US20180098637A1 - Support cushions and methods for active ventilation of same - Google Patents

Support cushions and methods for active ventilation of same Download PDF

Info

Publication number
US20180098637A1
US20180098637A1 US15/568,368 US201515568368A US2018098637A1 US 20180098637 A1 US20180098637 A1 US 20180098637A1 US 201515568368 A US201515568368 A US 201515568368A US 2018098637 A1 US2018098637 A1 US 2018098637A1
Authority
US
United States
Prior art keywords
base layer
layer
body supporting
support cushion
lower base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/568,368
Inventor
Paul E. Griese
Daniel S. Powell
Leslie A. Burton
Mario A.G. Nava
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempur World LLC
Original Assignee
Tempur Pedic Management LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempur Pedic Management LLC filed Critical Tempur Pedic Management LLC
Assigned to TEMPUR-PEDIC MANAGEMENT, LLC reassignment TEMPUR-PEDIC MANAGEMENT, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAVA, MARIO A.G., GRIESE, PAUL E., POWELL, DANIEL S., BURTON, LESLIE A.
Publication of US20180098637A1 publication Critical patent/US20180098637A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT PATENT SECURITY AGREEMENT (SUPPLEMENT) Assignors: SEALY TECHNOLOGY, LLC, TEMPUR WORLD, LLC
Assigned to TEMPUR WORLD, LLC reassignment TEMPUR WORLD, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEMPUR-PEDIC MANAGEMENT, LLC
Assigned to TEMPUR-PEDIC MANAGEMENT, LLC, SEALY TECHNOLOGY LLC, TEMPUR WORLD, LLC reassignment TEMPUR-PEDIC MANAGEMENT, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to SEALY TECHNOLOGY LLC, TEMPUR WORLD, LLC reassignment SEALY TECHNOLOGY LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C21/00Attachments for beds, e.g. sheet holders, bed-cover holders; Ventilating, cooling or heating means in connection with bedsteads or mattresses
    • A47C21/04Devices for ventilating, cooling or heating
    • A47C21/042Devices for ventilating, cooling or heating for ventilating or cooling
    • A47C21/044Devices for ventilating, cooling or heating for ventilating or cooling with active means, e.g. by using air blowers or liquid pumps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/15Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays consisting of two or more layers

Definitions

  • the present invention relates to support cushions and methods for actively ventilating support cushions.
  • the present invention relates to support cushions, such as mattress assemblies, that make use of a fan located within the support cushion to draw and amount of air through and away from the support cushion.
  • sleep deprivation can have significant negative impacts on longevity, productivity, and overall mental, emotional, and physical health.
  • Chronic sleep debt has been linked to weight gain and, more specifically, has been observed to not only affect the way the body processes and stores carbohydrates, but has also been observed to alter hormone levels that affect appetite.
  • sleep debt may result in irritability, impatience, inability to concentrate, and moodiness, which has led some researchers to suggest a link between sleep debt and worksite accidents, traffic incidents, and general afternoon inattentiveness.
  • the present invention relates to support cushions and methods for actively ventilating support cushions.
  • the present invention relates to support cushions, such as mattress assemblies, that make use of a fan located within the support cushion to draw and amount of air through and away from the support cushion.
  • the support cushions of the present invention allow a user to increase his or her level of comfort, including sleep comfort, by actively ventilating the support cushions.
  • a support cushion in the form of a mattress assembly includes a body supporting layer having a first surface and a second surface.
  • the body supporting layer of the mattress assembly includes a first porous foam insert that is positioned in a first side of the body supporting layer, and a second porous foam insert that is positioned in a second side of the body supporting layer opposite the first porous foam insert.
  • Both the first porous foam insert and the second porous foam insert are generally sized to support a torso of a user lying on the mattress assembly.
  • the first porous foam insert and the second porous foam insert are not only configured to support the torso of a user lying on the mattress assembly, but are also configured to assist in dissipating any heat generated by the torso of a user lying on the mattress assembly away from the body supporting layer and the remainder of the mattress assembly.
  • the body supporting layer of the mattress assembly is covered by a comfort portion or layer that is positioned atop the body supporting layer.
  • the comfort layer defines a first plurality of channels and a second plurality of channels that extend through the comfort layer and that are positioned over the first porous foam insert and the second porous foam insert, respectively, of the body supporting layer.
  • the channels of the comfort layer place the first porous foam insert and the second porous foam insert in fluid communication with not only the comfort layer, but also with the environment surrounding the mattress assembly and/or the body of a user lying on the mattress assembly.
  • the comfort layer also functions to provide a level of comfort to a body of a user or a portion of thereof that is resting on the mattress assembly.
  • an upper base layer that is positioned adjacent to the second surface of the body supporting layer.
  • the upper base layer defines a first plurality of air conduits and a second plurality of air conduits that extend through the upper base layer and that are positioned below the first porous foam insert and the second porous foam insert, respectively, of the body supporting layer.
  • a lower base layer is also included in the exemplary mattress assembly and is positioned adjacent to the upper base layer opposite the body supporting layer.
  • the lower base layer defines a first cavity and a second cavity, which both extend through the lower base layer.
  • the first cavity of the lower base layer houses a far assembly and is positioned below and is in fluid communication with the first plurality of air conduits in the upper base layer.
  • the second cavity houses a separate fan assembly and is positioned below and is in fluid communication with the second plurality of air conduits.
  • the fan assemblies draw air through the channels in the comfort layer, through the porous foam inserts in the body supporting layer, through air conduits in the upper base layer, and then through the fan assemblies and the lower base layer, where it is then exhausted air into a bottom layer of the mattress assembly that is positioned adjacent to the lower base layer opposite the upper base layer.
  • each of the fan assemblies includes a fan that is mounted in a housing sized to fit within one of the cavities defined by the lower base layer and to be frictionally held in position within the cavities even when the mattress assembly is moved, tipped, or otherwise adjusted.
  • the fan assemblies each further include a sleeve that is positioned between each of the housings and the respective cavities and that is comprised of a material which promotes friction between the cavities and the respective housings.
  • an exemplary mattress assembly also includes a power supply for supplying electrical current to the fan assemblies and a controller for controlling the electrical current supplied to the fan assemblies from the power supply.
  • an exemplary mattress assembly can further include several features that are operably connected to the body supporting layer and provide input to the controller.
  • an exemplary mattress assembly includes temperature sensors that are operably connected to porous foam inserts included in the body supporting layer and that provide temperature feedback to the controller to thereby not only allow the controller to selectively provide power to the fan assemblies and adjust how quickly or how much air is moved through the mattress assembly in response to the received temperature feedback, but to also maintain a desired temperature at the first surface of the body supporting layer.
  • pressure sensors are also operably connected to the body supporting layer and provide pressure feedback to the controller in response to a user resting upon or adjacent to the first surface of the body supporting layer.
  • a method for actively ventilating a support cushion includes first providing a support of the present invention. Power, in the form of electrical current, is then supplied to the fans in the support cushion, such that the fan draws air from the first surface of the body supporting layer, through upper base layer and lower base layer, and into the bottom layer and away from the body supporting layer of the support cushion to thereby actively ventilate the support cushion and dissipate any heat away from the body supporting layer of the support cushion.
  • FIG. 1 is a perspective view of an exemplary support cushion, in the form of a mattress assembly, made in accordance with the present invention
  • FIG. 2 is an exploded, perspective view of the exemplary mattress assembly of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the exemplary mattress assembly of FIG. 1 taken along line 3 - 3 of FIG. 1 ;
  • FIG. 4 is an exploded perspective view of a fan assembly included in the exemplary mattress assembly of FIG. 1 ;
  • FIG. 5 is a cross-sectional view of another exemplary support cushion, in the form of another mattress assembly, made in accordance with the present invention and showing the mattress assembly having an adjustable foundation.
  • the present invention relates to support cushions and methods for actively ventilating support cushions.
  • the present invention relates to support cushions, such as mattress assemblies, that make use of a tan located within the support cushion to draw an amount of air through and away from the support cushion.
  • the support cushions of the present invention allow a user to increase his or her level of comfort, including sleep comfort, by actively ventilating the support cushions.
  • a support cushion in the form of a mattress assembly 10 is provided that includes a body supporting layer 20 having a first surface 22 , which is generally an upper surface of the body supporting layer 20 , and a second surface 24 , which is opposite the first surface 22 and is generally the lower surface of the body supporting layer 20 .
  • the body supporting layer 20 of the mattress assembly 10 includes a first porous foam insert 26 a positioned in a first side 28 of the body supporting layer 20 , and a second porous foam insert 26 b that is positioned in a second side 29 of the body supporting layer 20 opposite the first porous foam insert 26 a .
  • Both the first porous foam insert 26 a and the second porous foam insert 26 b are generally sized to support a torso of a user lying on the mattress assembly 10 .
  • the first porous foam insert 26 a and the second porous foam insert 26 b are not only configured to support the torso of a user lying on the mattress assembly 10 , but the first porous foam insert 26 a and the second porous foam insert 26 b are also configured to assist in dissipating any heat generated by the torso of a user lying on the mattress assembly 10 away from the body supporting layer 20 and the remainder of the mattress assembly 10 , as described in further detail below.
  • the body supporting layer 20 of the mattress assembly 10 is generally comprised of a continuous layer of flexible foam for suitably distributing pressure from a user's body or portion thereof across the body supporting layer 20 .
  • flexible foams include, but are not limited to, latex foam, reticulated or non-reticulated visco-elastic foam (sometimes referred to as memory foam or low-resilience foam), reticulated or non-reticulated non-visco-elastic foam, polyurethane high-resilience foam, expanded polymer foams (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like.
  • the body supporting layer 20 is comprised of a visco-elastic foam that has a low resilience as well as a sufficient density and hardness, which allows pressure to be absorbed uniformly and distributed evenly across the body supporting layer 20 of the mattress assembly 10 .
  • a visco-elastic foam that has a low resilience as well as a sufficient density and hardness, which allows pressure to be absorbed uniformly and distributed evenly across the body supporting layer 20 of the mattress assembly 10 .
  • such visco-elastic foams have a hardness of at least about 10 N to no greater than about 80 N, as measured by exerting pressure from a plate against a sample of the material to a compression of at least 40% of an original thickness of the material at approximately room temperature (i.e., 21° C. to 23° C.), where the 40% compression is held for a set period of time as established by the International Organization of Standardization (ISO) 2439 hardness measuring standard.
  • ISO International Organization of Standardization
  • the visco-elastic foam has a hardness of about 10 N, about 20 N, about 30 N, about 40 N, about 50 N, about 60 N, about 70 N, or about 80 N to provide a desired degree of comfort and body-conforming qualities.
  • the visco-elastic foam described herein for use in the mattress assembly 10 can also have a density that assists in providing a desired degree of comfort and body-conforming qualities, as well as an increased degree of material durability.
  • the density of the visco-elastic foam used in the body supporting layer 20 has a density of no less than about 30 kg/m 3 to no greater than about 150 kg/m 3 .
  • the density of the visco-elastic foam used in the body supporting layer 20 of the mattress assembly 10 is about 30 kg/m 3 , about 40 kg/m 3 , about 50 kg/m 3 , about 60 kg/m 3 , about 70 kg/m 3 , about 80 kg/m 3 , about 90 kg/m 3 , about 100 kg/m 3 , about 110 kg/m 3 , about 120 kg/m 3 , about 130 kg/m 3 , about 140 kg/m 3 , or about 150 kg/m 3 .
  • a visco-elastic foam having a particular density will affect other characteristics of the foam, including its hardness, the manner in which the foam responds to pressure, and the overall feel of the foam, but it is appreciated that a visco-elastic foam having a desired density and hardness can readily be selected for a particular application or mattress assembly as desired. Additionally, it is appreciated that the body supporting layers of the mattress assemblies need not be comprised of a continuous layer of flexible foam at all, but can also take the form of more traditional mattresses, including spring-based mattresses, without departing from the spirit and scope of the subject matter described herein.
  • the porous foam inserts 26 a , 26 b are also comprised of a visco-elastic foam, but are generally comprised of a viscoelastic foam having a porosity greater than the visco-elastic foam included in the body supporting layer 20 to allow air to enter the porous foam inserts 26 a , 26 b more readily than the remainder of the body supporting layer 20 .
  • porous foam inserts 26 a , 26 b need not be comprised of a visco-elastic foam at all, but that any number of porous flexible foams can be used to produce a porous foam insert having a porosity sufficient to allow for air to readily enter and move through.
  • porous foam or “porous flexible foam” (visco-elastic or otherwise) is used herein to generally refer to flexible foam having a cellular foam structure in which at least a portion of the cells of the foam are essentially skeletal.
  • the cells of the foam are each defined by a plurality of apertured windows surrounded by cell struts, where the cell windows of the porous foam can be entirely absent (leaving only the cell struts) or substantially missing.
  • the foam is considered “porous” if at least 50% of the windows of the cells are missing (i.e., windows having apertures therethrough, or windows that are completely missing and therefore leaving only the cell struts).
  • Such structures can be created by destruction or other removal of cell window material, by chemical or mechanical means, or by preventing the complete formation of cell windows during the manufacturing process of the foam.
  • the term “porous” can thus be used interchangeably with the term “reticulated” when referring to flexible foam.
  • the body supporting layer 20 of the mattress assembly 10 is further covered by a comfort portion or layer 62 that is positioned atop the body supporting layer 20 .
  • the comfort layer 62 defines a first plurality of channels 66 a and a second plurality of channels 66 b that extend through the comfort layer 62 and that are positioned over the first porous foam insert 26 a and the second porous foam insert 26 b , respectively.
  • the channels 66 a , 66 b of the comfort layer 62 place the first porous foam insert 26 a and the second porous foam insert 26 b in fluid communication with not only the comfort layer 62 , but also with the environment surrounding the mattress assembly 10 and/or the body of a user lying on the mattress assembly 10 .
  • the comfort layer 62 also functions to provide a level of comfort to a body of a user or a portion of thereof that is resting on the mattress assembly 10 .
  • the comfort layer 62 can also be comprised of a visco-elastic foam, but typically has a density, hardness, or both that is less than that of the body supporting layer 20 of the mattress assembly 10 such that the comfort layer 62 provides a softer surface on which to rest the body of a user.
  • the mattress assembly 10 includes a body supporting layer 20 that is comprised of visco-elastic foam with a density of about 80 kg/m 3 and a hardness of about 13 N, while the comfort layer is comprised of a visco-elastic foam with a density of about 35 kg/m 3 and a hardness of about 10 N.
  • the porous foam inserts 26 a , 26 b , and the comfort layer 62 further included in the mattress assembly 10 is an upper base layer 30 that is positioned adjacent to the second surface 24 of the body supporting layer 20 .
  • the upper base layer 30 defines a first plurality of air conduits 32 a and a second plurality of air conduits 32 b that extend through the upper base layer 30 and that are positioned below the first porous foam insert 26 a and the second porous foam insert 26 b , respectively, of the body supporting layer 20 .
  • the first plurality of air conduits 32 a and the second plurality of air conduits 32 b are thus placed in direct fluid communication with the first porous foam insert 26 a and the second porous foam insert 26 b , and create a pathway for air to flow from the body supporting layer 20 and through the upper base layer 30 , the importance of which is also described in further detail below.
  • pathways for air to flow from the body supporting layer 20 and through the upper base layer 30 can also be created by using a variety of other means, such as porous foam inserts with or without air conduits and which may be positioned in an exemplary upper base layer without departing from the spirit and scope of the subject matter described herein.
  • a lower base layer 40 is also included in the exemplary mattress assembly 10 and is positioned adjacent to the upper base layer 30 opposite the body supporting layer 20 .
  • the lower base layer 40 defines a first cavity 42 a and a second cavity 42 b , which both extend through the lower base layer 40 .
  • the first cavity 42 a of the lower base layer 40 houses a fan assembly 80 a and is positioned below and is in fluid communication with the first plurality of air conduits 32 a in the upper base layer 30 .
  • the second cavity 42 b houses a separate fan assembly 80 b and is positioned below and is in fluid communication with the second plurality of air conduits 32 b .
  • the fan assemblies 80 a , 80 b draw air through the channels 66 a , 66 b in the comfort layer 62 , through the porous foam inserts 26 a , 26 b in the body supporting layer 20 , through air conduits 32 a , 32 b in the upper base layer 30 , and then through the fan assemblies 80 a , 80 b and the lower base layer 40 , where it is then exhausted air into a bottom layer 50 of the mattress assembly 10 that is positioned adjacent to the lower base layer 40 opposite the upper base layer 30 .
  • any air and, consequently, any associated heat around or within the comfort layer 62 and the body supporting layer 20 that may be present as a result of a user lying on the mattress assembly 10 is drawn away from the comfort layer 62 , and the body supporting layer 20 and is pulled through the mattress assembly 10 before being dissipated away from the mattress assembly 10 through the bottom layer 50 .
  • the upper base layer 30 and the lower base layer 40 of the mattress assembly 10 can also be comprised of a flexible foam, including any of the flexible foams described above with reference to the body supporting layer 20 .
  • the flexible foam comprising the body supporting layer 20 typically has a density less than that of the upper base layer 30 and the lower base layer 40 , such that the upper base layer 30 and the lower base layer 40 have a density and hardness sufficient for supporting the body supporting layer 20 and the comfort layer 62 of the mattress assembly.
  • the upper base layer 30 and the lower base layer 40 are comprised of a higher density, porous polyurethane foam that provides sufficient support to the overlying body supporting layer 20 and the comfort layer, but that also provides an open environment in which air can move by virtue of its porous structure.
  • the bottom layer 50 is further comprised of a breathable porous material that promotes the dispersion of the air, including the air exhausted into the bottom layer 50 by the fan assemblies 80 a , 80 b , but that also provides support to the remainder of the mattress assembly 10 .
  • the porous materials included in the bottom layer 50 can be selected from a reticulated foam, knitted spacer fabric, textile, or a composite material.
  • a knitted spacer fabric can be included that is generally comprised of two exterior mesh textile substrates and an insert material such as polyester monofilaments which are configured to keep the two exterior mesh textile substrates separated.
  • Such knitted spacer fabrics include, by way of example, the WellcoolTM 3D spacer fabric manufactured by Quanzhou Wellcool Cushion Technology Co., Ltd (Fujian, China).
  • the bottom layer 50 as well as the comfort layer 62 , the body supporting layer 20 , the upper base layer 30 , and the lower base layer 40 are generally secured to one another to prevent the body supporting layer 20 , the upper base layer 30 , the lower base layer 40 , the bottom layer 50 , and the comfort layer 62 from moving relative to one another during use.
  • Various means of securing one layer of material to another can be used in this regard, including tape, hook and loop fasteners, conventional fasteners, stitches, and the like.
  • the body supporting layer 20 , the upper base layer 30 , the lower base layer 40 , the bottom layer 50 , and the comfort layer 62 are bonded together by an adhesive or cohesive bonding material to create a substantially continuous assembly where the body supporting layer 20 , the upper base layer 30 , the lower base layer 40 , the bottom layer 50 , and the comfort layer 62 are fully adhered to one another.
  • adhesive bonding materials include, for example, environmentally-friendly, water based adhesives, like SABA AQUABOND RSD, a two-component water-based adhesive product produced by SABA DINXPERLO BV, B-7090 AA, Dinxperlo, Belgium.
  • the fan assemblies 80 a , 80 b included in the mattress assembly 10 are housed internally within the mattress assembly 10 . More specifically, the fan assemblies 80 a , 80 b are housed within the cavities 42 a , 42 b of the lower base layer 40 with the upper base layer 30 covering the fan assemblies from above and the bottom layer 50 covering the fan assemblies 80 a , 80 b from below.
  • each of the fan assemblies 80 a , 80 b includes a fan 82 a , 82 b that is mounted in a housing 84 a , 84 b sized to fit within one of the cavities 42 a , 42 b defined by the lower base layer 40 and to be frictionally held in position within the cavities 42 a , 42 b even when the mattress assembly 10 is moved, tipped, or otherwise adjusted.
  • the fan assemblies 80 a , 80 b each further include a sleeve 88 a , 88 b that is positioned between each of the housings 84 a , 84 b and the respective cavities 42 a , 42 b and that is comprised of a material which promotes friction between the cavities 42 a , 42 b and the respective housings 84 a , 84 b , for example a textile.
  • the sleeves 88 a , 88 b can also be comprised of a flame retardant material to provide a layer of fire suppression between the fan assemblies 80 a , 80 b and the rest of the mattress assembly 10 . Furthermore, each of the sleeves 88 a , 88 b provide a means of securing and positioning an air filter 86 a , 86 b within each of the fan assemblies 80 a , 80 b.
  • the mattress assembly 10 also includes a power supply 92 for supplying electrical current to the fan assemblies 80 a , 80 b and a controller 90 for controlling the electrical current supplied to the fan assemblies 80 a , 80 b from the power supply 92 .
  • the controller 90 in the mattress assembly 10 , the amount of electrical current supplied to the fan assemblies 80 a , 80 b from the power supply 92 can be controlled to allow for a desired amount of air to move through the mattress assembly 10 and, consequently, a desired amount of heat to be dissipated away from the body supporting layer 20 of the mattress assembly 10 .
  • the controller 90 can be used to simply turn the fan assemblies 80 a , 80 b on or off depending on whether the user wishes to ventilate the mattress assembly 10 and remove heat from the body supporting layer 20 of the mattress assembly 10 , or can be used to operate the fan assemblies 80 a , 80 b at a particular speed depending on how quickly the user wishes to ventilate the mattress assembly 10 and remove heat from the body supporting layer 20 of the mattress assembly 10 .
  • the controller 90 can also be configured to automatically control the electrical current supplied to the fan assemblies 80 a , 80 b from the power supply 92 , such that the electrical current can be supplied to the fan assemblies 80 a , 80 b when the first surface 22 of the body supporting layer 20 reaches a desired temperature.
  • the controller 90 can be configured to allow the electrical current to be supplied to the fan assemblies 80 a , 80 b from the power supply 92 for a predetermined time period, such as for an 8-hour sleeping period or for a length of time a user usually spends in a specific stage of the sleep cycle (e.g., REM sleep) in order to increase the sleep comfort of a user.
  • a predetermined time period such as for an 8-hour sleeping period or for a length of time a user usually spends in a specific stage of the sleep cycle (e.g., REM sleep) in order to increase the sleep comfort of a user.
  • the mattress assembly 10 also includes several features that are operably connected to the body supporting layer 20 and provide input to the controller 90 .
  • the mattress assembly 10 includes temperature sensors 94 a , 94 b that are operably connected to porous foam inserts 26 a , 26 b included in the body supporting layer 20 and that provide temperature feedback to the controller 90 to thereby not only allow the controller 90 to selectively provide power to the fan assemblies 80 a , 80 b and adjust how quickly or how much air is moved through the mattress assembly 10 in response to the received temperature feedback, but to also maintain a desired temperature at the first surface 22 of the body supporting layer 20 .
  • pressure sensors 96 a , 96 b are also operably connected to the body supporting layer 20 and provide pressure feedback to the controller 90 in response to a user resting upon or adjacent to the first surface 22 of the body supporting layer 20 , such that the controller 90 can automatically allow power to be provided to the fan assemblies 80 a , 80 b air to be moved through the mattress assembly 10 as soon as the user lies on the mattress assembly 10 or otherwise places an amount of pressure on the mattress assembly 10 .
  • An additional benefit of the inclusion of the pressure sensors 96 a , 96 b is that the controller 90 can be configured to automatically shut off the fan assemblies 80 a , 80 b if a user is no longer lying on the mattress assembly 10 .
  • a remote control not shown
  • FIG. 5 in another exemplary embodiment of the present invention, another support cushion in the form of a mattress assembly 110 is provided that includes additional features to increase the comfort and convenience of the user of the mattress assembly 110 .
  • FIGS. 5 Like the support cushion shown in FIGS.
  • the mattress assembly 110 also includes: a comfort layer 162 defining a plurality of channels 166 ; a body supporting layer 120 including a porous foam insert 126 ; an upper base layer 130 positioned below the body supporting layer 120 and defining a plurality of air conduits 132 in fluid communication with the porous foam insert 126 ; a lower base layer 140 defining a cavity 142 with a fan assembly 180 located within the cavity 142 ; and a bottom layer 150 positioned below the lower base layer 140 .
  • an adjustable foundation 170 is included in the mattress assembly, however, is an adjustable foundation 170 that is positioned below the bottom layer 150 and allows a user to place the mattress assembly 110 into one or more desired ergonomic positions.
  • a cover 172 is included in the mattress assembly 110 and surrounds the comfort layer 162 , the body supporting layer 120 , the upper base layer 130 , the lower base layer 140 , and the bottom layer 150 of the mattress assembly 110 .
  • the cover 172 in the form of a fire sock that surround the various layers is comprised of a flame retardant material.
  • an exemplary cover of the present invention can also be comprised of another textile, such as cotton that provide an exemplary support cushion with a unitary appearance, but that also provides a user with a sufficiently soft surface on which to rest while being sufficiently breathable to allow air to be drawn through the cover and the exemplary support cushion.
  • another textile such as cotton that provide an exemplary support cushion with a unitary appearance, but that also provides a user with a sufficiently soft surface on which to rest while being sufficiently breathable to allow air to be drawn through the cover and the exemplary support cushion.
  • the support cushions shown in FIGS. 1-3 and 5 are in the form of mattress assemblies 10 , 110 and are dimensionally-sized to support a user lying in a supine or prone position, it is contemplated that the features described herein are equally applicable to other support cushions, such as head pillows, seat cushions, seat backs, neck pillows, leg spacer pillows, mattress topers, overlays, and the like.
  • the phrase “body support” or “body supporting” is used herein to refer to any and all such objects having any size or shape, and that are capable of supporting, or are generally used to support, the body of a user or a portion thereof.
  • 1-3 includes two removable inserts 26 a , 26 b , two sets of air conduits 32 a , 32 b , two cavities 42 a , 42 b , and two fan assemblies 80 a , 80 b , it is also contemplated other embodiments may include any number of removable portions, conduits, cavities, and fan assemblies depending on the size and shape of the particular support cushion.
  • a method for actively ventilating a support cushion includes first providing a support cushion having: a body supporting layer having a first surface and a second surface opposite the first surface; an upper base layer positioned adjacent to the second surface of the body supporting layer and defining one or more air conduits extending through the upper base layer and in fluid communication with the body supporting layer; a lower base layer positioned adjacent to the upper base layer opposite the body supporting layer and defining a cavity extending through the lower base layer; a bottom layer positioned adjacent to the lower base layer opposite the upper base layer; and a fan located within the cavity define by the lower base layer.
  • Power in the form of electrical current, is then supplied to the fan, such that the fan draws air from the first surface of the body supporting layer, through upper base layer and lower base layer, and into the bottom layer and away from the body supporting layer of the support cushion to thereby actively ventilate the support cushion and dissipate any heat away from the body supporting layer of the support cushion.

Abstract

A support cushion is provided for moving an amount of air through the support cushion. The support cushion includes a body supporting layer having a removable portion, an upper base layer defining one or more air conduits In fluid communication with the removable portion, a lower base layer defining a cavity, and a bottom layer. A fan is positioned within the cavity such that the fan is in fluid communication with the one or more air conduits defined by the upper base layer. The fan is thus capable of drawing air from the top surface of the body supporting layer, through the removable portion, through the one or more air conduits in the upper base layer, and exhausting the air into the bottom layer. Methods of actively ventilating a support cushion are also provided.

Description

    TECHNICAL FIELD
  • The present invention relates to support cushions and methods for actively ventilating support cushions. In particular, the present invention relates to support cushions, such as mattress assemblies, that make use of a fan located within the support cushion to draw and amount of air through and away from the support cushion.
  • BACKGROUND
  • An aspect of successful and restful sleep is individual sleep comfort. Medical research suggests that sleep deprivation (“sleep debt”) can have significant negative impacts on longevity, productivity, and overall mental, emotional, and physical health. Chronic sleep debt has been linked to weight gain and, more specifically, has been observed to not only affect the way the body processes and stores carbohydrates, but has also been observed to alter hormone levels that affect appetite. Moreover, sleep debt may result in irritability, impatience, inability to concentrate, and moodiness, which has led some researchers to suggest a link between sleep debt and worksite accidents, traffic incidents, and general afternoon inattentiveness. Furthermore, sleep disorders have been linked to hypertension, increased stress hormone levels, and irregular heartbeat, and additional research has recently suggested that a lack of sleep can affect immune function, resulting in increased susceptibility to illness and disease, e.g., cancer. In all, researchers have now suggested that sleep debt costs the United States $63 billion annually in lost productivity due to these various effects. Accordingly, a support cushion that improves sleep comfort and lowers individual sleep debt would be both highly desirable and beneficial.
  • SUMMARY
  • The present invention relates to support cushions and methods for actively ventilating support cushions. In particular, the present invention relates to support cushions, such as mattress assemblies, that make use of a fan located within the support cushion to draw and amount of air through and away from the support cushion. Thus, the support cushions of the present invention allow a user to increase his or her level of comfort, including sleep comfort, by actively ventilating the support cushions.
  • In one exemplary embodiment of the present invention, a support cushion in the form of a mattress assembly is provided that includes a body supporting layer having a first surface and a second surface. The body supporting layer of the mattress assembly includes a first porous foam insert that is positioned in a first side of the body supporting layer, and a second porous foam insert that is positioned in a second side of the body supporting layer opposite the first porous foam insert. Both the first porous foam insert and the second porous foam insert are generally sized to support a torso of a user lying on the mattress assembly. Thus, as a result of the size and position of the first porous foam insert and the second porous foam insert, the first porous foam insert and the second porous foam insert are not only configured to support the torso of a user lying on the mattress assembly, but are also configured to assist in dissipating any heat generated by the torso of a user lying on the mattress assembly away from the body supporting layer and the remainder of the mattress assembly.
  • The body supporting layer of the mattress assembly is covered by a comfort portion or layer that is positioned atop the body supporting layer. The comfort layer defines a first plurality of channels and a second plurality of channels that extend through the comfort layer and that are positioned over the first porous foam insert and the second porous foam insert, respectively, of the body supporting layer. By positioning the channels over the first porous foam insert and the second porous foam insert, the channels of the comfort layer place the first porous foam insert and the second porous foam insert in fluid communication with not only the comfort layer, but also with the environment surrounding the mattress assembly and/or the body of a user lying on the mattress assembly. In addition to placing the first porous foam insert and the second porous foam insert in communication with the surrounding environment, however, the comfort layer also functions to provide a level of comfort to a body of a user or a portion of thereof that is resting on the mattress assembly.
  • Further included in the mattress assembly is an upper base layer that is positioned adjacent to the second surface of the body supporting layer. The upper base layer defines a first plurality of air conduits and a second plurality of air conduits that extend through the upper base layer and that are positioned below the first porous foam insert and the second porous foam insert, respectively, of the body supporting layer. By positioning the first plurality of air conduits and the second plurality of air conduits below the first porous foam insert and the second porous foam insert of the body supporting layer, the first plurality of air conduits and the second plurality of air conduits are thus placed in direct fluid communication with the first porous foam insert and the second porous loam insert, and create a pathway for air to flow from the body supporting layer and through the upper base layer.
  • In addition to the upper base layer, a lower base layer is also included in the exemplary mattress assembly and is positioned adjacent to the upper base layer opposite the body supporting layer. The lower base layer defines a first cavity and a second cavity, which both extend through the lower base layer. The first cavity of the lower base layer houses a far assembly and is positioned below and is in fluid communication with the first plurality of air conduits in the upper base layer. Similarly, the second cavity houses a separate fan assembly and is positioned below and is in fluid communication with the second plurality of air conduits. In this regard, upon activation of the fan assemblies in the first cavity and the second cavity defined by the lower base layer, the fan assemblies draw air through the channels in the comfort layer, through the porous foam inserts in the body supporting layer, through air conduits in the upper base layer, and then through the fan assemblies and the lower base layer, where it is then exhausted air into a bottom layer of the mattress assembly that is positioned adjacent to the lower base layer opposite the upper base layer.
  • With further respect to the fan assemblies included in the mattress assembly, as indicated above, the fan assemblies are housed within the cavities of the lower base layer with the upper base layer covering the fan assemblies from above and the bottom layer covering the an assemblies from below. In this regard, each of the fan assemblies includes a fan that is mounted in a housing sized to fit within one of the cavities defined by the lower base layer and to be frictionally held in position within the cavities even when the mattress assembly is moved, tipped, or otherwise adjusted. To further promote the frictional connection between the housings and the cavities defined by the lower base layer, the fan assemblies each further include a sleeve that is positioned between each of the housings and the respective cavities and that is comprised of a material which promotes friction between the cavities and the respective housings.
  • To provide an amount of control over the amount of air being moved by the fan and the active ventilation of the mattress assembly, an exemplary mattress assembly also includes a power supply for supplying electrical current to the fan assemblies and a controller for controlling the electrical current supplied to the fan assemblies from the power supply. To provide an additional level of control over the movement of air through the mattress, an exemplary mattress assembly can further include several features that are operably connected to the body supporting layer and provide input to the controller. For example, in some embodiments, an exemplary mattress assembly includes temperature sensors that are operably connected to porous foam inserts included in the body supporting layer and that provide temperature feedback to the controller to thereby not only allow the controller to selectively provide power to the fan assemblies and adjust how quickly or how much air is moved through the mattress assembly in response to the received temperature feedback, but to also maintain a desired temperature at the first surface of the body supporting layer. As another example, in some embodiments, pressure sensors are also operably connected to the body supporting layer and provide pressure feedback to the controller in response to a user resting upon or adjacent to the first surface of the body supporting layer.
  • Each of the exemplary support cushions described herein can also be used as part of a method for actively ventilating a support cushion. In some implementations, a method for actively ventilating a support cushion includes first providing a support of the present invention. Power, in the form of electrical current, is then supplied to the fans in the support cushion, such that the fan draws air from the first surface of the body supporting layer, through upper base layer and lower base layer, and into the bottom layer and away from the body supporting layer of the support cushion to thereby actively ventilate the support cushion and dissipate any heat away from the body supporting layer of the support cushion.
  • Further features and advantages of the present invention will become evident to those of ordinary skill in the art after a study of the description, figures, and non-limiting examples in this document.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an exemplary support cushion, in the form of a mattress assembly, made in accordance with the present invention;
  • FIG. 2 is an exploded, perspective view of the exemplary mattress assembly of FIG. 1;
  • FIG. 3 is a cross-sectional view of the exemplary mattress assembly of FIG. 1 taken along line 3-3 of FIG. 1;
  • FIG. 4 is an exploded perspective view of a fan assembly included in the exemplary mattress assembly of FIG. 1; and
  • FIG. 5 is a cross-sectional view of another exemplary support cushion, in the form of another mattress assembly, made in accordance with the present invention and showing the mattress assembly having an adjustable foundation.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The present invention relates to support cushions and methods for actively ventilating support cushions. In particular, the present invention relates to support cushions, such as mattress assemblies, that make use of a tan located within the support cushion to draw an amount of air through and away from the support cushion. Thus, the support cushions of the present invention allow a user to increase his or her level of comfort, including sleep comfort, by actively ventilating the support cushions.
  • Referring first to FIGS. 1-3, in one exemplary embodiment of the present invention, a support cushion in the form of a mattress assembly 10 is provided that includes a body supporting layer 20 having a first surface 22, which is generally an upper surface of the body supporting layer 20, and a second surface 24, which is opposite the first surface 22 and is generally the lower surface of the body supporting layer 20. The body supporting layer 20 of the mattress assembly 10 includes a first porous foam insert 26 a positioned in a first side 28 of the body supporting layer 20, and a second porous foam insert 26 b that is positioned in a second side 29 of the body supporting layer 20 opposite the first porous foam insert 26 a. Both the first porous foam insert 26 a and the second porous foam insert 26 b are generally sized to support a torso of a user lying on the mattress assembly 10. Thus, as a result of the size and position of the first porous foam insert 26 a and the second porous foam insert 26 b, the first porous foam insert 26 a and the second porous foam insert 26 b are not only configured to support the torso of a user lying on the mattress assembly 10, but the first porous foam insert 26 a and the second porous foam insert 26 b are also configured to assist in dissipating any heat generated by the torso of a user lying on the mattress assembly 10 away from the body supporting layer 20 and the remainder of the mattress assembly 10, as described in further detail below.
  • The body supporting layer 20 of the mattress assembly 10 is generally comprised of a continuous layer of flexible foam for suitably distributing pressure from a user's body or portion thereof across the body supporting layer 20. Such flexible foams include, but are not limited to, latex foam, reticulated or non-reticulated visco-elastic foam (sometimes referred to as memory foam or low-resilience foam), reticulated or non-reticulated non-visco-elastic foam, polyurethane high-resilience foam, expanded polymer foams (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like. In the embodiment shown in FIGS. 1-4, the body supporting layer 20 is comprised of a visco-elastic foam that has a low resilience as well as a sufficient density and hardness, which allows pressure to be absorbed uniformly and distributed evenly across the body supporting layer 20 of the mattress assembly 10. Generally, such visco-elastic foams have a hardness of at least about 10 N to no greater than about 80 N, as measured by exerting pressure from a plate against a sample of the material to a compression of at least 40% of an original thickness of the material at approximately room temperature (i.e., 21° C. to 23° C.), where the 40% compression is held for a set period of time as established by the International Organization of Standardization (ISO) 2439 hardness measuring standard. In some embodiments, the visco-elastic foam has a hardness of about 10 N, about 20 N, about 30 N, about 40 N, about 50 N, about 60 N, about 70 N, or about 80 N to provide a desired degree of comfort and body-conforming qualities.
  • The visco-elastic foam described herein for use in the mattress assembly 10 can also have a density that assists in providing a desired degree of comfort and body-conforming qualities, as well as an increased degree of material durability. In some embodiments, the density of the visco-elastic foam used in the body supporting layer 20 has a density of no less than about 30 kg/m3 to no greater than about 150 kg/m3. In some embodiments, the density of the visco-elastic foam used in the body supporting layer 20 of the mattress assembly 10 is about 30 kg/m3, about 40 kg/m3, about 50 kg/m3, about 60 kg/m3, about 70 kg/m3, about 80 kg/m3, about 90 kg/m3, about 100 kg/m3, about 110 kg/m3, about 120 kg/m3, about 130 kg/m3, about 140 kg/m3, or about 150 kg/m3. Of course, the selection of a visco-elastic foam having a particular density will affect other characteristics of the foam, including its hardness, the manner in which the foam responds to pressure, and the overall feel of the foam, but it is appreciated that a visco-elastic foam having a desired density and hardness can readily be selected for a particular application or mattress assembly as desired. Additionally, it is appreciated that the body supporting layers of the mattress assemblies need not be comprised of a continuous layer of flexible foam at all, but can also take the form of more traditional mattresses, including spring-based mattresses, without departing from the spirit and scope of the subject matter described herein.
  • With even further respect to the body supporting layer 20 of the mattress assembly 10 and, in particular, the porous foam inserts 26 a, 26 b included in the body supporting layer 20 of the mattress assembly 10, the porous foam inserts 26 a, 26 b are also comprised of a visco-elastic foam, but are generally comprised of a viscoelastic foam having a porosity greater than the visco-elastic foam included in the body supporting layer 20 to allow air to enter the porous foam inserts 26 a, 26 b more readily than the remainder of the body supporting layer 20. Of course, it is also contemplated that the porous foam inserts 26 a, 26 b need not be comprised of a visco-elastic foam at all, but that any number of porous flexible foams can be used to produce a porous foam insert having a porosity sufficient to allow for air to readily enter and move through. In this regard, the term “porous foam” or “porous flexible foam” (visco-elastic or otherwise) is used herein to generally refer to flexible foam having a cellular foam structure in which at least a portion of the cells of the foam are essentially skeletal. In other words, at least a portion of the cells of the foam are each defined by a plurality of apertured windows surrounded by cell struts, where the cell windows of the porous foam can be entirely absent (leaving only the cell struts) or substantially missing. In some embodiments, the foam is considered “porous” if at least 50% of the windows of the cells are missing (i.e., windows having apertures therethrough, or windows that are completely missing and therefore leaving only the cell struts). Such structures can be created by destruction or other removal of cell window material, by chemical or mechanical means, or by preventing the complete formation of cell windows during the manufacturing process of the foam. In some embodiments of the present invention, the term “porous” can thus be used interchangeably with the term “reticulated” when referring to flexible foam.
  • Referring still to FIGS. 1-3, the body supporting layer 20 of the mattress assembly 10 is further covered by a comfort portion or layer 62 that is positioned atop the body supporting layer 20. The comfort layer 62 defines a first plurality of channels 66 a and a second plurality of channels 66 b that extend through the comfort layer 62 and that are positioned over the first porous foam insert 26 a and the second porous foam insert 26 b, respectively. By positioning the channels 66 a, 66 b over the first porous foam insert 26 a and the second porous foam insert 26 b, the channels 66 a, 66 b of the comfort layer 62 place the first porous foam insert 26 a and the second porous foam insert 26 b in fluid communication with not only the comfort layer 62, but also with the environment surrounding the mattress assembly 10 and/or the body of a user lying on the mattress assembly 10. In addition to placing the first porous foam insert 26 a and the second porous foam insert 26 b in communication with the surrounding environment, however, the comfort layer 62 also functions to provide a level of comfort to a body of a user or a portion of thereof that is resting on the mattress assembly 10. In this regard, the comfort layer 62 can also be comprised of a visco-elastic foam, but typically has a density, hardness, or both that is less than that of the body supporting layer 20 of the mattress assembly 10 such that the comfort layer 62 provides a softer surface on which to rest the body of a user. For example, in certain embodiments, the mattress assembly 10 includes a body supporting layer 20 that is comprised of visco-elastic foam with a density of about 80 kg/m3 and a hardness of about 13 N, while the comfort layer is comprised of a visco-elastic foam with a density of about 35 kg/m3 and a hardness of about 10 N.
  • Regardless of the particular types of foam included in the body supporting layer 20, the porous foam inserts 26 a, 26 b, and the comfort layer 62, further included in the mattress assembly 10 is an upper base layer 30 that is positioned adjacent to the second surface 24 of the body supporting layer 20. The upper base layer 30 defines a first plurality of air conduits 32 a and a second plurality of air conduits 32 b that extend through the upper base layer 30 and that are positioned below the first porous foam insert 26 a and the second porous foam insert 26 b, respectively, of the body supporting layer 20. By positioning the first plurality of air conduits 32 a and the second plurality of air conduits 32 b below the first porous foam insert 26 a and the second porous foam insert 26 b of the body supporting layer 20, the first plurality of air conduits 32 a and the second plurality of air conduits 32 b are thus placed in direct fluid communication with the first porous foam insert 26 b and the second porous foam insert 26 b, and create a pathway for air to flow from the body supporting layer 20 and through the upper base layer 30, the importance of which is also described in further detail below. Of course, pathways for air to flow from the body supporting layer 20 and through the upper base layer 30 can also be created by using a variety of other means, such as porous foam inserts with or without air conduits and which may be positioned in an exemplary upper base layer without departing from the spirit and scope of the subject matter described herein.
  • In addition to the upper base layer 30, and referring still to FIGS. 1-3, a lower base layer 40 is also included in the exemplary mattress assembly 10 and is positioned adjacent to the upper base layer 30 opposite the body supporting layer 20. The lower base layer 40 defines a first cavity 42 a and a second cavity 42 b, which both extend through the lower base layer 40. The first cavity 42 a of the lower base layer 40 houses a fan assembly 80 a and is positioned below and is in fluid communication with the first plurality of air conduits 32 a in the upper base layer 30. Similarly, the second cavity 42 b houses a separate fan assembly 80 b and is positioned below and is in fluid communication with the second plurality of air conduits 32 b. In this regard, upon activation of the fan assemblies 80 a, 80 b in the first cavity 42 a and the second cavity 42 b defined by the lower base layer 40, the fan assemblies 80 a, 80 b draw air through the channels 66 a, 66 b in the comfort layer 62, through the porous foam inserts 26 a, 26 b in the body supporting layer 20, through air conduits 32 a, 32 b in the upper base layer 30, and then through the fan assemblies 80 a, 80 b and the lower base layer 40, where it is then exhausted air into a bottom layer 50 of the mattress assembly 10 that is positioned adjacent to the lower base layer 40 opposite the upper base layer 30. In other words, by activating the fan assemblies 80 a, 80 b, any air and, consequently, any associated heat around or within the comfort layer 62 and the body supporting layer 20 that may be present as a result of a user lying on the mattress assembly 10 is drawn away from the comfort layer 62, and the body supporting layer 20 and is pulled through the mattress assembly 10 before being dissipated away from the mattress assembly 10 through the bottom layer 50.
  • With further regard to the upper base layer 30 and the lower base layer 40 of the mattress assembly 10, like the body supporting layer 20 and the comfort layer 62, the upper base layer 30 and the lower base layer 40 can also be comprised of a flexible foam, including any of the flexible foams described above with reference to the body supporting layer 20. The flexible foam comprising the body supporting layer 20, however, typically has a density less than that of the upper base layer 30 and the lower base layer 40, such that the upper base layer 30 and the lower base layer 40 have a density and hardness sufficient for supporting the body supporting layer 20 and the comfort layer 62 of the mattress assembly. For example, in the mattress assembly 10 shown in FIGS. 1-3, the upper base layer 30 and the lower base layer 40 are comprised of a higher density, porous polyurethane foam that provides sufficient support to the overlying body supporting layer 20 and the comfort layer, but that also provides an open environment in which air can move by virtue of its porous structure.
  • Similar to the upper base layer 30 and the lower base layer 40, the bottom layer 50 is further comprised of a breathable porous material that promotes the dispersion of the air, including the air exhausted into the bottom layer 50 by the fan assemblies 80 a, 80 b, but that also provides support to the remainder of the mattress assembly 10. In some embodiments, the porous materials included in the bottom layer 50 can be selected from a reticulated foam, knitted spacer fabric, textile, or a composite material. For instance, in some embodiments, it is contemplated that a knitted spacer fabric can be included that is generally comprised of two exterior mesh textile substrates and an insert material such as polyester monofilaments which are configured to keep the two exterior mesh textile substrates separated. Such knitted spacer fabrics include, by way of example, the Wellcool™ 3D spacer fabric manufactured by Quanzhou Wellcool Cushion Technology Co., Ltd (Fujian, China).
  • Regardless of the particular materials used in the bottom layer 50, in the mattress assembly 10, the bottom layer 50 as well as the comfort layer 62, the body supporting layer 20, the upper base layer 30, and the lower base layer 40 are generally secured to one another to prevent the body supporting layer 20, the upper base layer 30, the lower base layer 40, the bottom layer 50, and the comfort layer 62 from moving relative to one another during use. Various means of securing one layer of material to another can be used in this regard, including tape, hook and loop fasteners, conventional fasteners, stitches, and the like. In one particular embodiment, the body supporting layer 20, the upper base layer 30, the lower base layer 40, the bottom layer 50, and the comfort layer 62 are bonded together by an adhesive or cohesive bonding material to create a substantially continuous assembly where the body supporting layer 20, the upper base layer 30, the lower base layer 40, the bottom layer 50, and the comfort layer 62 are fully adhered to one another. Such adhesive bonding materials include, for example, environmentally-friendly, water based adhesives, like SABA AQUABOND RSD, a two-component water-based adhesive product produced by SABA DINXPERLO BV, B-7090 AA, Dinxperlo, Belgium.
  • Turning now to the fan assemblies 80 a, 80 b included in the mattress assembly 10, as indicated above and referring now to FIGS. 1-4, the fan assemblies are housed internally within the mattress assembly 10. More specifically, the fan assemblies 80 a, 80 b are housed within the cavities 42 a, 42 b of the lower base layer 40 with the upper base layer 30 covering the fan assemblies from above and the bottom layer 50 covering the fan assemblies 80 a, 80 b from below. In this regard, each of the fan assemblies 80 a, 80 b includes a fan 82 a, 82 b that is mounted in a housing 84 a, 84 b sized to fit within one of the cavities 42 a, 42 b defined by the lower base layer 40 and to be frictionally held in position within the cavities 42 a, 42 b even when the mattress assembly 10 is moved, tipped, or otherwise adjusted. To further promote the frictional connection between the housings 84 a, 84 b and the cavities 42 a, 42 b defined by the lower base layer 40, the fan assemblies 80 a, 80 b each further include a sleeve 88 a, 88 b that is positioned between each of the housings 84 a, 84 b and the respective cavities 42 a, 42 b and that is comprised of a material which promotes friction between the cavities 42 a, 42 b and the respective housings 84 a, 84 b, for example a textile. The sleeves 88 a, 88 b can also be comprised of a flame retardant material to provide a layer of fire suppression between the fan assemblies 80 a, 80 b and the rest of the mattress assembly 10. Furthermore, each of the sleeves 88 a, 88 b provide a means of securing and positioning an air filter 86 a, 86 b within each of the fan assemblies 80 a, 80 b.
  • Retiring again to FIGS. 1-3, to provide an amount of control over the amount of air being moved by the tan and the active ventilation of the mattress assembly 10, the mattress assembly 10 also includes a power supply 92 for supplying electrical current to the fan assemblies 80 a, 80 b and a controller 90 for controlling the electrical current supplied to the fan assemblies 80 a, 80 b from the power supply 92. By including the controller 90 in the mattress assembly 10, the amount of electrical current supplied to the fan assemblies 80 a, 80 b from the power supply 92 can be controlled to allow for a desired amount of air to move through the mattress assembly 10 and, consequently, a desired amount of heat to be dissipated away from the body supporting layer 20 of the mattress assembly 10. For example, the controller 90 can be used to simply turn the fan assemblies 80 a, 80 b on or off depending on whether the user wishes to ventilate the mattress assembly 10 and remove heat from the body supporting layer 20 of the mattress assembly 10, or can be used to operate the fan assemblies 80 a, 80 b at a particular speed depending on how quickly the user wishes to ventilate the mattress assembly 10 and remove heat from the body supporting layer 20 of the mattress assembly 10. Alternatively, the controller 90 can also be configured to automatically control the electrical current supplied to the fan assemblies 80 a, 80 b from the power supply 92, such that the electrical current can be supplied to the fan assemblies 80 a, 80 b when the first surface 22 of the body supporting layer 20 reaches a desired temperature. As another example, the controller 90 can be configured to allow the electrical current to be supplied to the fan assemblies 80 a, 80 b from the power supply 92 for a predetermined time period, such as for an 8-hour sleeping period or for a length of time a user usually spends in a specific stage of the sleep cycle (e.g., REM sleep) in order to increase the sleep comfort of a user.
  • To provide an additional level of control over the movement of air through the mattress assembly 10, the mattress assembly 10 also includes several features that are operably connected to the body supporting layer 20 and provide input to the controller 90. For example, as shown best in FIG. 2, the mattress assembly 10 includes temperature sensors 94 a, 94 b that are operably connected to porous foam inserts 26 a, 26 b included in the body supporting layer 20 and that provide temperature feedback to the controller 90 to thereby not only allow the controller 90 to selectively provide power to the fan assemblies 80 a, 80 b and adjust how quickly or how much air is moved through the mattress assembly 10 in response to the received temperature feedback, but to also maintain a desired temperature at the first surface 22 of the body supporting layer 20. As another example, and as also shown best in FIG. 2, pressure sensors 96 a, 96 b are also operably connected to the body supporting layer 20 and provide pressure feedback to the controller 90 in response to a user resting upon or adjacent to the first surface 22 of the body supporting layer 20, such that the controller 90 can automatically allow power to be provided to the fan assemblies 80 a, 80 b air to be moved through the mattress assembly 10 as soon as the user lies on the mattress assembly 10 or otherwise places an amount of pressure on the mattress assembly 10. An additional benefit of the inclusion of the pressure sensors 96 a, 96 b is that the controller 90 can be configured to automatically shut off the fan assemblies 80 a, 80 b if a user is no longer lying on the mattress assembly 10. Of course, such desired temperature or pressure feedback settings can be directed, inputted or adjusted at the controller 90 itself, or in certain embodiments of the present invention, can be transmitted to the controller 90 from a remote control (not shown) that is also operably connected to the controller 90.
  • As a refinement to the support cushions of the present invention, and referring now to FIG. 5, in another exemplary embodiment of the present invention, another support cushion in the form of a mattress assembly 110 is provided that includes additional features to increase the comfort and convenience of the user of the mattress assembly 110. Like the support cushion shown in FIGS. 1-4, the mattress assembly 110 also includes: a comfort layer 162 defining a plurality of channels 166; a body supporting layer 120 including a porous foam insert 126; an upper base layer 130 positioned below the body supporting layer 120 and defining a plurality of air conduits 132 in fluid communication with the porous foam insert 126; a lower base layer 140 defining a cavity 142 with a fan assembly 180 located within the cavity 142; and a bottom layer 150 positioned below the lower base layer 140. Further included in the mattress assembly, however, is an adjustable foundation 170 that is positioned below the bottom layer 150 and allows a user to place the mattress assembly 110 into one or more desired ergonomic positions.
  • As a further refinement to the support cushions of the present invention, various covers can also be included and used to cover various portions of the support cushions. For example and referring still to FIG. 5, a cover 172 is included in the mattress assembly 110 and surrounds the comfort layer 162, the body supporting layer 120, the upper base layer 130, the lower base layer 140, and the bottom layer 150 of the mattress assembly 110. In the mattress assembly 110, the cover 172 in the form of a fire sock that surround the various layers is comprised of a flame retardant material. It is also contemplated, however, that an exemplary cover of the present invention can also be comprised of another textile, such as cotton that provide an exemplary support cushion with a unitary appearance, but that also provides a user with a sufficiently soft surface on which to rest while being sufficiently breathable to allow air to be drawn through the cover and the exemplary support cushion.
  • As yet another refinement to the present invention, although the support cushions shown in FIGS. 1-3 and 5 are in the form of mattress assemblies 10, 110 and are dimensionally-sized to support a user lying in a supine or prone position, it is contemplated that the features described herein are equally applicable to other support cushions, such as head pillows, seat cushions, seat backs, neck pillows, leg spacer pillows, mattress topers, overlays, and the like. As such, the phrase “body support” or “body supporting” is used herein to refer to any and all such objects having any size or shape, and that are capable of supporting, or are generally used to support, the body of a user or a portion thereof. Furthermore, although the body supporting layer 20 of the mattress assembly 10 shown in FIGS. 1-3, includes two removable inserts 26 a, 26 b, two sets of air conduits 32 a, 32 b, two cavities 42 a, 42 b, and two fan assemblies 80 a, 80 b, it is also contemplated other embodiments may include any number of removable portions, conduits, cavities, and fan assemblies depending on the size and shape of the particular support cushion.
  • Each of the exemplary support cushions described herein can also be used as part of a method for actively ventilating a support cushion. In some implementations, a method for actively ventilating a support cushion includes first providing a support cushion having: a body supporting layer having a first surface and a second surface opposite the first surface; an upper base layer positioned adjacent to the second surface of the body supporting layer and defining one or more air conduits extending through the upper base layer and in fluid communication with the body supporting layer; a lower base layer positioned adjacent to the upper base layer opposite the body supporting layer and defining a cavity extending through the lower base layer; a bottom layer positioned adjacent to the lower base layer opposite the upper base layer; and a fan located within the cavity define by the lower base layer. Power, in the form of electrical current, is then supplied to the fan, such that the fan draws air from the first surface of the body supporting layer, through upper base layer and lower base layer, and into the bottom layer and away from the body supporting layer of the support cushion to thereby actively ventilate the support cushion and dissipate any heat away from the body supporting layer of the support cushion.
  • Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:
  • REFERENCES
    • 1. U.S. Pat. No. 8,034,445 to Landvik, et al., issued Oct. 11, 2011, and entitled “Laminated Visco-Elastic Support.”
    • 2. U.S. Pat. No. 8,025,964 to Landvik, et al., issued Sep. 27, 2011, and entitled “Laminated Visco-Elastic Support.”
    • 3. U.S. Pat. No. 7,979,374 to Landvik, issued Jul. 12, 2011, and entitled “Product Demonstration System and Method for Using the Same.”
    • 4. U.S. Pat. No. 7,735,169 to Wassilefsky, issued Jun. 15, 2010, and entitled “Comfort Pillow.”
    • 5. U.S. Pat. No. 7,707,670 to Fogg, issued May 4, 2010, and entitled “Pillow top for a Cushion.”
    • 6. U.S. Pat. No. 7,555,615 to Landvik, issued Jun. 30, 2009, and entitled “Product Demonstration System and Method for Using the Same.”
    • 7. U.S. Pat. No. 7,507,468 to Landvik, et al., issued Mar. 24, 2009, and entitled “Laminated Visco-Elastic Support.”
    • 8. U.S. Pat. No. 7,469,437 to Mikkelsen, et al., issued Dec. 30, 2008, and entitled “Reticulated Material Body Support and Method.”
    • 9. U.S. Pat. No. 7,444,702 to Fogg issued Nov. 4, 2008, and entitled “Pillow top for a Cushion.”
    • 10. U.S. Pat. No. 7,415,742 to Wassilefsky, issued Aug. 26, 2008, and entitled “Comfort Pillow.”
    • 11. U.S. Design Pat. No. D558,499 to Maarbjerg, issued Jan. 1, 2008, and entitled “Pillow.”
    • 12. U.S. Pat. No. 7,155,765 to Fogg, issued Jan. 2, 2007, and entitled “Pillow top for a Cushion.”
    • 13. U.S. Design Pat. No. D529,325 to Maarbjerg, issued Oct. 3, 2006, and entitled “Pillow.”
    • 14. U.S. Pat. No. 7,082,633 to Maarbjerg, issued Aug. 1, 2006, and entitled “Pillow.”
    • 15. U.S. Pat. No. 7,051,389 to Wassilefsky, issued May 30, 2006, and entitled “Comfort Pillow.”
    • 16. U.S. Pat. No. 6,866,915 to Landvik, issued Mar. 15, 2005, and entitled “Cushion.”
    • 17. U.S. Pat. No. 6,764,502 to Bieberich, issued Jul. 20, 2004, and entitled “High-Efficiency Cooling Pads, Mattresses, and Sleeves.”
    • 18. U.S. Pat. No. 6,602,579 to Landvik, issued Aug. 5, 2003, and entitled “Cushion”
    • 19. U.S. Pat. No. 6,578,218 to Wassilefsky, issued Jun. 17, 2003, and entitled “Leg Spacer Pillow.”
    • 20. U.S. Pat. No. 6,541,094 to Landvik, et al., issued Apr. 1, 2003, and entitled “Laminated Visco-Elastic Support.”
    • 21. U.S. Pat. No. 6,402,775 to Bierberich, issued Jun. 11, 2002, and entitled “High-Efficiency Cooling Pads, Mattresses, and Sleeves.”
    • 22. U.S. Pat. No. 6,253,401 to Boyd, issued Jul. 3, 2001, and entitled “Air Mattress System.”
    • 23. U.S. Pat. No. 5,448,788 to Wu, issued Sep. 12, 1995, and entitled “Thermoelectric Cool ing-Heating Mattress.”
    • 24, U.S. Design Pat. No. D456,660 to Landvik, issued May 7, 2002, and entitled “Contoured Head Pillow.”
    • 25. U.S. Patent Application Publication No. 2011/0252562 by Mikkelsen, et al., published Oct. 20, 2011, and entitled “Adjustable-Firmness Body Support and Method.”
    • 26. U.S. Patent Application Publication No. 2008/0028536 by Hadden-Cook, published Feb. 7, 2008, and entitled “Mattress with cooling airflow.”
    • 27. U.S. Patent Application Publication No. 2007/0094803 by Fogg, published May 3, 2007, and entitled “Pillow top for a Cushion.”
    • 28. U.S. Patent Application Publication No. 2006/0288490 by Mikkelsen, et al., published Dec. 28, 2006, and entitled “Reticulated Material Body Support and Method.”
    • 29. U.S. Patent Application Publication No. 2006/0277684 by Wassilefsky, published Dec. 14, 2006, and entitled “Comfort Pillow.”
    • 30. U.S. Patent Application Publication No. 2006/0174414 by Maarbjerg, published Aug. 10, 2006, and entitled “Pillow.”
    • 31. U.S. Patent Application Publication No. US2005/0202214 by Landvik, published Sep. 15, 2005, and entitled “Cushion.”
    • 32. U.S. Patent Application Publication No. 2005/0084667 by Landvik, et al., published Apr. 21, 2005, and entitled “Laminated Visco-Elastic Support.”
    • 33. U.S. Patent Application Publication No. 2005/0076446 by Fogg, published Apr. 14, 2005, and entitled “Pillow top for a Cushion.”
    • 34. U.S. Patent Application Publication No. 2004/0073931 by Trussel Jr., et al., published Apr. 15, 2004, and entitled “Interactive Bed Display.”
    • 35. U.S. Patent Application Publication No. 2004/0033351 by Landvik, et al., published Feb. 19, 2004, and entitled “Laminated Visco-Elastic Support.”
    • 36. U.S. Patent Application Publication No. 2003/0171954 by Guerin, et al., published Sep. 11, 2003, and entitled “Method of Managing the Provision of Healthcare and System for Effecting Same.”
    • 37. U.S. Patent Application Publication No. 2001/0021438 by Landvik, published Sep. 13, 2001, and entitled “Cushion.”
    • 38. International Patent Application Publication No. WO 2008/143467 by Ko, published Mar. 19, 2009, and entitled “Mattress Using Thermoelectric Module.”
    • 39. International Patent Application Publication No. WO 2012/160502 by Boersma, et al., published Nov. 29, 2012, and entitled “Temperature-Controlled Multi-Zone Mattress-Style Support.”
    • 40. U.S. Pat. No. 5,730,120 to Yokers, issued Mar. 24, 1998, and entitled “Bed Ventilator System.”
    • 41. U.S. Pat. No. 8,490,233 to Essers, issued Jul. 23, 2013, and entitled “Mattress, In Particular for Use in the Care and Hospital Sector.”
    • 42. U.S. Design Pat. No. D686,723 to Gulae, et al., issued Jul. 23, 2013, and entitled “Bed Fan.”
    • 43. U.S. Patent Application Publication No. 2013/0025069 by Ruehlmann, et al., published Jan. 31, 2013, and entitled “Foam Mattress Assembly with Increased Airflow and Independent Suspension.”
  • One of ordinary skill in the art will recognize that additional embodiments are also possible without departing from the teachings of the present invention or the scope of the claims which follow. This detailed description, and particularly the specific details of the exemplary embodiments disclosed herein, is given primarily for clarity of understanding, and no unnecessary limitations are to be understood therefrom, for modifications will become apparent to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention.

Claims (27)

What is claimed is:
1. A support cushion, comprising:
a body supporting layer having a first surface and a second surface opposite the first surface, the body supporting layer including one or more porous foam inserts;
an upper base layer positioned adjacent to the second surface of the body supporting layer, the upper base layer defining one or more air conduits extending through the upper base layer and in fluid communication with the one or more porous foam inserts;
a lower base layer positioned adjacent to the upper base layer opposite the body supporting layer, the lower base layer defining a cavity extending through the lower base layer;
a bottom layer positioned adjacent to the lower base layer opposite the upper base layer; and
a fan positioned within the cavity defined by the lower base layer.
2. The support cushion of claim 1, further comprising a comfort layer positioned adjacent to the first surface of the body supporting layer, the comfort layer including a top surface and a bottom surface opposite the top surface.
3. The support cushion of claim 2, wherein the comfort layer defines a plurality of channels extending from the top surface to the bottom surface of the comfort layer, the plurality of channels in fluid communication with the one or more porous foam inserts.
4. The support cushion of claim 3, wherein the bottom layer is comprised of a porous material.
5. The support cushion of claim 4, wherein the porous material is selected from the group consisting of porous foams, knitted spacer fabrics, textiles, and composite materials.
6. The support cushion of claim 1, further comprising a housing for the fan, the housing positioned within the cavity defined by the lower base layer.
7. The support cushion of claim 6, further comprising an air filter positioned within the housing.
8. The support cushion of claim 6, further comprising a sleeve positioned around the housing and with in the cavity of the lower base layer.
9. The support cushion of claim 8, wherein the sleeve is comprised of a material configured to provide a frictional connection between the housing and the lower base layer.
10. The support cushion of claim 9, wherein the sleeve is comprised of a flame retardant material.
11. The support cushion of claim 1, wherein the body supporting layer, the upper base layer, and the lower base layer are comprised of a flexible foam.
12. The support cushion of claim 11, wherein the body supporting layer is comprised of a visco-elastic foam.
13. The support cushion of claim 11, wherein the flexible foam comprising the body supporting layer has a porosity less than that of the one or more porous foam inserts.
14. The support cushion of claim 1, wherein the body supporting layer has a density less than that of the upper base layer, the lower base layer, or both.
15. The support cushion of claim 2, wherein the comfort layer is comprised of a visco-elastic foam.
16. The support cushion of claim 15, wherein the body supporting layer is comprised of a visco-elastic foam, and wherein the comfort layer has a density less than that of the body supporting layer.
17. The support cushion of claim 1, further comprising:
a power supply for supplying electrical current to the fan; and
a controller for controlling the electrical current supplied to the fan from the power supply.
18. The support cushion of claim 17, wherein the controller is configured to allow power to be supplied to the fan for a predetermined time period.
19. The support cushion of claim 17, further comprising one or more temperature sensors for providing thermal feedback to the controller, the one or more temperature sensors operably connected to the body supporting layer.
20. The support cushion of claim 17, further comprising one or more pressure sensors for providing pressure feedback to the controller, the one or more pressure sensors operably connected to the body supporting layer.
21. The support cushion of claim 1, further comprising a cover configured to surround the body supporting layer, the upper base layer, the lower base layer, and the bottom layer.
22. The support cushion of claim 21, wherein the cover is comprised of a flame retardant material.
23. The support cushion of claim 21, wherein the cover is comprised of a textile.
24. A mattress assembly, comprising:
a body supporting layer having a first surface and a second surface opposite the first surface;
an upper base layer positioned adjacent to the second surface of the body supporting layer, the upper base layer defining one or more air conduits extending through the upper base layer and in fluid communication with the body supporting layer;
a lower base layer positioned adjacent to the upper base layer opposite the body supporting layer, the lower base layer defining a cavity extending through the lower base layer;
a bottom layer positioned adjacent to the lower base layer opposite the upper base layer; and
a fan positioned within the cavity in the lower base layer.
25. The mattress assembly of claim 24, wherein the body supporting layer includes one or more porous foam inserts positioned over the e one or more one or more air conduits defined by the upper base layer.
26. The mattress assembly of claim 24, further comprising an adjustable foundation positioned below the bottom layer.
27. A method of actively ventilating a support cushion, comprising:
providing a support cushion including
a body supporting layer having a first surface and a second surface opposite the first surface,
an upper base layer positioned adjacent to the second surface of the body supporting layer, the upper base layer defining one or more air conduits extending through the upper base layer and in fluid communication with the body supporting layer,
a lower base layer positioned adjacent to the upper base layer opposite the body supporting layer, the lower base layer defining a cavity extending through the lower base layer,
a bottom layer positioned adjacent to the lower base layer opposite the upper base layer, and
a fan located within the cavity defined by the lower base layer; and
supplying power to the fan, such that the fan draws air from the first surface of the body supporting layer, through the upper base layer and the lower base layer, and into the bottom layer and away from the body supporting layer of the support cushion.
US15/568,368 2015-04-23 2015-04-23 Support cushions and methods for active ventilation of same Abandoned US20180098637A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/027262 WO2016171692A1 (en) 2015-04-23 2015-04-23 Support cushions and methods for active ventilation of same

Publications (1)

Publication Number Publication Date
US20180098637A1 true US20180098637A1 (en) 2018-04-12

Family

ID=57143319

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/568,368 Abandoned US20180098637A1 (en) 2015-04-23 2015-04-23 Support cushions and methods for active ventilation of same

Country Status (6)

Country Link
US (1) US20180098637A1 (en)
EP (2) EP3560389A1 (en)
CN (1) CN107529895A (en)
AU (1) AU2015392446A1 (en)
HK (1) HK1247537A1 (en)
WO (1) WO2016171692A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006085A1 (en) * 2018-06-29 2020-01-02 Tempur World, Llc Body support cushion with ventilation system
US20200078242A1 (en) * 2018-09-10 2020-03-12 Lamont Smith Therapeutic mattress
US20200237106A1 (en) * 2019-01-25 2020-07-30 Bedgear, Llc Bedding system
FR3104014A1 (en) * 2019-12-05 2021-06-11 Gérard Guez Osteopathic box spring mattress
US20210204715A1 (en) * 2020-01-03 2021-07-08 Sleep Number Corporation Bed Microclimate Control
US11297953B2 (en) 2008-07-18 2022-04-12 Sleep Number Corporation Environmentally-conditioned bed
US11311111B2 (en) 2020-04-06 2022-04-26 Purple Innovation, Llc Ventilated mattresses

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107136814B (en) * 2017-06-19 2023-10-27 湖北省海舍创享健康智能科技有限公司 Mattress heating layer regulated by air
WO2019089917A1 (en) * 2017-11-01 2019-05-09 Bedgear, Llc Mattress assembly
WO2021002747A2 (en) * 2019-06-30 2021-01-07 Top Vision Group B.V. Compactable matress and method

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2176067Y (en) * 1993-07-02 1994-09-07 游画理 Air conditioning mattress
US5448788A (en) 1994-03-08 1995-09-12 Wu; Shuenn-Jenq Thermoelectric cooling-heating mattress
GB2290256B (en) 1994-06-03 1997-10-29 Fagerdala World Foams Ab Laminated supports
US8025964B2 (en) 1994-06-03 2011-09-27 Tempur World, Llc Laminated visco-elastic support
US5730120A (en) 1997-02-20 1998-03-24 Electro-Appliance Company, Inc. Bed ventilator system
US6253401B1 (en) 1998-07-15 2001-07-03 Dennis Boyd Air mattress system
US6402775B1 (en) 1999-12-14 2002-06-11 Augustine Medical, Inc. High-efficiency cooling pads, mattresses, and sleeves
US6866915B2 (en) 2000-01-11 2005-03-15 Tempur World, Llc Cushion
US6602579B2 (en) 2000-01-11 2003-08-05 Tempur World, Inc. Cushion
SE522212C2 (en) * 2000-03-09 2004-01-20 Stjernfjaedrar Ab Ventilated bed with temperature control
US6578218B2 (en) 2000-12-07 2003-06-17 Tempur World, Inc. Leg spacer pillow
US6786541B2 (en) * 2001-01-05 2004-09-07 Johnson Controls Technology Company Air distribution system for ventilated seat
ES2700676T3 (en) 2001-01-10 2019-02-18 Tempur World Llc Product demonstration system and procedure to use the same
USD456660S1 (en) 2001-08-01 2002-05-07 Tempur World, Inc. Contoured head pillow
US6546576B1 (en) * 2001-11-05 2003-04-15 Ku-Shen Lin Structure of a ventilated mattress with cooling and warming effect
US20030171954A1 (en) 2002-02-01 2003-09-11 Tempur World, Inc. Method of managing the provision of healthcare and system for effecting same
RU2306837C2 (en) 2002-05-24 2007-09-27 Темпур Уорлд, Ллс. Cushion and methods of its production
US20040073931A1 (en) 2002-10-10 2004-04-15 Tempur World, Inc. Interactive bed display
US20050011009A1 (en) * 2003-07-15 2005-01-20 Hsiang-Ling Wu Ventilation mattress
US7155765B2 (en) 2003-10-14 2007-01-02 Tempur World, Llc Pillow top for a cushion
JP2005192883A (en) * 2004-01-09 2005-07-21 Hitachi Hometec Ltd Thermotherapy apparatus
GB0412998D0 (en) * 2004-06-11 2004-07-14 Statham John Environmental conditioning
JP2006042985A (en) * 2004-08-02 2006-02-16 Bridgestone Corp Seat pad and seat
US7082633B1 (en) 2005-02-04 2006-08-01 Tempur World, Llc Pillow
USD529325S1 (en) 2005-02-04 2006-10-03 Tempur World, Llc Pillow
US7469437B2 (en) 2005-06-24 2008-12-30 Tempur-Pedic Management, Inc. Reticulated material body support and method
GB2435320B (en) * 2006-02-17 2008-10-08 Richards Morphy N I Ltd A device for temperature conditioning an air supply
US20080028536A1 (en) 2006-08-04 2008-02-07 Charlesette Hadden-Cook Mattress with cooling airflow
WO2008143467A2 (en) 2007-05-22 2008-11-27 Sungjun Ko Mattress using thermoelectric module
CN201055161Y (en) * 2007-06-22 2008-05-07 广州兴杭塑胶制品有限公司 Minitype electric fan energy-saving bed mattress with winding drum expanded plastic supporting post
CN106263796A (en) * 2008-12-22 2017-01-04 泰普尔-佩迪克管理有限责任公司 Body support assembly
WO2010075291A1 (en) 2008-12-23 2010-07-01 Tempur-Pedic Management, Inc. Adjustable-firmness body support and method
DE102009014265B4 (en) 2009-02-05 2017-06-01 Heinrich Essers Gmbh & Co. Kg Mattress for use in the nursing and hospital sector
US8332975B2 (en) * 2009-08-31 2012-12-18 Gentherm Incorporated Climate-controlled topper member for medical beds
BR112013029688A2 (en) 2011-05-23 2017-01-17 Koninkl Philips Nv system and method of microclimate adjustment of bed environments, use of a system and use of heating by means of electrical resistance wires in combination with air flow
CA2783753A1 (en) 2011-07-29 2013-01-29 Dreamwell, Ltd. Foam mattress assembly with increased airflow and independent suspension
USD686723S1 (en) 2012-02-14 2013-07-23 Brookstone Purschasing, Inc. Bed fan
US20130238042A1 (en) * 2012-03-12 2013-09-12 Richard Gildersleeve Systems and methods for providing temperature-controlled therapy
JP5964198B2 (en) * 2012-10-15 2016-08-03 東洋ゴム工業株式会社 Manufacturing method of seat pad
CN104869869B (en) * 2012-10-18 2017-06-09 泰普尔-派迪克管理有限责任公司 Supporting pad and the method for controlling the surface temperature of the supporting pad
US20160128487A1 (en) * 2013-06-18 2016-05-12 Tempur-Pedic Management, Llc Support Cushions Including Thermoelectric Elements and Air Conduits, and Methods for Controlling Surface Temperature of Same
EP2957191B1 (en) * 2014-06-17 2019-02-27 Stefan Larsson A top mattress

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11297953B2 (en) 2008-07-18 2022-04-12 Sleep Number Corporation Environmentally-conditioned bed
EP4062803A1 (en) * 2018-06-29 2022-09-28 Tempur World, LLC Body support cushion with ventilation system
WO2020006085A1 (en) * 2018-06-29 2020-01-02 Tempur World, Llc Body support cushion with ventilation system
US11160386B2 (en) 2018-06-29 2021-11-02 Tempur World, Llc Body support cushion with ventilation system
US20200078242A1 (en) * 2018-09-10 2020-03-12 Lamont Smith Therapeutic mattress
US20200237106A1 (en) * 2019-01-25 2020-07-30 Bedgear, Llc Bedding system
FR3104014A1 (en) * 2019-12-05 2021-06-11 Gérard Guez Osteopathic box spring mattress
US20210204715A1 (en) * 2020-01-03 2021-07-08 Sleep Number Corporation Bed Microclimate Control
US11678749B2 (en) 2020-01-03 2023-06-20 Sleep Number Corporation Pressure-based bed microclimate control
US11684166B2 (en) 2020-01-03 2023-06-27 Sleep Number Corporation Power consumption monitor and control for bed
US11684168B2 (en) 2020-01-03 2023-06-27 Sleep Number Corporation Bed microclimate control based on sampling
US11684167B2 (en) 2020-01-03 2023-06-27 Sleep Number Corporation Bed air control system
US11779128B2 (en) 2020-01-03 2023-10-10 Sleep Number Corporation Bed microclimate controller
US11889925B2 (en) 2020-01-03 2024-02-06 Sleep Number Corporation Bed microclimate control in multiple zones
US11896134B2 (en) 2020-01-03 2024-02-13 Sleep Number Corporation Bed microclimate control with external heat compensation
US11918119B2 (en) 2020-01-03 2024-03-05 Sleep Number Corporation Bed microclimate control with preparation cycle
US11930934B2 (en) 2020-01-03 2024-03-19 Sleep Number Corporation Mattress reinforcement system
US11937701B2 (en) * 2020-01-03 2024-03-26 Sleep Number Corporation Bed microclimate control
US11311111B2 (en) 2020-04-06 2022-04-26 Purple Innovation, Llc Ventilated mattresses

Also Published As

Publication number Publication date
CN107529895A (en) 2018-01-02
EP3285618B1 (en) 2020-01-08
EP3285618A4 (en) 2018-10-31
AU2015392446A1 (en) 2017-11-09
HK1247537A1 (en) 2018-09-28
WO2016171692A1 (en) 2016-10-27
EP3285618A1 (en) 2018-02-28
EP3560389A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
EP3285618B1 (en) Support cushions with active ventilation
US20160128487A1 (en) Support Cushions Including Thermoelectric Elements and Air Conduits, and Methods for Controlling Surface Temperature of Same
US9596945B2 (en) Support cushions and methods for dissipating heat away from the same
US20220232990A1 (en) Environmetally-conditioned bed
US9408475B2 (en) Support cushions and methods for controlling surface temperature of same
US10827845B2 (en) Support cushions including a support insert with a bag for directing air flow, and methods for controlling surface temperature of same
US9913546B2 (en) Support cushion and method for converting a temperature difference within the same into an electric voltage
US20150208815A1 (en) Support cushions including reticulated materials and methods for controlling surface temperature of same
US20170150822A1 (en) Support cushion cover assemblies for removing heat and humidity
WO2014062188A1 (en) Support cushions including reticulated materials and methods for controlling surface temperature of same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEMPUR-PEDIC MANAGEMENT, LLC, KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRIESE, PAUL E.;POWELL, DANIEL S.;BURTON, LESLIE A.;AND OTHERS;SIGNING DATES FROM 20150325 TO 20171019;REEL/FRAME:044008/0544

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT (SUPPLEMENT);ASSIGNORS:TEMPUR WORLD, LLC;SEALY TECHNOLOGY, LLC;REEL/FRAME:046024/0282

Effective date: 20180426

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: PATENT SECURITY AGREEMENT (SUPPLEMENT);ASSIGNORS:TEMPUR WORLD, LLC;SEALY TECHNOLOGY, LLC;REEL/FRAME:046024/0282

Effective date: 20180426

AS Assignment

Owner name: TEMPUR WORLD, LLC, KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEMPUR-PEDIC MANAGEMENT, LLC;REEL/FRAME:048019/0447

Effective date: 20171221

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SEALY TECHNOLOGY LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065332/0410

Effective date: 20231010

Owner name: TEMPUR WORLD, LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065332/0410

Effective date: 20231010

Owner name: TEMPUR WORLD, LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065344/0650

Effective date: 20231010

Owner name: SEALY TECHNOLOGY LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065344/0650

Effective date: 20231010

Owner name: TEMPUR-PEDIC MANAGEMENT, LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:065344/0650

Effective date: 20231010