US20180187415A1 - Ceiling and Ceiling Suspension System - Google Patents

Ceiling and Ceiling Suspension System Download PDF

Info

Publication number
US20180187415A1
US20180187415A1 US15/741,276 US201615741276A US2018187415A1 US 20180187415 A1 US20180187415 A1 US 20180187415A1 US 201615741276 A US201615741276 A US 201615741276A US 2018187415 A1 US2018187415 A1 US 2018187415A1
Authority
US
United States
Prior art keywords
elongate
panel
elongate support
flexible panel
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/741,276
Inventor
Pierre DALMAY
Yves Benkemoun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Placo SAS
Original Assignee
Saint Gobain Placo SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Placo SAS filed Critical Saint Gobain Placo SAS
Assigned to SAINT-GOBAIN PLACO SAS reassignment SAINT-GOBAIN PLACO SAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENKEMOUN, YVES, DALMAY, Pierre
Publication of US20180187415A1 publication Critical patent/US20180187415A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/06Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members
    • E04B9/061Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members supporting construction for curved ceilings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0414Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being foldable, curvable or rollable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/18Means for suspending the supporting construction
    • E04B9/20Means for suspending the supporting construction adjustable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/22Connection of slabs, panels, sheets or the like to the supporting construction
    • E04B9/225Connection of slabs, panels, sheets or the like to the supporting construction with the slabs, panels, sheets or the like hanging at a distance below the supporting construction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/34Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B2009/0492Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like with fabrics tensioned on frames
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0428Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like having a closed frame around the periphery

Definitions

  • the present invention relates particularly, but not exclusively, to ceilings and ceiling suspension systems.
  • Suspended ceilings are assembled such that they are spaced apart from ceiling joists.
  • Suspended ceilings generally comprise an array of ceiling tiles which are arranged to form the ceiling using a ceiling suspension system.
  • U.S. Pat. No. 5,687,526 discloses one such ceiling suspension system wherein a plurality of interlocking tiles or panels are arranged in a regular array or matrix of rows and columns. Each tile is provided with an elongate suspension member attached at one end to a ceiling joist by a fastener and attached at another end to the tile.
  • US 2006/0174562 A1 discloses another ceiling suspension system wherein panels are suspended from a supporting surface by support members including anchors connected to the supporting surface.
  • Such ceiling suspension systems are highly rigid in their structure, thereby decreasing their flexibility, and often require panels of differing geometries in order to satisfy design requirements, thereby costing more to both manufacture and install.
  • a ceiling suspension system comprising a flexible panel, a first support structure and a plurality of elongate support members, wherein each elongate support member comprises a first end and a second end, wherein the first end of each elongate support member is coupled to the first support structure and the second end of each elongate support member is coupled to the flexible panel, and wherein the coupling between the elongate support members and the flexible panel is arranged to force the flexible panel into a desired shape.
  • a method for installing a ceiling in a building using a system as claimed in any preceding claim comprising: fixing the support structure to a ceiling member of the building; coupling the first ends of the elongate support members to the support structure; coupling the second ends of the elongate support members to the panel; and adjusting the elongate support members to force the flexible panel into a desired shape.
  • the support structure may be coupled at the second end to a side member on the flexible panel which may be flexible or rigid.
  • Ceiling suspension systems in accordance with the first, second and third aspects enable a ceiling to be constructed using a series of flexible panels which can be adjusted using two or more rods coupled to the flexible panel and a supporting substrate.
  • the flexibility of the panels reduces the dependence on using tiles of multiple geometries to form a ceiling which reduces the waste used in the construction of ceilings.
  • Ceiling suspension systems in accordance with the first, second and third aspects also enable flexibility and creativity in the construction of ceilings as the rods can be used to adjust the shape of the ceiling and additionally offers the possibility of constructing non-flat suspended ceilings.
  • the elongate support members may be independently adjustable, possibly in length or in any other dimension, to vary the spacing between the panel and the support structure.
  • the position at which at least one the elongate support members is connected to the panel and/or the support structure is adjustable to vary the spacing between the panel and the support structure.
  • the elongate support members may be independently adjustable to vary the spacing between the panel and the support structure.
  • the elongate support members may be adjustable in length to vary the spacing between the panel and the support structure.
  • the position at which at least one the elongate support members is connected to the panel and/or the support structure may be adjustable to vary the spacing between the panel and the support structure.
  • the first support structure may comprise an elongate support beam which, in use, extends generally parallel to the plane of the panel.
  • the support beam may extend substantially in line with an axis of the panel.
  • the first support structure may comprise an elongate support beam which, in use, extends generally perpendicularly to the plane of the panel.
  • the support beam may extend substantially perpendicularly to an axis of the panel.
  • the first ends of elongate support members may be slidably mounted to the support beam such that the position at which they connect to the beam can be adjusted.
  • the second ends of the elongate support members may be attached to respective elongate mounting beams which extend across the panel.
  • the arrangement of the rods may comprise selecting the length of the rods which may be telescopically adjustable or formed of discrete sections. Adjusting the length of the rods enables the separation between the support structure and the flexible panel to be varied without the requirement for decoupling of the rod from the support structure.
  • the arrangement of the rods may comprise adjusting the positions at which the first or second ends of the rods are coupled to the support structure or flexible panel.
  • the positions of the first or second ends may be adjusted using rails disposed along either the width or the length of either of the support structure or flexible panel. Rails provide increased flexibility to the shape of the flexible panel and to adjust the shape of the panel before it is hung to form a ceiling.
  • the mounting beams may extend in parallel to each other.
  • each mounting beam may comprise a clip which engages around the edge of the panel to secure the beam in-situ.
  • the end of the mounting beam may extend perpendicularly to the axis of the panel.
  • Pairs of elongate support members may be coupled to the same or adjacent points on the first support structure and diverge outwardly of the support member to respective spaced apart positions on the panel.
  • Pairs of elongate support members may be coupled to the same or adjacent points on the support structure and diverge outwardly of the support member to respective spaced apart positions on the panel.
  • the panel may comprises a gypsum based panel.
  • the panel may comprise a mineral wool based panel.
  • the mineral wool may be predominantly a glass wool.
  • the mineral wool may be predominantly a stone wool.
  • the panel may predominantly comprise a metal.
  • the metal panel will comprise a metal sheet. More preferably, but not essentially, the metal panel may comprise a plurality of sheet metal tiles which together form the metal panel.
  • the panel may comprise a lighting panel.
  • the lighting panel will comprise a luminous fabric supported by a rigid panel. More preferably, the luminous fabric will include optical fibres.
  • the opposite side edges of the panel extend into channel-section side members which are curved along their longitudinal axis.
  • the first support structure which may be a curved member, may be coupled to a second support structure.
  • the elongate support members may be coupled at the second end to at least one curved member.
  • the at least one curved member may form part of a system of curved members.
  • the at least one curved member may be coupled to a plurality of transverse beams extending laterally of the curved member.
  • a ceiling suspension system comprising a flexible panel assembly having a flexible panel and at least one elongate formation coupled to the panel and having a curved longitudinal profile of a desired shape, said formation being arranged to force the flexible panel into said desired shape, the system further comprising a plurality of elongate support members each comprising a first end and a second end, wherein the first end of each elongate support member is coupled to a support structure and the second end of each elongate support member is coupled to the flexible panel assembly.
  • the elongate formation may extend along one side of the flexible panel.
  • the flexible panel assemble may comprise a pair of elongate formations extending along respective opposite sides of the flexible panel.
  • the flexible panel assembly comprises a plurality of elongate mounting beams which extend between said elongate formations, the second ends of the elongate support members being attached to respective elongate mounting beams.
  • a method for installing a ceiling in a building using a system comprising, in any order: fixing the support structure to a ceiling member of the building; coupling the first ends of the elongate support members to the support structure; coupling the second ends of the elongate support members to the panel; and coupling at least one elongate formation to said flexible panel to force said flexible panel into a desired shape.
  • the first method step may comprise coupling the elongate formation to said flexible panel to force said flexible panel into a desired shape.
  • the flexible panel may be shaped in a convenient location, such as at ground level, before it is positioned in its installed location.
  • this method may also be preferable for this method to comprise an additional step wherein coupling the second ends of the elongate support members to the panel comprises coupling the second ends of the elongate support members to an elongate formation. side member of the flexible panel.
  • FIG. 1 schematically illustrates a first embodiment of ceiling suspension system in accordance with the present invention
  • FIG. 2A is a schematic perspective view of a second embodiment of ceiling suspension system in accordance with the present invention.
  • FIG. 2B is a schematic sectional view through along one end of the line II-II of FIG. 2A ;
  • FIG. 3A schematically illustrates a third embodiment of ceiling suspension system in accordance with the present invention
  • FIG. 3B is a schematic sectional view through along the line III-III of FIG. 3A ;
  • FIG. 4 schematically illustrates a ceiling suspension system in accordance with the fourth embodiment.
  • FIG. 5A schematically illustrates an aspect view of a ceiling suspension system in accordance with the fifth embodiment
  • FIG. 5B schematically illustrates a side view of a ceiling suspension system in accordance with the fifth embodiment
  • FIG. 6A schematically illustrates an aspect view of a ceiling suspension system in accordance with the sixth embodiment
  • FIG. 6B schematically illustrates a side view of a ceiling suspension system in accordance with the sixth embodiment
  • FIG. 7A schematically illustrates an aspect view of a ceiling suspension system in accordance with the seventh embodiment
  • FIG. 7B schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment
  • FIG. 7C schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment.
  • FIG. 7D schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment.
  • FIG. 1 schematically illustrates a ceiling suspension system 100 in accordance with a first embodiment of the present invention.
  • An elongate beam 102 for fitting to one or more ceiling joists is coupled to depending rods 104 A, 104 B, 104 C, 104 D and 104 E, each comprising first and second ends respectively enumerated as 106 A, 106 B, 106 C, 106 D, 106 E, 108 A, 108 B, 108 C, 108 D and 108 E as will be clear from FIG. 1 .
  • the first ends 106 A to E are each pivotally attached to the beam 102 and the second ends 108 A to E are each pivotally attached to a flexible panel 110 , for example formed of a gypsum based plasterboard which may comprise an inner layer of gypsum between two outer layers of lining paper, for example, or glass fibre, for example.
  • the gypsum layer may additionally comprise binding materials such as silicon.
  • a plurality of such panels may be mounted side-by-side.
  • Each of the rods 104 A to E may be different in length as illustrated in FIG. 1 .
  • the length of the rods controls the vertical separation between the beam 102 and the panel 110 .
  • the position and curvature of the flexible panel 110 can be varied according to the specification of the ceiling that is being constructed by varying the lengths of the rods and the positions at which the rods attach to the beam 102 and flexible panel 110 .
  • the rods 104 A to E may each be adjustable in length.
  • the rods 104 A to E may be telescopically adjustable or they may be constructed from a plurality of discrete sections that are fitted together in cooperation to form the rods 104 A to E.
  • rods that are adjustable in length means that when the ceiling is being constructed, if an error is made in measurement of the ceiling or the arrangement of the panels, the length of the rods may be adjusted to compensate for the results of the measurement error. This avoids the need to re-order components such as new panels or new rods and avoids the wastage involved if any of the rods or the panel need to be disposed of.
  • FIG. 2A schematically illustrate a ceiling suspension system 200 in accordance with a second embodiment.
  • the ceiling suspension system 200 comprises an upper rail 202 for fitting to one or more ceiling joists 226 , the rail 202 being coupled to rods 204 A, 204 B, 204 C, 204 D, 204 E, 204 A′, 204 B′, 204 C′, 204 D′, 204 E′ which each comprise first and second ends.
  • the first ends of the rods 206 A to E are connected in pairs with the rods 206 A′ to E′ to respective points along the axis of the upper rail 202 .
  • Each pair of rods are pivotally attached to the upper rail 202 and are slidable or otherwise displaceable along the axis of the rail 202 .
  • each pair of rods e.g. 204 A, 204 A′ are each attached to a respective lower rail e.g. 208 A which extends across the upper surface of the flexible panel 210 in a direction substantially perpendicular to the upper rail 202 .
  • Each pair of rods are pivotally attached to their respective lower rail and are slidable or otherwise displaceable along the axis of the rail.
  • the lower rails e.g. 208 A, 208 B extend parallel to each other and prevent curvature of the panel 210 about an axis which extends transverse thereto. However, curvature of the panel 210 is permitted about an axis which extends longitudinally of the lower rails.
  • the position and curvature of the flexible panel 210 can also be varied by varying the axial positions at which the rods attach to the upper rail 202 , the length of the rods and the axial positions at which the rods attach to the lower rails e.g. 208 A.
  • the rails are preferably arranged to prevent the rods from sliding once the final position and curvature of the panel has been set.
  • Each lower rail e.g. 208 A may fitted to the panel 210 by clips e.g. 206 A which extend from the ends of the rails around the side edge of the panel 210 and under the lower surface thereof.
  • FIG. 2A illustrates the translation of the movement of the rods in the rail 208 A 214 .
  • Arrow 224 shows movement from left to right of rod 204 B and 204 B′ which causes a change in the distribution of forces from left to right generated by the change in position of the rod 204 A.
  • FIG. 2B illustrates the attachment between rod 204 A and rail 208 A.
  • the beam or rail 102 , 202 is illustrated as being in a plane generally parallel to the flexible panel 110 , 210 . This is for illustration and does not have to be the case. Embodiments where the beam or rail is not in a plane generally parallel to the flexible panel can also be implemented without departing from the spirit of what is being disclosed.
  • FIGS. 3A and 3B schematically illustrates a ceiling suspension system 300 in accordance with a third embodiment.
  • Ceiling suspension system 300 comprises a beam 302 disposed perpendicularly to a flexible panel 310 .
  • the beam 302 is fixed at its upper end to a joist.
  • Rods 304 A, 304 B, 304 C, 304 D and 304 E are pivotally attached at a first and second ends thereof to beam 302 and the flexible panel 310 respectively.
  • the second end of each rod e.g. 304 A is attached to a respective rail e.g. 308 A which extends across the upper surface of the flexible panel 310 in a direction substantially perpendicular to the upper beam 302 .
  • Each rods is pivotally attached to its respective rail and is slidable or otherwise displaceable along the axis of the rail.
  • the rails e.g. 308 A are preferably symmetrically arranged on opposite sides of the beam 302 .
  • the attachment between the second end of rod 304 A and the respective rail 308 A is illustrated using FIG. 3B .
  • Each rod e.g. 304 A comprises first and second discrete elongate sections 312 A and 312 B.
  • the discrete elongate sections 312 A, 312 B comprise externally screw-threaded adjacent ends, which are oppositely screw-threaded and which are interconnected by a turnbuckle 314 .
  • the turnbuckle 314 can be rotated in one sense or the other to either shorten or lengthen the rod 304 A.
  • the curved side opposite edges of the panel 310 may be fitted with respective elongate curved side members 320 having longitudinally-extending channels into which the side edges of the panel extend.
  • the side members 320 may be curved to shape prior to fitting the panel 310 in-situ so that they act as a former for the desired curved shape.
  • the rails e.g. 308 A can be attached to the panel 310 by fixing their opposite ends to respective side members 320 .
  • Ceiling suspension system 400 comprises a beam 402 disposed above a flexible panel 410 comprising rails 408 A and 408 B configured identically to the rails of the third embodiment.
  • the beam 402 is fixed at its upper end to a joist.
  • Rods 404 A, 404 B, 404 C and 404 D are pivotally attached at a first end to beam 402 and at a second end to a respective side member/elongate formation 420 on the flexible panel 410 .
  • the side members are shaped to correspond with the desired shape of the flexible panel 410 .
  • the shaping can take place before the flexible panel 410 is fitted.
  • the side members/elongate formations 420 may be flexible or rigid.
  • the flexible panel 410 may then be suspended using the ceiling suspension system of any of the first to third embodiments described above or using a standard cable system.
  • the curved shape of the flexible panel 410 may be obtained by the coupling between the flexible panel 410 and the side members/elongate formations 420 .
  • the shaping of the flexible panel 410 may be achieved under the influence of the side members 420 alone.
  • the side members/elongate formations 420 may be rigid and, as such, force the flexible panel 410 into a profile or shape which is defined by the side members/elongate formations 420 .
  • the flexible panel 410 may be forced or persuaded into a shape or profile which is substantially similar to the shape or profile of the side members/elongate formations 420 .
  • the rods 404 A, 4040 B, 404 C and 404 D may have no influence on the shape or profile of the flexible panel 410 , and may only support the weight of the flexible panel 410 after fitting.
  • the rods 404 may play no role in forcing the panel into a desired shape.
  • the beam 402 may provide no contribution to the shaping of the flexible panel 410 .
  • a ceiling suspension system 500 in accordance with the fifth embodiment will now be described with reference to FIGS. 5 a and 5 b.
  • Ceiling suspension system 500 comprises a beam 502 disposed above a flexible panel 508 .
  • Transverse members 506 A, 506 B and 506 C are disposed across the flexible panel 508 .
  • Rods 504 A and 504 B are attached to beam 502 at a first end and to curved member 510 at a second end.
  • Curved member 510 is affixed to transverse members 506 A, 506 B and 506 C using adhesive or screws.
  • the flexible panel 508 may be curved to conform to the geometry of the curved member 510 and may be attached to the curved member 510 before the curved member is attached to the second end of rods 504 A and 504 B.
  • the curved shape of the flexible panel 508 may be obtained via the coupling between the flexible panel 508 and the curved member 510 alone.
  • it is the affixation of the flexible panel 508 to the curved member 510 via the transverse members, 506 A, 506 B, 506 C which may be used to shape said flexible panel 508 .
  • rods 504 A and 504 B may not p0lay any role in the forcing of the flexible panel 508 into a desired shape, and instead may primarily transfer the weight of the flexible panel 508 , transverse members 506 and curved member 510 to the beam 502 .
  • the beam 502 may provide no contribution to the shaping of the flexible panel 508 in this embodiment of the invention.
  • a ceiling suspension system 600 in accordance with a sixth embodiment will now be described with reference to FIGS. 6 a and 6 b.
  • Ceiling suspension system 600 comprises a beam 602 disposed above a flexible panel 608 .
  • Transverse members 606 A, 606 B and 606 C are disposed across the flexible panel 608 .
  • Ceiling suspension system 600 further comprises a plurality of curved members 610 A, 610 B and 6100 .
  • Curved members 610 A, 610 B and 610 C are coupled to one another using, for example, a mechanical fastening, to form a system 612 of curved members 610 as illustrated in FIGS. 6 a and 6 b.
  • FIGS. 6 a and 6 b the specific geometric form of the system 612 illustrated in FIGS. 6 a and 6 b is not the only way in which curved members 610 A, 610 B and 610 C can be coupled and that other geometric forms are possible.
  • Rods 604 A, 604 B, 604 C and 604 D are attached at a first end to beam 602 and at a second end to system 612 .
  • Respective curved members 610 A, 610 B and 610 C are affixed to respective transverse members 606 A, 606 B and 606 C using, for example, a mechanical fastening or an adhesive.
  • a ceiling suspension system 700 will now be described with reference to FIGS. 7 a and 7 b.
  • Ceiling suspension system 700 comprises a beam 702 disposed above a flexible panel 708 and a curved member 710 intermediate the beam 702 and flexible panel 708 . Curved member 710 is suspended from the beam using any necessary means 720 . Ceiling suspension system 700 further comprises a plurality of rods 704 A, 704 B and 704 C attached at a first end to curved member 710 and at a second end to flexible panel 708 .
  • the attachment between the rods 704 A and 704 C and the curved member 710 at their respective first ends enables the rods 704 A and 704 C to independently pivot about the point of attachment at the first end.
  • the attachment between the rods 704 A and 704 C and the flexible panel 708 at their respective second ends enables the rods 704 A and 704 C to independently pivot about the point of attachment at the respective second end.
  • rod 704 B The attachment between the rod 704 B and the curved member 710 at the respective first end of rod 704 B enables rod 704 B to pivot independently about the point of attachment at its first end.
  • rod 704 B The attachment between the rod 704 B and the flexible panel 708 at the respective second end of rod 704 B enables rod 704 B to pivot independently about the point of attachment at its second end.
  • the length of rod 704 B is adjustable using, for example, a turnbuckle (not shown) as described in FIGS. 3A, 3B and the associated description above.
  • a turnbuckle (not shown) as described in FIGS. 3A, 3B and the associated description above.
  • a force is applied by rod 704 B on flexible panel 708 as the second end of the rod 704 B pushes downwards on flexible panel 708 .
  • the flexibility of the flexible panel 708 enables it to deform responsive to the force applied by the rod 704 B as is illustrated in FIG. 7 d . This causes rods 704 A and 704 c to pivot respectively at their first and second ends.
  • Rods 704 A and 704 C may also be adjustable in length to enable more complex ceiling geometries to be realised.
  • a ceiling suspension system in accordance with the present invention is simple and inexpensive in construction yet provides a convenient and versatile way of forming a ceiling.

Abstract

A ceiling suspension system comprises a flexible panel, a first support structure and a plurality of elongate support members, wherein each elongate support member comprises a first end and a second end. The first end of each elongate support member is coupled to the first support structure and the second end of each elongate support member is coupled to the flexible panel. The coupling between the elongate support members and the flexible panel is arranged to force the flexible panel into a desired shape.

Description

    FIELD
  • The present invention relates particularly, but not exclusively, to ceilings and ceiling suspension systems.
  • BACKGROUND
  • Suspended ceilings are assembled such that they are spaced apart from ceiling joists. Suspended ceilings generally comprise an array of ceiling tiles which are arranged to form the ceiling using a ceiling suspension system.
  • U.S. Pat. No. 5,687,526 discloses one such ceiling suspension system wherein a plurality of interlocking tiles or panels are arranged in a regular array or matrix of rows and columns. Each tile is provided with an elongate suspension member attached at one end to a ceiling joist by a fastener and attached at another end to the tile.
  • US 2006/0174562 A1 discloses another ceiling suspension system wherein panels are suspended from a supporting surface by support members including anchors connected to the supporting surface.
  • Such ceiling suspension systems are highly rigid in their structure, thereby decreasing their flexibility, and often require panels of differing geometries in order to satisfy design requirements, thereby costing more to both manufacture and install.
  • Aspects and embodiments were devised with the foregoing in mind.
  • SUMMARY
  • Viewed from a first aspect, there is provided a ceiling suspension system comprising a flexible panel, a first support structure and a plurality of elongate support members, wherein each elongate support member comprises a first end and a second end, wherein the first end of each elongate support member is coupled to the first support structure and the second end of each elongate support member is coupled to the flexible panel, and wherein the coupling between the elongate support members and the flexible panel is arranged to force the flexible panel into a desired shape.
  • Viewed from a second aspect, there is provided a method for installing a ceiling in a building using a system as claimed in any preceding claim, the method comprising: fixing the support structure to a ceiling member of the building; coupling the first ends of the elongate support members to the support structure; coupling the second ends of the elongate support members to the panel; and adjusting the elongate support members to force the flexible panel into a desired shape.
  • The support structure may be coupled at the second end to a side member on the flexible panel which may be flexible or rigid.
  • Ceiling suspension systems in accordance with the first, second and third aspects enable a ceiling to be constructed using a series of flexible panels which can be adjusted using two or more rods coupled to the flexible panel and a supporting substrate. The flexibility of the panels reduces the dependence on using tiles of multiple geometries to form a ceiling which reduces the waste used in the construction of ceilings. Ceiling suspension systems in accordance with the first, second and third aspects also enable flexibility and creativity in the construction of ceilings as the rods can be used to adjust the shape of the ceiling and additionally offers the possibility of constructing non-flat suspended ceilings.
  • Suitably, the elongate support members may be independently adjustable, possibly in length or in any other dimension, to vary the spacing between the panel and the support structure.
  • Suitably, the position at which at least one the elongate support members is connected to the panel and/or the support structure is adjustable to vary the spacing between the panel and the support structure.
  • The elongate support members may be independently adjustable to vary the spacing between the panel and the support structure. The elongate support members may be adjustable in length to vary the spacing between the panel and the support structure.
  • The position at which at least one the elongate support members is connected to the panel and/or the support structure may be adjustable to vary the spacing between the panel and the support structure.
  • The first support structure may comprise an elongate support beam which, in use, extends generally parallel to the plane of the panel. The support beam may extend substantially in line with an axis of the panel.
  • The first support structure may comprise an elongate support beam which, in use, extends generally perpendicularly to the plane of the panel. The support beam may extend substantially perpendicularly to an axis of the panel.
  • The first ends of elongate support members may be slidably mounted to the support beam such that the position at which they connect to the beam can be adjusted.
  • The second ends of the elongate support members may be attached to respective elongate mounting beams which extend across the panel.
  • Suitably, the arrangement of the rods may comprise selecting the length of the rods which may be telescopically adjustable or formed of discrete sections. Adjusting the length of the rods enables the separation between the support structure and the flexible panel to be varied without the requirement for decoupling of the rod from the support structure.
  • Further suitably, the arrangement of the rods may comprise adjusting the positions at which the first or second ends of the rods are coupled to the support structure or flexible panel. The positions of the first or second ends may be adjusted using rails disposed along either the width or the length of either of the support structure or flexible panel. Rails provide increased flexibility to the shape of the flexible panel and to adjust the shape of the panel before it is hung to form a ceiling.
  • The mounting beams may extend in parallel to each other.
  • The end of each mounting beam may comprise a clip which engages around the edge of the panel to secure the beam in-situ.
  • The end of the mounting beam may extend perpendicularly to the axis of the panel.
  • Pairs of elongate support members may be coupled to the same or adjacent points on the first support structure and diverge outwardly of the support member to respective spaced apart positions on the panel.
  • Pairs of elongate support members may be coupled to the same or adjacent points on the support structure and diverge outwardly of the support member to respective spaced apart positions on the panel.
  • The panel may comprises a gypsum based panel. Alternatively, the panel may comprise a mineral wool based panel. In one embodiment, the mineral wool may be predominantly a glass wool. In a second embodiment, the mineral wool may be predominantly a stone wool.
  • In a further embodiment, the panel may predominantly comprise a metal. Preferably, the metal panel will comprise a metal sheet. More preferably, but not essentially, the metal panel may comprise a plurality of sheet metal tiles which together form the metal panel.
  • The panel may comprise a lighting panel. Preferably the lighting panel will comprise a luminous fabric supported by a rigid panel. More preferably, the luminous fabric will include optical fibres.
  • The opposite side edges of the panel extend into channel-section side members which are curved along their longitudinal axis.
  • The first support structure, which may be a curved member, may be coupled to a second support structure.
  • The elongate support members may be coupled at the second end to at least one curved member.
  • The at least one curved member may form part of a system of curved members.
  • The at least one curved member may be coupled to a plurality of transverse beams extending laterally of the curved member.
  • Viewed from a third aspect, there is provided a ceiling suspension system comprising a flexible panel assembly having a flexible panel and at least one elongate formation coupled to the panel and having a curved longitudinal profile of a desired shape, said formation being arranged to force the flexible panel into said desired shape, the system further comprising a plurality of elongate support members each comprising a first end and a second end, wherein the first end of each elongate support member is coupled to a support structure and the second end of each elongate support member is coupled to the flexible panel assembly.
  • Preferably, the elongate formation may extend along one side of the flexible panel. Preferably, the flexible panel assemble may comprise a pair of elongate formations extending along respective opposite sides of the flexible panel.
  • In another embodiment of the invention, the flexible panel assembly comprises a plurality of elongate mounting beams which extend between said elongate formations, the second ends of the elongate support members being attached to respective elongate mounting beams.
  • Viewed from a fourth aspect, there is provided a method for installing a ceiling in a building using a system, the method comprising, in any order: fixing the support structure to a ceiling member of the building; coupling the first ends of the elongate support members to the support structure; coupling the second ends of the elongate support members to the panel; and coupling at least one elongate formation to said flexible panel to force said flexible panel into a desired shape.
  • Preferably, the first method step may comprise coupling the elongate formation to said flexible panel to force said flexible panel into a desired shape. In this way, the flexible panel may be shaped in a convenient location, such as at ground level, before it is positioned in its installed location.
  • It may also be preferable for this method to comprise an additional step wherein coupling the second ends of the elongate support members to the panel comprises coupling the second ends of the elongate support members to an elongate formation. side member of the flexible panel.
  • DESCRIPTION
  • We now describe first, second and third, fourth, fifth and sixth embodiments with reference to the following figures by way of example only:
  • FIG. 1 schematically illustrates a first embodiment of ceiling suspension system in accordance with the present invention;
  • FIG. 2A is a schematic perspective view of a second embodiment of ceiling suspension system in accordance with the present invention;
  • FIG. 2B is a schematic sectional view through along one end of the line II-II of FIG. 2A;
  • FIG. 3A schematically illustrates a third embodiment of ceiling suspension system in accordance with the present invention;
  • FIG. 3B is a schematic sectional view through along the line III-III of FIG. 3A; and
  • FIG. 4 schematically illustrates a ceiling suspension system in accordance with the fourth embodiment.
  • FIG. 5A schematically illustrates an aspect view of a ceiling suspension system in accordance with the fifth embodiment;
  • FIG. 5B schematically illustrates a side view of a ceiling suspension system in accordance with the fifth embodiment;
  • FIG. 6A schematically illustrates an aspect view of a ceiling suspension system in accordance with the sixth embodiment;
  • FIG. 6B schematically illustrates a side view of a ceiling suspension system in accordance with the sixth embodiment;
  • FIG. 7A schematically illustrates an aspect view of a ceiling suspension system in accordance with the seventh embodiment;
  • FIG. 7B schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment;
  • FIG. 7C schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment; and
  • FIG. 7D schematically illustrates a side view of a ceiling suspension system in accordance with the seventh embodiment.
  • FIG. 1 schematically illustrates a ceiling suspension system 100 in accordance with a first embodiment of the present invention. An elongate beam 102 for fitting to one or more ceiling joists is coupled to depending rods 104A, 104B, 104C, 104D and 104E, each comprising first and second ends respectively enumerated as 106A, 106B, 106C, 106D, 106E, 108A, 108B, 108C, 108D and 108E as will be clear from FIG. 1.
  • The first ends 106A to E are each pivotally attached to the beam 102 and the second ends 108A to E are each pivotally attached to a flexible panel 110, for example formed of a gypsum based plasterboard which may comprise an inner layer of gypsum between two outer layers of lining paper, for example, or glass fibre, for example. The gypsum layer may additionally comprise binding materials such as silicon. On construction of a suspension ceiling using system 100 this creates a ceiling whereby the flexible panel 110 is suspended from the beam 102. A plurality of such panels may be mounted side-by-side.
  • Each of the rods 104A to E may be different in length as illustrated in FIG. 1. The length of the rods controls the vertical separation between the beam 102 and the panel 110. Hence the position and curvature of the flexible panel 110 can be varied according to the specification of the ceiling that is being constructed by varying the lengths of the rods and the positions at which the rods attach to the beam 102 and flexible panel 110.
  • Optionally or additionally, the rods 104A to E may each be adjustable in length. To this end, the rods 104A to E may be telescopically adjustable or they may be constructed from a plurality of discrete sections that are fitted together in cooperation to form the rods 104A to E.
  • Using rods that are adjustable in length means that when the ceiling is being constructed, if an error is made in measurement of the ceiling or the arrangement of the panels, the length of the rods may be adjusted to compensate for the results of the measurement error. This avoids the need to re-order components such as new panels or new rods and avoids the wastage involved if any of the rods or the panel need to be disposed of.
  • FIG. 2A schematically illustrate a ceiling suspension system 200 in accordance with a second embodiment. The ceiling suspension system 200 comprises an upper rail 202 for fitting to one or more ceiling joists 226, the rail 202 being coupled to rods 204A, 204B, 204C, 204D, 204E, 204A′, 204B′, 204C′, 204D′, 204E′ which each comprise first and second ends. The first ends of the rods 206A to E are connected in pairs with the rods 206A′ to E′ to respective points along the axis of the upper rail 202. Each pair of rods are pivotally attached to the upper rail 202 and are slidable or otherwise displaceable along the axis of the rail 202.
  • The second ends of each pair of rods e.g. 204A, 204A′ are each attached to a respective lower rail e.g. 208A which extends across the upper surface of the flexible panel 210 in a direction substantially perpendicular to the upper rail 202. Each pair of rods are pivotally attached to their respective lower rail and are slidable or otherwise displaceable along the axis of the rail. The lower rails e.g. 208A, 208B extend parallel to each other and prevent curvature of the panel 210 about an axis which extends transverse thereto. However, curvature of the panel 210 is permitted about an axis which extends longitudinally of the lower rails. In this manner, the position and curvature of the flexible panel 210 can also be varied by varying the axial positions at which the rods attach to the upper rail 202, the length of the rods and the axial positions at which the rods attach to the lower rails e.g. 208A. The rails are preferably arranged to prevent the rods from sliding once the final position and curvature of the panel has been set.
  • Each lower rail e.g. 208A may fitted to the panel 210 by clips e.g. 206A which extend from the ends of the rails around the side edge of the panel 210 and under the lower surface thereof.
  • The direction of the arrow 224 on FIG. 2A illustrate the translation of the movement of the rods in the rail 208A 214. Arrow 224 shows movement from left to right of rod 204B and 204B′ which causes a change in the distribution of forces from left to right generated by the change in position of the rod 204A.
  • FIG. 2B illustrates the attachment between rod 204A and rail 208A.
  • In the first and second embodiments the beam or rail 102, 202 is illustrated as being in a plane generally parallel to the flexible panel 110, 210. This is for illustration and does not have to be the case. Embodiments where the beam or rail is not in a plane generally parallel to the flexible panel can also be implemented without departing from the spirit of what is being disclosed.
  • FIGS. 3A and 3B schematically illustrates a ceiling suspension system 300 in accordance with a third embodiment. Ceiling suspension system 300 comprises a beam 302 disposed perpendicularly to a flexible panel 310. The beam 302 is fixed at its upper end to a joist. Rods 304A, 304B, 304C, 304D and 304E are pivotally attached at a first and second ends thereof to beam 302 and the flexible panel 310 respectively. The second end of each rod e.g. 304A is attached to a respective rail e.g. 308A which extends across the upper surface of the flexible panel 310 in a direction substantially perpendicular to the upper beam 302. Each rods is pivotally attached to its respective rail and is slidable or otherwise displaceable along the axis of the rail. The rails e.g. 308A are preferably symmetrically arranged on opposite sides of the beam 302. The attachment between the second end of rod 304A and the respective rail 308A is illustrated using FIG. 3B.
  • Each rod e.g. 304A comprises first and second discrete elongate sections 312A and 312B. The discrete elongate sections 312A, 312B comprise externally screw-threaded adjacent ends, which are oppositely screw-threaded and which are interconnected by a turnbuckle 314. In use, the turnbuckle 314 can be rotated in one sense or the other to either shorten or lengthen the rod 304A.
  • The curved side opposite edges of the panel 310 may be fitted with respective elongate curved side members 320 having longitudinally-extending channels into which the side edges of the panel extend. The side members 320 may be curved to shape prior to fitting the panel 310 in-situ so that they act as a former for the desired curved shape. The rails e.g. 308A can be attached to the panel 310 by fixing their opposite ends to respective side members 320.
  • A ceiling suspension system 400 in accordance with the fourth embodiment will now be described with reference to FIG. 4. Ceiling suspension system 400 comprises a beam 402 disposed above a flexible panel 410 comprising rails 408A and 408B configured identically to the rails of the third embodiment. The beam 402 is fixed at its upper end to a joist. Rods 404A, 404B, 404C and 404D are pivotally attached at a first end to beam 402 and at a second end to a respective side member/elongate formation 420 on the flexible panel 410.
  • The side members are shaped to correspond with the desired shape of the flexible panel 410. The shaping can take place before the flexible panel 410 is fitted. The side members/elongate formations 420 may be flexible or rigid. The flexible panel 410 may then be suspended using the ceiling suspension system of any of the first to third embodiments described above or using a standard cable system.
  • In the embodiment of the invention as depicted in FIG. 4, the curved shape of the flexible panel 410 may be obtained by the coupling between the flexible panel 410 and the side members/elongate formations 420. As depicted in FIG. 4, the shaping of the flexible panel 410 may be achieved under the influence of the side members 420 alone.
  • In this embodiment of the invention, the side members/elongate formations 420 may be rigid and, as such, force the flexible panel 410 into a profile or shape which is defined by the side members/elongate formations 420. As such, the flexible panel 410 may be forced or persuaded into a shape or profile which is substantially similar to the shape or profile of the side members/elongate formations 420.
  • In such an embodiment, the rods 404A, 4040B, 404C and 404D may have no influence on the shape or profile of the flexible panel 410, and may only support the weight of the flexible panel 410 after fitting. The rods 404 may play no role in forcing the panel into a desired shape. Additionally, the beam 402 may provide no contribution to the shaping of the flexible panel 410.
  • A ceiling suspension system 500 in accordance with the fifth embodiment will now be described with reference to FIGS. 5a and 5 b.
  • Ceiling suspension system 500 comprises a beam 502 disposed above a flexible panel 508. Transverse members 506A, 506B and 506C are disposed across the flexible panel 508. Rods 504A and 504B are attached to beam 502 at a first end and to curved member 510 at a second end. Curved member 510 is affixed to transverse members 506A, 506B and 506C using adhesive or screws.
  • The flexible panel 508 may be curved to conform to the geometry of the curved member 510 and may be attached to the curved member 510 before the curved member is attached to the second end of rods 504A and 504B.
  • Once again, in the embodiment of the invention as depicted in FIGS. 5a and 5b , the curved shape of the flexible panel 508 may be obtained via the coupling between the flexible panel 508 and the curved member 510 alone. In this embodiment of the invention, it is the affixation of the flexible panel 508 to the curved member 510 via the transverse members, 506A, 506B, 506C which may be used to shape said flexible panel 508. In this embodiment of the invention, rods 504A and 504B may not p0lay any role in the forcing of the flexible panel 508 into a desired shape, and instead may primarily transfer the weight of the flexible panel 508, transverse members 506 and curved member 510 to the beam 502. Additionally, the beam 502 may provide no contribution to the shaping of the flexible panel 508 in this embodiment of the invention.
  • A ceiling suspension system 600 in accordance with a sixth embodiment will now be described with reference to FIGS. 6a and 6 b.
  • Ceiling suspension system 600 comprises a beam 602 disposed above a flexible panel 608. Transverse members 606A, 606B and 606C are disposed across the flexible panel 608.
  • Ceiling suspension system 600 further comprises a plurality of curved members 610A, 610B and 6100. Curved members 610A, 610B and 610C are coupled to one another using, for example, a mechanical fastening, to form a system 612 of curved members 610 as illustrated in FIGS. 6a and 6 b.
  • It should be emphasised that the specific geometric form of the system 612 illustrated in FIGS. 6a and 6b is not the only way in which curved members 610A, 610B and 610C can be coupled and that other geometric forms are possible.
  • Rods 604A, 604B, 604C and 604D are attached at a first end to beam 602 and at a second end to system 612. Respective curved members 610A, 610B and 610C are affixed to respective transverse members 606A, 606B and 606C using, for example, a mechanical fastening or an adhesive.
  • In using a system 612 of curved members 610A, 610B and 610C more complex ceiling geometries can be formed as is illustrated by the S-shape of flexible panel 608.
  • A ceiling suspension system 700 will now be described with reference to FIGS. 7a and 7 b.
  • Ceiling suspension system 700 comprises a beam 702 disposed above a flexible panel 708 and a curved member 710 intermediate the beam 702 and flexible panel 708. Curved member 710 is suspended from the beam using any necessary means 720. Ceiling suspension system 700 further comprises a plurality of rods 704A, 704B and 704C attached at a first end to curved member 710 and at a second end to flexible panel 708.
  • The attachment between the rods 704A and 704C and the curved member 710 at their respective first ends enables the rods 704A and 704C to independently pivot about the point of attachment at the first end. The attachment between the rods 704A and 704C and the flexible panel 708 at their respective second ends enables the rods 704A and 704C to independently pivot about the point of attachment at the respective second end.
  • The attachment between the rod 704B and the curved member 710 at the respective first end of rod 704B enables rod 704B to pivot independently about the point of attachment at its first end.
  • The attachment between the rod 704B and the flexible panel 708 at the respective second end of rod 704B enables rod 704B to pivot independently about the point of attachment at its second end.
  • The length of rod 704B is adjustable using, for example, a turnbuckle (not shown) as described in FIGS. 3A, 3B and the associated description above. As the length of rod 704B is extended using the turnbuckle, a force is applied by rod 704B on flexible panel 708 as the second end of the rod 704B pushes downwards on flexible panel 708. The flexibility of the flexible panel 708 enables it to deform responsive to the force applied by the rod 704B as is illustrated in FIG. 7d . This causes rods 704A and 704 c to pivot respectively at their first and second ends.
  • As the length of the rod 704B is shortened, the force is relieved and the flexible panel returns to its original shape which is shown in FIG. 7b , if the length of the rod 704B is shortened further, the attachment between rod 704B and flexible panel 708 causes the rod to pull on the flexible panel 708 and causes rods 704A and 704C to pivot in the opposite direction to the direction they pivoted in FIG. 7 c.
  • A system in accordance with the seventh embodiment is not limited to the specific arrangement described here. Rods 704A and 704C may also be adjustable in length to enable more complex ceiling geometries to be realised.
  • A ceiling suspension system in accordance with the present invention is simple and inexpensive in construction yet provides a convenient and versatile way of forming a ceiling.

Claims (37)

1. A ceiling suspension system comprising a flexible panel, a first support structure and a plurality of elongate support members, wherein each elongate support member comprises a first end and a second end, wherein the first end of each elongate support member is coupled to the first support structure and the second end of each elongate support member is coupled to the flexible panel, and wherein the coupling between the elongate support members and the flexible panel is arranged to force the flexible panel into a desired shape, wherein the second ends of the elongate support members are attached to respective elongate mounting beams which extend across the panel.
2. The system of claim 1, wherein the elongate support member is coupled to a side member on the flexible panel.
3. (canceled)
4. (canceled)
5. The system of claim 1, wherein the elongate support members are independently adjustable to vary the spacing between the panel and the support structure.
6. The system of claim 1, wherein the first support structure comprises an elongate support beam which, in use, extends generally parallel or perpendicular to the plane of the panel.
7. (canceled)
8. The system of claim 6, wherein the first ends of elongate support members are slidably mounted to the support beam such that the position at which they connect to the beam can be adjusted.
9. (canceled)
10. (canceled)
11. The system of claim 1, wherein opposite side edges of the panel extend into channel-section side members which are curved along their longitudinal axis.
12. The system of claim 1, any prcvious claim wherein the first support structure is a curved member.
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. A method for installing a ceiling in a building using a system as claimed in any preceding claim, the method comprising:
fixing the support structure to a ceiling member of the building;
coupling the first ends of the elongate support members to the support structure;
coupling the second ends of the elongate support members to the panel; and
adjusting the elongate support members to force the flexible panel into a desired shape.
18. The method of claim 17 wherein coupling the second ends of the elongate support members to the panel comprises coupling the second ends of the elongate support members to a side member of the flexible panel.
19. A ceiling for a building comprising a ceiling member and a system as claimed in claim 1, the elongate support structure of the system being fitted to the ceiling member.
20. A ceiling suspension system comprising a flexible panel assembly having a flexible panel and at least two elongate formations coupled to the panel and having a curved longitudinal profile of a desired shape, said formations being arranged to force the flexible panel into said desired shape, the system further comprising a plurality of elongate support members each comprising a first end and a second end, wherein the first end of each elongate support member is coupled to a support structure and the second end of each elongate support member is coupled to the flexible panel assembly, wherein the elongate formations comprise a channel section and opposite edges of the flexible panel extend into said channel sections.
21. (canceled)
22. (canceled)
23. The system of claim 20, wherein the panel assembly comprises a plurality of elongate mounting beams which extend between said elongate formations, the second ends of the elongate support members being attached to respective elongate mounting beams.
24. The system of claim 20, wherein at least one elongate support member is coupled to said elongate formation.
25. The system of claim 20, wherein the elongate support members are independently adjustable to vary the spacing between said flexible panel and said support structure.
26. The system of claim 20, wherein said support structure comprises an elongate support beam which, in use, extends generally parallel or perpendicular to the plane of the panel.
27. (canceled)
28. The system of claim 26, wherein the first ends of said elongate support members are slidably mounted to the support beam such that the position at which they connect to the beam can be adjusted.
29. (canceled)
30. The system of claim 20 wherein said support structure is a curved member.
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. A method for installing a ceiling in a building using a system as claimed in claim 20, the method comprising, in any order:
fixing the support structure to a ceiling member of the building;
coupling the first ends of the elongate support members to the support structure;
coupling the second ends of the elongate support members to the panel; and
coupling at least one elongate formation to said flexible panel to force said flexible panel into a desired shape.
36. The method of claim 35 wherein coupling the second ends of the elongate support members to the panel comprises coupling the second ends of the elongate support members to an elongate formation.
37. A ceiling for a building comprising a ceiling member and a system as claimed in claim 20, the elongate support structure of the system being fitted to said ceiling member.
US15/741,276 2015-07-02 2016-06-01 Ceiling and Ceiling Suspension System Abandoned US20180187415A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP15306088.4 2015-07-02
EP15306088 2015-07-02
EP15196357.6 2015-11-25
EP15196357.6A EP3112546B1 (en) 2015-07-02 2015-11-25 Ceiling and ceiling suspension system
PCT/EP2016/062429 WO2017001137A1 (en) 2015-07-02 2016-06-01 Ceiling and ceiling suspension system

Publications (1)

Publication Number Publication Date
US20180187415A1 true US20180187415A1 (en) 2018-07-05

Family

ID=53514135

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/741,276 Abandoned US20180187415A1 (en) 2015-07-02 2016-06-01 Ceiling and Ceiling Suspension System

Country Status (5)

Country Link
US (1) US20180187415A1 (en)
EP (1) EP3112546B1 (en)
AU (1) AU2016287702B2 (en)
CA (1) CA2990506A1 (en)
WO (1) WO2017001137A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044186B (en) * 2017-06-13 2023-05-12 四川盛邦建设股份有限公司 Suspended ceiling system and entrance structure
US11692345B2 (en) * 2020-06-30 2023-07-04 Usg Interiors, Llc Modular dynamic acoustic ceiling panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981116A (en) * 1973-06-14 1976-09-21 Alcan Aluminum Corporation Sheathing system for building structures
US5397090A (en) * 1993-12-20 1995-03-14 Carson; Bradley C. Adjustable suspended ceiling hangers
US20090277117A1 (en) * 2008-05-06 2009-11-12 Worthington Armstrong Venture Suspended ceiling cloud with flexible panel
US7617649B2 (en) * 2003-05-15 2009-11-17 A.G.K. Ltd. Article hanging system, slidable wire holder, detachable wire holder, wire hook and wire gripper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097439B (en) * 1981-04-24 1984-10-10 Hunter Douglas Ind Bv Adjustable suspended ceiling
FI83359C (en) * 1989-04-26 1991-06-25 Ahlstroem Eristeet Oy Process for making a ceiling board
US5687526A (en) 1995-11-08 1997-11-18 Benvenuto; Guido Trackless drop ceiling system
SI0908570T1 (en) * 1997-10-13 1999-10-31 Walter Construction with a membrane whereby the roof is made of a three dimensional metallic or composite frame
US6834467B2 (en) * 2002-01-10 2004-12-28 Usg Interiors, Inc. Free form ceiling
CA2481084A1 (en) 2002-04-04 2003-10-23 Herman Miller, Inc. Ceiling system with vertical space division
US7752821B2 (en) * 2004-10-27 2010-07-13 Chicago Metallic Corporation Suspended ceiling system
US8028791B2 (en) * 2007-05-22 2011-10-04 Owens Corning Intellectual Capital, Llc Sound reflective acoustic panel
PL2884019T3 (en) * 2013-12-13 2017-07-31 Saint-Gobain Ecophon Ab Suspended ceiling system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981116A (en) * 1973-06-14 1976-09-21 Alcan Aluminum Corporation Sheathing system for building structures
US5397090A (en) * 1993-12-20 1995-03-14 Carson; Bradley C. Adjustable suspended ceiling hangers
US7617649B2 (en) * 2003-05-15 2009-11-17 A.G.K. Ltd. Article hanging system, slidable wire holder, detachable wire holder, wire hook and wire gripper
US20090277117A1 (en) * 2008-05-06 2009-11-12 Worthington Armstrong Venture Suspended ceiling cloud with flexible panel

Also Published As

Publication number Publication date
AU2016287702B2 (en) 2020-11-05
WO2017001137A1 (en) 2017-01-05
CA2990506A1 (en) 2017-01-05
EP3112546A1 (en) 2017-01-04
AU2016287702A1 (en) 2018-01-18
EP3112546B1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US10718113B2 (en) Suspended ceiling system, securing members, and process of installing a suspended ceiling system
JP5813009B2 (en) Facade insulation
US20110146183A1 (en) Ceiling tile unit and a method for forming a ceiling tile unit
US9322179B2 (en) Roofing suspension support
WO2010012061A1 (en) Clip and support for installing cladding
DK2884019T3 (en) SUSPENDED AIR SYSTEM AND PROCEDURE.
US20180187415A1 (en) Ceiling and Ceiling Suspension System
US7832171B2 (en) Construction framing system and track therefor
CN104878868A (en) Ceiling keel structure and mounting method
EP2472022A1 (en) A grid system for a suspended ceiling
US9481999B2 (en) Method of building and installation of an interstitial seismic resistant support for an acoustic ceiling grid
KR200469661Y1 (en) Fixing device for outside panel and outside panel assembly having the same
RU2647523C1 (en) Facade structure
KR101842150B1 (en) Panel Fixing Structure with Improved Workability and Construction Method
CN219992847U (en) Thermal insulation gypsum board suspended ceiling structure
LT6136B (en) Fiber glass composite construction element
JP7328870B2 (en) Partition mounting structure, building and partition mounting method
WO2010012064A1 (en) Apparatus and method for installing cladding to structures
KR20170025160A (en) Lower structure for a raised floor installation
DK2904171T3 (en) THINED HANGING IRON FOR HANGING A CONSTRUCTION ELEMENT ON A LOADING STRUCTURE
AU2010101096A4 (en) Apparatus and Method for Mounting Building Panels to the Framework Assembly of a Wall Structure
RU80477U1 (en) VERTICAL GUIDE FOR FASTENING FACING TILES OF MOUNTED VENTILATED FACADE
EA027896B1 (en) Frame system of hinged ventilated facade for multi-storey building
PL71315Y1 (en) Bracket of a systemic ventilated facade
TR201513929A2 (en) Curvilinear carrier system.

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAINT-GOBAIN PLACO SAS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DALMAY, PIERRE;BENKEMOUN, YVES;REEL/FRAME:045581/0646

Effective date: 20180323

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION