide 14 . 3 .
- the sliding block track 16 ′ of the sliding block guide 14 . 3 which faces the piston 5 of the lower pressure stage 2 now has, in the region of the recess 15 ′, a circular-arc-shaped indentation 21 in a central portion.
- the radius and the depth of the circular-arc-shaped indentation 21 are dimensioned such that the stroke height Z H of the piston rod 8 when the crank pin 13 passes through the indentation 21 is held constant.
- the stroke curve Z H ( ⁇ )_ 1 . 3 shown in the graph of FIG. 3 a , of the pistons 5 , 7 or the piston rod 8 is identical to the stroke curve Z H ( ⁇ )_ 1 . 5 of the pistons 5 , 7 of the double-piston compressor 1 . 5 according to FIG. 5 .
- the stroke curve Z H ( ⁇ )_ 1 in the first half-section of 0° to 180°, which forms the intake stroke of the piston 5 of the low pressure stage 2 and the pressure stroke of the piston 7 of the high pressure stage 3 .
- the peak of the stroke curve Z H ( ⁇ )_ 1 . 3 is capped, so that the pressure stroke of the piston 5 of the low pressure stage 2 and the intake stroke of the piston 7 of the high pressure stage 3 are reduced in relation to the stroke height produced by the eccentricity 3 of the crank pin in the double-piston compressor 1 . 5 according to FIG. 5 .
- the stroke curve Z H ( ⁇ )_ 1 . 5 of the pistons 5 , 7 of the double-piston compressor 1 . 5 according to FIG. 5 is likewise shown as a dot-and-dash curve.
- FIG. 4 illustrates a double-piston compressor 1 . 4 of a compressed air supply device according to a fourth embodiment of the invention in a schematic cross-sectional view, which differs from the embodiment of the double-piston compressor 1 . 5 according to FIG. 5 due to a different geometrically altered construction of the sliding block guide 14 . 4 .
- the two sliding block tracks 16 ′′, 17 ′′ of the sliding block guide 14 . 4 are now designed to be curved in the shape of a circular arc in the direction of the piston 7 of the high pressure stage 3 .
- this modification of the sliding block guide 14 . 4 results in the stroke width, i.e. the angle of rotation range of the piston rod 8 , during the stroke movement increasing in the direction of the cylinder 6 of the high pressure stage 3 , which faces the curvature of the sliding block tracks 16 ′′, 17 ′′, and the stroke width of the piston rod 8 during the stroke movement reducing by the same amount in the direction of the cylinder 5 of the low pressure stage 2 , which faces away from the curvature of the sliding block tracks 16 ′′, 17 ′′.
- the phase position and the stroke height of the stroke curve Z H ( ⁇ )_ 1 . 4 of the pistons 5 , 7 of the double-piston compressor 1 . 4 remain unaltered.
- the stroke curve Z H ( ⁇ )_ 1 . 5 of the pistons 5 , 7 of the double-piston compressor 1 . 5 according to FIG. 5 is in turn shown as a dot-and-dash curve.
- FIGS. 6 a to 6 d show a detailed cross-sectional view of possible embodiments of the drive element 12 .
- the drive element 12 is constructed as a crank pin 13 which is secured on the drive shaft 10 such that it is radially spaced form the axis of rotation 11 by the eccentricity e and is guided in a directly slideable manner on the parallel sliding block tracks 16 , 17 of the sliding block guide 14 . 5 .
- This embodiment of the drive element 12 has been used by way of example in the drawings of the embodiments of the double-piston compressor 1 . 1 - 1 . 5 in FIGS. 1 to 5 .
- the crank pin 13 is clearly arranged with play in the recess 15 of the piston rod 8 .
- the drive element 12 ′ is formed by the outer ring 24 of a rolling bearing 22 .
- the rolling bearing 22 is arranged with its inner ring 23 on a crank pin 13 ′ which is secured on the drive shaft 10 such that it is radially spaced from the axis of rotation 11 by eccentricity e.
- the outer ring 24 of the rolling bearing 22 is rollably guided on the parallel sliding block tracks 16 , 17 of the sliding block guide 14 . 5 .
- the drive element 12 ′′ is formed by a slide bearing ring 25 which is slide-mounted on the outer ring 24 ′ of a rolling bearing 22 ′.
- the rolling bearing 22 ′ is arranged with its inner ring 23 ′ on a crank pin 13 ′, which is secured on the drive shaft 10 such that it is radially spaced from the axis of rotation 11 by the eccentricity e.
- the slide bearing ring 25 is rollably guided on the parallel sliding block tracks 16 , 17 of the sliding block guide 14 . 5 .
- the resistance and wear of the sliding block guide 14 . 5 is again lower than with the embodiment of the drive element 12 ′ according to FIG. 6 b.
- the drive element 12 * is formed by an externally substantially rectangular slide body 27 , which is rotatably mounted on a crank pin 13 ′ via a rolling bearing 26 .
- the crank pin 13 ′ is secured on the drive shaft 10 such that it is radially spaced from the axis of rotation 11 by the eccentricity e.
- the slide body 27 is slideably guided on the parallel sliding block tracks 16 , 17 of the sliding block guide 14 . 5 . Owing to the low surface pressure between the slide body 27 and the sliding block tracks 16 , 17 , the resistance and wear of the sliding block guide 14 . 5 in this embodiment of the drive element 12 * is also relatively low.
- the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
- the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015015946.1A DE102015015946A1 (de) | 2015-12-08 | 2015-12-08 | Doppelkolbenkompressor einer Druckluft-Versorgungseinrichtung |
DE102015015946.1 | 2015-12-08 | ||
PCT/EP2016/001895 WO2017097393A1 (fr) | 2015-12-08 | 2016-11-14 | Compresseur à double piston d'un dispositif d'alimentation en air comprimé |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/001895 A-371-Of-International WO2017097393A1 (fr) | 2015-12-08 | 2016-11-14 | Compresseur à double piston d'un dispositif d'alimentation en air comprimé |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/342,556 Division US11732702B2 (en) | 2015-12-08 | 2021-06-09 | Double-piston compressor having a sliding block producing a stroke curve that deviates from a sinusoidal stroke curve |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180283366A1 true US20180283366A1 (en) | 2018-10-04 |
Family
ID=57758554
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/763,463 Abandoned US20180283366A1 (en) | 2015-12-08 | 2016-11-14 | Double-piston compressor of a compressed air supply device |
US17/342,556 Active 2037-03-29 US11732702B2 (en) | 2015-12-08 | 2021-06-09 | Double-piston compressor having a sliding block producing a stroke curve that deviates from a sinusoidal stroke curve |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/342,556 Active 2037-03-29 US11732702B2 (en) | 2015-12-08 | 2021-06-09 | Double-piston compressor having a sliding block producing a stroke curve that deviates from a sinusoidal stroke curve |
Country Status (5)
Country | Link |
---|---|
US (2) | US20180283366A1 (fr) |
EP (1) | EP3387255B1 (fr) |
CN (1) | CN108026910B (fr) |
DE (1) | DE102015015946A1 (fr) |
WO (1) | WO2017097393A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180266406A1 (en) * | 2015-12-08 | 2018-09-20 | Wabco Gmbh | Double-piston compressor of a compressed-air supply device |
CN113565730A (zh) * | 2021-08-26 | 2021-10-29 | 瑞立集团瑞安汽车零部件有限公司 | 一种新型往复容积式空气压缩机 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6948709B2 (ja) * | 2018-01-31 | 2021-10-13 | 国立大学法人 東京大学 | 容積型機械 |
CN113825906B (zh) * | 2019-05-21 | 2024-02-13 | 采埃孚商用车系统欧洲有限公司 | 活塞式泵驱动装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3451276A (en) * | 1966-09-20 | 1969-06-24 | F G Miles Eng Ltd | Actuator mechanisms |
US4330992A (en) * | 1980-04-11 | 1982-05-25 | Sunpower, Inc. | Drive mechanism for Stirling engine displacer and other reciprocating bodies |
US4584972A (en) * | 1984-12-21 | 1986-04-29 | Jayne Michael E | Dynamic compression internal combustion engine with yoke having an offset arcuate slot |
US5033940A (en) * | 1989-01-19 | 1991-07-23 | Sulzer Brothers Limited | Reciprocating high-pressure compressor piston with annular clearance |
US20130276527A1 (en) * | 2010-12-28 | 2013-10-24 | Dresser Wayne Ab | Fluid meter with improved piston guidance |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US999220A (en) | 1910-06-20 | 1911-08-01 | Christopher C Harmon | Air or gas compressor. |
US1370305A (en) * | 1919-07-03 | 1921-03-01 | Edwin A Golle | Air-compressor |
US2236853A (en) * | 1938-05-28 | 1941-04-01 | Herzmark Nicolas | Compressor |
US2312057A (en) | 1941-10-27 | 1943-02-23 | Calvin C Williams | Mechanical movement |
US2375748A (en) * | 1943-06-05 | 1945-05-15 | John E Broyles | Transmission mechanism for reciprocating engines |
DE918042C (de) | 1950-08-22 | 1954-09-16 | Chiron Werke G M B H | Doppelkolbenverdichter mit in einer Achse gegenueberliegenden Zylindern |
DE1932737U (de) | 1965-12-04 | 1966-02-17 | Theodor Martin Fa | Doppelkolbenkompressor mit kurbelschleifenantrieb des kolbens. |
US3459056A (en) | 1966-12-15 | 1969-08-05 | Seamen S Unit | Constant torque transmission |
US4078439A (en) * | 1974-10-15 | 1978-03-14 | Iturriaga Notario Luis | Alternative reciprocating compressor |
US4779472A (en) | 1986-10-30 | 1988-10-25 | Brackett Douglas C | Motion converter |
CN2042899U (zh) * | 1988-11-08 | 1989-08-16 | 朱新根 | 无曲轴双活塞压缩机 |
CH678881A5 (fr) | 1989-03-23 | 1991-11-15 | Sulzer Ag | |
CN2177808Y (zh) * | 1993-11-12 | 1994-09-21 | 王关林 | 双活塞传动装置 |
DE4433068C2 (de) | 1994-09-16 | 1998-05-07 | Hewlett Packard Gmbh | Mehrverdichter-Pumpe mit einer Pleuelvorrichtung |
DE19715291C2 (de) | 1997-04-11 | 2002-05-16 | Pnp Luftfedersysteme Gmbh | Zweistufiger Kompressor |
JP3968967B2 (ja) * | 2000-07-07 | 2007-08-29 | 日産自動車株式会社 | レシプロ式内燃機関の可変圧縮比機構 |
CN2528968Y (zh) * | 2001-12-28 | 2003-01-01 | 白明 | 旋转活塞机 |
DE10321771C5 (de) | 2003-05-15 | 2017-01-19 | Continental Teves Ag & Co. Ohg | Verfahren zur Leistungsbegrenzung eines mehrstufigen Kompressor und Kompressor zur Durchführung des Verfahrens |
US7328682B2 (en) * | 2005-09-14 | 2008-02-12 | Fisher Patrick T | Efficiencies for piston engines or machines |
DE102012223114A1 (de) | 2012-12-13 | 2014-06-18 | Continental Teves Ag & Co. Ohg | Doppelkolbenkompressoreinheit |
-
2015
- 2015-12-08 DE DE102015015946.1A patent/DE102015015946A1/de not_active Withdrawn
-
2016
- 2016-11-14 US US15/763,463 patent/US20180283366A1/en not_active Abandoned
- 2016-11-14 WO PCT/EP2016/001895 patent/WO2017097393A1/fr active Application Filing
- 2016-11-14 EP EP16823156.1A patent/EP3387255B1/fr active Active
- 2016-11-14 CN CN201680054835.2A patent/CN108026910B/zh active Active
-
2021
- 2021-06-09 US US17/342,556 patent/US11732702B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3451276A (en) * | 1966-09-20 | 1969-06-24 | F G Miles Eng Ltd | Actuator mechanisms |
US4330992A (en) * | 1980-04-11 | 1982-05-25 | Sunpower, Inc. | Drive mechanism for Stirling engine displacer and other reciprocating bodies |
US4584972A (en) * | 1984-12-21 | 1986-04-29 | Jayne Michael E | Dynamic compression internal combustion engine with yoke having an offset arcuate slot |
US5033940A (en) * | 1989-01-19 | 1991-07-23 | Sulzer Brothers Limited | Reciprocating high-pressure compressor piston with annular clearance |
US20130276527A1 (en) * | 2010-12-28 | 2013-10-24 | Dresser Wayne Ab | Fluid meter with improved piston guidance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180266406A1 (en) * | 2015-12-08 | 2018-09-20 | Wabco Gmbh | Double-piston compressor of a compressed-air supply device |
US10859075B2 (en) * | 2015-12-08 | 2020-12-08 | Wabco Gmbh | Double-piston compressor of a compressed-air supply device |
CN113565730A (zh) * | 2021-08-26 | 2021-10-29 | 瑞立集团瑞安汽车零部件有限公司 | 一种新型往复容积式空气压缩机 |
Also Published As
Publication number | Publication date |
---|---|
US20210293229A1 (en) | 2021-09-23 |
WO2017097393A1 (fr) | 2017-06-15 |
CN108026910B (zh) | 2019-07-05 |
EP3387255B1 (fr) | 2019-06-26 |
US11732702B2 (en) | 2023-08-22 |
CN108026910A (zh) | 2018-05-11 |
DE102015015946A1 (de) | 2017-06-08 |
EP3387255A1 (fr) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11732702B2 (en) | Double-piston compressor having a sliding block producing a stroke curve that deviates from a sinusoidal stroke curve | |
US10859075B2 (en) | Double-piston compressor of a compressed-air supply device | |
JP5554812B2 (ja) | カム駆動ピストン圧縮機 | |
JP5491652B2 (ja) | 可変の直径方向のクリアランスを有するピストン・シリンダアセンブリと、可変の直径方向のクリアランスを有するピストン・シリンダアセンブリに使用されるシリンダ | |
US349775A (en) | Device for converting motion | |
US20220412332A1 (en) | Pump body, compressor, and heat exchange apparatus | |
CN107709770B (zh) | 活塞往复运动机构、泵、压缩机及真空泵 | |
US20140165825A1 (en) | Tribo system for a piston unit and hydrostatic radial piston engine equipped therewith | |
CN101672280B (zh) | 一种改善滑片润滑性能的滚动活塞式压缩机 | |
US6666669B2 (en) | Scroll compressor having an anti-rotational arrangement including an axial bearing | |
CN201739163U (zh) | 一种导向滑环式斜盘限位机构 | |
US11408287B2 (en) | Compressor pump body, compressor, and air conditioner with a vane enlargement portion | |
US9080583B2 (en) | Compact linear actuator with anti-rotation device | |
US9388833B2 (en) | Compact linear actuator with anti-rotation device | |
CN208816199U (zh) | 一种改进型双模式液压挺柱 | |
CN108119233B (zh) | 一种容积变化装置、压缩机、内燃机和水泵 | |
KR101811695B1 (ko) | 회전통체를 갖는 베인형 펌프 | |
US20230012012A1 (en) | A pump adapted to exert a compression action on a fluid and motor actuated by a corresponding propulsion fluid | |
WO2012022980A1 (fr) | Convertisseur de mouvement linéaire-rotatif | |
CN118462793A (zh) | 一种适应高低速的往复运动结构 | |
JPH04121488A (ja) | 摺動部構造及びオイルレス圧縮機の摺動部構造 | |
JP2016056737A (ja) | 往復動型ポンプ | |
RU2009109832A (ru) | Компрессор с поршнем |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WABCO GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEISSNER, FRANK;SEEGER, MARCO;SIGNING DATES FROM 20180124 TO 20180531;REEL/FRAME:045984/0804 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: ZF CV SYSTEMS HANNOVER GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:WABCO GMBH;REEL/FRAME:056241/0288 Effective date: 20210126 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
AS | Assignment |
Owner name: ZF CV SYSTEMS EUROPE BV, BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZF CV SYSTEMS HANNOVER GMBH;REEL/FRAME:056991/0181 Effective date: 20210715 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |