US20180258938A1 - Mounting system for mounting a monitoring unit on a pump - Google Patents

Mounting system for mounting a monitoring unit on a pump Download PDF

Info

Publication number
US20180258938A1
US20180258938A1 US15/918,200 US201815918200A US2018258938A1 US 20180258938 A1 US20180258938 A1 US 20180258938A1 US 201815918200 A US201815918200 A US 201815918200A US 2018258938 A1 US2018258938 A1 US 2018258938A1
Authority
US
United States
Prior art keywords
housing
elongate member
mounting
pump
mounting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/918,200
Other languages
English (en)
Inventor
Steen Mikkelsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Assigned to GRUNDFOS HOLDING A/S reassignment GRUNDFOS HOLDING A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIKKELSEN, STEEN
Publication of US20180258938A1 publication Critical patent/US20180258938A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0686Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/35Devices for recording or transmitting machine parameters, e.g. memory chips or radio transmitters for diagnosis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Definitions

  • the present disclosure relates generally to multistage or single-stage centrifugal pump assemblies with a monitoring unit for monitoring at least one operational parameter of a pump, and to mounting systems for mounting such a monitoring unit on a pump.
  • multistage centrifugal pumps are often used for high pressure and/or high flow performance in industrial applications for which reliability is crucial.
  • multistage centrifugal pumps may be used on off-shore wind energy plants.
  • a reliable operation of the pumps is necessary to achieve a high operational efficiency of a wind energy plant. It is thus desired to know as soon as possible if an operational parameter of a pump indicates a failure already happened or a likely failure in the future. In both cases the operational efficiency of the plant may depend on how quickly an action for service, repair, or replacement can be triggered. So, quick information about the current operational parameters of a pump can be essential.
  • known pumps comprise monitoring units in their main electronics housing for indicating operational parameters. It is also known to connect the pumps with a telecommunications network such that the operational parameters can be communicated via a telecommunications interface to a remote receiving station.
  • WO 2010/081694 describes a monitoring unit in form of a bespoke collar embracing a drive unit of the pump.
  • embodiments of the present disclosure provide a mounting system for a pump monitoring unit allowing a mounting of one type of monitoring unit to a variety of pump sizes and types.
  • a variety of existing pumps without a monitoring unit can be easily and cost-efficiently equipped and “retro-fitted” with one type of monitoring unit by use of an embodiment of the present disclosure.
  • a mounting system for mounting a monitoring unit on a pump for monitoring at least one operational parameter of the pump comprising
  • the bracket can be configured to be mounted to a standard fastener already comprised in a variety of pumps with different sizes.
  • a multistage or single-stage centrifugal pump may comprise a peripheral flange connection between a motor housing and a casing, wherein the peripheral flange connection is axially fastened by standard nut-and-bolt fasteners.
  • the bracket of the mounting system disclosed herein may be coupled to the pump by one of those nut-and-bolt fasteners.
  • multistage or single-stage centrifugal pumps may comprise two installation sections for the pump to be installable in two alternative operating orientations: a vertical stand-up position, wherein the rotational axis of the motor is essentially vertical, and a horizontal lying position, wherein the rotational axis of the motor is essentially horizontal.
  • the bracket may be coupled to that installation section of the pump which is not used for the actual operating position. For instance, if the pump is installed in a vertical operating position, an unused lateral installation section for the horizontal lying position may be used for coupling the bracket of the mounting system disclosed herein. Vice versa, an unused axial installation section for the vertical stand-up position may be used for coupling the bracket of the mounting system disclosed herein if the pump is installed in a horizontal lying operating orientation.
  • the distance provided by the elongate member between the housing and the pump provides the necessary flexibility for the monitoring unit to be retro-fitted in a variety of positions relative to the pump which is often installed in a confined space like a windmill.
  • the bracket allows for a versatile use of standard fasteners or existing installation sections of the pump for mounting the monitoring unit to the pump. Furthermore, the distance provided by the elongate member minimizes a heat transfer from the pump to the electronics within the mounting unit.
  • the housing may be manually rotatable around a longitudinal axis of the elongate member from a first rotational position to a second rotational position.
  • a rotatable mounting provides another degree of freedom for the flexibility for the monitoring unit to be retro-fitted to the pump in confined spaces, such as a wing energy plant.
  • the housing may be prevented from inadvertent rotation, for instance caused by vibrations, by a frictional contact to the elongate member or at least one latch.
  • the housing may be fixed after manual rotation in the desired rotational position by a fastener like a bolt or screw.
  • the bracket is mounted on the first mounting portion of the elongate member so that a longitudinal axis of the elongate member is parallel to a rotor axis of the pump.
  • the extension of the overall installation space envelope of the pump including the mounted monitoring unit may be kept to a minimum or none if the elongate member is parallel to it.
  • a pump comprises a laterally protruding pump inlet or outlet flange at a lateral side along a pipe axis
  • the bracket may be mounted on the first mounting portion of the elongate member in such a way that it can be coupled to the pump at the lateral side where the pump inlet or outlet flange laterally protrudes.
  • the housing is waterproof to protect the monitoring unit and comprises at least one input port for receiving at least one operational parameter from a pump sensor.
  • the distance provided by the elongate member between the housing and the pump allows for a simple waterproof shape of the housing without the need for bespoke adaptations to the individual pump it is supposed to be mounted on.
  • the input port(s) for instance industry standard M12 coaxial cable connector(s), can protrude through sealed opening(s) in the housing.
  • At least one of the input ports may be a wireless receiver such as an antenna, a transmission coil or a similar device for wireless communication with a pump sensor, e.g. a Bluetooth communication.
  • the elongate member has a higher stiffness than the housing.
  • the elongate member may comprise metal and the housing may comprise plastic.
  • the elongate member is stiff enough to withstand torque moments while the housing can be light, waterproof and cost-efficient.
  • the bracket has a first mounting section and a second mounting section, wherein the first mounting section is coupled to the first mounting portion of the elongate member, wherein the second mounting section is to be coupled to the pump, wherein the first mounting section and the second mounting section are essentially parallel or essentially orthogonal to each other.
  • the bracket may preferably be coupled to a flange fastener connecting a motor housing with a casing, because such a flange fastener extends parallel to the rotor axis of the motor.
  • the bracket may preferably be coupled to a lateral installation section, because such a lateral installation section provides for fastening perpendicular to the rotor axis of the motor.
  • the bracket may ensure that the elongate member is aligned in parallel with the rotor axis.
  • the first mounting portion of the elongate member is located at a first axial end of the elongate member, and the second mounting portion of the elongate member extends from the first mounting portion to a second axial end of the elongate member. This ensures a minimal installation space envelope of the mounting system while providing sufficient distance between the housing and the pump.
  • the elongate member is spring mounted on the bracket.
  • a spring mounting can be advantageous to compensate production tolerances and to dampen the transfer of vibrations from the pump to the housing.
  • the mounting system including a spring is more resilient against inadvertent loosening of bolts, screws or other connections.
  • a longitudinal axis of the elongate member is essentially vertical.
  • the housing comprises a first opening and a second opening essentially arranged coaxially, preferably on a vertical line, wherein the second mounting portion of the elongate member is inserted through the first opening and the second opening, wherein the housing is fixed in axial direction relative to the second mounting portion of the elongate member by an abutment face at an end of the second mounting portion of the elongate member, wherein the abutment face abuts axially against the second opening of the housing.
  • the elongate member may be a rod, a shaft, or a pipe, preferably with a circular outer cross section, preferably tubular, preferably made of a metal like steel or aluminum.
  • the first and second openings may be formed by housing lugs projecting from the housing.
  • the abutment face may be formed by an annular face radially projecting at an end of the second mounting portion of the elongate member. Such an abutment face may be integral with the elongate member or defined by a head of a screw screwed into the axial face of the second mounting portion of the elongate member.
  • the first and/or the second openings may comprise at least one radially inward projection for compensating production tolerances and ensuring a tight fit between the elongate member and the housing.
  • the at least one radially inward projection may be resilient to a certain degree to be at least partially squeezed radially outward when the elongate member is inserted through the first opening and/or the second opening.
  • the at least one radially inward projection may thus provide for a slightly smaller cross section of the first and/or the second opening that is flexible to adapt to the cross section of the second mounting portion of the elongate member within a tolerance range.
  • the first opening is located near a first side of the housing and the second opening is located near a second side of the housing, wherein the first side and the second side are opposing sides of the housing.
  • the mounting system is more resistant to torque moments.
  • the housing defines an inner volume for accommodating the monitoring unit, wherein the elongate member is located outside of the inner volume.
  • An external mounting of the housing on the second mounting portion may not need any screwing into the plastic body of the housing, and thus facilitating a simple, reusable, durable and waterproof design of the housing.
  • “External” may be defined here as the second mounting portion not protruding into the inner volume of the housing.
  • the mounting system comprises an antenna confined inside the housing, wherein the antenna is connectable to the monitoring unit.
  • an antenna may, for instance, be integrated into the housing.
  • the antenna may be used for wireless communication between the monitoring unit and a remote receiver or sender.
  • Such wireless communication may be unidirectional, bi-directional or multidirectional and may include information containing pump parameters, alerts, warnings, commands, instructions, updates, time, identifier, or other.
  • the monitoring unit may comprise output ports for wired communication with an external device. For instance, the input ports may selectively be used as output ports.
  • a pump assembly comprising a
  • the pump unit is a multistage centrifugal pump with a vertical or horizontal rotor axis.
  • the mounting system as described above is most useful in combination with a multistage centrifugal pump, because multistage centrifugal pumps are often used for high pressure and/or high flow performance in industrial applications for which reliability is crucial.
  • the mounting system disclosed herein may also be used for mounting a monitoring unit to a single-stage centrifugal pump.
  • the pump assembly comprises an antenna connected to the monitoring unit, wherein the antenna is confined within the housing of the mounting system.
  • the antenna may either be part of the monitoring unit or of the housing, or both.
  • the antenna is located at the outer periphery of the monitoring unit fully confined within the housing.
  • the antenna may be placed on the outside of the housing.
  • FIG. 1 is a first perspective view on a first example of a multistage centrifugal pump assembly according to this disclosure
  • FIG. 2 is a second perspective view on the first example of a multistage centrifugal pump assembly according to this disclosure
  • FIG. 3 is a partially exploded perspective view on the first example of a multistage centrifugal pump according to this disclosure
  • FIG. 4 is a perspective view on a second example of a multistage centrifugal pump assembly according to a second embodiment of this disclosure
  • FIG. 5 a is a first perspective view on a mounting system according to a first embodiment of this disclosure
  • FIG. 5 b is a second perspective view on a mounting system according to a first embodiment of this disclosure.
  • FIG. 6 a is a first perspective view on a mounting system according to a second embodiment of this disclosure.
  • FIG. 6 b is a second perspective view on a mounting system according to a second embodiment of this disclosure.
  • FIG. 7 is an exploded view on a mounting system according to a second embodiment of this disclosure.
  • FIG. 1 shows a pump assembly with a pump unit 1 in form of a multistage centrifugal pump in a vertical stand-up position.
  • a rotor axis A runs essentially vertically.
  • the pump unit 1 comprises an impeller housing 2 , a casing 3 and a motor housing 5 .
  • the impeller housing 2 extends from a bottom stand 7 vertically to the casing 3 connecting the impeller housing 2 with the motor housing 5 .
  • the motor housing 5 is connected to the casing 3 by a flange connection 9 .
  • the impeller housing 2 comprises at its bottom end an inlet port 11 and an outlet port 13 .
  • the inlet port 11 and the outlet port 13 are arranged coaxially along a pipe axis B.
  • the inlet port 11 is surrounded by an inlet port connector flange 15 configured to be connected to a pipe (not shown).
  • the outlet port 13 is surrounded by an outlet port connector flange 17 configured to be connected to a pipe (not shown).
  • the pump unit 1 is configured to convey fluid from the inlet port 11 to the outlet port 13 and/or to achieve a pressure differential between the inlet port 11 and the outlet port 13 , wherein a fluid pressure at the outlet port 13 is higher than a fluid pressure at the inlet port 11 .
  • the inlet port 11 and the outlet port 13 are located at opposing lateral sides of the pump unit 1 so that the pipe axis B is horizontal and thus perpendicular to the vertical rotor axis A.
  • a motor within the motor housing 5 is configured to drive a transmission axle (not shown) within the impeller housing 2 for driving a stack of impellers within the impeller housing 2 around the rotor axis A.
  • An electronics housing 19 comprises a control unit for controlling the operation of the pump unit 1 . Alternatively or in addition, the control unit may fully or partly be located within the motor housing 5 .
  • the pump unit 1 comprises a pressure differential sensor 21 and an ultrasound sensor 23 .
  • the pressure differential sensor 21 is located near the outlet port 13 and is connected via a pressure differential pipe 25 with the inlet port 11 for measuring the pressure differential between the inlet port 11 and the outlet port 13 .
  • the ultrasound sensor 23 is placed at a lower portion of the casing 3 for determining whether the impellers are fully immersed in fluid. The ultrasound sensor 23 is thus used as a warning sensor to prevent the pump unit 1 from running dry.
  • Those sensors 23 , 25 are connected by cables 27 with a monitoring unit 29 (see FIG. 7 ) located in a housing 31 of a mounting system 33 used for mounting the monitoring unit 29 to the pump unit 1 .
  • the cables 27 are preferably coaxial cables to shield the signal transmission between the sensors 21 , 23 and the monitoring unit 29 .
  • the monitoring unit 29 is powered via a power cable 35 .
  • the monitoring unit 29 receives signals from the sensors 21 , 23 and processes the received information for further wireless communication of operational parameters of the pump unit 1 to an external receiving station (not shown).
  • the monitoring unit 29 is thus connected to an antenna 87 (see FIG. 7 ) for wireless transmission.
  • FIG. 2 gives a better view on how the mounting system 33 is coupled to the pump unit 1 .
  • the mounting system 33 comprises the housing 31 , an elongate member 37 and a bracket 39 .
  • the elongate member 37 runs essentially vertical parallel to the rotor axis A through two housing lugs 41 , 43 projecting from a backside of the housing 31 .
  • the upper one of the lugs 41 is located near the top of the housing 31 and the lower one of the lugs 43 is located near a bottom side of the housing 31 .
  • the lower lug 43 defines a first opening 45 and the upper lug 41 defines a second opening 47 , wherein the first opening 45 and the second opening 47 are coaxially aligned to receive the elongate member 37 being inserted through the first opening 45 and the second opening 47 .
  • the elongate member 37 comprises a first mounting portion 49 (see FIG. 3 ) at its bottom end and a second mounting portion 51 extending from the first mounting portion 49 through the lugs 41 , 43 to a top end of the elongate member 37 .
  • the first mounting portion 49 of the elongate member 37 is connected to the flange connection 9 between the motor housing 5 and the casing 3 by the bracket 39 .
  • the first mounting portion 49 of the elongate member 37 is a bottom end portion, however, it will be readily understood that the first mounting portion 49 of the elongate member 37 could be a top end portion or an intermediary portion of the elongate member 37 .
  • a bottom screw 57 which could be the same as or similar to top screw 53 , is used to connect the first mounting portion 49 of the elongate member 37 with the bracket 39 . In the first embodiment shown in FIG.
  • the bracket has a first mounting section 59 and a second mounting section 61 arranged essentially parallel to each other in an 8-configuration (see FIG. 3 ).
  • the first mounting section 59 in form of a mounting lug is coupled to the first mounting portion 49 of the elongate member 37 and the second mounting section 61 is coupled to the pump unit 1 via a bolt 63 of the flange connection 9 between the motor housing 5 and the casing 3 .
  • the partially exploded view in FIG. 3 gives a better view on the individual parts of the mounting system 33 .
  • the bottom screw 57 extends through the first mounting section 59 of the bracket 39 and the spacer sleeve 55 into the first mounting portion 49 of the elongate member 37 .
  • the spacer sleeve 55 defines a distance between the bottom housing lug 43 of the housing 31 and the bracket 39 .
  • a spring 65 within the spacer sleeve 55 separates the elongate member 37 from the bracket 39 .
  • the elongate member 37 is thus spring-mounted on the bracket 39 to compensate production tolerances and to dampen the transfer vibrations from the pump unit 1 to the housing 31 .
  • the bolt 63 of the flange connection 9 is part of a nut-and-bolt fastener comprising washers 67 and a nut 69 .
  • the length of the bolt 67 allows accommodating the second mounting section 61 of the bracket 39 for coupling the bracket to the pump unit 1 .
  • FIG. 4 shows a second embodiment of the present disclosure, in which a bracket 39 is mounted laterally on the motor housing 5 .
  • the first mounting section 59 of the bracket 39 is essentially perpendicular to the second mounting section 61 of the bracket 39 .
  • the motor housing 5 comprises a lateral installation section 71 at the same lateral side where the outlet port 13 is located.
  • the lateral installation section 71 of the motor housing 5 comprises threads (not shown) for receiving screws in case the pump unit 1 is installed in a horizontal operating position. As these threads are not used in the shown vertical operating position of the pump unit 1 , they are used to couple the second mounting section 61 of the bracket 39 to the pump unit 1 .
  • a center plane 73 see FIG.
  • the housing 31 is rotatable around the longitudinal axis of the elongate member 37 . Thereby, bracket lugs of the second mounting section 61 of the bracket 39 are accessible for fastening the bracket 39 to the motor housing 5 .
  • the housing 31 can be fixed against rotation by tightening the top screw 53 and/or the bottom screw 57 .
  • FIGS. 5 a and 5 b show the mounting system 33 in more detail.
  • the housing 31 is mainly comprised of a housing body 75 and a front lid 77 .
  • the front lid 77 closes the housing body 75 by way of housing screws in defined screw channels 79 located in the corners of the housing 31 .
  • the front lid 77 seals the housing body 75 in a waterproof manner.
  • At the bottom side of housing 31 as shown in FIG. 5 a (corresponding to the top side of the housing 31 as shown in FIG. 5 b ), six input ports 81 in form of M12 coaxial cable connectors protrude though the wall of the housing 31 .
  • a power connection 83 is provided at the same side of the housing 31 .
  • the essentially box-like shape of the housing 31 defines a center plane 73 .
  • the longitudinal axis of the elongate member 37 is both parallel and offset with respect to the center plane 73 .
  • the center plane may be defined as a symmetry plane of the smallest virtual box shape space envelope into which it fits. This gives the installing person more flexibility for mounting the housing 31 to the pump unit 1 .
  • FIGS. 6 a and 6 b show the second embodiment of the mounting system 33 with an angled bracket 39 having the first mounting section 59 perpendicular to the second mounting section 61 .
  • the second mounting section 61 of the bracket 39 may comprise one or more openings 85 for the coupling to the pump unit 1 .
  • One or more of the openings 85 may be oval or elongate to allow a coupling to a variety of pumps with different lateral installation sections in which the corresponding threads have a different size and/or distance to each other.
  • FIG. 7 shows in particular how the monitoring unit 29 is confined within an inner volume defined by the housing 31 .
  • an antenna 87 is located at the outer periphery of the monitoring unit 29 as part of the monitoring unit 29 .
  • the antenna 87 can be at least partially part of the housing 31 .
  • the antenna 87 may be used for wireless communication with a remote receiving station (not shown).
  • the monitoring unit 29 may comprise output ports for wired communication with an external device.
  • the input ports 81 may selectively be used as output ports.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US15/918,200 2017-03-13 2018-03-12 Mounting system for mounting a monitoring unit on a pump Abandoned US20180258938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17160500.9A EP3376042A1 (fr) 2017-03-13 2017-03-13 Système de montage permettant de monter une unité de surveillance sur une pompe
EP17160500.9 2017-03-13

Publications (1)

Publication Number Publication Date
US20180258938A1 true US20180258938A1 (en) 2018-09-13

Family

ID=58267000

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/918,200 Abandoned US20180258938A1 (en) 2017-03-13 2018-03-12 Mounting system for mounting a monitoring unit on a pump

Country Status (3)

Country Link
US (1) US20180258938A1 (fr)
EP (1) EP3376042A1 (fr)
CN (1) CN108571471A (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210277907A1 (en) * 2020-03-09 2021-09-09 Dab Pumps S.P.A. Vertical electric pump with facilitated maintenance
WO2023151887A1 (fr) * 2022-02-09 2023-08-17 KSB SE & Co. KGaA Connecteur m12 pour raccord de câble fileté

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154322A1 (en) * 2004-08-26 2007-07-05 Stiles Robert W Jr Pumping system with two way communication
US20140003976A1 (en) * 2011-03-12 2014-01-02 Finn Mathiesen Høj Heat circulation pump
US9133982B1 (en) * 2014-07-29 2015-09-15 Erika Valdez Articulated computer mounting system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629136A1 (de) * 1996-07-19 1998-01-22 Gardena Kress & Kastner Gmbh Steuereinrichtung für eine Förder-Pumpe o. dgl.
JP2007046489A (ja) * 2005-08-08 2007-02-22 Shin Meiwa Ind Co Ltd 水中ポンプ
DE102007017445C5 (de) * 2007-04-02 2015-08-27 Alfred Kärcher Gmbh & Co. Kg Flüssigkeitspumpe
US9044535B2 (en) * 2007-08-07 2015-06-02 Terumo Cardiovascular Systems Corp. Extracorporeal blood pump with disposable pump head portion having magnetically levitated impeller
DE102009005154A1 (de) 2009-01-15 2010-07-22 Wilo Se Vorrichtung zur Verbindung einer elektromotorischen Antriebseinheit mit einer Pumpeneinheit
CN201753957U (zh) * 2010-06-29 2011-03-02 广东诺科冷暖设备有限公司 一种燃气壁挂炉
CN103470522A (zh) * 2013-09-13 2013-12-25 重庆民发汽车配件有限责任公司 汽车水箱电子扇冷气泵
CN105782070A (zh) * 2014-12-25 2016-07-20 芜湖东大汽车工业有限公司 水泵总成叶轮的叶片跳动值检测装置
CN204483556U (zh) * 2015-04-08 2015-07-22 广东梅雁吉祥水电股份有限公司 一种基于太阳能的多功能摇椅
CN105756948A (zh) * 2016-02-29 2016-07-13 蒋燕群 一种高效率的智能自控自吸泵
CN205533305U (zh) * 2016-03-31 2016-08-31 浙江耀达智能科技股份有限公司 水泵新型变频器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154322A1 (en) * 2004-08-26 2007-07-05 Stiles Robert W Jr Pumping system with two way communication
US20140003976A1 (en) * 2011-03-12 2014-01-02 Finn Mathiesen Høj Heat circulation pump
US9133982B1 (en) * 2014-07-29 2015-09-15 Erika Valdez Articulated computer mounting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210277907A1 (en) * 2020-03-09 2021-09-09 Dab Pumps S.P.A. Vertical electric pump with facilitated maintenance
US11867190B2 (en) * 2020-03-09 2024-01-09 Dab Pumps S.P.A. Vertical electric pump having instruments for control and monitoring the operation of the pump accessible from a single side of the pump
WO2023151887A1 (fr) * 2022-02-09 2023-08-17 KSB SE & Co. KGaA Connecteur m12 pour raccord de câble fileté

Also Published As

Publication number Publication date
CN108571471A (zh) 2018-09-25
EP3376042A1 (fr) 2018-09-19

Similar Documents

Publication Publication Date Title
US20180258938A1 (en) Mounting system for mounting a monitoring unit on a pump
US20100181244A1 (en) Pipe coupling with integrated filter and flow detector
JP2014181696A (ja) モジュール式のポンププラットフォーム
US20110272043A1 (en) Condensate removal system and method
US7301253B2 (en) Vehicle electric fan motor with universal mount
CN102333959A (zh) 用于连接电机式驱动单元与泵单元的设备
CN102484407A (zh) 防爆电机
CN104005965A (zh) 尤其用于生活供水的泵送设备
US20220221316A1 (en) Fluid Monitoring Apparatus
WO2018120659A1 (fr) Unité extérieure pour climatiseur et climatiseur associé
JP2021025478A (ja) ポンプ装置および電動機組立体
CN115418306A (zh) 细胞处理设备
US11774111B2 (en) Fan system, range hood equipped with the same, and mounting method thereof
CN211885101U (zh) 一种带流量计的智能消火栓监测终端及消火栓
KR20150081782A (ko) 전동 압축기
CN112361457A (zh) 一种空调室内机及空调器
KR101221056B1 (ko) 인라인 펌프의 기능을 수행할 수 있는 수중펌프
WO2018133417A1 (fr) Cartouche d'installation de composant électrique et moteur électrique associé
JP2021025479A (ja) ポンプ装置
JP2021027730A (ja) 電動機組立体およびポンプ装置
CN215763166U (zh) 一种偏航电机与齿轮箱的安装结构及风电设备
CN218640674U (zh) 轮毂电机和机器人
CN220605700U (zh) 编码器安装结构及电机
CN219179433U (zh) 一种用于水阀的检测装置
CN213167689U (zh) 一种柔性环抱式电机连接结构

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRUNDFOS HOLDING A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIKKELSEN, STEEN;REEL/FRAME:045174/0376

Effective date: 20180308

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION