US20180212388A1 - Electrical connector - Google Patents

Electrical connector Download PDF

Info

Publication number
US20180212388A1
US20180212388A1 US15/677,315 US201715677315A US2018212388A1 US 20180212388 A1 US20180212388 A1 US 20180212388A1 US 201715677315 A US201715677315 A US 201715677315A US 2018212388 A1 US2018212388 A1 US 2018212388A1
Authority
US
United States
Prior art keywords
insulating body
carrying member
electrical connector
elastic
connector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/677,315
Inventor
Jian Min Peng
Ming Jui Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotes Co Ltd
Original Assignee
Lotes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotes Co Ltd filed Critical Lotes Co Ltd
Priority to US15/677,315 priority Critical patent/US20180212388A1/en
Assigned to LOTES CO., LTD reassignment LOTES CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PENG, JIAN MIN, TSAI, MING JUI
Publication of US20180212388A1 publication Critical patent/US20180212388A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/82Coupling devices connected with low or zero insertion force
    • H01R12/85Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures
    • H01R12/88Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures acting manually by rotating or pivoting connector housing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/74Devices having four or more poles, e.g. holders for compact fluorescent lamps
    • H01R33/76Holders with sockets, clips, or analogous contacts adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket
    • H01R33/7664Holders with sockets, clips, or analogous contacts adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket having additional guiding, adapting, shielding, anti-vibration or mounting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/10Plug-in assemblages of components, e.g. IC sockets
    • H05K7/1007Plug-in assemblages of components, e.g. IC sockets with means for increasing contact pressure at the end of engagement of coupling parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/97Holders with separate means to prevent loosening of the coupling or unauthorised removal of apparatus held
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • H01R13/62933Comprising exclusively pivoting lever
    • H01R13/62966Comprising two pivoting levers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • H01R13/62983Linear camming means or pivoting lever for connectors for flexible or rigid printed circuit boards, flat or ribbon cables
    • H01R13/62994Lever acting on a connector mounted onto the flexible or rigid printed circuit boards, flat or ribbon cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • H01R13/633Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for disengagement only
    • H01R13/635Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for disengagement only by mechanical pressure, e.g. spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/82Coupling devices connected with low or zero insertion force
    • H01R12/85Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures

Definitions

  • the present invention relates to an electrical connector, and in particular to an electrical connector used for carrying a chip module.
  • An existing electrical connector used for carrying a chip module comprises an insulating body, multiple terminals fixedly arranged in the insulating body, a carrier located on one side of the insulating body and used for carrying the chip module to enable the chip module to contact with the multiple terminals, a pressing plate used for pressing the chip module to enable the chip module to contact with the multiple terminals, and a base located on the periphery of the insulating body.
  • the carrier carries the chip module to the insulating body through a pivoting device, the carrier is pivoted to the pivoting device, the pivoting device is generally composed of multiple parts, what is more, the pivoting device isaki in structure, and therefore assembly difficulty increases and cost is high.
  • the present invention is directed to an electrical connector in which a carrying member is directly pivoted to an insulating body, therefore a complicated pivoting device is omitted, assembly is easier, and cost is saved at the same time.
  • the present invention uses the following technical means.
  • an electrical connector used for carrying a chip module includes an insulating body with multiple terminals arranged in the insulating body, a carrying member pivoted to the insulating body and used for carrying the chip module to the insulating body, and a pressing plate located on one side of the insulating body and used for pressing the carrying member or the chip module.
  • the chip module contacts with the multiple terminals.
  • the carrying member and the pressing plate are located on two adjacent peripheral sides of the insulating body.
  • the carrying member has two opposite long sides and two opposite short sides, one long side of the carrying member serves as a pivoting side, the pressing plate has two opposite long sides and two opposite short sides, and one short side of the pressing plate serves as a pivoting side.
  • each of the two ends of the pivoting side of the carrying member is provided with a pivot shaft
  • the insulating body is provided with two fixing holes
  • the pivot shafts are pivoted to the fixing holes.
  • a base is fixed to the periphery of the insulating body, an elastic element is fixed to the base, and the elastic element and the carrying member are located on the same side of the insulating body.
  • the electrical connector further includes an elastic element, the elastic element and the carrying member are located on the same side of the insulating body, the elastic element is provided with a buffer portion, and the buffer portion abuts against the carrying member.
  • the elastic element is provided with a main body portion, the buffer portion extends from the main body portion, and the buffer portion is located between the insulating body and the carrying member.
  • the carrying member is concavely provided with an engaging portion corresponding to the buffer portion, and the engaging portion abuts against the buffer portion.
  • the elastic element is provided with a main body portion, at least one first elastic portion and at least one second elastic portion, the at least one first elastic portion and at least one second elastic portion extend from the main body portion, and a buffer portion extends from each second elastic portion.
  • the main body portion extends and bends along a first vertical direction to form at least one bending portion, the first elastic portion and the second elastic portion horizontally extend from the bending portion, a carrying portion extends and bends along a second vertical direction opposite to the first vertical direction from the first elastic portion, and the carrying portion abuts along the second vertical direction against the carrying member.
  • the number of the at least one first elastic portion is two, and the second elastic portion is located between the two first elastic portions.
  • the base is fixed to the periphery of the insulating body, a first reinforcing member and a second reinforcing member are fixed to the base, the second reinforcing member is opposite to the first reinforcing member, a first lever is pivoted to the first reinforcing member, and a second lever is pivoted to the second reinforcing member.
  • the pressing plate is pivoted to the first lever, the pressing plate is provided with a projecting portion, and the second lever presses the projecting portion.
  • the side of the carrying member away from the pivoting side of the carrying member is provided with at least one first guide portion, and the first guide portion is engaged with the outer wall face of the insulating body to guide the carrying member to the insulating body.
  • each of the two short sides of the carrying member is provided with at least one second guide portion, and the second guide portions are engaged with the outer wall face of the insulating body to guide the carrying member to the insulating body.
  • the present invention has the beneficial effects.
  • the carrying member is directly pivoted to the insulating body, specifically, each of the two ends of the pivoting side of the carrying member is provided with a pivot shaft, the fixing holes are formed on the outer side of the insulating body, the pivot shafts are pivoted into the fixing holes, in this way, the carrying member is rotatingly pivoted to the insulating body without the assistance of any pivoting device for pivoting the carrying member.
  • the structure of the electrical connector is simplified, the electrical connector can be assembled more easily, assembly efficiency is improved, and cost is saved at the same time.
  • FIG. 1 is a three-dimensional exploded view of an electrical connector of the present invention.
  • FIG. 2 is an enlarged view of part a in FIG. 1 .
  • FIG. 3 is a three-dimensional exploded view of the electrical connector of the present invention from another angle of view.
  • FIG. 4 is a three-dimensional assembled view of the electrical connector of the present invention.
  • FIG. 5 is a three-dimensional assembled view of the electrical connector of the present invention in another state.
  • FIG. 6 is a three-dimensional assembled view of the electrical connector of the present invention in the closed state.
  • FIG. 7 is a broken-out sectional view of the electrical connector according to a first embodiment of the present invention in the assembled state along A-A.
  • FIG. 8 is an enlarged view of part a 1 in FIG. 7 .
  • FIG. 9 is a broken-out sectional view of the electrical connector according to the first embodiment of the present invention in the buffered state along A-A.
  • FIG. 10 is an enlarged view of part a 2 in FIG. 9 .
  • FIG. 11 is a broken-out sectional view of the electrical connector according to the first embodiment of the present invention along A-A when a carrying member carries a chip module to an insulating body.
  • FIG. 12 is an enlarged view of part a 3 in FIG. 11 .
  • FIG. 13 is a structural representation of a carrying member of the electrical connector according to a second embodiment of the present invention.
  • FIG. 14 is a three-dimensional assembled view of the electrical connector according to the second embodiment of the present invention.
  • relative terms such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure.
  • module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • processor shared, dedicated, or group
  • the term module may include memory (shared, dedicated, or group) that stores code executed by the processor.
  • chip or “computer chip”, as used herein, generally refer to a hardware electronic component, and may refer to or include a small electronic circuit unit, also known as an integrated circuit (IC), or a combination of electronic circuits or ICs.
  • IC integrated circuit
  • this invention in one aspect, relates to an electrical connector.
  • an electrical connector of the present invention is used for carrying a chip module 8 and comprises an insulating body 1 with multiple terminals 11 arranged therein, a carrying member 2 pivoted to the insulating body 1 and used for carrying the chip module 8 to the insulating body 1 , a pressing plate 3 used for pressing the carrying member 2 or the chip module 8 , a base 4 located on the periphery of the insulating body 1 , and an elastic element 5 fixed to the base 4 .
  • the chip module 8 contacts with the multiple terminals 11 , and the pressing plate 3 and the carrying member 2 are respectively located on two adjacent peripheral sides of the insulating body 1 .
  • FIG. 1 and FIG. 3 A first embodiment of the present invention is shown in FIG. 1 and FIG. 3 , the multiple terminals 11 arranged in the insulating body 1 are used for contacting with the chip module 8 , two fixing holes 12 are formed at an outer side of the insulating body 1 , each of two sides of the insulating body 1 adjacent to the outer side where the fixing holes 12 is formed is provided with a concave groove 13 , and each concave groove 13 is provided with a chamfer.
  • the carrying member 2 has two opposite long sides and two opposite short sides, one long side of the carrying member 2 serves as a pivoting side, each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft 21 , and the pivot shafts 21 are pivoted into the fixing holes 12 .
  • the two short sides of the carrying member 2 are provided with two second guide portions 24 , and each second guide portion 24 is provided with a chamfer and a concave groove 13 to guide the carrying member 2 to pivot to the insulating body 1 .
  • the pressing plate 3 has two opposite long sides and two opposite short sides, one short side of the pressing plate 3 serves as a pivoting side, the side of the pressing plate 3 opposite to the pivoting side is provided with a projecting portion 31 , the pressing plate 3 is provided with a frame opening 32 , the chip module 8 is convexly and upwardly exposed from the frame opening 32 , and the pressing plate 3 presses the carrying member 2 or the chip module 8 .
  • the elastic element 5 is provided with a main body portion 51 and three bending portions 52 bending downwards and extending from the main body portion 51 .
  • Two first elastic portions 53 and a second elastic portion 54 horizontally extend from the bending portions 52 .
  • the second elastic portion 54 is located between the two first elastic portions 53 .
  • a carrying portion 56 bends upwards and extends from each first elastic portion 53 .
  • Each carrying portion 56 upwards abuts against the carrying member 2
  • a buffer portion 55 extends from the second elastic portion 54
  • the buffer portion 55 is located between the carrying member 2 and the insulating body 1
  • the carrying member 2 is concavely provided with an engaging portion 22 corresponding to the buffer portion 55
  • the engaging portion 22 abuts against the buffer portion 55 .
  • the main body portion 51 is provided with multiple soldering portions 57 , and the soldering portions 57 are used for fixing the main body portion 51 with the base 4 .
  • a first reinforcing member 41 and a second reinforcing member 42 are fixed to the base 4 , the second reinforcing member 42 is located on the opposite side of the first reinforcing member 41 , a first lever 6 is pivoted to the first reinforcing member 41 , a second lever 7 is pivoted to the second reinforcing member 42 , the pressing plate 3 is pivoted to the first lever 6 , and the second lever 7 presses the projecting portion 31 .
  • the first reinforcing member 41 is provided with a first hooking portion 411
  • the second reinforcing member 42 is provided with a second hooking portion 421
  • the first lever 6 is hooked to the second hooking portion 421
  • the second lever 7 is hooked to the first hooking portion 411 .
  • the chip module 8 is installed in the carrying member 2 first, at this moment, the electrical connector is in an assembled state, and the engaging portion 22 does not contact with the buffer portion 55 ; as shown in FIG. 7 , the carrying member 2 carries the chip module 8 to pivot towards the insulating body 1 .
  • the buffer portion 55 stops the carrying member 2 from continuingly moving, at this moment, the electrical connector is in a buffered state, and a situation that the carrying member 2 suddenly smashes downward and damages the terminals 11 is avoided.
  • FIG. 6 shows that the chip module 8 is installed in the carrying member 2 first, at this moment, the electrical connector is in an assembled state, and the engaging portion 22 does not contact with the buffer portion 55 ; as shown in FIG. 7 , the carrying member 2 carries the chip module 8 to pivot towards the insulating body 1 .
  • the pressing plate 3 is pressed downwards at this moment, the pressing plate 3 presses down the carrying member 2 or the chip module 8 , and the engaging portion 22 continues to abut against the buffer portion 55 to enable the buffer portion 55 to deform.
  • the carrying member 2 abuts against the carrying portion 56 to enable the first elastic portion 53 to be pressed downwards to cause elastic deformation.
  • the second lever 7 is operated, so that the second lever 7 presses the projecting portion 31 , the second lever 7 is hooked to the first hooking portion 411 , then the first lever 6 is operated, and the first lever 6 is hooked to the second hooking portion 421 , so that the electrical connector is in a closed state.
  • the first lever 6 is moved out of the second hooking portion 421 first, then the second lever 7 is moved out of the first hooking portion 411 , at this moment, the pressing plate 3 does not press the carrying member 2 or the chip module 8 anymore, the first elastic portion 53 springs back upwards vertically to return to the state before elastic deformation, namely the buffered state, so that the electrical connector can be in the buffered state or closed state at any time, and the chip module 8 is moved out of the insulating body 1 without damaging the terminals 11 on the insulating body 1 .
  • FIG. 9 , FIG. 10 , FIG. 13 and FIG. 14 A second embodiment of the present invention are shown in FIG. 9 , FIG. 10 , FIG. 13 and FIG. 14 , and the second embodiment is different from the first embodiment in that: the side of the carrying member 2 opposite to the pivoting side is provided with two first guide portions 23 , each first guide portion 23 is provided with a chamfer engaged with the outer wall face of the insulating body 1 to guide the carrying member 2 to pivot to the insulating body 1 , the first guide portions 23 and the second guide portions 24 can be arranged independently or can be arranged on the carrying member 2 at the same time, and no further detailed description here.
  • the electrical connector of the present invention has the following beneficial effects.
  • the carrying member 2 is directly pivoted to the insulating body 1 , specifically, each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft, the fixing holes 12 are formed at an outer side of the insulating body 1 , and the pivot shafts are pivoted into the fixing holes 12 .
  • the carrying member 2 is rotatingly pivoted to the insulating body 1 without the assistance of any pivoting device for pivoting the carrying member 2 .
  • the structure of the electrical connector is simplified, the electrical connector can be assembled more easily, assembly efficiency is improved, and cost is saved at the same time.
  • the carrying member 2 and the pressing plate 3 are arranged on two adjacent peripheral sides of the insulating body 1 .
  • the carrying member 2 and the pressing plate 3 are arranged on the same side or opposite sides of the insulating body 1 .
  • Each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft, the pivot shafts are pivoted into the fixing holes 12 , and pivoting of the carrying member 2 can be achieved without any other pivoting component, so that the electrical connector can be assembled more easily and cost can be reduced.
  • a buffer portion 55 extends upwards from each second elastic portion 54 , the buffer portion 55 is located between the insulating body 1 and the carrying member 2 , and the carrying member 2 is concavely provided with the engaging portion 22 corresponding to the buffer portion 55 .
  • the buffer portion 55 applies a buffering force to the carrying member 2 to reduce the downward pressing force of the carrying member 2 , so that the carrying member 2 stops moving, a situation that the carrying member 2 carrying the chip module 8 directly falls onto the terminals 11 on the insulating body 1 is avoided, and the risk of misoperation is reduced.
  • the buffer portion 55 stops the carrying member 2 from moving leftwards and rightwards, so that downward pressing accuracy of the carrying member 2 is ensured.
  • the main body portion 51 is provided with the multiple soldering portions 57 , the soldering portions 57 fix the main body portion 51 to the base 4 , fixation is steadier through laser soldering, no solder is needed, usage of other fixing structures is avoided at the same time, and soldering is more convenient.
  • the side of the carrying member 2 opposite to the pivoting side is provided with two first guide portions 23 .
  • the two short sides of the carrying member 2 are provided with the second guide portions 24 , respectively, each of the first guide portions 23 and the second guide portions 24 is provided with a chamfer, the first guide portions 23 and the second guide portions 24 are engaged with the outer wall of the insulating body 1 to guide the carrying member 2 to move downwards to the insulating body 1 , so that engaging is more convenient and positioning is more accurate when the carrying member 2 pivots to the insulating body 1 .

Abstract

An electrical connector used for carrying a chip module includes an insulating body with multiple terminals arranged in the insulating body, a carrying member pivoted to the insulating body and used for carrying the chip module to the insulating body, and a pressing plate located on one side of the insulating body and used for pressing the carrying member or the chip module. The chip module contacts with the multiple terminals. The carrying member is directly pivoted to the insulating body. Each of two ends of a pivoting side of the carrying member is provided with a pivot shaft. Fixing holes are formed on the outer side of the insulating body. The pivoting shafts are pivoted into the fixing holes, so that the carrying member is rotatingly pivoted to the insulating body without the assistance of a pivoting device for pivoting the carrying member.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This non-provisional application claims priority to and the benefit of, under 35 U.S.C. § 119(e), U.S. provisional patent application Ser. No. 62/449,183, filed Jan. 23, 2017, and under 35 U.S.C. § 119(a), Patent Application No. 201710237888.4 filed in P.R. China on Apr. 13, 2017, the entire content of which is hereby incorporated by reference.
  • Some references, if any, which may include patents, patent applications and various publications, may be cited and discussed in the description of this invention. The citation and/or discussion of such references, if any, is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described herein. All references listed, cited and/or discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to an electrical connector, and in particular to an electrical connector used for carrying a chip module.
  • BACKGROUND OF THE INVENTION
  • The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
  • An existing electrical connector used for carrying a chip module comprises an insulating body, multiple terminals fixedly arranged in the insulating body, a carrier located on one side of the insulating body and used for carrying the chip module to enable the chip module to contact with the multiple terminals, a pressing plate used for pressing the chip module to enable the chip module to contact with the multiple terminals, and a base located on the periphery of the insulating body.
  • At present, the carrier carries the chip module to the insulating body through a pivoting device, the carrier is pivoted to the pivoting device, the pivoting device is generally composed of multiple parts, what is more, the pivoting device is exquisite in structure, and therefore assembly difficulty increases and cost is high.
  • Thus, it is necessary to design an improved electrical connector to overcome the foregoing problems.
  • SUMMARY OF THE INVENTION
  • In view of the above problems in the related art, the present invention is directed to an electrical connector in which a carrying member is directly pivoted to an insulating body, therefore a complicated pivoting device is omitted, assembly is easier, and cost is saved at the same time.
  • To achieve the foregoing objective, the present invention uses the following technical means.
  • In one aspect, an electrical connector used for carrying a chip module includes an insulating body with multiple terminals arranged in the insulating body, a carrying member pivoted to the insulating body and used for carrying the chip module to the insulating body, and a pressing plate located on one side of the insulating body and used for pressing the carrying member or the chip module. The chip module contacts with the multiple terminals.
  • In certain embodiments, the carrying member and the pressing plate are located on two adjacent peripheral sides of the insulating body.
  • In certain embodiments, the carrying member has two opposite long sides and two opposite short sides, one long side of the carrying member serves as a pivoting side, the pressing plate has two opposite long sides and two opposite short sides, and one short side of the pressing plate serves as a pivoting side.
  • In certain embodiments, each of the two ends of the pivoting side of the carrying member is provided with a pivot shaft, the insulating body is provided with two fixing holes, and the pivot shafts are pivoted to the fixing holes.
  • In certain embodiments, a base is fixed to the periphery of the insulating body, an elastic element is fixed to the base, and the elastic element and the carrying member are located on the same side of the insulating body.
  • In certain embodiments, the electrical connector further includes an elastic element, the elastic element and the carrying member are located on the same side of the insulating body, the elastic element is provided with a buffer portion, and the buffer portion abuts against the carrying member.
  • In certain embodiments, the elastic element is provided with a main body portion, the buffer portion extends from the main body portion, and the buffer portion is located between the insulating body and the carrying member.
  • In certain embodiments, the carrying member is concavely provided with an engaging portion corresponding to the buffer portion, and the engaging portion abuts against the buffer portion.
  • In certain embodiments, the elastic element is provided with a main body portion, at least one first elastic portion and at least one second elastic portion, the at least one first elastic portion and at least one second elastic portion extend from the main body portion, and a buffer portion extends from each second elastic portion.
  • In certain embodiments, the main body portion extends and bends along a first vertical direction to form at least one bending portion, the first elastic portion and the second elastic portion horizontally extend from the bending portion, a carrying portion extends and bends along a second vertical direction opposite to the first vertical direction from the first elastic portion, and the carrying portion abuts along the second vertical direction against the carrying member.
  • In certain embodiments, the number of the at least one first elastic portion is two, and the second elastic portion is located between the two first elastic portions.
  • In certain embodiments, the base is fixed to the periphery of the insulating body, a first reinforcing member and a second reinforcing member are fixed to the base, the second reinforcing member is opposite to the first reinforcing member, a first lever is pivoted to the first reinforcing member, and a second lever is pivoted to the second reinforcing member. The pressing plate is pivoted to the first lever, the pressing plate is provided with a projecting portion, and the second lever presses the projecting portion.
  • In certain embodiments, the side of the carrying member away from the pivoting side of the carrying member is provided with at least one first guide portion, and the first guide portion is engaged with the outer wall face of the insulating body to guide the carrying member to the insulating body.
  • In certain embodiments, each of the two short sides of the carrying member is provided with at least one second guide portion, and the second guide portions are engaged with the outer wall face of the insulating body to guide the carrying member to the insulating body.
  • Compared with the related art, the present invention has the beneficial effects.
  • According to the electrical connector of the present invention, the carrying member is directly pivoted to the insulating body, specifically, each of the two ends of the pivoting side of the carrying member is provided with a pivot shaft, the fixing holes are formed on the outer side of the insulating body, the pivot shafts are pivoted into the fixing holes, in this way, the carrying member is rotatingly pivoted to the insulating body without the assistance of any pivoting device for pivoting the carrying member. The structure of the electrical connector is simplified, the electrical connector can be assembled more easily, assembly efficiency is improved, and cost is saved at the same time.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings illustrate one or more embodiments of the invention and together with the written description, serve to explain the principles of the invention. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
  • FIG. 1 is a three-dimensional exploded view of an electrical connector of the present invention.
  • FIG. 2 is an enlarged view of part a in FIG. 1.
  • FIG. 3 is a three-dimensional exploded view of the electrical connector of the present invention from another angle of view.
  • FIG. 4 is a three-dimensional assembled view of the electrical connector of the present invention.
  • FIG. 5 is a three-dimensional assembled view of the electrical connector of the present invention in another state.
  • FIG. 6 is a three-dimensional assembled view of the electrical connector of the present invention in the closed state.
  • FIG. 7 is a broken-out sectional view of the electrical connector according to a first embodiment of the present invention in the assembled state along A-A.
  • FIG. 8 is an enlarged view of part a1 in FIG. 7.
  • FIG. 9 is a broken-out sectional view of the electrical connector according to the first embodiment of the present invention in the buffered state along A-A.
  • FIG. 10 is an enlarged view of part a2 in FIG. 9.
  • FIG. 11 is a broken-out sectional view of the electrical connector according to the first embodiment of the present invention along A-A when a carrying member carries a chip module to an insulating body.
  • FIG. 12 is an enlarged view of part a3 in FIG. 11.
  • FIG. 13 is a structural representation of a carrying member of the electrical connector according to a second embodiment of the present invention.
  • FIG. 14 is a three-dimensional assembled view of the electrical connector according to the second embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Moreover, titles or subtitles may be used in the specification for the convenience of a reader, which shall have no influence on the scope of the present invention.
  • The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and in no way limits the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.
  • It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
  • As used herein, “plurality” and/or “multiple” means two or more.
  • As used herein, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
  • As used herein, the term “module” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip. The term module may include memory (shared, dedicated, or group) that stores code executed by the processor.
  • The terms “chip” or “computer chip”, as used herein, generally refer to a hardware electronic component, and may refer to or include a small electronic circuit unit, also known as an integrated circuit (IC), or a combination of electronic circuits or ICs.
  • The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in FIGS. 1-14. In accordance with the purposes of this invention, as embodied and broadly described herein, this invention, in one aspect, relates to an electrical connector.
  • As shown in FIG. 3, an electrical connector of the present invention is used for carrying a chip module 8 and comprises an insulating body 1 with multiple terminals 11 arranged therein, a carrying member 2 pivoted to the insulating body 1 and used for carrying the chip module 8 to the insulating body 1, a pressing plate 3 used for pressing the carrying member 2 or the chip module 8, a base 4 located on the periphery of the insulating body 1, and an elastic element 5 fixed to the base 4. The chip module 8 contacts with the multiple terminals 11, and the pressing plate 3 and the carrying member 2 are respectively located on two adjacent peripheral sides of the insulating body 1.
  • A first embodiment of the present invention is shown in FIG. 1 and FIG. 3, the multiple terminals 11 arranged in the insulating body 1 are used for contacting with the chip module 8, two fixing holes 12 are formed at an outer side of the insulating body 1, each of two sides of the insulating body 1 adjacent to the outer side where the fixing holes 12 is formed is provided with a concave groove 13, and each concave groove 13 is provided with a chamfer.
  • As shown in FIG. 1 and FIG. 2, the carrying member 2 has two opposite long sides and two opposite short sides, one long side of the carrying member 2 serves as a pivoting side, each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft 21, and the pivot shafts 21 are pivoted into the fixing holes 12. The two short sides of the carrying member 2 are provided with two second guide portions 24, and each second guide portion 24 is provided with a chamfer and a concave groove 13 to guide the carrying member 2 to pivot to the insulating body 1.
  • As shown in FIG. 1 and FIG. 4, the pressing plate 3 has two opposite long sides and two opposite short sides, one short side of the pressing plate 3 serves as a pivoting side, the side of the pressing plate 3 opposite to the pivoting side is provided with a projecting portion 31, the pressing plate 3 is provided with a frame opening 32, the chip module 8 is convexly and upwardly exposed from the frame opening 32, and the pressing plate 3 presses the carrying member 2 or the chip module 8.
  • The elastic element 5 is provided with a main body portion 51 and three bending portions 52 bending downwards and extending from the main body portion 51. Two first elastic portions 53 and a second elastic portion 54 horizontally extend from the bending portions 52. The second elastic portion 54 is located between the two first elastic portions 53. A carrying portion 56 bends upwards and extends from each first elastic portion 53. Each carrying portion 56 upwards abuts against the carrying member 2, a buffer portion 55 extends from the second elastic portion 54, the buffer portion 55 is located between the carrying member 2 and the insulating body 1, the carrying member 2 is concavely provided with an engaging portion 22 corresponding to the buffer portion 55, and the engaging portion 22 abuts against the buffer portion 55. The main body portion 51 is provided with multiple soldering portions 57, and the soldering portions 57 are used for fixing the main body portion 51 with the base 4.
  • As shown in FIG. 4 and FIG. 5, a first reinforcing member 41 and a second reinforcing member 42 are fixed to the base 4, the second reinforcing member 42 is located on the opposite side of the first reinforcing member 41, a first lever 6 is pivoted to the first reinforcing member 41, a second lever 7 is pivoted to the second reinforcing member 42, the pressing plate 3 is pivoted to the first lever 6, and the second lever 7 presses the projecting portion 31. The first reinforcing member 41 is provided with a first hooking portion 411, the second reinforcing member 42 is provided with a second hooking portion 421, the first lever 6 is hooked to the second hooking portion 421, and the second lever 7 is hooked to the first hooking portion 411.
  • As shown in FIG. 6, during operation, the chip module 8 is installed in the carrying member 2 first, at this moment, the electrical connector is in an assembled state, and the engaging portion 22 does not contact with the buffer portion 55; as shown in FIG. 7, the carrying member 2 carries the chip module 8 to pivot towards the insulating body 1. When the engaging portion 22 contacts with the buffer portion 55, the buffer portion 55 stops the carrying member 2 from continuingly moving, at this moment, the electrical connector is in a buffered state, and a situation that the carrying member 2 suddenly smashes downward and damages the terminals 11 is avoided. As shown in FIG. 8, the pressing plate 3 is pressed downwards at this moment, the pressing plate 3 presses down the carrying member 2 or the chip module 8, and the engaging portion 22 continues to abut against the buffer portion 55 to enable the buffer portion 55 to deform. Meanwhile, the carrying member 2 abuts against the carrying portion 56 to enable the first elastic portion 53 to be pressed downwards to cause elastic deformation. Finally, the second lever 7 is operated, so that the second lever 7 presses the projecting portion 31, the second lever 7 is hooked to the first hooking portion 411, then the first lever 6 is operated, and the first lever 6 is hooked to the second hooking portion 421, so that the electrical connector is in a closed state. When the electrical connector is opened, the first lever 6 is moved out of the second hooking portion 421 first, then the second lever 7 is moved out of the first hooking portion 411, at this moment, the pressing plate 3 does not press the carrying member 2 or the chip module 8 anymore, the first elastic portion 53 springs back upwards vertically to return to the state before elastic deformation, namely the buffered state, so that the electrical connector can be in the buffered state or closed state at any time, and the chip module 8 is moved out of the insulating body 1 without damaging the terminals 11 on the insulating body 1.
  • A second embodiment of the present invention are shown in FIG. 9, FIG. 10, FIG. 13 and FIG. 14, and the second embodiment is different from the first embodiment in that: the side of the carrying member 2 opposite to the pivoting side is provided with two first guide portions 23, each first guide portion 23 is provided with a chamfer engaged with the outer wall face of the insulating body 1 to guide the carrying member 2 to pivot to the insulating body 1, the first guide portions 23 and the second guide portions 24 can be arranged independently or can be arranged on the carrying member 2 at the same time, and no further detailed description here.
  • In conclusion, the electrical connector of the present invention has the following beneficial effects.
  • (1) According to the electrical connector of the present invention, the carrying member 2 is directly pivoted to the insulating body 1, specifically, each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft, the fixing holes 12 are formed at an outer side of the insulating body 1, and the pivot shafts are pivoted into the fixing holes 12. In this way, the carrying member 2 is rotatingly pivoted to the insulating body 1 without the assistance of any pivoting device for pivoting the carrying member 2. The structure of the electrical connector is simplified, the electrical connector can be assembled more easily, assembly efficiency is improved, and cost is saved at the same time.
  • (2) According to the electrical connector of the present invention, the carrying member 2 and the pressing plate 3 are arranged on two adjacent peripheral sides of the insulating body 1. Compared with a mode that the carrying member 2 and the pressing plate 3 are arranged on the same side or opposite sides of the insulating body 1, there is no need to increase the length of the electrical connector of the present invention, so that the electrical connector occupies less space of a circuit board, the space of the circuit board is saved, and therefore the electrical connector is suitable for the current miniaturization tendency of electronic products.
  • (3) By taking one long side of the carrying member 2 as the pivoting side, the center of gravity of the carrying member 2 is lowered. When the carrying member 2 carries the chip module 8 to conduct downward pressing, the downward pressing force of the carrying member 2 is reduced. It ensures that the buffer portion 55 has enough buffering force to buffer the downward pressing force of the carrying member 2, a situation that the carrying member 2 carrying the chip module 8 directly falls onto the terminals 11 on the insulating body 1 is avoided, and the risk of misoperation is reduced.
  • (4) Each of the two ends of the pivoting side of the carrying member 2 is provided with a pivot shaft, the pivot shafts are pivoted into the fixing holes 12, and pivoting of the carrying member 2 can be achieved without any other pivoting component, so that the electrical connector can be assembled more easily and cost can be reduced.
  • (5) A buffer portion 55 extends upwards from each second elastic portion 54, the buffer portion 55 is located between the insulating body 1 and the carrying member 2, and the carrying member 2 is concavely provided with the engaging portion 22 corresponding to the buffer portion 55. When the carrying member 2 pivots to the insulating body 1, the engaging portion 22 abuts against the buffer portion 55, the buffer portion 55 applies a buffering force to the carrying member 2 to reduce the downward pressing force of the carrying member 2, so that the carrying member 2 stops moving, a situation that the carrying member 2 carrying the chip module 8 directly falls onto the terminals 11 on the insulating body 1 is avoided, and the risk of misoperation is reduced. And meanwhile, the buffer portion 55 stops the carrying member 2 from moving leftwards and rightwards, so that downward pressing accuracy of the carrying member 2 is ensured.
  • (6) The main body portion 51 is provided with the multiple soldering portions 57, the soldering portions 57 fix the main body portion 51 to the base 4, fixation is steadier through laser soldering, no solder is needed, usage of other fixing structures is avoided at the same time, and soldering is more convenient.
  • (7) The side of the carrying member 2 opposite to the pivoting side is provided with two first guide portions 23. The two short sides of the carrying member 2 are provided with the second guide portions 24, respectively, each of the first guide portions 23 and the second guide portions 24 is provided with a chamfer, the first guide portions 23 and the second guide portions 24 are engaged with the outer wall of the insulating body 1 to guide the carrying member 2 to move downwards to the insulating body 1, so that engaging is more convenient and positioning is more accurate when the carrying member 2 pivots to the insulating body 1.
  • (8) In the closed state, when the pressing plate 3 presses the carrying member 2 or the chip module 8, elastic deformation of the first elastic portion 53 occurs under stress; when the electrical connector is opened, the carrying member 2 or the chip module 8 is not pressed by the pressing plate 3, the first elastic portion 53 springs back to the state before being pressed, namely the buffered state, so that the chip module 8 is moved out of the insulating body 1 without damaging the terminals 11 on the insulating body 1.
  • The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
  • The embodiments are chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.

Claims (14)

What is claimed is:
1. An electrical connector used for carrying a chip module, comprising:
an insulating body having a plurality of terminals arranged inside the insulating body;
a carrying member pivoted to the insulating body and used for carrying the chip module to the insulating body, wherein the chip module contacts with the plurality of terminals; and
a pressing plate located on one side of the insulating body and used for pressing the carrying member or the chip module.
2. The electrical connector according to claim 1, wherein the carrying member and the pressing plate are located on two adjacent peripheral sides of the insulating body.
3. The electrical connector according to claim 1, wherein the carrying member has two opposite long sides and two opposite short sides, one long side of the carrying member serves as a pivoting side, the pressing plate has two opposite long sides and two opposite short sides, and one short side of the pressing plate serves as a pivoting side.
4. The electrical connector according to claim 1, wherein each of two ends of a pivoting side of the carrying member is provided with a pivot shaft, the insulating body is provided with two fixing holes, and the pivot shafts are pivoted to the fixing holes.
5. The electrical connector according to claim 1, wherein a base is fixed to the periphery of the insulating body, an elastic element is fixed to the base, and the elastic element and the carrying member are located on the same side of the insulating body.
6. The electrical connector according to claim 1, further comprising an elastic element, the elastic element and the carrying member are located on the same side of the insulating body, the elastic element is provided with a buffer portion, and the buffer portion abuts against the carrying member.
7. The electrical connector according to claim 6, wherein the elastic element is provided with a main body portion, the buffer portion extends from the main body portion, and the buffer portion is located between the insulating body and the carrying member.
8. The electrical connector according to claim 6, wherein the carrying member is concavely provided with an engaging portion corresponding to the buffer portion, and the engaging portion abuts against the buffer portion.
9. The electrical connector according to claim 1, further comprising an elastic element, the elastic element is provided with a main body portion, at least one first elastic portion and at least one second elastic portion, the at least one first elastic portion and at least one second elastic portion extend from the main body portion, and a buffer portion extends from each second elastic portion.
10. The electrical connector according to claim 9, wherein the main body portion extends and bends along a first vertical direction to form at least one bending portion, the first elastic portion and the second elastic portion horizontally extend from the bending portion, a carrying portion extends and bends along a second vertical direction opposite to the first vertical direction from the first elastic portion, and the carrying portion abuts along the second vertical direction against the carrying member.
11. The electrical connector according to claim 9, wherein the number of the at least one first elastic portion is two, and the second elastic portion is located between the two first elastic portions.
12. The electrical connector according to claim 1, wherein a base is fixed to the periphery of the insulating body, a first reinforcing member and a second reinforcing member are fixed to the base, the second reinforcing member is opposite to the first reinforcing member, a first lever is pivoted to the first reinforcing member, the second lever is pivoted to the second reinforcing member, the pressing plate is pivoted to the first lever, the pressing plate is provided with a projecting portion, and the second lever presses the projecting portion.
13. The electrical connector according to claim 1, wherein a side of the carrying member away from a pivoting side of the carrying member is provided with at least one first guide portion, and the first guide portion is engaged with an outer wall face of the insulating body to guide the carrying member to the insulating body.
14. The electrical connector according to claim 1, wherein each of two short sides of the carrying member is provided with at least one second guide portion, and the second guide portions are engaged with an outer wall face of the insulating body to guide the carrying member to the insulating body.
US15/677,315 2017-01-23 2017-08-15 Electrical connector Abandoned US20180212388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/677,315 US20180212388A1 (en) 2017-01-23 2017-08-15 Electrical connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762449183P 2017-01-23 2017-01-23
CN201710237888.4A CN107134688B (en) 2017-01-23 2017-04-13 Electric connector
CN201710237888.4 2017-04-13
US15/677,315 US20180212388A1 (en) 2017-01-23 2017-08-15 Electrical connector

Publications (1)

Publication Number Publication Date
US20180212388A1 true US20180212388A1 (en) 2018-07-26

Family

ID=59436606

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/677,295 Active US10062994B2 (en) 2017-01-23 2017-08-15 Electrical connector
US15/677,340 Expired - Fee Related US9960513B1 (en) 2017-01-23 2017-08-15 Electrical connector
US15/677,315 Abandoned US20180212388A1 (en) 2017-01-23 2017-08-15 Electrical connector

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/677,295 Active US10062994B2 (en) 2017-01-23 2017-08-15 Electrical connector
US15/677,340 Expired - Fee Related US9960513B1 (en) 2017-01-23 2017-08-15 Electrical connector

Country Status (2)

Country Link
US (3) US10062994B2 (en)
CN (3) CN107134688B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190221492A1 (en) * 2018-01-16 2019-07-18 Jentech Precision Industrial Co., Ltd. Processor socket assembly and carrier thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206401562U (en) * 2016-12-01 2017-08-11 富士康(昆山)电脑接插件有限公司 Electric coupler component
US10211549B2 (en) * 2017-05-25 2019-02-19 Lotes Co., Ltd Electrical connector
US10581200B2 (en) * 2017-09-01 2020-03-03 Fu Ding Precision Component (Shen Zhen) Co., Ltd. Electrical connector with retention structure holding lever
CN109742602B (en) * 2019-01-03 2021-02-02 电连技术股份有限公司 Electric connector with anti-retreat guide structure
CN111495453B (en) * 2020-05-13 2021-08-10 德运康明(厦门)生物科技有限公司 Micro-fluidic chip is alignment bonding device in batches
US11784427B2 (en) * 2021-09-28 2023-10-10 Advanced Micro Devices, Inc. Socket actuation mechanism for package insertion and package-socket alignment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259543A1 (en) * 2006-05-02 2007-11-08 Hon Hai Precision Ind. Co., Ltd Pressure device for test socket
US20120142209A1 (en) * 2010-12-03 2012-06-07 Hon Hai Precision Industry Co., Ltd. Socket with pick up cap
US20120156919A1 (en) * 2010-12-16 2012-06-21 Hon Hai Precision Industry Co., Ltd. Socket assembly with pick up cap
US8506316B2 (en) * 2012-01-12 2013-08-13 Lotes Co., Ltd. Electrical connection device having a fixing member with a positioning portion engaging a groove in a socket
US20130322037A1 (en) * 2011-02-28 2013-12-05 Chong S. Tan Spring loaded lid
US20130344713A1 (en) * 2012-06-25 2013-12-26 Hon Hai Precision Industry Co., Ltd. Electrical connector
US20140011377A1 (en) * 2012-07-09 2014-01-09 Hon Hai Precision Industry Co., Ltd. Electrical connector and carrier thereof for assembling ic package
US9048585B2 (en) * 2013-11-06 2015-06-02 Foxconn Interconnect Technology Limited Electrical connector having a rotatable buckle
US9466900B1 (en) * 2015-10-07 2016-10-11 Advanced Micro Devices, Inc. Circuit board socket with rail frame
US9717156B2 (en) * 2015-07-03 2017-07-25 Lotes Co., Ltd Electrical socket connector with guide frame IC chip placement

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603783B2 (en) * 2000-12-11 2004-12-22 住友電装株式会社 connector
US20040023541A1 (en) * 2002-08-01 2004-02-05 Ming-Te Wang IC card connector
FR2847221B1 (en) * 2002-11-19 2006-08-04 Valeo Systemes Dessuyage VEHICLE WIPER COMPRISING A ARTICULATING ARM AND CONNECTOR PRODUCED BY A PIECE BY MOLDING PLASTIC MATERIAL
JP4368132B2 (en) * 2003-04-25 2009-11-18 株式会社エンプラス Socket for electrical parts
US7083456B2 (en) 2004-03-17 2006-08-01 Tyco Electronics Corporation Electrical connector socket with loading caddy
CN2932756Y (en) * 2006-05-31 2007-08-08 富士康(昆山)电脑接插件有限公司 Test connector
CN201285864Y (en) * 2008-10-15 2009-08-05 富士康(昆山)电脑接插件有限公司 Electric connector
CN201336491Y (en) * 2008-10-31 2009-10-28 富士康(昆山)电脑接插件有限公司 Electric connector
CN201741833U (en) * 2010-05-27 2011-02-09 富士康(昆山)电脑接插件有限公司 Electric connector component
CN201887186U (en) 2010-11-03 2011-06-29 富士康(昆山)电脑接插件有限公司 Electric connector
CN201966435U (en) 2010-12-16 2011-09-07 富士康(昆山)电脑接插件有限公司 Electric connector assembly
CN103490208B (en) 2012-06-28 2017-04-05 富士康(昆山)电脑接插件有限公司 Electric connector
CN103515764B (en) * 2012-07-10 2016-02-03 富士康(昆山)电脑接插件有限公司 Electric connector
CN203871586U (en) * 2014-03-12 2014-10-08 番禺得意精密电子工业有限公司 Electrical connecting assembly
CN204088690U (en) * 2014-07-07 2015-01-07 番禺得意精密电子工业有限公司 Fastener assembly
CN204538323U (en) * 2015-03-31 2015-08-05 番禺得意精密电子工业有限公司 Electric connector
CN204885572U (en) * 2015-07-03 2015-12-16 番禺得意精密电子工业有限公司 Electric connector
CN204885593U (en) * 2015-07-06 2015-12-16 番禺得意精密电子工业有限公司 Electric connector
CN204885597U (en) * 2015-07-16 2015-12-16 番禺得意精密电子工业有限公司 Electric connector
CN205488736U (en) 2016-02-29 2016-08-17 番禺得意精密电子工业有限公司 Electric connector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259543A1 (en) * 2006-05-02 2007-11-08 Hon Hai Precision Ind. Co., Ltd Pressure device for test socket
US20120142209A1 (en) * 2010-12-03 2012-06-07 Hon Hai Precision Industry Co., Ltd. Socket with pick up cap
US20120156919A1 (en) * 2010-12-16 2012-06-21 Hon Hai Precision Industry Co., Ltd. Socket assembly with pick up cap
US20130322037A1 (en) * 2011-02-28 2013-12-05 Chong S. Tan Spring loaded lid
US8506316B2 (en) * 2012-01-12 2013-08-13 Lotes Co., Ltd. Electrical connection device having a fixing member with a positioning portion engaging a groove in a socket
US20130344713A1 (en) * 2012-06-25 2013-12-26 Hon Hai Precision Industry Co., Ltd. Electrical connector
US20140011377A1 (en) * 2012-07-09 2014-01-09 Hon Hai Precision Industry Co., Ltd. Electrical connector and carrier thereof for assembling ic package
US9048585B2 (en) * 2013-11-06 2015-06-02 Foxconn Interconnect Technology Limited Electrical connector having a rotatable buckle
US9717156B2 (en) * 2015-07-03 2017-07-25 Lotes Co., Ltd Electrical socket connector with guide frame IC chip placement
US9867302B2 (en) * 2015-07-03 2018-01-09 Lotes Co., Ltd Electrical connector with reinforced rib stiffener
US9466900B1 (en) * 2015-10-07 2016-10-11 Advanced Micro Devices, Inc. Circuit board socket with rail frame
US20170104286A1 (en) * 2015-10-07 2017-04-13 Stephen F. Heng Circuit board socket with rail frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190221492A1 (en) * 2018-01-16 2019-07-18 Jentech Precision Industrial Co., Ltd. Processor socket assembly and carrier thereof

Also Published As

Publication number Publication date
US10062994B2 (en) 2018-08-28
CN107134688A (en) 2017-09-05
CN106936023A (en) 2017-07-07
CN107134688B (en) 2019-06-18
CN106936023B (en) 2019-04-30
CN107196163B (en) 2019-06-18
CN107196163A (en) 2017-09-22
US9960513B1 (en) 2018-05-01
US20180212387A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US20180212388A1 (en) Electrical connector
JP4806079B2 (en) Storage device
US7331818B2 (en) Card connector assembly with reinforcing elements
US7746646B2 (en) Securing device for assembling heat dissipation module onto electronic component
US8221172B2 (en) Electrical connector
KR100893132B1 (en) Socket for electrical parts
JP2010157386A (en) Electric connecting device for semiconductor device, and contact used therefor
US7361043B2 (en) Apparatus including card element, device inserted into apparatus and a method for connecting or disconnecting the card element
US20080212277A1 (en) Card slot and electronic device provided with card slot
KR102194620B1 (en) Electronic connector
CN103178384A (en) Socket for electric parts
US20120225586A1 (en) Electrical connector
US7535713B2 (en) IC socket
US10141677B2 (en) Electrical connector
EP1903644A1 (en) Ic socket and ic socket assembly
US20050237663A1 (en) Insulator with pocket features
WO2020022493A1 (en) Contact pin, and electric component socket
CN106941582B (en) Camera module protection structure
KR100679447B1 (en) Small-size connector enabling selective use of different types of connection objects
KR20150095371A (en) Double contact terminal on the board
EP1868060A2 (en) Electronic device
JP2016225049A (en) Card slot disposition structure, circuit board and card slot
JP2020191185A (en) Connector structure
US8182280B1 (en) Socket connector having cushioning arrangement facilitating smooth placement and ejection of electronic device
CN201464995U (en) Display card of personal computer

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOTES CO., LTD, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PENG, JIAN MIN;TSAI, MING JUI;REEL/FRAME:043295/0563

Effective date: 20170814

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION