US20180265784A1 - Liquid-crystalline medium - Google Patents

Liquid-crystalline medium Download PDF

Info

Publication number
US20180265784A1
US20180265784A1 US15/923,353 US201815923353A US2018265784A1 US 20180265784 A1 US20180265784 A1 US 20180265784A1 US 201815923353 A US201815923353 A US 201815923353A US 2018265784 A1 US2018265784 A1 US 2018265784A1
Authority
US
United States
Prior art keywords
compounds
atoms
another
liquid
denote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/923,353
Other languages
English (en)
Inventor
Chang-Suk CHOI
Chang-Jun YUN
Yeon-Jeong HAN
Heui-Seok Jin
Yong-Kuk Yun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Assigned to MERCK PATENT GMBH reassignment MERCK PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YUN, CHANG-JUN, Han, Yeon-Jeong, JIN, HEUI-SEOK, YUN, YONG-KUK, Choi, Chang-Suk
Publication of US20180265784A1 publication Critical patent/US20180265784A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3483Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a non-aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3006Cy-Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3021Cy-Ph-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3031Cy-Cy-C2H4-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • C09K2019/3054Cy-Cy-CH=CH-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3071Cy-Cy-COO-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3078Cy-Cy-COO-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • C09K2019/3408Five-membered ring with oxygen(s) in fused, bridged or spiro ring systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Definitions

  • the invention relates to a liquid-crystalline medium which comprises one or more compounds of the formula I,
  • Media of this type can be used, in particular, for electro-optical displays having active-matrix addressing based on the ECB effect and for IPS (in-plane switching) displays or FFS (fringe field switching) displays.
  • IPS in-plane switching
  • FFS far field switching
  • VAN vertical aligned nematic displays
  • MVA multi-domain vertical alignment
  • MVA multi-domain vertical alignment
  • PVA patterned vertical alignment, for example: Kim, Sang Soo, paper 15.4: “Super PVA Sets New State-of-the-Art for LCD-TV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 760 to 763)
  • ASV advanced super view, for example: Shigeta, Mitzuhiro and Fukuoka, Hirofumi, paper 15.2: “Development of High Quality LCDTV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp.
  • LC phases are required to have a liquid-crystalline mesophase in a suitable temperature range and low viscosity.
  • None of the hitherto-disclosed series of compounds having a liquid-crystalline mesophase includes a single compound which meets all these requirements. Mixtures of two to 25, preferably three to 18, compounds are therefore generally prepared in order to obtain substances which can be used as LC phases. However, it has not been possible to prepare optimum phases easily in this way since no liquid-crystal materials having significantly negative dielectric anisotropy and adequate long-term stability were hitherto available.
  • Matrix liquid-crystal displays are known.
  • Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors).
  • active matrix is then used, where a distinction can be made between two types:
  • the electro-optical effect used is usually dynamic scattering or the guest-host effect.
  • the use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.
  • the electro-optical effect used is usually the TN effect.
  • TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon.
  • CdSe compound semiconductors
  • TFTs based on polycrystalline or amorphous silicon The latter technology is being worked on intensively worldwide.
  • the TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counter electrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image.
  • This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.
  • MLC displays of this type are particularly suitable for TV applications (for example pocket TVs) or for high-information displays in automobile or aircraft construction.
  • TV applications for example pocket TVs
  • high-information displays in automobile or aircraft construction Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, September 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff., Paris; STROMER, M., Proc.
  • the disadvantage of the MLC-TN displays frequently used is due to their comparatively low contrast, the relatively high viewing-angle dependence and the difficulty of generating grey shades in these displays.
  • the invention is based on the object of providing liquid-crystal mixtures, in particular for monitor and TV applications, based on the ECB, UB-FFS, IPS or FFS effect, which do not have the disadvantages indicated above, or only do so to a reduced extent.
  • it must be ensured for monitors and televisions that they also work at extremely high and extremely low temperatures and at the same time have very short response times and at the same time have an improved reliability behaviour, in particular exhibit no or significantly reduced image sticking after long operating times.
  • One reliability parameter which can be specifically influenced here is the voltage holding ratio before or after exposure to light, such as, for example, exposure to UV light (sun test) or exposure by the backlighting of an LCD.
  • the invention thus relates to a liquid-crystalline medium which comprises at least one compound of the formula I and one or more compounds of the formula ST.
  • These media are particularly well suitable in order to achieve liquid crystal displays that do not show display defects such as image sticking or drop mura or at least do so to a much reduced extent sufficient for applications.
  • the mixtures according to the invention preferably exhibit very broad nematic phase ranges with clearing points ⁇ 70° C., preferably ⁇ 75° C., in particular ⁇ 80° C., very favourable values of the capacitive threshold, relatively high values of the holding ratio and at the same time very good low-temperature stabilities at ⁇ 20° C. and ⁇ 30° C., as well as very low rotational viscosity values and short response times.
  • the mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity ⁇ 1 , relatively high values of the elastic constants K 33 for improving the response times can be observed.
  • R 1 and R 1 * preferably each, independently of one another, denote straight-chain alkoxy, in particular OCH 3 , n-C 2 H 5 O, n-OC 3 H 7 , n-OC 4 H 9 , n-OC 5 H 11 , n-OC 6 H 13 , furthermore alkenyl, in particular CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 , trans-CH 2 CH ⁇ CHCH 3 , trans-CH 2 CH ⁇ CHC 2 H 5 , branched alkoxy, in particular OC 3 H 6 CH(CH 3 ) 2 , and alkenyloxy, in particular OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 , trans-OCH 2 CH ⁇ CHCH 3 , trans-OCH 2 CH ⁇ CHC 2 H 5 .
  • R 1 and R 1 * particularly preferably each, independently of one another, denote straight-chain alkoxy having 1-6 C atoms, in particular methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy.
  • L 1 and L 2 in formula I preferably both denote F.
  • Examples of the group G in formula ST are methylene, ethylene or polymethylene having up to 20 carbon atoms; or the alkylene radical is interrupted by one or two hetero atoms, such as the bivalent radicals —CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 —, —CH 2 C(O)OCH 2 CH 2 O(O)CCH 2 —, —CH 2 CH 2 C(O)OCH 2 CH 2 O(O)CCH 2 CH 2 —, —CH 2 CH 2 —C(O)O(CH 2 ) 4 O(O)C—CH 2 CH 2 —, —CH 2 CH 2 O(O)C(CH 2 ) 4 C(O)OCH 2 CH 2 — and —CH 2 CH 2 O(O)C(CH 2 ) 8 C(O)OCH 2 CH 2 —.
  • the bivalent radicals —CH 2 OCH 2 —, —
  • G can also be arylene-bis-alkylene, e.g. p-xylylene, benzene-1,3-bis(ethylene), biphenyl-4,4′-bis(methylene) or naphthalene-1,4-bis(methylene).
  • arylene-bis-alkylene e.g. p-xylylene, benzene-1,3-bis(ethylene), biphenyl-4,4′-bis(methylene) or naphthalene-1,4-bis(methylene).
  • alkenylene or alkynylene having 4 to 8 carbon atoms such as 2-butenylene-1,4, 2-butynylene-1,4 or 2,4-hexadiynylene-1,6.
  • the compounds of formula ST are selected from the compounds of the formula ST-1
  • the compounds of formula ST-1 are selected from the compounds of the formula ST-1a and ST-1 b
  • q is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, preferably 6, 7 or 8, particularly preferably 7.
  • Preferred compounds of the formula I are the compounds of the formulae I-1 to I-10,
  • alkyl and alkyl* each, independently of one another denote a straight-chain alkyl radical having 1-6 C atoms
  • alkenyl and alkenyl* each, independently of one another denote a straight-chain alkenyl radical having 2-6 C atoms
  • alkoxy and alkoxy* each, independently of one another denote a straight-chain alkoxy radical having 1-6 C atoms
  • the mixture according to the invention very particularly preferably comprises at least one compound selected from the group of the compounds of the formulae I-1A, I-2A, I-4A, I-6A, and I-6B shown below:
  • Very particularly preferred mixtures comprise at least one compound selected from the group of the compounds of the formulae I-2.1 to I-2.49, and I-6.1 to I-6.28:
  • L 1 and L 2 preferably both denote fluorine.
  • Very particularly preferred mixtures comprise at least one of the compounds shown below:
  • the compounds of the formula I can be prepared, for example, as described in US 2005/0258399 or WO 02/055463 A1.
  • the media according to the invention preferably comprise one, two, three, four or more, preferably one, two or three, compounds of the formula I.
  • the compounds of the formula I are preferably employed in the liquid-crystalline medium in amounts of ⁇ 1%, preferably ⁇ 3% by weight, based on the mixture as a whole. Particular preference is given to liquid-crystalline media which comprise 1-40% by weight, very particularly preferably 2-30% by weight, of one or more compounds of the formula I.
  • the compounds of the formula ST are preferably each present in the liquid-crystal mixtures according to the invention in amounts of 0.005 to 0.5%, based on the mixture.
  • the concentration correspondingly increases to 0.01 to 1% in the case of two compounds, based on the mixtures.
  • the total proportion of the compounds of the formulae ST based on the mixture according to the invention, preferably is 2% or less.
  • Z 2 may have identical or different meanings.
  • Z 2 and Z 2′ may have identical or different meanings.
  • R 2A , R 2B and R 2C each preferably denote alkyl having 1-6 C atoms, in particular CH 3 , C 2 H 5 , n-C 3 H 7 , n-C 4 H 9 , n-C 5 H 11 .
  • Z 2 and Z 2′ in the formulae IIA and IIB preferably each, independently of one another, denote a single bond, furthermore a —C 2 H 4 — bridge.
  • Z 2 —C 2 H 4 — or —CH 2 O—
  • (O)C v H 2v+1 preferably denotes OC v H 2v+1 , furthermore C v H 2v+1 .
  • (O)C v H 2v+1 preferably denotes C v H 2v+1 .
  • L 3 and L 4 preferably each denote F.
  • Particularly preferred mixtures according to the invention comprise one or more compounds of the formulae IIA-2, IIA-8, IIA-14, IIA-26, 11-28, IIA-33, IIA-39, IIA-45, IIA-46, IIA-47, IIA-50, IIB-2, IIB-11, IIB-16 and IIC-1.
  • the proportion of compounds of the formulae IIA and/or IIB in the mixture as a whole is preferably at least 20% by weight.
  • Particularly preferred media according to the invention comprise at least one compound of the formula IIC-1,
  • the medium according to the invention preferably comprises at least one compound of the formula IIIa and/or formula IIIb.
  • the proportion of compounds of the formula III in the mixture as a whole is preferably at least 5% by weight
  • Preferred mixtures comprise 5-60% by weight, preferably 10-55% by weight, in particular 20-50% by weight, of the compound of the formula (acronym: CC-3-V)
  • mixtures comprising at least one compound of the formula V-9.
  • the medium according to the invention particularly preferably comprises one or more compounds of the formulae Y-1 to Y-6, preferably in amounts of ⁇ 5% by weight.
  • R additionally denotes a straight chain alkenyl having 2-6 C atoms.
  • the medium according to the invention preferably comprises the terphenyls of the formulae T-1 to T-21 in amounts of 2-30% by weight, in particular 5-20% by weight.
  • R preferably denotes alkyl, furthermore alkoxy, each having 1-5 C atoms.
  • R preferably denotes alkyl or alkenyl, in particular alkyl.
  • R preferably denotes alkyl.
  • the terphenyls are preferably employed in the mixtures according to the invention if the ⁇ n value of the mixture is to be ⁇ 0.1.
  • Preferred mixtures comprise 2-20% by weight of one or more terphenyl compounds selected from the group of the compounds T-1 to T-21.
  • the proportion of the biphenyls of the formulae B-1 to B-3 in the mixture as a whole is preferably at least 3% by weight, in particular ⁇ 5% by weight.
  • the compounds of the formula B-2 are particularly preferred.
  • Preferred media comprise one or more compounds of the formulae O-1, O-3, O-4, O-6, O-7, O-10, O-11, O-12, O-14, O-15, O-16 and/or O-17.
  • Mixtures according to the invention very particularly preferably comprise the compounds of the formula O-10, O-12, O-16 and/or O-17, in particular in amounts of 5-30%.
  • the medium according to the invention particularly preferably comprises the tricyclic compounds of the formula O-10a and/or of the formula O-10b in combination with one or more bicyclic compounds of the formulae O-17a to O-17d.
  • the total proportion of the compounds of the formulae O-10a and/or O-10b in combination with one or more compounds selected from the bicyclic compounds of the formulae O-17a to O-17d is 5-40%, very particularly preferably 15-35%.
  • Very particularly preferred mixtures comprise compounds O-10a and O-17a:
  • the compounds O-10a and O-17a are preferably present in the mixture in a concentration of 15-35%, particularly preferably 15-25% and especially preferably 18-22%, based on the mixture as a whole.
  • Very particularly preferred mixtures comprise the compounds O-10b and O-17a:
  • the compounds O-10b and O-17a are preferably present in the mixture in a concentration of 15-35%, particularly preferably 15-25% and especially preferably 18-22%, based on the mixture as a whole.
  • Very particularly preferred mixtures comprise the following three compounds:
  • the compounds O-10a, O-10b and O-17a are preferably present in the mixture in a concentration of 15-35%, particularly preferably 15-25% and especially preferably 18-22%, based on the mixture as a whole.
  • Preferred mixtures comprise at least one compound selected from the group of the compounds
  • R 1 denotes alkyl or alkenyl having 1-6 or 2-6 C atoms respectively and R 2 denotes alkenyl having 2-6 C atoms.
  • Preferred mixtures comprise at least one compound of the formulae O-6a, O-6b, O-7a, O-7b, O-17e, O-17f, O-17g and O-17h:
  • the compounds of the formulae O-6, O-7 and O-17e-h are preferably present in the mixtures according to the invention in amounts of 1 40% by weight, preferably 2-35% by weight and very particularly preferably 2-30% by weight.
  • R B1 , R B2 , R CR1 , R CR2 , R 1 , R 2 each, independently of one another, have the meaning of R 2A .
  • c is 0, 1 or 2 and d denotes 1 or 2.
  • R 1 and R 2 preferably, independently of one another, denote alkyl or alkoxy having 1 to 6 C atoms.
  • the compounds of the formulae BF-1 and BF-2 should not be identical to one or more compounds of the formula I.
  • the mixtures according to the invention preferably comprise the compounds of the formulae BC, CR, PH-1, PH-2 and/or BF in amounts of 3 to 20% by weight, in particular in amounts of 3 to 15% by weight.
  • Particularly preferred compounds of the formulae BC and CR are the compounds BC-1 to BC-7 and CR-1 to CR-5,
  • mixtures comprising one, two or three compounds of the formula BC-2, BF-1 and/or BF-2.
  • Preferred compounds of the formula In are the compounds of the formulae In-1 to In-16 indicated below:
  • the compounds of the formula In and the sub-formulae In-1 to In-16 are preferably employed in the mixtures according to the invention in concentrations ⁇ 5% by weight, in particular 5-30% by weight and very particularly preferably 5-25% by weight.
  • the compounds of the formulae L-1 to L-11 are preferably employed in concentrations of 5-50% by weight, in particular 5-40% by weight and very particularly preferably 10-40% by weight.
  • mixtures according to the invention preferably comprise
  • mixtures according to the invention which comprise:
  • the medium comprises the compound B-2O-O5 in a concentration in the range of from 2 to 8% and the compound CC-3-V in a concentration in the range of from 25 to 35% and the compound CC-3-V1 in a concentration in the range of from 8% to 12%.
  • the invention furthermore relates to an electro-optical display having active-matrix addressing based on the ECB, VA, PS-VA, PA-VA, IPS, PS-IPS, FFS or PS-FFS effect, characterised in that it contains, as dielectric, a liquid-crystalline medium according to the present invention.
  • the liquid-crystalline medium according to the invention preferably has a nematic phase from ⁇ 20° C. to ⁇ 70° C., particularly preferably from ⁇ 30° C. to ⁇ 80° C., very particularly preferably from ⁇ 40° C. to ⁇ 90° C.
  • the expression “have a nematic phase” here means on the one hand that no smectic phase and no crystallisation are observed at low temperatures at the corresponding temperature and on the other hand that clearing still does not occur on heating from the nematic phase.
  • the investigation at low temperatures is carried out in a flow viscometer at the corresponding temperature and checked by storage in test cells having a layer thickness corresponding to the electro-optical use for at least 100 hours. If the storage stability at a temperature of ⁇ 20° C. in a corresponding test cell is 1000 h or more, the medium is referred to as stable at this temperature. At temperatures of ⁇ 30° C. and ⁇ 40° C., the corresponding times are 500 h and 250 h respectively. At high temperatures, the clearing point is measured by conventional methods in capillaries.
  • the liquid-crystal mixture preferably has a nematic phase range of at least 60 K and a flow viscosity ⁇ 20 of at most 30 mm 2 ⁇ s ⁇ 1 at 20° C.
  • the values of the birefringence ⁇ n in the liquid-crystal mixture are generally between 0.07 and 0.16, preferably between 0.08 and 0.13.
  • the liquid-crystal mixture according to the invention has a ⁇ of ⁇ 0.5 to ⁇ 8.0, in particular ⁇ 2.5 to ⁇ 6.0, where ⁇ denotes the dielectric anisotropy.
  • the rotational viscosity ⁇ 1 at 20° C. is preferably ⁇ 150 mPa ⁇ s, in particular ⁇ 120 mPa ⁇ s.
  • the liquid-crystal media according to the invention have relatively low values for the threshold voltage (V 0 ). They are preferably in the range from 1.7 V to 3.0 V, particularly preferably ⁇ 2.5 V and very particularly preferably ⁇ 2.3 V.
  • threshold voltage relates to the capacitive threshold (V 0 ), also called the Freedericks threshold, unless explicitly indicated otherwise.
  • liquid-crystal media according to the invention have high values for the voltage holding ratio in liquid-crystal cells.
  • liquid-crystal media having a low addressing voltage or threshold voltage exhibit a lower voltage holding ratio than those having a higher addressing voltage or threshold voltage and vice versa.
  • dielectrically positive compounds denotes compounds having a ⁇ >1.5
  • dielectrically neutral compounds denotes those having ⁇ 1.5 ⁇ ç ⁇ 1.5
  • dielectrically negative compounds denotes those having ⁇ 1.5.
  • the dielectric anisotropy of the compounds is determined here by dissolving 10% of the compounds in a liquid-crystalline host and determining the capacitance of the resultant mixture in at least one test cell in each case having a layer thickness of 20 ⁇ m with homeotropic and with homogeneous surface alignment at 1 kHz.
  • the measurement voltage is typically 0.5 V to 1.0 V, but is always lower than the capacitive threshold of the respective liquid-crystal mixture investigated.
  • the mixtures according to the invention are suitable for all VA-TFT applications, such as, for example, VAN, MVA, (S)-PVA, ASV, PSA (polymer sustained VA) and PS-VA (polymer stabilized VA). They are furthermore suitable for IPS (in-plane switching) and FFS (fringe field switching) applications having negative ⁇ .
  • the nematic liquid-crystal mixtures in the displays according to the invention generally comprise two components A and B, which themselves consist of one or more individual compounds.
  • Component A has significantly negative dielectric anisotropy and gives the nematic phase a dielectric anisotropy of ⁇ 0.5.
  • it preferably comprises the compounds of the formulae IIA, IIB and/or IIC, furthermore one or more compounds of the formula O-17.
  • the proportion of component A is preferably between 45 and 100%, in particular between 60 and 100%.
  • one (or more) individual compound(s) which has (have) a value of ⁇ 0.8 is (are) preferably selected. This value must be more negative, the smaller the proportion A in the mixture as a whole.
  • Component B has pronounced nematogeneity and a flow viscosity of not greater than 30 mm 2 ⁇ s ⁇ 1 , preferably not greater than 25 mm 2 ⁇ s ⁇ 1 , at 20° C.
  • Particularly preferred individual compounds in component B are extremely low-viscosity nematic liquid crystals having a flow viscosity of not greater than 18 mm 2 ⁇ s ⁇ 1 , preferably not greater than 12 mm 2 ⁇ s ⁇ 1 , at 20° C.
  • Component B is monotropically or enantiotropically nematic, has no smectic phases and is able to prevent the occurrence of smectic phases down to very low temperatures in liquid-crystal mixtures. For example, if various materials of high nematogeneity are added to a smectic liquid-crystal mixture, the nematogeneity of these materials can be compared through the degree of suppression of smectic phases that is achieved.
  • the mixture may optionally also comprise a component C, comprising compounds having a dielectric anisotropy of ⁇ 1.5.
  • a component C comprising compounds having a dielectric anisotropy of ⁇ 1.5.
  • positive compounds are generally present in a mixture of negative dielectric anisotropy in amounts of ⁇ 20% by weight, based on the mixture as a whole.
  • the phases preferably comprise 4 to 15, in particular 5 to 12, and particularly preferably ⁇ 10, compounds of the formulae IIA, IIB and/or IIC and optionally one or more compounds of the formula O-17.
  • the other constituents are preferably selected from nematic or nematogenic substances, in particular known substances, from the classes of the azoxybenzenes, benzylideneanilines, biphenyls, terphenyls, phenyl or cyclohexyl benzoates, phenyl or cyclohexyl cyclohexanecarboxylates, phenylcyclohexanes, cyclohexylbiphenyls, cyclohexylcyclohexanes, cyclohexylnaphthalenes, 1,4-biscyclohexylbiphenyls or cyclohexylpyrimidines, phenyl- or cyclohexyldioxanes, optionally halogenated stilbenes, benzyl phenyl ethers, tolanes and substituted cinnamic acid esters.
  • nematic or nematogenic substances
  • L and E each denote a carbo- or heterocyclic ring system from the group formed by 1,4-disubstituted benzene and cyclohexane rings, 4,4′-disubstituted biphenyl, phenylcyclohexane and cyclohexylcyclohexane systems, 2,5-disubstituted pyrimidine and 1,3-dioxane rings, 2,6-disubstituted naphthalene, di- and tetrahydronaphthalene, quinazoline and tetrahydroquinazoline, G denotes —CH ⁇ CH— —N(O) ⁇ N—CH ⁇
  • R 20 and R 21 are different from one another, one of these radicals usually being an alkyl or alkoxy group.
  • Other variants of the proposed substituents are also common. Many such substances or also mixtures thereof are commercially available. All these substances can be prepared by methods known from the literature.
  • VA, IPS or FFS mixture according to the invention may also comprise compounds in which, for example, H, N, O, Cl and F have been replaced by the corresponding isotopes.
  • Polymerizable compounds so-called reactive mesogens (RMs), for example as disclosed in U.S. Pat. No. 6,861,107, may furthermore be added to the mixtures according to the invention in concentrations of preferably 0.01-5% by weight, particularly preferably 0.2-2% by weight, based on the mixture.
  • These mixtures may optionally also comprise an initiator, as described, for example, in U.S. Pat. No. 6,781,665.
  • the initiator for example Irganox-1076 from BASF, is preferably added to the mixture comprising polymerizable compounds in amounts of 0-1%.
  • PS-VA polymer-stabilised VA modes
  • PSA polymer sustained VA
  • the liquid-crystalline compounds of the LC host do not react under the polymerisation conditions of the reactive mesogens, i.e. generally on exposure to UV in the wavelength range from 320-360 nm.
  • the mixtures according to the invention may furthermore comprise conventional additives other than those of formula ST, such as, for example, stabilisers, antioxidants, UV absorbers, nanoparticles, microparticles, etc.
  • the structure of the liquid-crystal displays according to the invention corresponds to the usual geometry, as described, for example, in EP-A 0 240 379.
  • the cyclohexylene rings are trans-1,4-cyclohexylene rings.
  • the mixtures according to the invention preferably comprise one or more compounds of the compounds mentioned below from Table A.
  • liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner which is conventional per se.
  • the desired amount of the components used in lesser amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing.
  • liquid-crystal phases according to the invention can be modified in such a way that they can be employed in any type of, for example, ECB, VAN, IPS, GH or ASM-VA LCD display that has been disclosed to date.
  • the dielectrics may also comprise further additives known to the person skilled in the art and described in the literature, such as, for example, UV absorbers, antioxidants, nanoparticles and free-radical scavengers.
  • further additives known to the person skilled in the art and described in the literature, such as, for example, UV absorbers, antioxidants, nanoparticles and free-radical scavengers.
  • 0-15% of pleochroic dyes, stabilisers, such as, for example, phenols, HALS (hindered amine light stabilisers), or chiral dopants may be added.
  • Suitable stabilisers for the mixtures according to the invention are, in particular, those listed in Table C.
  • pleochroic dyes may be added, furthermore conductive salts, preferably ethyldimethyldodecylammonium 4-hexoxybenzoate, tetrabutylammonium tetraphenylboranate or complex salts of crown ethers (cf., for example, Haller et al., Mol. Cryst. Liq. Cryst., Volume 24, pages 249-258 (1973)), may be added in order to improve the conductivity or substances may be added in order to modify the dielectric anisotropy, the viscosity and/or the alignment of the nematic phases. Substances of this type are described, for example, in DE-A 22 09 127, 22 40 864, 23 21 632, 23 38 281, 24 50 088, 26 37 430 and 28 53 728.
  • Table B indicates possible dopants which can be added to the mixtures according to the invention. If the mixtures comprise a dopant, it is added in amounts of 0.01-4% by weight, preferably 0.01-3% by weight.
  • the mixtures according to the invention comprise at least one stabiliser from Table C given below.
  • m.p. denotes the melting point and C denotes the clearing point of a liquid-crystalline substance in degrees Celsius; boiling temperatures are denoted by m.p.
  • C denotes crystalline solid state
  • S denotes smectic phase (the index denotes the phase type)
  • N denotes nematic state
  • Ch denotes cholesteric phase
  • I denotes isotropic phase
  • T g denotes glass-transition temperature. The number between two symbols indicates the conversion temperature in degrees Celsius an.
  • the host mixture used for determination of the optical anisotropy ⁇ n of the compounds of the formula I is the commercial mixture ZLI-4792 (Merck KGaA).
  • the dielectric anisotropy ⁇ is determined using commercial mixture ZLI-2857.
  • the physical data of the compound to be investigated are obtained from the change in the dielectric constants of the host mixture after addition of the compound to be investigated and extrapolation to 100% of the compound employed. In general, 10% of the compound to be investigated are dissolved in the host mixture, depending on the solubility.
  • parts or percent data denote parts by weight or percent by weight.
  • temperatures such as, for example, the melting point T(C,N), the transition from the smectic (S) to the nematic (N) phase T(S,N) and the clearing point T(N,I), are indicated in degrees Celsius (° C.).
  • M.p. denotes melting point
  • cl.p. clearing point.
  • Tg glass state
  • C crystalline state
  • N nematic phase
  • S smectic phase
  • I isotropic phase.
  • threshold voltage for the present invention relates to the capacitive threshold (V 0 ), also called the Freedericksz threshold, unless explicitly indicated otherwise.
  • the optical threshold can also be indicated for 10% relative contrast (V 10 ).
  • the display used for measurement of the capacitive threshold voltage consists of two plane-parallel glass outer plates at a separation of 20 m, which each have on the insides an electrode layer and an unrubbed polyimide alignment layer on top, which cause a homeotropic edge alignment of the liquid-crystal molecules.
  • the display or test cell used for measurement of the tilt angle consists of two plane-parallel glass outer plates at a separation of 4 ⁇ m, which each have on the insides an electrode layer and a polyimide alignment layer on top, where the two polyimide layers are rubbed antiparallel to one another and cause a homeotropic edge alignment of the liquid-crystal molecules.
  • VHR 20 20° C.
  • VHR 100 100° C.
  • the voltage used has a frequency of in a range from 1 Hz to 60 Hz, unless indicated more precisely.
  • the accuracy of the VHR measurement values depends on the respective value of the VHR.
  • the accuracy decreases with decreasing values.
  • the deviations generally observed in the case of values in the various magnitude ranges are compiled in their order of magnitude in the following table.
  • the stability to UV irradiation is investigated in a “Suntest CPS”, a commercial instrument from Heraeus, Germany.
  • the sealed test cells are irradiated for between 30 min and 2.0 hours, unless explicitly indicated, without additional heating.
  • the irradiation power in the wavelength range from 300 nm to 800 nm is 765 W/m 2 V.
  • a UV “cut-off” filter having an edge wavelength of 310 nm is used in order to simulate the so-called window glass mode.
  • at least four test cells are investigated for each condition, and the respective results are indicated as averages of the corresponding individual measurements.
  • LTS low-temperature stability
  • bottles containing 1 g of LC/RM mixture are stored at ⁇ 10° C., and it is regularly checked whether the mixtures have crystallised out.
  • the ion density from which the resistivity is calculated is measured using the commercially available LC Material Characteristics Measurement System Model 6254 from Toyo Corporation, Japan, using VHR test cells with AL16301 Polyimide (JSR Corp., Japan) having a 3.2 ⁇ m cell gap. The measurement is performed after 5 min of storage in an oven at 60° C. or 100° C.
  • HTP denotes the helical twisting power of an optically active or chiral substance in an LC medium (in ⁇ m). Unless indicated otherwise, the HTP is measured in the commercially available nematic LC host mixture MLD-6260 (Merck KGaA) at a temperature of 20° C.
  • Comparative Mixture C1 is prepared as follows:
  • the mixture C2 is prepared from 99.9% of mixture C1 and 0.1% of a stabiliser of formula ST-1a-1.
  • a nematic host mixture N1 is prepared as follows:
  • the stabilisers ST-1a-1 and ST-1b-1 are added in the amounts indicated in table 1.
  • VHR Voltage Holding Ratio
  • the VHR is significantly improved for the mixtures M1 to M4 containing stabilisers ST-1a-1 or ST-1b-1 compared to the unstabilized host mixture N1.
  • the long-term reliability test includes two parts: one is the rolling pattern test and the other is the so-called and more severe NDS test.
  • the rolling pattern test various alternating images are displayed on the screen for 1000 h at a storage temperature of 60° C.
  • images of a mosaic pattern is displayed on one half of the screen and a full white image is displayed on the other half of the screen for 2100 h at an ambient temperature of 60° C.
  • the panel is visually inspected for changes of the image quality (table 3).
  • Mixture C1 without stabiliser does not pass the NDS test. Addition of stabiliser ST-1a-1 to mixture C1 gives mixture C2 which passes the NDS test but has only moderate properties in terms of image sticking. While the host mixture N1 also does not pass the NDS test, the mixture M1 according to the invention including a stabiliser of formula ST and a compound of formula I passes the rolling pattern test as well as the NDS test and also has improved image sticking properties compared to mixture C2 without a compound of formula I.
  • VHR value that is on a similar high level or higher than the VHR of a corresponding medium without a compound of formula I and a stabiliser according to the invention
  • the data above show that the liquid crystalline media according to the invention, comprising a compound of formula I and a stabiliser of formula ST, have much improved reliability compared to the unstabilized host mixture. While the host N1 without stabiliser fails under the long term NDS pattern test conditions, unexpectedly, under the same conditions the mixture M1 pass the Rolling Pattern Test as well as the NDS Pattern Test and also shows improved short term image sticking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
US15/923,353 2017-03-16 2018-03-16 Liquid-crystalline medium Abandoned US20180265784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17161352.4A EP3375845A1 (fr) 2017-03-16 2017-03-16 Milieux à base de cristaux liquides
EP17161352.4 2017-03-16

Publications (1)

Publication Number Publication Date
US20180265784A1 true US20180265784A1 (en) 2018-09-20

Family

ID=58347281

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/923,353 Abandoned US20180265784A1 (en) 2017-03-16 2018-03-16 Liquid-crystalline medium

Country Status (6)

Country Link
US (1) US20180265784A1 (fr)
EP (2) EP3375845A1 (fr)
JP (1) JP7239273B2 (fr)
KR (1) KR102662835B1 (fr)
CN (1) CN108624334A (fr)
TW (1) TWI766966B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321257A (zh) * 2018-12-04 2019-02-12 西安瑞立电子材料有限公司 含有二苯并呋喃并环戊烷类液晶化合物
CN109837098A (zh) * 2019-03-29 2019-06-04 石家庄诚志永华显示材料有限公司 液晶组合物、液晶显示元件、液晶显示器
CN112029511B (zh) * 2020-09-09 2021-06-29 深圳市猿人创新科技有限公司 一种用于行车记录仪的显示介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139827A1 (fr) * 2014-03-17 2015-09-24 Merck Patent Gmbh Milieu cristal liquide

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795849A (fr) 1972-02-26 1973-08-23 Merck Patent Gmbh Phases nematiques modifiees
US3814700A (en) 1972-08-03 1974-06-04 Ibm Method for controllably varying the electrical properties of nematic liquids and dopants therefor
DE2450088A1 (de) 1974-10-22 1976-04-29 Merck Patent Gmbh Biphenylester
DE2637430A1 (de) 1976-08-20 1978-02-23 Merck Patent Gmbh Fluessigkristallines dielektrikum
DE2853728A1 (de) 1978-12-13 1980-07-17 Merck Patent Gmbh Fluessigkristalline carbonsaeureester, verfahren zu ihrer herstellung, diese enthaltende dielektrika und elektrooptisches anzeigeelement
FR2595157B1 (fr) 1986-02-28 1988-04-29 Commissariat Energie Atomique Cellule a double couche de cristal liquide, utilisant l'effet de birefringence controlee electriquement et procede de fabrication d'un milieu uniaxe d'anisotropie optique negative utilisable dans cette cellule
DE10101022A1 (de) 2001-01-11 2002-07-18 Clariant Internat Ltd Muttenz Fluorierte Aromaten und ihre Verwendung in Flüssigkristallmischungen
CN1327279C (zh) 2002-02-04 2007-07-18 夏普株式会社 液晶显示装置及其制造方法
DE50306559D1 (de) 2002-07-06 2007-04-05 Merck Patent Gmbh Flüssigkristallines Medium
DE102004021691A1 (de) 2004-04-30 2005-11-24 Clariant International Limited Fluorierte Heterocyclen und ihre Verwendung in Flüssigkristallmischungen
EP1752510B1 (fr) * 2005-08-09 2008-11-26 Merck Patent GmbH Milieu liquide cristallin
ATE548435T1 (de) * 2008-10-30 2012-03-15 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige
DE102013021683A1 (de) * 2013-12-19 2015-06-25 Merck Patent Gmbh Flüssigkristallines Medium
EP3268450B1 (fr) 2015-03-13 2019-12-11 Merck Patent GmbH Milieu cristal liquide
EP3303518B1 (fr) * 2015-05-29 2020-06-10 Merck Patent GmbH Milieu cristal liquide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139827A1 (fr) * 2014-03-17 2015-09-24 Merck Patent Gmbh Milieu cristal liquide

Also Published As

Publication number Publication date
KR102662835B1 (ko) 2024-05-03
JP7239273B2 (ja) 2023-03-14
KR20180106936A (ko) 2018-10-01
TWI766966B (zh) 2022-06-11
EP3375845A1 (fr) 2018-09-19
JP2018184592A (ja) 2018-11-22
CN108624334A (zh) 2018-10-09
EP3375844A1 (fr) 2018-09-19
TW201839105A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
US10214692B2 (en) Liquid-crystalline medium
US8399073B2 (en) Liquid-crystal medium
US11214736B2 (en) Liquid-crystalline medium
US9951274B2 (en) Liquid-crystalline medium
US9234136B2 (en) Liquid-crystalline medium
US9777216B2 (en) Liquid crystalline medium
US8277684B2 (en) Liquid-crystal medium
US9580653B2 (en) Liquid-crystalline medium
US8475889B2 (en) Liquid-crystalline medium
US8877092B2 (en) Liquid-crystalline medium
US10934487B2 (en) Liquid crystalline medium
US8025935B2 (en) Liquid-crystalline medium
US8043671B2 (en) Liquid-crystalline medium and liquid crystal display
US7854970B2 (en) Liquid-crystalline medium
US20160319194A1 (en) Liquid crystalline medium
US8202584B2 (en) Liquid-crystalline medium and liquid-crystal display
US20190390112A1 (en) Liquid-crystalline medium
US20160264865A1 (en) Liquid crystalline medium
US11453824B2 (en) Liquid-crystalline medium
US20170044436A1 (en) Liquid-crystalline medium
US20180265784A1 (en) Liquid-crystalline medium
CN111615547A (zh) 液晶介质

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, CHANG-SUK;YUN, CHANG-JUN;HAN, YEON-JEONG;AND OTHERS;SIGNING DATES FROM 20180404 TO 20180428;REEL/FRAME:045823/0040

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION