US20180256695A1 - Combination vaccines with lower doses of antigen and/or adjuvant - Google Patents

Combination vaccines with lower doses of antigen and/or adjuvant Download PDF

Info

Publication number
US20180256695A1
US20180256695A1 US15/975,388 US201815975388A US2018256695A1 US 20180256695 A1 US20180256695 A1 US 20180256695A1 US 201815975388 A US201815975388 A US 201815975388A US 2018256695 A1 US2018256695 A1 US 2018256695A1
Authority
US
United States
Prior art keywords
antigen
composition
vaccine
aluminium
toxoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/975,388
Inventor
Barbara Baudner
David A.G. Skibinski
Manmohan Singh
Derek O'Hagan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45852630&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180256695(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Priority to US15/975,388 priority Critical patent/US20180256695A1/en
Publication of US20180256695A1 publication Critical patent/US20180256695A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0018Combination vaccines based on acellular diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/116Polyvalent bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/295Polyvalent viral antigens; Mixtures of viral and bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32634Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention is in the field of combination vaccines i.e. vaccines containing mixed immunogens from more than one pathogen, such that administration of the vaccine can simultaneously immunize a subject against more than one pathogen.
  • Vaccines containing antigens from more than one pathogenic organism within a single dose are known as “multivalent” or “combination” vaccines.
  • Various combination vaccines have been approved for human use in the EU and the USA, including trivalent vaccines for protecting against diphtheria, tetanus and pertussis (“DTP” vaccines) and trivalent vaccines for protecting against measles, mumps and rubella (“MMR” vaccines).
  • DTP diphtheria
  • MMR measles
  • Combination vaccines offer patients the advantage of receiving a reduced number of injections, which can lead to the clinical advantage of increased compliance (e.g. see chapter 29 of reference 1), particularly for pediatric vaccination.
  • combination vaccines can include relatively high amounts of aluminium salts as adjuvants which causes concern to some patient pressure groups despite empirical safety studies [2,3].
  • aluminium levels in known combination vaccines are as follows (see also Table A below):
  • a vaccine with lower levels of aluminium would be helpful for some patient groups, and it is an object of the present invention to provide such vaccines, ideally without loss of vaccine potency.
  • the invention provides a variety of combination vaccine compositions as well as methods for their manufacture.
  • the compositions have a relatively low amount of antigen and/or a relatively low amount of aluminium, but they can nevertheless have immunogenicity which is comparable to combination vaccines with a relatively high amount of antigen and/or a relatively high amount of aluminium.
  • Aluminium-free combination vaccine compositions are also provided e.g. compositions which are adjuvanted with an oil-in-water emulsion adjuvant.
  • the invention provides an immunogenic composition in a unit dose form for administration to a patient comprising (i) a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, and (ii) an aluminium salt adjuvant, wherein the amount of Al +++ in the unit dose is less than 0.2 mg.
  • the invention also provides an immunogenic composition
  • an immunogenic composition comprising (i) a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, wherein the concentration of Al +++ is less than 0.4 mg/ml.
  • the invention provides an immunogenic composition
  • an immunogenic composition comprising (i) an aluminium salt adjuvant and (ii) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
  • the invention provides an immunogenic composition in a unit dose form for administration to a patient comprising (i) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, and (ii) an aluminium salt adjuvant, wherein the amount of Al +++ in the unit dose is less than 0.2 mg.
  • the invention also provides an immunogenic composition
  • an immunogenic composition comprising (i) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, wherein the concentration of Al +++ is less than 0.4 mg/ml.
  • the invention provides an immunogenic composition
  • an immunogenic composition comprising (i) an oil-in-water emulsion adjuvant (ii) a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and a Hib conjugate (iii) a hepatitis B virus surface antigen and/or an inactivated poliovirus antigen.
  • the composition is ideally aluminium-free.
  • the aluminium salt adjuvant advantageously has an adsorbed TLR agonist, as discussed below.
  • a further aspect of the invention is an immunisation schedule for an infant in which only one or two DTaP-containing compositions are administered. This aspect is explained in further detail below.
  • Diphtheria is caused by Corynebacterium diphtheriae , a Gram-positive non-sporing aerobic bacterium. This organism expresses a prophage-encoded ADP-ribosylating exotoxin (‘diphtheria toxin’), which can be treated (e.g. using formaldehyde) to give a toxoid that is no longer toxic but that remains antigenic and is able to stimulate the production of specific anti-toxin antibodies after injection. Diphtheria toxoids are disclosed in more detail in chapter 13 of reference 1. Preferred diphtheria toxoids are those prepared by formaldehyde treatment. The diphtheria toxoid can be obtained by growing C.
  • diphtheriae in growth medium e.g. Fenton medium, or Linggoud & Fenton medium
  • growth medium e.g. Fenton medium, or Linggoud & Fenton medium
  • bovine extract e.g. bovine extract
  • formaldehyde treatment e.g. formaldehyde treatment
  • ultrafiltration and precipitation e.g. formaldehyde treatment
  • the toxoided material may then be treated by a process comprising sterile filtration and/or dialysis.
  • Quantities of diphtheria toxoid can be expressed in international units (IU).
  • IU international units
  • the NIBSC [6] supplies the ‘Diphtheria Toxoid Adsorbed Third International Standard 1999’ [7,8], which contains 160 IU per ampoule.
  • the ‘Lf’ unit (“flocculating units”, the “limes flocculating dose”, or the “limit of flocculation”) is defined as the amount of toxoid which, when mixed with one International Unit of antitoxin, produces an optimally flocculating mixture [9].
  • the NIBSC supplies ‘Diphtheria Toxoid, Plain’ [10], which contains 300 Lf per ampoule and ‘The 1st International Reference Reagent For Diphtheria Toxoid For Flocculation Test’ [11] which contains 900 Lf per ampoule.
  • concentration of diphtheria toxin in a composition can readily be determined using a flocculation assay by comparison with a reference material calibrated against such reference reagents.
  • the conversion between IU and Lf systems depends on the particular toxoid preparation.
  • a composition includes a ‘low dose’ of diphtheria toxoid.
  • concentration of diphtheria toxoid in the composition is ⁇ 8 Lf/ml e.g. ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4 ⁇ 3, ⁇ 2, ⁇ 1 Lf/ml, etc.
  • the amount of diphtheria toxoid is less than 4 Lf e.g. ⁇ 3, ⁇ 2, ⁇ 1, ⁇ 1/2 Lf, etc.
  • composition of the invention includes an aluminium salt adjuvant
  • diphtheria toxoid in the composition is preferably adsorbed (more preferably totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant.
  • Tetanus is caused by Clostridium tetani , a Gram-positive, spore-forming bacillus . This organism expresses an endopeptidase (‘tetanus toxin’), which can be treated to give a toxoid that is no longer toxic but that remains antigenic and is able to stimulate the production of specific anti-toxin antibodies after injection. Tetanus toxoids are disclosed in more detail in chapter 27 of reference 1. Preferred tetanus toxoids are those prepared by formaldehyde treatment. The tetanus toxoid can be obtained by growing C. tetani in growth medium (e.g. a Latham medium derived from bovine casein), followed by formaldehyde treatment, ultrafiltration and precipitation. The material may then be treated by a process comprising sterile filtration and/or dialysis.
  • growth medium e.g. a Latham medium derived from bovine casein
  • tetanus toxoid can be expressed in international units (IU).
  • IU international units
  • NIBSC supplies the ‘Tetanus Toxoid Adsorbed Third International Standard 2000’ [12,13], which contains 469 IU per ampoule.
  • the ‘Lf’ unit is an alternative to the IU system.
  • NIBSC supplies ‘The 1st International Reference Reagent for Tetanus Toxoid For Flocculation Test’ [14] which contains 1000 LF per ampoule.
  • concentration of diphtheria toxin in a composition can readily be determined using a flocculation assay by comparison with a reference material calibrated against such reference reagents.
  • a composition includes a ‘low dose’ of tetanus toxoid.
  • concentration of tetanus toxoid in the composition is ⁇ 3.5 Lf/ml e.g. ⁇ 3, ⁇ 2.5, ⁇ 2, ⁇ 1.5 ⁇ 1, ⁇ 1 ⁇ 2 Lf/ml, etc.
  • the amount of tetanus toxoid is less than 1.75 Lf e.g. ⁇ 1.5, ⁇ 1, ⁇ 1 ⁇ 2, ⁇ 1 ⁇ 4 Lf, etc.
  • composition of the invention includes an aluminium salt adjuvant then tetanus toxoid in the composition is preferably adsorbed (sometimes totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant.
  • Bordetella pertussis causes whooping cough.
  • Pertussis antigens in vaccines are either cellular (whole cell, in the form of inactivated B. pertussis cells; ‘wP’) or acellular (‘aP’).
  • Preparation of cellular pertussis antigens is well documented (e.g. see chapter 21 of reference 1) e.g. it may be obtained by heat inactivation of phase I culture of B. pertussis .
  • acellular antigens are used, one, two or (preferably) three of the following antigens are included: (1) detoxified pertussis toxin (pertussis toxoid, or ‘PT’); (2) filamentous hemagglutinin (‘FHA’); (3) pertactin (also known as the ‘69 kiloDalton outer membrane protein’).
  • PT pertussis toxoid
  • FHA filamentous hemagglutinin
  • pertactin also known as the ‘69 kiloDalton outer membrane protein’.
  • PT and FHA can be isolated from the fermentation broth (e.g. by adsorption on hydroxyapatite gel), whereas pertactin can be extracted from the cells by heat treatment and flocculation (e.g. using barium chloride).
  • the antigens can be purified in successive chromatographic and/or precipitation steps.
  • PT and FHA can be purified by hydrophobic chromatography, affinity chromatography and size exclusion chromatography.
  • Pertactin can be purified by ion exchange chromatography, hydrophobic chromatography and size exclusion chromatography, or by IMAC.
  • FHA and pertactin may be treated with formaldehyde prior to use according to the invention.
  • PT is preferably detoxified by treatment with formaldehyde and/or glutaraldehyde.
  • the PT may be a mutant PT in which enzymatic activity has been reduced by mutagenesis [15] (e.g. the 9K/129G double mutant [16]), but detoxification by chemical treatment is preferred.
  • the invention can use a PT-containing wP antigen or, preferably, a PT-containing aP antigen.
  • a composition of the invention will typically, in addition to the PT, include FHA and, optionally, pertactin. It can also optionally include fimbriae types 2 and 3.
  • a composition includes a ‘low dose’ of pertussis toxoid. This means that the concentration of pertussis toxoid in the composition is ⁇ 5 ⁇ g/ml e.g. ⁇ 4, ⁇ 3, ⁇ 2.5, ⁇ 2, ⁇ 1 ⁇ g/ml, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of pertussis toxoid is less than 2.5 ⁇ g e.g. ⁇ 2, ⁇ 1.5, ⁇ 1, ⁇ 0.5 ⁇ g, etc.
  • composition of the invention includes an aluminium salt adjuvant
  • pertussis toxoid in the composition is preferably adsorbed (sometimes totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant.
  • Any FHA can also be adsorbed to an aluminium hydroxide adjuvant.
  • Any pertactin can be adsorbed to an aluminium phosphate adjuvant.
  • Hib vaccines are typically based on the capsular saccharide antigen (e.g. chapter 14 of ref. 1), the preparation of which is well documented (e.g. references 17 to 26).
  • the Hib saccharide is conjugated to a carrier protein in order to enhance its immunogenicity, especially in children.
  • Typical carrier proteins are tetanus toxoid, diphtheria toxoid, the CRM197 derivative of diphtheria toxoid, H. influenzae protein D, and an outer membrane protein complex from serogroup B meningococcus.
  • Tetanus toxoid is a preferred carrier, as used in the product commonly referred to as ‘PRP-T’.
  • PRP-T can be made by activating a Hib capsular polysaccharide using cyanogen bromide, coupling the activated saccharide to an adipic acid linker (such as (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide), typically the hydrochloride salt), and then reacting the linker-saccharide entity with a tetanus toxoid carrier protein.
  • adipic acid linker such as (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
  • the saccharide moiety of the conjugate may comprise full-length polyribosylribitol phosphate (PRP) as prepared from Hib bacteria, and/or fragments of full-length PRP.
  • Conjugates with a saccharide:protein ratio (w/w) of between 1:5 (i.e. excess protein) and 5:1 (i.e. excess saccharide) may be used e.g. ratios between 1:2 and 5:1 and ratios between 1:1.25 and 1:2.5.
  • the weight ratio of saccharide to carrier protein is between 1:2.5 and 1:3.5.
  • the weight ratio of saccharide to carrier protein in the conjugate may be between 1:0.3 and 1:2 [27].
  • Administration of the Hib conjugate preferably results in an anti-PRP antibody concentration of ⁇ 0.15 ⁇ g/ml, and more preferably ⁇ 1 ⁇ g/ml, and these are the standard response thresholds.
  • a composition includes a ‘low dose’ of a Hib conjugate. This means that the concentration of Hib saccharide in the composition is ⁇ 5 ⁇ g/ml e.g. ⁇ 4, ⁇ 3, ⁇ 2.5, ⁇ 2, ⁇ 1, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of Hib is less than 2.5 ⁇ g e.g. ⁇ 2, ⁇ 1.5, ⁇ 1, ⁇ 0.5, etc.
  • Hib conjugate can be adsorbed onto that salt or can be unadsorbed.
  • Hepatitis B virus is one of the known agents which causes viral hepatitis.
  • the HBV virion consists of an inner core surrounded by an outer protein coat or capsid, and the viral core contains the viral DNA genome.
  • the major component of the capsid is a protein known as HBV surface antigen or, more commonly, ‘HBsAg’, which is typically a 226-amino acid polypeptide with a molecular weight of ⁇ 24 kDa.
  • All existing hepatitis B vaccines contain HBsAg, and when this antigen is administered to a normal vaccinee it stimulates the production of anti-HBsAg antibodies which protect against HBV infection.
  • HBsAg can be made in two ways.
  • the first method involves purifying the antigen in particulate form from the plasma of chronic hepatitis B carriers, as large quantities of HBsAg are synthesized in the liver and released into the blood stream during an HBV infection.
  • the second way involves expressing the protein by recombinant DNA methods.
  • HBsAg for use with the method of the invention is recombinantly expressed in yeast cells. Suitable yeasts include Saccharomyces (such as S. cerevisiae ) or Hanensula (such as H. polymorpha ) hosts.
  • yeast-expressed HBsAg is generally non-glycosylated, and this is the most preferred form of HBsAg for use with the invention.
  • Yeast-expressed HBsAg is highly immunogenic and can be prepared without the risk of blood product contamination.
  • the HBsAg will generally be in the form of substantially-spherical particles (average diameter of about 20 nm), including a lipid matrix comprising phospholipids.
  • Yeast-expressed HBsAg particles may include phosphatidylinositol, which is not found in natural HBV virions.
  • the particles may also include a non-toxic amount of LPS in order to stimulate the immune system [28].
  • the particles may retain non-ionic surfactant (e.g. polysorbate 20) if this was used during disruption of yeast [29].
  • a preferred method for HBsAg purification involves, after cell disruption: ultrafiltration; size exclusion chromatography; anion exchange chromatography; ultracentrifugation; desalting; and sterile filtration. Lysates may be precipitated after cell disruption (e.g. using a polyethylene glycol), leaving HBsAg in solution, ready for ultrafiltration.
  • HBsAg may be subjected to dialysis (e.g. with cysteine), which can be used to remove any mercurial preservatives such as thimerosal that may have been used during HBsAg preparation [30]. Thimerosal-free preparation is preferred.
  • the HBsAg is preferably from HBV subtype adw2.
  • a composition includes a ‘low dose’ of HBsAg.
  • concentration of HBsAg in the composition is ⁇ 5 ⁇ g/ml e.g. ⁇ 4, ⁇ 3, ⁇ 2.5, ⁇ 2, ⁇ 1, etc.
  • the amount of HBsAg is less than 2.5 ⁇ g e.g. ⁇ 2, ⁇ 1.5, ⁇ 1, ⁇ 0.5, etc.
  • composition of the invention includes an aluminium salt adjuvant then HBsAg can be adsorbed onto that salt (preferably adsorbed onto an aluminium phosphate adjuvant).
  • IPV Inactivated Poliovirus Antigen
  • Poliomyelitis can be caused by one of three types of poliovirus.
  • the three types are similar and cause identical symptoms, but they are antigenically very different and infection by one type does not protect against infection by others.
  • Sabin strains of types 1 to 3 can be used e.g. as discussed in references 31 & 32.
  • Polioviruses may be grown in cell culture.
  • a preferred culture uses a Vero cell line, which is a continuous cell line derived from monkey kidney. Vero cells can conveniently be cultured microcarriers. Culture of the Vero cells before and during viral infection may involve the use of bovine-derived material, such as calf serum, and of lactalbumin hydrolysate (e.g. obtained by enzymatic degradation of lactalbumin). Such bovine-derived material should be obtained from sources which are free from BSE or other TSEs.
  • virions may be purified using techniques such as ultrafiltration, diafiltration, and chromatography. Prior to administration to patients, polioviruses must be inactivated, and this can be achieved by treatment with formaldehyde before the viruses are used in the process of the invention.
  • viruses are preferably grown, purified and inactivated individually, and are then combined to give a bulk mixture for use with the invention.
  • a composition includes a low dose′ of a poliovirus.
  • a Type 1 poliovirus this means that the concentration of the virus in the composition is ⁇ 20 DU/ml e.g. ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, etc.
  • a Type 2 poliovirus this means that the concentration of the virus in the composition is ⁇ 4 DU/ml e.g. ⁇ 3, ⁇ 2, ⁇ 1, ⁇ 0.5, etc.
  • Type 3 poliovirus this means that the concentration of the virus in the composition is ⁇ 16 DU/ml e.g. ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 8, ⁇ 6, etc.
  • the three antigens can be present at a DU ratio of 5:1:4 respectively, or at any other suitable ratio e.g. a ratio of 15:32:45 when using Sabin strains [31].
  • a low dose of antigen from Sabin strains is particularly useful, with ⁇ 10 DU type 1, ⁇ 20 DU type 2, and ⁇ 30 DU type 3 (per unit dose).
  • composition of the invention includes an aluminium salt adjuvant then polioviruses are preferably not adsorbed to any adjuvant before they are formulated, but after formulation they may become adsorbed onto any aluminium adjuvant(s) in the composition.
  • immunogenic compositions of the invention may include antigens from further pathogens.
  • these antigens may be from N. meningitidis (one or more of serogroups A, B, C, W135 and/or Y) or S. pneumoniae.
  • compositions include a Neisseria meningitidis capsular saccharide conjugate there may be one or more than one such conjugate.
  • Including 2, 3, or 4 of serogroups A, C, W135 and Y is typical e.g. A+C, A+W135, A+Y, C+W135, C+Y, W135+Y, A+C+W135, A+C+Y, A+W135+Y, A+C+W135+Y, etc.
  • Components including saccharides from all four of serogroups A, C, W135 and Y are useful, as in the MENACTRATM and MENVEOTM products.
  • conjugates from more than one serogroup may be present at substantially equal masses e.g. the mass of each serogroup's saccharide is within ⁇ 10% of each other.
  • a typical quantity per serogroup is between 1 ⁇ g and 20 ⁇ g e.g. between 2 and 10 ⁇ g per serogroup, or about 4 ⁇ g or about 5 ⁇ g or about 10 ⁇ g.
  • a double mass of serogroup A saccharide may be used.
  • SBA serum bactericidal assay
  • the capsular saccharide of serogroup A meningococcus is a homopolymer of ( ⁇ 1 ⁇ 6)-linked N-acetyl-D-mannosamine-1-phosphate, with partial 0-acetylation in the C3 and C4 positions. Acetylation at the C-3 position can be 70-95%. Conditions used to purify the saccharide can result in de-O-acetylation (e.g. under basic conditions), but it is useful to retain OAc at this C-3 position. In some embodiments, at least 50% (e.g. at least 60%, 70%, 80%, 90%, 95% or more) of the mannosamine residues in a serogroup A saccharides are O-acetylated at the C-3 position. Acetyl groups can be replaced with blocking groups to prevent hydrolysis [35], and such modified saccharides are still serogroup A saccharides within the meaning of the invention.
  • the serogroup C capsular saccharide is a homopolymer of ( ⁇ 2 ⁇ 9)-linked sialic acid (N-acetyl neuraminic acid, or ‘NeuNAc’).
  • the saccharide structure is written as ⁇ 9)-Neu p NAc 7/8 OAc-( ⁇ 2 ⁇ .
  • Most serogroup C strains have 0-acetyl groups at C-7 and/or C-8 of the sialic acid residues, but about 15% of clinical isolates lack these 0-acetyl groups [36,37].
  • OAc ⁇ O-acetylated
  • OAc+ de-O-acetylated
  • Serogroup C saccharides used with the invention may be prepared from either OAc+ or OAc ⁇ strains.
  • Licensed MenC conjugate vaccines include both OAc ⁇ (NEISVAC-CTM) and OAc+ (MENJUGATETM & MENINGITECTM) saccharides.
  • strains for production of serogroup C conjugates are OAc+ strains, e.g. of serotype 16, serosubtype P1.7a, 1, etc.
  • OAc+ strains may be used.
  • OAc+ strains in serosubtype P1.1 are also useful, such as the C11 strain.
  • Preferred MenC saccharides are taken from OAc+ strains, such as strain C11.
  • the serogroup W135 saccharide is a polymer of sialic acid-galactose disaccharide units. Like the serogroup C saccharide, it has variable 0-acetylation, but at sialic acid 7 and 9 positions [41].
  • the structure is written as: ⁇ 4)-D-Neup5Ac(7/9OAc)- ⁇ -(2 ⁇ 6)-D-Gal- ⁇ -(1 ⁇ .
  • the serogroup Y saccharide is similar to the serogroup W135 saccharide, except that the disaccharide repeating unit includes glucose instead of galactose. Like serogroup W135, it has variable 0-acetylation at sialic acid 7 and 9 positions [41].
  • the serogroup Y structure is written as: ⁇ 4)-D-Neup5Ac(7/9OAc)- ⁇ -(2-6)-D-Glc- ⁇ -(1 ⁇ .
  • the saccharides used according to the invention may be O-acetylated as described above (e.g. with the same 0-acetylation pattern as seen in native capsular saccharides), or they may be partially or totally de-O-acetylated at one or more positions of the saccharide rings, or they may be hyper-O-acetylated relative to the native capsular saccharides.
  • reference 42 reports the use of serogroup Y saccharides that are more than 80% de-O-acetylated.
  • the saccharide moieties in meningococcal conjugates may comprise full-length saccharides as prepared from meningococci, and/or may comprise fragments of full-length saccharides i.e. the saccharides may be shorter than the native capsular saccharides seen in bacteria.
  • the saccharides may thus be depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides.
  • One depolymerisation method involves the use of hydrogen peroxide [43]. Hydrogen peroxide is added to a saccharide (e.g. to give a final H 2 O 2 concentration of 1%), and the mixture is then incubated (e.g.
  • saccharides used to prepare conjugates for use according to the invention may be obtainable by any of these depolymerisation methods.
  • Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides.
  • the average molecular weight for saccharides from each of meningococcal serogroups A, C, W135 and Y may be more than 50 kDa e.g. ⁇ 75 kDa, ⁇ 100 kDa, ⁇ 110 kDa, ⁇ 120 kDa, ⁇ 130 kDa, etc.
  • a MenA saccharide may be in the range 50-500 kDa e.g. 60-80 kDa; a MenC saccharide may be in the range 100-210 kDa; a MenW135 saccharide may be in the range 60-190 kDa e.g. 120-140 kDa; and/or a MenY saccharide may be in the range 60-190 kDa e.g. 150-160 kDa.
  • the mass of Hib saccharide can be substantially the same as the mass of a particular meningococcal serogroup saccharide. In some embodiments, the mass of Hib saccharide will be more than (e.g. at least 1.5 ⁇ ) the mass of a particular meningococcal serogroup saccharide. In some embodiments, the mass of Hib saccharide will be less than (e.g. at least 1.5 ⁇ less) the mass of a particular meningococcal serogroup saccharide.
  • composition includes saccharide from more than one meningococcal serogroup, there is an mean saccharide mass per serogroup. If substantially equal masses of each serogroup are used then the mean mass will be the same as each individual mass; where non-equal masses are used then the mean will differ e.g. with a 10:5:5:5 ⁇ g amount for a MenACWY mixture, the mean mass is 6.25 ⁇ g per serogroup.
  • the mass of Hib saccharide will be substantially the same as the mean mass of meningococcal saccharide per serogroup. In some embodiments, the mass of Hib saccharide will be more than (e.g.
  • the mass of Hib saccharide will be less than (e.g. at least 1.5 ⁇ ) the mean mass of meningococcal saccharide per serogroup [46].
  • the capsular saccharide of Neisseria meningitidis serogroup B is not a useful vaccine immunogen and so polypeptide antigens can be used instead.
  • the “universal vaccine for serogroup B meningococcus” reported by Novartis Vaccines in ref. 47 can be used with the invention.
  • a composition of the invention can include a factor H binding protein (fHBP) antigen.
  • fHBP factor H binding protein
  • the fHBP antigen has been characterised in detail. It has also been known as protein ‘741’ [SEQ IDs 2535 & 2536 in ref. 48], ‘NMB1870’, ‘GNA1870’ [refs. 49-51], ‘P2086’, ‘LP2086’ or ‘ORF2086’ [52-54]. It is naturally a lipoprotein and is expressed across all meningococcal serogroups.
  • the fHBP antigen falls into three distinct variants [55] and it is preferred to include antigens for all variants.
  • a composition of the invention may include a Neisserial Heparin Binding Antigen (NHBA) [56]. This antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB2132.
  • NHBA Neisserial Heparin Binding Antigen
  • a composition of the invention may include a NadA antigen.
  • the NadA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB1994.
  • a composition of the invention may include a NspA antigen.
  • the NspA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0663.
  • a composition of the invention may include a NhhA antigen.
  • the NhhA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0992.
  • a composition of the invention may include an App antigen.
  • the App antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB1985.
  • a composition of the invention may include an Omp85 antigen.
  • Omp85 was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0182.
  • a composition of the invention may include a meningococcal outer membrane vesicle.
  • compositions of the invention can include at least one pneumococcal capsular saccharide conjugated to a carrier protein.
  • the invention can include capsular saccharide from one or more different pneumococcal serotypes. Where a composition includes saccharide antigens from more than one serotype, these are preferably prepared separately, conjugated separately, and then combined. Methods for purifying pneumococcal capsular saccharides are known in the art (e.g. see reference 58) and vaccines based on purified saccharides from 23 different serotypes have been known for many years. Improvements to these methods have also been described e.g. for serotype 3 as described in reference 59, or for serotypes 1, 4, 5, 6A, 6B, 7F and 19A as described in reference 60.
  • Pneumococcal capsular saccharide(s) will typically be selected from the following serotypes: 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and/or 33F.
  • a composition may include a capsular saccharide from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or more different serotypes.
  • Compositions which include at least serotype 6B saccharide are useful.
  • a useful combination of serotypes is a 7-valent combination e.g. including capsular saccharide from each of serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F.
  • Another useful combination is a 9-valent combination e.g. including capsular saccharide from each of serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F.
  • Another useful combination is a 10-valent combination e.g. including capsular saccharide from each of serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F.
  • An 11-valent combination may further include saccharide from serotype 3.
  • a 12-valent combination may add to the 10-valent mixture: serotypes 6A and 19A; 6A and 22F; 19A and 22F; 6A and 15B; 19A and 15B; or 22F and 15B.
  • a 13-valent combination may add to the 11-valent mixture: serotypes 19A and 22F; 8 and 12F; 8 and 15B; 8 and 19A; 8 and 22F; 12F and 15B; 12F and 19A; 12F and 22F; 15B and 19A; 15B and 22F; 6A and 19A, etc.
  • a useful 13-valent combination includes capsular saccharide from serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19 (or 19A), 19F and 23F e.g. prepared as disclosed in references 61 to 64.
  • One such combination includes serotype 6B saccharide at about 8 ⁇ g/ml and the other 12 saccharides at concentrations of about 4 ⁇ g/ml each.
  • Another such combination includes serotype 6A and 6B saccharides at about 8 ⁇ g/ml each and the other 11 saccharides at about 4 ⁇ g/ml each.
  • Suitable carrier proteins for conjugates include bacterial toxins, such as diphtheria or tetanus toxins, or toxoids or mutants thereof. These are commonly used in conjugate vaccines.
  • the CRM197 diphtheria toxin mutant is useful [65].
  • Other suitable carrier proteins include synthetic peptides [66,67], heat shock proteins [68,69], pertussis proteins [70,71], cytokines [72], lymphokines [72], hormones [72], growth factors [72], artificial proteins comprising multiple human CD4 + T cell epitopes from various pathogen-derived antigens [73] such as N19 [74], protein D from H.
  • influenzae [ 75-77], pneumolysin [78] or its non-toxic derivatives [79], pneumococcal surface protein PspA [80], iron-uptake proteins [81], toxin A or B from C. difficile [82], recombinant Pseudomonas aeruginosa exoprotein A (rEPA) [83], etc.
  • CRM197 particularly useful carrier proteins for pneumococcal conjugate vaccines are CRM197, tetanus toxoid, diphtheria toxoid and H. influenzae protein D.
  • CRM197 is used in PREVNARTM.
  • a 13-valent mixture may use CRM197 as the carrier protein for each of the 13 conjugates, and CRM197 may be present at about 55-60 ⁇ g/ml.
  • composition includes conjugates from more than one pneumococcal serotype
  • a mixture of different conjugates will usually be formed by preparing each serotype conjugate separately, and then mixing them to form a mixture of separate conjugates.
  • Reference 84 describes potential advantages when using different carrier proteins in multivalent pneumococcal conjugate vaccines, but the PREVNARTM product successfully uses the same carrier for each of seven different serotypes.
  • a carrier protein may be covalently conjugated to a pneumococcal saccharide directly or via a linker.
  • Various linkers are known. For example, attachment may be via a carbonyl, which may be formed by reaction of a free hydroxyl group of a modified saccharide with CDI [85,86] followed by reaction with a protein to form a carbamate linkage. Carbodiimide condensation can be used [87].
  • An adipic acid linker can be used, which may be formed by coupling a free —NH 2 group (e.g.
  • linkers include ⁇ -propionamido [90], nitrophenyl-ethylamine [91], haloacyl halides [92], glycosidic linkages [93], 6-aminocaproic acid [94], N-succinimidyl-3-(2-pyridyldithio)-propionate (SPDP) [95], adipic acid dihydrazide ADH [96], C 4 to C 12 moieties [97], etc.
  • SPDP N-succinimidyl-3-(2-pyridyldithio)-propionate
  • Conjugation via reductive amination can be used.
  • the saccharide may first be oxidised with periodate to introduce an aldehyde group, which can then form a direct covalent linkage to a carrier protein via reductive amination e.g. to the ⁇ -amino group of a lysine. If the saccharide includes multiple aldehyde groups per molecule then this linkage technique can lead to a cross-linked product, where multiple aldehydes react with multiple carrier amines.
  • This cross-linking conjugation technique is particularly useful for at least pneumococcal serotypes 4, 6B, 9V, 14, 18C, 19F and 23F.
  • a pneumococcal saccharide may comprise a full-length intact saccharide as prepared from pneumococcus, and/or may comprise fragments of full-length saccharides i.e. the saccharides may be shorter than the native capsular saccharides seen in bacteria.
  • the saccharides may thus be depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides. Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides. Where more than one pneumococcal serotype is used then it is possible to use intact saccharides for each serotype, fragments for each serotype, or to use intact saccharides for some serotypes and fragments for other serotypes.
  • compositions include saccharide from any of serotypes 4, 6B, 9V, 14, 19F and 23F, these saccharides are preferably intact. In contrast, where a composition includes saccharide from serotype 18C, this saccharide is preferably depolymerised.
  • a serotype 3 saccharide may also be depolymerised, For instance, a serotype 3 saccharide can be subjected to acid hydrolysis for depolymerisation [61] e.g. using acetic acid. The resulting fragments may then be oxidised for activation (e.g. periodate oxidation, maybe in the presence of bivalent cations e.g. with MgCl 2 ), conjugated to a carrier (e.g. CRM197) under reducing conditions (e.g. using sodium cyanoborohydride), and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [61]. Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • a serotype 1 saccharide may be at least partially de-O-acetylated e.g. achieved by alkaline pH buffer treatment [62] such as by using a bicarbonate/carbonate buffer.
  • Such (partially) de-O-acetylated saccharides can be oxidised for activation (e.g. periodate oxidation), conjugated to a carrier (e.g. CRM197) under reducing conditions (e.g. using sodium cyanoborohydride), and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [62].
  • Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • a serotype 19A saccharide may be oxidised for activation (e.g. periodate oxidation), conjugated to a carrier (e.g. CRM197) in DMSO under reducing conditions, and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [98]. Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • a carrier e.g. CRM197
  • any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [98].
  • Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • One or more pneumococcal capsular saccharide conjugates may be present in lyophilised form.
  • Pneumococcal conjugates can ideally elicit anticapsular antibodies that bind to the relevant saccharide e.g. elicit an anti-saccharide antibody level ⁇ 0.20 ⁇ g/mL [99].
  • the antibodies may be evaluated by enzyme immunoassay (EIA) and/or measurement of opsonophagocytic activity (OPA).
  • EIA enzyme immunoassay
  • OPA opsonophagocytic activity
  • compositions of the invention include an aluminium salt adjuvant, although other embodiments may be aluminium-free.
  • Aluminium salt adjuvants currently in use are typically referred to either as “aluminium hydroxide” or as “aluminium phosphate” adjuvants. These are names of convenience, however, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of reference 100).
  • the invention can use any of the “hydroxide” or “phosphate” salts that useful as adjuvants.
  • Aluminium salts which include hydroxide ions are the preferred insoluble metal salts for use with the present invention as these hydroxide ions can readily undergo ligand exchange for adsorption of antigen and/or TLR agonists.
  • preferred salts for adsorption of TLR agonists are aluminium hydroxide and/or aluminium hydroxyphosphate. These have surface hydroxyl moieties which can readily undergo ligand exchange with phosphorus-containing groups (e.g. phosphates, phosphonates) to provide stable adsorption.
  • An aluminium hydroxide adjuvant is most preferred.
  • aluminium hydroxide typically aluminium oxyhydroxide salts, which are usually at least partially crystalline.
  • Aluminium oxyhydroxide which can be represented by the formula AlO(OH)
  • IR infrared
  • adsorption band at 1070 cm ⁇ 1 and a strong shoulder at 3090-3100 cm ⁇ 1 (chapter 9 of ref. 100).
  • the degree of crystallinity of an aluminium hydroxide adjuvant is reflected by the width of the diffraction band at half height (WHH), with poorly-crystalline particles showing greater line broadening due to smaller crystallite sizes.
  • the surface area increases as WHH increases, and adjuvants with higher WHH values have been seen to have greater capacity for antigen adsorption.
  • a fibrous morphology e.g. as seen in transmission electron micrographs
  • aluminium hydroxide adjuvants e.g. with needle-like particles with diameters about 2 nm.
  • the PZC of aluminium hydroxide adjuvants is typically about 11 i.e. the adjuvant itself has a positive surface charge at physiological pH.
  • Adsorptive capacities of between 1.8-2.6 mg protein per mg Al +++ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
  • the adjuvants known as “aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate. They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence the degree of substitution of phosphate for hydroxyl in the salt. Hydroxyphosphates generally have a PO 4 /Al molar ratio between 0.3 and 0.99. Hydroxyphosphates can be distinguished from strict AlPO 4 by the presence of hydroxyl groups. For example, an IR spectrum band at 3164 cm ⁇ 1 (e.g. when heated to 200° C.) indicates the presence of structural hydroxyls (chapter 9 of ref. 100).
  • the PO 4 /Al 3+ molar ratio of an aluminium phosphate adjuvant will generally be between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95 ⁇ 0.1.
  • the aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts.
  • a typical adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al 3+ /ml.
  • the aluminium phosphate will generally be particulate. Typical diameters of the particles are in the range 0.5-20 ⁇ m (e.g. about 5-10 ⁇ m) after any antigen adsorption.
  • Adsorptive capacities of between 0.7-1.5 mg protein per mg Al +++ at pH 7.4 have been reported for aluminium phosphate adjuvants.
  • a composition can include a mixture of both an aluminium hydroxide and an aluminium phosphate, and components may be adsorbed to one or both of these salts.
  • An aluminium phosphate solution used to prepare a composition of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary.
  • the aluminium phosphate solution is preferably sterile and pyrogen-free.
  • the aluminium phosphate solution may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM.
  • the aluminium phosphate solution may also comprise sodium chloride.
  • the concentration of sodium chloride is preferably in the range of 0.1 to 100 mg/ml (e.g. 0.5-50 mg/ml, 1-20 mg/ml, 2-10 mg/ml) and is more preferably about 3 ⁇ 1 mg/ml.
  • the presence of NaCl facilitates the correct measurement of pH prior to adsorption of antigens.
  • a composition includes less than 0.2 mg Al +++ per unit dose.
  • the amount of Al +++ can be lower than this e.g. ⁇ 150 ⁇ g, ⁇ 100 ⁇ g, ⁇ 75 ⁇ g, ⁇ 50 ⁇ g, ⁇ 25 ⁇ g, ⁇ 10 ⁇ g, etc.
  • a composition has an Al +++ concentration below 0.4 mg/ml.
  • the concentration of Al +++ can be lower than this e.g. ⁇ 300 ⁇ g/ml, ⁇ 250 ⁇ g/ml, ⁇ 200 ⁇ g/ml, ⁇ 150 ⁇ g/ml, ⁇ 100 ⁇ g/ml, ⁇ 75 ⁇ g/ml, ⁇ 50 ⁇ g/ml, ⁇ 20 ⁇ g/ml, etc.
  • compositions of the invention include an aluminium-based adjuvant
  • settling of components may occur during storage.
  • the composition should therefore be shaken prior to administration to a patient.
  • the shaken composition will be a turbid white suspension.
  • composition of the invention includes an aluminium salt adjuvant then it is possible to adsorb a TLR agonist to that aluminium salt, thereby improving the immunopotentiating effect of the adjuvant [102]. This can lead to a better immune response and/or permits a reduction in the amount of aluminium in the composition while maintaining an equivalent adjuvant effect.
  • a composition of the invention can therefore include an aluminium salt (preferably an aluminium hydroxide) to which a TLR agonist (preferably a TLR7 agonist, and more preferably an agonist of human TLR7) is adsorbed.
  • a TLR agonist preferably a TLR7 agonist, and more preferably an agonist of human TLR7
  • the agonist and the salt can form a stable adjuvant complex which retains the salt's ability to adsorb antigens.
  • TLR agonists with adsorptive properties typically include a phosphorus-containing moiety which can undergo ligand exchange with surface groups on an aluminium salt e.g. with surface hydroxide groups.
  • a useful TLR agonist may include a phosphate, a phosphonate, a phosphinate, a phosphonite, a phosphinite, a phosphate, etc.
  • Preferred TLR agonists include at least one phosphate or phosphonate group [102].
  • TLR7 agonists Useful adsorptive TLR2 and TLR7 agonists are disclosed in references 102 to 106.
  • Specific adsorptive TLR7 agonists of interest include, but are not limited to, compounds 1A to 27A in Table A on pages 79-84 of reference 107.
  • the TLR7 agonist can be one of:
  • these compounds can be adsorbed to aluminium salt adjuvants by simple mixing.
  • the compound (1 mg/mL) can be dissolved in 10 mM NaOH and added to a suspension of aluminium hydroxide adjuvant (2 mg/mL) to give a final TLR agonist concentration of 100 ⁇ g/dose.
  • 0.1 mg/mL, more preferably 0.01 mg/mL of the compound is added to 2 mg/mL aluminium hydroxide.
  • the mass ratio of aluminium salt to TLR agonist is between 2:1 and 400:1, preferably 20:1, more preferably 200:1. Incubation at room temperature for 1 hour usually suffices for >90% adsorption. Adsorption can take place across a range of pH, e.g. from 6.5 to 9.
  • an aluminium salt and a TLR agonist are prepared in histidine buffer e.g. between 5-20 mM (such as 10 mM) histidine buffer, conveniently at pH 6.5.
  • histidine buffer e.g. between 5-20 mM (such as 10 mM) histidine buffer, conveniently at pH 6.5.
  • the pH should be in the range between 6.0 and 6.5.
  • the pH is also crucial for the integrity and stability of the antigens, and in case of protein antigens, for their proper folding in the final vaccine formulation.
  • TLR7 agonist is ‘compound T’ (compound 6A on page 80 of reference 107). It has a solubility of about 4 mg/ml in water and adsorbs well to aluminium hydroxide:
  • the weight ratio of agonist to Al +++ will be less than 5:1 e.g. less than 4:1, less than 3:1, less than 2:1, or less than 1:1.
  • the maximum concentration of TLR agonist would be 2.5 mg/ml.
  • a lower mass of TLR agonist than of Al +++ is typical e.g. per dose, 100 ⁇ g of TLR agonist with 0.2 mg Al +++ , etc.
  • the amount of TLR agonist in a unit dose will fall in a relatively broad range that can be determined through routine trials.
  • An amount of between 1-1000 ⁇ g/dose can be used e.g. from 5-100 ⁇ g per dose or from 10-100 ⁇ g per dose, and ideally ⁇ 300 ⁇ g per dose e.g. about 5 ⁇ g, 10 ⁇ g, 20 ⁇ g, 25 ⁇ g, 50 ⁇ g or 100 ⁇ g per dose.
  • concentration of a TLR agonist in a composition of the invention may be from 2-2000 ⁇ g/ml e.g. from 10-200 ⁇ g/ml, or about 5, 10, 20, 40, 50, 100 or 200 ⁇ g/ml, and ideally ⁇ 600 ⁇ g/ml.
  • At least 50% (by mass) of an agonist in the composition is adsorbed to the metal salt e.g. ⁇ 60%, ⁇ 70%, ⁇ 80%, ⁇ 85%, ⁇ 90%, ⁇ 92%, ⁇ 94%, ⁇ 95%, ⁇ 96%, ⁇ 97%, ⁇ 98%, ⁇ 99%, or even 100%.
  • composition of the invention includes a TLR agonist adsorbed to a metal salt, and also includes a buffer
  • concentration of any phosphate ions in the buffer should be less than 50 mM (e.g. between 1-15 mM) as a high concentration of phosphate ions can cause desorption.
  • Use of a histidine buffer is preferred.
  • Oil-in-water emulsions are known to be useful adjuvants e.g. MF59 and AS03 are both present in authorised vaccines in Europe.
  • Various useful emulsion adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible.
  • the oil droplets in the emulsion generally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.
  • the invention can be used with oils such as those from an animal (such as fish) or vegetable source.
  • Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils.
  • Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
  • 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils.
  • Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention.
  • the procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art.
  • Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
  • a number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids.
  • Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein.
  • Squalane the saturated analog to squalene
  • Fish oils, including squalene and squalane are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
  • Surfactants can be classified by their ‘HLB’ (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16.
  • the invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol
  • Non-ionic surfactants are preferred.
  • Preferred surfactants for including in the emulsion are polysorbate 80 (polyoxyethylene sorbitan monooleate; Tween 80), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
  • surfactants can be used e.g. Tween 80/Span 85 mixtures.
  • a combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable.
  • Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
  • Preferred amounts of surfactants are: polyoxyethylene sorbitan esters (such as polysorbate 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
  • polyoxyethylene sorbitan esters such as polysorbate 80
  • octyl- or nonylphenoxy polyoxyethanols such as Triton X-100, or other detergents in the Triton series
  • polyoxyethylene ethers such as laureth 9
  • oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:
  • Preferred oil-in-water emulsions used with the invention comprise squalene and/or polysorbate 80.
  • the emulsions may be mixed with antigens during manufacture, or they may be mixed extemporaneously at the time of delivery.
  • the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use.
  • the antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids.
  • the volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1. If emulsion and antigen are stored separately in a multidose kit (from which multiple unit doses can be taken) then the product may be presented as a vial containing emulsion and a vial containing aqueous antigen, for mixing to give adjuvanted liquid vaccine.
  • MF59 When used in formulating a vaccine, MF59 is preferably mixed with antigens in phosphate-buffered saline to preserve the long-term stability of MF59 formulations and to guarantee physiological pH and osmolarity values in the final vaccine.
  • This mixing can be at a 1:1 volume ratio.
  • the PBS can have pH 7.2.
  • compositions include a tocopherol
  • any of the a, y, 8, c or tocopherols can be used, but ⁇ -tocopherols are preferred.
  • the tocopherol can take several forms e.g. different salts and/or isomers. Salts include organic salts, such as succinate, acetate, nicotinate, etc. D- ⁇ -tocopherol and DL- ⁇ -tocopherol can both be used.
  • Tocopherols are advantageously included in vaccines for use in elderly patients (e.g. aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group. They also have antioxidant properties that may help to stabilize the emulsions [121].
  • a preferred ⁇ -tocopherol is DL- ⁇ -tocopherol, and the preferred salt of this tocopherol is the succinate.
  • the succinate salt has been found to cooperate with TNF-related ligands in vivo.
  • compositions of the invention may comprise: (a) an antigenic component; and (b) a non-antigenic component.
  • the antigenic component can comprise or consist of the antigens discussed above.
  • the non-antigenic component can include carriers, adjuvants, excipients, buffers, etc. These non-antigenic components may have various sources. For example, they may be present in one of the antigen or adjuvant materials that is used during manufacture or may be added separately from those components.
  • compositions of the invention include one or more pharmaceutical carrier(s) and/or excipient(s).
  • a physiological salt such as a sodium salt.
  • Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 280-320 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [122], but keeping osmolality in this range is nevertheless preferred.
  • Compositions of the invention may include one or more buffers.
  • Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • a composition of the invention can be substantially free from surfactants (prior to mixing with any emulsion adjuvant).
  • the composition of the invention can be substantially free from polysorbate 80 e.g. it contains less than 0.1 ⁇ g/ml of polysorbate 80, and preferably contains no detectable polysorbate 80.
  • a composition includes HBsAg, however, it will usually include polysorbate 20 e.g. if it was used during yeast disruption [29].
  • the pH of a composition of the invention will generally be between 6.0 and 7.5.
  • a manufacturing process may therefore include a step of adjusting the pH of a composition prior to packaging.
  • Aqueous compositions administered to a patient can have a pH of between 5.0 and 7.5, and more typically between 5.0 and 6.0 for optimum stability; where a diphtheria toxoid and/or tetanus toxoid is present, the pH is ideally between 6.0 and 7.0.
  • compositions of the invention are preferably sterile.
  • compositions of the invention are preferably non-pyrogenic e.g. containing ⁇ 1 EU (endotoxin unit, a standard measure; 1 EU is equal to 0.2 ng FDA reference standard Endotoxin EC-2 ‘RSE’) per dose, and preferably ⁇ 0.1 EU per dose.
  • ⁇ 1 EU endotoxin unit, a standard measure; 1 EU is equal to 0.2 ng FDA reference standard Endotoxin EC-2 ‘RSE’
  • compositions of the invention are preferably gluten free.
  • a vaccine product may be a suspension with a cloudy appearance. This appearance means that microbial contamination is not readily visible, and so the vaccine preferably contains an antimicrobial agent. This is particularly important when the vaccine is packaged in multidose containers.
  • Preferred antimicrobials for inclusion are 2-phenoxyethanol and thimerosal. It is preferred, however, not to use mercurial preservative's (e.g. thimerosal) during the process of the invention. Thus, between 1 and all of the components used in the process may be substantially free from mercurial preservative. However, the presence of trace amounts may be unavoidable if a component was treated with such a preservative before being used in the invention.
  • the final composition contains less than about 25 ng/ml mercury. More preferably, the final vaccine product contains no detectable thimerosal. This will generally be achieved by removing the mercurial preservative from an antigen preparation prior to its addition in the process of the invention or by avoiding the use of thimerosal during the preparation of the components used to make the composition. Mercury-free compositions are preferred.
  • compositions of the invention will generally be in aqueous form.
  • the invention can provide bulk material which is suitable for packaging into individual doses, which can then be distributed for administration to patients. Concentrations discussed above are typically concentrations in final packaged dose, and so concentrations in bulk vaccine may be higher (e.g. to be reduced to final concentrations by dilution).
  • compositions of the invention are preferably administered to patients in 0.5 ml unit doses.
  • References to 0.5 ml doses will be understood to include normal variance e.g. 0.5 ml ⁇ 0.05 ml.
  • multiple dose amounts will be extracted and packaged together in a single container e.g. 5 ml for a 10-dose multidose container (or 5.5 ml with 10% overfill).
  • Residual material from individual antigenic components may also be present in trace amounts in the final vaccine produced by the process of the invention.
  • the final vaccine product may retain trace amounts of formaldehyde (e.g. less than 10 ⁇ g/ml, preferably ⁇ 5 ⁇ g/ml).
  • Media or stabilizers may have been used during poliovirus preparation (e.g. Medium 199), and these may carry through to the final vaccine.
  • free amino acids e.g.
  • antigen preparations may be retained in the final vaccine at ⁇ 100 ⁇ g/ml, preferably ⁇ 10 ⁇ g/ml, each.
  • Other components from antigen preparations such as neomycin (e.g. neomycin sulfate, particularly from a poliovirus component), polymyxin B (e.g. polymyxin B sulfate, particularly from a poliovirus component), etc. may also be present at sub-nanogram amounts per dose.
  • a further possible component of the final vaccine which originates in the antigen preparations arises from less-than-total purification of antigens. Small amounts of B. pertussis, C. diphtheriae, C. tetani and S. cerevisiae proteins and/or genomic DNA may therefore be present.
  • antigen preparations are preferably treated to remove them prior to the antigens being used with the invention.
  • the final vaccine preferably contains less than 10 ng/ml, preferably ⁇ 1 ⁇ g/ml e.g. ⁇ 500 pg/ml or ⁇ 50 pg/ml of Vero cell DNA e.g. less than 10 ng/ml of Vero cell DNA that is ⁇ 50 base pairs long.
  • compositions of the invention are presented for use in containers.
  • Suitable containers include vials and disposable syringes (preferably sterile ones).
  • Processes of the invention may comprise a step of packaging the vaccine into containers for use.
  • Suitable containers include vials and disposable syringes (preferably sterile ones).
  • a composition of the invention is presented in a vial
  • this is preferably made of a glass or plastic material.
  • the vial is preferably sterilized before the composition is added to it.
  • vials may be sealed with a latex-free stopper.
  • the vial may include a single dose of vaccine, or it may include more than one dose (a ‘multidose’ vial) e.g. 10 doses.
  • a multidose vial When using a multidose vial, each dose should be withdrawn with a sterile needle and syringe under strict aseptic conditions, taking care to avoid contaminating the vial contents.
  • Preferred vials are made of colorless glass.
  • a vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe.
  • a needle can then be attached and the composition can be administered to a patient.
  • the cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed.
  • the syringe will not normally have a needle attached to it, although a separate needle may be supplied with the syringe for assembly and use.
  • Safety needles are preferred.
  • 1-inch 23-gauge, 1-inch 25-gauge and 5 ⁇ 8-inch 25-gauge needles are typical.
  • Syringes may be provided with peel-off labels on which the lot number and expiration date of the contents may be printed, to facilitate record keeping.
  • the plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration.
  • the syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine.
  • the syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Grey butyl rubber is preferred. Preferred syringes are those marketed under the trade name “Tip-Lok”TM.
  • a glass container e.g. a syringe or a vial
  • a container made from a borosilicate glass rather than from a soda lime glass.
  • the container can then be enclosed within a box for distribution e.g. inside a cardboard box, and the box will be labeled with details of the vaccine e.g. its trade name, a list of the antigens in the vaccine (e.g. ‘hepatitis B recombinant’, etc.), the presentation container (e.g. ‘Disposable Prefilled Tip-Lok Syringes’ or ‘10 ⁇ 0.5 ml Single-Dose Vials’), its dose (e.g. ‘each containing one 0.5 ml dose’), warnings (e.g. ‘For Adult Use Only’ or ‘For Pediatric Use Only’), an expiration date, an indication, a patent number, etc.
  • Each box might contain more than one packaged vaccine e.g. five or ten packaged vaccines (particularly for vials).
  • the vaccine may be packaged together (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc.
  • the instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.
  • the packaged vaccine is preferably stored at between 2° C. and 8° C. It should not be frozen.
  • Vaccines can be provided in full-liquid form (i.e. where all antigenic components are in aqueous solution or suspension) after manufacture, or they can be prepared in a form where the vaccine can be prepared extemporaneously at the time/point of use by mixing together two components.
  • Such two-component embodiments include liquid/liquid mixing and liquid/solid mixing e.g. by mixing aqueous material with lyophilised material.
  • a vaccine can be made by mixing: (a) a first component comprising aqueous antigens and/or adjuvant; and (b) a second component comprising lyophilized antigens.
  • a vaccine in another embodiment can be made by mixing: (a) a first component comprising aqueous antigens and/or adjuvant; and (b) a second component comprising aqueous antigens.
  • a vaccine can be made by mixing: (a) a first component comprising aqueous antigens; and (b) a second component comprising aqueous adjuvant.
  • the two components are preferably in separate containers (e.g. vials and/or syringes), and the invention provides a kit comprising components (a) and (b).
  • Another useful liquid/lyophilised format comprises (a) an oil-in-water emulsion adjuvant and (b) a lyophilised component including one or more antigens.
  • a vaccine composition suitable for patient administration is obtained by mixing components (a) and (b).
  • component (a) is antigen-free, such that all antigenic components in the final vaccine are derived from component (b); in other embodiments component (a) includes one or more antigen(s), such that the antigenic components in the final vaccine are derived from both components (a) and (b).
  • Another useful liquid/lyophilised format comprises (a) an aqueous complex of an aluminium salt and a TLR agonist and (b) a lyophilised component including one or more antigens.
  • a vaccine composition suitable for patient administration is obtained by mixing components (a) and (b).
  • component (a) is antigen-free, such that all antigenic components in the final vaccine are derived from component (b); in other embodiments component (a) includes one or more antigen(s), such that the antigenic components in the final vaccine are derived from both components (a) and (b).
  • the invention provides a kit for preparing a combination vaccine, comprising components (a) and (b) as noted above.
  • the kit components are typically vials or syringes, and a single kit may contain both a vial and a syringe.
  • the invention also provides a process for preparing such a kit, comprising the following steps: (i) preparing an aqueous component vaccine as described above; (ii) packaging said aqueous combination vaccine in a first container e.g a syringe; (iii) preparing an antigen-containing component in lyophilised form; (iv) packaging said lyophilised antigen in a second container e.g. a vial; and (v) packaging the first container and second container together in a kit.
  • the kit can then be distributed to physicians.
  • a liquid/lyophilised format is particularly useful for vaccines that include a conjugate component, particularly Hib and/or meningococcal and/or pneumococcal conjugates, as these may be more stable in lyophilized form.
  • conjugates may be lyophilised prior to their use with the invention.
  • a component is lyophilised it generally includes non-active components which were added prior to freeze-drying e.g. as stabilizers.
  • Preferred stabilizers for inclusion are lactose, sucrose and mannitol, as well as mixtures thereof e.g. lactose/sucrose mixtures, sucrose/mannitol mixtures, etc.
  • a final vaccine obtained by aqueous reconstitution of the lyophilised material may thus contain lactose and/or sucrose. It is preferred to use amorphous excipients and/or amorphous buffers when preparing lyophilised vaccines [123].
  • compositions of the invention include (1) diphtheria, tetanus and pertussis toxoids, inactivated poliovirus for Types 1, 2 & 3, plus (2) hepatitis B virus surface antigen and/or a Hib conjugate.
  • These compositions may consist of the antigens specified, or may further include antigens from additional pathogens (e.g. meningococcus).
  • additional pathogens e.g. meningococcus
  • composition includes both diphtheria and tetanus toxoids these may be present at various ratios. There is preferably an excess of diphtheria toxoid (measured in Lf units) e.g. between 2-4 ⁇ more diphtheria toxoid than tetanus toxoid, such as 2.5 ⁇ or 3 ⁇ more.
  • compositions of the invention are suitable for administration to human patients, and the invention provides a method of raising an immune response in a patient, comprising the step of administering a composition of the invention to the patient.
  • the invention also provides a composition of the invention for use in medicine.
  • the invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes less than 0.2 mg Al +++ per unit dose.
  • the invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
  • the invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and has less than 0.2 mg Al +++ per unit dose.
  • the invention also provides the use of (i) a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and a Hib conjugate (ii) a hepatitis B virus surface antigen and/or an inactivated poliovirus antigen, and (iii) an oil-in-water emulsion adjuvant, in the manufacture of a combination vaccine.
  • Immunogenic compositions of the invention are preferably vaccines, for use in the prevention of at least diphtheria, tetanus, whooping cough. Depending on their antigen content the vaccines may also protect against bacterial meningitis, polio, hepatitis, etc.
  • a typical primary immunization schedule may involve administering more than one dose.
  • doses may be at: 0 & 6 months (time 0 being the first dose); at 0, 1, 2 & 6 months; at day 0, day 21 and then a third dose between 6 & 12 months; at 2, 4 & 6 months; at 3, 4 & 5 months; at 6, 10 & 14 weeks; at 2, 3 & 4 months; or at 0, 1, 2, 6 & 12 months.
  • Compositions can also be used as booster doses e.g. for children, in the second year of life.
  • compositions of the invention can be administered by intramuscular injection e.g. into the arm or leg.
  • a further aspect of the invention is an immunisation schedule for an infant (i.e. a child between birth and 1 year of age) in which only one or two DTP-containing compositions are administered.
  • the invention delivers fewer doses compared to the current normal 3-dose schedule, but without loss of immunoprotective effect.
  • the invention provides:
  • the vaccine can also include a TLR agonist which may be adsorbed to that aluminium salt.
  • the combination vaccine includes a pertussis toxoid. This may be incorporated into the vaccine as a protein within a cellular pertussis antigen, but it is preferred to use an acellular pertussis antigen, as discussed in more detail above.
  • no more than two doses of the vaccine are given to the infant i.e. the infant receives a single dose or two doses of the vaccine, but does not receive three (or more) doses.
  • the infant may, though, receive a third (and maybe further) dose later in their life i.e. after their first birthday or after their second birthday.
  • the one or two dose(s) is/are preferably given to the infant (i) between 1 and 5 months of age (ii) between 2 and 4 months of age (iii) between 3 and 5 months of age (iv) between 6 and 16 weeks of age or (v) between 0 and 3 months of age.
  • two doses may be given at (i) 1 & 2 months of age (ii) 2 & 4 months of age (iii) 3 & 4 months of age (iv) 2 & 3 months of age (v) 0 and 1 months of age, etc.
  • composition “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • a process comprising a step of mixing two or more components does not require any specific order of mixing.
  • components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
  • an antigen is described as being “adsorbed” to an adjuvant, it is preferred that at least 50% (by weight) of that antigen is adsorbed e.g. 50%, 60%, 70%, 80%, 90%, 95%, 98% or more. It is preferred that diphtheria toxoid and tetanus toxoid are both totally adsorbed i.e. none is detectable in supernatant. Total adsorption of HBsAg can be used.
  • Amounts of conjugates are generally given in terms of mass of saccharide (i.e. the dose of the conjugate (carrier+saccharide) as a whole is higher than the stated dose) in order to avoid variation due to choice of carrier.
  • compositions include an aluminium salt adjuvant then preferably it does not also include an oil-in-water emulsion adjuvant. Conversely, where a composition includes an oil-in-water emulsion adjuvant then preferably it does not also include an aluminium salt adjuvant.
  • Phosphorous-containing groups employed with the invention may exist in a number of protonated and deprotonated forms depending on the pH of the surrounding environment, for example the pH of the solvent in which they are dissolved. Therefore, although a particular form may be illustrated herein, it is intended, unless otherwise mentioned, for these illustrations to merely be representative and not limiting to a specific protonated or deprotonated form.
  • TLR agonists can exist as pharmaceutically acceptable salts.
  • the compounds may be used in the form of their pharmaceutically acceptable salts i.e. physiologically or toxicologically tolerable salt (which includes, when appropriate, pharmaceutically acceptable base addition salts and pharmaceutically acceptable acid addition salts).
  • TLR agonists shown herein which may exist in tautomeric forms (i.e. in keto or enol forms)
  • the compound can be used in all such tautomeric forms.
  • a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.
  • TSEs transmissible spongiform encephalopathies
  • BSE bovine spongiform encephalopathy
  • 3-valent (DTaP) or 6-valent (DTaP-HBsAg—IPV-Hib) vaccines were adjuvanted with aluminium hydroxide alone, aluminium hydroxide with pre-adsorbed ‘compound T’, poly(lactide-co-glycolide) microparticles (‘PLG’), and MF59 oil-in-water emulsion.
  • Aluminium hydroxide and aluminium hydroxide with pre-adsorbed ‘compound T’ were prepared in histidine buffer pH 6.5. At pH 6.5, aluminium hydroxide has a positive net charge, while most proteins have a negative net charge. The pH value was chosen to provide good adsorption of most of the tested antigens.
  • the PLG microparticles were prepared with dioctylsulfosuccinate (DSS) which confers a negative net charge to the microparticles.
  • DSS dioctylsulfosuccinate
  • Antigens were precipitated by the addition of 60% TCA and collected by centrifugation.
  • the pellet containing the TCA-precipitated antigens was resuspended in loading buffer and loaded onto an SDS-PAGE gel.
  • the pellet containing the adjuvant-antigen complexes was resuspended in desorption buffer (4 ⁇ concentration: 0.5 M Na 2 HPO 4 pH, 8 g SDS, 25 g glycerol, 6.16 g DTT and bromophenol blue), the aluminium hydroxide was removed by centrifugation and the supernatant applied to an SDS-PAGE gel.
  • the MF59 oil-in-water emulsion containing antigens were separated by centrifugation in an oily phase and an aqueous phase.
  • Both the aqueous phase containing unabsorbed antigens and the oily phase presumably containing MF59-associated antigens were mixed with loading buffer and applied to an SDS-PAGE gel. After electrophoretic separation of the samples, the gels were either analysed by Coomassie Blue staining or by Western blotting.
  • the antigen adsorption profiles obtained using PLG showed an opposite trend to those seen in the presence of the other two adjuvants probably reflecting the negative net charge of PLG versus the positive net charge of aluminium hydroxide or aluminium hydroxide with pre-adsorbed ‘compound T’.
  • MF59 is a delivery system generally considered unable to physically interact with the antigens as shown by the lack of an antigen deposition at the injection site and independent clearance of MF59 and the antigens (see references 124 and 125).
  • 1:1, 1:3 and 1:10 ratios (v:v of MF59 to complete antigen formulation) were tested.
  • SDS-PAGE and Western blot analysis showed that all ten tested antigens were present in the aqueous phase of MF59-adjuvanted formulations.
  • the antigen profiles of MF59-adjuvanted formulations corresponded to the profiles of unadjuvanted formulations.
  • the INFANRIX HEXA product from GlaxoSmithKline contains ⁇ 30 IU diphtheria toxoid, ⁇ 40 IU tetanus toxoid, an acellular pertussis component (25/25/8 ⁇ g of PT/FHA/pertactin), 10 ⁇ g HBsAg, a trivalent IPV component (40/8/32 DU of types 1/2/3), and 10 ⁇ g Hib conjugate.
  • the vaccine is presented as a 5-valent aqueous vaccine which is used to reconstitute the Hib conjugate from its lyophilised form, to give a 0.5 ml aqueous unit dose for human infants which contains 0.95 mg aluminium hydroxide and 1.45 mg aluminium phosphate.
  • Osmolarity and pH were measured (and, if necessary, adjusted) after combining the components in order to ensure physiological acceptability.
  • the pH was between 5.9 and 7.1 and osmolarity was between 290-320 mOsm/kg (except one at >400 mOsm/kg).
  • the pH was between 5.5 and 6.8 and osmolarity was between 260-320 mOsm/kg (except one at >500 mOsm/kg).
  • a buffer control had pH 7.3 and 276 mOsm/kg.
  • antigens The integrity and immunogenicity of the combined antigens were also tested. None of antigens showed an altered analytical profile after being formulated as combinations i.e. the antigens and adjuvants are physically compatible together.
  • aluminium hydroxide alone all antigens adsorbed well to the adjuvant.
  • compound ‘T’ i.e. aluminium hydroxide which had been pre-mixed with ‘compound T’ to permit adsorption for formation of a stable adjuvant complex; hereafter) all antigens adsorbed well, except that TT, pertactin and PT were partially desorbed.
  • mice female Balb/c, 4 weeks old were immunised intramuscularly with 100 ⁇ l of each composition (i.e. 1/5 human dose volume) at days 0 and 28. Sera were collected 14 days after each injection. After the second immunisation IgG antibody titers were as follows:
  • IgG responses were also investigated by subclass. For most of the antigens in the 6-valent vaccines the adjuvants had little effect on IgG1 titers, but they did increase IgG2a and IgG2b titers. The best IgG2a and IgG2b titers were obtained with Al-T, and then with MF59.
  • Osmolarity and pH were measured (and, if necessary, adjusted) after dilution.
  • pH was between 6.1 and 7.0 and osmolarity was between 275-320 mOsm/kg.
  • a buffer control had pH 7.3 and 285 mOsm/kg.
  • mice were immunised in the same way as discussed above.
  • Total serum IgG titers after 2 immunisations were as follows:
  • adjuvants allowed a dose reduction of 5-fold or 10-fold while maintaining IgG titers which are comparable or higher to unadjuvanted antigens.
  • MF59 and Al-T in particular are useful for dose sparing of antigens in this manner.
  • the MF59 emulsion was mixed with antigens at a 1:1 volume ratio or at a 1:3 ratio (i.e. 1 ml of emulsion for every 3 ml of antigen, with 2 ml of buffer to maintain total volume) or at a 1:10 ratio.
  • the Al-T complex was prepared at 3 strengths having 2 mg/ml aluminium hydroxide with either 5 ⁇ g, 25 ⁇ g or 100 ⁇ g of ‘compound T’ per dose. For comparison a 1:100 antigen dose was tested in unadjuvanted form or with aluminium hydroxide alone. A 1:100 dilution of Infanrix Hexa was also used for comparison.
  • Osmolarity and pH were measured (and, if necessary, adjusted) after mixing (except for Infanrix Hexa).
  • pH was between 6.2 and 7.3 and osmolarity was between 270-320 mOsm/kg.
  • a buffer control had pH 7.3 and 280 mOsm/kg.
  • mice were immunised as before.
  • Total serum IgG titers after 2 immunisations were as follows:
  • Pediacel's, Daptacel's and Adacel's Pa components also contain fimbriae types 2 and 3.
  • Hib dose shows amount of PRP capsular saccharide ( ⁇ g).
  • IPV dose shows amounts of type 1, then type 2, then type 3 (measured in DU).
  • Tritanrix-HepB, Quinvaxem, Trip Vac HB and SII Q-Vac include whole-cell pertussis antigens

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Combination vaccine compositions as well as methods for their manufacture have a relatively low amount of antigen and/or a relatively low amount of aluminium, but they can nevertheless have immunogenicity which is comparable to combination vaccines with a relatively high amount of antigen and/or a relatively high amount of aluminium. Aluminium-free combination vaccine compositions are also provided e.g. compositions which are adjuvanted with an oil-in-water emulsion adjuvant.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Division of co-pending U.S. application Ser. No. 15/877,203, filed Feb. 2, 2018, which is a continuation of U.S. application Ser. No. 14/002,700, filed on Jan. 10, 2014, which is the U.S. National Phase of International Application No. PCT/IB2012/050989, filed on Mar. 2, 2012 and published in English; which claims priority to U.S. Provisional Application No. 61/448,226, filed on Mar. 2, 2011 and U.S. Provisional Application No. 61/565,980, filed on Dec. 1, 2011. The teachings of the above applications are incorporated herein in their entirety by reference.
  • TECHNICAL FIELD
  • This invention is in the field of combination vaccines i.e. vaccines containing mixed immunogens from more than one pathogen, such that administration of the vaccine can simultaneously immunize a subject against more than one pathogen.
  • BACKGROUND ART
  • Vaccines containing antigens from more than one pathogenic organism within a single dose are known as “multivalent” or “combination” vaccines. Various combination vaccines have been approved for human use in the EU and the USA, including trivalent vaccines for protecting against diphtheria, tetanus and pertussis (“DTP” vaccines) and trivalent vaccines for protecting against measles, mumps and rubella (“MMR” vaccines). Combination vaccines offer patients the advantage of receiving a reduced number of injections, which can lead to the clinical advantage of increased compliance (e.g. see chapter 29 of reference 1), particularly for pediatric vaccination.
  • Current combination vaccines can include relatively high amounts of aluminium salts as adjuvants which causes concern to some patient pressure groups despite empirical safety studies [2,3]. For instance, the aluminium levels in known combination vaccines are as follows (see also Table A below):
  • Trade name Antigens Al+++ content per unit dose
    Pediacel D-T-Pa-Hib-IPV   0.33 mg
    Pediarix D-T-Pa-HBV-IPV ≤0.85 mg
    Pentacel D-T-Pa-Hib-IPV   0.33 mg
    Tritanrix-HepB D-T-Pw-HBV   0.63 mg
    Quinvaxem D-T-Pw-Hib-HBV    0.3 mg
    Hexavac D-T-Pa-IPV-Hib-HBV    0.3 mg
    Boostrix (USA) D-T-Pa ≤0.39 mg
  • A vaccine with lower levels of aluminium would be helpful for some patient groups, and it is an object of the present invention to provide such vaccines, ideally without loss of vaccine potency.
  • Another drawback with current vaccines is that they require relatively high amounts of antigen, whereas various documents show that protective effects might be achieved with lower amounts of antigen e.g. reference 4 shows that the amount of Hib antigen can be halved in a D-T-Pw-Hib vaccine without loss of immunological response, and reference 5 argues that a reduced IPV dose can be used while maintaining an adequate level of protection against polio. It is an object of the present invention to provide further vaccines with reduced amounts of antigen, ideally without loss of immunoprotective effect.
  • SUMMARY OF THE INVENTION
  • The invention provides a variety of combination vaccine compositions as well as methods for their manufacture. Typically the compositions have a relatively low amount of antigen and/or a relatively low amount of aluminium, but they can nevertheless have immunogenicity which is comparable to combination vaccines with a relatively high amount of antigen and/or a relatively high amount of aluminium. Aluminium-free combination vaccine compositions are also provided e.g. compositions which are adjuvanted with an oil-in-water emulsion adjuvant.
  • In a first embodiment the invention provides an immunogenic composition in a unit dose form for administration to a patient comprising (i) a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, and (ii) an aluminium salt adjuvant, wherein the amount of Al+++ in the unit dose is less than 0.2 mg.
  • The invention also provides an immunogenic composition comprising (i) a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, wherein the concentration of Al+++ is less than 0.4 mg/ml.
  • In a second embodiment the invention provides an immunogenic composition comprising (i) an aluminium salt adjuvant and (ii) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
  • In a third embodiment the invention provides an immunogenic composition in a unit dose form for administration to a patient comprising (i) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, and (ii) an aluminium salt adjuvant, wherein the amount of Al+++ in the unit dose is less than 0.2 mg.
  • The invention also provides an immunogenic composition comprising (i) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, wherein the concentration of Al+++ is less than 0.4 mg/ml.
  • In a fourth embodiment the invention provides an immunogenic composition comprising (i) an oil-in-water emulsion adjuvant (ii) a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and a Hib conjugate (iii) a hepatitis B virus surface antigen and/or an inactivated poliovirus antigen. The composition is ideally aluminium-free.
  • The aluminium salt adjuvant advantageously has an adsorbed TLR agonist, as discussed below.
  • A further aspect of the invention is an immunisation schedule for an infant in which only one or two DTaP-containing compositions are administered. This aspect is explained in further detail below.
  • Diphtheria Toxoid
  • Diphtheria is caused by Corynebacterium diphtheriae, a Gram-positive non-sporing aerobic bacterium. This organism expresses a prophage-encoded ADP-ribosylating exotoxin (‘diphtheria toxin’), which can be treated (e.g. using formaldehyde) to give a toxoid that is no longer toxic but that remains antigenic and is able to stimulate the production of specific anti-toxin antibodies after injection. Diphtheria toxoids are disclosed in more detail in chapter 13 of reference 1. Preferred diphtheria toxoids are those prepared by formaldehyde treatment. The diphtheria toxoid can be obtained by growing C. diphtheriae in growth medium (e.g. Fenton medium, or Linggoud & Fenton medium), which may be supplemented with bovine extract, followed by formaldehyde treatment, ultrafiltration and precipitation. The toxoided material may then be treated by a process comprising sterile filtration and/or dialysis.
  • Quantities of diphtheria toxoid can be expressed in international units (IU). For example, the NIBSC [6] supplies the ‘Diphtheria Toxoid Adsorbed Third International Standard 1999’ [7,8], which contains 160 IU per ampoule. As an alternative to the IU system, the ‘Lf’ unit (“flocculating units”, the “limes flocculating dose”, or the “limit of flocculation”) is defined as the amount of toxoid which, when mixed with one International Unit of antitoxin, produces an optimally flocculating mixture [9]. For example, the NIBSC supplies ‘Diphtheria Toxoid, Plain’ [10], which contains 300 Lf per ampoule and ‘The 1st International Reference Reagent For Diphtheria Toxoid For Flocculation Test’ [11] which contains 900 Lf per ampoule. The concentration of diphtheria toxin in a composition can readily be determined using a flocculation assay by comparison with a reference material calibrated against such reference reagents. The conversion between IU and Lf systems depends on the particular toxoid preparation.
  • In some embodiments of the invention a composition includes a ‘low dose’ of diphtheria toxoid. This means that the concentration of diphtheria toxoid in the composition is ≤8 Lf/ml e.g. <7, <6, <5, <4 <3, <2, <1 Lf/ml, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of diphtheria toxoid is less than 4 Lf e.g. <3, <2, <1, <1/2 Lf, etc.
  • Where a composition of the invention includes an aluminium salt adjuvant then diphtheria toxoid in the composition is preferably adsorbed (more preferably totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant.
  • Tetanus Toxoid
  • Tetanus is caused by Clostridium tetani, a Gram-positive, spore-forming bacillus. This organism expresses an endopeptidase (‘tetanus toxin’), which can be treated to give a toxoid that is no longer toxic but that remains antigenic and is able to stimulate the production of specific anti-toxin antibodies after injection. Tetanus toxoids are disclosed in more detail in chapter 27 of reference 1. Preferred tetanus toxoids are those prepared by formaldehyde treatment. The tetanus toxoid can be obtained by growing C. tetani in growth medium (e.g. a Latham medium derived from bovine casein), followed by formaldehyde treatment, ultrafiltration and precipitation. The material may then be treated by a process comprising sterile filtration and/or dialysis.
  • Quantities of tetanus toxoid can be expressed in international units (IU). For example, NIBSC supplies the ‘Tetanus Toxoid Adsorbed Third International Standard 2000’ [12,13], which contains 469 IU per ampoule. As with diphtheria toxoid, the ‘Lf’ unit is an alternative to the IU system. NIBSC supplies ‘The 1st International Reference Reagent for Tetanus Toxoid For Flocculation Test’ [14] which contains 1000 LF per ampoule. The concentration of diphtheria toxin in a composition can readily be determined using a flocculation assay by comparison with a reference material calibrated against such reference reagents.
  • In some embodiments of the invention a composition includes a ‘low dose’ of tetanus toxoid. This means that the concentration of tetanus toxoid in the composition is ≤3.5 Lf/ml e.g. <3, <2.5, <2, <1.5<1, <½ Lf/ml, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of tetanus toxoid is less than 1.75 Lf e.g. <1.5, <1, <½, <¼ Lf, etc.
  • Where a composition of the invention includes an aluminium salt adjuvant then tetanus toxoid in the composition is preferably adsorbed (sometimes totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant.
  • Pertussis Toxoid
  • Bordetella pertussis causes whooping cough. Pertussis antigens in vaccines are either cellular (whole cell, in the form of inactivated B. pertussis cells; ‘wP’) or acellular (‘aP’). Preparation of cellular pertussis antigens is well documented (e.g. see chapter 21 of reference 1) e.g. it may be obtained by heat inactivation of phase I culture of B. pertussis. Where acellular antigens are used, one, two or (preferably) three of the following antigens are included: (1) detoxified pertussis toxin (pertussis toxoid, or ‘PT’); (2) filamentous hemagglutinin (‘FHA’); (3) pertactin (also known as the ‘69 kiloDalton outer membrane protein’). These three antigens can be prepared by isolation from B. pertussis culture grown in modified Stainer-Scholte liquid medium. PT and FHA can be isolated from the fermentation broth (e.g. by adsorption on hydroxyapatite gel), whereas pertactin can be extracted from the cells by heat treatment and flocculation (e.g. using barium chloride). The antigens can be purified in successive chromatographic and/or precipitation steps. PT and FHA can be purified by hydrophobic chromatography, affinity chromatography and size exclusion chromatography. Pertactin can be purified by ion exchange chromatography, hydrophobic chromatography and size exclusion chromatography, or by IMAC. FHA and pertactin may be treated with formaldehyde prior to use according to the invention. PT is preferably detoxified by treatment with formaldehyde and/or glutaraldehyde. As an alternative to this chemical detoxification procedure the PT may be a mutant PT in which enzymatic activity has been reduced by mutagenesis [15] (e.g. the 9K/129G double mutant [16]), but detoxification by chemical treatment is preferred.
  • The invention can use a PT-containing wP antigen or, preferably, a PT-containing aP antigen. When using an aP antigen a composition of the invention will typically, in addition to the PT, include FHA and, optionally, pertactin. It can also optionally include fimbriae types 2 and 3.
  • Quantities of acellular pertussis antigens are typically expressed in micrograms. In some embodiments of the invention a composition includes a ‘low dose’ of pertussis toxoid. This means that the concentration of pertussis toxoid in the composition is ≤5 μg/ml e.g. <4, <3, <2.5, <2, <1 μg/ml, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of pertussis toxoid is less than 2.5 μg e.g. <2, <1.5, <1, <0.5 μg, etc.
  • Where a composition of the invention includes an aluminium salt adjuvant then pertussis toxoid in the composition is preferably adsorbed (sometimes totally adsorbed) onto that salt, preferably onto an aluminium hydroxide adjuvant. Any FHA can also be adsorbed to an aluminium hydroxide adjuvant. Any pertactin can be adsorbed to an aluminium phosphate adjuvant.
  • Hib Conjugates
  • Haemophilus influenzae type b (‘Hib’) causes bacterial meningitis. Hib vaccines are typically based on the capsular saccharide antigen (e.g. chapter 14 of ref. 1), the preparation of which is well documented (e.g. references 17 to 26). The Hib saccharide is conjugated to a carrier protein in order to enhance its immunogenicity, especially in children. Typical carrier proteins are tetanus toxoid, diphtheria toxoid, the CRM197 derivative of diphtheria toxoid, H. influenzae protein D, and an outer membrane protein complex from serogroup B meningococcus. Tetanus toxoid is a preferred carrier, as used in the product commonly referred to as ‘PRP-T’. PRP-T can be made by activating a Hib capsular polysaccharide using cyanogen bromide, coupling the activated saccharide to an adipic acid linker (such as (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide), typically the hydrochloride salt), and then reacting the linker-saccharide entity with a tetanus toxoid carrier protein. The saccharide moiety of the conjugate may comprise full-length polyribosylribitol phosphate (PRP) as prepared from Hib bacteria, and/or fragments of full-length PRP. Conjugates with a saccharide:protein ratio (w/w) of between 1:5 (i.e. excess protein) and 5:1 (i.e. excess saccharide) may be used e.g. ratios between 1:2 and 5:1 and ratios between 1:1.25 and 1:2.5. In preferred vaccines, however, the weight ratio of saccharide to carrier protein is between 1:2.5 and 1:3.5. In vaccines where tetanus toxoid is present both as an antigen and as a carrier protein then the weight ratio of saccharide to carrier protein in the conjugate may be between 1:0.3 and 1:2 [27]. Administration of the Hib conjugate preferably results in an anti-PRP antibody concentration of ≥0.15 μg/ml, and more preferably ≥1 μg/ml, and these are the standard response thresholds.
  • Quantities of Hib antigens are typically expressed in micrograms. For conjugate antigens this figure is based on the saccharide content of the conjugate. In some embodiments of the invention a composition includes a ‘low dose’ of a Hib conjugate. This means that the concentration of Hib saccharide in the composition is ≤5 μg/ml e.g. <4, <3, <2.5, <2, <1, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of Hib is less than 2.5 μg e.g. <2, <1.5, <1, <0.5, etc.
  • Where a composition of the invention includes an aluminium salt adjuvant then Hib conjugate can be adsorbed onto that salt or can be unadsorbed.
  • Hepatitis B Virus Surface Antigen
  • Hepatitis B virus (HBV) is one of the known agents which causes viral hepatitis. The HBV virion consists of an inner core surrounded by an outer protein coat or capsid, and the viral core contains the viral DNA genome. The major component of the capsid is a protein known as HBV surface antigen or, more commonly, ‘HBsAg’, which is typically a 226-amino acid polypeptide with a molecular weight of ˜24 kDa. All existing hepatitis B vaccines contain HBsAg, and when this antigen is administered to a normal vaccinee it stimulates the production of anti-HBsAg antibodies which protect against HBV infection.
  • For vaccine manufacture, HBsAg can be made in two ways. The first method involves purifying the antigen in particulate form from the plasma of chronic hepatitis B carriers, as large quantities of HBsAg are synthesized in the liver and released into the blood stream during an HBV infection. The second way involves expressing the protein by recombinant DNA methods. HBsAg for use with the method of the invention is recombinantly expressed in yeast cells. Suitable yeasts include Saccharomyces (such as S. cerevisiae) or Hanensula (such as H. polymorpha) hosts.
  • Unlike native HBsAg (i.e. as in the plasma-purified product), yeast-expressed HBsAg is generally non-glycosylated, and this is the most preferred form of HBsAg for use with the invention. Yeast-expressed HBsAg is highly immunogenic and can be prepared without the risk of blood product contamination.
  • The HBsAg will generally be in the form of substantially-spherical particles (average diameter of about 20 nm), including a lipid matrix comprising phospholipids. Yeast-expressed HBsAg particles may include phosphatidylinositol, which is not found in natural HBV virions. The particles may also include a non-toxic amount of LPS in order to stimulate the immune system [28]. The particles may retain non-ionic surfactant (e.g. polysorbate 20) if this was used during disruption of yeast [29].
  • A preferred method for HBsAg purification involves, after cell disruption: ultrafiltration; size exclusion chromatography; anion exchange chromatography; ultracentrifugation; desalting; and sterile filtration. Lysates may be precipitated after cell disruption (e.g. using a polyethylene glycol), leaving HBsAg in solution, ready for ultrafiltration.
  • After purification HBsAg may be subjected to dialysis (e.g. with cysteine), which can be used to remove any mercurial preservatives such as thimerosal that may have been used during HBsAg preparation [30]. Thimerosal-free preparation is preferred.
  • The HBsAg is preferably from HBV subtype adw2.
  • Quantities of HBsAg are typically expressed in micrograms. In some embodiments of the invention a composition includes a ‘low dose’ of HBsAg. This means that the concentration of HBsAg in the composition is ≤5 μg/ml e.g. <4, <3, <2.5, <2, <1, etc. In a typical 0.5 ml unit dose volume, therefore, the amount of HBsAg is less than 2.5 μg e.g. <2, <1.5, <1, <0.5, etc.
  • Where a composition of the invention includes an aluminium salt adjuvant then HBsAg can be adsorbed onto that salt (preferably adsorbed onto an aluminium phosphate adjuvant).
  • Inactivated Poliovirus Antigen (IPV)
  • Poliomyelitis can be caused by one of three types of poliovirus. The three types are similar and cause identical symptoms, but they are antigenically very different and infection by one type does not protect against infection by others. As explained in chapter 24 of reference 1, it is therefore preferred to use three poliovirus antigens with the invention—poliovirus Type 1 (e.g. Mahoney strain), poliovirus Type 2 (e.g. MEF-1 strain), and poliovirus Type 3 (e.g. Saukett strain). As an alternative to these strains, Sabin strains of types 1 to 3 can be used e.g. as discussed in references 31 & 32.
  • Polioviruses may be grown in cell culture. A preferred culture uses a Vero cell line, which is a continuous cell line derived from monkey kidney. Vero cells can conveniently be cultured microcarriers. Culture of the Vero cells before and during viral infection may involve the use of bovine-derived material, such as calf serum, and of lactalbumin hydrolysate (e.g. obtained by enzymatic degradation of lactalbumin). Such bovine-derived material should be obtained from sources which are free from BSE or other TSEs.
  • After growth, virions may be purified using techniques such as ultrafiltration, diafiltration, and chromatography. Prior to administration to patients, polioviruses must be inactivated, and this can be achieved by treatment with formaldehyde before the viruses are used in the process of the invention.
  • The viruses are preferably grown, purified and inactivated individually, and are then combined to give a bulk mixture for use with the invention.
  • Quantities of inactivated poliovirus (IPV) are typically expressed in the ‘DU’ unit (the “D-antigen unit” [33]). In some embodiments of the invention a composition includes a low dose′ of a poliovirus. For a Type 1 poliovirus this means that the concentration of the virus in the composition is ≤20 DU/ml e.g. <18, <16, <14, <12, <10, etc. For a Type 2 poliovirus this means that the concentration of the virus in the composition is ≤4 DU/ml e.g. <3, <2, <1, <0.5, etc. For a Type 3 poliovirus this means that the concentration of the virus in the composition is ≤16 DU/ml e.g. <14, <12, <10, <8, <6, etc. Where all three of Types 1, 2 and 3 poliovirus are present the three antigens can be present at a DU ratio of 5:1:4 respectively, or at any other suitable ratio e.g. a ratio of 15:32:45 when using Sabin strains [31]. A low dose of antigen from Sabin strains is particularly useful, with ≤10 DU type 1, ≤20 DU type 2, and ≤30 DU type 3 (per unit dose).
  • Where a composition of the invention includes an aluminium salt adjuvant then polioviruses are preferably not adsorbed to any adjuvant before they are formulated, but after formulation they may become adsorbed onto any aluminium adjuvant(s) in the composition.
  • Further Antigens
  • As well as including D, T, Pa, HBsAg, Hib and/or poliovirus antigens, immunogenic compositions of the invention may include antigens from further pathogens. For example, these antigens may be from N. meningitidis (one or more of serogroups A, B, C, W135 and/or Y) or S. pneumoniae.
  • Meningococcal Saccharides
  • Where a composition includes a Neisseria meningitidis capsular saccharide conjugate there may be one or more than one such conjugate. Including 2, 3, or 4 of serogroups A, C, W135 and Y is typical e.g. A+C, A+W135, A+Y, C+W135, C+Y, W135+Y, A+C+W135, A+C+Y, A+W135+Y, A+C+W135+Y, etc. Components including saccharides from all four of serogroups A, C, W135 and Y are useful, as in the MENACTRA™ and MENVEO™ products. Where conjugates from more than one serogroup are included then they may be present at substantially equal masses e.g. the mass of each serogroup's saccharide is within ±10% of each other. A typical quantity per serogroup is between 1 μg and 20 μg e.g. between 2 and 10 μg per serogroup, or about 4 μg or about 5 μg or about 10 μg. As an alternative to a substantially equal ratio, a double mass of serogroup A saccharide may be used.
  • Administration of a conjugate preferably results in an increase in serum bactericidal assay (SBA) titre for the relevant serogroup of at least 4-fold, and preferably at least 8-fold. SBA titres can be measured using baby rabbit complement or human complement [34].
  • The capsular saccharide of serogroup A meningococcus is a homopolymer of (α1→6)-linked N-acetyl-D-mannosamine-1-phosphate, with partial 0-acetylation in the C3 and C4 positions. Acetylation at the C-3 position can be 70-95%. Conditions used to purify the saccharide can result in de-O-acetylation (e.g. under basic conditions), but it is useful to retain OAc at this C-3 position. In some embodiments, at least 50% (e.g. at least 60%, 70%, 80%, 90%, 95% or more) of the mannosamine residues in a serogroup A saccharides are O-acetylated at the C-3 position. Acetyl groups can be replaced with blocking groups to prevent hydrolysis [35], and such modified saccharides are still serogroup A saccharides within the meaning of the invention.
  • The serogroup C capsular saccharide is a homopolymer of (α2→9)-linked sialic acid (N-acetyl neuraminic acid, or ‘NeuNAc’). The saccharide structure is written as →9)-Neu p NAc 7/8 OAc-(α2→. Most serogroup C strains have 0-acetyl groups at C-7 and/or C-8 of the sialic acid residues, but about 15% of clinical isolates lack these 0-acetyl groups [36,37]. The presence or absence of OAc groups generates unique epitopes, and the specificity of antibody binding to the saccharide may affect its bactericidal activity against O-acetylated (OAc−) and de-O-acetylated (OAc+) strains [38-40]. Serogroup C saccharides used with the invention may be prepared from either OAc+ or OAc− strains. Licensed MenC conjugate vaccines include both OAc− (NEISVAC-C™) and OAc+ (MENJUGATE™ & MENINGITEC™) saccharides. In some embodiments, strains for production of serogroup C conjugates are OAc+ strains, e.g. of serotype 16, serosubtype P1.7a, 1, etc. Thus C:16:P1.7a,1 OAc+ strains may be used. OAc+ strains in serosubtype P1.1 are also useful, such as the C11 strain. Preferred MenC saccharides are taken from OAc+ strains, such as strain C11.
  • The serogroup W135 saccharide is a polymer of sialic acid-galactose disaccharide units. Like the serogroup C saccharide, it has variable 0-acetylation, but at sialic acid 7 and 9 positions [41]. The structure is written as: →4)-D-Neup5Ac(7/9OAc)-α-(2→6)-D-Gal-α-(1→.
  • The serogroup Y saccharide is similar to the serogroup W135 saccharide, except that the disaccharide repeating unit includes glucose instead of galactose. Like serogroup W135, it has variable 0-acetylation at sialic acid 7 and 9 positions [41]. The serogroup Y structure is written as: →4)-D-Neup5Ac(7/9OAc)-α-(2-6)-D-Glc-α-(1→.
  • The saccharides used according to the invention may be O-acetylated as described above (e.g. with the same 0-acetylation pattern as seen in native capsular saccharides), or they may be partially or totally de-O-acetylated at one or more positions of the saccharide rings, or they may be hyper-O-acetylated relative to the native capsular saccharides. For example, reference 42 reports the use of serogroup Y saccharides that are more than 80% de-O-acetylated.
  • The saccharide moieties in meningococcal conjugates may comprise full-length saccharides as prepared from meningococci, and/or may comprise fragments of full-length saccharides i.e. the saccharides may be shorter than the native capsular saccharides seen in bacteria. The saccharides may thus be depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides. One depolymerisation method involves the use of hydrogen peroxide [43]. Hydrogen peroxide is added to a saccharide (e.g. to give a final H2O2 concentration of 1%), and the mixture is then incubated (e.g. at about 55° C.) until a desired chain length reduction has been achieved. Another depolymerisation method involves acid hydrolysis [44]. Other depolymerisation methods are known in the art. The saccharides used to prepare conjugates for use according to the invention may be obtainable by any of these depolymerisation methods. Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides. In some embodiments, saccharides have the following range of average degrees of polymerisation (Dp): A=10-20; C=12-22; W135=15-25; Y=15-25. In terms of molecular weight, rather than Dp, useful ranges are, for all serogroups: <100 kDa; 5 kDa-75 kDa; 7 kDa-50 kDa; 8 kDa-35 kDa; 12 kDa-25 kDa; 15 kDa-22 kDa. In other embodiments, the average molecular weight for saccharides from each of meningococcal serogroups A, C, W135 and Y may be more than 50 kDa e.g. ≥75 kDa, ≥100 kDa, ≥110 kDa, ≥120 kDa, ≥130 kDa, etc. [45], and even up to 1500 kDa, in particular as determined by MALLS. For instance: a MenA saccharide may be in the range 50-500 kDa e.g. 60-80 kDa; a MenC saccharide may be in the range 100-210 kDa; a MenW135 saccharide may be in the range 60-190 kDa e.g. 120-140 kDa; and/or a MenY saccharide may be in the range 60-190 kDa e.g. 150-160 kDa.
  • If a component or composition includes both Hib and meningococcal conjugates then, in some embodiments, the mass of Hib saccharide can be substantially the same as the mass of a particular meningococcal serogroup saccharide. In some embodiments, the mass of Hib saccharide will be more than (e.g. at least 1.5×) the mass of a particular meningococcal serogroup saccharide. In some embodiments, the mass of Hib saccharide will be less than (e.g. at least 1.5× less) the mass of a particular meningococcal serogroup saccharide.
  • Where a composition includes saccharide from more than one meningococcal serogroup, there is an mean saccharide mass per serogroup. If substantially equal masses of each serogroup are used then the mean mass will be the same as each individual mass; where non-equal masses are used then the mean will differ e.g. with a 10:5:5:5 μg amount for a MenACWY mixture, the mean mass is 6.25 μg per serogroup. In some embodiments, the mass of Hib saccharide will be substantially the same as the mean mass of meningococcal saccharide per serogroup. In some embodiments, the mass of Hib saccharide will be more than (e.g. at least 1.5×) the mean mass of meningococcal saccharide per serogroup. In some embodiments, the mass of Hib saccharide will be less than (e.g. at least 1.5×) the mean mass of meningococcal saccharide per serogroup [46].
  • Meningococcal Polypeptides
  • The capsular saccharide of Neisseria meningitidis serogroup B is not a useful vaccine immunogen and so polypeptide antigens can be used instead. For instance, the “universal vaccine for serogroup B meningococcus” reported by Novartis Vaccines in ref. 47 can be used with the invention.
  • A composition of the invention can include a factor H binding protein (fHBP) antigen. The fHBP antigen has been characterised in detail. It has also been known as protein ‘741’ [SEQ IDs 2535 & 2536 in ref. 48], ‘NMB1870’, ‘GNA1870’ [refs. 49-51], ‘P2086’, ‘LP2086’ or ‘ORF2086’ [52-54]. It is naturally a lipoprotein and is expressed across all meningococcal serogroups. The fHBP antigen falls into three distinct variants [55] and it is preferred to include antigens for all variants.
  • A composition of the invention may include a Neisserial Heparin Binding Antigen (NHBA) [56]. This antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB2132.
  • A composition of the invention may include a NadA antigen. The NadA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB1994.
  • A composition of the invention may include a NspA antigen. The NspA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0663.
  • A composition of the invention may include a NhhA antigen. The NhhA antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0992.
  • A composition of the invention may include an App antigen. The App antigen was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB1985.
  • A composition of the invention may include an Omp85 antigen. Omp85 was included in the published genome sequence for meningococcal serogroup B strain MC58 [57] as gene NMB0182.
  • A composition of the invention may include a meningococcal outer membrane vesicle.
  • Pneumococcal Saccharides
  • Streptococcus pneumoniae causes bacterial meningitis and existing vaccines are based on capsular saccharides. Thus compositions of the invention can include at least one pneumococcal capsular saccharide conjugated to a carrier protein.
  • The invention can include capsular saccharide from one or more different pneumococcal serotypes. Where a composition includes saccharide antigens from more than one serotype, these are preferably prepared separately, conjugated separately, and then combined. Methods for purifying pneumococcal capsular saccharides are known in the art (e.g. see reference 58) and vaccines based on purified saccharides from 23 different serotypes have been known for many years. Improvements to these methods have also been described e.g. for serotype 3 as described in reference 59, or for serotypes 1, 4, 5, 6A, 6B, 7F and 19A as described in reference 60.
  • Pneumococcal capsular saccharide(s) will typically be selected from the following serotypes: 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and/or 33F. Thus, in total, a composition may include a capsular saccharide from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or more different serotypes. Compositions which include at least serotype 6B saccharide are useful.
  • A useful combination of serotypes is a 7-valent combination e.g. including capsular saccharide from each of serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F. Another useful combination is a 9-valent combination e.g. including capsular saccharide from each of serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F. Another useful combination is a 10-valent combination e.g. including capsular saccharide from each of serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F. An 11-valent combination may further include saccharide from serotype 3. A 12-valent combination may add to the 10-valent mixture: serotypes 6A and 19A; 6A and 22F; 19A and 22F; 6A and 15B; 19A and 15B; or 22F and 15B. A 13-valent combination may add to the 11-valent mixture: serotypes 19A and 22F; 8 and 12F; 8 and 15B; 8 and 19A; 8 and 22F; 12F and 15B; 12F and 19A; 12F and 22F; 15B and 19A; 15B and 22F; 6A and 19A, etc.
  • Thus a useful 13-valent combination includes capsular saccharide from serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19 (or 19A), 19F and 23F e.g. prepared as disclosed in references 61 to 64. One such combination includes serotype 6B saccharide at about 8 μg/ml and the other 12 saccharides at concentrations of about 4 μg/ml each. Another such combination includes serotype 6A and 6B saccharides at about 8 μg/ml each and the other 11 saccharides at about 4 μg/ml each.
  • Suitable carrier proteins for conjugates include bacterial toxins, such as diphtheria or tetanus toxins, or toxoids or mutants thereof. These are commonly used in conjugate vaccines. For example, the CRM197 diphtheria toxin mutant is useful [65]. Other suitable carrier proteins include synthetic peptides [66,67], heat shock proteins [68,69], pertussis proteins [70,71], cytokines [72], lymphokines [72], hormones [72], growth factors [72], artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen-derived antigens [73] such as N19 [74], protein D from H. influenzae [75-77], pneumolysin [78] or its non-toxic derivatives [79], pneumococcal surface protein PspA [80], iron-uptake proteins [81], toxin A or B from C. difficile [82], recombinant Pseudomonas aeruginosa exoprotein A (rEPA) [83], etc.
  • Particularly useful carrier proteins for pneumococcal conjugate vaccines are CRM197, tetanus toxoid, diphtheria toxoid and H. influenzae protein D. CRM197 is used in PREVNAR™. A 13-valent mixture may use CRM197 as the carrier protein for each of the 13 conjugates, and CRM197 may be present at about 55-60 μg/ml.
  • Where a composition includes conjugates from more than one pneumococcal serotype, it is possible to use the same carrier protein for each separate conjugate, or to use different carrier proteins. In both cases, though, a mixture of different conjugates will usually be formed by preparing each serotype conjugate separately, and then mixing them to form a mixture of separate conjugates. Reference 84 describes potential advantages when using different carrier proteins in multivalent pneumococcal conjugate vaccines, but the PREVNAR™ product successfully uses the same carrier for each of seven different serotypes.
  • A carrier protein may be covalently conjugated to a pneumococcal saccharide directly or via a linker. Various linkers are known. For example, attachment may be via a carbonyl, which may be formed by reaction of a free hydroxyl group of a modified saccharide with CDI [85,86] followed by reaction with a protein to form a carbamate linkage. Carbodiimide condensation can be used [87]. An adipic acid linker can be used, which may be formed by coupling a free —NH2 group (e.g. introduced to a saccharide by amination) with adipic acid (using, for example, diimide activation), and then coupling a protein to the resulting saccharide-adipic acid intermediate [88,89]. Other linkers include β-propionamido [90], nitrophenyl-ethylamine [91], haloacyl halides [92], glycosidic linkages [93], 6-aminocaproic acid [94], N-succinimidyl-3-(2-pyridyldithio)-propionate (SPDP) [95], adipic acid dihydrazide ADH [96], C4 to C12 moieties [97], etc.
  • Conjugation via reductive amination can be used. The saccharide may first be oxidised with periodate to introduce an aldehyde group, which can then form a direct covalent linkage to a carrier protein via reductive amination e.g. to the ε-amino group of a lysine. If the saccharide includes multiple aldehyde groups per molecule then this linkage technique can lead to a cross-linked product, where multiple aldehydes react with multiple carrier amines. This cross-linking conjugation technique is particularly useful for at least pneumococcal serotypes 4, 6B, 9V, 14, 18C, 19F and 23F.
  • A pneumococcal saccharide may comprise a full-length intact saccharide as prepared from pneumococcus, and/or may comprise fragments of full-length saccharides i.e. the saccharides may be shorter than the native capsular saccharides seen in bacteria. The saccharides may thus be depolymerised, with depolymerisation occurring during or after saccharide purification but before conjugation. Depolymerisation reduces the chain length of the saccharides. Depolymerisation can be used in order to provide an optimum chain length for immunogenicity and/or to reduce chain length for physical manageability of the saccharides. Where more than one pneumococcal serotype is used then it is possible to use intact saccharides for each serotype, fragments for each serotype, or to use intact saccharides for some serotypes and fragments for other serotypes.
  • Where a composition includes saccharide from any of serotypes 4, 6B, 9V, 14, 19F and 23F, these saccharides are preferably intact. In contrast, where a composition includes saccharide from serotype 18C, this saccharide is preferably depolymerised.
  • A serotype 3 saccharide may also be depolymerised, For instance, a serotype 3 saccharide can be subjected to acid hydrolysis for depolymerisation [61] e.g. using acetic acid. The resulting fragments may then be oxidised for activation (e.g. periodate oxidation, maybe in the presence of bivalent cations e.g. with MgCl2), conjugated to a carrier (e.g. CRM197) under reducing conditions (e.g. using sodium cyanoborohydride), and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [61]. Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • A serotype 1 saccharide may be at least partially de-O-acetylated e.g. achieved by alkaline pH buffer treatment [62] such as by using a bicarbonate/carbonate buffer. Such (partially) de-O-acetylated saccharides can be oxidised for activation (e.g. periodate oxidation), conjugated to a carrier (e.g. CRM197) under reducing conditions (e.g. using sodium cyanoborohydride), and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [62]. Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • A serotype 19A saccharide may be oxidised for activation (e.g. periodate oxidation), conjugated to a carrier (e.g. CRM197) in DMSO under reducing conditions, and then (optionally) any unreacted aldehydes in the saccharide can be capped (e.g. using sodium borohydride) [98]. Conjugation may be performed on lyophilized material e.g. after co-lyophilizing activated saccharide and carrier.
  • One or more pneumococcal capsular saccharide conjugates may be present in lyophilised form.
  • Pneumococcal conjugates can ideally elicit anticapsular antibodies that bind to the relevant saccharide e.g. elicit an anti-saccharide antibody level ≥0.20 μg/mL [99]. The antibodies may be evaluated by enzyme immunoassay (EIA) and/or measurement of opsonophagocytic activity (OPA). The EIA method has been extensively validated and there is a link between antibody concentration and vaccine efficacy.
  • Aluminium Salt Adjuvants
  • In some embodiments, compositions of the invention include an aluminium salt adjuvant, although other embodiments may be aluminium-free.
  • Aluminium salt adjuvants currently in use are typically referred to either as “aluminium hydroxide” or as “aluminium phosphate” adjuvants. These are names of convenience, however, as neither is a precise description of the actual chemical compound which is present (e.g. see chapter 9 of reference 100). The invention can use any of the “hydroxide” or “phosphate” salts that useful as adjuvants.
  • Aluminium salts which include hydroxide ions are the preferred insoluble metal salts for use with the present invention as these hydroxide ions can readily undergo ligand exchange for adsorption of antigen and/or TLR agonists. Thus preferred salts for adsorption of TLR agonists are aluminium hydroxide and/or aluminium hydroxyphosphate. These have surface hydroxyl moieties which can readily undergo ligand exchange with phosphorus-containing groups (e.g. phosphates, phosphonates) to provide stable adsorption. An aluminium hydroxide adjuvant is most preferred.
  • The adjuvants known as “aluminium hydroxide” are typically aluminium oxyhydroxide salts, which are usually at least partially crystalline. Aluminium oxyhydroxide, which can be represented by the formula AlO(OH), can be distinguished from other aluminium compounds, such as aluminium hydroxide Al(OH)3, by infrared (IR) spectroscopy, in particular by the presence of an adsorption band at 1070 cm−1 and a strong shoulder at 3090-3100 cm−1 (chapter 9 of ref. 100). The degree of crystallinity of an aluminium hydroxide adjuvant is reflected by the width of the diffraction band at half height (WHH), with poorly-crystalline particles showing greater line broadening due to smaller crystallite sizes. The surface area increases as WHH increases, and adjuvants with higher WHH values have been seen to have greater capacity for antigen adsorption. A fibrous morphology (e.g. as seen in transmission electron micrographs) is typical for aluminium hydroxide adjuvants e.g. with needle-like particles with diameters about 2 nm. The PZC of aluminium hydroxide adjuvants is typically about 11 i.e. the adjuvant itself has a positive surface charge at physiological pH. Adsorptive capacities of between 1.8-2.6 mg protein per mg Al+++ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
  • The adjuvants known as “aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate. They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence the degree of substitution of phosphate for hydroxyl in the salt. Hydroxyphosphates generally have a PO4/Al molar ratio between 0.3 and 0.99. Hydroxyphosphates can be distinguished from strict AlPO4 by the presence of hydroxyl groups. For example, an IR spectrum band at 3164 cm−1 (e.g. when heated to 200° C.) indicates the presence of structural hydroxyls (chapter 9 of ref. 100).
  • The PO4/Al3+ molar ratio of an aluminium phosphate adjuvant will generally be between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95±0.1. The aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts. A typical adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92, included at 0.6 mg Al3+/ml. The aluminium phosphate will generally be particulate. Typical diameters of the particles are in the range 0.5-20 μm (e.g. about 5-10 μm) after any antigen adsorption. Adsorptive capacities of between 0.7-1.5 mg protein per mg Al+++ at pH 7.4 have been reported for aluminium phosphate adjuvants.
  • The PZC of aluminium phosphate is inversely related to the degree of substitution of phosphate for hydroxyl, and this degree of substitution can vary depending on reaction conditions and concentration of reactants used for preparing the salt by precipitation. PZC is also altered by changing the concentration of free phosphate ions in solution (more phosphate=more acidic PZC) or by adding a buffer such as a histidine buffer (makes PZC more basic). Aluminium phosphates used according to the invention will generally have a PZC of between 4.0 and 7.0, more preferably between 5.0 and 6.5 e.g. about 5.7.
  • In solution both aluminium phosphate and hydroxide adjuvants tend to form stable porous aggregates 1-10 μm in diameter [101].
  • A composition can include a mixture of both an aluminium hydroxide and an aluminium phosphate, and components may be adsorbed to one or both of these salts.
  • An aluminium phosphate solution used to prepare a composition of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary. The aluminium phosphate solution is preferably sterile and pyrogen-free. The aluminium phosphate solution may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM. The aluminium phosphate solution may also comprise sodium chloride. The concentration of sodium chloride is preferably in the range of 0.1 to 100 mg/ml (e.g. 0.5-50 mg/ml, 1-20 mg/ml, 2-10 mg/ml) and is more preferably about 3±1 mg/ml. The presence of NaCl facilitates the correct measurement of pH prior to adsorption of antigens.
  • In some embodiments of the invention a composition includes less than 0.2 mg Al+++ per unit dose. The amount of Al+++ can be lower than this e.g. <150 μg, <100 μg, <75 μg, <50 μg, <25 μg, <10 μg, etc.
  • In some embodiments of the invention a composition has an Al+++ concentration below 0.4 mg/ml. The concentration of Al+++ can be lower than this e.g. <300 μg/ml, <250 μg/ml, <200 μg/ml, <150 μg/ml, <100 μg/ml, <75 μg/ml, <50 μg/ml, <20 μg/ml, etc.
  • Where compositions of the invention include an aluminium-based adjuvant, settling of components may occur during storage. The composition should therefore be shaken prior to administration to a patient. The shaken composition will be a turbid white suspension.
  • Toll-Like Receptor Agonists
  • Where a composition of the invention includes an aluminium salt adjuvant then it is possible to adsorb a TLR agonist to that aluminium salt, thereby improving the immunopotentiating effect of the adjuvant [102]. This can lead to a better immune response and/or permits a reduction in the amount of aluminium in the composition while maintaining an equivalent adjuvant effect.
  • A composition of the invention can therefore include an aluminium salt (preferably an aluminium hydroxide) to which a TLR agonist (preferably a TLR7 agonist, and more preferably an agonist of human TLR7) is adsorbed. The agonist and the salt can form a stable adjuvant complex which retains the salt's ability to adsorb antigens.
  • TLR agonists with adsorptive properties typically include a phosphorus-containing moiety which can undergo ligand exchange with surface groups on an aluminium salt e.g. with surface hydroxide groups. Thus a useful TLR agonist may include a phosphate, a phosphonate, a phosphinate, a phosphonite, a phosphinite, a phosphate, etc. Preferred TLR agonists include at least one phosphate or phosphonate group [102].
  • Useful adsorptive TLR2 and TLR7 agonists are disclosed in references 102 to 106. Specific adsorptive TLR7 agonists of interest include, but are not limited to, compounds 1A to 27A in Table A on pages 79-84 of reference 107. For instance, the TLR7 agonist can be one of:
  • Figure US20180256695A1-20180913-C00001
    Figure US20180256695A1-20180913-C00002
    Figure US20180256695A1-20180913-C00003
    Figure US20180256695A1-20180913-C00004
    Figure US20180256695A1-20180913-C00005
    Figure US20180256695A1-20180913-C00006
    Figure US20180256695A1-20180913-C00007
    Figure US20180256695A1-20180913-C00008
    Figure US20180256695A1-20180913-C00009
    Figure US20180256695A1-20180913-C00010
    Figure US20180256695A1-20180913-C00011
    Figure US20180256695A1-20180913-C00012
    Figure US20180256695A1-20180913-C00013
    Figure US20180256695A1-20180913-C00014
    Figure US20180256695A1-20180913-C00015
    Figure US20180256695A1-20180913-C00016
    Figure US20180256695A1-20180913-C00017
    Figure US20180256695A1-20180913-C00018
    Figure US20180256695A1-20180913-C00019
    Figure US20180256695A1-20180913-C00020
    Figure US20180256695A1-20180913-C00021
    Figure US20180256695A1-20180913-C00022
    Figure US20180256695A1-20180913-C00023
    Figure US20180256695A1-20180913-C00024
    Figure US20180256695A1-20180913-C00025
    Figure US20180256695A1-20180913-C00026
    Figure US20180256695A1-20180913-C00027
    Figure US20180256695A1-20180913-C00028
  • These compounds can be adsorbed to aluminium salt adjuvants by simple mixing. For instance, the compound (1 mg/mL) can be dissolved in 10 mM NaOH and added to a suspension of aluminium hydroxide adjuvant (2 mg/mL) to give a final TLR agonist concentration of 100 μg/dose. Preferably, 0.1 mg/mL, more preferably 0.01 mg/mL of the compound is added to 2 mg/mL aluminium hydroxide. The mass ratio of aluminium salt to TLR agonist is between 2:1 and 400:1, preferably 20:1, more preferably 200:1. Incubation at room temperature for 1 hour usually suffices for >90% adsorption. Adsorption can take place across a range of pH, e.g. from 6.5 to 9. In a preferred embodiment, an aluminium salt and a TLR agonist are prepared in histidine buffer e.g. between 5-20 mM (such as 10 mM) histidine buffer, conveniently at pH 6.5. For optimal antigen adsorption on aluminium hydroxide, the pH should be in the range between 6.0 and 6.5. The pH is also crucial for the integrity and stability of the antigens, and in case of protein antigens, for their proper folding in the final vaccine formulation.
  • One useful TLR7 agonist, which is used in the examples below, is ‘compound T’ (compound 6A on page 80 of reference 107). It has a solubility of about 4 mg/ml in water and adsorbs well to aluminium hydroxide:
  • Figure US20180256695A1-20180913-C00029
  • In general, when a composition includes both a TLR agonist and an aluminium salt, the weight ratio of agonist to Al+++ will be less than 5:1 e.g. less than 4:1, less than 3:1, less than 2:1, or less than 1:1. Thus, for example, with an Al+++ concentration of 0.5 mg/ml the maximum concentration of TLR agonist would be 2.5 mg/ml. But higher or lower levels can be used. A lower mass of TLR agonist than of Al+++ is typical e.g. per dose, 100 μg of TLR agonist with 0.2 mg Al+++, etc.
  • The amount of TLR agonist in a unit dose will fall in a relatively broad range that can be determined through routine trials. An amount of between 1-1000 μg/dose can be used e.g. from 5-100 μg per dose or from 10-100 μg per dose, and ideally ≤300 μg per dose e.g. about 5 μg, 10 μg, 20 μg, 25 μg, 50 μg or 100 μg per dose. Thus the concentration of a TLR agonist in a composition of the invention may be from 2-2000 μg/ml e.g. from 10-200 μg/ml, or about 5, 10, 20, 40, 50, 100 or 200 μg/ml, and ideally ≤600 μg/ml.
  • It is preferred that at least 50% (by mass) of an agonist in the composition is adsorbed to the metal salt e.g. ≥60%, ≥70%, ≥80%, ≥85%, ≥90%, ≥92%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99%, or even 100%.
  • Where a composition of the invention includes a TLR agonist adsorbed to a metal salt, and also includes a buffer, it is preferred that the concentration of any phosphate ions in the buffer should be less than 50 mM (e.g. between 1-15 mM) as a high concentration of phosphate ions can cause desorption. Use of a histidine buffer is preferred.
  • Oil-in-Water Emulsion Adjuvants
  • Oil-in-water emulsions are known to be useful adjuvants e.g. MF59 and AS03 are both present in authorised vaccines in Europe. Various useful emulsion adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible. The oil droplets in the emulsion generally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.
  • The invention can be used with oils such as those from an animal (such as fish) or vegetable source. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids. Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein. Squalane, the saturated analog to squalene, is also a preferred oil. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
  • Surfactants can be classified by their ‘HLB’ (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16. The invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAX™ tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine (lecithin); nonylphenol ethoxylates, such as the Tergitol™ NP series; polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); and sorbitan esters (commonly known as the SPANs), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Non-ionic surfactants are preferred. Preferred surfactants for including in the emulsion are polysorbate 80 (polyoxyethylene sorbitan monooleate; Tween 80), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
  • Mixtures of surfactants can be used e.g. Tween 80/Span 85 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
  • Preferred amounts of surfactants (% by weight) are: polyoxyethylene sorbitan esters (such as polysorbate 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
  • Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:
      • A submicron emulsion of squalene, polysorbate 80, and sorbitan trioleate. The composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% sorbitan trioleate. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% sorbitan trioleate. This adjuvant is known as ‘MF59’ [108-110], as described in more detail in Chapter 10 of ref. 100 and chapter 12 of ref. 111. The MF59 emulsion advantageously includes citrate ions e.g. 10 mM sodium citrate buffer.
      • An emulsion of squalene, a tocopherol, and polysorbate 80. The emulsion may include phosphate buffered saline. It may also include sorbitan trioleate (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% polysorbate 80, and the weight ratio of squalene:tocopherol is preferably ≤1 (e.g. 0.90) as this provides a more stable emulsion. Squalene and polysorbate 80 may be present volume ratio of about 5:2, or at a weight ratio of about 11:5. Thus the three components (squalene, tocopherol, polysorbate 80) may be present at a weight ratio of 1068:1186:485 or around 55:61:25. One such emulsion (‘AS03’) can be made by dissolving polysorbate 80 in PBS to give a 2% solution, then mixing 90 ml of this solution with a mixture of (5 g of DL-α-tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180 nm. The emulsion may also include a 3-de-O-acylated monophosphoryl lipid A (3d-MPL). Another useful emulsion of this type may comprise, per human dose, 0.5-10 mg squalene, 0.5-11 mg tocopherol, and 0.1-4 mg polysorbate 80 [112] e.g. in the ratios discussed above.
      • An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100). The emulsion may also include a 3d-MPL (see below). The emulsion may contain a phosphate buffer.
      • An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an α-tocopherol succinate). The emulsion may include these three components at a mass ratio of about 75:11:10 (e.g. 750 μg/ml polysorbate 80, 110 μg/ml Triton X-100 and 100 μg/ml α-tocopherol succinate), and these concentrations should include any contribution of these components from antigens. The emulsion may also include squalene. The emulsion may also include a 3d-MPL (see below). The aqueous phase may contain a phosphate buffer.
      • An emulsion of squalane, polysorbate 80 and poloxamer 401 (“Pluronic™ L121”). The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the “SAF-1” adjuvant [113] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the “AF” adjuvant [114] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.
      • An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic nonionic surfactant (e.g. polyoxyethylene (12) cetostearyl ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monoleate or ‘Span 80’). The emulsion is preferably thermoreversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm [115]. The emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. It may also include a TLR4 agonist, such as one whose chemical structure does not include a sugar ring [116]. Such emulsions may be lyophilized.
      • An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant. As described in reference 117, preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous.
      • A submicron oil-in-water emulsion of a non-metabolisable oil (such as light mineral oil) and at least one surfactant (such as lecithin, polysorbate 80 or Span 80). Additives may be included, such as QuilA saponin, cholesterol, a saponin-lipophile conjugate (such as GPI-0100, described in reference 118, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyidioctadecylammonium bromide and/or N,N-dioctadecyl-N,N-bis (2-hydroxyethyl)propanediamine.
      • An emulsion in which a saponin (e.g. QuilA or QS21) and a sterol (e.g. a cholesterol) are associated as helical micelles [119].
      • An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [120].
      • An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [120].
  • Preferred oil-in-water emulsions used with the invention comprise squalene and/or polysorbate 80.
  • The emulsions may be mixed with antigens during manufacture, or they may be mixed extemporaneously at the time of delivery. Thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use. The antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids. The volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1. If emulsion and antigen are stored separately in a multidose kit (from which multiple unit doses can be taken) then the product may be presented as a vial containing emulsion and a vial containing aqueous antigen, for mixing to give adjuvanted liquid vaccine.
  • When used in formulating a vaccine, MF59 is preferably mixed with antigens in phosphate-buffered saline to preserve the long-term stability of MF59 formulations and to guarantee physiological pH and osmolarity values in the final vaccine. This mixing can be at a 1:1 volume ratio. The PBS can have pH 7.2.
  • Where a composition includes a tocopherol, any of the a, y, 8, c or tocopherols can be used, but α-tocopherols are preferred. The tocopherol can take several forms e.g. different salts and/or isomers. Salts include organic salts, such as succinate, acetate, nicotinate, etc. D-α-tocopherol and DL-α-tocopherol can both be used. Tocopherols are advantageously included in vaccines for use in elderly patients (e.g. aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group. They also have antioxidant properties that may help to stabilize the emulsions [121]. A preferred α-tocopherol is DL-α-tocopherol, and the preferred salt of this tocopherol is the succinate. The succinate salt has been found to cooperate with TNF-related ligands in vivo.
  • Immunogenic Compositions
  • Compositions of the invention may comprise: (a) an antigenic component; and (b) a non-antigenic component. The antigenic component can comprise or consist of the antigens discussed above. The non-antigenic component can include carriers, adjuvants, excipients, buffers, etc. These non-antigenic components may have various sources. For example, they may be present in one of the antigen or adjuvant materials that is used during manufacture or may be added separately from those components.
  • Preferred compositions of the invention include one or more pharmaceutical carrier(s) and/or excipient(s).
  • To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml.
  • Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 280-320 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [122], but keeping osmolality in this range is nevertheless preferred.
  • Compositions of the invention may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-20 mM range.
  • A composition of the invention can be substantially free from surfactants (prior to mixing with any emulsion adjuvant). In particular, the composition of the invention can be substantially free from polysorbate 80 e.g. it contains less than 0.1 μg/ml of polysorbate 80, and preferably contains no detectable polysorbate 80. Where a composition includes HBsAg, however, it will usually include polysorbate 20 e.g. if it was used during yeast disruption [29].
  • The pH of a composition of the invention will generally be between 6.0 and 7.5. A manufacturing process may therefore include a step of adjusting the pH of a composition prior to packaging.
  • Aqueous compositions administered to a patient can have a pH of between 5.0 and 7.5, and more typically between 5.0 and 6.0 for optimum stability; where a diphtheria toxoid and/or tetanus toxoid is present, the pH is ideally between 6.0 and 7.0.
  • Compositions of the invention are preferably sterile.
  • Compositions of the invention are preferably non-pyrogenic e.g. containing <1 EU (endotoxin unit, a standard measure; 1 EU is equal to 0.2 ng FDA reference standard Endotoxin EC-2 ‘RSE’) per dose, and preferably <0.1 EU per dose.
  • Compositions of the invention are preferably gluten free.
  • Due to the adsorbed nature of antigens a vaccine product may be a suspension with a cloudy appearance. This appearance means that microbial contamination is not readily visible, and so the vaccine preferably contains an antimicrobial agent. This is particularly important when the vaccine is packaged in multidose containers. Preferred antimicrobials for inclusion are 2-phenoxyethanol and thimerosal. It is preferred, however, not to use mercurial preservative's (e.g. thimerosal) during the process of the invention. Thus, between 1 and all of the components used in the process may be substantially free from mercurial preservative. However, the presence of trace amounts may be unavoidable if a component was treated with such a preservative before being used in the invention. For safety, however, it is preferred that the final composition contains less than about 25 ng/ml mercury. More preferably, the final vaccine product contains no detectable thimerosal. This will generally be achieved by removing the mercurial preservative from an antigen preparation prior to its addition in the process of the invention or by avoiding the use of thimerosal during the preparation of the components used to make the composition. Mercury-free compositions are preferred.
  • Compositions of the invention will generally be in aqueous form.
  • During manufacture, dilution of components to give desired final concentrations will usually be performed with WFI (water for injection).
  • The invention can provide bulk material which is suitable for packaging into individual doses, which can then be distributed for administration to patients. Concentrations discussed above are typically concentrations in final packaged dose, and so concentrations in bulk vaccine may be higher (e.g. to be reduced to final concentrations by dilution).
  • Compositions of the invention are preferably administered to patients in 0.5 ml unit doses. References to 0.5 ml doses will be understood to include normal variance e.g. 0.5 ml±0.05 ml. For multidose situations, multiple dose amounts will be extracted and packaged together in a single container e.g. 5 ml for a 10-dose multidose container (or 5.5 ml with 10% overfill).
  • Residual material from individual antigenic components may also be present in trace amounts in the final vaccine produced by the process of the invention. For example, if formaldehyde is used to prepare the toxoids of diphtheria, tetanus and pertussis then the final vaccine product may retain trace amounts of formaldehyde (e.g. less than 10 μg/ml, preferably <5 μg/ml). Media or stabilizers may have been used during poliovirus preparation (e.g. Medium 199), and these may carry through to the final vaccine. Similarly, free amino acids (e.g. alanine, arginine, aspartate, cysteine and/or cystine, glutamate, glutamine, glycine, histidine, proline and/or hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine and/or valine), vitamins (e.g. choline, ascorbate, etc.), disodium phosphate, monopotassium phosphate, calcium, glucose, adenine sulfate, phenol red, sodium acetate, potassium chloride, etc. may be retained in the final vaccine at ≤100 μg/ml, preferably <10 μg/ml, each. Other components from antigen preparations, such as neomycin (e.g. neomycin sulfate, particularly from a poliovirus component), polymyxin B (e.g. polymyxin B sulfate, particularly from a poliovirus component), etc. may also be present at sub-nanogram amounts per dose. A further possible component of the final vaccine which originates in the antigen preparations arises from less-than-total purification of antigens. Small amounts of B. pertussis, C. diphtheriae, C. tetani and S. cerevisiae proteins and/or genomic DNA may therefore be present. To minimize the amounts of these residual components, antigen preparations are preferably treated to remove them prior to the antigens being used with the invention.
  • Where a poliovirus component is used, it will generally have been grown on Vero cells. The final vaccine preferably contains less than 10 ng/ml, preferably ≤1 μg/ml e.g. ≤500 pg/ml or ≤50 pg/ml of Vero cell DNA e.g. less than 10 ng/ml of Vero cell DNA that is ≥50 base pairs long.
  • Compositions of the invention are presented for use in containers. Suitable containers include vials and disposable syringes (preferably sterile ones). Processes of the invention may comprise a step of packaging the vaccine into containers for use. Suitable containers include vials and disposable syringes (preferably sterile ones).
  • Where a composition of the invention is presented in a vial, this is preferably made of a glass or plastic material. The vial is preferably sterilized before the composition is added to it. To avoid problems with latex-sensitive patients, vials may be sealed with a latex-free stopper. The vial may include a single dose of vaccine, or it may include more than one dose (a ‘multidose’ vial) e.g. 10 doses. When using a multidose vial, each dose should be withdrawn with a sterile needle and syringe under strict aseptic conditions, taking care to avoid contaminating the vial contents. Preferred vials are made of colorless glass.
  • A vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe. After removal of the syringe from the vial, a needle can then be attached and the composition can be administered to a patient. The cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed.
  • Where the composition is packaged into a syringe, the syringe will not normally have a needle attached to it, although a separate needle may be supplied with the syringe for assembly and use. Safety needles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and ⅝-inch 25-gauge needles are typical. Syringes may be provided with peel-off labels on which the lot number and expiration date of the contents may be printed, to facilitate record keeping. The plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration. The syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine.
  • The syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Grey butyl rubber is preferred. Preferred syringes are those marketed under the trade name “Tip-Lok”™.
  • Where a glass container (e.g. a syringe or a vial) is used, then it is preferred to use a container made from a borosilicate glass rather than from a soda lime glass.
  • After a composition is packaged into a container, the container can then be enclosed within a box for distribution e.g. inside a cardboard box, and the box will be labeled with details of the vaccine e.g. its trade name, a list of the antigens in the vaccine (e.g. ‘hepatitis B recombinant’, etc.), the presentation container (e.g. ‘Disposable Prefilled Tip-Lok Syringes’ or ‘10×0.5 ml Single-Dose Vials’), its dose (e.g. ‘each containing one 0.5 ml dose’), warnings (e.g. ‘For Adult Use Only’ or ‘For Pediatric Use Only’), an expiration date, an indication, a patent number, etc. Each box might contain more than one packaged vaccine e.g. five or ten packaged vaccines (particularly for vials).
  • The vaccine may be packaged together (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc. The instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.
  • The packaged vaccine is preferably stored at between 2° C. and 8° C. It should not be frozen.
  • Vaccines can be provided in full-liquid form (i.e. where all antigenic components are in aqueous solution or suspension) after manufacture, or they can be prepared in a form where the vaccine can be prepared extemporaneously at the time/point of use by mixing together two components. Such two-component embodiments include liquid/liquid mixing and liquid/solid mixing e.g. by mixing aqueous material with lyophilised material. For instance, in one embodiment a vaccine can be made by mixing: (a) a first component comprising aqueous antigens and/or adjuvant; and (b) a second component comprising lyophilized antigens. In another embodiment a vaccine can be made by mixing: (a) a first component comprising aqueous antigens and/or adjuvant; and (b) a second component comprising aqueous antigens. In another embodiment a vaccine can be made by mixing: (a) a first component comprising aqueous antigens; and (b) a second component comprising aqueous adjuvant. The two components are preferably in separate containers (e.g. vials and/or syringes), and the invention provides a kit comprising components (a) and (b).
  • Another useful liquid/lyophilised format comprises (a) an oil-in-water emulsion adjuvant and (b) a lyophilised component including one or more antigens. A vaccine composition suitable for patient administration is obtained by mixing components (a) and (b). In some embodiments component (a) is antigen-free, such that all antigenic components in the final vaccine are derived from component (b); in other embodiments component (a) includes one or more antigen(s), such that the antigenic components in the final vaccine are derived from both components (a) and (b).
  • Another useful liquid/lyophilised format comprises (a) an aqueous complex of an aluminium salt and a TLR agonist and (b) a lyophilised component including one or more antigens. A vaccine composition suitable for patient administration is obtained by mixing components (a) and (b). In some embodiments component (a) is antigen-free, such that all antigenic components in the final vaccine are derived from component (b); in other embodiments component (a) includes one or more antigen(s), such that the antigenic components in the final vaccine are derived from both components (a) and (b).
  • Thus the invention provides a kit for preparing a combination vaccine, comprising components (a) and (b) as noted above. The kit components are typically vials or syringes, and a single kit may contain both a vial and a syringe. The invention also provides a process for preparing such a kit, comprising the following steps: (i) preparing an aqueous component vaccine as described above; (ii) packaging said aqueous combination vaccine in a first container e.g a syringe; (iii) preparing an antigen-containing component in lyophilised form; (iv) packaging said lyophilised antigen in a second container e.g. a vial; and (v) packaging the first container and second container together in a kit. The kit can then be distributed to physicians.
  • A liquid/lyophilised format is particularly useful for vaccines that include a conjugate component, particularly Hib and/or meningococcal and/or pneumococcal conjugates, as these may be more stable in lyophilized form. Thus conjugates may be lyophilised prior to their use with the invention.
  • Where a component is lyophilised it generally includes non-active components which were added prior to freeze-drying e.g. as stabilizers. Preferred stabilizers for inclusion are lactose, sucrose and mannitol, as well as mixtures thereof e.g. lactose/sucrose mixtures, sucrose/mannitol mixtures, etc. A final vaccine obtained by aqueous reconstitution of the lyophilised material may thus contain lactose and/or sucrose. It is preferred to use amorphous excipients and/or amorphous buffers when preparing lyophilised vaccines [123].
  • Preferred compositions of the invention include (1) diphtheria, tetanus and pertussis toxoids, inactivated poliovirus for Types 1, 2 & 3, plus (2) hepatitis B virus surface antigen and/or a Hib conjugate. These compositions may consist of the antigens specified, or may further include antigens from additional pathogens (e.g. meningococcus). Thus the compositions can be used as vaccines themselves, or as components of further vaccines.
  • Where a composition includes both diphtheria and tetanus toxoids these may be present at various ratios. There is preferably an excess of diphtheria toxoid (measured in Lf units) e.g. between 2-4× more diphtheria toxoid than tetanus toxoid, such as 2.5× or 3× more.
  • Methods of Treatment, and Administration of the Vaccine
  • Compositions of the invention are suitable for administration to human patients, and the invention provides a method of raising an immune response in a patient, comprising the step of administering a composition of the invention to the patient.
  • The invention also provides a composition of the invention for use in medicine.
  • The invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes less than 0.2 mg Al+++ per unit dose.
  • The invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
  • The invention also provides the use of (i) at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and (ii) an aluminium salt adjuvant, in the manufacture of a combination vaccine which includes a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid and has less than 0.2 mg Al+++ per unit dose.
  • The invention also provides the use of (i) a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and a Hib conjugate (ii) a hepatitis B virus surface antigen and/or an inactivated poliovirus antigen, and (iii) an oil-in-water emulsion adjuvant, in the manufacture of a combination vaccine.
  • Immunogenic compositions of the invention are preferably vaccines, for use in the prevention of at least diphtheria, tetanus, whooping cough. Depending on their antigen content the vaccines may also protect against bacterial meningitis, polio, hepatitis, etc.
  • In order to have full efficacy, a typical primary immunization schedule (particularly for a child) may involve administering more than one dose. For example, doses may be at: 0 & 6 months (time 0 being the first dose); at 0, 1, 2 & 6 months; at day 0, day 21 and then a third dose between 6 & 12 months; at 2, 4 & 6 months; at 3, 4 & 5 months; at 6, 10 & 14 weeks; at 2, 3 & 4 months; or at 0, 1, 2, 6 & 12 months.
  • Compositions can also be used as booster doses e.g. for children, in the second year of life.
  • Compositions of the invention can be administered by intramuscular injection e.g. into the arm or leg.
  • Infant Immunisation Schedule with Fewer Doses
  • As mentioned above, a further aspect of the invention is an immunisation schedule for an infant (i.e. a child between birth and 1 year of age) in which only one or two DTP-containing compositions are administered. Thus, in some embodiments, the invention delivers fewer doses compared to the current normal 3-dose schedule, but without loss of immunoprotective effect.
  • According to this aspect, therefore, the invention provides:
      • a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough), comprising administering to the infant no more than two doses of a combination vaccine comprising a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough), comprising administering to the infant no more than two doses of a combination vaccine comprising a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and an aluminium salt adjuvant, wherein each dose of the vaccine contains less than 0.2 mg Al+++.
      • a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough), comprising administering to the infant no more than two doses of a combination vaccine comprising an aluminium salt adjuvant and a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough), comprising administering to the infant no more than two doses of a combination vaccine comprising (i) a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, and (ii) an aluminium salt adjuvant; wherein each dose of the vaccine contains less than 0.2 mg Al+++.
      • a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough), comprising administering to the infant no more than two doses of a aluminium-free combination vaccine comprising a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and an oil-in-water emulsion adjuvant. The vaccine may have a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • use of at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid in the manufacture of a combination vaccine for immunising an infant against at least diphtheria, tetanus and pertussis, wherein the vaccine is prepared for administration to the infant by no more than two doses. The vaccine may: (i) include an aluminium salt adjuvant, in which case it may include less than 0.2 mg Al+++ per unit dose; and/or (ii) have a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • use of at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid in the manufacture of an aluminium-free combination vaccine for immunising an infant against at least diphtheria, tetanus and pertussis, wherein the vaccine is prepared for administration to the infant by no more than two doses. The vaccine may comprise, either during manufacture or at the point of use, an oil-in-water emulsion adjuvant. The vaccine may have a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • a combination vaccine comprising at least a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, for use in a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough) by administering to the infant no more than two doses of the combination vaccine. The vaccine may: (i) include an aluminium salt adjuvant, in which case it may include less than 0.2 mg Al+++ per unit dose; and/or (ii) have a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
      • an aluminium-free combination vaccine comprising at least an oil-in-water emulsion adjuvant, a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid, for use in a method for immunising an infant against at least diphtheria, tetanus and pertussis (whooping cough) by administering to the infant no more than two doses of the combination vaccine. The vaccine may have a low dose of each of a diphtheria toxoid, a tetanus toxoid, and a pertussis toxoid.
  • According to this aspect, where the vaccine includes an aluminium salt adjuvant then, as disclosed above, the vaccine can also include a TLR agonist which may be adsorbed to that aluminium salt.
  • According to this aspect, the combination vaccine includes a pertussis toxoid. This may be incorporated into the vaccine as a protein within a cellular pertussis antigen, but it is preferred to use an acellular pertussis antigen, as discussed in more detail above.
  • According to this aspect, no more than two doses of the vaccine are given to the infant i.e. the infant receives a single dose or two doses of the vaccine, but does not receive three (or more) doses. The infant may, though, receive a third (and maybe further) dose later in their life i.e. after their first birthday or after their second birthday.
  • The one or two dose(s) is/are preferably given to the infant (i) between 1 and 5 months of age (ii) between 2 and 4 months of age (iii) between 3 and 5 months of age (iv) between 6 and 16 weeks of age or (v) between 0 and 3 months of age. For instance, two doses may be given at (i) 1 & 2 months of age (ii) 2 & 4 months of age (iii) 3 & 4 months of age (iv) 2 & 3 months of age (v) 0 and 1 months of age, etc.
  • General
  • The term “comprising” encompasses “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • The word “substantially” does not exclude “completely” e.g. a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.
  • The term “about” in relation to a numerical value x means, for example, x±10%.
  • Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
  • Where an antigen is described as being “adsorbed” to an adjuvant, it is preferred that at least 50% (by weight) of that antigen is adsorbed e.g. 50%, 60%, 70%, 80%, 90%, 95%, 98% or more. It is preferred that diphtheria toxoid and tetanus toxoid are both totally adsorbed i.e. none is detectable in supernatant. Total adsorption of HBsAg can be used.
  • Amounts of conjugates are generally given in terms of mass of saccharide (i.e. the dose of the conjugate (carrier+saccharide) as a whole is higher than the stated dose) in order to avoid variation due to choice of carrier.
  • Where a composition includes an aluminium salt adjuvant then preferably it does not also include an oil-in-water emulsion adjuvant. Conversely, where a composition includes an oil-in-water emulsion adjuvant then preferably it does not also include an aluminium salt adjuvant.
  • Phosphorous-containing groups employed with the invention may exist in a number of protonated and deprotonated forms depending on the pH of the surrounding environment, for example the pH of the solvent in which they are dissolved. Therefore, although a particular form may be illustrated herein, it is intended, unless otherwise mentioned, for these illustrations to merely be representative and not limiting to a specific protonated or deprotonated form. For example, in the case of a phosphate group, this has been illustrated as —OP(O)(OH)2 but the definition includes the protonated forms —[OP(O)(OH2)(OH)]+ and —[OP(O)(OH2)2]2+ that may exist in acidic conditions and the deprotonated forms —[OP(O)(OH)(O)] and [OP(O)(O)2]2− that may exist in basic conditions. The invention encompasses all such forms.
  • TLR agonists can exist as pharmaceutically acceptable salts. Thus, the compounds may be used in the form of their pharmaceutically acceptable salts i.e. physiologically or toxicologically tolerable salt (which includes, when appropriate, pharmaceutically acceptable base addition salts and pharmaceutically acceptable acid addition salts).
  • In the case of TLR agonists shown herein which may exist in tautomeric forms (i.e. in keto or enol forms), the compound can be used in all such tautomeric forms.
  • Where a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.
  • Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encephalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • There are no drawings.
  • MODES FOR CARRYING OUT THE INVENTION
  • Adjuvant Adsorption to Antigens
  • 3-valent (DTaP) or 6-valent (DTaP-HBsAg—IPV-Hib) vaccines were adjuvanted with aluminium hydroxide alone, aluminium hydroxide with pre-adsorbed ‘compound T’, poly(lactide-co-glycolide) microparticles (‘PLG’), and MF59 oil-in-water emulsion. Aluminium hydroxide and aluminium hydroxide with pre-adsorbed ‘compound T’ were prepared in histidine buffer pH 6.5. At pH 6.5, aluminium hydroxide has a positive net charge, while most proteins have a negative net charge. The pH value was chosen to provide good adsorption of most of the tested antigens. All formulations adjuvanted with aluminium hydroxide or aluminium hydroxide with pre-adsorbed ‘compound T’ showed optimal pH (6.5−6.8±0.1) and osmolarity values (0.300±50 mO). Osmolarity was adjusted with NaCl. Antigens for the MF59-adjuvanted formulations were prepared in PBS. The resulting preparations had pH values between 6.2 and 7.3 and osmolarity values around 0.300±50 mO. Formulations containing PLG microparticles were prepared in water. PLG formulations showed suboptimal osmolarity values. The pH of the PLG formulations ranged from 5.8 to 6.5+0.1. The PLG microparticles were prepared with dioctylsulfosuccinate (DSS) which confers a negative net charge to the microparticles. Thus interaction of the microparticles with the antigen is mediated by positive charges on the antigen surface.
  • For aluminium hydroxide alone, aluminium hydroxide with pre-adsorbed ‘compound T’, and PLG, adsorption was detected by separating the adjuvant-antigen complexes from unadsorbed antigens by centrifugation. 0.4% DOC was added to the supernatant containing the unadsorbed antigens.
  • Antigens were precipitated by the addition of 60% TCA and collected by centrifugation. The pellet containing the TCA-precipitated antigens was resuspended in loading buffer and loaded onto an SDS-PAGE gel. The pellet containing the adjuvant-antigen complexes was resuspended in desorption buffer (4× concentration: 0.5 M Na2HPO4 pH, 8 g SDS, 25 g glycerol, 6.16 g DTT and bromophenol blue), the aluminium hydroxide was removed by centrifugation and the supernatant applied to an SDS-PAGE gel. The MF59 oil-in-water emulsion containing antigens were separated by centrifugation in an oily phase and an aqueous phase. Both the aqueous phase containing unabsorbed antigens and the oily phase presumably containing MF59-associated antigens were mixed with loading buffer and applied to an SDS-PAGE gel. After electrophoretic separation of the samples, the gels were either analysed by Coomassie Blue staining or by Western blotting.
  • Using aluminium hydroxide alone at a concentration of 2 mg/ml, the adsorption profiles for DT, TT, PT, FHA and 69K detected by Coomassie Blue staining were complete both for the 3-valent formulation and the 6-valent formulation. No bands were detected in the DOC-TCA-treated supernatants. Western Blot analysis confirmed complete aluminium hydroxide adsorption for DT, TT, PT, FHA and 69K for both the 3-valent formulation and the 6-valent formulation. Likewise, the other five antigens—IPV1, IPV2, IPV3, HBsAg and Hib-CRM—did not show any detectable bands in the DOC-TCA-treated supernatants of aluminium hydroxide-adsorbed formulations. Thus all ten antigens present in the 6-valent formulation completely adsorbed to aluminium hydroxide.
  • For aluminium hydroxide with pre-adsorbed ‘compound T’, antigen adsorption differed between the 3-valent formulation and the 6-valent formulation. Four different ‘compound T’ concentrations were tested (0.1, 0.025, 0.01, 0.005 mg/ml). The aluminium hydroxide concentration was kept constant at 2 mg/ml. At 0.1 mg/ml ‘compound T’, all antigens in the 3-valent formulation were completely adsorbed. In contrast, 69K and PT in the 6-valent formulation were not completely adsorbed as determined by Coomassie Blue staining. At 0.01 mg/ml ‘compound T’, Western blot analysis confirmed adsorption of all ten antigens in the 6-valent formulation. Only a small amount of TT was still detectable in the supernatant using Western blot. The fact that TT could be detected in the supernatant by Western blot but not by SDS-PAGE is likely due to the greater sensitivity of the former method. Thus, at higher concentrations, ‘compound T’ appears to compete with the antigens for binding to the adjuvant. This could explain why the effect only becomes apparent in the presence of a greater number of antigens, i.e., when less aluminium hydroxide per antigen is available.
  • Using PLG microparticles, DT, TT, IPV1, IPV2, IPV3, FHA and CRM of the Hib-CRM conjugate were mostly presented on the supernatants with only very small amounts of DT, IPV1, IPV2 and FHA being detected by Western blot in the pellet containing the antigen-adjuvant complexes. 69K and PT seemed to be presented in similar amounts in supernatant and pellet. HBsAg could neither be detected in the supernatant nor in the pellet of the PLG formulations. In comparison to preparations containing aluminium hydroxide or aluminium hydroxide with pre-adsorbed ‘compound T’, PLG absorbed significantly less antigen. Moreover, the antigen adsorption profiles obtained using PLG showed an opposite trend to those seen in the presence of the other two adjuvants probably reflecting the negative net charge of PLG versus the positive net charge of aluminium hydroxide or aluminium hydroxide with pre-adsorbed ‘compound T’.
  • MF59 is a delivery system generally considered unable to physically interact with the antigens as shown by the lack of an antigen deposition at the injection site and independent clearance of MF59 and the antigens (see references 124 and 125). 1:1, 1:3 and 1:10 ratios (v:v of MF59 to complete antigen formulation) were tested. For all three tested ratios, SDS-PAGE and Western blot analysis showed that all ten tested antigens were present in the aqueous phase of MF59-adjuvanted formulations. Thus the antigen profiles of MF59-adjuvanted formulations corresponded to the profiles of unadjuvanted formulations. The results confirmed that MF59 does not interact with any of the tested antigens.
  • Replacement or Reduction of Aluminium Salt Adjuvants
  • The INFANRIX HEXA product from GlaxoSmithKline contains ≥30 IU diphtheria toxoid, ≥40 IU tetanus toxoid, an acellular pertussis component (25/25/8 μg of PT/FHA/pertactin), 10 μg HBsAg, a trivalent IPV component (40/8/32 DU of types 1/2/3), and 10 μg Hib conjugate. The vaccine is presented as a 5-valent aqueous vaccine which is used to reconstitute the Hib conjugate from its lyophilised form, to give a 0.5 ml aqueous unit dose for human infants which contains 0.95 mg aluminium hydroxide and 1.45 mg aluminium phosphate.
  • To investigate alternative adjuvants (see above) a 6-valent mixture was adjuvanted with aluminium hydroxide alone (2 mg/ml in histidine buffer), with aluminium hydroxide with pre-adsorbed ‘compound T’ (see above; lmg/ml), with poly(lactide-co-glycolide) microparticles (‘PLG’, used at 40 mg/ml), or with the MF59 oil-in-water emulsion (mixed at equal volume with antigens in phosphate-buffered saline). The same diluents were used in all mouse experiments described below. Osmolarity of the formulations was adjusted with NaCl where necessary. An adjuvant-free control was also prepared. Antigen concentrations were as follows (per ml):
  • DT TT PT FHA Pertactin
    36.9 Lf 14.8 Lf 36.9 μg 36.9 μg 11.8 μg
    IPV Type 1 IPV Type 2 IPV Type 3 HBsAg Hib
    59.1 DU 11.8 DU 47.3 DU 14.8 μg 14.8 μg
  • The same adjuvants were also used with a 3-valent D-T-Pa mixture (same concentrations).
  • Osmolarity and pH were measured (and, if necessary, adjusted) after combining the components in order to ensure physiological acceptability. For all 3-valent compositions the pH was between 5.9 and 7.1 and osmolarity was between 290-320 mOsm/kg (except one at >400 mOsm/kg). For all 6-valent compositions the pH was between 5.5 and 6.8 and osmolarity was between 260-320 mOsm/kg (except one at >500 mOsm/kg). A buffer control had pH 7.3 and 276 mOsm/kg.
  • The integrity and immunogenicity of the combined antigens were also tested. None of antigens showed an altered analytical profile after being formulated as combinations i.e. the antigens and adjuvants are physically compatible together.
  • With aluminium hydroxide alone all antigens adsorbed well to the adjuvant. With aluminium hydroxide and compound ‘T’ (i.e. aluminium hydroxide which had been pre-mixed with ‘compound T’ to permit adsorption for formation of a stable adjuvant complex; hereafter) all antigens adsorbed well, except that TT, pertactin and PT were partially desorbed.
  • With the PLG adjuvant the diphtheria and tetanus toxoids were unadsorbed but pertussis toxoid was adsorbed.
  • Mice (female Balb/c, 4 weeks old) were immunised intramuscularly with 100 μl of each composition (i.e. 1/5 human dose volume) at days 0 and 28. Sera were collected 14 days after each injection. After the second immunisation IgG antibody titers were as follows:
  • Al
    No hydrox- Infanrix-
    adjuvant ide MF59 PLG Al-T 6
    3-valent vaccines
    DT 750 21626 15693 9430 23395
    TT 13120 17868 22458 15917 23131
    Pertactin 639 7209 10258 3946 12857
    PT 2501 8270 7212 3679 9938
    FHA 3982 12057 14098 14139 23008
    6-valent vaccine
    DT 1751 18914 13982 7658 23102 21581
    TT 12729 16756 22229 13744 23267 15998
    Pertactin 333 6299 9363 2912 5153 10809
    PT 3069 3384 4823 3906 6484 6052
    FHA 4558 7206 16201 15206 19383 11051
    Hib 177 813 1266 654 2153 1269
    HBsAg 1058 1598 2288 1053 4501 1113
  • Thus for all of these antigens the inclusion of an adjuvant increased IgG antibody titers. The best titers were seen when using Al-T. The next best were with MF59, which gave better results than aluminium hydroxide alone. The titers obtained using Al-T were better for all antigens than those seen with Infanrix Hexa, except for pertactin.
  • Furthermore, the data show that the good results achieved with the 3-valent vaccine are maintained even after IPV, Hib and HBsAg are added.
  • IgG responses were also investigated by subclass. For most of the antigens in the 6-valent vaccines the adjuvants had little effect on IgG1 titers, but they did increase IgG2a and IgG2b titers. The best IgG2a and IgG2b titers were obtained with Al-T, and then with MF59.
  • The increased titers seen with Al-T compared with aluminium hydroxide alone, or with the mixture of aluminium salts seen in Infanrix Hexa, mean that the total amount of aluminium per dose can be reduced while maintaining enhancement of immune responses.
  • Reduction of Antigen Doses
  • Experiments were designed to investigate whether the improved adjuvants could be used to reduce the amount of antigen per dose. 10-fold, 50-fold and 100-fold dilutions (relative to human dosing i.e. to deliver 1 μg, 0.2 μg or 0.1 μg HBsAg to each mouse per 100 μl dose) of the 6-valent antigen combinations were made while adjuvant concentration was maintained.
  • Osmolarity and pH were measured (and, if necessary, adjusted) after dilution. For all 6-valent compositions the pH was between 6.1 and 7.0 and osmolarity was between 275-320 mOsm/kg. A buffer control had pH 7.3 and 285 mOsm/kg.
  • Mice were immunised in the same way as discussed above. Total serum IgG titers after 2 immunisations were as follows:
  • No adjuvant Al hydroxide MF59 Al-T
    1/10 1/50 1/100 1/10 1/50 1/100 1/10 1/50 1/100 1/10 1/50 1/100
    DT 459 2043 137 18357 13106 7541 17431 6003 8736 21913 16807 13724
    TT 7602 7929 1700 17595 9664 5531 22791 12062 13015 23570 12237 13183
    Pertactin 827 2154 341 10880 8135 4181 17159 10591 7288 17098 10748 8952
    PT 3612 5645 2129 5287 3266 1068 7200 3659 5493 9051 4203 2717
    FHA 2305 4161 101 8997 4471 1442 19197 5179 4492 22151 8293 3252
    Hib 171 352 109 1380 796 251 3147 573 2415 3056 1440 1815
    HBsAg 525 412 129 1034 685 226 4885 1103 1983 5270 1526 950
  • Thus the presence of adjuvants allowed a dose reduction of 5-fold or 10-fold while maintaining IgG titers which are comparable or higher to unadjuvanted antigens. MF59 and Al-T in particular are useful for dose sparing of antigens in this manner.
  • Adjuvant Dosing
  • With the 100-fold antigen dilution the amount of adjuvant was also reduced. The MF59 emulsion was mixed with antigens at a 1:1 volume ratio or at a 1:3 ratio (i.e. 1 ml of emulsion for every 3 ml of antigen, with 2 ml of buffer to maintain total volume) or at a 1:10 ratio. The Al-T complex was prepared at 3 strengths having 2 mg/ml aluminium hydroxide with either 5 μg, 25 μg or 100 μg of ‘compound T’ per dose. For comparison a 1:100 antigen dose was tested in unadjuvanted form or with aluminium hydroxide alone. A 1:100 dilution of Infanrix Hexa was also used for comparison.
  • Osmolarity and pH were measured (and, if necessary, adjusted) after mixing (except for Infanrix Hexa). For all 6-valent compositions the pH was between 6.2 and 7.3 and osmolarity was between 270-320 mOsm/kg. A buffer control had pH 7.3 and 280 mOsm/kg.
  • Mice were immunised as before. Total serum IgG titers after 2 immunisations were as follows:
  • No Infanrx Al MF59 (v:v) Al-T (μg ‘T’)
    adjuvant Hexa hydroxide 1:1 1:3 1:10 100 25 5
    DT 584 6282 10849 7786 4094 8442 21571 20865 11788
    TT 3426 5415 6857 11506 9197 11422 16041 15124 6236
    Pertactin 48 3017 6053 8838 2970 2876 6158 6697 3815
    PT 3351 1751 2699 4406 5072 6020 2476 2696 3079
    FHA 262 7886 5626 14700 11340 10205 7369 8634 6120
    Hib 126 109 310 518 517 550 936 792 390
    HBsAg 88 240 369 2645 1784 1670 4062 2308 1154
  • Thus lower amounts of MF59 and Al-T still retain good adjuvanticity and can induce higher IgG antibody titers than those induced by unadjuvanted 6-valent antigen formulations. By reducing the amount of adjuvant, while maintaining immunological efficacy, the safety profile of a vaccine can be improved which is particularly important in pediatric settings.
  • It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.
  • TABLE A
    antigen and Al+++ content of various marketed vaccines (per unit dose)
    D T Pa(1) Hib(2) IPV(3) HBsAg Vol Al+++
    Pediacel 15 Lf 5 Lf 20/20/3 10 40/8/32 0.5 ml 0.33 mg
    Pediarix 25 Lf 10 Lf 25/25/8 40/8/32 10 μg 0.5 ml ≤0.85 mg
    Pentacel 15 Lf 5 Lf 20/20/3 10 40/8/32 0.5 ml 0.33 mg
    Tritanx HB ≥30 IU ≥60 IU (4) 10 μg 0.5 ml 0.63 mg
    Quinvaxem ≥30 IU ≥60 IU (4) 10 10 μg 0.5 ml 0.3 mg
    Hexavac 30 Lf 10 Lf 25/25/— 12 40/8/32  5 μg 0.5 ml 0.3 mg
    Boostrix 2.5 Lf 5 Lf 8/8/2.5 0.5 ml ≤0.39 mg
    Adacel 5 Lf 2 Lf 2.5/5/3 0.5 ml 0.33 mg
    Daptacel 15 Lf 5 Lf 10/5/3 0.5 ml 0.33 mg
    Pentavac ≥30 IU ≥40 IU 25/25/— 10 40/8/32 0.5 ml 0.30 mg
    SII QVac 20-30 Lf 5-25 Lf (4) ≥10 μg    0.5 ml ≤1.25 mg
    TripVacHB ≥30 IU ≥60 IU (4) 10 μg 0.5 ml ≤1.25 mg
    Notes:
    (1)Pa dose shows amounts of pertussis toxoid, then FHA, then pertactin (μg). Pediacel's, Daptacel's and Adacel's Pa components also contain fimbriae types 2 and 3.
    (2)Hib dose shows amount of PRP capsular saccharide (μg).
    (3)IPV dose shows amounts of type 1, then type 2, then type 3 (measured in DU).
    (4)Tritanrix-HepB, Quinvaxem, Trip Vac HB and SII Q-Vac include whole-cell pertussis antigens
  • REFERENCES
    • [1] Vaccines. (eds. Plotkin & Orenstein). 4th edition, 2004, ISBN: 0-7216-9688-0.
    • [2] François et al. (2005) Pediatr Infect Dis J 24:953-61.
    • [3] Baylor et al. (2001) Vaccine 20 (Supplement 3):S18-S23
    • [4] Tamm et al. (2005) Vaccine 23:1715-19.
    • [5] WO2008/028956.
    • [6] National Institute for Biological Standards and Control; Potters Bar, UK. www.nibsc.ac.uk
    • [7] Sesardic et al. (2001) Biologicals 29:107-22.
    • [8] NIBSC code: 98/560.
    • [9] Module 1 of WHO's The immunological basis for immunization series (Galazka).
    • [10] NIBSC code: 69/017.
    • [11] NIBSC code: DIFT.
    • [12] Sesardic et al. (2002) Biologicals 30:49-68.
    • [13] NIBSC code: 98/552.
    • [14] NIBSC code: TEFT.
    • [15] Rappuoli et al. (1991) TIBTECH 9:232-238.
    • [16] Nencioni et al. (1991) Infect Immun. 59(2): 625-30.
    • [17] Ramsay et al. (2001) Lancet 357(9251):195-196.
    • [18] Lindberg (1999) Vaccine 17 Suppl 2:S28-36.
    • [19] Buttery & Moxon (2000) JR Coll Physicians Lond 34:163-168.
    • [20] Ahmad & Chapnick (1999) Infect Dis Clin North Am 13:113-133, vii.
    • [21] Goldblatt (1998) J Med. Microbiol. 47:563-567.
    • [22] European patent 0477508.
    • [23] U.S. Pat. No. 5,306,492.
    • [24] WO98/42721.
    • [25] Conjugate Vaccines (eds. Cruse et al.) ISBN 3805549326, particularly vol. 10:48-114.
    • [26] Hermanson (1996) Bioconjugate Techniques ISBN: 0123423368 or 012342335X.
    • [27] WO96/40242.
    • [28] Vanlandschoot et al. (2005) J Gen Virol 86:323-31.
    • [29] WO2007/054820.
    • [30] WO03/066094.
    • [31] Liao et al. (2012) J Infect Dis. 205:237-43.
    • [32] Verdijk et al. (2011) Expert Rev Vaccines. 10:635-44.
    • [33] Module 6 of WHO's The immunological basis for immunization series (Robertson)
    • [34] W.H.O. Tech. Rep. Ser. 594:51, 1976.
    • [35] WO03/080678.
    • [36] Glode et al. (1979) J Infect Dis 139:52-56
    • [37] WO94/05325; U.S. Pat. No. 5,425,946.
    • [38] Arakere & Frasch (1991) Infect. Immun. 59:4349-4356.
    • [39] Michon et al. (2000) Dev. Biol. 103:151-160.
    • [40] Rubinstein & Stein (1998) J Immunol. 141:4357-4362.
    • [41] WO2005/033148
    • [42] WO2005/000347.
    • [43] WO02/058737.
    • [44] WO03/007985.
    • [45] WO2007/000314.
    • [46] WO2007/000322.
    • [47] Giuliani et al. (2006) Proc Natl Acad Sci USA 103(29):10834-9.
    • [48] WO99/57280.
    • [49] Masignani et al. (2003) J Exp Med 197:789-799.
    • [50] Welsch et al. (2004) J Immunol 172:5605-15.
    • [51] Hou et al. (2005) J Infect Dis 192(4):580-90.
    • [52] WO03/063766.
    • [53] Fletcher et al. (2004) Infect Immun 72:2088-2100.
    • [54] Zhu et al. (2005) Infect Immun 73(10):6838-45.
    • [55] WO2004/048404
    • [56] Serruto et al. (2010) PNAS USA 107:3770-5.
    • [57] Tettelin et al. (2000) Science 287:1809-15.
    • [58] WHO Technical Report Series No. 927, 2005. Pages 64-98.
    • [59] US-2008/0102498.
    • [60] US-2006/0228381.
    • [61] US-2007/0231340.
    • [62] US-2007/0184072.
    • [63] US-2006/0228380.
    • [64] WO2008/143709.
    • [65] Research Disclosure, 453077 (January 2002)
    • [66] EP-A-0378881.
    • [67] EP-A-0427347.
    • [68] WO93/17712
    • [69] WO94/03208.
    • [70] WO98/58668.
    • [71] EP-A-0471177.
    • [72] WO91/01146
    • [73] Falugi et al. (2001) Eur J Immunol 31:3816-3824.
    • [74] Baraldo et al. (2004) Infect Immun 72(8):4884-7.
    • [75] EP-A-0594610.
    • [76] Ruan et al. (1990) J Immunol 145:3379-3384.
    • [77] WO00/56360.
    • [78] Kuo et al. (1995) Infect Immun 63:2706-13.
    • [79] Michon et al. (1998) Vaccine. 16:1732-41.
    • [80] WO02/091998.
    • [81] WO01/72337
    • [82] WO00/61761.
    • [83] WO00/33882
    • [84] WO2007/071707
    • [85] Bethell G. S. et al., J Biol. Chem., 1979, 254, 2572-4
    • [86] Hearn M. T. W., J. Chromatogr., 1981, 218, 509-18
    • [87] WO2007/000343.
    • [88] Mol. Immunol., 1985, 22, 907-919
    • [89] EP-A-0208375
    • [90] WO00/10599
    • [91] Gever et al., Med. Microbiol. Immunol, 165: 171-288 (1979).
    • [92] U.S. Pat. No. 4,057,685.
    • [93] U.S. Pat. Nos. 4,673,574; 4,761,283; 4,808,700.
    • [94] U.S. Pat. No. 4,459,286.
    • [95] U.S. Pat. No. 5,204,098
    • [96] U.S. Pat. No. 4,965,338
    • [97] U.S. Pat. No. 4,663,160.
    • [98] US-2007/0184071.
    • [99] Jodar et al. (2003) Vaccine 21:3265-72.
    • Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X).
    • Clausi et al. (2008) J Pharm Sci DOI 10.1002/jps.21390.
    • International patent application PCT/US2011/050231.
    • U.S. patent application 61/316,551.
    • U.S. patent application 61/379,126.
    • WO2011/027222.
    • WO2011/024072.
    • WO2010/144734.
    • WO90/14837.
    • Podda & Del Giudice (2003) Expert Rev Vaccines 2:197-203.
    • Podda (2001) Vaccine 19: 2673-2680.
    • Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series). ISBN: 1-59259-083-7. Ed. O'Hagan.
    • WO2008/043774.
    • Allison & Byars (1992) Res Immunol 143:519-25.
    • Hariharan et al. (1995) Cancer Res 55:3486-9.
    • US-2007/014805.
    • WO2007/080308.
    • WO95/11700.
    • U.S. Pat. No. 6,080,725.
    • WO2005/097181.
    • WO2006/113373.
    • U.S. Pat. No. 6,630,161.
    • Nony et al. (2001) Vaccine 27:3645-51.
    • WO01/41800.
    • Dupuis et al. (1999) Vaccine 18:434-9.
    • Immunopotentiators in Modern Vaccines (2006) Schijns and O'Hagan (eds.) ISBN: 0-12-088403-8.

Claims (7)

1. An immunogenic composition comprising (i) an oil-in-water emulsion adjuvant (ii) a diphtheria toxoid, a tetanus toxoid, a pertussis toxoid, and a Hib conjugate (iii) a hepatitis B virus surface antigen and/or an inactivated poliovirus antigen.
2. The composition of claim 1, wherein the composition is aluminium-free.
3. The composition of claim 1, wherein the oil-in-water emulsion adjuvant has oil droplets with a sub-micron diameter.
4. The composition of claim 1, wherein the oil-in-water emulsion adjuvant includes squalene and/or polysorbate 80.
5. The composition of claim 1, further comprising conjugated capsular saccharide from one or more of meningococcal serogroups A, C, W135 and/or Y.
6. The composition of claim 1, further comprising conjugated capsular saccharide from one or more of pneumococcal serotypes 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and/or 33F.
7. The composition of claim 1, further comprising (i) a meningococcal factor H binding protein antigen and/or (ii) a Neisserial Heparin Binding Antigen and/or (iii) a meningococcal NhhA antigen and/or (iv) a meningococcal outer membrane vesicle.
US15/975,388 2011-03-02 2018-05-09 Combination vaccines with lower doses of antigen and/or adjuvant Abandoned US20180256695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/975,388 US20180256695A1 (en) 2011-03-02 2018-05-09 Combination vaccines with lower doses of antigen and/or adjuvant

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161448226P 2011-03-02 2011-03-02
US201161565980P 2011-12-01 2011-12-01
PCT/IB2012/050989 WO2012117377A1 (en) 2011-03-02 2012-03-02 Combination vaccines with lower doses of antigen and/or adjuvant
US201414002700A 2014-01-10 2014-01-10
US15/887,203 US10603369B2 (en) 2011-03-02 2018-02-02 Combination vaccines with lower doses of antigen and/or adjuvant
US15/975,388 US20180256695A1 (en) 2011-03-02 2018-05-09 Combination vaccines with lower doses of antigen and/or adjuvant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/887,203 Division US10603369B2 (en) 2011-03-02 2018-02-02 Combination vaccines with lower doses of antigen and/or adjuvant

Publications (1)

Publication Number Publication Date
US20180256695A1 true US20180256695A1 (en) 2018-09-13

Family

ID=45852630

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/002,700 Abandoned US20140112950A1 (en) 2011-03-02 2012-03-02 Combination vaccines with lower doses of antigen and/or adjuvant
US15/887,203 Active 2032-05-05 US10603369B2 (en) 2011-03-02 2018-02-02 Combination vaccines with lower doses of antigen and/or adjuvant
US15/975,388 Abandoned US20180256695A1 (en) 2011-03-02 2018-05-09 Combination vaccines with lower doses of antigen and/or adjuvant

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/002,700 Abandoned US20140112950A1 (en) 2011-03-02 2012-03-02 Combination vaccines with lower doses of antigen and/or adjuvant
US15/887,203 Active 2032-05-05 US10603369B2 (en) 2011-03-02 2018-02-02 Combination vaccines with lower doses of antigen and/or adjuvant

Country Status (12)

Country Link
US (3) US20140112950A1 (en)
EP (1) EP2680885B8 (en)
JP (2) JP6191082B2 (en)
KR (1) KR20140026392A (en)
CN (1) CN103533954B (en)
AU (1) AU2012222883A1 (en)
BR (1) BR112013022397A2 (en)
CA (1) CA2828844C (en)
ES (1) ES2681698T3 (en)
RU (1) RU2013144207A (en)
TR (1) TR201811280T4 (en)
WO (1) WO2012117377A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
CA2772916C (en) 2009-09-02 2019-01-15 Novartis Ag Immunogenic compositions including tlr activity modulators
WO2012019168A2 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EA201390341A1 (en) 2010-09-01 2013-08-30 Новартис Аг ADSORPTION OF IMMUNOTE POTENTIATORS ON INSOLUBLE SALTS OF METALS
CA2809758C (en) 2010-09-10 2021-07-13 Wyeth Llc Non-lipidated variants of neisseria meningitidis orf2086 antigens
CA2821992A1 (en) 2010-10-01 2012-04-05 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
KR20140026392A (en) 2011-03-02 2014-03-05 노파르티스 아게 Combination vaccines with lower doses of antigen and/or adjuvant
DE12722942T1 (en) 2011-03-31 2021-09-30 Modernatx, Inc. RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS
BR112014004782A2 (en) * 2011-09-01 2017-03-21 Novartis Ag adjuvant formulations of staphylococcus aureus antigens
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3492109B1 (en) 2011-10-03 2020-03-04 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
JP2015501844A (en) 2011-12-16 2015-01-19 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified nucleosides, nucleotides and nucleic acid compositions
JP2015510872A (en) * 2012-03-07 2015-04-13 ノバルティス アーゲー Enhanced formulation of Streptococcus pneumoniae antigen
US9375471B2 (en) * 2012-03-08 2016-06-28 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
WO2013132043A1 (en) * 2012-03-08 2013-09-12 Novartis Ag Combination vaccines with tlr4 agonists
SA115360586B1 (en) 2012-03-09 2017-04-12 فايزر انك Neisseria meningitidis compositions and methods thereof
EP2833923A4 (en) 2012-04-02 2016-02-24 Moderna Therapeutics Inc Modified polynucleotides for the production of proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9526776B2 (en) 2012-09-06 2016-12-27 Glaxosmithkline Biologicals Sa Combination vaccines with serogroup B meningococcus and D/T/P
JP6283674B2 (en) * 2012-09-18 2018-02-21 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Outer membrane vesicles
LT2922554T (en) 2012-11-26 2022-06-27 Modernatx, Inc. Terminally modified rna
US9968673B2 (en) 2013-02-26 2018-05-15 Commissariat á l'ènergie atomique et aux ènergies alternatives Immunogenic composition in emulsion form comprising two dispersed phases, one comprising an antigen and the other comprising an immunostimulating agent
FR3002454B1 (en) 2013-02-26 2015-04-10 Commissariat Energie Atomique IMMUNOGENIC COMPOSITION IN THE FORM OF EMULSION
US8916173B2 (en) 2013-03-08 2014-12-23 Crucell Holland B.V. Acellular pertussis vaccine
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
MX369534B (en) 2013-09-08 2019-11-11 Pfizer Neisseria meningitidis compositions and methods thereof.
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052521A1 (en) 2013-10-03 2016-08-10 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
US10872313B2 (en) 2015-06-02 2020-12-22 ROCA Medical Ltd. Method for repurposing NDC codes in a pharmaceutical database for venom derived allergens involved in venom immunotherapy
SG10201912038TA (en) 2014-04-23 2020-02-27 Modernatx Inc Nucleic acid vaccines
CN104013955B (en) * 2014-06-18 2016-02-24 中国科学院过程工程研究所 A kind of not containing O/w emulsion and uses thereof of surfactant
HUE049104T2 (en) * 2014-10-07 2020-08-28 Serum Institute Of India Pvt Ltd Improved methods for poliovirus inactivation, adjuvant adsorption
RU2723045C2 (en) 2015-02-19 2020-06-08 Пфайзер Инк. Compositions of neisseria meningitidis and methods for preparation thereof
JP2018511655A (en) * 2015-03-20 2018-04-26 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Immunogenic compositions for use in vaccination against Bordetella
US10548974B2 (en) * 2015-06-02 2020-02-04 ROCA Medical Ltd. Therapeutic treatment kit for allergies based on DNA profiles
CN106075428A (en) * 2015-07-01 2016-11-09 北京科兴中维生物技术有限公司 A kind of immunogenic composition and preparation method thereof
MA42317B2 (en) * 2015-09-16 2021-11-30 Lg Chemical Ltd Combination vaccine composition for multiple administration
EP3377114B1 (en) * 2015-11-18 2020-07-08 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Immunogenic composition in the form of an emulsion comprising two dispersed phases, one comprising an antigen and the other comprising an immunostimulating agent
FR3043558B1 (en) * 2015-11-18 2017-12-29 Commissariat Energie Atomique IMMUNOGENIC EMULSION COMPOSITION COMPRISING TWO DISPERSED PHASES, ONE COMPRISING ANTIGEN AND THE OTHER COMPRISING AN IMMUNOSTIMULANT AGENT
ES2929054T3 (en) * 2016-05-16 2022-11-24 Access To Advanced Health Inst Formulation containing a TLR agonist and methods of use
CN106039301A (en) * 2016-06-30 2016-10-26 武汉博沃生物科技有限公司 Preparation method of pneumococcus-type b haemophilus influenzae-diphtheria-pertussis-tetanus combined vaccine
SG11201900365WA (en) * 2016-08-26 2019-02-27 Serum Institute Of India Pvt Ltd Multivalent vaccine composition
EP4309670A3 (en) * 2016-09-02 2024-07-17 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine
MX2019009011A (en) 2017-01-31 2019-09-26 Pfizer Neisseria meningitidis compositions and methods thereof.
GB201807303D0 (en) 2018-05-03 2018-06-20 London School Of Hygeine & Tropical Medicine Glyconjugate vaccines
US20220088188A1 (en) 2018-12-24 2022-03-24 Grand Theravac Life Science (Nanjing) Co., Ltd. Pharmaceutical preparation for treating hepatitis b, preparation method therefor and use thereof
CN111643661A (en) * 2020-06-08 2020-09-11 王竹林 Novel immunologic adjuvant, compound and application thereof
CN114917331A (en) * 2022-06-02 2022-08-19 金宇保灵生物药品有限公司 Bovine pasteurella multocida capsular type A capsular polysaccharide vaccine and preparation method thereof

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057685A (en) 1972-02-02 1977-11-08 Abbott Laboratories Chemically modified endotoxin immunizing agent
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
DE3485094D1 (en) 1983-01-25 1991-10-31 Ciba Geigy Ag NEW PEPTIDE DERIVATIVES.
US4459286A (en) 1983-01-31 1984-07-10 Merck & Co., Inc. Coupled H. influenzae type B vaccine
US4663160A (en) 1983-03-14 1987-05-05 Miles Laboratories, Inc. Vaccines for gram-negative bacteria
US4761283A (en) 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
US4808700A (en) 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
IT1187753B (en) 1985-07-05 1987-12-23 Sclavo Spa GLYCOPROTEIC CONJUGATES WITH TRIVALENT IMMUNOGENIC ACTIVITY
US5204098A (en) 1988-02-16 1993-04-20 The United States Of America As Represented By The Department Of Health And Human Services Polysaccharide-protein conjugates
NL8802046A (en) 1988-08-18 1990-03-16 Gen Electric POLYMER MIXTURE WITH POLYESTER AND ALKANE SULFONATE, OBJECTS THEREFORE.
CA2006700A1 (en) 1989-01-17 1990-07-17 Antonello Pessi Synthetic peptides and their use as universal carriers for the preparation of immunogenic conjugates suitable for the development of synthetic vaccines
HU212924B (en) 1989-05-25 1996-12-30 Chiron Corp Adjuvant formulation comprising a submicron oil droplet emulsion
WO1991001146A1 (en) 1989-07-14 1991-02-07 Praxis Biologics, Inc. Cytokine and hormone carriers for conjugate vaccines
US5059258A (en) 1989-08-23 1991-10-22 Aluminum Company Of America Phosphonic/phosphinic acid bonded to aluminum hydroxide layer
IT1237764B (en) 1989-11-10 1993-06-17 Eniricerche Spa SYNTHETIC PEPTIDES USEFUL AS UNIVERSAL CARRIERS FOR THE PREPARATION OF IMMUNOGENIC CONJUGATES AND THEIR USE FOR THE DEVELOPMENT OF SYNTHETIC VACCINES.
SE466259B (en) 1990-05-31 1992-01-20 Arne Forsgren PROTEIN D - AN IGD BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE, AND THE USE OF THIS FOR ANALYSIS, VACCINES AND PURPOSE
ATE128628T1 (en) 1990-08-13 1995-10-15 American Cyanamid Co FIBER HEMAGGLUTININ FROM BORDETELLA PERTUSSIS AS A CARRIER FOR CONJUGATE VACCINE.
US6699474B1 (en) 1990-08-20 2004-03-02 Erich Hugo Cerny Vaccine and immunserum against drugs of abuse
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
US5936076A (en) 1991-08-29 1999-08-10 Kirin Beer Kabushiki Kaisha αgalactosylceramide derivatives
EP0967279B1 (en) 1992-03-02 2008-01-02 Novartis Vaccines and Diagnostics S.r.l. Helicobacter pylori cytotoxin useful for vaccines and diagnostics
IT1262896B (en) 1992-03-06 1996-07-22 CONJUGATE COMPOUNDS FORMED FROM HEAT SHOCK PROTEIN (HSP) AND OLIGO-POLY-SACCHARIDES, THEIR USE FOR THE PRODUCTION OF VACCINES.
IL102687A (en) 1992-07-30 1997-06-10 Yeda Res & Dev Conjugates of poorly immunogenic antigens and synthetic pepide carriers and vaccines comprising them
US5425946A (en) 1992-08-31 1995-06-20 North American Vaccine, Inc. Vaccines against group C Neisseria meningitidis
DE69331495T2 (en) 1992-08-31 2002-10-31 Baxter Healthcare S.A., Wallisellen VACCINE AGAINST NEISSERIA MENINGITIDIS GROUP C
WO1995011700A1 (en) 1993-10-29 1995-05-04 Pharmos Corp. Submicron emulsions as vaccine adjuvants
FR2718452B1 (en) 1994-04-06 1996-06-28 Pf Medicament Element of immunogen, immunogenic agent, pharmaceutical composition and method of preparation.
DE69529219T2 (en) 1994-07-01 2003-11-06 Chiron Corp. (N.D.Ges.D. Staates Delaware), Emeryville HELICOBACTER PROTEINS AND VACCINES
AU704911B2 (en) 1994-11-24 1999-05-06 Basilea Pharmaceutica Ag Novel benzyl pyrimidines
ATE400295T1 (en) 1995-06-07 2008-07-15 Glaxosmithkline Biolog Sa VACCINE WITH A POLYSACCHARIDE ANTIGEN CARRIER PROTEIN CONJUGATE AND FREE CARRIER PROTEIN
WO1997025429A1 (en) 1996-01-04 1997-07-17 Rican Limited Helicobacter pylori bacterioferritin
GB9623233D0 (en) 1996-11-07 1997-01-08 Smithkline Beecham Biolog Vaccine composition
US6406705B1 (en) * 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6299881B1 (en) 1997-03-24 2001-10-09 Henry M. Jackson Foundation For The Advancement Of Military Medicine Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts
US6080725A (en) 1997-05-20 2000-06-27 Galenica Pharmaceuticals, Inc. Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof
GB9713156D0 (en) 1997-06-20 1997-08-27 Microbiological Res Authority Vaccines
EP2261346A3 (en) 1998-05-01 2012-01-04 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
ES2296390T3 (en) 1998-05-07 2008-04-16 Corixa Corporation COMPOSITION COADYUVANTE AND PROCEDURE FOR USE.
DE69941574D1 (en) 1998-08-19 2009-12-03 Baxter Healthcare Sa IMMUNOGENOUS BETA-PROPIONAMIDO-BONDED POLYSACCHARID PROTEIN CONJUGATE IS SUITABLE FOR VACCINATION AND MANUFACTURED BY USING N-ACRYLOYLATED POLYSACCHARIDE
WO2000033882A1 (en) 1998-12-04 2000-06-15 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services A vi-repa conjugate vaccine for immunization against salmonella typhi
GB9828000D0 (en) 1998-12-18 1999-02-10 Chiron Spa Antigens
HU228499B1 (en) 1999-03-19 2013-03-28 Smithkline Beecham Biolog Streptococcus vaccine
AU781027B2 (en) 1999-04-09 2005-04-28 Department Of Health & Human Services Recombinant toxin a protein carrier for polysaccharide conjugate vaccines
ES2307553T3 (en) 1999-12-02 2008-12-01 Novartis Vaccines And Diagnostics, Inc. COMPOSITIONS AND PROCEDURES TO STABILIZE BIOLOGICAL MOLECULES AFTER LIOPHILIZATION.
DE10012370A1 (en) 2000-03-14 2001-09-27 Chiron Behring Gmbh & Co Use of oil-in-water emulsion as vaccine adjuvant, particularly for influenza and pneumococcal vaccines, administered at different site from the vaccine
GB0007432D0 (en) 2000-03-27 2000-05-17 Microbiological Res Authority Proteins for use as carriers in conjugate vaccines
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
WO2002002606A2 (en) 2000-07-03 2002-01-10 Chiron S.P.A. Immunisation against chlamydia pneumoniae
HU230490B1 (en) 2001-01-23 2016-08-29 Sanofi Pasteur Inc. Multivalent meningococcal polysaccharide-protein conjugate vaccine
AU2002309706A1 (en) 2001-05-11 2002-11-25 Aventis Pasteur, Inc. Novel meningitis conjugate vaccine
EP1399131A2 (en) * 2001-06-08 2004-03-24 Powderject Vaccines, Inc. Spray freeze-dried compositions
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
FR2827605B1 (en) 2001-07-20 2004-07-16 Pf Medicament NOVEL PEPTIDES DERIVED FROM RSV PROTEIN G AND THEIR USE IN A VACCINE
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
NZ546711A (en) 2001-12-12 2008-06-30 Chiron Srl Immunisation against chlamydia trachomatis
GB0202901D0 (en) 2002-02-07 2002-03-27 Glaxosmithkline Biolog Sa Novel vaccine
DE60325565D1 (en) 2002-03-26 2009-02-12 Novartis Vaccines & Diagnostic MODIFIED SACCHARIDES WITH IMPROVED STABILITY IN WATER
GB0211118D0 (en) 2002-05-15 2002-06-26 Polonelli Luciano Vaccines
EP1551228B1 (en) 2002-06-13 2012-10-03 New York University Synthetic c-glycolipid and its use for treating cancer infectious diseases and autoimmune diseases
HUE031886T2 (en) 2002-10-11 2017-08-28 Glaxosmithkline Biologicals Sa Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
US7818252B2 (en) 2003-02-20 2010-10-19 Gilat Satellite Networks, Ltd Enforcement of network service level agreements
CA2527805C (en) 2003-06-16 2012-08-21 Institute Of Organic Chemistry And Biochemistry, Academy Of Sciences Of The Czech Republic Pyrimidine compounds having phosphonate groups as antiviral nucleotide analogs
US20070020293A1 (en) 2003-06-23 2007-01-25 Michon Francis J Vaccines against group neisseria meningitidis and meningococcal combinations thereof
MXPA05013260A (en) 2003-06-26 2006-03-09 Chiron Corp Immunogenic compositions for chlamydia trachomatis.
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
US7771726B2 (en) 2003-10-08 2010-08-10 New York University Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases
WO2005084306A2 (en) 2004-03-02 2005-09-15 Chiron Corporation Immunogenic compositions for chlamydia pneunomiae
GB0405787D0 (en) * 2004-03-15 2004-04-21 Chiron Srl Low dose vaccines
CN1964626A (en) 2004-03-31 2007-05-16 纽约大学 Novel synthetic c-glycolipids, their synthesis and use to treat infections, cancer and autoimmune diseases
ES2409782T3 (en) 2004-04-05 2013-06-27 Zoetis P Llc Microfluidified oil-in-water emulsions and vaccine compositions
EP1858920B1 (en) 2005-02-18 2016-02-03 GlaxoSmithKline Biologicals SA Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
EP1858919B1 (en) 2005-02-18 2012-04-04 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
JP5242375B2 (en) 2005-04-01 2013-07-24 ザ レゲントス オブ ザ ユニバーシティ オブ カリフォルニア Phosphono-pent-2-en-1-yl nucleosides and analogs
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US7955605B2 (en) 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
BRPI0607026B1 (en) 2005-04-08 2022-02-15 Wyeth PROCESSES FOR REDUCTION OF PROTEIN CONTENT AND PRESERVATION OF CAPSULAR POLYSACCHARIDE CONTENT IN A BROTH OF COMPLEX STREPTOCOCCUS PNEUMONIAE CELL LYSATE BEFORE PURIFICATION
US20070184072A1 (en) 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
IL308456A (en) 2005-04-08 2024-01-01 Wyeth Llc Multivalent pneumococcal polysacharide-protein conjugate composition
US7691368B2 (en) 2005-04-15 2010-04-06 Merial Limited Vaccine formulations
JP2008544745A (en) 2005-05-12 2008-12-11 ノバルティス ヴァクシンズ アンド ダイアグノスティクス, インコーポレイテッド Immunogenic composition for Chlamydiatrachomatis
PT1896065E (en) 2005-06-27 2011-08-31 Glaxosmithkline Biolog Sa Process for manufacturing vaccines
US8703095B2 (en) 2005-07-07 2014-04-22 Sanofi Pasteur S.A. Immuno-adjuvant emulsion
TWI382019B (en) 2005-08-19 2013-01-11 Array Biopharma Inc Aminodiazepines as toll-like receptor modulators
TW200801003A (en) 2005-09-16 2008-01-01 Astrazeneca Ab Novel compounds
TW200745114A (en) 2005-09-22 2007-12-16 Astrazeneca Ab Novel compounds
US20090105212A1 (en) 2005-09-22 2009-04-23 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel adenine compound
EP1939200A4 (en) 2005-09-22 2010-06-16 Dainippon Sumitomo Pharma Co Novel adenine compound
WO2007034817A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090192153A1 (en) 2005-09-22 2009-07-30 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel adenine compound
NZ592713A (en) 2005-11-04 2012-12-21 Novartis Vaccines & Diagnostic Adjuvanted influenza vaccines including a cytokine-inducing agents other than an agonist of Toll-Like Receptor 9
GB0522765D0 (en) 2005-11-08 2005-12-14 Chiron Srl Combination vaccine manufacture
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
AU2006341122B2 (en) 2005-12-22 2013-08-22 Novartis Vaccines And Diagnostics, Srl. Chlamydial antigens
EP3020411A1 (en) 2005-12-22 2016-05-18 GlaxoSmithKline Biologicals s.a. Vaccine
FR2896162B1 (en) 2006-01-13 2008-02-15 Sanofi Pasteur Sa EMULSION OIL IN THERMOREVERSIBLE WATER
ATE532784T1 (en) 2006-02-17 2011-11-15 Pfizer Ltd 3-DEAZAPURINE DERIVATIVES AS TLR7 MODULATORS
EP2357184B1 (en) * 2006-03-23 2015-02-25 Novartis AG Imidazoquinoxaline compounds as immunomodulators
ES2388556T3 (en) 2006-03-23 2012-10-16 Novartis Ag Immunopotentiating compounds
EP2032161B1 (en) * 2006-06-12 2012-07-11 GlaxoSmithKline Biologicals S.A. L3v los vaccines
KR20090016704A (en) * 2006-06-15 2009-02-17 노파르티스 아게 Adjuvant-sparing multi-dose influenza vaccination regimen
US8138172B2 (en) 2006-07-05 2012-03-20 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of TLR7
AU2007269557B2 (en) 2006-07-07 2013-11-07 Gilead Sciences, Inc. Modulators of toll-like receptor 7
GB0616306D0 (en) 2006-08-16 2006-09-27 Novartis Ag Vaccines
EP2586790A3 (en) 2006-08-16 2013-08-14 Novartis AG Immunogens from uropathogenic Escherichia coli
WO2008028957A2 (en) 2006-09-07 2008-03-13 Glaxosmithkline Biologicals S.A. Vaccine
AU2007307800C1 (en) 2006-10-10 2014-03-13 Wyeth Llc Purification of Streptococcus pneumoniae type 3 polysaccharides
CA2664619C (en) 2006-10-12 2012-12-11 Glaxosmithkline Biologicals S.A. Immunogenic compositions comprising an oil-in-water emulsion adjuvant containing a reduced amount of squalene, tocol and an emulsifying agent
WO2008047174A1 (en) 2006-10-18 2008-04-24 Centre National De La Recherche Scientifique Alpha-galactosylceramide analogs, their methods of manufacture, intermediate compounds useful in these methods, and pharmaceutical compositions containing them
CL2008000496A1 (en) 2007-02-19 2008-09-22 Smithkline Beecham Corp COMPOUNDS DERIVED FROM PURINA; PROCEDURE FOR PREPARATION OF SUCH COMPOUNDS; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUNDS; AND ITS USE TO TREAT INFECTIOUS DISEASES, CANCER, ALLERGIES AND OTHER INFLAMMATORY AFFECTIONS.
PE20081887A1 (en) 2007-03-20 2009-01-16 Dainippon Sumitomo Pharma Co NEW ADENINE COMPOUND
WO2008135791A1 (en) 2007-05-08 2008-11-13 Astrazeneca Ab Imidazoquinolines with immuno-modulating properties
ATE501136T1 (en) 2007-08-03 2011-03-15 Pfizer Ltd IMIDAZOPYRIDINONE
PL2200642T3 (en) 2007-10-19 2012-09-28 Novartis Ag Meningococcal vaccine formulations
PE20091236A1 (en) 2007-11-22 2009-09-16 Astrazeneca Ab PYRIMIDINE DERIVATIVES AS IMMUNOMODULATORS OF TLR7
WO2009081172A1 (en) 2007-12-24 2009-07-02 Novartis Ag Assays for adsorbed influenza vaccines
US8466167B2 (en) * 2008-03-03 2013-06-18 Irm Llc Compounds and compositions as TLR activity modulators
RS53059B (en) 2008-03-24 2014-04-30 4Sc Discovery Gmbh Novel substituted imidazoquinolines
US20110104293A1 (en) 2008-07-01 2011-05-05 Bali Pulendran Synergistic induction of humoral and cellular immunity by combinatorial activation of toll-like receptors
KR20110045008A (en) * 2008-07-18 2011-05-03 아이디 바이오메디컬 코포레이션 오브 퀘벡 Chimeric Respiratory syncytial virus polypeptide antigen
DK2313111T3 (en) 2008-08-01 2013-12-02 Ventirx Pharmaceuticals Inc Toll-like receptor agonist formulations and their use
TWM352127U (en) 2008-08-29 2009-03-01 Bestac Advanced Material Co Ltd Polishing pad
ES2623794T3 (en) 2008-12-09 2017-07-12 Gilead Sciences, Inc. Intermediates for the preparation of toll receptor modulators
GB0822633D0 (en) 2008-12-11 2009-01-21 Novartis Ag Formulation
AU2010215595A1 (en) * 2009-02-17 2011-08-25 Glaxosmithkline Biologicals S.A. Inactivated dengue virus vaccine with aluminium-free adjuvant
US8679505B2 (en) 2009-04-14 2014-03-25 Novartis Ag Compositions for immunising against Staphylococcus aureus
CN102413838A (en) * 2009-04-30 2012-04-11 科勒制药集团有限公司 Pneumococcal vaccine and uses thereof
AU2010242352B2 (en) * 2009-05-01 2016-01-07 Osaka University Novel malaria vaccine
EP2437777B1 (en) 2009-06-01 2014-09-17 Novartis AG COMBINATIONS OF PNEUMOCOCCAL RrgB CLADES
CA2765112A1 (en) * 2009-06-10 2010-12-16 Novartis Ag Benzonaphthyridine-containing vaccines
US20110076300A1 (en) 2009-08-27 2011-03-31 Mariagrazia Pizza Hybrid Polypeptides Including Meningococcal fHBP Sequences
CA2772916C (en) 2009-09-02 2019-01-15 Novartis Ag Immunogenic compositions including tlr activity modulators
JO3257B1 (en) 2009-09-02 2018-09-16 Novartis Ag Compounds and compositions as tlr activity modulators
US20130259898A1 (en) 2009-11-09 2013-10-03 National Jewish Health Vaccine Composition
CN102905703B (en) 2010-03-23 2016-09-28 诺华股份有限公司 As TLR2 agonist for treating compound (lipopeptid based on cysteine) and the compositions of infection, inflammation, respiratory disorder etc.
US9597326B2 (en) 2010-04-13 2017-03-21 Glaxosmithkline Biologicals Sa Benzonapthyridine compositions and uses thereof
EA201390341A1 (en) * 2010-09-01 2013-08-30 Новартис Аг ADSORPTION OF IMMUNOTE POTENTIATORS ON INSOLUBLE SALTS OF METALS
US9618508B2 (en) 2010-12-14 2017-04-11 Glaxosmithkline Biologicals Sa Flow cytometry analysis of materials adsorbed to metal salts
KR20140026392A (en) 2011-03-02 2014-03-05 노파르티스 아게 Combination vaccines with lower doses of antigen and/or adjuvant
BR112014004782A2 (en) 2011-09-01 2017-03-21 Novartis Ag adjuvant formulations of staphylococcus aureus antigens
JP2015510872A (en) 2012-03-07 2015-04-13 ノバルティス アーゲー Enhanced formulation of Streptococcus pneumoniae antigen
CN104203946B (en) 2012-03-07 2017-03-22 诺华股份有限公司 Immunologically useful arginine salts
AU2013229465A1 (en) 2012-03-07 2014-09-04 Novartis Ag Adjuvanted formulations of rabies virus immunogens
US9375471B2 (en) * 2012-03-08 2016-06-28 Glaxosmithkline Biologicals Sa Adjuvanted formulations of booster vaccines
US9526776B2 (en) 2012-09-06 2016-12-27 Glaxosmithkline Biologicals Sa Combination vaccines with serogroup B meningococcus and D/T/P
MX2015005306A (en) 2012-10-25 2015-07-17 Glaxosmithkline Biolog Sa Nicotinamide as adjuvant.

Also Published As

Publication number Publication date
CA2828844A1 (en) 2012-09-07
EP2680885B8 (en) 2018-07-25
CA2828844C (en) 2020-07-14
BR112013022397A2 (en) 2017-09-26
JP6191082B2 (en) 2017-09-06
AU2012222883A1 (en) 2013-10-17
US20140112950A1 (en) 2014-04-24
KR20140026392A (en) 2014-03-05
CN103533954A (en) 2014-01-22
WO2012117377A1 (en) 2012-09-07
CN103533954B (en) 2015-09-09
US10603369B2 (en) 2020-03-31
EP2680885A1 (en) 2014-01-08
JP2014506916A (en) 2014-03-20
ES2681698T3 (en) 2018-09-14
EP2680885B1 (en) 2018-05-30
US20180169204A1 (en) 2018-06-21
JP2017197546A (en) 2017-11-02
TR201811280T4 (en) 2018-08-27
RU2013144207A (en) 2015-04-10

Similar Documents

Publication Publication Date Title
US10603369B2 (en) Combination vaccines with lower doses of antigen and/or adjuvant
AU2014204425B2 (en) Formulation of meningitis vaccines
US20180318410A1 (en) Combination vaccines with serogroup b meningococcus and d/t/p
US20200138927A1 (en) Non-cross-linked acellular pertussis antigens for use in combination vaccines
US20150125486A1 (en) Adjuvanted formulations of pediatric antigens
CA2894260A1 (en) Conjugates for protecting against diphtheria and/or tetanus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION