US20180138255A1 - Electroluminscent display device and method of fabricating the same - Google Patents

Electroluminscent display device and method of fabricating the same Download PDF

Info

Publication number
US20180138255A1
US20180138255A1 US15/808,435 US201715808435A US2018138255A1 US 20180138255 A1 US20180138255 A1 US 20180138255A1 US 201715808435 A US201715808435 A US 201715808435A US 2018138255 A1 US2018138255 A1 US 2018138255A1
Authority
US
United States
Prior art keywords
bank
display device
pixel regions
electrode
electroluminescent display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/808,435
Other versions
US10692949B2 (en
Inventor
Sang-Bin Lee
Jeong-Mook CHOI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170125401A external-priority patent/KR102546420B1/en
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, Jeong-Mook, LEE, SANG-BIN
Publication of US20180138255A1 publication Critical patent/US20180138255A1/en
Application granted granted Critical
Publication of US10692949B2 publication Critical patent/US10692949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • H01L27/3262
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to a display device, and more particularly, to an electroluminescent display device being capable of providing a uniform brightness and a high display quality and a method of fabricating the same.
  • an electroluminescent display device may be formed on a flexible substrate such as a plastic substrate.
  • the electroluminescent display device since the electroluminescent display device is a self-emission type, the electroluminescent display device has excellent characteristics in contrast ratio, a viewing angle, a thin profile, a response time, a thermal stability, and so on.
  • the electroluminescent display device may be referred to as a light emitting display device.
  • the electroluminescent display device may include an anode as a hole injection electrode, a cathode as an electron injection electrode and an emitting layer between the anode and the cathode. The hole from the anode and the electron from the cathode are combined in the emitting layer to form an exciton, and the light is emitted from the emitting layer by a radiative recombination of the exciton.
  • FIG. 1 is a schematic view showing an energy band diagram of the related art electroluminescent display device.
  • the electroluminescent display device includes an anode 1 , a cathode 7 and an emitting material layer (EML) 4 between the anode 1 and the cathode 7 .
  • EML emitting material layer
  • the electroluminescent display device may further include a hole transporting layer (HTL) 3 between the anode 1 and the EML 4 and an electron transporting layer (ETL) 5 between the cathode 7 and the EML 4 .
  • HTL hole transporting layer
  • ETL electron transporting layer
  • the electroluminescent display device may further include a hole injection layer (HIL) 2 between the anode 1 and the HTL 3 and an electron injection layer (EIL) 6 between the cathode and the ETL 5 .
  • HIL hole injection layer
  • EIL electron injection layer
  • the hole “h+” provided from the anode 1 into the EML 4 through the HIL 2 and the HTL 3 and the electron “e-” provided from the cathode 7 into the EML 4 through the EIL 6 and the ETL 5 are combined to form an exciton, and the light having a color in correspondence to a band gap of the EML 4 is provided from the exciton.
  • the EML 4 , the HIL 2 , the HTL 3 , the ETL 5 and the EIL 6 may be formed by a vacuum thermal evaporation process using a fine metal mask.
  • the production cost of the electroluminescent display device is increased by the vacuum thermal evaporation process, and the application of the vacuum thermal evaporation process for the large size and high resolution electroluminescent display device is difficult because of a deviation problem of the mask, a deformation problem of the mask, a shadow effect in the mask, and so on.
  • the solution process for the emitting layer is introduced.
  • a nozzle of an injection apparatus is scanned along a direction to drop an emitting material in a pixel region surrounding by a bank.
  • the emitting material is dried to form the emitting layer.
  • the emitting layer formed by the solution process may have a non-uniform thickness. Namely, in a cross-section, the emitting layer may have a “U” shape or a “W” shape.
  • the electroluminescent display device which includes the emitting layer having a non-uniform thickness, provides a non-uniform emission. Accordingly, in the electroluminescent display device, the brightness becomes non-uniform, and the display quality is degraded.
  • the present invention is directed to an electroluminescent display device and a method of fabricating the same that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide an electroluminescent device that has a uniform brightness and a high display quality.
  • an electroluminescent display device includes a substrate including first to third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively; an insulating layer over the substrate and including a groove between the first and second pixel regions; a first electrode on the insulating layer and in each of the first to third pixel regions; a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region; an emitting layer on the first electrode; and a second electrode on the emitting layer, wherein the bank disposed between the first and second pixel regions has a first height from the first electrode and the bank disposed between the first and third pixel regions has a second height from the first electrode, and the first height is smaller than the second height.
  • an electroluminescent display device in another aspect, includes a substrate including first to third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively; a first electrode in each of the first to third pixel regions; a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region; an emitting layer on the first electrode; and a second electrode on the emitting layer, wherein a portion of a bottom surface of the bank between the first pixel region and the second pixel region is disposed lower than a portion of a bottom surface of the bank between the first pixel region and the third pixel region.
  • FIG. 1 is a schematic view showing an energy band diagram of the related art electroluminescent display device.
  • FIG. 2 is a schematic circuit diagram of an electroluminescent display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an electroluminescent display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic plane view of an electroluminescent display device according to a first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view taken along the line V-V of FIG. 4 .
  • FIG. 6 is a schematic cross-sectional view taken along the line VI-VI of FIG. 4 .
  • FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. 4 .
  • FIG. 8 is a schematic plane view of an electroluminescent display device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of an electroluminescent display device according to a third embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of an electroluminescent display device according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an electroluminescent display device according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of an electroluminescent display device according to a sixth embodiment of the present invention.
  • FIGS. 13A to 13C are schematic cross-sectional view illustrating a fabricating process of a portion of an electroluminescent display device according to the sixth embodiment of the present invention.
  • FIG. 14 is a schematic plane view of an electroluminescent display device according to a seventh embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view taken along the line XV-XV of FIG. 14 .
  • FIG. 16 is a schematic cross-sectional view taken along the line XVI-XVI of FIG. 14 .
  • FIG. 2 is a schematic circuit diagram of an electroluminescent display device according to the present invention. All components of the electroluminescent display device according to all embodiments of the present invention are operatively coupled and configured.
  • a gate line GL and a data line DL are formed, and a pixel region P is defined by the gate and data lines GL and DL.
  • a switching thin film transistor (TFT) Ts In the pixel region P, a switching thin film transistor (TFT) Ts, a driving TFT Td, a storage capacitor Cst and a light emitting diode D are formed.
  • TFT switching thin film transistor
  • a gate electrode of the switching TFT Ts is connected to the gate line GL, and a source electrode of the switching TFT Ts is connected to the data line DL.
  • a gate electrode of the driving TFT Td is connected to a drain electrode of the switching TFT Ts, and a source electrode of the driving TFT Td is connected to a high voltage supply VDD.
  • An anode of the light emitting diode D is connected to a drain electrode of the driving TFT Td, and a cathode of the light emitting diode D is connected to a low voltage supply VSS.
  • the storage capacitor Cst is connected to a gate electrode and the drain electrode of the driving TFT Td.
  • the switching TFT Ts when the switching TFT Ts is turned on by a gate signal applied through the gate line GL, a data signal from the data line DL is applied to a gate electrode of the driving TFT Td and an electrode of the storage capacitor Cst through the switching TFT Ts.
  • the driving TFT Td When the driving TFT Td is turned on by the data signal, an electric current is supplied to the light emitting diode D from the high voltage supply VDD through the driving TFT Td. As a result, the light emitting diode D emits light. Since the current in the light emitting diode D is proportional to the data signal and the light intensity emitted from the light emitting diode D is proportional to the current in the light emitting diode D, the pixel region P provide a gray scale according to the data signal.
  • the storage capacitor Cst serves to maintain the voltage of the gate electrode of the driving TFT Td for one frame. Accordingly, the electroluminescent display device displays images.
  • FIG. 3 is a schematic cross-sectional view of an electroluminescent display device according to the present invention.
  • a semiconductor layer 122 is formed on an insulating substrate 110 .
  • the substrate 110 may be a glass substrate or a flexible substrate of a polymer.
  • the substrate 110 may be a polyimide substrate.
  • the semiconductor layer 122 may be formed of an oxide semiconductor material or a poly-silicon.
  • a light-shielding pattern may be formed under the semiconductor layer 122 .
  • the light radiated to the semiconductor layer 122 is shielded or blocked by the light-shielding pattern such that thermal degradation of the semiconductor layer 122 can be prevented.
  • a buffer layer may be formed between the substrate 110 and the semiconductor layer 122 .
  • impurities may be doped into both sides of the semiconductor layer 122 of polycrystalline silicon.
  • a gate insulating layer 130 is formed on the semiconductor layer 122 .
  • the gate insulating layer 130 may be formed of an inorganic insulating material such as silicon oxide or silicon nitride.
  • a gate electrode 132 which is formed of a conductive material, e.g., metal, is formed on the gate insulating layer 130 to correspond to a center of the semiconductor layer 122 .
  • the gate line and a first capacitor electrode may be formed on the gate insulating layer 130 .
  • the gate line extends along a direction, and the first capacitor electrode is connected to the gate electrode 132 .
  • the gate insulating layer 130 is formed on the entire surface of the substrate 110 .
  • the gate insulating layer 130 may be patterned to have the same shape as the gate electrode 132 .
  • An interlayer insulating layer 140 which is formed of an insulating material, is formed on an entire surface of the substrate 110 including the gate electrode 132 .
  • the interlayer insulating layer 140 may be formed of an inorganic insulating material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • the interlayer insulating layer 140 includes first and second contact holes 140 a and 140 b exposing both sides of the semiconductor layer 122 .
  • the first and second contact holes 140 a and 140 b are positioned at both sides of the gate electrode 132 to be spaced apart from the gate electrode 132 .
  • the first and second contact holes 140 a and 140 b are formed in the gate insulating layer 130 and the interlayer insulating layer 140 .
  • the gate insulating layer 130 is patterned to have the same shape as the gate electrode 132
  • the first and second contact holes 140 a and 140 b are formed in the interlayer insulating layer 140 .
  • a source electrode 152 and a drain electrode 154 which are formed of a conductive material, e.g., metal, are formed on the interlayer insulating layer 140 .
  • the data line, a power line and a second capacitor electrode may be formed on the interlayer insulating layer 140 .
  • the data line extends along a direction, which may be perpendicular to the direction of the gate line.
  • the gate and data lines cross each other to define a pixel region.
  • the power line providing the high voltage may be parallel to and spaced apart from the data line.
  • the second capacitor electrode is connected to the drain electrode 154 and overlaps the first capacitor electrode to form the storage capacitor with the interlayer insulating layer 140 as a dielectric layer.
  • the source electrode 152 and the drain electrode 154 are spaced apart from each other with respect to the gate electrode 132 and respectively contact both sides of the semiconductor layer 122 through the first and second contact holes 140 a and 140 b.
  • the semiconductor layer 122 , the gate electrode 132 , the source electrode 152 and the drain electrode 154 constitute a TFT.
  • the gate electrode 132 , the source electrode 152 and the drain electrode 154 are positioned over the semiconductor layer 122 .
  • the TFT has a coplanar structure.
  • the gate electrode may be positioned under the semiconductor layer, and the source and drain electrodes may be positioned over the semiconductor layer such that the TFT may have an inverted staggered structure.
  • the semiconductor layer may include amorphous silicon.
  • the TFT serves as the driving TFT, and the switching TFT, which may have substantially same structure as the driving TFT, is further formed on the substrate 110 .
  • the gate electrode 132 of the driving TFT is connected to the drain electrode of the switching TFT, and the source electrode 152 of the driving TFT is connected to the power line.
  • the gate electrode and the source electrode of the switching TFT are connected to the gate line and the data line, respectively.
  • a passivation layer 160 of an insulating material is formed over an entire surface of the substrate 110 to cover the source and drain electrodes 152 and 154 .
  • the passivation layer 160 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • An inorganic insulating layer, which is formed of an inorganic material such as silicon oxide or silicon nitride, may be formed under the passivation layer 160 .
  • the passivation layer 160 includes a drain contact hole 160 a exposing the drain electrode 154 .
  • the drain contact hole 160 a is positioned directly over the second contact hole 140 b .
  • the drain contact hole 160 a may be spaced apart from the second contact hole 140 b.
  • a first electrode 162 which is connected to the drain electrode 154 through the drain contact hole 160 a , is separately formed on the passivation layer 160 in each pixel region.
  • the first electrode 162 may be an anode and may be formed of a conductive material having a relatively high work function.
  • the first electrode 162 may be formed of a transparent conductive material such as indium-tin-oxide (ITO) or indium-zinc-oxide (IZO).
  • a bank 170 which covers edges of the first electrode 162 , is formed on the passivation layer 160 .
  • the bank 170 is formed of an insulating material.
  • the bank 170 is positioned between adjacent pixel regions and includes a transmitting hole 170 a exposing a center of the first electrode 162 in the pixel region.
  • the bank 170 includes a first bank 172 and a second bank 174 on the first bank 172 .
  • a width of the first bank 172 is greater than that of the second bank 174 .
  • the first bank 172 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 172 is reduced.
  • the second bank 174 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 174 is increased such that an overflow of the emitting material into adjacent pixel region is prevented.
  • the first bank 172 may be formed of an inorganic material or an organic material each having a hydrophilic property
  • the second bank 174 may be formed of an organic material having a hydrophobic property.
  • first bank 172 and the second bank 174 may be formed of the same material.
  • each of the first and second banks 172 and 174 may be formed of an organic material having a hydrophobic property.
  • the bank 170 may have a single-layered structure of an organic material having a hydrophobic property.
  • An emitting layer 180 is formed on the first electrode 162 . Namely, the emitting layer 180 contacts the first electrode 162 in the transmitting hole 170 a .
  • the emitting layer 180 may be formed by a solution process.
  • the emitting layer 180 may be formed by a printing process or a coating process using an injection apparatus having a plurality of nozzles, but it is not limited thereto. An inkjet printing process may be used.
  • the emitting layer 180 may include a hole auxiliary layer, an EML and an electron auxiliary layer sequentially stacked on the first electrode 162 .
  • the hole auxiliary layer may include at least one of the HIL and the HTL
  • the electron auxiliary layer may include at least one of the ETL and the EIL.
  • the hole auxiliary layer and the EML may be formed in the transmitting hole 170 a , and the electron auxiliary layer may be formed over an entire surface of the substrate 110 .
  • the hole auxiliary layer and the EML may be formed by a solution process, and the electron auxiliary layer may be formed by a deposition process.
  • a second electrode 192 is formed over the substrate 110 including the emitting layer 180 .
  • the second electrode 192 is positioned at an entire surface of the display area.
  • the second electrode 192 may be a cathode and may be formed of a conductive material having a relatively low work function.
  • the second electrode 192 may be formed of aluminum (Al), magnesium (Mg), silver (Ag) or their alloy.
  • the first electrode 162 , the emitting layer 180 and the second electrode 192 constitute the light emitting diode D.
  • An encapsulation film may be formed on the light emitting diode D to prevent penetration of moisture into the light emitting diode D.
  • the encapsulation film may include a first inorganic layer, an organic layer and a second inorganic layer substantially stacked, but it is not limited thereto.
  • the light from the emitting layer 180 is provided at a surface of the substrate 110 through the first electrode 162 .
  • the electroluminescent display device may be a bottom emission type.
  • the first electrode 162 may further include a reflection electrode or a reflection layer.
  • the reflection electrode or the reflection layer may be formed of aluminum-palladium-copper (APC) alloy, and the first electrode 162 may have a triple-layered structure of ITO/APC alloy/ITO.
  • the second electrode 192 may have a relatively small thickness for light-transmitting.
  • the second electrode 192 may have the light transmittance of about 45 to 50%.
  • the bank 170 may have different heights from the first electrode 162 or the substrate 110 in a major axis and a minor axis of the pixel region to overcome the thickness non-uniformity problem in the emitting layer.
  • FIG. 4 is a schematic plane view of an electroluminescent display device according to a first embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view taken along the line V-V of FIG. 4
  • FIG. 6 is a schematic cross-sectional view taken along the line VI-VI of FIG. 4
  • FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. 4 .
  • some elements are omitted.
  • a plurality of pixel regions P are defined on the substrate 110 .
  • the pixel region P is an effective light-emitting area for transmitting the light, and a distance between adjacent pixel regions is different in a first direction and a second direction. Namely, the adjacent pixel regions P along the first direction has a first interval distance d 1 , and the adjacent pixel regions P along the second direction has a second interval distance d 2 being greater than the first interval distance d 1 .
  • the pixel region P may have a shape having a major axis and a minor axis, e.g., a rectangular shape. The minor axis is parallel to the first direction, and the major axis is parallel to the second direction.
  • first and second pixel regions P 1 and P 2 are spaced apart from each other by the first interval distance d 1
  • the first and third pixel regions P 1 and P 3 are spaced apart from each other by the second interval distance d 2 .
  • the gate insulating layer 130 , the interlayer insulating layer 140 and the passivation layer 160 are sequentially formed on or over the substrate 110 .
  • the gate insulating layer 130 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride
  • the interlayer insulating layer 140 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • the passivation layer 160 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • An inorganic insulating layer formed of silicon oxide or silicon nitride may be further formed between the interlayer insulating layer 140 and the passivation layer 160 .
  • the passivation layer 160 includes a groove 160 b in a space between the pixel regions P adjacent to each other along the first direction.
  • the groove 160 b may have a rectangular shape.
  • the groove 160 b may be formed in the passivation layer 160 between the first and second pixel regions P 1 and P 2 , and the groove 160 b may not be formed in the passivation layer 160 between the first and third pixel regions P 1 and P 3 .
  • the switching TFT, the driving TFT, the storage capacitor, gate line, data line and power line are formed under the passivation layer 160 .
  • the first electrode 162 is formed on the passivation layer 160 .
  • the first electrode 162 in each pixel region P 1 is separated from each other and contacts the drain electrode of the driving TFT through the drain contact hole of the passivation layer 160 .
  • the bank 170 is formed on an edge of the first electrode 162 .
  • the bank 170 is positioned between adjacent pixel regions P.
  • the bank 170 has the transmitting hole 170 a exposing the first electrode 162 in each pixel region P and covers the edge of the first electrode 162 .
  • the transmitting hole 170 a may have a rectangular shape.
  • the bank 170 includes a first bank 172 and a second bank 174 on the first bank 172 .
  • a width of the first bank 172 is greater than that of the second bank 174 .
  • the first bank 172 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 172 is reduced.
  • the second bank 174 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 174 is increased such that an overflow of the emitting material into adjacent pixel region is prevented.
  • the first bank 172 may be formed of an inorganic material or an organic material each having a hydrophilic property
  • the second bank 174 may be formed of an organic material having a hydrophobic property.
  • the first bank 172 includes a first transmitting hole 172 a
  • the second bank 174 includes a second transmitting hole 174 a
  • the second transmitting hole 174 a has a size being larger than the first transmitting hole 172 a and overlaps the first transmitting hole 172 a such that the transmitting hole 170 a is defined by the first and second transmitting holes 172 a and 174 a .
  • a width of the second bank 174 is smaller than that of the first bank 172 such that a portion of the first bank 172 does not covered by the second bank 174 . Namely, the portion of the first bank 172 exposes and protrudes beyond the second bank 174 .
  • Each of the first and second banks 172 and 174 may be formed by a photolithography process using a mask. Alternatively, the first and second banks 172 and 174 of the same material may be formed by a single photolithography process. In this instance, each of the first and second banks 172 and 174 may be formed of an organic material having a hydrophobic property. In addition, the bank 170 may have a single-layered structure of an organic material having a hydrophobic property.
  • the emitting layer is formed on the first electrode 162 . Namely, the emitting layer contacts the first electrode 162 in the transmitting hole 170 a .
  • the second electrode is formed over an entire surface of the substrate 110 .
  • the emitting layer may include the hole auxiliary layer, the EML and the electron auxiliary layer sequentially stacked on the first electrode 162 .
  • the hole auxiliary layer may include at least one of the HIL and the HTL
  • the electron auxiliary layer may include at least one of the ETL and the EIL.
  • a part or a total of the emitting layer may be formed by a solution process.
  • the hole auxiliary layer and the EML may be formed by the solution process.
  • the passivation layer 160 includes the groove 160 b in a space between adjacent pixel regions P along the first direction, and the bank 170 has a height difference in the first and second directions due to the groove 160 b.
  • the bank 170 is formed according to a step difference in the groove 160 b of the passivation layer 160 such that the bank 170 between adjacent pixel regions P, e.g., the first and second pixel regions P 1 and P 2 , along the first direction has a first height h 1 from the first electrode 162 , and the bank 170 between adjacent pixel regions P, e.g., the first and third pixel regions P 1 and P 3 , along the second direction has a second height h 2 from the first electrode 162 .
  • the first height h 1 is smaller than the second height h 2 .
  • the bank 170 has substantially the same thickness in a space between the first and second pixel regions P 1 and P 2 and in a space between the first and third pixel regions P 1 and P 3 , while the bank 170 has a height difference. As shown in FIG. 5 , a portion of a bottom surface of the bank 170 between the first and second pixel regions P 1 and P 2 is disposed lower than a bottom surface of the first electrode 162 .
  • the influence in one pixel region P, i.e., the first pixel region P 1 , from adjacent pixel regions P, i.e., the second and third pixel regions P 2 and P 3 , along the first and second directions is different in the solution process of the emitting layer such that the emitting layer has the non-uniform thickness.
  • the influence of the solution in the adjacent pixel regions P along the first direction is relatively high, while the influence of the solution in the adjacent pixel regions P along the second direction is relatively low. Accordingly, there is a difference in an evaporation rate of the solvent in the solution at the first and second directions. Since the evaporation rate of the solvent in the second direction is faster than that in the first direction, the emitting layer having the uniform thickness is difficult to be provided.
  • the groove 160 b is formed in the passivation layer 160 such that an upper surface of the bank 170 between adjacent pixel regions P along the first direction has a height being smaller than an upper surface of the bank 170 between adjacent pixel regions P along the second direction.
  • the bank 170 has the first height h 1 in a space between adjacent pixel regions P along the first direction and the second height h 2 , which is greater than the first height h 1 , in a space between adjacent pixel regions P along the second direction.
  • a height of a bottom surface of the bank 170 i.e., a height of the upper surface of the passivation layer 160
  • a height of a bottom surface of the bank 170 i.e., a height of the upper surface of the passivation layer 160
  • the first height h 1 of the bank 170 in a space between adjacent pixel regions P along the first direction is smaller than the second height h 2 of the bank 170 in a space between adjacent pixel regions P along the second direction.
  • the bank 170 may have a height difference in the first and second direction and has a thickness difference without the groove 160 b .
  • a hydrophobic property of the bank is important fact to the thickness non-uniformity and/or the profile non-uniformity.
  • the bank when making the bank, which has the thickness difference, the bank has a difference of the hydrophobicity in a space between adjacent pixel regions along the first direction and along the second direction. For example, a thicker portion of the bank may have the hydrophobicity being smaller than a thinner portion of the bank.
  • the organic layer formed in the pixel region may have a thickness non-uniformity and/or a profile non-uniformity.
  • the bank 170 since the bank 170 has a height difference in the first and second direction and has substantially the same thickness with the groove 160 b , the above problem is prevented.
  • a contact position of the bank 170 and the passivation layer 160 is positioned at a first height from the substrate 110 .
  • a contact position of the bank 170 and the passivation layer 160 is positioned at a second height, which is greater than the first height, from the substrate 110 .
  • the first height h 1 may be substantially equal to the height of the bank in the related art electroluminescent display device
  • the second height h 2 may be greater than the height of the bank in the related art electroluminescent display device.
  • the first height h 1 may be smaller than the height of the bank in the related art electroluminescent display device, and the second height h 2 may be substantially equal to the height of the bank in the related art electroluminescent display device.
  • the solvent in the pixel region is less trapped at the first direction and the evaporation rate of the solvent at the first direction is increased such that the pixel region has substantially the same evaporation rates in the first and second directions. As a result, the emitting layer having improved thickness uniformity is provided.
  • a maximum thickness difference (e.g., deviation) in the HIL at the first direction is about 5.3 mm, and an average thickness difference in the HIL at the first direction is about 2.45 mm.
  • a maximum thickness difference (e.g., deviation) in the HIL at the second direction is about 12.2 mm, and an average thickness difference in the HIL at the second direction is about 5.77 mm.
  • a maximum thickness difference in the HIL at the first direction is about 8.4 mm, and an average thickness difference in the HIL at the first direction is about 3.40 mm.
  • a maximum thickness difference (e.g., deviation) in the HIL at the second direction is about 15.7 mm, and an average thickness difference in the HIL at the second direction is about 12.7 mm.
  • the thickness uniformity of the emitting layer is improved.
  • a depth of the groove 160 b is smaller than a thickness of the passivation layer 160 , but it is not limited thereto.
  • the depth of the groove 160 b may be equal to the thickness of the passivation layer 160 such that a surface of the interlayer insulating layer 140 may be exposed through the groove 160 b .
  • the first bank 172 may contact the interlayer insulating layer 140 .
  • the electroluminescent display device of the present invention since at least a part of the emitting layer is formed by the solution process, the production cost is reduced and the electroluminescent display device of large size and/or high resolution is provided.
  • the evaporation rate of the solvent at the first and second direction is uniformed such that the thickness uniformity of the emitting layer and the display quality are improved.
  • the emitting efficiency, the lifetime, the driving voltage and the color property of the electroluminescent display device are improved.
  • the shape of the groove 160 b in the passivation layer 160 may be changed according to a shape of the pixel region P, i.e., an effective emitting area.
  • FIG. 8 is a schematic plane view of an electroluminescent display device according to a second embodiment of the present invention.
  • each pixel region P may have a narrow circle shape in a plane view.
  • the pixel region P includes a minor axis along the first direction and a major axis along the second direction. Namely, the pixel region P includes semicircle-shaped ends and a linear center portion connecting the semicircle-shaped ends.
  • the bank 170 includes a transmitting hole 170 a corresponding to the shape of the pixel region P. Namely, the transmitting hole 170 a also has a narrow circle shape in a plane view.
  • the bank 170 includes a first bank 172 and a second bank 174 on the first bank 172 .
  • the first bank 172 includes a first transmitting hole 172 a
  • the second bank 174 includes a second transmitting hole 174 a .
  • the second transmitting hole 174 a has a size being larger than the first transmitting hole 172 a and overlaps the first transmitting hole 172 a such that the transmitting hole 170 a is defined by the first and second transmitting holes 172 a and 174 a .
  • a width of the second bank 174 is less than that of the first bank 172 such that a portion of the first bank 172 does not covered by the second bank 174 .
  • the portion of the first bank 172 exposes and protrudes beyond the second bank 174 .
  • the groove 160 b is formed in the passivation layer 160 between adjacent pixel regions P along the first direction.
  • a side surface of the groove 160 b facing the transmitting hole 170 a has substantially the same shape as a side surface of the transmitting hole 170 a .
  • the side surfaces of the groove 160 b and the transmitting hole 170 a have a constant distance.
  • the groove 160 b includes a protrusion at a corner (four corners) toward a corner of the transmitting hole 170 a . Accordingly, the groove 160 b and the transmitting hole 170 a have a constant distance at the corner as well as the side surface.
  • a shape of the groove 160 b is changed according to a shape of the pixel region P, i.e., a shape of the transmitting hole 170 a , to have a constant distance between the pixel region P and the groove 160 b .
  • the emitting layer having the thickness uniformity is provided.
  • FIG. 9 is a cross-sectional view of an electroluminescent display device according to a third embodiment of the present invention.
  • FIG. 9 shows a cross-sectional view taken along the line VII-VII of FIG. 4 .
  • the gate insulating layer 230 , the interlayer insulating layer 240 and the passivation layer 260 are sequentially formed on or over the substrate 210 , and the bank 270 including the first and second banks 272 and 274 is formed on the passivation layer 260 .
  • the passivation layer 260 includes a groove 260 b in a space between the pixel regions P (of FIG. 4 ) adjacent to each other along the first direction. A height in a portion of the bank 270 in the groove 260 b is reduced.
  • a center depth is greater than an edge depth in the second direction.
  • the depth of the groove 260 b may be gradually decreased from the center to the edge along the second direction.
  • an upper surface of the passivation layer 260 corresponding to the groove 260 b may have a convex shape toward the substrate 210 .
  • the groove 260 b may be formed by a photolithography process using a mask having a light transmitting gradual difference from a center to an edge.
  • FIG. 10 is a schematic cross-sectional view of an electroluminescent display device according to a fourth embodiment of the present invention.
  • FIG. 10 shows a cross-sectional view taken along the line VII-VII of FIG. 4 .
  • the gate insulating layer 330 , the interlayer insulating layer 340 and the passivation layer 360 are sequentially formed on or over the substrate 310 , and the bank 370 including the first and second banks 372 and 374 is formed on the passivation layer 360 .
  • the passivation layer 360 includes a groove 360 b in a space between the pixel regions P (of FIG. 4 ) adjacent to each other along the first direction. A height in a portion of the bank 370 in the groove 360 b is reduced.
  • a center depth is greater than an edge depth in the second direction.
  • the groove 360 b may have a first depth in the center and a second depth, which is smaller than the first depth, in both edges along the second direction.
  • the groove 360 b may have a dual step difference structure, e.g., a stair shape.
  • the groove 360 b may be formed by a photolithography process using two masks having a light transmitting difference or a half-ton mask.
  • the thickness difference of a W-shaped emitting layer may be efficiently uniformed.
  • FIG. 11 is a schematic cross-sectional view of an electroluminescent display device according to a fifth embodiment of the present invention.
  • FIG. 11 shows a cross-sectional view taken along the line VII-VII of FIG. 4 .
  • the gate insulating layer 430 , the interlayer insulating layer 440 and the passivation layer 460 are sequentially formed on or over the substrate 410 , and the bank 470 including the first and second banks 472 and 474 is formed on the passivation layer 460 .
  • the passivation layer 460 includes a groove 460 b in a space between the pixel regions P (of FIG. 4 ) adjacent to each other along the first direction. A height in a portion of the bank 470 in the groove 460 b is reduced.
  • a center depth is smaller than an edge depth in the second direction.
  • the depth of the groove 460 b may be gradually decreased from the edge to the center along the second direction.
  • an upper surface of the passivation layer 460 corresponding to the groove 460 b may have a convex shape toward the bank 470 .
  • a height of the bank 470 in an edge of the groove 460 b , which faces the transmitting hole 470 a is efficiently reduced such that an evaporation rate of the solvent in the emitting material solution is efficiently increased.
  • the thickness uniformity of the emitting layer is improved.
  • the groove 460 b may be formed by a photolithography process using a mask having a light transmitting gradual difference from a center to an edge.
  • FIG. 12 is a schematic cross-sectional view of an electroluminescent display device according to a sixth embodiment of the present invention.
  • FIG. 12 shows a cross-sectional view taken along the line V-V of FIG. 4 .
  • the gate insulating layer 530 , the interlayer insulating layer 540 and the passivation layer 560 are sequentially formed on or over the substrate 510 , and the bank 570 including the first and second banks 572 and 574 is formed on the passivation layer 560 .
  • the passivation layer 560 includes a groove 560 b in a space between the pixel regions P (of FIG. 4 ) adjacent to each other along the first direction.
  • a width of the groove 560 b is substantially equal to a distance between adjacent first electrodes 562 .
  • a height in a portion of the bank 570 in the groove 560 b is reduced.
  • the groove 560 b has a rectangular cross-section.
  • the groove 560 b may have a round cross-section similar to a shape of the groove 260 b (of FIG. 9 ) or a shape of the groove 460 b (of FIG. 11 ).
  • a height of the bank 570 between adjacent pixel regions along the first direction is smaller than that of the bank 570 between adjacent pixel regions along the second direction. Accordingly, even though a distance between adjacent pixel regions is different along the first and second directions, an evaporation rate of the solvent in the emitting material solution is uniformed such that the emitting layer having the thickness uniformity is provided.
  • FIGS. 13A to 13C are schematic cross-sectional view illustrating a fabricating process of a portion of an electroluminescent display device according to the sixth embodiment of the present invention.
  • the gate insulating layer 530 , the interlayer insulating layer 540 and the passivation layer 560 are formed on the substrate 510 .
  • a conductive material layer is formed on the passivation layer 560 .
  • the conductive material layer may include a transparent conductive material such as indium-tin-oxide (ITO) or indium-zinc-oxide (IZO).
  • ITO indium-tin-oxide
  • IZO indium-zinc-oxide
  • the semiconductor layer 122 is formed on the substrate 510 before forming the gate insulating layer 530
  • the gate electrode 132 is formed on the gate insulating layer 530 before forming the interlayer insulating layer 540 .
  • the source electrode 152 and the drain electrode 154 are formed on the interlayer insulating layer 540 before forming the passivation layer 560 .
  • a portion of the passivation layer 560 is patterned by an etching process using the first electrode 562 as an etching mask to form the groove 560 b .
  • the etching process may be an anisotropic dry etching process.
  • an end of the groove 560 b may exactly match with or correspond to an end of the first electrode 562 .
  • a width of the groove 560 b is substantially equal to a distance between adjacent first electrodes 562 .
  • the passivation layer 560 may be patterned to form the groove 560 b before forming the first electrode 562 .
  • the groove 560 b and the drain contact hole 160 a may be formed by a single mask process.
  • an end of the first electrode 562 may be positioned in the groove 560 b such that a height of the bank 570 in the groove 560 b may be increased.
  • the first electrode 562 is not positioned in the groove 560 b . Accordingly, the above problem is prevented.
  • an insulating material layer is formed on the first electrode 562 and the passivation layer 560 .
  • the insulating material layer is patterned to form the bank 570 .
  • the emitting layer 180 (of FIG. 3 ) and the second electrode 192 are formed on the first electrode 562 and optionally on the bank 570 .
  • FIG. 14 is a schematic plane view of an electroluminescent display device according to a seventh embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view taken along the line XV-XV of FIG. 14
  • FIG. 16 is a schematic cross-sectional view taken along the line XVI-XVI of FIG. 14 .
  • a plurality of pixel regions P are defined on the substrate 610 .
  • the pixel region P is an effective light-emitting area for transmitting the light, and a distance between adjacent pixel regions is different in a first direction and a second direction. Namely, the adjacent pixel regions P along the first direction has a first interval distance d 1 , and the adjacent pixel regions P along the second direction has a second interval distance d 2 being greater than the first interval distance d 1 .
  • the pixel region P may have a shape having a major axis and a minor axis, e.g., a rectangular shape. The minor axis is parallel to the first direction, and the major axis is parallel to the second direction.
  • first and second pixel regions P 1 and P 2 are spaced apart from each other by the first interval distance d 1
  • the first and third pixel regions P 1 and P 3 are spaced apart from each other by the second interval distance d 2 .
  • the gate insulating layer 630 , the interlayer insulating layer 640 and the passivation layer 660 are sequentially formed on or over the substrate 610 .
  • the gate insulating layer 630 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride
  • the interlayer insulating layer 640 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • the passivation layer 660 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • An inorganic insulating layer formed of silicon oxide or silicon nitride may be further formed between the interlayer insulating layer 140 and the passivation layer 660 .
  • the passivation layer 660 includes a protruding portion 661 in a space between the pixel regions P adjacent to each other along the second direction. Namely, the protruding portion 661 of the passivation layer 660 is positioned between the first and third pixel regions P 1 and P 3 .
  • an upper surface of the passivation layer 660 between the first and second pixel regions P 1 and P 2 adjacent along the first direction has a third height h 3 from the substrate 610
  • an upper surface of the passivation layer 660 , i.e., the protruding portion 661 , between the first and third pixel regions P 1 and P 3 adjacent along the second direction has a fourth height h 4 , which is greater than the third height h 3 , from the substrate 610 .
  • the protruding portion 661 is formed on the passivation layer 660 between the first and third pixel regions P 1 and P 3 , while there is no protruding portion 661 on the passivation layer 660 between the first and second pixel regions P 1 and P 2 such that the passivation layer 660 between the first and second pixel regions P 1 and P 2 provides a flat top surface.
  • the switching TFT, the driving TFT, the storage capacitor, gate line, data line and power line are formed under the passivation layer 660 .
  • the first electrode 662 is formed on the passivation layer 660 .
  • the first electrode 662 in each pixel region P 1 is separated from each other and contacts the drain electrode of the driving TFT through the drain contact hole of the passivation layer 660 .
  • the bank 670 is formed on an edge of the first electrode 662 .
  • the bank 670 is positioned between adjacent pixel regions P.
  • the bank 670 has the transmitting hole 670 a exposing the first electrode 662 in each pixel region P and covers the edge of the first electrode 662 .
  • the transmitting hole 670 a may have a rectangular shape.
  • the bank 670 includes a first bank 672 and a second bank 674 on the first bank 672 .
  • a width of the first bank 672 is greater than that of the second bank 674 .
  • the first bank 672 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 672 is reduced.
  • the second bank 674 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 674 is increased such that an overflow of the emitting material into adjacent pixel region is prevented.
  • the first bank 672 may be formed of an inorganic material or an organic material each having a hydrophilic property
  • the second bank 674 may be formed of an organic material having a hydrophobic property.
  • the first bank 672 includes a first transmitting hole 672 a
  • the second bank 674 includes a second transmitting hole 674 a
  • the second transmitting hole 674 a has a size being larger than the first transmitting hole 672 a and overlaps the first transmitting hole 672 a such that the transmitting hole 670 a is defined by the first and second transmitting holes 672 a and 674 a .
  • a width of the second bank 674 is smaller than that of the first bank 672 such that a portion of the first bank 672 does not covered by the second bank 674 . Namely, the portion of the first bank 672 exposes and protrudes beyond the second bank 674 .
  • Each of the first and second banks 672 and 674 may be formed by a photolithography process using a mask. Alternatively, the first and second banks 672 and 674 of the same material may be formed by a single photolithography process. In this instance, each of the first and second banks 672 and 674 may be formed of an organic material having a hydrophobic property. In addition, the bank 670 may have a single-layered structure of an organic material having a hydrophobic property.
  • the emitting layer is formed on the first electrode 662 . Namely, the emitting layer contacts the first electrode 662 in the transmitting hole 670 a .
  • the second electrode is formed over an entire surface of the substrate 610 .
  • the emitting layer may include the hole auxiliary layer, the EML and the electron auxiliary layer sequentially stacked on the first electrode 662 .
  • the hole auxiliary layer may include at least one of the HIL and the HTL
  • the electron auxiliary layer may include at least one of the ETL and the EIL.
  • a part or a total of the emitting layer may be formed by a solution process.
  • the hole auxiliary layer and the EML may be formed by the solution process.
  • the passivation layer 660 includes the protruding portion 661 in a space between adjacent pixel regions P along the second direction, and the bank 670 has a height difference in the first and second directions due to the protruding portion 661 .
  • the bank 670 is formed according to a step difference in the protruding portion 661 of the passivation layer 660 such that the bank 670 between adjacent pixel regions P, e.g., the first and second pixel regions P 1 and P 2 , along the first direction has a fifth height h 5 from the substrate 610 , and the bank 670 between adjacent pixel regions P, e.g., the first and third pixel regions P 1 and P 3 , along the second direction has a sixth height h 6 from the substrate 610 .
  • the fifth height h 5 is smaller than the sixth height h 6 .
  • the bank 670 has substantially the same thickness in a space between the first and second pixel regions P 1 and P 2 and in a space between the first and third pixel regions P 1 and P 3 , while the bank 670 has a height difference.
  • the influence in one pixel region P, i.e., the first pixel region P 1 , from adjacent pixel regions P, i.e., the second and third pixel regions P 2 and P 3 , along the first and second directions is different in the solution process of the emitting layer such that the emitting layer has the non-uniform thickness.
  • the influence of the solution in the adjacent pixel regions P along the first direction is relatively high, while the influence of the solution in the adjacent pixel regions P along the second direction is relatively low. Accordingly, there is a difference in an evaporation rate of the solvent in the solution at the first and second directions. Since the evaporation rate of the solvent in the second direction is faster than that in the first direction, the emitting layer having the uniform thickness is difficult to be provided.
  • the protruding portion 661 is formed in the passivation layer 660 such that an upper surface of the bank 670 between adjacent pixel regions P along the first direction has a height being smaller than an upper surface of the bank 670 between adjacent pixel regions P along the second direction.
  • the bank 670 has the fifth height h 5 in a space between adjacent pixel regions P along the first direction and the sixth height h 6 , which is greater than the fifth height h 5 , in a space between adjacent pixel regions P along the second direction.
  • a third height h 3 of a bottom surface of the bank 670 i.e., a height of the upper surface of the passivation layer 660
  • a fourth height h 4 of a bottom surface of the bank 670 i.e., a height of the upper surface of the passivation layer 660
  • the fifth height h 5 of the bank 670 in a space between adjacent pixel regions P along the first direction is smaller than the sixth height h 6 of the bank 670 in a space between adjacent pixel regions P along the second direction.
  • the electroluminescent display device of the present invention since at least a part of the emitting layer is formed by the solution process, the production cost is reduced and the electroluminescent display device of large size and/or high resolution is provided.
  • the evaporation rate of the solvent at the first and second direction is uniformed such that the thickness uniformity of the emitting layer and the display quality are improved.
  • the emitting efficiency, the lifetime, the driving voltage and the color property of the electroluminescent display device are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An electroluminescent display device and method of fabricating the same are discussed. The electroluminescent display device includes a substrate including first to third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively; an insulating layer over the substrate and including a groove between the first and second pixel regions; a first electrode on the insulating layer and in each of the first to third pixel regions; a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region; an emitting layer on the first electrode; and a second electrode on the emitting layer, wherein the bank disposed between the first and second pixel regions has a first height from the first electrode and the bank disposed between the first and third pixel regions has a second height from the first electrode, and the first height is smaller than the second height.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the priority benefit of Korean Patent Application No. 10-2016-0150543 filed in the Republic of Korea on Nov. 11, 2016 and Korean Patent Application No. 10-2017-0125401 filed in the Republic of Korea on Sep. 27, 2017, all these applications are hereby incorporated by reference into the present application.
  • BACKGROUND Field
  • The present disclosure relates to a display device, and more particularly, to an electroluminescent display device being capable of providing a uniform brightness and a high display quality and a method of fabricating the same.
  • Discussion of the Related Art
  • Recently, a flat panel display device having excellent characteristics of a thin profile, a light weight and low power consumption has been developed and used.
  • Among the flat panel display device, an electroluminescent display device may be formed on a flexible substrate such as a plastic substrate. In addition, since the electroluminescent display device is a self-emission type, the electroluminescent display device has excellent characteristics in contrast ratio, a viewing angle, a thin profile, a response time, a thermal stability, and so on. The electroluminescent display device may be referred to as a light emitting display device. The electroluminescent display device may include an anode as a hole injection electrode, a cathode as an electron injection electrode and an emitting layer between the anode and the cathode. The hole from the anode and the electron from the cathode are combined in the emitting layer to form an exciton, and the light is emitted from the emitting layer by a radiative recombination of the exciton.
  • FIG. 1 is a schematic view showing an energy band diagram of the related art electroluminescent display device.
  • As shown in FIG. 1, the electroluminescent display device includes an anode 1, a cathode 7 and an emitting material layer (EML) 4 between the anode 1 and the cathode 7. For the hole injection from the anode into the EML 4 and the electron injection from the cathode 7 into the EML 4, the electroluminescent display device may further include a hole transporting layer (HTL) 3 between the anode 1 and the EML 4 and an electron transporting layer (ETL) 5 between the cathode 7 and the EML 4. In addition, to further efficiently injecting the hole and the electron into the EML 4, the electroluminescent display device may further include a hole injection layer (HIL) 2 between the anode 1 and the HTL 3 and an electron injection layer (EIL) 6 between the cathode and the ETL 5.
  • In the electroluminescent display device, the hole “h+” provided from the anode 1 into the EML 4 through the HIL 2 and the HTL 3 and the electron “e-” provided from the cathode 7 into the EML 4 through the EIL 6 and the ETL 5 are combined to form an exciton, and the light having a color in correspondence to a band gap of the EML 4 is provided from the exciton.
  • For example, the EML 4, the HIL 2, the HTL 3, the ETL 5 and the EIL 6 may be formed by a vacuum thermal evaporation process using a fine metal mask.
  • However, the production cost of the electroluminescent display device is increased by the vacuum thermal evaporation process, and the application of the vacuum thermal evaporation process for the large size and high resolution electroluminescent display device is difficult because of a deviation problem of the mask, a deformation problem of the mask, a shadow effect in the mask, and so on.
  • To resolve the problems, the solution process for the emitting layer is introduced. In the solution process, a nozzle of an injection apparatus is scanned along a direction to drop an emitting material in a pixel region surrounding by a bank. The emitting material is dried to form the emitting layer.
  • However, the emitting layer formed by the solution process may have a non-uniform thickness. Namely, in a cross-section, the emitting layer may have a “U” shape or a “W” shape.
  • The electroluminescent display device, which includes the emitting layer having a non-uniform thickness, provides a non-uniform emission. Accordingly, in the electroluminescent display device, the brightness becomes non-uniform, and the display quality is degraded.
  • SUMMARY
  • Accordingly, the present invention is directed to an electroluminescent display device and a method of fabricating the same that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide an electroluminescent device that has a uniform brightness and a high display quality.
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, an electroluminescent display device includes a substrate including first to third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively; an insulating layer over the substrate and including a groove between the first and second pixel regions; a first electrode on the insulating layer and in each of the first to third pixel regions; a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region; an emitting layer on the first electrode; and a second electrode on the emitting layer, wherein the bank disposed between the first and second pixel regions has a first height from the first electrode and the bank disposed between the first and third pixel regions has a second height from the first electrode, and the first height is smaller than the second height.
  • In another aspect, an electroluminescent display device includes a substrate including first to third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively; a first electrode in each of the first to third pixel regions; a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region; an emitting layer on the first electrode; and a second electrode on the emitting layer, wherein a portion of a bottom surface of the bank between the first pixel region and the second pixel region is disposed lower than a portion of a bottom surface of the bank between the first pixel region and the third pixel region.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
  • FIG. 1 is a schematic view showing an energy band diagram of the related art electroluminescent display device.
  • FIG. 2 is a schematic circuit diagram of an electroluminescent display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an electroluminescent display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic plane view of an electroluminescent display device according to a first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view taken along the line V-V of FIG. 4.
  • FIG. 6 is a schematic cross-sectional view taken along the line VI-VI of FIG. 4.
  • FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. 4.
  • FIG. 8 is a schematic plane view of an electroluminescent display device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of an electroluminescent display device according to a third embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of an electroluminescent display device according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an electroluminescent display device according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of an electroluminescent display device according to a sixth embodiment of the present invention.
  • FIGS. 13A to 13C are schematic cross-sectional view illustrating a fabricating process of a portion of an electroluminescent display device according to the sixth embodiment of the present invention.
  • FIG. 14 is a schematic plane view of an electroluminescent display device according to a seventh embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view taken along the line XV-XV of FIG. 14.
  • FIG. 16 is a schematic cross-sectional view taken along the line XVI-XVI of FIG. 14.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
  • FIG. 2 is a schematic circuit diagram of an electroluminescent display device according to the present invention. All components of the electroluminescent display device according to all embodiments of the present invention are operatively coupled and configured.
  • As shown in FIG. 2, in the electroluminescent display device, a gate line GL and a data line DL are formed, and a pixel region P is defined by the gate and data lines GL and DL. In the pixel region P, a switching thin film transistor (TFT) Ts, a driving TFT Td, a storage capacitor Cst and a light emitting diode D are formed.
  • A gate electrode of the switching TFT Ts is connected to the gate line GL, and a source electrode of the switching TFT Ts is connected to the data line DL. A gate electrode of the driving TFT Td is connected to a drain electrode of the switching TFT Ts, and a source electrode of the driving TFT Td is connected to a high voltage supply VDD. An anode of the light emitting diode D is connected to a drain electrode of the driving TFT Td, and a cathode of the light emitting diode D is connected to a low voltage supply VSS. The storage capacitor Cst is connected to a gate electrode and the drain electrode of the driving TFT Td.
  • In the electroluminescent display device, when the switching TFT Ts is turned on by a gate signal applied through the gate line GL, a data signal from the data line DL is applied to a gate electrode of the driving TFT Td and an electrode of the storage capacitor Cst through the switching TFT Ts.
  • When the driving TFT Td is turned on by the data signal, an electric current is supplied to the light emitting diode D from the high voltage supply VDD through the driving TFT Td. As a result, the light emitting diode D emits light. Since the current in the light emitting diode D is proportional to the data signal and the light intensity emitted from the light emitting diode D is proportional to the current in the light emitting diode D, the pixel region P provide a gray scale according to the data signal.
  • The storage capacitor Cst serves to maintain the voltage of the gate electrode of the driving TFT Td for one frame. Accordingly, the electroluminescent display device displays images.
  • FIG. 3 is a schematic cross-sectional view of an electroluminescent display device according to the present invention.
  • As shown in FIG. 3, a semiconductor layer 122 is formed on an insulating substrate 110. The substrate 110 may be a glass substrate or a flexible substrate of a polymer. For example, the substrate 110 may be a polyimide substrate.
  • The semiconductor layer 122 may be formed of an oxide semiconductor material or a poly-silicon. When the semiconductor layer 122 includes the oxide semiconductor material, a light-shielding pattern may be formed under the semiconductor layer 122. The light radiated to the semiconductor layer 122 is shielded or blocked by the light-shielding pattern such that thermal degradation of the semiconductor layer 122 can be prevented. On the other hand, when the semiconductor layer 122 includes polycrystalline silicon, a buffer layer may be formed between the substrate 110 and the semiconductor layer 122. In addition, impurities may be doped into both sides of the semiconductor layer 122 of polycrystalline silicon.
  • A gate insulating layer 130 is formed on the semiconductor layer 122. The gate insulating layer 130 may be formed of an inorganic insulating material such as silicon oxide or silicon nitride.
  • A gate electrode 132, which is formed of a conductive material, e.g., metal, is formed on the gate insulating layer 130 to correspond to a center of the semiconductor layer 122. In addition, the gate line and a first capacitor electrode may be formed on the gate insulating layer 130. The gate line extends along a direction, and the first capacitor electrode is connected to the gate electrode 132.
  • In FIG. 3, the gate insulating layer 130 is formed on the entire surface of the substrate 110. Alternatively, the gate insulating layer 130 may be patterned to have the same shape as the gate electrode 132.
  • An interlayer insulating layer 140, which is formed of an insulating material, is formed on an entire surface of the substrate 110 including the gate electrode 132. The interlayer insulating layer 140 may be formed of an inorganic insulating material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl.
  • The interlayer insulating layer 140 includes first and second contact holes 140 a and 140 b exposing both sides of the semiconductor layer 122. The first and second contact holes 140 a and 140 b are positioned at both sides of the gate electrode 132 to be spaced apart from the gate electrode 132.
  • In FIG. 3, the first and second contact holes 140 a and 140 b are formed in the gate insulating layer 130 and the interlayer insulating layer 140. Alternatively, when the gate insulating layer 130 is patterned to have the same shape as the gate electrode 132, the first and second contact holes 140 a and 140 b are formed in the interlayer insulating layer 140.
  • A source electrode 152 and a drain electrode 154, which are formed of a conductive material, e.g., metal, are formed on the interlayer insulating layer 140. In addition, the data line, a power line and a second capacitor electrode may be formed on the interlayer insulating layer 140. The data line extends along a direction, which may be perpendicular to the direction of the gate line. The gate and data lines cross each other to define a pixel region. The power line providing the high voltage may be parallel to and spaced apart from the data line. The second capacitor electrode is connected to the drain electrode 154 and overlaps the first capacitor electrode to form the storage capacitor with the interlayer insulating layer 140 as a dielectric layer.
  • The source electrode 152 and the drain electrode 154 are spaced apart from each other with respect to the gate electrode 132 and respectively contact both sides of the semiconductor layer 122 through the first and second contact holes 140 a and 140 b.
  • The semiconductor layer 122, the gate electrode 132, the source electrode 152 and the drain electrode 154 constitute a TFT.
  • The gate electrode 132, the source electrode 152 and the drain electrode 154 are positioned over the semiconductor layer 122. Namely, the TFT has a coplanar structure.
  • Alternatively, in the TFT, the gate electrode may be positioned under the semiconductor layer, and the source and drain electrodes may be positioned over the semiconductor layer such that the TFT may have an inverted staggered structure. In this instance, the semiconductor layer may include amorphous silicon.
  • The TFT serves as the driving TFT, and the switching TFT, which may have substantially same structure as the driving TFT, is further formed on the substrate 110. The gate electrode 132 of the driving TFT is connected to the drain electrode of the switching TFT, and the source electrode 152 of the driving TFT is connected to the power line. The gate electrode and the source electrode of the switching TFT are connected to the gate line and the data line, respectively.
  • A passivation layer 160 of an insulating material is formed over an entire surface of the substrate 110 to cover the source and drain electrodes 152 and 154. The passivation layer 160 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl. An inorganic insulating layer, which is formed of an inorganic material such as silicon oxide or silicon nitride, may be formed under the passivation layer 160.
  • The passivation layer 160 includes a drain contact hole 160 a exposing the drain electrode 154. The drain contact hole 160 a is positioned directly over the second contact hole 140 b. Alternatively, the drain contact hole 160 a may be spaced apart from the second contact hole 140 b.
  • A first electrode 162, which is connected to the drain electrode 154 through the drain contact hole 160 a, is separately formed on the passivation layer 160 in each pixel region. The first electrode 162 may be an anode and may be formed of a conductive material having a relatively high work function. For example, the first electrode 162 may be formed of a transparent conductive material such as indium-tin-oxide (ITO) or indium-zinc-oxide (IZO).
  • A bank 170, which covers edges of the first electrode 162, is formed on the passivation layer 160. The bank 170 is formed of an insulating material. The bank 170 is positioned between adjacent pixel regions and includes a transmitting hole 170 a exposing a center of the first electrode 162 in the pixel region.
  • The bank 170 includes a first bank 172 and a second bank 174 on the first bank 172. A width of the first bank 172 is greater than that of the second bank 174. The first bank 172 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 172 is reduced. The second bank 174 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 174 is increased such that an overflow of the emitting material into adjacent pixel region is prevented. For example, the first bank 172 may be formed of an inorganic material or an organic material each having a hydrophilic property, and the second bank 174 may be formed of an organic material having a hydrophobic property.
  • Alternatively, the first bank 172 and the second bank 174 may be formed of the same material. In this instance, each of the first and second banks 172 and 174 may be formed of an organic material having a hydrophobic property. In addition, the bank 170 may have a single-layered structure of an organic material having a hydrophobic property.
  • An emitting layer 180 is formed on the first electrode 162. Namely, the emitting layer 180 contacts the first electrode 162 in the transmitting hole 170 a. The emitting layer 180 may be formed by a solution process. For example, the emitting layer 180 may be formed by a printing process or a coating process using an injection apparatus having a plurality of nozzles, but it is not limited thereto. An inkjet printing process may be used.
  • Further, the emitting layer 180 may include a hole auxiliary layer, an EML and an electron auxiliary layer sequentially stacked on the first electrode 162. For example, the hole auxiliary layer may include at least one of the HIL and the HTL, and the electron auxiliary layer may include at least one of the ETL and the EIL.
  • In this instance, the hole auxiliary layer and the EML may be formed in the transmitting hole 170 a, and the electron auxiliary layer may be formed over an entire surface of the substrate 110. The hole auxiliary layer and the EML may be formed by a solution process, and the electron auxiliary layer may be formed by a deposition process.
  • A second electrode 192 is formed over the substrate 110 including the emitting layer 180. The second electrode 192 is positioned at an entire surface of the display area. The second electrode 192 may be a cathode and may be formed of a conductive material having a relatively low work function. For example, the second electrode 192 may be formed of aluminum (Al), magnesium (Mg), silver (Ag) or their alloy.
  • The first electrode 162, the emitting layer 180 and the second electrode 192 constitute the light emitting diode D.
  • An encapsulation film may be formed on the light emitting diode D to prevent penetration of moisture into the light emitting diode D. For example, the encapsulation film may include a first inorganic layer, an organic layer and a second inorganic layer substantially stacked, but it is not limited thereto.
  • The light from the emitting layer 180 is provided at a surface of the substrate 110 through the first electrode 162. Namely, the electroluminescent display device may be a bottom emission type.
  • Alternatively, when the electroluminescent display device of the present invention is a top-emission type, the first electrode 162 may further include a reflection electrode or a reflection layer. For example, the reflection electrode or the reflection layer may be formed of aluminum-palladium-copper (APC) alloy, and the first electrode 162 may have a triple-layered structure of ITO/APC alloy/ITO. The second electrode 192 may have a relatively small thickness for light-transmitting. For example, the second electrode 192 may have the light transmittance of about 45 to 50%.
  • In the electroluminescent display device of the present invention, the bank 170 may have different heights from the first electrode 162 or the substrate 110 in a major axis and a minor axis of the pixel region to overcome the thickness non-uniformity problem in the emitting layer.
  • FIG. 4 is a schematic plane view of an electroluminescent display device according to a first embodiment of the present invention, FIG. 5 is a schematic cross-sectional view taken along the line V-V of FIG. 4. FIG. 6 is a schematic cross-sectional view taken along the line VI-VI of FIG. 4, and FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. 4. For the sake of explanation, some elements are omitted.
  • Referring to FIGS. 4 to 7, a plurality of pixel regions P are defined on the substrate 110.
  • The pixel region P is an effective light-emitting area for transmitting the light, and a distance between adjacent pixel regions is different in a first direction and a second direction. Namely, the adjacent pixel regions P along the first direction has a first interval distance d1, and the adjacent pixel regions P along the second direction has a second interval distance d2 being greater than the first interval distance d1. The pixel region P may have a shape having a major axis and a minor axis, e.g., a rectangular shape. The minor axis is parallel to the first direction, and the major axis is parallel to the second direction.
  • Among a first pixel region P1, a second pixel region P2, which is adjacent to the first pixel region P1 along the first direction, and a third pixel region P3, which is adjacent to the first pixel region P1 along the second direction, the first and second pixel regions P1 and P2 are spaced apart from each other by the first interval distance d1, and the first and third pixel regions P1 and P3 are spaced apart from each other by the second interval distance d2.
  • The gate insulating layer 130, the interlayer insulating layer 140 and the passivation layer 160 are sequentially formed on or over the substrate 110.
  • The gate insulating layer 130 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, and the interlayer insulating layer 140 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl. The passivation layer 160 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl. An inorganic insulating layer formed of silicon oxide or silicon nitride may be further formed between the interlayer insulating layer 140 and the passivation layer 160.
  • The passivation layer 160 includes a groove 160 b in a space between the pixel regions P adjacent to each other along the first direction. The groove 160 b may have a rectangular shape. For example, the groove 160 b may be formed in the passivation layer 160 between the first and second pixel regions P1 and P2, and the groove 160 b may not be formed in the passivation layer 160 between the first and third pixel regions P1 and P3.
  • As explained with FIG. 3, the switching TFT, the driving TFT, the storage capacitor, gate line, data line and power line are formed under the passivation layer 160.
  • The first electrode 162 is formed on the passivation layer 160. The first electrode 162 in each pixel region P1 is separated from each other and contacts the drain electrode of the driving TFT through the drain contact hole of the passivation layer 160.
  • The bank 170 is formed on an edge of the first electrode 162. The bank 170 is positioned between adjacent pixel regions P. The bank 170 has the transmitting hole 170 a exposing the first electrode 162 in each pixel region P and covers the edge of the first electrode 162. The transmitting hole 170 a may have a rectangular shape.
  • The bank 170 includes a first bank 172 and a second bank 174 on the first bank 172. A width of the first bank 172 is greater than that of the second bank 174. The first bank 172 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 172 is reduced. The second bank 174 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 174 is increased such that an overflow of the emitting material into adjacent pixel region is prevented. For example, the first bank 172 may be formed of an inorganic material or an organic material each having a hydrophilic property, and the second bank 174 may be formed of an organic material having a hydrophobic property.
  • The first bank 172 includes a first transmitting hole 172 a, and the second bank 174 includes a second transmitting hole 174 a. The second transmitting hole 174 a has a size being larger than the first transmitting hole 172 a and overlaps the first transmitting hole 172 a such that the transmitting hole 170 a is defined by the first and second transmitting holes 172 a and 174 a. As a result, a width of the second bank 174 is smaller than that of the first bank 172 such that a portion of the first bank 172 does not covered by the second bank 174. Namely, the portion of the first bank 172 exposes and protrudes beyond the second bank 174.
  • Each of the first and second banks 172 and 174 may be formed by a photolithography process using a mask. Alternatively, the first and second banks 172 and 174 of the same material may be formed by a single photolithography process. In this instance, each of the first and second banks 172 and 174 may be formed of an organic material having a hydrophobic property. In addition, the bank 170 may have a single-layered structure of an organic material having a hydrophobic property.
  • The emitting layer is formed on the first electrode 162. Namely, the emitting layer contacts the first electrode 162 in the transmitting hole 170 a. The second electrode is formed over an entire surface of the substrate 110. The emitting layer may include the hole auxiliary layer, the EML and the electron auxiliary layer sequentially stacked on the first electrode 162. For example, the hole auxiliary layer may include at least one of the HIL and the HTL, and the electron auxiliary layer may include at least one of the ETL and the EIL. A part or a total of the emitting layer may be formed by a solution process. For example, the hole auxiliary layer and the EML may be formed by the solution process.
  • As mentioned above, the passivation layer 160 includes the groove 160 b in a space between adjacent pixel regions P along the first direction, and the bank 170 has a height difference in the first and second directions due to the groove 160 b.
  • In more detail, the bank 170 is formed according to a step difference in the groove 160 b of the passivation layer 160 such that the bank 170 between adjacent pixel regions P, e.g., the first and second pixel regions P1 and P2, along the first direction has a first height h1 from the first electrode 162, and the bank 170 between adjacent pixel regions P, e.g., the first and third pixel regions P1 and P3, along the second direction has a second height h2 from the first electrode 162. The first height h1 is smaller than the second height h2. Namely, the bank 170 has substantially the same thickness in a space between the first and second pixel regions P1 and P2 and in a space between the first and third pixel regions P1 and P3, while the bank 170 has a height difference. As shown in FIG. 5, a portion of a bottom surface of the bank 170 between the first and second pixel regions P1 and P2 is disposed lower than a bottom surface of the first electrode 162.
  • When the bank 170 has the same height in the first and second directions with different interval distances d1 and d2 between adjacent pixel regions along the first and second directions, the influence in one pixel region P, i.e., the first pixel region P1, from adjacent pixel regions P, i.e., the second and third pixel regions P2 and P3, along the first and second directions is different in the solution process of the emitting layer such that the emitting layer has the non-uniform thickness.
  • Namely, with the bank 170 having the same height in the first and second directions, in the drying process of the solution of the emitting layer, the influence of the solution in the adjacent pixel regions P along the first direction is relatively high, while the influence of the solution in the adjacent pixel regions P along the second direction is relatively low. Accordingly, there is a difference in an evaporation rate of the solvent in the solution at the first and second directions. Since the evaporation rate of the solvent in the second direction is faster than that in the first direction, the emitting layer having the uniform thickness is difficult to be provided.
  • In the present invention, the groove 160 b is formed in the passivation layer 160 such that an upper surface of the bank 170 between adjacent pixel regions P along the first direction has a height being smaller than an upper surface of the bank 170 between adjacent pixel regions P along the second direction. Namely, the bank 170 has the first height h1 in a space between adjacent pixel regions P along the first direction and the second height h2, which is greater than the first height h1, in a space between adjacent pixel regions P along the second direction.
  • Namely, although the bank 170 between adjacent pixel regions P along the first direction and the bank 170 between adjacent pixel regions P along the second direction have the same thickness, a height of a bottom surface of the bank 170, i.e., a height of the upper surface of the passivation layer 160, between adjacent pixel regions P along the first direction is smaller than a height of a bottom surface of the bank 170, i.e., a height of the upper surface of the passivation layer 160, between adjacent pixel regions P along the second direction by the groove 160 b. Accordingly, the first height h1 of the bank 170 in a space between adjacent pixel regions P along the first direction is smaller than the second height h2 of the bank 170 in a space between adjacent pixel regions P along the second direction.
  • On the other hand, the bank 170 may have a height difference in the first and second direction and has a thickness difference without the groove 160 b. In this instance, there may be a problem of a thickness non-uniformity and/or a profile non-uniformity in an organic layer. In a solution process of the organic layer, a hydrophobic property of the bank is important fact to the thickness non-uniformity and/or the profile non-uniformity. However, when making the bank, which has the thickness difference, the bank has a difference of the hydrophobicity in a space between adjacent pixel regions along the first direction and along the second direction. For example, a thicker portion of the bank may have the hydrophobicity being smaller than a thinner portion of the bank. As a result, the organic layer formed in the pixel region may have a thickness non-uniformity and/or a profile non-uniformity.
  • However, in the present invention, since the bank 170 has a height difference in the first and second direction and has substantially the same thickness with the groove 160 b, the above problem is prevented.
  • In a space between adjacent pixel regions P along the first direction, a contact position of the bank 170 and the passivation layer 160 is positioned at a first height from the substrate 110. In a space between adjacent pixel regions P along the second direction, a contact position of the bank 170 and the passivation layer 160 is positioned at a second height, which is greater than the first height, from the substrate 110.
  • In this instance, the first height h1 may be substantially equal to the height of the bank in the related art electroluminescent display device, and the second height h2 may be greater than the height of the bank in the related art electroluminescent display device. The solvent in the pixel region is efficiently trapped at the second direction and the evaporation rate of the solvent at the second direction is decreased such that the pixel region has substantially the same evaporation rates in the first and second directions. As a result, the emitting layer having improved thickness uniformity is provided.
  • Alternatively, the first height h1 may be smaller than the height of the bank in the related art electroluminescent display device, and the second height h2 may be substantially equal to the height of the bank in the related art electroluminescent display device. The solvent in the pixel region is less trapped at the first direction and the evaporation rate of the solvent at the first direction is increased such that the pixel region has substantially the same evaporation rates in the first and second directions. As a result, the emitting layer having improved thickness uniformity is provided.
  • When the HIL is formed by the solution process on the bank structure of the present invention, in one pixel region P, a maximum thickness difference (e.g., deviation) in the HIL at the first direction is about 5.3 mm, and an average thickness difference in the HIL at the first direction is about 2.45 mm. A maximum thickness difference (e.g., deviation) in the HIL at the second direction is about 12.2 mm, and an average thickness difference in the HIL at the second direction is about 5.77 mm.
  • On the other hand, when the HIL is formed by the solution process on the bank structure of the related art electroluminescent display device, in one pixel region P, a maximum thickness difference in the HIL at the first direction is about 8.4 mm, and an average thickness difference in the HIL at the first direction is about 3.40 mm. A maximum thickness difference (e.g., deviation) in the HIL at the second direction is about 15.7 mm, and an average thickness difference in the HIL at the second direction is about 12.7 mm.
  • Namely, in the electroluminescent display device according to the present invention, the thickness uniformity of the emitting layer is improved.
  • In FIGS. 5 and 7, a depth of the groove 160 b is smaller than a thickness of the passivation layer 160, but it is not limited thereto. The depth of the groove 160 b may be equal to the thickness of the passivation layer 160 such that a surface of the interlayer insulating layer 140 may be exposed through the groove 160 b. In this instance, the first bank 172 may contact the interlayer insulating layer 140.
  • In the electroluminescent display device of the present invention, since at least a part of the emitting layer is formed by the solution process, the production cost is reduced and the electroluminescent display device of large size and/or high resolution is provided.
  • In addition, with the bank having a difference in the height, the evaporation rate of the solvent at the first and second direction is uniformed such that the thickness uniformity of the emitting layer and the display quality are improved.
  • Moreover, the emitting efficiency, the lifetime, the driving voltage and the color property of the electroluminescent display device are improved.
  • The shape of the groove 160 b in the passivation layer 160 may be changed according to a shape of the pixel region P, i.e., an effective emitting area.
  • FIG. 8 is a schematic plane view of an electroluminescent display device according to a second embodiment of the present invention.
  • As shown in FIG. 8, a plurality of pixel regions P are defined on a substrate 110 (of FIG. 5), and each pixel region P may have a narrow circle shape in a plane view. The pixel region P includes a minor axis along the first direction and a major axis along the second direction. Namely, the pixel region P includes semicircle-shaped ends and a linear center portion connecting the semicircle-shaped ends.
  • The bank 170 includes a transmitting hole 170 a corresponding to the shape of the pixel region P. Namely, the transmitting hole 170 a also has a narrow circle shape in a plane view.
  • The bank 170 includes a first bank 172 and a second bank 174 on the first bank 172. The first bank 172 includes a first transmitting hole 172 a, and the second bank 174 includes a second transmitting hole 174 a. The second transmitting hole 174 a has a size being larger than the first transmitting hole 172 a and overlaps the first transmitting hole 172 a such that the transmitting hole 170 a is defined by the first and second transmitting holes 172 a and 174 a. As a result, a width of the second bank 174 is less than that of the first bank 172 such that a portion of the first bank 172 does not covered by the second bank 174. Namely, the portion of the first bank 172 exposes and protrudes beyond the second bank 174.
  • The groove 160 b is formed in the passivation layer 160 between adjacent pixel regions P along the first direction. A side surface of the groove 160 b facing the transmitting hole 170 a has substantially the same shape as a side surface of the transmitting hole 170 a. As a result, the side surfaces of the groove 160 b and the transmitting hole 170 a have a constant distance. On the other hand, the groove 160 b includes a protrusion at a corner (four corners) toward a corner of the transmitting hole 170 a. Accordingly, the groove 160 b and the transmitting hole 170 a have a constant distance at the corner as well as the side surface.
  • In the embodiment(s) of the present invention, a shape of the groove 160 b is changed according to a shape of the pixel region P, i.e., a shape of the transmitting hole 170 a, to have a constant distance between the pixel region P and the groove 160 b. As a result, the emitting layer having the thickness uniformity is provided.
  • FIG. 9 is a cross-sectional view of an electroluminescent display device according to a third embodiment of the present invention. FIG. 9 shows a cross-sectional view taken along the line VII-VII of FIG. 4.
  • As shown in FIG. 9, the gate insulating layer 230, the interlayer insulating layer 240 and the passivation layer 260 are sequentially formed on or over the substrate 210, and the bank 270 including the first and second banks 272 and 274 is formed on the passivation layer 260.
  • The passivation layer 260 includes a groove 260 b in a space between the pixel regions P (of FIG. 4) adjacent to each other along the first direction. A height in a portion of the bank 270 in the groove 260 b is reduced.
  • In the groove 260 b, a center depth is greater than an edge depth in the second direction. The depth of the groove 260 b may be gradually decreased from the center to the edge along the second direction. Namely, an upper surface of the passivation layer 260 corresponding to the groove 260 b may have a convex shape toward the substrate 210.
  • For example, the groove 260 b may be formed by a photolithography process using a mask having a light transmitting gradual difference from a center to an edge.
  • FIG. 10 is a schematic cross-sectional view of an electroluminescent display device according to a fourth embodiment of the present invention. FIG. 10 shows a cross-sectional view taken along the line VII-VII of FIG. 4.
  • As shown in FIG. 10, the gate insulating layer 330, the interlayer insulating layer 340 and the passivation layer 360 are sequentially formed on or over the substrate 310, and the bank 370 including the first and second banks 372 and 374 is formed on the passivation layer 360.
  • The passivation layer 360 includes a groove 360 b in a space between the pixel regions P (of FIG. 4) adjacent to each other along the first direction. A height in a portion of the bank 370 in the groove 360 b is reduced.
  • In the groove 360 b, a center depth is greater than an edge depth in the second direction. The groove 360 b may have a first depth in the center and a second depth, which is smaller than the first depth, in both edges along the second direction. Namely, the groove 360 b may have a dual step difference structure, e.g., a stair shape.
  • For example, the groove 360 b may be formed by a photolithography process using two masks having a light transmitting difference or a half-ton mask.
  • Due to the shape of the groove 360 b, the thickness difference of a W-shaped emitting layer may be efficiently uniformed.
  • FIG. 11 is a schematic cross-sectional view of an electroluminescent display device according to a fifth embodiment of the present invention. FIG. 11 shows a cross-sectional view taken along the line VII-VII of FIG. 4.
  • As shown in FIG. 11, the gate insulating layer 430, the interlayer insulating layer 440 and the passivation layer 460 are sequentially formed on or over the substrate 410, and the bank 470 including the first and second banks 472 and 474 is formed on the passivation layer 460.
  • The passivation layer 460 includes a groove 460 b in a space between the pixel regions P (of FIG. 4) adjacent to each other along the first direction. A height in a portion of the bank 470 in the groove 460 b is reduced.
  • In the groove 460 b, a center depth is smaller than an edge depth in the second direction. The depth of the groove 460 b may be gradually decreased from the edge to the center along the second direction. Namely, an upper surface of the passivation layer 460 corresponding to the groove 460 b may have a convex shape toward the bank 470.
  • In this instance, a height of the bank 470 in an edge of the groove 460 b, which faces the transmitting hole 470 a, is efficiently reduced such that an evaporation rate of the solvent in the emitting material solution is efficiently increased. As a result, the thickness uniformity of the emitting layer is improved.
  • For example, the groove 460 b may be formed by a photolithography process using a mask having a light transmitting gradual difference from a center to an edge.
  • FIG. 12 is a schematic cross-sectional view of an electroluminescent display device according to a sixth embodiment of the present invention. FIG. 12 shows a cross-sectional view taken along the line V-V of FIG. 4.
  • As shown in FIG. 12, the gate insulating layer 530, the interlayer insulating layer 540 and the passivation layer 560 are sequentially formed on or over the substrate 510, and the bank 570 including the first and second banks 572 and 574 is formed on the passivation layer 560.
  • The passivation layer 560 includes a groove 560 b in a space between the pixel regions P (of FIG. 4) adjacent to each other along the first direction. A width of the groove 560 b is substantially equal to a distance between adjacent first electrodes 562. A height in a portion of the bank 570 in the groove 560 b is reduced.
  • The groove 560 b has a rectangular cross-section. Alternatively, the groove 560 b may have a round cross-section similar to a shape of the groove 260 b (of FIG. 9) or a shape of the groove 460 b (of FIG. 11).
  • In the present invention, a height of the bank 570 between adjacent pixel regions along the first direction is smaller than that of the bank 570 between adjacent pixel regions along the second direction. Accordingly, even though a distance between adjacent pixel regions is different along the first and second directions, an evaporation rate of the solvent in the emitting material solution is uniformed such that the emitting layer having the thickness uniformity is provided.
  • FIGS. 13A to 13C are schematic cross-sectional view illustrating a fabricating process of a portion of an electroluminescent display device according to the sixth embodiment of the present invention.
  • As shown in FIG. 13A, the gate insulating layer 530, the interlayer insulating layer 540 and the passivation layer 560 are formed on the substrate 510. A conductive material layer is formed on the passivation layer 560. The conductive material layer may include a transparent conductive material such as indium-tin-oxide (ITO) or indium-zinc-oxide (IZO). The conductive material layer is patterned to form the first electrode 562 in each pixel region.
  • Referring to FIG. 3, the semiconductor layer 122 is formed on the substrate 510 before forming the gate insulating layer 530, and the gate electrode 132 is formed on the gate insulating layer 530 before forming the interlayer insulating layer 540. In addition, the source electrode 152 and the drain electrode 154 are formed on the interlayer insulating layer 540 before forming the passivation layer 560.
  • Next, as shown in FIG. 13B, a portion of the passivation layer 560 is patterned by an etching process using the first electrode 562 as an etching mask to form the groove 560 b. The etching process may be an anisotropic dry etching process. As a result, an end of the groove 560 b may exactly match with or correspond to an end of the first electrode 562. Namely, a width of the groove 560 b is substantially equal to a distance between adjacent first electrodes 562.
  • Alternatively, the passivation layer 560 may be patterned to form the groove 560 b before forming the first electrode 562. In this instance, the groove 560 b and the drain contact hole 160 a (of FIG. 3) may be formed by a single mask process.
  • In this instance, by a mis-alignment of the first electrode 562 and the groove 560 b, an end of the first electrode 562 may be positioned in the groove 560 b such that a height of the bank 570 in the groove 560 b may be increased.
  • However, when the groove 560 b is patterned using the first electrode 562 as an etching mask, the first electrode 562 is not positioned in the groove 560 b. Accordingly, the above problem is prevented.
  • Next, as shown in FIG. 13C, an insulating material layer is formed on the first electrode 562 and the passivation layer 560. The insulating material layer is patterned to form the bank 570. The emitting layer 180 (of FIG. 3) and the second electrode 192 are formed on the first electrode 562 and optionally on the bank 570.
  • FIG. 14 is a schematic plane view of an electroluminescent display device according to a seventh embodiment of the present invention. FIG. 15 is a schematic cross-sectional view taken along the line XV-XV of FIG. 14, and FIG. 16 is a schematic cross-sectional view taken along the line XVI-XVI of FIG. 14.
  • Referring to FIGS. 14 to 16, a plurality of pixel regions P are defined on the substrate 610.
  • The pixel region P is an effective light-emitting area for transmitting the light, and a distance between adjacent pixel regions is different in a first direction and a second direction. Namely, the adjacent pixel regions P along the first direction has a first interval distance d1, and the adjacent pixel regions P along the second direction has a second interval distance d2 being greater than the first interval distance d1. The pixel region P may have a shape having a major axis and a minor axis, e.g., a rectangular shape. The minor axis is parallel to the first direction, and the major axis is parallel to the second direction.
  • Among a first pixel region P1, a second pixel region P2, which is adjacent to the first pixel region P1 along the first direction, and a third pixel region P3, which is adjacent to the first pixel region P1 along the second direction, the first and second pixel regions P1 and P2 are spaced apart from each other by the first interval distance d1, and the first and third pixel regions P1 and P3 are spaced apart from each other by the second interval distance d2.
  • The gate insulating layer 630, the interlayer insulating layer 640 and the passivation layer 660 are sequentially formed on or over the substrate 610.
  • The gate insulating layer 630 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, and the interlayer insulating layer 640 may be formed of an inorganic material, e.g., silicon oxide or silicon nitride, or an organic insulating material, e.g., benzocyclobutene or photo-acryl. The passivation layer 660 may be formed of an organic insulating material, e.g., benzocyclobutene or photo-acryl. An inorganic insulating layer formed of silicon oxide or silicon nitride may be further formed between the interlayer insulating layer 140 and the passivation layer 660.
  • The passivation layer 660 includes a protruding portion 661 in a space between the pixel regions P adjacent to each other along the second direction. Namely, the protruding portion 661 of the passivation layer 660 is positioned between the first and third pixel regions P1 and P3. As a result, an upper surface of the passivation layer 660 between the first and second pixel regions P1 and P2 adjacent along the first direction has a third height h3 from the substrate 610, and an upper surface of the passivation layer 660, i.e., the protruding portion 661, between the first and third pixel regions P1 and P3 adjacent along the second direction has a fourth height h4, which is greater than the third height h3, from the substrate 610. The protruding portion 661 is formed on the passivation layer 660 between the first and third pixel regions P1 and P3, while there is no protruding portion 661 on the passivation layer 660 between the first and second pixel regions P1 and P2 such that the passivation layer 660 between the first and second pixel regions P1 and P2 provides a flat top surface.
  • As explained with FIG. 3, the switching TFT, the driving TFT, the storage capacitor, gate line, data line and power line are formed under the passivation layer 660.
  • The first electrode 662 is formed on the passivation layer 660. The first electrode 662 in each pixel region P1 is separated from each other and contacts the drain electrode of the driving TFT through the drain contact hole of the passivation layer 660.
  • The bank 670 is formed on an edge of the first electrode 662. The bank 670 is positioned between adjacent pixel regions P. The bank 670 has the transmitting hole 670 a exposing the first electrode 662 in each pixel region P and covers the edge of the first electrode 662. The transmitting hole 670 a may have a rectangular shape.
  • The bank 670 includes a first bank 672 and a second bank 674 on the first bank 672. A width of the first bank 672 is greater than that of the second bank 674. The first bank 672 includes a material having a relatively high surface energy such that a contact angle of an emitting material to the first bank 672 is reduced. The second bank 674 includes a material having a relatively low surface energy such that a contact angle of an emitting material to the second bank 674 is increased such that an overflow of the emitting material into adjacent pixel region is prevented. For example, the first bank 672 may be formed of an inorganic material or an organic material each having a hydrophilic property, and the second bank 674 may be formed of an organic material having a hydrophobic property.
  • The first bank 672 includes a first transmitting hole 672 a, and the second bank 674 includes a second transmitting hole 674 a. The second transmitting hole 674 a has a size being larger than the first transmitting hole 672 a and overlaps the first transmitting hole 672 a such that the transmitting hole 670 a is defined by the first and second transmitting holes 672 a and 674 a. As a result, a width of the second bank 674 is smaller than that of the first bank 672 such that a portion of the first bank 672 does not covered by the second bank 674. Namely, the portion of the first bank 672 exposes and protrudes beyond the second bank 674.
  • Each of the first and second banks 672 and 674 may be formed by a photolithography process using a mask. Alternatively, the first and second banks 672 and 674 of the same material may be formed by a single photolithography process. In this instance, each of the first and second banks 672 and 674 may be formed of an organic material having a hydrophobic property. In addition, the bank 670 may have a single-layered structure of an organic material having a hydrophobic property.
  • The emitting layer is formed on the first electrode 662. Namely, the emitting layer contacts the first electrode 662 in the transmitting hole 670 a. The second electrode is formed over an entire surface of the substrate 610. The emitting layer may include the hole auxiliary layer, the EML and the electron auxiliary layer sequentially stacked on the first electrode 662. For example, the hole auxiliary layer may include at least one of the HIL and the HTL, and the electron auxiliary layer may include at least one of the ETL and the EIL. A part or a total of the emitting layer may be formed by a solution process. For example, the hole auxiliary layer and the EML may be formed by the solution process.
  • As mentioned above, the passivation layer 660 includes the protruding portion 661 in a space between adjacent pixel regions P along the second direction, and the bank 670 has a height difference in the first and second directions due to the protruding portion 661.
  • In more detail, the bank 670 is formed according to a step difference in the protruding portion 661 of the passivation layer 660 such that the bank 670 between adjacent pixel regions P, e.g., the first and second pixel regions P1 and P2, along the first direction has a fifth height h5 from the substrate 610, and the bank 670 between adjacent pixel regions P, e.g., the first and third pixel regions P1 and P3, along the second direction has a sixth height h6 from the substrate 610. The fifth height h5 is smaller than the sixth height h6. Namely, the bank 670 has substantially the same thickness in a space between the first and second pixel regions P1 and P2 and in a space between the first and third pixel regions P1 and P3, while the bank 670 has a height difference.
  • When the bank 670 has the same height in the first and second directions with different interval distances d1 and d2 between adjacent pixel regions along the first and second directions, the influence in one pixel region P, i.e., the first pixel region P1, from adjacent pixel regions P, i.e., the second and third pixel regions P2 and P3, along the first and second directions is different in the solution process of the emitting layer such that the emitting layer has the non-uniform thickness.
  • Namely, with the bank 670 having the same height in the first and second directions, in the drying process of the solution of the emitting layer, the influence of the solution in the adjacent pixel regions P along the first direction is relatively high, while the influence of the solution in the adjacent pixel regions P along the second direction is relatively low. Accordingly, there is a difference in an evaporation rate of the solvent in the solution at the first and second directions. Since the evaporation rate of the solvent in the second direction is faster than that in the first direction, the emitting layer having the uniform thickness is difficult to be provided.
  • In the present invention, the protruding portion 661 is formed in the passivation layer 660 such that an upper surface of the bank 670 between adjacent pixel regions P along the first direction has a height being smaller than an upper surface of the bank 670 between adjacent pixel regions P along the second direction. Namely, the bank 670 has the fifth height h5 in a space between adjacent pixel regions P along the first direction and the sixth height h6, which is greater than the fifth height h5, in a space between adjacent pixel regions P along the second direction.
  • Namely, although the bank 670 between adjacent pixel regions P along the first direction and the bank 670 between adjacent pixel regions P along the second direction have the same thickness, a third height h3 of a bottom surface of the bank 670, i.e., a height of the upper surface of the passivation layer 660, between adjacent pixel regions P along the first direction is smaller than a fourth height h4 of a bottom surface of the bank 670, i.e., a height of the upper surface of the passivation layer 660, between adjacent pixel regions P along the second direction by the protruding portion 661. Accordingly, the fifth height h5 of the bank 670 in a space between adjacent pixel regions P along the first direction is smaller than the sixth height h6 of the bank 670 in a space between adjacent pixel regions P along the second direction.
  • In the electroluminescent display device of the present invention, since at least a part of the emitting layer is formed by the solution process, the production cost is reduced and the electroluminescent display device of large size and/or high resolution is provided.
  • In addition, with the bank having a difference in the height, the evaporation rate of the solvent at the first and second direction is uniformed such that the thickness uniformity of the emitting layer and the display quality are improved.
  • Moreover, the emitting efficiency, the lifetime, the driving voltage and the color property of the electroluminescent display device are improved.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (25)

What is claimed is:
1. An electroluminescent display device, comprising:
a substrate including first, second and third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively;
an insulating layer over the substrate and including a groove between the first and second pixel regions;
a first electrode on the insulating layer and in each of the first to third pixel regions;
a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region;
an emitting layer on the first electrode; and
a second electrode on the emitting layer, wherein the bank disposed between the first and second pixel regions has a first height from the first electrode, and the bank disposed between the first and third pixel regions has a second height from the first electrode, and
wherein the first height is smaller than the second height.
2. The electroluminescent display device according to claim 1, wherein the groove of the insulating layer is completely filled by the bank.
3. The electroluminescent display device according to claim 1, wherein the groove has a depth smaller than a thickness of the insulating layer.
4. The electroluminescent display device according to claim 1, wherein a first interval distance between the first and second pixel regions is smaller than a second interval distance between the first and third pixel regions.
5. The electroluminescent display device according to claim 1, wherein each of the first to third pixel regions has a major axis and a minor axis, and the minor axis and the major axis are respectively parallel to the first and second directions.
6. The electroluminescent display device according to claim 1, wherein each of the first to third pixel regions has a narrow circle planar shape, and the groove includes a center portion and a protrusion portion at a corner of the center portion.
7. The electroluminescent display device according to claim 1, wherein the groove has a center depth being greater than an edge depth along the second direction.
8. The electroluminescent display device according to claim 1, wherein the groove has a center depth being smaller than an edge depth along the second direction.
9. The electroluminescent display device according to claim 1, wherein the bank has substantially a same thickness in a space between the first and second pixel regions and in a space between the first and third pixel regions.
10. The electroluminescent display device according to claim 1, wherein an end of the groove corresponds to an end of the first electrode.
11. The electroluminescent display device according to claim 10, wherein a width of the groove is equal to a distance between the first electrodes in the first and second pixel regions.
12. An electroluminescent display device, comprising:
a substrate including first, second and third pixel regions, the second and third pixel regions being adjacent to the first pixel region along a first direction and a second direction, respectively;
a first electrode in each of the first to third pixel regions;
a bank covering an edge of the first electrode and disposed between the first pixel region and the second pixel region and between the first pixel region and the third pixel region;
an emitting layer on the first electrode; and
a second electrode on the emitting layer,
wherein a portion of a bottom surface of the bank between the first pixel region and the second pixel region is disposed lower than a portion of a bottom surface of the bank between the first pixel region and the third pixel region.
13. The electroluminescent display device according to claim 12, further comprising:
an insulating layer disposed below the first electrode and the bank, and including a groove between the first and second pixel regions.
14. The electroluminescent display device according to claim 12, wherein the bank disposed between the first and second pixel regions has a first height from the first electrode, and the bank disposed between the first and third pixel regions has a second height from the first electrode, and wherein the first height is smaller than the second height.
15. The electroluminescent display device according to claim 12, further comprising:
an insulating layer disposed below the first electrode and the bank, and including a protruding portion between the first and third pixel regions.
16. The electroluminescent display device according to claim 13, wherein the groove of the insulating layer is completely filled by the bank.
17. The electroluminescent display device according to claim 13, wherein the groove has a depth smaller than a thickness of the insulating layer.
18. The electroluminescent display device according to claim 12, wherein a first interval distance between the first and second pixel regions is smaller than a second interval distance between the first and third pixel regions.
19. The electroluminescent display device according to claim 12, wherein each of the first to third pixel regions has a major axis and a minor axis, and the minor axis and the major axis are respectively parallel to the first and second directions.
20. The electroluminescent display device according to claim 13, wherein each of the first to third pixel regions has a narrow circle planar shape, and the groove includes a center portion and a protrusion portion at a corner of the center portion.
21. The electroluminescent display device according to claim 13, wherein the groove has a center depth being greater than an edge depth along the second direction.
22. The electroluminescent display device according to claim 13, wherein the groove has a center depth being smaller than an edge depth along the second direction.
23. The electroluminescent display device according to claim 12, wherein the bank has substantially a same thickness in a space between the first and second pixel regions and in a space between the first and third pixel regions.
24. The electroluminescent display device according to claim 13, wherein an end of the groove corresponds to an end of the first electrode.
25. The electroluminescent display device according to claim 24, wherein a width of the groove is equal to a distance between the first electrodes in the first and second pixel regions.
US15/808,435 2016-11-11 2017-11-09 Electroluminescent display device and method of fabricating the same Active US10692949B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0150543 2016-11-11
KR20160150543 2016-11-11
KR1020170125401A KR102546420B1 (en) 2016-11-11 2017-09-27 Electroluminescent Display Device and Method of Fabricating the same
KR10-2017-0125401 2017-09-27

Publications (2)

Publication Number Publication Date
US20180138255A1 true US20180138255A1 (en) 2018-05-17
US10692949B2 US10692949B2 (en) 2020-06-23

Family

ID=60268230

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/808,435 Active US10692949B2 (en) 2016-11-11 2017-11-09 Electroluminescent display device and method of fabricating the same

Country Status (3)

Country Link
US (1) US10692949B2 (en)
EP (1) EP3321985B1 (en)
CN (1) CN108074950B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180174515A1 (en) * 2016-12-16 2018-06-21 Lg Display Co., Ltd. Electroluminescent Display Device
US20190165059A1 (en) * 2017-11-27 2019-05-30 Boe Technology Group Co., Ltd. Pixel defining layer, array substrate, and display apparatus
US10886343B2 (en) * 2017-08-30 2021-01-05 Boe Technology Group Co., Ltd. Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
US11437448B2 (en) * 2017-11-17 2022-09-06 Beijing Boe Technology Development Co., Ltd. Display panel, method for fabricating the same, and display device
US11462593B2 (en) 2019-07-31 2022-10-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Electroluminescent display panel and display device
US20220336551A1 (en) * 2021-04-16 2022-10-20 Samsung Display Co., Ltd. Display device
TWI809681B (en) * 2021-01-28 2023-07-21 群創光電股份有限公司 Light emitting device
WO2024113186A1 (en) * 2022-11-29 2024-06-06 京东方科技集团股份有限公司 Display substrate and preparation method therefor, and display device
US12029089B2 (en) * 2019-06-25 2024-07-02 Lg Display Co., Ltd. Electroluminescent display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251398B2 (en) 2018-03-30 2022-02-15 Boe Technology Group Co., Ltd. Organic light emitting diode display panel and display apparatus, fabricating method thereof
KR20200066879A (en) 2018-12-03 2020-06-11 엘지디스플레이 주식회사 Electroluminescent display device
US11049918B2 (en) * 2018-12-11 2021-06-29 Lg Display Co., Ltd. Organic light emitting display device and method of fabricating thereof
CN111524932A (en) * 2019-02-01 2020-08-11 Oppo广东移动通信有限公司 Electronic equipment, pixel structure and display device
CN111192898B (en) * 2019-03-28 2022-05-17 广东聚华印刷显示技术有限公司 Pixel structure, organic light emitting diode and preparation method thereof
US20210320156A1 (en) 2019-07-31 2021-10-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and display device
KR20220036404A (en) 2020-09-14 2022-03-23 삼성디스플레이 주식회사 Display Panel and Display Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026467A1 (en) * 2007-07-23 2009-01-29 Seiko Epson Corporation Electrooptical device, electronic apparatus, and method for producing electrooptical device
US20110010859A1 (en) * 2009-07-15 2011-01-20 Teeter Roger C Patient treatment apparatus
US20110108859A1 (en) * 2009-11-11 2011-05-12 Panasonic Corporation Organic electroluminescence element and manufacturing method thereof
US20130277649A1 (en) * 2005-08-23 2013-10-24 Cambridge Display Technology Limited Organic electronic device structures and fabrication methods
US20140147950A1 (en) * 2012-11-27 2014-05-29 Lg Display Co., Ltd. Method of fabricating organic light emitting diode display device
US8816339B2 (en) * 2010-08-06 2014-08-26 Panasonic Corporation Organic EL display panel, and method for producing same
US20160190213A1 (en) * 2014-12-31 2016-06-30 Samsung Display Co., Ltd. Light emitting display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835770B2 (en) * 2011-10-13 2015-12-24 株式会社Joled Display panel manufacturing method and display panel
JP6124584B2 (en) * 2012-12-21 2017-05-10 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130277649A1 (en) * 2005-08-23 2013-10-24 Cambridge Display Technology Limited Organic electronic device structures and fabrication methods
US20090026467A1 (en) * 2007-07-23 2009-01-29 Seiko Epson Corporation Electrooptical device, electronic apparatus, and method for producing electrooptical device
US20110010859A1 (en) * 2009-07-15 2011-01-20 Teeter Roger C Patient treatment apparatus
US20110108859A1 (en) * 2009-11-11 2011-05-12 Panasonic Corporation Organic electroluminescence element and manufacturing method thereof
US8816339B2 (en) * 2010-08-06 2014-08-26 Panasonic Corporation Organic EL display panel, and method for producing same
US20140147950A1 (en) * 2012-11-27 2014-05-29 Lg Display Co., Ltd. Method of fabricating organic light emitting diode display device
US20160190213A1 (en) * 2014-12-31 2016-06-30 Samsung Display Co., Ltd. Light emitting display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388222B2 (en) * 2016-12-16 2019-08-20 Lg Display Co., Ltd. Electroluminescent display device
US20180174515A1 (en) * 2016-12-16 2018-06-21 Lg Display Co., Ltd. Electroluminescent Display Device
US10886343B2 (en) * 2017-08-30 2021-01-05 Boe Technology Group Co., Ltd. Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
US11917865B2 (en) * 2017-11-17 2024-02-27 Boe Technology Group Co., Ltd. Display panel, method for fabricating the same, and display device
US11437448B2 (en) * 2017-11-17 2022-09-06 Beijing Boe Technology Development Co., Ltd. Display panel, method for fabricating the same, and display device
US20220328584A1 (en) * 2017-11-17 2022-10-13 Boe Technology Group Co., Ltd. Display panel, method for fabricating the same, and display device
US20190165059A1 (en) * 2017-11-27 2019-05-30 Boe Technology Group Co., Ltd. Pixel defining layer, array substrate, and display apparatus
US10546904B2 (en) * 2017-11-27 2020-01-28 Boe Technology Group Co., Ltd. Pixel defining layer having pixel defining sub-layers
US12029089B2 (en) * 2019-06-25 2024-07-02 Lg Display Co., Ltd. Electroluminescent display device
US11462593B2 (en) 2019-07-31 2022-10-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Electroluminescent display panel and display device
US11552131B2 (en) 2019-07-31 2023-01-10 Chengdu Boe Optoelectronics Technology Co., Ltd. Electroluminescent display panel and display device
US11489018B2 (en) 2019-07-31 2022-11-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Electroluminescent display panel and display device
TWI809681B (en) * 2021-01-28 2023-07-21 群創光電股份有限公司 Light emitting device
US20220336551A1 (en) * 2021-04-16 2022-10-20 Samsung Display Co., Ltd. Display device
WO2024113186A1 (en) * 2022-11-29 2024-06-06 京东方科技集团股份有限公司 Display substrate and preparation method therefor, and display device

Also Published As

Publication number Publication date
CN108074950B (en) 2021-11-23
EP3321985A1 (en) 2018-05-16
US10692949B2 (en) 2020-06-23
CN108074950A (en) 2018-05-25
EP3321985B1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US10692949B2 (en) Electroluminescent display device and method of fabricating the same
US11024684B2 (en) Display device
US10665811B2 (en) Electroluminescent display device
US10553649B2 (en) Electroluminescent display device
US10170521B2 (en) Organic light-emitting diode display device
US9231035B2 (en) Organic light emitting diode display device having improved effective emitting area
JP6568188B2 (en) Electroluminescent display device
JP6868676B2 (en) Electroluminescent display device and its manufacturing method
US10692959B2 (en) Electroluminescent display device
US12022721B2 (en) Electroluminescent display device
US10847592B2 (en) Electroluminescent display device
US11812639B2 (en) Electroluminescent display device
US11658205B2 (en) Electroluminescent display device
KR102284991B1 (en) Organic Light Emitting Diode Display Device
KR20180061777A (en) Organic Light Emitting Diode Display Device
KR102574594B1 (en) Organic Light Emitting Diode Display Device
KR102546420B1 (en) Electroluminescent Display Device and Method of Fabricating the same
US10644086B2 (en) Electroluminescent display device
KR102676858B1 (en) Electroluminescent display device
KR20180077833A (en) Electroluminescent Display Device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG-BIN;CHOI, JEONG-MOOK;REEL/FRAME:044136/0679

Effective date: 20171106

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4