US20180245344A1 - Linear panel - Google Patents

Linear panel Download PDF

Info

Publication number
US20180245344A1
US20180245344A1 US15/757,422 US201615757422A US2018245344A1 US 20180245344 A1 US20180245344 A1 US 20180245344A1 US 201615757422 A US201615757422 A US 201615757422A US 2018245344 A1 US2018245344 A1 US 2018245344A1
Authority
US
United States
Prior art keywords
panel
linear
end portion
core
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/757,422
Other versions
US10801203B2 (en
Inventor
Lars Jacobus Johannes Venjen-Jensen
Michiel Jacobus Johannes Langeveld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunter Douglas Industries BV
Original Assignee
Hunter Douglas Industries BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunter Douglas Industries BV filed Critical Hunter Douglas Industries BV
Publication of US20180245344A1 publication Critical patent/US20180245344A1/en
Assigned to HUNTER DOUGLAS INDUSTRIES B.V. reassignment HUNTER DOUGLAS INDUSTRIES B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VEJEN-JENSEN, Lars, LANGEVELD, MICHIEL JACOBUS JOHANNES
Application granted granted Critical
Publication of US10801203B2 publication Critical patent/US10801203B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/34Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles
    • E04B9/36Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0464Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like having irregularities on the faces, e.g. holes, grooves
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/34Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles
    • E04B9/36Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats
    • E04B9/363Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats the principal plane of the slats being horizontal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/06Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/06Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members
    • E04B9/064Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members comprising extruded supporting beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/06Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members
    • E04B9/065Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members comprising supporting beams having a folded cross-section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/22Connection of slabs, panels, sheets or the like to the supporting construction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/22Connection of slabs, panels, sheets or the like to the supporting construction
    • E04B9/24Connection of slabs, panels, sheets or the like to the supporting construction with the slabs, panels, sheets or the like positioned on the upperside of, or held against the underside of the horizontal flanges of the supporting construction or accessory means connected thereto
    • E04B9/26Connection of slabs, panels, sheets or the like to the supporting construction with the slabs, panels, sheets or the like positioned on the upperside of, or held against the underside of the horizontal flanges of the supporting construction or accessory means connected thereto by means of snap action of elastically deformable elements held against the underside of the supporting construction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/28Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of materials not covered by groups E04C3/04 - E04C3/20
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/16Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of fibres or chips, e.g. bonded with synthetic resins, or with an outer layer of fibres or chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • B29C66/5245Joining profiled elements for forming cross-shaped connections, e.g. for making window frames or X-shaped pieces
    • B29C66/52451Joining profiled elements for forming cross-shaped connections, e.g. for making window frames or X-shaped pieces with four right angles, e.g. for making +-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7294Non woven mats, e.g. felt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/10Building elements, e.g. bricks, blocks, tiles, panels, posts, beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/04Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire
    • E04F2290/041Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against noise
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/04Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire
    • E04F2290/045Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against fire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to coverings suitable for mounting on a wall or ceiling, and in particular linear panels for mounting on a wall or ceiling.
  • ceiling panels formed from metals such as aluminium are known in the art.
  • Such panels may be, for example, square or rectangular in shape when installed and viewed from below, or may instead be of a linear form.
  • Linear panels have a length which is substantially greater than their width, the length generally being at least three times and more usually at least five times the width of the panel.
  • Aluminium linear panels have the advantages of being relatively light and flame retardant, however, they do not generally exhibit favorable acoustic characteristics. It will be appreciated that in many circumstances it might be desirable to provide a ceiling and/or a wall having good sound absorbing properties. The present invention addresses this need.
  • a linear ceiling or wall panel comprising and formed from a woven or non-woven fibrous material.
  • the linear panel comprises and is formed from a thermoformable fibrous material.
  • the entire linear panel may be formed from the fibrous material.
  • the linear panel consists of the fibrous material and is free from other materials such as metal.
  • the material may be a thermoformable woven fibrous material or may alternatively be a thermoformable non-woven fibrous material, such as felt, for example.
  • the linear panel is shaped to provide means for mounting the linear panel to a carrier which is attached to or suspended from a structural wall or ceiling.
  • the means for mounting the linear panel form an integral part of the panel, both the panel and the means for mounting the panel being formed from the fibrous material.
  • the means for mounting the panel may be, for example, a flange which extends along the whole or part of the length of the panel.
  • the panel may comprise a flange which extends along the whole length of the panel, or one or more flanges which extend along a part of the length of the panel and which permit the panel to be mounted along one side of the panel, such that the panel may extend from the ceiling in the form of a baffle.
  • the panel may comprise a flange which extends along the whole length of the panel, or one or more flanges which extend along a part of the length of the panel, one or more flanges being provided on both sides of the panel to permit the panel to be mounted along both sides of the panel.
  • the flange(s) are advantageously configured to engage with a corresponding recess in the carrier, to thereby permit panels to be mounted.
  • the length of the panel is at least three times the width of the panel. Preferably the length of the panel is at least five times the width of the panel.
  • the fibrous material may comprise synthetic fibers or may comprise a mixture of synthetic and non-synthetic fibers such as wool, cotton, etc.
  • the fibrous material may comprise polyester fibers (PES) and/or may comprise polyethylene terephthalate (PET) fibers.
  • the material may be a felt-type material.
  • the material may comprise one or more types of polyester fibers.
  • the material may comprise bi-core polyester fibers.
  • the material may comprise a mixture of polyester fibers and other fibers such as carbon or aramid fibers.
  • the material may consist of polyester fibres.
  • the material may consist of one or more types of bi-core polyester fibres, or may consist of a mixture of one or more types of bi-core fibres and one or more types of non-bi-core polyester fibres.
  • the material comprises a mixture of bi-core polyester fibers and non-bi-core (i.e. single core/monocore) polyester fibers.
  • the bi-core polyester fibers may comprise 25-80% and more preferably 30-50% of the total mass and/or volume and/or number of polyester fibers
  • the non-bi-core polyester fibers may comprise 20-75% and more preferably 50-70% of the total mass and/or volume and/or number of polyester fibers.
  • a ratio of approximately 50%:50% of bi-core polyester fibers to non-bi-core polyester fibers may be used.
  • a ratio of approximately 30%:70% or approximately 40%:60% of bi-core polyester fibers to non-bi-core polyester fibers may be used.
  • the bi-core polyester fibers may comprise an inner core formed from a first polyester material having a melting point of approximately 255° C. and an outer sheath formed from a second polyester material having a melting and/or softening temperature in the range of approximately 100° C.-225° C. and more preferably in the range of approximately 110° C.-210° C.
  • the non-bi-core polyester fibers may be “normal” single core/monocore polyester fibers having a melting point of approximately ° C.
  • the material may comprise only bi-core polyester fibers and no non-bi-core polyester fibers.
  • the bi-core polyester fibers may be of the same type or may be of different types having different properties including melting point, softening temperature, colour or fire resistant properties for example.
  • the material may additionally comprise other fibers such as carbon or aramid fibers, for example.
  • the material may comprise non-bi-core polyester fibers, with no bi-core polyester fibers present.
  • the non-bi-core polyester fibers may be of the same type or may be of different types having different properties including melting point, softening temperature, colour or fire resistant properties, for example.
  • the material may additionally comprise other fibers such as carbon or aramid fibers, for example.
  • polyester fibers have flame-retardant properties.
  • the fibrous material may have a weight in the range of 250-1500 g/m 2 .
  • the weight of the fibrous material is in the range of 500-900 g/m 2 .
  • the thickness of the fibrous material is preferably in the range of 1-6 mm, and more preferably in the range of 1-3.5 mm.
  • the density of the fibrous material may be approximately 0.15-0.50 g/cm 3 , preferably approximately 0.15-0.45 g/cm 3 and more preferably approximately 0.2-0.4 g/cm 3 .
  • the fibrous material is preferably able to be permanently formed into a desired shape at temperatures of approximately 80° C. to 225° C. and more preferably 110° C. to 225° C.
  • the temperature range required to thermoform the material is 110° C. to 220° C., more preferably 130° C. to 220° C. and even more preferably 130° C. to 180° C.
  • the linear panel may comprise an elongate portion extending in a longitudinal direction of the linear panel and including two side walls and a central portion located between the side walls, and the linear panel may further comprise an end portion extending between the side walls and central portion at a longitudinal end of the linear panel.
  • the elongate portion and the end portion of the linear panel may both comprise and be formed from a fibrous material.
  • the material is thermoformable.
  • the material may be a woven material or alternatively may be a non-woven material, such as felt, for example.
  • the elongate portion and the end portion of the linear panel are formed from the same type of fibrous material.
  • the elongate portion and the end portion of the linear panel may be formed from a single piece of the same fibrous material.
  • the elongate portion and the end portion of the linear panel may be formed from two different pieces of the same or different fibrous material.
  • the fibrous material comprises at least one of the group consisting of: bi-core polyester fibres; two different types of polyester fibres having different melting points; a mixture of bi-core polyester fibres and single core polyester fibres.
  • the side walls of the linear panel may comprise flanges which extend inwardly.
  • the flanges may extend inwardly and toward the central portion of the linear panel.
  • the end portion of the linear panel may include slots which are configured to receive the flanges of the side walls of the linear panel.
  • the side walls of the linear panel may each have a longitudinal end and a cut-out portion may be formed in the longitudinal end of each of the side walls.
  • corresponding tabs are provided on the end portion, each tab being configured to be received by a cut-out portion formed in the longitudinal end of a side wall.
  • the end portion of the linear panel may comprise three regions, namely a first region which extends between the side walls and the central portion at a longitudinal end of the linear panel, and second and third regions which extend from opposite ends of the first region and which extend along part of the interior-facing surface of each side wall respectively.
  • the side wall flanges may extend over at least part of the second and third regions of the end portion in order to retain the end portion in position.
  • An adhesive may be provided between the interior-facing surface of a side wall and the second or third region of the end portion in order to assist in retaining the end portion in position.
  • the end portion may be substantially formed from an extension of the central portion and/or an extension of one or both of the side walls.
  • An extension of the central portion is that part of the central portion which extends beyond the longitudinal end of the side walls of the linear panel.
  • An extension of the side wall is that part of the side wall which extends beyond the longitudinal end of the central portion of the linear panel.
  • the extension of the central portion or side wall may be configured to be folded through approximately 90° to thereby cover the open longitudinal end of the linear panel. This has the advantage that the open end of the linear panel is not visible from below, thereby enhancing the aesthetic quality of the panels. Furthermore, the end portion helps to prevent excessive dust and other undesirable elements from accumulating in the panel.
  • the extension of the central portion or side wall may be configured to be folded through an angle of less than 90° so that the open longitudinal end of the linear panel is partly obscured by the end portion of the linear panel.
  • the central portion of the linear panel may extend in a plane substantially perpendicular to the plane in which the side walls extend, such that the side walls extend from the central portion and are substantially parallel to each other.
  • the side walls may extend from the central portion at the same angle or at a different angle from each other, said angle or angles being greater than 90° but less than 180° such that the side walls extend away from each other.
  • FIGS. 1 to 4 show a linear panel in accordance with the first embodiment of the present invention.
  • FIG. 5 shows the linear panel of FIG. 1 attached to a carrier.
  • FIGS. 6 to 9 show a linear panel in accordance with a second embodiment of the present invention.
  • FIG. 10 shows the linear panel of FIG. 6 attached to a carrier
  • FIG. 11 shows a plurality of carriers and associated linear panels suspended from a ceiling.
  • FIGS. 12 to 14 show a further example of a linear panel in accordance with the second embodiment of the present invention.
  • FIG. 15 shows the linear panel of FIGS. 12 to 14 attached to a carrier.
  • FIGS. 16 and 17 show further examples of a linear panel in accordance with the second embodiment of the present invention.
  • FIGS. 18 to 20 show the linear panel of FIG. 9 including an end portion.
  • FIG. 21 shows the ceiling-mounted linear panels of FIG. 11 including end portions.
  • FIGS. 22 to 24 show end views of the linear panel of FIGS. 6 and 17 including an end portion.
  • FIGS. 25 to 27 show plan views of the linear panels of FIGS. 22 to 24 with the end portion extending from the central portion of the linear panel in an unfolded state.
  • FIG. 28 shows an isometric view of the linear panel of FIGS. 25 and 22 with the end portion extending from the central portion of the linear panel in an unfolded state.
  • FIG. 29 shows an isometric view of the linear panel of FIG. 6 including another example of an end portion.
  • FIG. 30 shows an isometric view of a separable end portion of a different embodiment.
  • FIG. 31 shows an isometric view of the end portion of FIG. 30 installed in the linear panel of FIG. 6 .
  • FIG. 32 shows an end view of the end portion of FIG. 30 installed in the linear panel of FIG. 17 .
  • FIGS. 1 to 3 show three linear panels 1 formed from a thermoformable non-woven fibrous material.
  • the panels of FIGS. 1 to 3 are depicted in end view, or alternatively may be considered as a cross-sectional view through the panel.
  • FIG. 4 shows an isometric view of the panel of FIG. 3 .
  • the length l of the panels 1 of FIGS. 1 to 4 is substantially greater than the width and the depth dimensions of the panel 1 , and is preferably at least five times the width and the depth of the panel 1 .
  • the panels 1 of FIGS. 1 to 4 each have an engaging portion 7 comprising a flange 9 .
  • the flange 9 is preferably formed integrally with a main portion 10 of the panel 1 , and the flange 9 is formed along the whole or part of the length l of the panel.
  • the angle ⁇ between the flange 9 and main portion of the panel is, in this example, an acute angle of approximately 35°.
  • the flange 9 is formed by applying heat to one or more of the sides of the panel material and applying pressure to deform part of the panel material along its length to form the flange 9 .
  • the material comprises a mixture of bi-core polyester fibers and non-bi-core polyester fibers (i.e.
  • the inner core of the bi-core polyester fibers and the fibers of the non-bi-core polyester fibers each have a melting point of approximately 255° C.
  • the outer sheath of the bi-core polyester fibers has a softening temperature of approximately 140° C.
  • the outer sheath of the bi-core fibers When heat is applied at a temperature greater than the softening temperature of the outer sheath of the bi-core fibers but lower than the melting point of both the non-bi-core fibers and the inner core of the bi-core fibers, the outer sheath of the bi-core fibers will soften, start to melt and thereby bond the non-bi-core fibers and the inner core of the bi-core fibers to each other.
  • part of the panel may be deformed along the whole or part of its length to provide a flange 9 at a desired angle with respect to the main portion 10 of the panel 1 . Once the panel has cooled, the flange will remain in the desired position, due to the thermoformable properties of the panel material.
  • the panel 1 may be provided with one flange extending along its length, as shown in FIG. 4 .
  • the side of the panel opposite to the flange 9 may be provided with a further flange 8 extending along part or whole of the length of the panel 1 .
  • the further flange 8 may have an angle ⁇ with respect to the main portion 10 of the panel which is substantially the same as the angle ⁇ between the flange 9 and the main portion 10 of the panel, as shown in FIG. 1 .
  • the further flange 8 may have a different angle ⁇ as desired.
  • FIG. 3 shows a panel 1 having a further flange 8 having an angle ⁇ of approximately 90°.
  • the panels of FIGS. 1 to 4 may be assembled onto a carrier 3 as shown in FIG. 5 .
  • the carrier is designed to be fixed to or adjacent to the structural ceiling and the engaging portion 7 of the panels of FIGS. 1 to 4 is configured to slot into a complementary-shaped recess 5 in the carrier 3 .
  • the linear panel 1 once engaged with the carrier 3 , may then hang below the carrier (when the carrier is fixed to or adjacent to a structural ceiling) in the manner of a baffle as shown in FIG. 5 .
  • FIGS. 6 and 7 show an end or alternatively a cross-sectional view of a linear panel 11 comprising a main portion 12 having a U-shaped cross-section, the panel 11 further comprising engaging portions 7 .
  • the engaging portions 7 each include a flange 9 .
  • the linear panel has a length l, the length l being substantially greater than the width w or depth d of the panel.
  • flanges 9 are provided at both sides of the panel 11 and each extend along the whole or part of the length of the panel.
  • FIG. 9 shows an end or alternatively a cross-sectional view of a linear panel 11 a similar to that depicted in FIG. 6 , except that the panel 11 a comprises a main portion 12 having a more rounded U-shaped cross-section than that of the panel 11 of FIG. 6 .
  • the panel may be made from the polyester fiber mix described above with respect to FIGS. 1 and 2 .
  • the panel is formed by heating the thermoformable fibrous material to a temperature greater than the softening temperature of the outer sheath of the bi-core fibers, but lower than the melting point of both the non-bi-core fibers and the inner core of the bi-core fibers, where a mixture of non-bi-core and bi-core fibers are used.
  • pressure is applied to the material to form the side walls 20 and the flanges 9 .
  • additional pressure can be applied to the portions of the material which are intended to be bent prior to carrying out bending of the material. This increases the density of the material whilst reducing its thickness, permitting the material to be more easily bent whilst providing greater strength to the bent portions 14 following cooling. This can be seen in the panel depicted in FIG. 7 .
  • the linear panel 11 may be assembled onto a carrier 3 as shown in FIGS. 10 and 11 .
  • the engaging portions 7 of each panel 11 are configured to slot into complementary-shaped recesses 5 in the carrier 3 , in a manner similar to that described with respect to FIG. 5 .
  • the linear panels 11 Once the linear panels 11 are engaged with the carrier 3 , they may then hang below the carrier as shown in FIGS. 10 and 11 .
  • the spacing of the linear panels with respect to each other will be determined by the extent of coverage required, including aesthetic, acoustic and thermal considerations.
  • FIGS. 12 to 14 depict views similar to FIGS. 6 to 8 , respectively, of a linear panel 13 .
  • the panel 13 has a U-shaped cross-section similar to that of the panel 11 of FIGS. 6 to 8 (but might alternatively have a more rounded U-shaped cross-section as shown in FIG. 9 ), however the flanges 9 of panel 13 extend in the opposite direction to those of panel 11 , i.e. outwardly rather than inwardly.
  • the angle ⁇ between the side walls 20 of the panel 13 and the flanges 9 may be substantially the same as the angle ⁇ of FIGS. 6 to 8 , or may be a different angle.
  • the materials and temperatures employed in forming the linear panel may be similar to those described with respect to the earlier figures.
  • FIG. 15 shows the formed and cooled linear panel 13 assembled onto a carrier 3 . Again, the engaging portions 7 of each panel 13 are configured to slot into complementary-shaped recesses in the carrier 3 .
  • FIGS. 16 and 17 depict two further examples of linear panels in accordance with the present invention. These Figs. show an end face or alternatively a cross-section through linear panels 15 , 17 , the linear panels 15 , 17 being formed from similar material and at a similar temperature to the previously described linear panels. However, panel 15 has outwardly extending flanges 9 which are substantially perpendicular to side walls 20 of the panel 15 and panel 17 has inwardly extending flanges 9 which are substantially perpendicular to side walls 20 of the panel 17 . As for the earlier examples, the engaging portions 7 of each of the panels 15 , 17 are configured to slot into complementary-shaped recesses in the carrier.
  • the linear panels may have, as can be seen from the examples, inwardly or outwardly extending flanges, and may have flanges which extend substantially parallel to the central portion 16 of the panel, and/or substantially parallel to the ceiling or wall and/or the carrier.
  • the flanges 9 may extend at an acute angle with respect to the side walls 20 of the panel. Where the side walls 20 are not substantially perpendicular to the central portion 16 , the angle between the side walls 20 and the flanges 9 may be obtuse.
  • the recesses in the carrier should be configured to receive and retain the engaging portions of the linear panel including the flanges.
  • thermoformed, non-woven fibrous material permits the panel to retain its thermoformed shape once mounted, and enables the flanges to remain substantially at the angles formed during the thermoforming process. This permits the panels to be installed on a carrier without losing their shape and prevents the engaging portions from deforming and thereby becoming free of the carrier.
  • an end portion e.g. an end cap
  • an end portion may be provided for the linear panel.
  • FIG. 18 shows an isometric view of a linear panel similar to that shown in FIG. 8 , the panel this time including an end portion 30 .
  • the linear panel comprises an elongate portion 31 extending in a longitudinal direction of the linear panel and including two side walls 20 and a central portion 16 located between the side walls, as can be seen more clearly in FIG. 28 .
  • the end portion of FIG. 18 is preferably formed from the same material as that of the panel.
  • the end portion may be formed from a separate piece of material from the panel, or may be formed from the same single piece of material as the panel. These alternatives are described later.
  • the end portion 30 is substantially shaped to slot into and thereby cover an open end of the linear panel.
  • the linear panel is of a substantially rectangular cross-sectional shape
  • the end portion is correspondingly of a substantially rectangular cross-sectional shape.
  • the end portion 30 includes slots 32 for receiving the flanges 9 of the panel.
  • the slots tightly hold the flanges in position, thereby preventing the end portion 30 from moving.
  • Adhesive may be used to hold the end portion in position.
  • a friction fit between the slots 32 and the flanges 9 and/or the longitudinal end 34 of the panel and the end portion 30 may utilized to prevent movement of the end portion.
  • the side walls 20 at the longitudinal end of the panel may be provided with cut-out portions 35 for receiving a correspondingly shaped and sized tab 36 of the end portion 30 .
  • FIG. 19 shows such an example where the tabs 36 and cut-out portions 35 have a square or rectangular shape
  • FIG. 20 shows such an example where the tabs 36 and cut-out portions 35 have a dovetail shape.
  • These examples show two tabs, one on each side of the end portion 30 .
  • several tabs may instead be provided on each side of the end portion 30 , and a plurality of corresponding cut-out portions may be provided in the side walls at the longitudinal end of the panel.
  • FIG. 21 shows a plurality of linear panels 11 mounted to a carrier 3 .
  • the linear panels each have an end portion 30 . End portions may be provided at one end or at both open ends of the linear panel.
  • FIG. 22 shows an end view of the linear panel of FIG. 6 this time including an end portion 30 .
  • the end portion 30 includes two dovetail-shaped tabs 36 , one tab being located at each side of the end portion 30 , and being fitted into corresponding cut-out portions 35 in the side walls 20 at the longitudinal end of the linear panel.
  • the end portion 30 also includes two slots 32 for receiving flanges 9 .
  • the end portion 30 is formed from the same single piece of material as the panel.
  • the end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 25 , which shows a plan view of the panel.
  • the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by) 90° about the fold line 38 so that the extension 37 covers the open end of the longitudinal panel as shown in FIG. 22 .
  • the dovetail-shaped tabs 36 slot into the corresponding cut-out portions 35 in the side walls 20 of the panel, and the flanges 9 are received by the slots 32 of the end portion 30 .
  • the end portion 30 may then be held in position by a friction fit between the longitudinal end 34 of the panel and the end portion 30 .
  • adhesive may additionally be used.
  • FIG. 23 shows an end view of the linear panel of FIG. 17 this time including an end portion 30 .
  • the end portion does not include tabs 36 , but tabs of any suitable shape could be provided if desired.
  • the end portion 30 is formed from the same single piece of material as the panel.
  • the end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 26 , which shows a plan view of the panel.
  • the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by 90°) about the fold line 38 so that the extension covers the open end of the longitudinal panel as shown in FIG. 23 .
  • the end portion 30 is configured to fit immediately below the flanges 9 , which extend at substantially right angles to the side walls 20 , and so no slots need to be provided in the end portion 30 .
  • the end portion 30 is maintained in position by a friction fit between the side walls 20 , the central portion 16 and the flanges 9 at the longitudinal end 34 of the panel and the end portion 30 . If desired, adhesive may additionally be used.
  • FIG. 24 shows an end view of the linear panel of FIG. 17 with a different end portion 30 .
  • the end portion 30 does not include tabs 36 , but tabs of any suitable shape could be provided if desired.
  • the end portion 30 is formed from the same single piece of material as the panel.
  • the end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 27 , which shows a plan view of the panel.
  • the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by 90°) about the fold line so that the extension covers the open end of the longitudinal panel as shown in FIG. 23 .
  • This end portion 30 is configured to fit to be flush with the outside surface 39 of flanges 9 , but is otherwise identical to the end portion 30 described with respect to FIG. 23 . If desired, adhesive may additionally be used.
  • FIG. 28 shows an isometric view of the linear panel of FIG. 25 and FIG. 22 with the extension 37 which forms the end portion 30 extending from the central portion 16 of the linear panel in an unfolded state.
  • FIG. 29 shows an isometric view of the linear panel of FIG. 6 with an extension 37 which forms the end portion 30 extending from the central portion 16 of the linear panel in an unfolded state.
  • the extension 37 includes a tongue portion 50 which extends from the main extension body 37 a in a direction away from the central portion 16 of the linear panel when in an unfolded state.
  • the tongue portion 50 includes tabs 51 which extend from the tongue portion in a direction roughly perpendicular to the central portion 16 of the linear panel.
  • the extension 37 may be folded about the fold line 38 so as to cover the longitudinal end of the linear panel as previously described with respect to FIG. 22 .
  • a further fold line 52 is provided between the tongue portion 50 and the main extension body 37 a to enable the tongue portion 50 to be folded with respect to the main extension body 37 a. This permits the tabs 51 of the tongue portion 50 to hook underneath and thereby engage the flanges 9 of the linear panel.
  • the end portion 30 may be formed from a separate piece of material to the panel.
  • the end portion may be formed, for example, by cutting out or by stamping out a blank from the material.
  • the end portion 30 and the panel may be formed from the same type of material, or may be formed from different materials.
  • FIG. 30 shows an end portion 30 having three regions, namely a first region 41 , a second region 42 and a third region 43 .
  • the first region 41 is configured to cover the open end of a linear panel as shown in FIG. 32 , and is sized and shaped accordingly.
  • the first region 41 is of a rectangular shape
  • the second and third regions 42 , 43 extend from opposite ends of the first region in a direction substantially parallel to each other.
  • the linear panel into which the end portion 30 is to be inserted has a rectangular cross-sectional shape and the side walls 20 of the linear panel are substantially parallel to each other as shown in FIGS. 31 and 32 .
  • the side walls 20 of the linear panel may extend towards or away from each other instead, and in such cases the second and third regions of the material 40 are configured to extend at a corresponding angle away from the first region such that, when the end portion 30 is inserted into the longitudinal end of the panel, the outer-facing surfaces 44 of the second and third regions 42 , 43 extend along part of the interior-facing surfaces of each side wall respectively.
  • the flanges 9 may extend over part of the second and third regions to keep the end portion in position.
  • an adhesive may be provided between the interior-facing surface of the side walls 20 and the outer-facing surfaces 44 of the second and third regions.
  • the end portion may easily be installed and removed as desired.
  • the linear panel has a square or rectangular cross section, however, other panels such as those having a “U” or “V” shaped cross section are also contemplated.
  • the panel may be produced by roll forming, hot pressing, drawing the material through a heated mold, or by any other suitable means.
  • Roll forming or drawing the material through a heated mold are the preferred methods of manufacture of the panel as these are a continuous process, thereby allowing the rapid production of panels of a desired length. Furthermore, these methods may also permit heating on one (the inner) surface of the panel only so that the other (the outer) surface of the panel retains a felt-like appearance due to minimal melting of the fibers on the outer surface.
  • it is easy to alter the position of the rollers in order to produce panels having different widths, cross-sections, etc. Drawing the material through a heated mold has the advantage that the temperature of the mold may be more accurately controlled.
  • the above examples refer to a panel material comprising a mixture of bi-core polyester fibers and of non-bi-core (i.e. “normal” monocore) polyester fibers in the ratio of approximately 30:70 or alternatively approximately 40:60.
  • the ratio of bi-core polyester fibers to non-bi-core polyester fibers may be in the range of 80:20 to 25:75.
  • non-synthetic fibers may be mixed with the polyester fibers. It is desirable to have at least 50% synthetic fibers as it is easier to control the parameters of synthetic fibers, whereas non-synthetic fibers may exhibit significantly different properties with each batch. Where recycling is of importance, it is advantageous to limit the number of different types of fibers.
  • panels formed in accordance with the present invention will retain a soft, felt-like appearance because the majority of the fibers will not have melted. Melted fibers become more densely packed together and fuse to form a smooth outer surface. Although this increases the strength of the material, it reduces its ability to absorb sound.
  • the material may be pre-treated by low temperature heating prior to use in forming a panel. This may help to stabilize the material and make it less prone to shrinkage or stretching during the manufacture of the panel.
  • Any desired additives such as flame-retardant chemicals or pigments may be introduced to the fibers and/or to the fibrous material prior to forming of the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Finishing Walls (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Nonwoven Fabrics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A linear wall or ceiling panel comprising and formed from a woven or non-woven fibrous material. Preferably, the material is thermoformable and non-woven and comprises at least one of the group consisting of: bi-core polyester fibers; two different types of fibers having different melting points; a mixture of bi-core polyester fibers and non-bi-core (single core) polyester fibers. The panel is preferably shaped to provide means for mounting the panel to a carrier. Optionally, an end portion may be provided to cover the open longitudinal end of the linear panel.

Description

  • The present invention relates to coverings suitable for mounting on a wall or ceiling, and in particular linear panels for mounting on a wall or ceiling.
  • In particular, ceiling panels formed from metals such as aluminium are known in the art. Such panels may be, for example, square or rectangular in shape when installed and viewed from below, or may instead be of a linear form. Linear panels have a length which is substantially greater than their width, the length generally being at least three times and more usually at least five times the width of the panel.
  • Aluminium linear panels have the advantages of being relatively light and flame retardant, however, they do not generally exhibit favorable acoustic characteristics. It will be appreciated that in many circumstances it might be desirable to provide a ceiling and/or a wall having good sound absorbing properties. The present invention addresses this need.
  • According to the present invention there is provided a linear ceiling or wall panel comprising and formed from a woven or non-woven fibrous material. Preferably the linear panel comprises and is formed from a thermoformable fibrous material. The entire linear panel may be formed from the fibrous material. Preferably the linear panel consists of the fibrous material and is free from other materials such as metal. The material may be a thermoformable woven fibrous material or may alternatively be a thermoformable non-woven fibrous material, such as felt, for example. Advantageously, the linear panel is shaped to provide means for mounting the linear panel to a carrier which is attached to or suspended from a structural wall or ceiling. Preferably the means for mounting the linear panel form an integral part of the panel, both the panel and the means for mounting the panel being formed from the fibrous material.
  • By providing linear panels made from a fibrous material, the sound absorbing properties of a room can be greatly improved with respect to the prior art aluminium ceiling panels.
  • The means for mounting the panel may be, for example, a flange which extends along the whole or part of the length of the panel.
  • The panel may comprise a flange which extends along the whole length of the panel, or one or more flanges which extend along a part of the length of the panel and which permit the panel to be mounted along one side of the panel, such that the panel may extend from the ceiling in the form of a baffle.
  • Alternatively, the panel may comprise a flange which extends along the whole length of the panel, or one or more flanges which extend along a part of the length of the panel, one or more flanges being provided on both sides of the panel to permit the panel to be mounted along both sides of the panel.
  • The flange(s) are advantageously configured to engage with a corresponding recess in the carrier, to thereby permit panels to be mounted.
  • The length of the panel is at least three times the width of the panel. Preferably the length of the panel is at least five times the width of the panel.
  • The fibrous material may comprise synthetic fibers or may comprise a mixture of synthetic and non-synthetic fibers such as wool, cotton, etc. The fibrous material may comprise polyester fibers (PES) and/or may comprise polyethylene terephthalate (PET) fibers. The material may be a felt-type material. The material may comprise one or more types of polyester fibers. The material may comprise bi-core polyester fibers. The material may comprise a mixture of polyester fibers and other fibers such as carbon or aramid fibers. Alternatively the material may consist of polyester fibres. The material may consist of one or more types of bi-core polyester fibres, or may consist of a mixture of one or more types of bi-core fibres and one or more types of non-bi-core polyester fibres.
  • Advantageously the material comprises a mixture of bi-core polyester fibers and non-bi-core (i.e. single core/monocore) polyester fibers. The bi-core polyester fibers may comprise 25-80% and more preferably 30-50% of the total mass and/or volume and/or number of polyester fibers, and the non-bi-core polyester fibers may comprise 20-75% and more preferably 50-70% of the total mass and/or volume and/or number of polyester fibers. A ratio of approximately 50%:50% of bi-core polyester fibers to non-bi-core polyester fibers may be used. Advantageously, a ratio of approximately 30%:70% or approximately 40%:60% of bi-core polyester fibers to non-bi-core polyester fibers may be used.
  • The bi-core polyester fibers may comprise an inner core formed from a first polyester material having a melting point of approximately 255° C. and an outer sheath formed from a second polyester material having a melting and/or softening temperature in the range of approximately 100° C.-225° C. and more preferably in the range of approximately 110° C.-210° C.
  • The non-bi-core polyester fibers may be “normal” single core/monocore polyester fibers having a melting point of approximately ° C.
  • Alternatively the material may comprise only bi-core polyester fibers and no non-bi-core polyester fibers. In this case the bi-core polyester fibers may be of the same type or may be of different types having different properties including melting point, softening temperature, colour or fire resistant properties for example. The material may additionally comprise other fibers such as carbon or aramid fibers, for example.
  • Alternatively the material may comprise non-bi-core polyester fibers, with no bi-core polyester fibers present. In this case the non-bi-core polyester fibers may be of the same type or may be of different types having different properties including melting point, softening temperature, colour or fire resistant properties, for example. The material may additionally comprise other fibers such as carbon or aramid fibers, for example.
  • Preferably the polyester fibers have flame-retardant properties.
  • The fibrous material may have a weight in the range of 250-1500 g/m2. Advantageously the weight of the fibrous material is in the range of 500-900 g/m2. The thickness of the fibrous material is preferably in the range of 1-6 mm, and more preferably in the range of 1-3.5 mm. The density of the fibrous material may be approximately 0.15-0.50 g/cm3, preferably approximately 0.15-0.45 g/cm3 and more preferably approximately 0.2-0.4 g/cm3.
  • The fibrous material is preferably able to be permanently formed into a desired shape at temperatures of approximately 80° C. to 225° C. and more preferably 110° C. to 225° C. Advantageously the temperature range required to thermoform the material is 110° C. to 220° C., more preferably 130° C. to 220° C. and even more preferably 130° C. to 180° C.
  • The linear panel may comprise an elongate portion extending in a longitudinal direction of the linear panel and including two side walls and a central portion located between the side walls, and the linear panel may further comprise an end portion extending between the side walls and central portion at a longitudinal end of the linear panel. The elongate portion and the end portion of the linear panel may both comprise and be formed from a fibrous material. Preferably the material is thermoformable. The material may be a woven material or alternatively may be a non-woven material, such as felt, for example. Advantageously, the elongate portion and the end portion of the linear panel are formed from the same type of fibrous material. The elongate portion and the end portion of the linear panel may be formed from a single piece of the same fibrous material. Alternatively, the elongate portion and the end portion of the linear panel may be formed from two different pieces of the same or different fibrous material. Preferably, the fibrous material comprises at least one of the group consisting of: bi-core polyester fibres; two different types of polyester fibres having different melting points; a mixture of bi-core polyester fibres and single core polyester fibres.
  • The side walls of the linear panel may comprise flanges which extend inwardly. The flanges may extend inwardly and toward the central portion of the linear panel.
  • The end portion of the linear panel may include slots which are configured to receive the flanges of the side walls of the linear panel.
  • The side walls of the linear panel may each have a longitudinal end and a cut-out portion may be formed in the longitudinal end of each of the side walls. Preferably, corresponding tabs are provided on the end portion, each tab being configured to be received by a cut-out portion formed in the longitudinal end of a side wall.
  • If the elongate portion and the end portion of the linear panel are formed from two separate pieces of the same or different non-woven fibrous material, the end portion of the linear panel may comprise three regions, namely a first region which extends between the side walls and the central portion at a longitudinal end of the linear panel, and second and third regions which extend from opposite ends of the first region and which extend along part of the interior-facing surface of each side wall respectively. The side wall flanges may extend over at least part of the second and third regions of the end portion in order to retain the end portion in position. An adhesive may be provided between the interior-facing surface of a side wall and the second or third region of the end portion in order to assist in retaining the end portion in position.
  • If the elongate portion and the end portion of the linear panel are formed from a single piece of a fibrous material, the end portion may be substantially formed from an extension of the central portion and/or an extension of one or both of the side walls. An extension of the central portion is that part of the central portion which extends beyond the longitudinal end of the side walls of the linear panel. An extension of the side wall is that part of the side wall which extends beyond the longitudinal end of the central portion of the linear panel. By forming the elongate portion and the end portion of the linear panel from the same single piece of a fibrous material, the end portion may be folded through approximately 90° or less to form an end portion which exhibits no discontinuities when viewed from below.
  • The extension of the central portion or side wall may be configured to be folded through approximately 90° to thereby cover the open longitudinal end of the linear panel. This has the advantage that the open end of the linear panel is not visible from below, thereby enhancing the aesthetic quality of the panels. Furthermore, the end portion helps to prevent excessive dust and other undesirable elements from accumulating in the panel.
  • Alternatively, the extension of the central portion or side wall may be configured to be folded through an angle of less than 90° so that the open longitudinal end of the linear panel is partly obscured by the end portion of the linear panel.
  • The central portion of the linear panel may extend in a plane substantially perpendicular to the plane in which the side walls extend, such that the side walls extend from the central portion and are substantially parallel to each other. Alternatively, the side walls may extend from the central portion at the same angle or at a different angle from each other, said angle or angles being greater than 90° but less than 180° such that the side walls extend away from each other.
  • The present invention will now be described by way of example only and with reference to the following drawings of which:
  • FIGS. 1 to 4 show a linear panel in accordance with the first embodiment of the present invention.
  • FIG. 5 shows the linear panel of FIG. 1 attached to a carrier.
  • FIGS. 6 to 9 show a linear panel in accordance with a second embodiment of the present invention.
  • FIG. 10 shows the linear panel of FIG. 6 attached to a carrier, and FIG. 11 shows a plurality of carriers and associated linear panels suspended from a ceiling.
  • FIGS. 12 to 14 show a further example of a linear panel in accordance with the second embodiment of the present invention.
  • FIG. 15 shows the linear panel of FIGS. 12 to 14 attached to a carrier.
  • FIGS. 16 and 17 show further examples of a linear panel in accordance with the second embodiment of the present invention.
  • FIGS. 18 to 20 show the linear panel of FIG. 9 including an end portion. FIG. 21 shows the ceiling-mounted linear panels of FIG. 11 including end portions.
  • FIGS. 22 to 24 show end views of the linear panel of FIGS. 6 and 17 including an end portion.
  • FIGS. 25 to 27 show plan views of the linear panels of FIGS. 22 to 24 with the end portion extending from the central portion of the linear panel in an unfolded state. FIG. 28 shows an isometric view of the linear panel of FIGS. 25 and 22 with the end portion extending from the central portion of the linear panel in an unfolded state.
  • FIG. 29 shows an isometric view of the linear panel of FIG. 6 including another example of an end portion.
  • FIG. 30 shows an isometric view of a separable end portion of a different embodiment. FIG. 31 shows an isometric view of the end portion of FIG. 30 installed in the linear panel of FIG. 6. FIG. 32 shows an end view of the end portion of FIG. 30 installed in the linear panel of FIG. 17.
  • FIGS. 1 to 3 show three linear panels 1 formed from a thermoformable non-woven fibrous material. The panels of FIGS. 1 to 3 are depicted in end view, or alternatively may be considered as a cross-sectional view through the panel. FIG. 4 shows an isometric view of the panel of FIG. 3. The length l of the panels 1 of FIGS. 1 to 4 is substantially greater than the width and the depth dimensions of the panel 1, and is preferably at least five times the width and the depth of the panel 1.
  • The panels 1 of FIGS. 1 to 4 each have an engaging portion 7 comprising a flange 9. The flange 9 is preferably formed integrally with a main portion 10 of the panel 1, and the flange 9 is formed along the whole or part of the length l of the panel. The angle α between the flange 9 and main portion of the panel is, in this example, an acute angle of approximately 35°. The flange 9 is formed by applying heat to one or more of the sides of the panel material and applying pressure to deform part of the panel material along its length to form the flange 9. In this example, the material comprises a mixture of bi-core polyester fibers and non-bi-core polyester fibers (i.e. “normal” monocore polyester fibers) in the ratio of approximately 30:70 or alternatively approximately 40:60. The inner core of the bi-core polyester fibers and the fibers of the non-bi-core polyester fibers each have a melting point of approximately 255° C. The outer sheath of the bi-core polyester fibers has a softening temperature of approximately 140° C. When heat is applied at a temperature greater than the softening temperature of the outer sheath of the bi-core fibers but lower than the melting point of both the non-bi-core fibers and the inner core of the bi-core fibers, the outer sheath of the bi-core fibers will soften, start to melt and thereby bond the non-bi-core fibers and the inner core of the bi-core fibers to each other. By applying pressure during the heating process, part of the panel may be deformed along the whole or part of its length to provide a flange 9 at a desired angle with respect to the main portion 10 of the panel 1. Once the panel has cooled, the flange will remain in the desired position, due to the thermoformable properties of the panel material.
  • The panel 1 may be provided with one flange extending along its length, as shown in FIG. 4. Alternatively, depending upon the manufacturing methods used to produce the panel and aesthetic requirements of the panel, the side of the panel opposite to the flange 9 may be provided with a further flange 8 extending along part or whole of the length of the panel 1. The further flange 8 may have an angle β with respect to the main portion 10 of the panel which is substantially the same as the angle α between the flange 9 and the main portion 10 of the panel, as shown in FIG. 1. Alternatively, the further flange 8 may have a different angle β as desired. FIG. 3 shows a panel 1 having a further flange 8 having an angle β of approximately 90°.
  • The panels of FIGS. 1 to 4 may be assembled onto a carrier 3 as shown in FIG. 5. The carrier is designed to be fixed to or adjacent to the structural ceiling and the engaging portion 7 of the panels of FIGS. 1 to 4 is configured to slot into a complementary-shaped recess 5 in the carrier 3. The linear panel 1, once engaged with the carrier 3, may then hang below the carrier (when the carrier is fixed to or adjacent to a structural ceiling) in the manner of a baffle as shown in FIG. 5.
  • The linear panel may alternatively be of the form shown in FIGS. 6 to 17. FIGS. 6 and 7 show an end or alternatively a cross-sectional view of a linear panel 11 comprising a main portion 12 having a U-shaped cross-section, the panel 11 further comprising engaging portions 7. The engaging portions 7 each include a flange 9. As can be seen more clearly in the isometric view depicted in FIG. 8, the linear panel has a length l, the length l being substantially greater than the width w or depth d of the panel. In this example, flanges 9 are provided at both sides of the panel 11 and each extend along the whole or part of the length of the panel. FIG. 9 shows an end or alternatively a cross-sectional view of a linear panel 11 a similar to that depicted in FIG. 6, except that the panel 11 a comprises a main portion 12 having a more rounded U-shaped cross-section than that of the panel 11 of FIG. 6.
  • The panel may be made from the polyester fiber mix described above with respect to FIGS. 1 and 2. Again, the panel is formed by heating the thermoformable fibrous material to a temperature greater than the softening temperature of the outer sheath of the bi-core fibers, but lower than the melting point of both the non-bi-core fibers and the inner core of the bi-core fibers, where a mixture of non-bi-core and bi-core fibers are used. During heating, pressure is applied to the material to form the side walls 20 and the flanges 9. To aid bending of the material, additional pressure can be applied to the portions of the material which are intended to be bent prior to carrying out bending of the material. This increases the density of the material whilst reducing its thickness, permitting the material to be more easily bent whilst providing greater strength to the bent portions 14 following cooling. This can be seen in the panel depicted in FIG. 7.
  • Once the linear panel 11 has been formed and cooled, it may be assembled onto a carrier 3 as shown in FIGS. 10 and 11. The engaging portions 7 of each panel 11 are configured to slot into complementary-shaped recesses 5 in the carrier 3, in a manner similar to that described with respect to FIG. 5. Once the linear panels 11 are engaged with the carrier 3, they may then hang below the carrier as shown in FIGS. 10 and 11. The spacing of the linear panels with respect to each other will be determined by the extent of coverage required, including aesthetic, acoustic and thermal considerations.
  • FIGS. 12 to 14 depict views similar to FIGS. 6 to 8, respectively, of a linear panel 13. The panel 13 has a U-shaped cross-section similar to that of the panel 11 of FIGS. 6 to 8 (but might alternatively have a more rounded U-shaped cross-section as shown in FIG. 9), however the flanges 9 of panel 13 extend in the opposite direction to those of panel 11, i.e. outwardly rather than inwardly. The angle γ between the side walls 20 of the panel 13 and the flanges 9 may be substantially the same as the angle α of FIGS. 6 to 8, or may be a different angle. Again, the materials and temperatures employed in forming the linear panel may be similar to those described with respect to the earlier figures.
  • FIG. 15 shows the formed and cooled linear panel 13 assembled onto a carrier 3. Again, the engaging portions 7 of each panel 13 are configured to slot into complementary-shaped recesses in the carrier 3.
  • FIGS. 16 and 17 depict two further examples of linear panels in accordance with the present invention. These Figs. show an end face or alternatively a cross-section through linear panels 15, 17, the linear panels 15, 17 being formed from similar material and at a similar temperature to the previously described linear panels. However, panel 15 has outwardly extending flanges 9 which are substantially perpendicular to side walls 20 of the panel 15 and panel 17 has inwardly extending flanges 9 which are substantially perpendicular to side walls 20 of the panel 17. As for the earlier examples, the engaging portions 7 of each of the panels 15, 17 are configured to slot into complementary-shaped recesses in the carrier.
  • The linear panels may have, as can be seen from the examples, inwardly or outwardly extending flanges, and may have flanges which extend substantially parallel to the central portion 16 of the panel, and/or substantially parallel to the ceiling or wall and/or the carrier. Alternatively, the flanges 9 may extend at an acute angle with respect to the side walls 20 of the panel. Where the side walls 20 are not substantially perpendicular to the central portion 16, the angle between the side walls 20 and the flanges 9 may be obtuse. In any case, the recesses in the carrier should be configured to receive and retain the engaging portions of the linear panel including the flanges. The stiffness of the thermoformed, non-woven fibrous material permits the panel to retain its thermoformed shape once mounted, and enables the flanges to remain substantially at the angles formed during the thermoforming process. This permits the panels to be installed on a carrier without losing their shape and prevents the engaging portions from deforming and thereby becoming free of the carrier.
  • In some embodiments of the invention, an end portion (e.g. an end cap) may be provided for the linear panel.
  • FIG. 18 shows an isometric view of a linear panel similar to that shown in FIG. 8, the panel this time including an end portion 30. The linear panel comprises an elongate portion 31 extending in a longitudinal direction of the linear panel and including two side walls 20 and a central portion 16 located between the side walls, as can be seen more clearly in FIG. 28. The end portion of FIG. 18 is preferably formed from the same material as that of the panel. The end portion may be formed from a separate piece of material from the panel, or may be formed from the same single piece of material as the panel. These alternatives are described later. The end portion 30 is substantially shaped to slot into and thereby cover an open end of the linear panel. In this example, the linear panel is of a substantially rectangular cross-sectional shape, and the end portion is correspondingly of a substantially rectangular cross-sectional shape. The end portion 30 includes slots 32 for receiving the flanges 9 of the panel. Preferably, the slots tightly hold the flanges in position, thereby preventing the end portion 30 from moving.
  • Adhesive may be used to hold the end portion in position. Alternatively or additionally, a friction fit between the slots 32 and the flanges 9 and/or the longitudinal end 34 of the panel and the end portion 30 may utilized to prevent movement of the end portion.
  • In order to more securely hold the end portion in position, the side walls 20 at the longitudinal end of the panel may be provided with cut-out portions 35 for receiving a correspondingly shaped and sized tab 36 of the end portion 30. FIG. 19 shows such an example where the tabs 36 and cut-out portions 35 have a square or rectangular shape, and FIG. 20 shows such an example where the tabs 36 and cut-out portions 35 have a dovetail shape. These examples show two tabs, one on each side of the end portion 30. However, several tabs may instead be provided on each side of the end portion 30, and a plurality of corresponding cut-out portions may be provided in the side walls at the longitudinal end of the panel. Alternatively, there may be one or more tabs provided on one side only of the end portion 30.
  • FIG. 21 shows a plurality of linear panels 11 mounted to a carrier 3. The linear panels each have an end portion 30. End portions may be provided at one end or at both open ends of the linear panel.
  • FIG. 22 shows an end view of the linear panel of FIG. 6 this time including an end portion 30. In this example, the end portion 30 includes two dovetail-shaped tabs 36, one tab being located at each side of the end portion 30, and being fitted into corresponding cut-out portions 35 in the side walls 20 at the longitudinal end of the linear panel. The end portion 30 also includes two slots 32 for receiving flanges 9. In this example, the end portion 30 is formed from the same single piece of material as the panel. The end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 25, which shows a plan view of the panel. During manufacture, the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by) 90° about the fold line 38 so that the extension 37 covers the open end of the longitudinal panel as shown in FIG. 22. The dovetail-shaped tabs 36 slot into the corresponding cut-out portions 35 in the side walls 20 of the panel, and the flanges 9 are received by the slots 32 of the end portion 30. The end portion 30 may then be held in position by a friction fit between the longitudinal end 34 of the panel and the end portion 30. If desired, adhesive may additionally be used.
  • FIG. 23 shows an end view of the linear panel of FIG. 17 this time including an end portion 30. In this example, the end portion does not include tabs 36, but tabs of any suitable shape could be provided if desired. In this example, the end portion 30 is formed from the same single piece of material as the panel. The end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 26, which shows a plan view of the panel. During manufacture, the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by 90°) about the fold line 38 so that the extension covers the open end of the longitudinal panel as shown in FIG. 23. The end portion 30 is configured to fit immediately below the flanges 9, which extend at substantially right angles to the side walls 20, and so no slots need to be provided in the end portion 30. The end portion 30 is maintained in position by a friction fit between the side walls 20, the central portion 16 and the flanges 9 at the longitudinal end 34 of the panel and the end portion 30. If desired, adhesive may additionally be used.
  • FIG. 24 shows an end view of the linear panel of FIG. 17 with a different end portion 30. In this example, the end portion 30 does not include tabs 36, but tabs of any suitable shape could be provided if desired. In this example, the end portion 30 is formed from the same single piece of material as the panel. The end portion 30 is formed from an extension 37 of the central portion 16 of the panel, as shown in FIG. 27, which shows a plan view of the panel. During manufacture, the desired shape and size of the extension 37 may be cut or stamped into the material, and then the extension 37 is folded (rotated by 90°) about the fold line so that the extension covers the open end of the longitudinal panel as shown in FIG. 23. This end portion 30 is configured to fit to be flush with the outside surface 39 of flanges 9, but is otherwise identical to the end portion 30 described with respect to FIG. 23. If desired, adhesive may additionally be used.
  • FIG. 28 shows an isometric view of the linear panel of FIG. 25 and FIG. 22 with the extension 37 which forms the end portion 30 extending from the central portion 16 of the linear panel in an unfolded state.
  • FIG. 29 shows an isometric view of the linear panel of FIG. 6 with an extension 37 which forms the end portion 30 extending from the central portion 16 of the linear panel in an unfolded state. However, in this embodiment, the extension 37 includes a tongue portion 50 which extends from the main extension body 37 a in a direction away from the central portion 16 of the linear panel when in an unfolded state. The tongue portion 50 includes tabs 51 which extend from the tongue portion in a direction roughly perpendicular to the central portion 16 of the linear panel. The extension 37 may be folded about the fold line 38 so as to cover the longitudinal end of the linear panel as previously described with respect to FIG. 22. A further fold line 52 is provided between the tongue portion 50 and the main extension body 37 a to enable the tongue portion 50 to be folded with respect to the main extension body 37 a. This permits the tabs 51 of the tongue portion 50 to hook underneath and thereby engage the flanges 9 of the linear panel.
  • In a different embodiment, the end portion 30 may be formed from a separate piece of material to the panel. The end portion may be formed, for example, by cutting out or by stamping out a blank from the material. The end portion 30 and the panel may be formed from the same type of material, or may be formed from different materials. FIG. 30 shows an end portion 30 having three regions, namely a first region 41, a second region 42 and a third region 43. The first region 41 is configured to cover the open end of a linear panel as shown in FIG. 32, and is sized and shaped accordingly. In this example, the first region 41 is of a rectangular shape, and the second and third regions 42, 43 extend from opposite ends of the first region in a direction substantially parallel to each other. This is because the linear panel into which the end portion 30 is to be inserted has a rectangular cross-sectional shape and the side walls 20 of the linear panel are substantially parallel to each other as shown in FIGS. 31 and 32. In other examples, the side walls 20 of the linear panel may extend towards or away from each other instead, and in such cases the second and third regions of the material 40 are configured to extend at a corresponding angle away from the first region such that, when the end portion 30 is inserted into the longitudinal end of the panel, the outer-facing surfaces 44 of the second and third regions 42, 43 extend along part of the interior-facing surfaces of each side wall respectively. The flanges 9 may extend over part of the second and third regions to keep the end portion in position. Additionally, if desired, an adhesive may be provided between the interior-facing surface of the side walls 20 and the outer-facing surfaces 44 of the second and third regions.
  • Where no adhesive is provided, the end portion may easily be installed and removed as desired.
  • In these examples, the linear panel has a square or rectangular cross section, however, other panels such as those having a “U” or “V” shaped cross section are also contemplated.
  • The panel may be produced by roll forming, hot pressing, drawing the material through a heated mold, or by any other suitable means. Roll forming or drawing the material through a heated mold are the preferred methods of manufacture of the panel as these are a continuous process, thereby allowing the rapid production of panels of a desired length. Furthermore, these methods may also permit heating on one (the inner) surface of the panel only so that the other (the outer) surface of the panel retains a felt-like appearance due to minimal melting of the fibers on the outer surface. In the case of roll-forming, it is easy to alter the position of the rollers in order to produce panels having different widths, cross-sections, etc. Drawing the material through a heated mold has the advantage that the temperature of the mold may be more accurately controlled.
  • The above examples refer to a panel material comprising a mixture of bi-core polyester fibers and of non-bi-core (i.e. “normal” monocore) polyester fibers in the ratio of approximately 30:70 or alternatively approximately 40:60. However, the ratio of bi-core polyester fibers to non-bi-core polyester fibers may be in the range of 80:20 to 25:75. Additionally, non-synthetic fibers may be mixed with the polyester fibers. It is desirable to have at least 50% synthetic fibers as it is easier to control the parameters of synthetic fibers, whereas non-synthetic fibers may exhibit significantly different properties with each batch. Where recycling is of importance, it is advantageous to limit the number of different types of fibers.
  • It is desirable, whatever the mix of fibers used, to form the panel at low temperatures as this reduces the amount of energy required to form the panel.
  • Additionally, panels formed in accordance with the present invention will retain a soft, felt-like appearance because the majority of the fibers will not have melted. Melted fibers become more densely packed together and fuse to form a smooth outer surface. Although this increases the strength of the material, it reduces its ability to absorb sound.
  • Therefore, for both aesthetic and acoustic considerations, it is desirable to provide fibers having different softening and/or melting points and form the panel at a low temperature such that only a minority of the fibers melt, leaving the panel with a soft, felt-like surface and lower density.
  • The material may be pre-treated by low temperature heating prior to use in forming a panel. This may help to stabilize the material and make it less prone to shrinkage or stretching during the manufacture of the panel.
  • Any desired additives such as flame-retardant chemicals or pigments may be introduced to the fibers and/or to the fibrous material prior to forming of the panel.
  • While the foregoing description and drawings represent exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and not limited to the foregoing description.

Claims (20)

1. A linear wall or ceiling panel comprising and formed from a thermoformable non-woven fibrous material, the material comprising bi-core polyester fibers, the bi-core polyester fibers comprising an inner core formed from a first polyester material having a first melting temperature and an outer sheath formed from a second polyester material having a second melting/softening temperature that is less than the first melting temperature.
2. A linear wall or ceiling panel according to claim 1, wherein the second melting/softening temperature ranges from 100° C. to 225° C.
3. A linear wall or ceiling panel according to claim 1, wherein the material comprises a mixture of the bi-core polyester fibers and non-bi-core polyester fibers, the non-bi-core polyester fibers comprising single core or monocore polyester fibers.
4. A linear wall or ceiling panel according to claim 1, wherein the panel is shaped to provide means for mounting the panel to a carrier and wherein the means for mounting the linear panel form an integral part of the panel, both the panel and the means for mounting the panel being formed from the fibrous material.
5. A linear wall or ceiling panel according to claim 4, wherein the means for mounting the panel comprise at least one flange which extends along at least a part of the length of the panel.
6. A linear wall or ceiling panel according to claim 4, wherein the material comprises a mixture of the bi-core polyester fibers and non-bi-core polyester fibers.
7. A linear wall or ceiling panel according to claim 1, further including an elongate portion which extends in a longitudinal direction of the linear panel and which comprises two side walls and a central portion located between the side walls, the linear panel further comprising an end portion extending between the side walls and the central portion at a longitudinal end of the linear panel.
8. A linear wall or ceiling panel according to claim 7, wherein the side walls of the linear panel comprise flanges which extend inwardly and towards the central portion of the panel.
9. A linear wall or ceiling panel according to claim 8, wherein the end portion of the linear panel includes slots which are configured to receive the flanges which extend from the side walls of the panel.
10. A linear wall or ceiling panel according to claim 7, wherein the side walls of the linear panel each have a longitudinal end and a cut-out portion is formed in the longitudinal end of each of the side walls, and wherein corresponding tabs are provided on the end portion, each tab being configured to be received by a cut-out portion formed in the longitudinal end of a side wall of the panel.
11. A linear wall or ceiling panel according to claim 7, wherein the elongate portion and the end portion of the linear panel are formed from a single piece of the same fibrous material.
12. A linear wall or ceiling panel according to claim 7, wherein the end portion is substantially formed from an extension of the central portion or an extension of one of the side walls of the linear panel, an extension of the central portion extending beyond the longitudinal end of the side walls of the linear panel and an extension of a side wall extending beyond the longitudinal end of the other side wall and the central portion of the linear panel.
13. A linear wall or ceiling panel according to claim 12, wherein the extension of the central portion or side wall is configured to be folded through approximately 90° to thereby cover the open longitudinal end of the linear panel.
14. A linear wall or ceiling panel according to claim 7, wherein the end portion of the linear panel is a separate piece of material from the elongate portion of the linear panel, and wherein the end portion comprises three regions, namely a first region which extends between the side walls and the central portion at a longitudinal end of the linear panel, and second and third regions which extend from opposite ends of the first region and which extend along part of the interior-facing surface of each side wall respectively.
15. A linear wall or ceiling panel according to claim 14, wherein the side walls of the linear panel comprise flanges which extend inwardly and towards the central portion of the panel, and wherein the flanges extend over at least part of the second and third regions of end portion in order to retain the end portion in position.
16. A linear wall or ceiling panel according to claim 2, wherein the first melting temperature is greater than 225° C.
17. A linear wall or ceiling panel according to claim 2, wherein the second melting/softening temperature ranges from 110° C., to 210° C.
18. A method of forming a linear panel, the method comprising:
heating a thermoformable fibrous material comprising bi-core polyester fibers to a processing temperature that is greater than a melting/softening temperature of an outer sheath of the bi-core fibers but lower than the melting point of an inner core of the bi-core fibers; and
applying pressure to deform at least part of the material along its length;
wherein the panel is produced by a continuous process.
19. The method of claim 18, wherein the continuous process comprises one of roll forming or drawing the material through a heated mold.
20. The method of claim 18, wherein the processing temperature ranges from 100° C. to 225° C.
US15/757,422 2015-09-08 2016-09-08 Linear panel Active 2036-12-04 US10801203B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1041463A NL1041463B1 (en) 2015-09-08 2015-09-08 Linear Ceiling Panel.
NL1041463 2015-09-08
PCT/EP2016/071174 WO2017042269A1 (en) 2015-09-08 2016-09-08 Linear panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/071174 A-371-Of-International WO2017042269A1 (en) 2015-09-08 2016-09-08 Linear panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/024,157 Continuation US11230840B2 (en) 2015-09-08 2020-09-17 Linear panel

Publications (2)

Publication Number Publication Date
US20180245344A1 true US20180245344A1 (en) 2018-08-30
US10801203B2 US10801203B2 (en) 2020-10-13

Family

ID=56979523

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/757,422 Active 2036-12-04 US10801203B2 (en) 2015-09-08 2016-09-08 Linear panel
US17/024,157 Active US11230840B2 (en) 2015-09-08 2020-09-17 Linear panel

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/024,157 Active US11230840B2 (en) 2015-09-08 2020-09-17 Linear panel

Country Status (11)

Country Link
US (2) US10801203B2 (en)
EP (2) EP3347537B1 (en)
CN (2) CN108026723B (en)
AT (1) AT16720U1 (en)
CA (1) CA2997831A1 (en)
DE (1) DE202016008763U1 (en)
DK (1) DK3347537T3 (en)
ES (1) ES2940305T3 (en)
NL (4) NL1041463B1 (en)
PL (1) PL3347537T3 (en)
WO (1) WO2017042269A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180127975A1 (en) * 2016-06-30 2018-05-10 Jason Gillette Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
EP3623140A1 (en) * 2018-09-12 2020-03-18 Hunter Douglas Industries B.V. Methods for manufacturing linear panels from multi-layer panel material assemblies
US11180916B2 (en) 2017-06-12 2021-11-23 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US11199004B2 (en) 2016-06-30 2021-12-14 Turf Design, Inc. Apparatus and system for dynamic acoustic drop ceiling system and methods thereof
USD956268S1 (en) 2019-08-01 2022-06-28 Hunter Douglas Industries B.V. Ceiling panel
US11447951B2 (en) * 2020-11-19 2022-09-20 FACT Design, LLC Ceiling tile with integrated baffle
US11532295B1 (en) 2022-03-10 2022-12-20 FACT Design, LLC Ceiling tile with baffle and stabilizing member
US12110685B2 (en) 2020-07-17 2024-10-08 Certainteed Ceilings Corporation Multi-level carrier for ceiling panels and ceiling panel system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1041464B1 (en) * 2015-09-08 2017-03-22 Hunter Douglas Ind Bv Carrier for a Linear Ceiling Panel.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458640A1 (en) * 1979-06-12 1981-01-02 Reynolds Aluminium France Metal false ceiling for building - has light alloy supports allowing variable fixing of ceiling panels
US20100066121A1 (en) * 2005-04-01 2010-03-18 Gross James R Nonwoven material for acoustic insulation, and process for manufacture

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994113A (en) * 1956-08-03 1961-08-01 Paul D Dail Ceiling construction
DE1918152A1 (en) * 1969-04-10 1970-10-15 Pgh Aufbau Covering for ceilings and walls
DE2409709A1 (en) * 1974-02-28 1975-09-18 Selling Wings Ab Suspended under-ceiling support rails - with angled grooves depth exceeding rectangular interval between flange edge and shank inside
DE2559077A1 (en) * 1975-12-30 1977-07-07 Dornier Gmbh Ceiling and wall cladding - has U-shaped panels with projecting semi circular cross section engaging into rails
CA1089618A (en) * 1977-11-28 1980-11-18 Johannes A. H. Brugman Panel construction
DE2815970A1 (en) * 1978-04-13 1979-10-18 Hunter Douglas Ind Bv Fire retarding panelled ceiling - has beams with spacing brackets released on heating to permit expansion
DE3038021C2 (en) 1980-10-08 1984-04-05 Gema Bauelemente AG, 9015 St. Gallen Front cover for grid ceilings
DE3148777C2 (en) * 1981-12-09 1985-05-30 Nagelstutz & Eichler GmbH & Co KG, Bauelemente, 4353 Oer-Erkenschwick Grid ceiling, in particular strip grid ceiling
FR2535762B1 (en) 1982-11-10 1985-07-12 Chenel Guy FALSE CEILING, ESPECIALLY FOR AN EXHIBITION HALL
DE3516013C2 (en) 1985-05-03 1994-10-20 Blohm Voss Ag Component set for room ceilings
NL8802915A (en) * 1988-09-29 1990-07-02 Hunter Douglas Ind Bv DISMANTABLE WALL OR CEILING CONSTRUCTION, FRONT-RIGHT ANGULAR PANEL FOR WALL OR CEILING CLADDING AND METHOD FOR MANUFACTURING THAT.
GB2275939A (en) 1993-03-11 1994-09-14 Hunter Douglas Ind Bv Ceiling panelling
JPH0782645A (en) * 1993-06-30 1995-03-28 Sekisui Chem Co Ltd Hot melt nonwoven fabric, core material for formation of ceiling and ceiling material
IL120444A0 (en) * 1995-07-14 1997-07-13 Korean Ind Dev Corp A method for manufacturing interior plate boards for construction
KR0178461B1 (en) * 1995-07-14 1999-05-15 김양권 Method for manufacturing interior decoration board for architecture
US5981411A (en) 1998-05-14 1999-11-09 Foss Manufacturing Co., Inc. Thermoformable material
US20020065013A1 (en) * 2000-11-30 2002-05-30 Porterfield D. James Nonwoven material and method of manufacture therefor
US20040144057A1 (en) * 2003-01-27 2004-07-29 Allied Tube & Conduit Corporation Framing system for buildings
US8283266B2 (en) * 2003-11-20 2012-10-09 Johns Manville Method of making tough, flexible mats and tough, flexible mats
US20050211500A1 (en) * 2004-03-26 2005-09-29 Wendt Alan C Fibrous faced ceiling panel
GB0511309D0 (en) * 2005-06-03 2005-07-13 Henley Consultants Ltd End caps for structural members
US20080045101A1 (en) * 2006-08-18 2008-02-21 Near Shannon D Decorative dual scrim composite panel
CN201024562Y (en) * 2007-04-13 2008-02-20 王伟忠 Multifunctional clip type main keel
US20090252941A1 (en) * 2008-04-03 2009-10-08 Usg Interiors, Inc. Non-woven material and method of making such material
FR2931847B1 (en) * 2008-06-03 2010-06-04 Procedes Chenel Internat TEXTILE CLOTHES WITH FUSE LINES FOR TEMPORARY SAFETY CEILINGS IN SLIPPERED CLIPS
TWI651455B (en) * 2009-01-14 2019-02-21 Kuraray Co., Ltd Sound insulation board, sound insulation structure and sound insulation method
US8062565B2 (en) * 2009-06-18 2011-11-22 Usg Interiors, Inc. Low density non-woven material useful with acoustic ceiling tile products
WO2011020166A1 (en) * 2009-08-19 2011-02-24 Joshua Pillars Panel mounting system
US8397458B2 (en) * 2009-10-01 2013-03-19 Usg Interiors, Llc Bracket useful with sloped suspended ceiling systems
FR2951804B1 (en) * 2009-10-22 2011-11-18 Lafarge Gypsum Int PROFILER PLATE PLATE HOLDER
KR101808883B1 (en) * 2010-04-22 2017-12-13 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Nonwoven nanofiber webs containing chemically active particulates and methods of making and using same
EP2444561B1 (en) * 2010-10-25 2013-07-17 Soft Cells A/S A panel
JP2012152982A (en) 2011-01-25 2012-08-16 Quadrant Plastic Composites Japan Ltd Laminated sheet and molded body
US9381675B2 (en) 2011-11-30 2016-07-05 The Boeing Company Stabilized dry preform and method
DE102012004826A1 (en) 2012-03-08 2013-09-12 Gm Global Technology Operations, Llc Method for producing profiled strips and hollow profiled bodies and device for carrying out the method
DE202013102779U1 (en) * 2013-06-26 2013-07-17 Oxiegen Gmbh Substrate element
GB2517705A (en) * 2013-08-28 2015-03-04 Armstrong World Ind Inc Ceiling system with ceiling element mounting brackets
KR101522109B1 (en) 2013-12-05 2015-05-20 김진호 Finishing material for screen louver
CN104775234B (en) * 2015-04-24 2018-01-09 杭州诺邦无纺股份有限公司 Heat and reinforced break up non-woven material and preparation method
US20180339491A1 (en) * 2017-05-24 2018-11-29 Zephyros, Inc. Insulation for modular buildings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458640A1 (en) * 1979-06-12 1981-01-02 Reynolds Aluminium France Metal false ceiling for building - has light alloy supports allowing variable fixing of ceiling panels
US20100066121A1 (en) * 2005-04-01 2010-03-18 Gross James R Nonwoven material for acoustic insulation, and process for manufacture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603661B2 (en) 2016-06-30 2023-03-14 Turf Design, Inc. Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US10584488B2 (en) * 2016-06-30 2020-03-10 Turf Design, Inc. Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US12000147B2 (en) 2016-06-30 2024-06-04 Turf Design, Inc. Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US11933045B2 (en) 2016-06-30 2024-03-19 Turf Design, Inc. Ceiling system
US11199004B2 (en) 2016-06-30 2021-12-14 Turf Design, Inc. Apparatus and system for dynamic acoustic drop ceiling system and methods thereof
US11913225B2 (en) 2016-06-30 2024-02-27 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US11834827B2 (en) 2016-06-30 2023-12-05 Awi Licensing Llc Apparatus and system for dynamic acoustic drop ceiling system and methods thereof
US11434636B2 (en) 2016-06-30 2022-09-06 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US20180127975A1 (en) * 2016-06-30 2018-05-10 Jason Gillette Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US11773591B2 (en) 2017-06-12 2023-10-03 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US11180916B2 (en) 2017-06-12 2021-11-23 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US11433592B2 (en) 2018-09-12 2022-09-06 Hunter Douglas Industries B.V. Method of forming a linear panel from multi-layer panel material assemblies
EP3623140A1 (en) * 2018-09-12 2020-03-18 Hunter Douglas Industries B.V. Methods for manufacturing linear panels from multi-layer panel material assemblies
US12090722B2 (en) 2018-09-12 2024-09-17 Hunter Douglas Industries B.V. Method of forming a linear panel from multi-layer panel material assemblies
USD956268S1 (en) 2019-08-01 2022-06-28 Hunter Douglas Industries B.V. Ceiling panel
US12110685B2 (en) 2020-07-17 2024-10-08 Certainteed Ceilings Corporation Multi-level carrier for ceiling panels and ceiling panel system
US11542705B2 (en) 2020-11-19 2023-01-03 FACT Design, LLC Ceiling tile with integrated baffle
US11447951B2 (en) * 2020-11-19 2022-09-20 FACT Design, LLC Ceiling tile with integrated baffle
US11532295B1 (en) 2022-03-10 2022-12-20 FACT Design, LLC Ceiling tile with baffle and stabilizing member

Also Published As

Publication number Publication date
EP4219854A3 (en) 2023-10-25
EP3347537A1 (en) 2018-07-18
DE202016008763U1 (en) 2019-08-19
CN114135045A (en) 2022-03-04
NL1041463B1 (en) 2017-03-22
US11230840B2 (en) 2022-01-25
WO2017042269A1 (en) 2017-03-16
NL1042041B1 (en) 2018-07-23
EP4219854A2 (en) 2023-08-02
CA2997831A1 (en) 2017-03-16
DK3347537T3 (en) 2023-02-27
NL2021066A (en) 2018-07-23
NL2021066B1 (en) 2018-12-19
NL2022020A (en) 2019-01-03
PL3347537T3 (en) 2023-04-03
AT16720U1 (en) 2020-07-15
CN108026723B (en) 2021-11-16
ES2940305T3 (en) 2023-05-05
NL2022020B1 (en) 2019-04-04
US20210062507A1 (en) 2021-03-04
CN108026723A (en) 2018-05-11
US10801203B2 (en) 2020-10-13
NL1042041A (en) 2018-03-13
CN114135045B (en) 2023-10-24
EP3347537B1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US11230840B2 (en) Linear panel
CA2820277C (en) Fire protection sleeve
RU2387766C2 (en) Connection element with hook and plastic lining to reduce stresses that occur in process of fire
US20060118193A1 (en) Self-closing protection sheath and method of fabrication
EP2930713B1 (en) Sound absorbing sheet having micro resonant structure, method for manufacturing same, and sound absorption type soundproof panel using same
CN106232915A (en) Overcover including the covering plate being clamped to section bar
JP6694085B2 (en) Coating structure
US9985423B2 (en) Wire harness and method for producing wire harness
JP2013099936A (en) Fiber base material and interior material using the same
US11191982B2 (en) Fire-protection element and fire-protection wrap
JP2015180168A (en) Protector for wire harness, and wire harness
JP6484028B2 (en) Covering structure
US20220325826A1 (en) Fire protection element having bimetal
AU2014274553A1 (en) Low density acoustical panels
JPH09170388A (en) Blind slat and manufacture thereof
WO2017141429A1 (en) Sound absorbing material and laminated material for vehicles
JP2007255027A (en) External facing structure
JP2016148214A (en) Airtight material for bathroom

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: HUNTER DOUGLAS INDUSTRIES B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VEJEN-JENSEN, LARS;LANGEVELD, MICHIEL JACOBUS JOHANNES;SIGNING DATES FROM 20180806 TO 20190412;REEL/FRAME:051450/0185

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4