US20180094047A1 - Anti-pre-s1 hbv antibodies - Google Patents

Anti-pre-s1 hbv antibodies Download PDF

Info

Publication number
US20180094047A1
US20180094047A1 US15/566,555 US201615566555A US2018094047A1 US 20180094047 A1 US20180094047 A1 US 20180094047A1 US 201615566555 A US201615566555 A US 201615566555A US 2018094047 A1 US2018094047 A1 US 2018094047A1
Authority
US
United States
Prior art keywords
seq
res
hbv
dyavs
gdsvs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/566,555
Inventor
Jianhua Sui
Dan Li
Wenhui Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huahui Health Ltd
Original Assignee
Huahui Health Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huahui Health Ltd. filed Critical Huahui Health Ltd.
Priority to US15/864,494 priority Critical patent/US10544205B2/en
Publication of US20180094047A1 publication Critical patent/US20180094047A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/082Hepadnaviridae, e.g. hepatitis B virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • HBV infection and related diseases result in about one million deaths annually.
  • the surface antigen of HBV is composed of Large (L), Middle (M) and Small (S) proteins.
  • L and M proteins have additional domains at their N terminal as compared to the S protein which only has the S domain.
  • L contains Pre-S1, Pre-S2, and S domains;
  • M contains Pre-S2 and S domains;
  • S protein contains only the S domain.
  • the pre-S1domian in L protein is the target molecule of HBV receptor(s) expressed on human hepatic cell surface, and antibodies to the pre-S1 domain of HBV have been reported, e.g. Watashi et al, Int. J. Mol. Sci. 2014, 15, 2892-2905, refs 22-27.
  • HBV receptor in WO2013159243A1, a humanized antibody from mouse hybridoma, KR127 in U.S. Pat. No. 7,115,723, and pre-S1 peptides in U.S. Pat. No. 7,892,754.
  • the invention provides methods and compositions for immune-activation by inhibiting HBV and/or HDV.
  • the invention provides an antibody antigen binding domain which specifically binds HBV Pre-S1, and comprises complementarity determining region (CDR) 1, CDR2 and CDR3, in a combination selected from (a)-(r) as follows, wherein the antibody (Ab), heavy chain (HC) or light chain (LC) and CDR nomenclature system (Kabat, IMGT or composite) from which the CDR combinations derive are shown in the first column, and residues in bold text are Kabat system, and residues underlined are IMGT system:
  • HCDRs of unique HBV Pre-S1 specific antibodies MAbs CDR1 CDR2 CDR3 m36-HC GFTFD DYA MH G ISWNSGSI GYADSVKG AK TSYGGAFDI K: SEQ ID NO: 59, K: SEQ ID NO: 60 K: SEQ ID NO: 61, res. 6-10 res. 3-11 I: SEQ ID NO: 59, I: SEQ ID NO: 60, I: SEQ ID NO: 61 res. 1-8 res.
  • SEQ ID NO: 65 C: SEQ ID NO: 66 C: SEQ ID NO: 67 71-LC RSS QSLLHSNGY NY LGSNRAS MQGLQPPIT K: SEQ ID NO: 68, K: SEQ ID NO: 69 K: SEQ ID NO: 70 res. 1-12 I: SEQ ID NO: 68, I: SEQ ID NO: 69 I: SEQ ID NO: 70 res.
  • SEQ ID NO: 89 C SEQ ID NO: 90 C: SEQ ID NO: 91 2H5-LC SGS SSNIGSYY VYWY GNN QRPS QSYDSSLSGVI K: SEQ ID NO: 92 K: SEQ ID NO: 93 K: SEQ ID NO: 94 I: SEQ ID NO: 92, I: SEQ ID NO: 93, I: SEQ ID NO: 94 res. 4-11 res.
  • HCDRs of antibodies derived from 2H5 VH-chain shuffled libraries MAbs HCDR1 HCDR2 HCDR3 #4 VH GDSVS SKSVT WN R TYYRSKWFN DYAVS AR AKMGGMDV K: SEQ ID NO: 101, K: SEQ ID NO: 102 K: SEQ ID NO: 103, res 6-12 res 3-10 I: SEQ ID NO: 101, I: SEQ ID NO:102, I: SEQ ID NO: 103 res. 1-10 res.
  • SEQ ID NO: 101 C SEQ ID NO: 102 C: SEQ ID NO: 103 #31 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS TR QSWHGMEV K: SEQ ID NO: 104, K: SEQ ID NO: 105 K: SEQ ID NO: 106, res 6-12 res 3-10 I: SEQ ID NO: 104, I: SEQ ID NO: 105, I: SEQ ID NO: 106 res. 1-10 res.
  • SEQ ID NO: 104 C SEQ ID NO: 105 C: SEQ ID NO: 106 #32 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS AR SIATGTDY
  • K SEQ ID NO: 107
  • K SEQ ID NO: 108
  • K SEQ ID NO: 109, res 6-12 res 3-10
  • SEQ ID NO: 107 C SEQ ID NO: 108 C: SEQ ID NO: 109 #69 VH GDSVS SSRAT WN R TYYRSKWFN DYAVS AR AKMGGMDV
  • K SEQ ID NO: 110, K: SEQ ID NO: 111 K: SEQ ID NO: 112, res 6-12 res 3-10
  • SEQ ID NO: 110 C SEQ ID NO: 111 C: SEQ ID NO: 112 A14 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS AR GTRWGMDV
  • K SEQ ID NO: 113
  • K SEQ ID NO: 114
  • SEQ ID NO: 113 C SEQ ID NO: 114 C: SEQ ID NO: 115 A21 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS AR AKVYGVDV K: SEQ ID NO: 116, K: SEQ ID NO: 117 K: SEQ ID NO: 118, res 6-12 res 3-10 I: SEQ ID NO: 116, I: SEQ ID NO: 117, I: SEQ ID NO: 118 res. 1-10 res.
  • SEQ ID NO: 116 C SEQ ID NO: 117 C: SEQ ID NO: 118 B103 VH GDSVS SKSAT WN R TYYRSRWFN DYAVS AR GNMGAMDV
  • K SEQ ID NO: 119
  • K SEQ ID NO: 120
  • K SEQ ID NO: 121, res 6-12 res 3-10
  • SEQ ID NO: 122 C SEQ ID NO: 123 C: SEQ ID NO: 124 B139 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS AR QASNGFDI
  • K SEQ ID NO: 125
  • K SEQ ID NO: 126
  • I SEQ ID NO: 127 res. 1-10 res.
  • SEQ ID NO: 125 C SEQ ID NO: 126 C: SEQ ID NO: 127 B172 VH GDSVS SNSAA WN R TYYRSKWYN DYAVS AR QGTTGFDY
  • K SEQ ID NO: 128, K: SEQ ID NO: 129 K: SEQ ID NO: 130, res 6-12 res 3-10 I: SEQ ID NO: 128, I: SEQ ID NO: 129, I: SEQ ID NO: 130 res. 1-10 res. 2-10 C: SEQ ID NO: 128 C: SEQ ID NO: 129 C: SEQ ID NO: 130
  • HCDRs of antibodies derived from A14 VL-chain shuffled libraries MAbs LCDR1 HCDR2 HCDR3 #8 VL SGS SSNIGNYY VSWY DNA KRPS QSYDNSLSGLV K: SEQ ID NO: 131 K: SEQ ID NO: 132 K: SEQ ID NO: 133 I: SEQ ID NO: 131, I: SEQ ID NO: 132, I: SEQ ID NO: 133 res. 4-11 res.
  • SEQ ID NO: 134 C SEQ ID NO: 135 C: SEQ ID NO: 136 #20-m1 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV K: SEQ ID NO: 137 K: SEQ ID NO: 138 K: SEQ ID NO: 139 I: SEQ ID NO: 137, I: SEQ ID NO: 138, I: SEQ ID NO: 139 res. 4-11 res.
  • SEQ ID NO: 137 C SEQ ID NO: 138 C: SEQ ID NO: 139 #20-m2 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV K: SEQ ID NO: 140 K: SEQ ID NO: 141 K: SEQ ID NO: 142 I: SEQ ID NO: 140, I: SEQ ID NO: 141, I: SEQ ID NO: 142 res. 4-11 res. 1-3 C: SEQ ID NO: 140 C: SEQ ID NO: 141 C: SEQ ID NO: 142 #20-m3 VL SGT SSNIGSYY VYWY TND QRPS QSYDSSLRAVV .
  • K SEQ ID NO: 143 K: SEQ ID NO: 144 K: SEQ ID NO: 145 I: SEQ ID NO: 143, I: SEQ ID NO: 144, I: SEQ ID NO: 145 res. 4-11 res. 1-3 C: SEQ ID NO: 143 C: SEQ ID NO: 144 C: SEQ ID NO: 145
  • the invention provides an antibody antigen binding domain comprising a heavy chain variable region (Vh) comprising a CDR1, CDR2 and CDR3 combination and a light chain variable region (VI) comprising a CDR1, CDR2 and CDR3 combination, or comprising a heavy chain variable region (Vh) and/or a light chain variable region (VD, selected. from: m36, 71, 76, T47, m1Q, 2H5, m150; and 4, 31, 32, 69, A14, A21, B103, B129, B139, B172; and 8, 20, 20-m1, 20-m2, 20-m3.
  • Vh heavy chain variable region
  • VI light chain variable region
  • VD light chain variable region
  • the antibody antigen binding domain specifically binds aa11-28 or aa19-25 of pre-S1.
  • the invention also provides antibodies, particularly monoclonal antibodies, and F(ab) or F(ab)2 comprising a subject binding domain.
  • the invention also provides novel polynucleotides such as cDNAs and expression vectors, encoding a subject antigen binding domain, and cells comprising such polynucleotides, and non-human animals comprising such cells.
  • the polynucleotides may be operably linked to a heterologous transcription regulating sequence for expression, and may be incorporated into such vectors, cells, etc.
  • the invention provides methods of using the subject domains to treat HBV or HDV infection, or to induce antibody-dependent cell-mediated cytotoxicity (ADCC), comprising administering the domain to a person determined to have HBV or HDV infection, to have been exposed to HBV or HDV, to be at high risk for HBV or HDV exposure or infection, to be in need of Pre-S1 domain antagonism, or to be otherwise in need thereof.
  • the invention further provides the use of subject compositions for the manufacture of a medicament for HBV or HDV infection, optionally in conjunction with a virus replication inhibitor.
  • FIG. 1 HBV neutralization by 10 antibodies from 2H5 VH-chain shuffled library selections.
  • antibody is used in the broadest sense and specifically covers antibodies (including full length monoclonal antibodies) and antibody fragments so long as they recognize HBV/HDV Pre-S1 or otherwise inhibit HBV/HDV.
  • An antibody molecule is usually monospecific, but may also be described as idiospecific, heterospecific, or polyspecific.
  • Antibody molecules bind by means of specific binding sites to specific antigenic determinants or epitopes on antigens.
  • Antibody fragments comprise a portion of a full length antibody, generally the antigen binding or variable region thereof. Examples of antibody fragments include Fab, Fab′, F(ab′).sub.2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • Monoclonal antibodies may be obtained by methods known to those skilled in the art. See, for example Kohler et al (1975); U.S. Pat. No. 4,376,110; Ausubel et al (1987-1999); Harlow et al (1988); and Colligan et al (1993).
  • the mAbs of the invention may be of any immunoglobulin class including IgG, IgM, IgE, IgA, and any subclass thereof.
  • a hybridoma producing a mAb may be cultivated in vitro or in vivo.
  • High titers of mAbs can be obtained in in vivo production where cells from the individual hybridomas are injected intraperitoneally into mice, such as pristine-primed Balb/c mice to produce ascites fluid containing high concentrations of the desired mAbs.
  • MAbs of isotype IgM or IgG may be purified from such ascites fluids, or from culture supernatants, using column chromatography methods well known to those of skill in the art.
  • isolated polynucleotide refers to a polynucleotide segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs.
  • the term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA, which is part of a hybrid gene encoding additional polypeptide sequence.
  • a “construct” means any recombinant polynucleotide molecule such as a plasmid, cosmid, virus, autonomously replicating polynucleotide molecule, phage, or linear or circular single-stranded or double-stranded DNA or RNA polynucleotide molecule, derived from any source, capable of genomic integration or autonomous replication, comprising a polynucleotide molecule where one or more polynucleotide molecule has been linked in a functionally operative manner, i.e. operably linked.
  • a recombinant construct will typically comprise the polynucleotides of the invention operably linked to transcriptional initiation regulatory sequences that will direct the transcription of the polynucleotide in the intended host cell.
  • transcriptional initiation regulatory sequences that will direct the transcription of the polynucleotide in the intended host cell.
  • Both heterologous and non-heterologous (i.e., endogenous) promoters can be employed to direct expression of the nucleic acids of the invention.
  • a “vector” refers any recombinant polynucleotide construct that may be used for the purpose of transformation, i.e. the introduction of heterologous DNA into a host cell.
  • a “plasmid” refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • a viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • expression vectors are referred to herein as “expression vectors”.
  • an “expression vector” as used herein refers to a nucleic acid molecule capable of replication and expressing a gene of interest when transformed, transfected or transduced into a host cell.
  • the expression vectors comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desired, provide amplification within the host.
  • the expression vector further comprises a promoter to drive the expression of the polypeptide within the cells.
  • Suitable expression vectors may be plasmids derived, for example, from pBR322 or various pUC plasmids, which are commercially available. Other expression vectors may be derived from bacteriophage, phagemid, or cosmid expression vectors.
  • human monoclonal antibodies that can block HDV and HBV viral infections. These antibodies were identified from a large phage display antibody library, which was established using peripheral blood mononuclear cells from 93 healthy donors. By selection and screening of the antibody library using pre-S1 domain of HBV envelope protein as a target, a panel of human monoclonal antibodies with neutralizing activities against HBV and HDV infections were identified. Among them, 2H5, showed best neutralizing activities against HBV and HDV infections. The co-crystal structure of 2H5 in complex with its target (8 amino acids of the Pre-S1 domain) was solved. By optimizing 2H5 by chain shuffling approach we developed even more potent neutralizing antibodies.
  • Antigen Target Pre-S1 Peptides.
  • NC36b a peptide comprising of residues 4-38 of the pre-S1 domain of HBV L protein with a biotin modification at its C-terminus.
  • m47b a myristoylated lipopeptide comprising of amino acids 2-48 of pre-S1 domain with a biotin modification at the C-terminus and a myristoylation modification at the N-terminus.
  • a human non-immune scFv (Single-chain variable fragment) antibody library was constructed from peripheral blood mononuclear cells (PBMCs) of 93 healthy donors.
  • the library has a size of a total of 1.1 ⁇ 10 10 members.
  • Phage particles expressing scFv on their surface were prepared from the library and used for selection of scFvs against the synthesized NC36b and m 47b.
  • the peptides were captured on streptavidin-conjugated magnetic M-280 Dynabeads® (Life Technologies) and then incubated with 5 ⁇ 10 12 phage particles prepared from the library, respectively. For each peptide, two rounds of selection were performed. For each round of selection, in order to obtain high affinity antibodies, the amount of peptides captured onto the magnetic beads was optimized and extensive washing steps were applied.
  • VH variable regions of heavy
  • VL variable regions of heavy chain
  • the antibody clones with unique sequence were either produced as purified phage-scFv particles or converted to scFv-Fc minibodies or full-length human IgG1s, and then tested for their binding activities by ELISA, and HBV and HDV neutralization activities in cell cultures. By these assays, antibodies were ranked based on their binding activity and neutralization activity. The top antibody with the highest neutralization activity was chosen for further development.
  • the phage-scFvs in the supernatant of 10-30 mL bacterial culture were precipitated by PEG/NaCL and then quantified by a spectrometer. Activities of different phage-scFvs for antigen binding or neutralizing viral infection were evaluated based on the dose-response of serial diluted phage-Abs that was normalized to the same concentration.
  • ScFv encoding gene from the phage-scFv expressing vector was subcloned into an expression vector containing human IgG1 Fc fragment at C-terminus of the scFv.
  • 293F Life Technologies
  • 293T cells ATCC
  • VH and VL coding sequence of a scFv were separately subcloned into antibody heavy chain (HC) expression vector and light chain (LC) expression vector.
  • HC antibody heavy chain
  • LC light chain
  • IgG1 antibody 293F or 293T cells were transiently co-transfected with the two expression plasmids (HC+LC plasmids) at a 1:1 ratio. 72 hours after transfection, the cell culture supernatant were harvested for purification of IgG1 by Protein A affinity chromatography.
  • phage-scFvs were detected by adding HRP-conjugated mouse anti-M13 antibody (GE Healthcare) and incubated for 30 mins at 30° C. In between each incubation step, the ELISA plate was washed for 6 times with PBST solution (0.05% Tween20 containing PBS) at 200 ⁇ L per well.
  • HRP-conjugated antibody incubation the ELISA signal was developed by incubating with TMB substrate (Sigma) for 5-10 mins at 30° C. and then stop the reaction with 2M H 2 SO 4 at 25 ⁇ L per well. The absorbance at 450 nm was read by a microplate reader (Bio-Rad).
  • the method was basically the same as described above for phage-scFvs except the bound antibodies were detected by HRP-conjugated mouse anti-human IgG Fc antibody (Sigma).
  • HBV and HDV were produced as previously described [3].
  • HDV Briefly, a plasmid containing a head to tail trimer of 1.0 ⁇ HDV cDNA of a genotype I virus (Genebank accession number: AF425644.1) under the control of a CMV promoter was constructed with de novo synthesized HDV cDNA for the production of HDV RNPs.
  • a pUC18 plasmid containing nucleotide 2431-1990 of HBV (Genotype D, Genebank accession number: U95551.1), was used for expressing HBV envelope proteins under the control of endogenous HBV promoter.
  • HDV virions were produced by transfection of the plasmids in Huh-7 as previously described by Sureau et al [4]. The transfected cell culture supernatant was harvested and directly used for HDV neutralization assay.
  • HBV genotype B, C and D viruses were produced by transfection of Huh-7 cells with a plasmid containing 1.05 copies of HBV genome under the control of a CMV promoter. Genotype B or C HBV viruses were also from plasma of HBV patients.
  • HepG2-hNTCP cells a HepG2 cell line stably expressing HBV and HDV receptor hNTCP (human sodium taurocholate cotransporting polypeptide)
  • HepG2-hNTCP cells were cultured in PMM medium [3] for 12-24 hours in a 48-well plate before viral infection.
  • HDV infection at 7 days post infection (dpi), HDV infected cells were fixed with 100% methanol at room temperature for 10 min, intracellular delta antigen was stained with 5 ⁇ g/mL of FITC conjugated 4G5 (a mouse anti-HDV Delta antigen monoclonal antibody) and nuclear were stained with DAPI. Images were collected by a Fluorescence Microscope (Nikon). The neutralization activity against HDV was determined based on the stained Delta antigen amount and strength.
  • HBV infection at dpi 3, 5 and 7, the culture supernatant were collected and tested for HBV secreted viral antigen HBsAg and/or HBeAg with commercial ELISA kits (Wantai, Beijing, China). The levels of HBeAg and/or HBsAg were used to evaluate HBV neutralization activity of the antibodies.
  • m36, 2H5 and m1Q were the top three antibodies showing best HBV (genotype D) neutralization activity.
  • m36 was excluded from further testing as it showed reduced expression when converted into full-length IgG1.
  • 2H5 and m1Q were further compared for HDV neutralization activity, 2H5 showed better activity in neutralizing HDV infection.
  • 2H5 was chosen for further development.
  • 2H5 showed greater HBV and HDV neutralization activity than a previously published pre-S1 peptide antibody KR127 [6-8].
  • 2H5-IgG1 is 11-fold more potent than KR127 as indicated by the IC 50 (the antibody concentration resulting 50% inhibition of HBV infection); 2H5 also showed greater inhibitory effect on HDV infection assay.
  • LN16, LD15 and LA15 The common amino acids shared by the three peptides, LN16, LD15 and LA15, are aa19-25 of pre-S1.
  • the 2H5 Epitope is Highly conserveed Among the Majority of HBV Genotypes.
  • the complex was purified as a complex by Immobilized Metal Ion Affinity Chromatography (IMAC) using Ni-NTA agarose beads (QIAGEN) followed by Size Exclusion Chromatography-HPLC (SEC-HPLC) with Superdex S200 10/300 column (GE Healthcare).
  • IMAC Immobilized Metal Ion Affinity Chromatography
  • SEC-HPLC Size Exclusion Chromatography-HPLC
  • Superdex S200 10/300 column GE Healthcare.
  • the purified 2H5-scFv/59C complex was then concentrated and crystallized at 20° C. using the hanging-drop vapor-diffusion method by mixing 1 ⁇ L of protein (29 mg/mL in 10 mM Tris-HCl pH 8.0 and 100 mM NaCl) and 1 ⁇ L of reservoir solution containing 2.8 M sodium acetate, pH 7.0. Needle-shaped crystals appeared after 10 days.
  • the X-ray diffraction data were collected at the Shanghai Synchrotron Radiation Facility beamline BL17U and processed by HKL2000 [9].
  • the structure was determined at 2.7 A ° resolution by molecular replacement in Phaser [10, 11] using VH and VL derived from the structure of Herceptin-Fab complex (PDB 3H0T) [12] as starting model.
  • Initial model from molecular replacement was further refined in Phenix [13] and manually rebuilt with Coot [14].
  • the final model includes 220 residues of 2H5 scFv, residues 20-27 of the 59C peptide.
  • RAMPAGE analysis shows that 96.71% of residues are in the favored region and 3.29% of residues are in the allowed region [15].
  • the eight amino acids of the peptide included in the structure are D 20 P 21 A 22 F 23 G 24 N 25 A 26 S 27 . Among them, D 20 , P 21 , A 22 , F 23 , A 26 and S 27 make interactions with 2H5. Three amino acids, D 20 , P 21 and F 23 make critical interactions for 2H5 binding.
  • VH chain shuffling to improve 2H5's binding affinity and neutralization activity, in which one of the two chains (VH and VL) is fixed and combined with a repertoire of the other chain to yield a secondary library that can be selected for superior activity.
  • VH chain shuffling in which VL of 2H5 was fixed and paired with a library of VH chains.
  • Two VH-Lib/2H5VL phage display libraries were constructed. One library size is ⁇ 2 ⁇ 10 8 , the other one is about 9 ⁇ 10 8 .
  • streptavidin-conjugated magnetic M-280 Dynabeads® Life Technologies
  • FIG. 1 shows HBV neutralization by 10 antibodies from 2H5 VH-chain shuffled library selections.
  • HepG2-hNTCP cells were infected by incubation with HBV (genotype D) in the presence of antibodies at different concentrations for 16 hours. Antibody and viruses were washed away afterwards and continued to culture for 7 days, cell culture medium was changed every 2 days. The secreted HBeAg was detected by ELISA at 7 days post infection. Based on the reduction of HBeAg level, the HBV neutralization activity was calculated and expressed as the percentage changes for infected cells in the presence of antibodies relative to the control (cells infected in the presence of a control antibody).
  • HBV (genotype D) neutralization activity As compared to the parental 2H5 antibody.
  • the IC50 for these antibodies are around ⁇ 10-40 pM.
  • a representative antibody out of these 4 antibodies, A14 was further compared to Hepatitis B Immune Globulin in neutralizing HBV (genotype D) infection.
  • HBIG is prepared from the plasma of donors who have high antibody levels of the hepatitis B surface antigen (HBsAg) and used as a post exposure prophylaxis for people at risk to develop hepatitis B in clinic.
  • A14 showed more than 1000-fold greater neutralization activity than HBIG.
  • A14 showed broadly neutralization activity against other two HBV genotypes, B and C.
  • the IC50 for genotype B, C and D are 80 pM, 30 pM and 10 pM, respectively.
  • A14 was also examined for neutralizing six HBV genotype C viruses from plasma of HBV infected patients. Again A14 was at least several hundreds to 1000-fold more potent than HBIG in neutralizing these viruses.
  • A14 is the one with the highest Fab melting temperatures (Tm) of 80.2° C., reflecting the best thermostability of its variable domains. A14 is stabilized by approximately 2° C. comparing to the original 2H5, whereas other three nAbs all have slightly reduced thermostability. The thermostability was measured using differential scanning calorimetry (DSC).
  • HBV primary human hepatocytes
  • A14 competed with pre-S1 for binding to NTCP expressed on cells.
  • A14 effectively competed with pre-S1 (FITC labeled pre-S1 peptide: m59) for binding to NTCP expressed on HepG2 cells in a dose-dependent manner.
  • A14 has no cross reactivity with 12 different cell lines representing 6 different tissues. This was analyzed by Western blotting and immunostaining assays.
  • A14 has antibody mediated cytotoxicity (ADCC) activity against cells carrying its epitope on cell surface and HBV producing cells as well as infected cells.
  • ADCC antibody mediated cytotoxicity
  • the epitope of A14 was stably expressed on CHO cell surface, HBV producing DE19 cells, and infected HepG2-hNTCP cells were used as target cells.
  • a human NK cell line (NK92-MI expressing CD16 (V158 allele) and FcRgamma chain was used as effector cells.
  • the effector cells and target cells (E/T) were co-cultured at a ratio of 6:1 for 6 hours in the presence of A14 or its Fc mutant.
  • the cell killing was determined by using LDH release assay kit form Promega.
  • the ADCC assay showed that A14 exhibited strong specific killing of CHO cells expressing the epitope, HBV producing cells, and HBV-infected HepG2-hNTCP cells but not the control cells lacking of the epitope expression, non-HBV producing cells and non-HBV infected cells. Meanwhile, the A14's Fc mutant (D265A/N297A) that lacks the ADCC activity but retains the same binding activity had no ADCC activity.
  • ADCC activity is common to antibodies having the same or similar epitope as A14, including 2H5, and its VH chain shuffled derived ones: 4, 31, 32, 69, A14, A21, B103, B129, B139, B172, and the VL chain shuffled clones #8, 20, 20-m1, 20-m2, 20-m3, and antibodies having distinct epitopes, such as m36, 71, 76, T47, m150, m1Q can also present ADCC activity; for example, m1 Q, also showed ADCC activity, its epitope is approximate to the C-terminal of A14's epitope on preS1.
  • FVB mice (age of 9 days after birth) with aa84-87 of mNTCP modified homozygotes were administered A14 mAb at 10 mg/kg of body weight.
  • mice were challenged with HDV viruses.
  • liver tissues were harvested in liquid nitrogen immediately after collection.
  • Mouse liver samples were then homogenized and lysed by Trizol® reagent to extract the total RNA.
  • the RNA samples were reverse transcribed into cDNA with Prime Script RT-PCR Kit (Takara). To quantify HDV total RNA (genome equivalent) and edited NTCP RNA copies, the cDNA obtained from 20 ng RNA was used as template for real time PCR assay.
  • a mouse HBV infection model has been established using FRG (Fah ⁇ / ⁇ Rag2 ⁇ / ⁇ /IL2rg ⁇ / ⁇ ) triple knock-out mice transplanted with human hepatocytes [19, 20].
  • FRG mice allows transplanted human hepatocytes replicating in mouse liver to form a chimeric liver with up to 98% human hepatocytes, as such the liver humanized FRG mice (FRGC) are highly susceptible to HBV infection.
  • FRGC liver humanized FRG mice
  • A14 prophylaxis group mice were injected with A14 at 15 mg/kg dosage by a single IP administration one day prior to HBV virus challenge, while mice in the control group were injected with same volume of PBS. On day 0, all mice were injected with 10e9 GE (genome equivalent) HBV each via tail vein.
  • FRGC mice were challenged with 10e9 GE/mice of HBV via tail vein on day 0, on day 5 post-infection, the mice were treated with entecavir (ETV) control or A14 or HBIG. ETV was orally given at 0.1 mg/kg daily; A14 or HBIG were administrated every three days by I.P.
  • A14 mAb is a potent HDV and HBV entry inhibitor in animal model.
  • A14 mAb can be used to replace HBIG for prevention of HDV and HBV infection.
  • A14 treatment of an established HBV infection in mice significantly inhibited HBV infection, moreover A14 showed specific ADCC activity against HBV-infected cells but not the non-HBV infected cells.
  • A14 blocks new viral entry into host cells and has ADCC activity against infected cells
  • ETV inhibits viral replication
  • combination of A14 with a viral replication inhibitor such as ETV, lamivudine, adefovir, tenofovir, telbivudine or other nucleoside and nucleotide analogues (NUCs) provide new therapeutic and prophylactic options for patients and can achieve better viremia control and HBsAg reduction.
  • a viral replication inhibitor such as ETV, lamivudine, adefovir, tenofovir, telbivudine or other nucleoside and nucleotide analogues (NUCs)
  • A14-VL chain shuffled phage display library in which VH of A14 was fixed and paired with a library of VL chains.
  • the final library (A14VH/VLlib) constructed had a size of ⁇ 3 ⁇ 10 8 .
  • the A14VH/VLlib library was selected for two rounds. 196 clones were screened for binding with m47b by ELISA. All clones were positive but 24 clones with highest OD450 reading were picked for sequencing.
  • Antibody sequences of 7 antibodies derived from na ⁇ ve library m36 m36 VH DNA (SEQ ID NO: 01) CAAGTTCCTTTATGTGCTGTCTCATCATTTTGGCAAGAATTCGCCACCATGAAACATCTGTGGT TCTTCCTTCTCCTGGTGGCAGCGGCCCAGCCGGCCATGGCCCAGATGCAGCTGGTGCAGTCTGG GGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTT GATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTA TTAGTTGGAATAGTGGTAGCATAGGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAG AGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTG TATTACTGTGCAAAAACGTCCTACGGGGGGGCTTTTGATATCTGGGGCCAAGGGACAATGGTCA CCG
  • VL DNA (SEQ ID NO: 49) CAGTCTGTCGTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGGAATTATTATGTGTCCTGGTACCAGCACCTCCCAGGAAC AGCCCCCAAACTCCTCATTTATGACAATGCTAAGCGACCCTCAGGGATTCCTGACCGATTCTCT GGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCACTGGGCTCCGGGCTGAGGATGAGGCTG ATTATTACTGCCAGTCCTATGACAATAGCCTTAGTGGTTTGGTGTTCGGCGGAGGGACCAAGCT GACCGTCCTA #8 VL amino acid: (SEQ ID NO: 50) QSVVTQPPSVSAAPGQKVTISCSGSSSNIGNYYVSWYQHLPGTAPKLLIYDNAKRPSGIP

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are human antibodies that specifically bind to HBV Pre-S1 domain ligand and inhibit HBV or HDV infection, antibodies binding to a set of amino acid residues that are critical for viral receptor engagement, and uses of these antibodies to prevent, or treat or diagnose HBV or HDV infection.

Description

  • More than one third of the world population has been infected by Hepatitis B virus (HBV), and 240 million people are presently chronically infected. HBV infection and related diseases result in about one million deaths annually.
  • The surface antigen of HBV is composed of Large (L), Middle (M) and Small (S) proteins. The L and M proteins have additional domains at their N terminal as compared to the S protein which only has the S domain. L contains Pre-S1, Pre-S2, and S domains; M contains Pre-S2 and S domains; S protein contains only the S domain. The pre-S1domian in L protein is the target molecule of HBV receptor(s) expressed on human hepatic cell surface, and antibodies to the pre-S1 domain of HBV have been reported, e.g. Watashi et al, Int. J. Mol. Sci. 2014, 15, 2892-2905, refs 22-27. Relevant literature includes descriptions of the HBV receptor in WO2013159243A1, a humanized antibody from mouse hybridoma, KR127 in U.S. Pat. No. 7,115,723, and pre-S1 peptides in U.S. Pat. No. 7,892,754.
  • SUMMARY OF THE INVENTION
  • The invention provides methods and compositions for immune-activation by inhibiting HBV and/or HDV. In one aspect, the invention provides an antibody antigen binding domain which specifically binds HBV Pre-S1, and comprises complementarity determining region (CDR) 1, CDR2 and CDR3, in a combination selected from (a)-(r) as follows, wherein the antibody (Ab), heavy chain (HC) or light chain (LC) and CDR nomenclature system (Kabat, IMGT or composite) from which the CDR combinations derive are shown in the first column, and residues in bold text are Kabat system, and residues underlined are IMGT system:
  • HCDRs of unique HBV Pre-S1 specific antibodies
    MAbs CDR1 CDR2 CDR3
    m36-HC GFTFDDYA MH G ISWNSGSI GYADSVKG AKTSYGGAFDI
    K: SEQ ID NO: 59,  K: SEQ ID NO: 60 K: SEQ ID NO: 61, 
    res. 6-10 res. 3-11
    I: SEQ ID NO: 59,  I: SEQ ID NO: 60,  I: SEQ ID NO: 61
    res. 1-8 res. 2-9
    C: SEQ ID NO: 59 C: SEQ ID NO: 60 C: SEQ ID NO: 61
    m36-LC SGN TSNIGSYY AY DNN QRPS ATWDDSLNGPV
    K: SEQ ID NO: 62 K: SEQ ID NO: 63 K: SEQ ID NO: 64
    I: SEQ ID NO: 62,  I: SEQ ID NO: 63,  I: SEQ ID NO: 64
    res. 4-11 res. 1-3
    C: SEQ ID NO: 62 C: SEQ ID NO: 63 C: SEQ ID NO: 64
    71-HC GYTTGYY IH RINPNSGGTN AREGRGGMDV
    K: SEQ ID NO: 65,  K: SEQ ID NO: 66 K: SEQ ID NO: 67, 
    res. 5-9 res. 3-10
    I: SEQ ID NO: 65,  I: SEQ ID NO: 66 I: SEQ ID NO: 67
    res. 1-7
    C: SEQ ID NO: 65 C: SEQ ID NO: 66 C: SEQ ID NO: 67
    71-LC RSS QSLLHSNGYNY LGSNRAS MQGLQPPIT
    K: SEQ ID NO: 68,  K: SEQ ID NO: 69 K: SEQ ID NO: 70
    res. 1-12
    I: SEQ ID NO: 68,  I: SEQ ID NO: 69 I: SEQ ID NO: 70
    res. 4-14
    C: SEQ ID NO: 68 C: SEQ ID NO: 69 C: SEQ ID NO: 70
    76-HC GFTFSSYA MH V ISYDGSNK YYADSVKG ASGAFDI
    K: SEQ ID NO: 71,  K: SEQ ID NO: 72 K: SEQ ID NO: 73, 
    res. 6-10 res. 3-7
    I: SEQ ID NO: 71,  I: SEQ ID NO: 72,  I: SEQ ID NO: 73
    res. 1-8 res. 2-9
    C: SEQ ID NO: 71 C: SEQ ID NO: 72 C: SEQ ID NO: 73
    76-LC RSS HSLVYSDGNTY LS KVS NRDF MQGTHWPGT
    K: SEQ ID NO: 74 K: SEQ ID NO: 75 K: SEQ ID NO: 76
    I: SEQ ID NO: 74,  I: SEQ ID NO: 75,  I: SEQ ID NO: 76
    res. 4-14 res. 1-3
    C: SEQ ID NO: 74 C: SEQ ID NO: 75 C: SEQ ID NO: 76
    T47-HC GDSVSSNSVA WN R TYYRSKWYN DYAVSVKS ARADGSRGGGYDQ
    K: SEQ ID NO: 77,  K: SEQ ID NO: 78 K: SEQ ID NO: 79, 
    res. 6-12 res. 3-13
    I: SEQ ID NO: 77,  I: SEQ ID NO: 78,  I: SEQ ID NO: 79
    res. 1-10 res. 2-10
    C: SEQ ID NO: 77 C: SEQ ID NO: 78 C: SEQ ID NO: 79
    T47-LC KSS QSILYRSNNKNY LA WAS TRES QQYYTTPQ T
    K: SEQ ID NO: 80 K: SEQ ID NO: 81 K: SEQ ID NO: 82
    I: SEQ ID NO: 80,  I: SEQ ID NO: 81,  I: SEQ ID NO: 82, 
    res. 4-15 res. 1-3 res. 1-8
    C: SEQ ID NO: 80 C: SEQ ID NO: 81 C: SEQ ID NO: 82
    m1Q-HC GFTFSSYA MH V ISYDGSNK YYVDSVKG ARSTYGMDV
    K: SEQ ID NO: 83,  K: SEQ ID NO: 84 K: SEQ ID NO: 85, 
    res. 6-10 res. 3-9
    I: SEQ ID NO: 83,  I: SEQ ID NO: 84,  I: SEQ ID NO: 85
    res. 1-8 res. 2-9
    C: SEQ ID NO: 83 C: SEQ ID NO: 84 C: SEQ ID NO: 85
    m1Q-LC RSS QSLVHSDGNTY LN KVS NRDS MQGTHWWT
    K: SEQ ID NO: 86 K: SEQ ID NO: 87 K: SEQ ID NO: 88
    I: SEQ ID NO: 86,  I: SEQ ID NO: 87,  I: SEQ ID NO: 88
    res. 4-14 res. 1-3
    C: SEQ ID NO: 86 C: SEQ ID NO: 87 C: SEQ ID NO: 88
    2H5-HC GDSVSSKSAA WN R TYYRSKWHN DYAVS ARGQMGALDV
    K: SEQ ID NO: 89,  K: SEQ ID NO: 90 K: SEQ ID NO: 91, 
    res. 6-12 res. 3-10
    I: SEQ ID NO: 89,  I: SEQ ID NO: 90,  I: SEQ ID NO: 91
    res. 1-10 res. 3-10
    C: SEQ ID NO: 89 C: SEQ ID NO: 90 C: SEQ ID NO: 91
    2H5-LC SGS SSNIGSYY VYWY GNN QRPS QSYDSSLSGVI
    K: SEQ ID NO: 92 K: SEQ ID NO: 93 K: SEQ ID NO: 94
    I: SEQ ID NO: 92,  I: SEQ ID NO: 93,  I: SEQ ID NO: 94
    res. 4-11 res. 1-3
    C: SEQ ID NO: 92 C: SEQ ID NO: 93 C: SEQ ID NO: 94
    m150-HC GFTFSSYA MH V ISYDGSNK YYADSVKG ARLVAGRSAFDI
    K: SEQ ID NO: 95,  K: SEQ ID NO: 96 K: SEQ ID NO: 97, 
    res. 6-10 res. 3-12
    I: SEQ ID NO: 95,  I: SEQ ID NO: 96,  I: SEQ ID NO: 97
    res. 1-8 res. 2-9
    C: SEQ ID NO: 95 C: SEQ ID NO: 96 C: SEQ ID NO: 97
    m150-LC RAS QSVSSN LA GAS TRAT QQYNNWPPIT
    K: SEQ ID NO: 98 K: SEQ ID NO: 99 K: SEQ ID NO: 100
    I: SEQ ID NO: 98,  I: SEQ ID NO: 99,  I: SEQ ID NO: 100
    res. 4-9 res. 1-3
    C: SEQ ID NO: 98 C: SEQ ID NO: 99 C: SEQ ID NO: 100
  • HCDRs of antibodies derived from 2H5 VH-chain shuffled libraries
    MAbs HCDR1 HCDR2 HCDR3
    #4 VH GDSVSSKSVT WN R TYYRSKWFN DYAVS ARAKMGGMDV
    K: SEQ ID NO: 101,  K: SEQ ID NO: 102 K: SEQ ID NO: 103, 
    res 6-12 res 3-10
    I: SEQ ID NO: 101,  I: SEQ ID NO:102,  I: SEQ ID NO: 103
    res. 1-10 res. 2-10
    C: SEQ ID NO: 101 C: SEQ ID NO: 102 C: SEQ ID NO: 103
    #31 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS TRQSWHGMEV
    K: SEQ ID NO: 104,  K: SEQ ID NO: 105 K: SEQ ID NO: 106, 
    res 6-12 res 3-10
    I: SEQ ID NO: 104,  I: SEQ ID NO: 105,  I: SEQ ID NO: 106
    res. 1-10 res. 2-10
    C: SEQ ID NO: 104 C: SEQ ID NO: 105 C: SEQ ID NO: 106
    #32 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARSIATGTDY
    K: SEQ ID NO: 107,  K: SEQ ID NO: 108 K: SEQ ID NO: 109, 
    res 6-12 res 3-10
    I: SEQ ID NO: 107,  I: SEQ ID NO: 108,  I: SEQ ID NO: 109
    res. 1-10 res. 2-10
    C: SEQ ID NO: 107 C: SEQ ID NO: 108 C: SEQ ID NO: 109
    #69 VH GDSVSSSRAT WN R TYYRSKWFN DYAVS ARAKMGGMDV
    K: SEQ ID NO: 110,  K: SEQ ID NO: 111 K: SEQ ID NO: 112, 
    res 6-12 res 3-10
    I: SEQ ID NO: 110,  I: SEQ ID NO: 111,  I: SEQ ID NO: 112
    res. 1-10 res. 2-10
    C: SEQ ID NO: 110 C: SEQ ID NO: 111 C: SEQ ID NO: 112
    A14 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARGTRWGMDV
    K: SEQ ID NO: 113,  K: SEQ ID NO: 114 K: SEQ ID NO: 115, 
    res 6-12 res 3-10
    I: SEQ ID NO: 113,  I: SEQ ID NO: 114,  I: SEQ ID NO: 115
    res. 1-10 res. 2-10
    C: SEQ ID NO: 113 C: SEQ ID NO: 114 C: SEQ ID NO: 115
    A21 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARAKVYGVDV
    K: SEQ ID NO: 116,  K: SEQ ID NO: 117 K: SEQ ID NO: 118, 
    res 6-12 res 3-10
    I: SEQ ID NO: 116,  I: SEQ ID NO: 117,  I: SEQ ID NO: 118
    res. 1-10 res. 2-10
    C: SEQ ID NO: 116 C: SEQ ID NO: 117 C: SEQ ID NO: 118
    B103 VH GDSVSSKSAT WN R TYYRSRWFN DYAVS ARGNMGAMDV
    K: SEQ ID NO: 119,  K: SEQ ID NO: 120 K: SEQ ID NO: 121, 
    res 6-12 res 3-10
    I: SEQ ID NO: 119,  I: SEQ ID NO: 120,  I: SEQ ID NO: 121
    res. 1-10 res. 2-10
    C: SEQ ID NO: 119 C: SEQ ID NO: 120 C: SEQ ID NO: 121
    B129 VH GDRVSSNRAA WN R TYYRSQWYN DYAVS ARGTAMG-DA
    K: SEQ ID NO: 122,  K: SEQ ID NO: 123 K: SEQ ID NO: 124, 
    res 6-12 res 3-9
    I: SEQ ID NO: 122,  I: SEQ ID NO: 123,  I: SEQ ID NO: 124
    res. 1-10 res. 2-10
    C: SEQ ID NO: 122 C: SEQ ID NO: 123 C: SEQ ID NO: 124
    B139 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARQASNGFDI
    K: SEQ ID NO: 125,  K: SEQ ID NO: 126 K: SEQ ID NO: 127, 
    res 6-12 res 3-10
    I: SEQ ID NO: 125,  I: SEQ ID NO: 126,  I: SEQ ID NO: 127
    res. 1-10 res. 2-10
    C: SEQ ID NO: 125 C: SEQ ID NO: 126 C: SEQ ID NO: 127
    B172 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARQGTTGFDY
    K: SEQ ID NO: 128,   K: SEQ ID NO: 129 K: SEQ ID NO: 130, 
    res 6-12 res 3-10
    I: SEQ ID NO: 128,  I: SEQ ID NO: 129,  I: SEQ ID NO: 130
    res. 1-10 res. 2-10
    C: SEQ ID NO: 128 C: SEQ ID NO: 129 C: SEQ ID NO: 130
  • HCDRs of antibodies derived from A14 VL-chain shuffled libraries
    MAbs LCDR1 HCDR2 HCDR3
    #8 VL SGS SSNIGNYY VSWY DNA KRPS QSYDNSLSGLV
    K: SEQ ID NO: 131 K: SEQ ID NO: 132 K: SEQ ID NO: 133
    I: SEQ ID NO: 131,  I: SEQ ID NO: 132,  I: SEQ ID NO: 133
    res. 4-11 res. 1-3
    C: SEQ ID NO: 131 C: SEQ ID NO: 132 C: SEQ ID NO: 133
    #20 VL SGT SSNIGSKY VYWY TND QRPS QSYDSSLRAVV
    K: SEQ ID NO: 134 K: SEQ ID NO: 135 K: SEQ ID NO: 136
    I: SEQ ID NO: 134,  I: SEQ ID NO: 135,  I: SEQ ID NO: 136
    res. 4-11 res. 1-3
    C: SEQ ID NO: 134 C: SEQ ID NO: 135 C: SEQ ID NO: 136
    #20-m1 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV
    K: SEQ ID NO: 137 K: SEQ ID NO: 138 K: SEQ ID NO: 139
    I: SEQ ID NO: 137,  I: SEQ ID NO: 138,  I: SEQ ID NO: 139
    res. 4-11 res. 1-3
    C: SEQ ID NO: 137 C: SEQ ID NO: 138 C: SEQ ID NO: 139
    #20-m2 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV
    K: SEQ ID NO: 140 K: SEQ ID NO: 141 K: SEQ ID NO: 142
    I: SEQ ID NO: 140,  I: SEQ ID NO: 141,  I: SEQ ID NO: 142
    res. 4-11 res. 1-3
    C: SEQ ID NO: 140 C: SEQ ID NO: 141 C: SEQ ID NO: 142
    #20-m3 VL SGT SSNIGSYY VYWY TND QRPS QSYDSSLRAVV .
    K: SEQ ID NO: 143 K: SEQ ID NO: 144 K: SEQ ID NO: 145
    I: SEQ ID NO: 143,  I: SEQ ID NO: 144,  I: SEQ ID NO: 145
    res. 4-11 res. 1-3
    C: SEQ ID NO: 143 C: SEQ ID NO: 144 C: SEQ ID NO: 145
  • In embodiments the invention provides an antibody antigen binding domain comprising a heavy chain variable region (Vh) comprising a CDR1, CDR2 and CDR3 combination and a light chain variable region (VI) comprising a CDR1, CDR2 and CDR3 combination, or comprising a heavy chain variable region (Vh) and/or a light chain variable region (VD, selected. from: m36, 71, 76, T47, m1Q, 2H5, m150; and 4, 31, 32, 69, A14, A21, B103, B129, B139, B172; and 8, 20, 20-m1, 20-m2, 20-m3.
  • In embodiments the antibody antigen binding domain specifically binds aa11-28 or aa19-25 of pre-S1.
  • The invention also provides antibodies, particularly monoclonal antibodies, and F(ab) or F(ab)2 comprising a subject binding domain.
  • The invention also provides novel polynucleotides such as cDNAs and expression vectors, encoding a subject antigen binding domain, and cells comprising such polynucleotides, and non-human animals comprising such cells. The polynucleotides may be operably linked to a heterologous transcription regulating sequence for expression, and may be incorporated into such vectors, cells, etc.
  • The invention provides methods of using the subject domains to treat HBV or HDV infection, or to induce antibody-dependent cell-mediated cytotoxicity (ADCC), comprising administering the domain to a person determined to have HBV or HDV infection, to have been exposed to HBV or HDV, to be at high risk for HBV or HDV exposure or infection, to be in need of Pre-S1 domain antagonism, or to be otherwise in need thereof. The invention further provides the use of subject compositions for the manufacture of a medicament for HBV or HDV infection, optionally in conjunction with a virus replication inhibitor.
  • The invention includes all combinations of the recited particular embodiments. Further embodiments and the full scope of applicability of the invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. All publications, patents, and patent applications cited herein, including citations therein, are hereby incorporated by reference in their entirety for all purposes.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1. HBV neutralization by 10 antibodies from 2H5 VH-chain shuffled library selections.
  • DESCRIPTION OF PARTICULAR EMBODIMENTS OF THE INVENTION
  • Unless the context indicates otherwise, the term “antibody” is used in the broadest sense and specifically covers antibodies (including full length monoclonal antibodies) and antibody fragments so long as they recognize HBV/HDV Pre-S1 or otherwise inhibit HBV/HDV. An antibody molecule is usually monospecific, but may also be described as idiospecific, heterospecific, or polyspecific. Antibody molecules bind by means of specific binding sites to specific antigenic determinants or epitopes on antigens. “Antibody fragments” comprise a portion of a full length antibody, generally the antigen binding or variable region thereof. Examples of antibody fragments include Fab, Fab′, F(ab′).sub.2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • Natural and engineered antibody structures are well known in the art, e.g. Strohl et al., Therapeutic antibody engineering: Current and future advances driving the strongest growth area in the pharmaceutical industry, Woodhead Publishing Series in Biomedicine No. 11, October 2012; Holliger et al. Nature Biotechnol 23, 1126-1136 (2005); Chames et al. Br J Pharmacol. 2009 May; 157(2): 220-233.
  • Monoclonal antibodies (MAbs) may be obtained by methods known to those skilled in the art. See, for example Kohler et al (1975); U.S. Pat. No. 4,376,110; Ausubel et al (1987-1999); Harlow et al (1988); and Colligan et al (1993). The mAbs of the invention may be of any immunoglobulin class including IgG, IgM, IgE, IgA, and any subclass thereof. A hybridoma producing a mAb may be cultivated in vitro or in vivo. High titers of mAbs can be obtained in in vivo production where cells from the individual hybridomas are injected intraperitoneally into mice, such as pristine-primed Balb/c mice to produce ascites fluid containing high concentrations of the desired mAbs. MAbs of isotype IgM or IgG may be purified from such ascites fluids, or from culture supernatants, using column chromatography methods well known to those of skill in the art.
  • An “isolated polynucleotide” refers to a polynucleotide segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA, which is part of a hybrid gene encoding additional polypeptide sequence.
  • A “construct” means any recombinant polynucleotide molecule such as a plasmid, cosmid, virus, autonomously replicating polynucleotide molecule, phage, or linear or circular single-stranded or double-stranded DNA or RNA polynucleotide molecule, derived from any source, capable of genomic integration or autonomous replication, comprising a polynucleotide molecule where one or more polynucleotide molecule has been linked in a functionally operative manner, i.e. operably linked. A recombinant construct will typically comprise the polynucleotides of the invention operably linked to transcriptional initiation regulatory sequences that will direct the transcription of the polynucleotide in the intended host cell. Both heterologous and non-heterologous (i.e., endogenous) promoters can be employed to direct expression of the nucleic acids of the invention.
  • A “vector” refers any recombinant polynucleotide construct that may be used for the purpose of transformation, i.e. the introduction of heterologous DNA into a host cell. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors”.
  • An “expression vector” as used herein refers to a nucleic acid molecule capable of replication and expressing a gene of interest when transformed, transfected or transduced into a host cell. The expression vectors comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desired, provide amplification within the host. The expression vector further comprises a promoter to drive the expression of the polypeptide within the cells. Suitable expression vectors may be plasmids derived, for example, from pBR322 or various pUC plasmids, which are commercially available. Other expression vectors may be derived from bacteriophage, phagemid, or cosmid expression vectors.
  • EXAMPLES
  • Human Monoclonal Antibodies Block Viral Infection of Hepatitis B and D Virus
  • Here we disclose human monoclonal antibodies that can block HDV and HBV viral infections. These antibodies were identified from a large phage display antibody library, which was established using peripheral blood mononuclear cells from 93 healthy donors. By selection and screening of the antibody library using pre-S1 domain of HBV envelope protein as a target, a panel of human monoclonal antibodies with neutralizing activities against HBV and HDV infections were identified. Among them, 2H5, showed best neutralizing activities against HBV and HDV infections. The co-crystal structure of 2H5 in complex with its target (8 amino acids of the Pre-S1 domain) was solved. By optimizing 2H5 by chain shuffling approach we developed even more potent neutralizing antibodies. These antibodies recognize similar epitope as 2H5 and the epitope is highly conserved among different genotypes of HBV. An exemplary antibody, A14 was tested in mice bearing humanized NTCP and provided complete protection of mice from HDV infection, and animal studies confirmed protection against HBV infection.
  • Antigen Target: Pre-S1 Peptides.
  • As antigen for selection we used two peptides derived from the pre-S1 domain of HBV. They were synthesized by Scilight-peptide (Beijing, China) at purity greater than 95%. NC36b: a peptide comprising of residues 4-38 of the pre-S1 domain of HBV L protein with a biotin modification at its C-terminus. m47b: a myristoylated lipopeptide comprising of amino acids 2-48 of pre-S1 domain with a biotin modification at the C-terminus and a myristoylation modification at the N-terminus.
  • Pre-S1 GTNLSVPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKDHWPEANQVG
    (2-48) (SEQ ID NO: 146)
    m47b Myr-G...........................................K-Biotin
    NC36b N..............................K-Biotin
  • Human Monoclonal Antibodies Against Pre-S1 Peptides were Generated Based on Phage Display Antibody Technology with Modifications [1, 2].
  • Phage Display Antibody Library.
  • A human non-immune scFv (Single-chain variable fragment) antibody library was constructed from peripheral blood mononuclear cells (PBMCs) of 93 healthy donors. The library has a size of a total of 1.1×1010 members.
  • Selection and Screening of Phage Antibody Library.
  • Phage particles expressing scFv on their surface (phage-scFv) were prepared from the library and used for selection of scFvs against the synthesized NC36b and m47b. The peptides were captured on streptavidin-conjugated magnetic M-280 Dynabeads® (Life Technologies) and then incubated with 5×1012 phage particles prepared from the library, respectively. For each peptide, two rounds of selection were performed. For each round of selection, in order to obtain high affinity antibodies, the amount of peptides captured onto the magnetic beads was optimized and extensive washing steps were applied. In addition, to recover high affinity binders from the magnetic beads and increase the diversity of phage-scFvs recovered, two elution methods including peptide competition elution and conventional basic triethanolamine solution were used. Subsequently, a total of about 2000 single clones were picked and rescued to produce phage-scFvs in the bacterial culture supernatant, and screened for specific binding to m47b and/or NC36b by enzyme-linked immunosorbent assay (ELISA). Clones that bound to m47b and/or NC36b with values of optical density at 450 nm>1.0 were scored as positive, whereas negative clones gave values of <0.1. For m47b and/or NC36b specific binding clones, the genes of variable regions of heavy (VH) and light (VL) chain were sequenced and their corresponding amino acid sequences were aligned to eliminate repeated clones and identify antibodies with different sequence for further characterization. A total of 109 clones with unique sequence were identified.
  • Further Characterization of the Antibodies with Unique Antibody Sequences to Identify the Best Antibody Candidate.
  • The antibody clones with unique sequence were either produced as purified phage-scFv particles or converted to scFv-Fc minibodies or full-length human IgG1s, and then tested for their binding activities by ELISA, and HBV and HDV neutralization activities in cell cultures. By these assays, antibodies were ranked based on their binding activity and neutralization activity. The top antibody with the highest neutralization activity was chosen for further development.
  • Preparation of Purified Phage-scFvs for ELISA or Neutralization Assay.
  • The phage-scFvs in the supernatant of 10-30 mL bacterial culture were precipitated by PEG/NaCL and then quantified by a spectrometer. Activities of different phage-scFvs for antigen binding or neutralizing viral infection were evaluated based on the dose-response of serial diluted phage-Abs that was normalized to the same concentration.
  • Preparation of scFv-Fc Minibodies.
  • ScFv encoding gene from the phage-scFv expressing vector was subcloned into an expression vector containing human IgG1 Fc fragment at C-terminus of the scFv. To produce scFv-Fc, 293F (Life Technologies) or 293T cells (ATCC) were transiently transfected with the scFv-Fc expression plasmid, 72 hours after transfection, the cell culture supernatant were harvested and scFv-Fc was purified by Protein A affinity chromatography (Protein A Sepharose CL-4B, GE Healthcare).
  • Preparation of Full-Length IgG1 Antibody.
  • The VH and VL coding sequence of a scFv were separately subcloned into antibody heavy chain (HC) expression vector and light chain (LC) expression vector. To make IgG1 antibody, 293F or 293T cells were transiently co-transfected with the two expression plasmids (HC+LC plasmids) at a 1:1 ratio. 72 hours after transfection, the cell culture supernatant were harvested for purification of IgG1 by Protein A affinity chromatography.
  • ELISA Assay.
  • 5 μg/mL of streptavidin (Sigma) in phosphate buffered saline (PBS) was coated in U-bottom 96-well plate (Nunc, MaxiSorp™), 100 μL per well, at 4° C. overnight or 37° C. for 1 hour. 2 μg/mL (370 nM) of m47b or NC36b peptides at 100 μL per well were then captured onto the plates by incubation at 30° C. for 0.5-1 hour. For phage-scFv based ELISA, serial diluted phage-scFvs in PBS containing 2% nonfat milk were added to each well at 100 μL per well. Specific bound phage-scFvs were detected by adding HRP-conjugated mouse anti-M13 antibody (GE Healthcare) and incubated for 30 mins at 30° C. In between each incubation step, the ELISA plate was washed for 6 times with PBST solution (0.05% Tween20 containing PBS) at 200 μL per well. Followed by HRP-conjugated antibody incubation, the ELISA signal was developed by incubating with TMB substrate (Sigma) for 5-10 mins at 30° C. and then stop the reaction with 2M H2SO4 at 25 μL per well. The absorbance at 450 nm was read by a microplate reader (Bio-Rad). For scFv-Fc or IgG1 based ELISA, the method was basically the same as described above for phage-scFvs except the bound antibodies were detected by HRP-conjugated mouse anti-human IgG Fc antibody (Sigma).
  • Preparation of HBV and HDV Viruses.
  • HBV and HDV were produced as previously described [3]. HDV. Briefly, a plasmid containing a head to tail trimer of 1.0×HDV cDNA of a genotype I virus (Genebank accession number: AF425644.1) under the control of a CMV promoter was constructed with de novo synthesized HDV cDNA for the production of HDV RNPs. A pUC18 plasmid containing nucleotide 2431-1990 of HBV (Genotype D, Genebank accession number: U95551.1), was used for expressing HBV envelope proteins under the control of endogenous HBV promoter. HDV virions were produced by transfection of the plasmids in Huh-7 as previously described by Sureau et al [4]. The transfected cell culture supernatant was harvested and directly used for HDV neutralization assay. HBV. HBV genotype B, C and D viruses were produced by transfection of Huh-7 cells with a plasmid containing 1.05 copies of HBV genome under the control of a CMV promoter. Genotype B or C HBV viruses were also from plasma of HBV patients.
  • HBV and HDV Neutralization Assays.
  • The neutralization assays were performed as previously described [3, 5] with minor modifications. HepG2-hNTCP cells (a HepG2 cell line stably expressing HBV and HDV receptor hNTCP (human sodium taurocholate cotransporting polypeptide)) were used in these assays. HepG2-hNTCP cells were cultured in PMM medium [3] for 12-24 hours in a 48-well plate before viral infection. About 500 multiplicities of genome equivalents (mge) of HDV or 200 mge of HBV mixed with different forms of antibodies: phage-scFvs, scFv-Fc or IgG1 were inoculated with HepG2-hNTCP cells in the presence of 5% PEG8000 and incubated for 16 hours. Cells were then washed with medium for three times and maintained in PMM. Cell culture medium was changed with fresh PMM medium every 2-3 days. For HDV infection, at 7 days post infection (dpi), HDV infected cells were fixed with 100% methanol at room temperature for 10 min, intracellular delta antigen was stained with 5 μg/mL of FITC conjugated 4G5 (a mouse anti-HDV Delta antigen monoclonal antibody) and nuclear were stained with DAPI. Images were collected by a Fluorescence Microscope (Nikon). The neutralization activity against HDV was determined based on the stained Delta antigen amount and strength. For HBV infection, at dpi 3, 5 and 7, the culture supernatant were collected and tested for HBV secreted viral antigen HBsAg and/or HBeAg with commercial ELISA kits (Wantai, Beijing, China). The levels of HBeAg and/or HBsAg were used to evaluate HBV neutralization activity of the antibodies.
  • Through the above described ELISA and HBV neutralization assays we identified some top antibodies, which showed specific binding with NC36b as well as m47b and 47 b (a peptide similar to m47b but without the myristoylation and showed neutralization activities in HBV.
  • Among these top antibodies, m36, 2H5 and m1Q were the top three antibodies showing best HBV (genotype D) neutralization activity. m36 was excluded from further testing as it showed reduced expression when converted into full-length IgG1. 2H5 and m1Q were further compared for HDV neutralization activity, 2H5 showed better activity in neutralizing HDV infection. Based on the high binding activity with the peptide and potent neutralizing activity against HBV and HDV, 2H5 was chosen for further development. In addition, 2H5 showed greater HBV and HDV neutralization activity than a previously published pre-S1 peptide antibody KR127 [6-8]. In HBV infection assay, 2H5-IgG1 is 11-fold more potent than KR127 as indicated by the IC50 (the antibody concentration resulting 50% inhibition of HBV infection); 2H5 also showed greater inhibitory effect on HDV infection assay.
  • Mapping the Binding Epitope of 2H5 Antibody.
  • To map the epitope of 2H5 on pre-S1 region, we synthesized short peptides covering different regions of the pre-S1 domain and tested their ability to compete for the binding of 2H5 to m47b by competition ELISA assay. The shortest peptide that can compete for the binding is the LN16 peptide (corresponding to the NT amino acid (aa) 11-28 of the pre-S1 domain of HBV L protein (Genotype D), indicating the binding epitope of 2H5 is located within this region. LD15 and LA15 peptides also showed some degree of competition activity but at lower level than LN16. The common amino acids shared by the three peptides, LN16, LD15 and LA15, are aa19-25 of pre-S1. We therefore tested LN16 peptides each carrying a single alanine mutation at position 19, 20, 22 and 23, LN16-L19A, -D20A, -P21A, -F23A, for their competition activity, the result showed that all of them had reduced competition activity (LN16-L19A) or completely lost this activity (LN16-D20A, -P21A, -F23A), indicating these amino acids are critically important for pre-S1 binding to 2H5.
  • The 2H5 Epitope is Highly Conserved Among the Majority of HBV Genotypes.
  • Sequence alignment of pre-S1 peptides of eight HBV genotypes showed that the epitope is highly conserved among them. The major variable amino acid is at position 24: glycine in genotype A and C, a lysine or arginine in genotype D and other genotypes. To test if this amino acid change will affect 2H5 binding to pre-S1 peptide, the NC36b peptide containing an arginine at position 24 was synthesized and test for binding with 2H5 by ELISA. The result showed that this amino acid change had only minimal effect on the binding. This is consistent with the HBV and HDV viral neutralization result that 2H5 neutralized HBV of genotype D and HDV carrying HBV genotype D envelopes.
  • Structural Characterization of the 2H5 scFv and Pre-S1 Peptide Complex.
  • We also determined the crystal structure of 2H5 (as the scFv fragment fused with a His6 tag at its N-terminal) in complex with a pre-S1 peptide, 59C. The amino acid sequence of 59C corresponds to aa-10-48 of pre-S1 of genotype C: GGWSSKPRQGMGTNLSVPNPLGFFPDHOLDPAFGANSNNPDWDFNPNIKDHWPEANQV (SEQ ID NO:147). 2H5-scFv and 59C were co-expressed in E. coli. The complex was purified as a complex by Immobilized Metal Ion Affinity Chromatography (IMAC) using Ni-NTA agarose beads (QIAGEN) followed by Size Exclusion Chromatography-HPLC (SEC-HPLC) with Superdex S200 10/300 column (GE Healthcare). The purified 2H5-scFv/59C complex was then concentrated and crystallized at 20° C. using the hanging-drop vapor-diffusion method by mixing 1 μL of protein (29 mg/mL in 10 mM Tris-HCl pH 8.0 and 100 mM NaCl) and 1 μL of reservoir solution containing 2.8 M sodium acetate, pH 7.0. Needle-shaped crystals appeared after 10 days. The X-ray diffraction data were collected at the Shanghai Synchrotron Radiation Facility beamline BL17U and processed by HKL2000 [9]. The structure was determined at 2.7 A ° resolution by molecular replacement in Phaser [10, 11] using VH and VL derived from the structure of Herceptin-Fab complex (PDB 3H0T) [12] as starting model. Initial model from molecular replacement was further refined in Phenix [13] and manually rebuilt with Coot [14]. The final model includes 220 residues of 2H5 scFv, residues 20-27 of the 59C peptide. RAMPAGE analysis shows that 96.71% of residues are in the favored region and 3.29% of residues are in the allowed region [15]. The structure revealed that both VH and VL of 2H5 scFv participate in the interaction with the peptide. The eight amino acids of the peptide included in the structure are D20P21A22F23G24N25A26S27. Among them, D20, P21, A22, F23, A26 and S27 make interactions with 2H5. Three amino acids, D20, P21 and F23 make critical interactions for 2H5 binding.
  • Improvement of 2H5 Affinity and Neutralization Activity by VH-Chain Shuffling.
  • Identification of Four Top Antibodies from VH-Chain Shuffled Library of 2H5.
  • We next used chain shuffling to improve 2H5's binding affinity and neutralization activity, in which one of the two chains (VH and VL) is fixed and combined with a repertoire of the other chain to yield a secondary library that can be selected for superior activity. First, we did VH chain shuffling, in which VL of 2H5 was fixed and paired with a library of VH chains. Two VH-Lib/2H5VL phage display libraries were constructed. One library size is ˜2×108, the other one is about 9×108. By using peptides captured on streptavidin-conjugated magnetic M-280 Dynabeads® (Life Technologies) as target, the two VH-Lib/2H5VL libraries were separately selected for one round each. At the end of the one round of selection from both libraries, total 576 individual clones were randomly picked and screened for binding with m47b by ELISA. Positive clones in ELISA were selected and sequenced. 10 clones with unique VH sequences (Table 1) and showed equal or stronger binding activity to m47b in phage antibody form than 2H5 were identified. These 10 clones were then converted into full-length human IgG1 and validated for binding to m47b by ELISA, neutralizing HBV (genotype D) (FIG. 1) and HDV by in vitro neutralization assays. Four top antibodies, #31, #32, A14 and A21 were selected based on their overall activities in binding to m47b, neutralizing HBV and HDV.
  • TABLE 1
    VH sequence alignment of 10 antibodies from 2H5 VH-chain shuffled 
    library selections.
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWY
    #4 VH ......................G........K.VT.....E..TG..............F
    #31 VH ............................................................
    #32 VH ............................................................
    #69 VH ...........M...................SR.T.....E..TG..............F
    2H5 VH ......................G........K...........................H
    A14 VH ............................................................
    A21 VH ............................................................
    B103 VH ......................G........K..T...V...A..............R.F
    B129 VH ...........L...............R....R.....V..................Q..
    B172 VH ............................................................
    B139 VH ..................T...V.....................................
    NDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGKMGGMDVWGQGTTVTVSS
    (SEQ ID NO: 148)
    #4 VH ............V....................RG......A..................
    #31 VH .......................................T.QSWH..E............
    #32 VH ..............S...........K..............SIAT.T.Y.....L.....
    #69 VH ............V....................RG......A..................
    2H5 VH ..........................................Q..AL.............
    A14 VH ..........................................TRW.........L.....
    A21 VH .........................................A.VY.V.............
    B103 VH ............VK...............S.....I......N..A..............
    B129 VH ..........V..S..A....V....................TAM.-.A.....L.....
    B172 VH .........................................QGTT.F.Y...........
    B139 VH ......L..................................QASN.F.I.....M.....
  • FIG. 1. shows HBV neutralization by 10 antibodies from 2H5 VH-chain shuffled library selections. HepG2-hNTCP cells were infected by incubation with HBV (genotype D) in the presence of antibodies at different concentrations for 16 hours. Antibody and viruses were washed away afterwards and continued to culture for 7 days, cell culture medium was changed every 2 days. The secreted HBeAg was detected by ELISA at 7 days post infection. Based on the reduction of HBeAg level, the HBV neutralization activity was calculated and expressed as the percentage changes for infected cells in the presence of antibodies relative to the control (cells infected in the presence of a control antibody).
  • Epitope Mapping of the Four Top Antibodies from 2H5 VH-Chain Shuffled Libraries.
  • As described above, we used peptide competition ELISA method to map the binding epitope of the four top antibodies identified from 2H5 VH-chain shuffled libraries. The LN16 peptide (corresponding to the NT amino acid (aa) November 2028 of pre-S1 domain), and LN16 peptide mutants LN16-L19A, -D20A, -P21A, -F23A were used to compete for binding of these antibodies to m47b peptide. Our data revealed that all of them had similar peptide competition pattern as 2H5, amino acids, L19, D20, P21 and F23 are important for these antibodies' binding. The D20 and F23 are most important for all antibodies, whereas L19 and P21 played slightly variable role for different antibodies.
  • Further Characterize the Four Top Antibodies from 2H5 VH-Chain Shuffled Libraries.
  • These antibodies have more than 15-20 fold improved HBV (genotype D) neutralization activity as compared to the parental 2H5 antibody. The IC50 for these antibodies are around ˜10-40 pM. A representative antibody out of these 4 antibodies, A14, was further compared to Hepatitis B Immune Globulin in neutralizing HBV (genotype D) infection. HBIG is prepared from the plasma of donors who have high antibody levels of the hepatitis B surface antigen (HBsAg) and used as a post exposure prophylaxis for people at risk to develop hepatitis B in clinic. A14 showed more than 1000-fold greater neutralization activity than HBIG. Furthermore, A14 showed broadly neutralization activity against other two HBV genotypes, B and C. The IC50 for genotype B, C and D are 80 pM, 30 pM and 10 pM, respectively. A14 was also examined for neutralizing six HBV genotype C viruses from plasma of HBV infected patients. Again A14 was at least several hundreds to 1000-fold more potent than HBIG in neutralizing these viruses.
  • A14 is the one with the highest Fab melting temperatures (Tm) of 80.2° C., reflecting the best thermostability of its variable domains. A14 is stabilized by approximately 2° C. comparing to the original 2H5, whereas other three nAbs all have slightly reduced thermostability. The thermostability was measured using differential scanning calorimetry (DSC).
  • Using primary human hepatocytes (PHH), we also demonstrated the potent neutralization activity of A14 against two HBV clinical strains from HBV patient plasma samples. One virus is genotype B; the other virus is a genotype C virus. HBsAg or HBeAg secreted to cell culture supernatants was examined every two days over the entire infection course using commercial kits (Autobio Diagnostics Co., Ltd.).
  • A14 competed with pre-S1 for binding to NTCP expressed on cells. A14 effectively competed with pre-S1 (FITC labeled pre-S1 peptide: m59) for binding to NTCP expressed on HepG2 cells in a dose-dependent manner.
  • A14 has no cross reactivity with 12 different cell lines representing 6 different tissues. This was analyzed by Western blotting and immunostaining assays.
  • A14 has antibody mediated cytotoxicity (ADCC) activity against cells carrying its epitope on cell surface and HBV producing cells as well as infected cells. In the ADCC assay, the epitope of A14 was stably expressed on CHO cell surface, HBV producing DE19 cells, and infected HepG2-hNTCP cells were used as target cells. A human NK cell line (NK92-MI expressing CD16 (V158 allele) and FcRgamma chain was used as effector cells. The effector cells and target cells (E/T) were co-cultured at a ratio of 6:1 for 6 hours in the presence of A14 or its Fc mutant. The cell killing was determined by using LDH release assay kit form Promega. The ADCC assay showed that A14 exhibited strong specific killing of CHO cells expressing the epitope, HBV producing cells, and HBV-infected HepG2-hNTCP cells but not the control cells lacking of the epitope expression, non-HBV producing cells and non-HBV infected cells. Meanwhile, the A14's Fc mutant (D265A/N297A) that lacks the ADCC activity but retains the same binding activity had no ADCC activity.
  • ADCC activity is common to antibodies having the same or similar epitope as A14, including 2H5, and its VH chain shuffled derived ones: 4, 31, 32, 69, A14, A21, B103, B129, B139, B172, and the VL chain shuffled clones #8, 20, 20-m1, 20-m2, 20-m3, and antibodies having distinct epitopes, such as m36, 71, 76, T47, m150, m1Q can also present ADCC activity; for example, m1 Q, also showed ADCC activity, its epitope is approximate to the C-terminal of A14's epitope on preS1.
  • A14 Protected Mice from HDV Infection.
  • We previously revealed that the molecular determinant restricting mouse NTCP (mNTCP) to support viral entry of HBV and HDV is located within the residues 84-87 of mNTCP. When residues 84-87 were replaced by the human NTCP counterparts, it can effectively support viral infections in cell cultures [16]. Based on this, we have established a mouse model (background of FVB strain) that can support HDV infection by replacing mNTCP's residues at 84-87 with the corresponding residues of hNTCP using a genome editing method, TALEN [17, 18]. Using this mouse model, we tested if A14 can protect mice from HDV infection. FVB mice (age of 9 days after birth) with aa84-87 of mNTCP modified homozygotes were administered A14 mAb at 10 mg/kg of body weight. At 1 hour after mAb administration, mice were challenged with HDV viruses. At day 6 after HDV challenge, mice were sacrificed and liver tissues were harvested in liquid nitrogen immediately after collection. Mouse liver samples were then homogenized and lysed by Trizol® reagent to extract the total RNA. The RNA samples were reverse transcribed into cDNA with Prime Script RT-PCR Kit (Takara). To quantify HDV total RNA (genome equivalent) and edited NTCP RNA copies, the cDNA obtained from 20 ng RNA was used as template for real time PCR assay. Real time PCR was performed on an ABI Fast 7500 real time system instrument (Applied Biosystems, USA). The edited NTCP and HDV viral genome equivalent copies were calculated with a standard curve and the cellular GAPDH RNA was used as an internal control. A14 mAb completely blocked HDV infection, whereas HDV infection reached 1-10×106 copies/20 ng liver RNA in the control group. Mice in both groups had comparable NTCP mRNA copies in the liver tissue.
  • A14 Protected Mice from HBV Infection in a Prophylaxis Mouse Model and Inhibited HBV Infection in a Treatment Mouse Model.
  • A mouse HBV infection model has been established using FRG (Fah−/−Rag2−/−/IL2rg−/−) triple knock-out mice transplanted with human hepatocytes [19, 20]. The FRG mice allows transplanted human hepatocytes replicating in mouse liver to form a chimeric liver with up to 98% human hepatocytes, as such the liver humanized FRG mice (FRGC) are highly susceptible to HBV infection. To test the prophylactic effect of A14, 10 FRGC mice were divided into two groups, five mice each. A14 prophylaxis group mice were injected with A14 at 15 mg/kg dosage by a single IP administration one day prior to HBV virus challenge, while mice in the control group were injected with same volume of PBS. On day 0, all mice were injected with 10e9 GE (genome equivalent) HBV each via tail vein. To test the therapeutic effect of A14, FRGC mice were challenged with 10e9 GE/mice of HBV via tail vein on day 0, on day 5 post-infection, the mice were treated with entecavir (ETV) control or A14 or HBIG. ETV was orally given at 0.1 mg/kg daily; A14 or HBIG were administrated every three days by I.P. injection at 20 mg/kg and 72 mg/kg (40 IU/kg), respectively. For both prophylaxis and treatment model, blood samples were collected every 3 days from all mice for measuring HBsAg and HBV DNA titer in serum. The mice were scarified at the end of the experiment, dpi35 and the liver tissues were preserved for immunohistochemical staining (IHC) of HBsAg and HBcAg. A14 showed 100% protection of FRGC mice from HBV infection in the prophylaxis model; it also showed significant inhibition of HBV infection in the treatment model.
  • Taken together, the results clearly demonstrated that A14 mAb is a potent HDV and HBV entry inhibitor in animal model. A14 mAb can be used to replace HBIG for prevention of HDV and HBV infection. On the other hand, A14 treatment of an established HBV infection in mice significantly inhibited HBV infection, moreover A14 showed specific ADCC activity against HBV-infected cells but not the non-HBV infected cells. These results indicate that A14 mAb may be combined with ETV to treat patient who are chronically infected by HBV. As A14 blocks new viral entry into host cells and has ADCC activity against infected cells, whereas ETV inhibits viral replication, combination of A14 with a viral replication inhibitor such as ETV, lamivudine, adefovir, tenofovir, telbivudine or other nucleoside and nucleotide analogues (NUCs) provide new therapeutic and prophylactic options for patients and can achieve better viremia control and HBsAg reduction.
  • Improvement of A14 Affinity and Neutralization Activity by VL-Chain Shuffling.
  • To further improve A14 activity, we made an A14-VL chain shuffled phage display library, in which VH of A14 was fixed and paired with a library of VL chains. The final library (A14VH/VLlib) constructed had a size of ˜3×108. By using m47b peptide captured on streptavidin-conjugated magnetic M-280 Dynabeads® (Life Technologies) as target, the A14VH/VLlib library was selected for two rounds. 196 clones were screened for binding with m47b by ELISA. All clones were positive but 24 clones with highest OD450 reading were picked for sequencing. Two clones, #8 and #20, with different VL chain sequences than A14's VL were identified. These two antibodies were converted into full-length human IgG1 and tested for binding to m47b by ELISA. They both showed stronger binding activity to m47b than A14. In the HBV neutralization assay of HBV (genotype D), #8 showed 5-fold improvement in neutralizing HBV infection, whereas #20 showed similar activity as A14. Further mutagenesis of the VL of #20 (#20-m1, -m2, -m3) improved its neutralization activity by ˜3-5-fold than A14, reached to the similar level as #8. The elevated HDV neutralization activities of these #20 mutants compared to A14 were demonstrated. Thus these A14-derived antibodies with further improved activities can be used similarly as A14 as described above, either alone or in combination with a viral replication inhibitor.
  • REFERENCES
    • 1. Harrison, J. L., et at, Screening of phage antibody libraries. Methods Enzymol, 1996. 267: p. 83-109.
    • 2. McCafferty, J., et al., Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990. 348(6301): p. 552-4.
    • 3. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049.
    • 4. Sureau, C., et al., Production of infectious hepatitis delta virus in vitro and neutralization with antibodies directed against hepatitis B virus pre-S antigens. J Virol, 1992. 66(2): p. 1241-5.
    • 5. Yan, H., et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84.
    • 6. Hong, H. J., et al., In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees. Virology, 2004. 318(1): p. 134-41.
    • 7. Ryu, C. J., et al., Mouse monoclonal antibodies to hepatitis B virus preS1 produced after immunization with recombinant preS1 peptide. Hybridoma, 2000. 19(2): p. 185-9.
    • 8. Chi, S. W., et al., Broadly neutralizing anti-hepatitis B virus antibody reveals a complementarity determining region H3 lid-opening mechanism. Proc Natl Acad Sci USA, 2007. 104(22): p. 9230-5.
    • 9. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-326.
    • 10. McCoy, A. J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007. 40(Pt 4): p. 658-674.
    • 11. McCoy, A. J., Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr, 2007. 63(Pt 1): p. 32-41.
    • 12. Jordan, J. B., et al., Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem, 2009. 284(36): p. 24155-67.
    • 13. Adams, P. D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
    • 14. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32.
    • 15. Lovell, S. C., et al., Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 2003. 50(3): p. 437-50.
    • 16. Yan, H., et al., Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 2013. 87(14): p. 7977-91.
    • 17. Moscou, M. J. and A. J. Bogdanove, A simple cipher governs DNA recognition by TAL effectors. Science, 2009. 326(5959): p. 1501.
    • 18. Boch, J., et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009. 326(5959): p. 1509-12.
    • 19. Strom, S. C., J. Davila, and M. Grompe, Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol, 2010. 640: p. 491-509.
    • 20. Bissig, K. D., et al., Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest, 2010. 120(3): p. 924-30.
  • Antibody sequences of 7 antibodies derived from naïve library
    m36
    m36 VH DNA:
    (SEQ ID NO: 01)
    CAAGTTCCTTTATGTGCTGTCTCATCATTTTGGCAAGAATTCGCCACCATGAAACATCTGTGGT
    TCTTCCTTCTCCTGGTGGCAGCGGCCCAGCCGGCCATGGCCCAGATGCAGCTGGTGCAGTCTGG
    GGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTT
    GATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTA
    TTAGTTGGAATAGTGGTAGCATAGGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAG
    AGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTG
    TATTACTGTGCAAAAACGTCCTACGGGGGGGCTTTTGATATCTGGGGCCAAGGGACAATGGTCA
    CCGTCTCCTCA
    m36 VL DNA:
    (SEQ ID NO: 02)
    CAGCCTGTGCTGACTCAATCGCCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAAACACTTCCAACATCGGAAGTTATTATGCATACTGGTATCAGCAACTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATGATAATAATCAGCGGCCCTCGGGGATCCCTGCCCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCAG
    ATTATTACTGTGCAACATGGGATGACAGCCTGAATGGTCCGGTGTTCGGCGGAGGGACCAAGGT
    CACCGTCCTA
    m36 VH Amino acid:
    (SEQ ID NO: 03)
    QMQLVQSGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSV
    KGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKTSYGGAFDIWGQGTMVTVSS
    m36 VL Amino acid:
    (SEQ ID NO: 04)
    QPVLTQSPSASGTPGQRVTISCSGNTSNIGSYYAYWYQQLPGTAPKLLIYDNNQRPSGIPARFS
    GSKSGTSASLAISGLQSEDEADYYCATWDDSLNGPVFGGGTKVTVL
    71:
    71 VH DNA:
    (SEQ ID NO: 05)
    CAGGTGCAGCTGGTGGAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCT
    GCAAGGCTTCTGGATACACCTTCACCGGCTACTATATACATTGGGTGCGACAGGCCCCTGGACA
    AGGGCTTGAGTGGATGGGACGGATCAACCCTAACAGTGGTGGCACAAACTATGCACAGAAGTTT
    CAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGGACGGCCTACATGGAACTGAGTACAC
    TGACATCTGACGACACGGCCGTTTATTACTGTGCGAGAGAAGGAAGGGGCGGCATGGACGTCTG
    GGGCCAAGGGACCACGGTCACCGTCTCCTCA
    71 VL DNA:
    (SEQ ID NO: 06)
    GATGTTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCCATCT
    CCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTGGATTGGTACCTGCA
    GAAGCCAGGGCAGTCTCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCT
    GACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTG
    AGGATGTTGGGATTTATTACTGCATGCAAGGTCTACAACCTCCCATCACCTTCGGCCAGGGGAC
    ACGACTGGAGATTAAA
    71 VH Amino acid:
    (SEQ ID NO: 07)
    QVQLVESGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGRINPNSGGTNYAQKF
    QGRVTMTRDTSIRTAYMELSTLTSDDTAVYYCAREGRGGMDVWGQGTTVTVSS
    71 VL Amino acid:
    (SEQ ID NO: 08)
    DVVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVP
    DRFSGSGSGTDFTLKISRVEAEDVGIYYCMQGLQPPITFGQGTRLEIK
    76:
    76 VH DNA:
    (SEQ ID NO: 09)
    GAGGTGCAGCTGTTGGAGACCGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCT
    GTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAA
    GGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTG
    AAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCC
    TGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGTGGTGCTTTTGATATCTGGGGCCAAGG
    GACAATGGTCACCGTCTCTTCA
    76 VL DNA:
    (SEQ ID NO: 10)
    GATGTTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCCTCCATCT
    CCTGCAGGTCTAGTCACAGCCTCGTATACAGTGATGGAAACACCTACTTGAGTTGGTTTCACCA
    GAGGCCAGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAATCGGGACTTTGGGGTCCCA
    GACAGATTCAGCGGCAGTGGGTCAGGCACTGACTTCACACTGAAGATCAGCAGGGTGGAGGCTG
    AGGATGTTGGAGTTTATTACTGCATGCAAGGTACACACTGGCCTGGGACGTTCGGCCAGGGGAC
    CAAACTGGATATCAAA
    76 VH Amino acid:
    (SEQ ID NO: 11)
    EVQLLETGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASGAFDIWGQGTMVTVSS
    76VL Amino acid:
    (SEQ ID NO: 12)
    DVVMTQSPLSLPVTLGQPASISCRSSHSLVYSDGNTYLSWFHQRPGQSPRRLIYKVSNRDFGVP
    DRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPGTFGQGTKLDIK
    T47:
    T47 VH DNA:
    (SEQ ID NO: 13)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCTCCT
    GTGCCATCTCCGGGGACAGTGTCTCCAGCAACAGTGTTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTCTCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAGCTCTGTGACTCCCGAGGACACGGCTGTATATTACTGTGCAAGAGCCGATGGTTCGCGAGG
    GGGAGGGTATGACCAGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA
    T47 VL DNA:
    (SEQ ID NO: 14)
    GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACCATCA
    AATGCAAGTCCAGTCAGTCTATTTTATACAGGTCCAACAATAAGAACTACTTAGCTTGGTACCA
    ACACAAACCAGGACAGCCTCCTAAGCTGCTCATTTCCTGGGCATCTACCCGGGAATCCGGGGTC
    CCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAACAGCCTGCAGG
    CTGAAGATGTGGCGGTTTATTACTGTCAGCAATATTATACTACTCCTCAGACTTTTGGCCAGGG
    GACCAAGGTGGAGATCAAA
    T47 VH Amino acid:
    (SEQ ID NO: 15)
    QVQLQQSGPGLVKPSQTLSLSCAISGDSVSSNSVAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLSSVTPEDTAVYYCARADGSRGGGYDQWGQGTLVTVSS
    T47 VL Amino acid:
    (SEQ ID NO: 16)
    DIVMTQSPDSLAVSLGERATIKCKSSQSILYRSNNKNYLAWYQHKPGQPPKLLISWASTRESGV
    PDRFSGSGSGTDFTLTINSLQAEDVAVYYCQQYYTTPQTFGQGTKVEIK
    m1Q
    m1Q VH DNA
    (SEQ ID NO: 17)
    CAGGTCCAGTTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCT
    GTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAA
    GGGGCTGGAGCAGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTACGTAGACTCCGTG
    AAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCC
    TGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGATCTACATACGGTATGGACGTCTGGGG
    CCAAGGGACCACGGTCACCGTCTCCTCA
    m1Q-VL DNA
    (SEQ ID NO: 18)
    GATGTTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGTCGGCCTCCATCT
    CCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACACCTACTTGAATTGGTTTCAGCA
    GAGGCCAGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAATCGGGACTCCGGGGTCCCA
    GACAGATTCAGCGGCAGTGGGTCAGACACTGATTTCACACTGGAAATCAGCAGGGTGGAGGCCG
    AGGATGTTGGGATTTATTACTGCATGCAAGGTACACACTGGTGGACGTTCGGCCAAGGGACCAA
    GCTGGATATCAAA
    m1Q VH Amino acid:
    (SEQ ID NO: 19)
    QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEQVAVISYDGSNKYYVDSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSTYGMDVWGQGTTVTVSS
    m1Q Vk Amino acid:
    (SEQ ID NO: 20)
    DVVMTQSPLSLPVTLGQSASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVP
    DRFSGSGSDTDFTLEISRVEAEDVGIYYCMQGTHWWTFGQGTKLDIK
    2H5:
    2H5 VH DNA:
    (SEQ ID NO: 21)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGGCATCTCCGGGGACAGTGTCTCTAGCAAGAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    TTCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGCATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTTTCCCTGCAGC
    TGAACTCTGTGACCCCCGAAGACACGGCTGTGTATTATTGTGCGCGCGGCCAGATGGGAGCTTT
    GGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
    2H5 VL DNA:
    (SEQ ID NO: 22)
    CAGTCTGTGTTGACGCAGCCGCCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAAGCAGCTCCAACATCGGAAGTTATTATGTATACTGGTACCAGCAATTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATGGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTG
    ATTATTACTGTCAGTCCTATGACAGCAGCCTGAGTGGTGTGATATTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    2H5 VH Amino acid:
    (SEQ ID NO: 23)
    QVQLQQSGPGLVKPSQTLSLTCGISGDSVSSKSAAWNWIRQSPSRGLEWLGRTYYRSKWHNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGQMGALDVWGQGTTVTVSS
    2H5 VL Amino acid:
    (SEQ ID NO: 24)
    QSVLTQPPSASGTPGQRVTISCSGSSSNIGSYYVYWYQQFPGTAPKLLIYGNNQRPSGVPDRFS
    GSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGVIFGGGTKLTVL
    m150
    m150 VH DNA:
    (SEQ ID NO: 25)
    GAGGTGCAGCTGGTGCAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCT
    GTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAA
    GGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTG
    AAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCC
    TGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGGTTGGTGGCTGGTCGAAGTGCTTTTGA
    TATCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
    m150 VK DNA:
    (SEQ ID NO: 26)
    GAAATTGTGCTGACTCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCT
    CCTGCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGC
    TCCCAGGCTCCTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGGC
    AGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTT
    ATTACTGTCAGCAGTATAATAACTGGCCTCCGATCACCTTCGGCCAAGGGACACGACTGGAGAT
    TAAA
    m150 VH Amino acid:
    (SEQ ID NO: 27)
    EVQLVQSGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSV
    KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLVAGRSAFDIWGQGTTVTVSS
    m150 VK Amino acid:
    (SEQ ID NO: 28)
    EIVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSG
    SGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPITFGQGTRLEIK
    Antibody sequences of 10 antibodies derived from 2H5 VH-chain
    shuffled library selection. Note, these antibodies have the
    same VL sequence as 2H5, therefore only VH sequences of these
    antibodies were listed below.
    #4
    #4 VH DNA:
    (SEQ ID NO: 29)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGGCATCTCCGGGGACAGTGTCTCTAGCAAGAGTGTTACTTGGAACTGGATCAGGGAGTCTCC
    AACGGGAGGCCTTGAGTGGCTGGGCAGGACATACTATAGGTCCAAGTGGTTTAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACTGTCAACCCAGACACATCCAAGAACCAGTTTTCCCTGCAGC
    TAAACTCTGTGACTCCCGAGGACAGGGGTGTCTATTACTGCGCACGCGCCAAGATGGGAGGTAT
    GGACGTCTGGGGCCAGGGGACCACGGTCACCGTCTCTTCA
    #4 VH Amino Acid:
    (SEQ ID NO: 30)
    QVQLQQSGPGLVKPSQTLSLTCGISGDSVSSKSVTWNWIRESPTGGLEWLGRTYYRSKWFNDYA
    VSVKSRITVNPDTSKNQFSLQLNSVTPEDRGVYYCARAKMGGMDVWGQGTTVTVSS
    #31 VH DNA:
    (SEQ ID NO: 31)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTTTATTACTGTACAAGACAGAGTTGGCACGGTAT
    GGAAGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
    #31 VH Amino acid:
    (SEQ ID NO: 32)
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCTRQSWHGMEVWGQGTTVTVSS
    #32 VH DNA:
    (SEQ ID NO: 33)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACTCAGACACATCGAAGAACCAGTTCTCCCTGCAGC
    TGAAGTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGGAGTATAGCAACAGGTAC
    TGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
    #32 VH Amino acid:
    (SEQ ID NO: 34)
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINSDTSKNQFSLQLKSVTPEDTAVYYCARSIATGTDYWGQGTLVTVSS
    #69 VH DNA:
    (SEQ ID NO: 35)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGATGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGTAGCCGTGCTACTTGGAACTGGATCAGGGAGTCTCC
    AACGGGAGGCCTTGAGTGGCTGGGCAGGACATACTATAGGTCCAAGTGGTTTAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACTGTCAACCCAGACACATCCAAGAACCAGTTTTCCCTGCAGC
    TAAACTCTGTGACTCCCGAGGACAGGGGTGTCTATTACTGCGCACGCGCCAAGATGGGAGGTAT
    GGACGTCTGGGGCCAGGGGACCACGGTCACCGTCTCCTCA
    #69 VH Amino acid:
    (SEQ ID NO: 36)
    QVQLQQSGPGLMKPSQTLSLTCAISGDSVSSSRATWNWIRESPTGGLEWLGRTYYRSKWFNDYA
    VSVKSRITVNPDTSKNQFSLQLNSVTPEDRGVYYCARAKMGGMDVWGQGTTVTVSS
    A14 VH DNA:
    (SEQ ID NO: 37)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGGAACACGTTGGGGTAT
    GGACGTCTGGGGCCAAGGGACCCTGGTCACTGTCTCCTCA
    A14 VH Amino acid:
    (SEQ ID NO: 38)
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGTRWGMDVWGQGTLVTVSS
    A21 VH DNA:
    (SEQ ID NO: 39)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGCGAAAGTGTACGGTGT
    GGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
    A21 VH Amino acid:
    (SEQ ID NO: 40)
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARAKVYGVDVWGQGTTVTVSS
    B103 VH DNA:
    (SEQ ID NO: 41)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGGCATCTCCGGGGACAGTGTCTCTAGCAAGAGTGCCACTTGGAACTGGGTCAGGCAGTCCGC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAGGTGGTTTAATGATTATGCA
    GTGTCTGTGAAAAGTCGAATAACCGTCAAGCCAGACACATCCAAGAACCAGTTTTCCCTGCAAT
    TAAATTCTGTGAGTCCCGAGGACACGGCTATCTATTACTGTGCACGCGGCAACATGGGAGCTAT
    GGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCTTCA
    B103 VH Amino acid:
    (SEQ ID NO: 42)
    QVQLQQSGPGLVKPSQTLSLTCGISGDSVSSKSATWNWVRQSASRGLEWLGRTYYRSRWFNDYA
    VSVKSRITVKPDTSKNQFSLQLNSVSPEDTAIYYCARGNMGAMDVWGQGTTVTVSS
    B129 VH DNA:
    (SEQ ID NO: 43)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGCTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGGGTCTCTAGCAATAGAGCTGCTTGGAACTGGGTCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCCAGTGGTATAATGATTATGCA
    GTCTCTGTAAAAAGTCGAGTGACCATCAGCCCAGACGCATCCAAGAACCAAGTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGGTACAGCTATGGGTGA
    CGCCTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCA
    B129 VH Amino acid:
    (SEQ ID NO: 44)
    QVQLQQSGPGLLKPSQTLSLTCAISGDRVSSNRAAWNWVRQSPSRGLEWLGRTYYRSQWYNDYA
    VSVKSRVTISPDASKNQVSLQLNSVTPEDTAVYYCARGTAMGDAWGQGTLVTVSS
    B139 VH DNA:
    (SEQ ID NO: 45)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCACACTCACCT
    GTGTCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTTTCTCTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGACAAGCCTCCAACGGTTT
    TGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA
    B139 VH Amino acid:
    (SEQ ID NO: 46)
    QVQLQQSGPGLVKPSQTLTLTCVISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSLKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARQASNGFDIWGQGTMVTVSS
    B172 VH DNA:
    (SEQ ID NO: 47)
    CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCT
    GTGCCATCTCCGGGGACAGTGTCTCTAGCAACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCC
    ATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTATGCA
    GTATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGC
    TGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGACAGGGGACGACAGGCTT
    TGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTCA
    B172 VH Amino acid:
    (SEQ ID NO: 48)
    QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYA
    VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARQGTTGFDYWGQGTTVTVSS
    Antibody sequences of two antibodies derived from A14 VL-chain
    shuffled library selection. Note, these antibodies have the same
    VH sequence as A14, therefore only VL sequences of these two
    antibodies were listed below.
    #8 VL DNA:
    (SEQ ID NO: 49)
    CAGTCTGTCGTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCT
    GCTCTGGAAGCAGCTCCAACATTGGGAATTATTATGTGTCCTGGTACCAGCACCTCCCAGGAAC
    AGCCCCCAAACTCCTCATTTATGACAATGCTAAGCGACCCTCAGGGATTCCTGACCGATTCTCT
    GGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCACTGGGCTCCGGGCTGAGGATGAGGCTG
    ATTATTACTGCCAGTCCTATGACAATAGCCTTAGTGGTTTGGTGTTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    #8 VL amino acid:
    (SEQ ID NO: 50)
    QSVVTQPPSVSAAPGQKVTISCSGSSSNIGNYYVSWYQHLPGTAPKLLIYDNAKRPSGIPDRFS
    GSKSGTSATLGITGLRAEDEADYYCQSYDNSLSGLVFGGGTKLTVL
    #
    20 VL DNA:
    (SEQ ID NO: 51)
    CAGTCTGTGTTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAACCAGCTCCAACATCGGAAGTAAGTATGTATACTGGTACCAGCGGCTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATACTAATGATCAGCGGCCCTCAGGGGTCCCTGCCCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTG
    ATTATTACTGCCAGTCCTATGACAGCAGCCTGCGTGCTGTGGTTTTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    #
    20 VL amino acid:
    (SEQ ID NO: 52)
    QSVLTQPPSASGTPGQRVTISCSGTSSNIGSKYVYWYQRLPGTAPKLLIYTNDQRPSGVPARFS
    GSKSGTSASLAITGLQAEDEADYYCQSYDSSLRAVVFGGGTKLTVL
    #20-m1 VL DNA:
    (SEQ ID NO: 53)
    CAGTCTGTGTTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAACCAGCTCCAACATCGGAAGTTTCTATGTATACTGGTACCAGCGGCTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATACTAATGATCAGCGGCCCTCAGGGGTCCCTGCCCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTG
    ATTATTACTGCCAGTCCTATGACAGCAGCCTGCGTGCTGTGGTTTTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    #20-m1 VL amino acid:
    (SEQ ID NO: 54)
    QSVLTQPPSASGTPGQRVTISCSGTSSNIGSFYVYWYQRLPGTAPKLLIYTNDQRPSGVPARFS
    GSKSGTSASLAITGLQAEDEADYYCQSYDSSLRAVVFGGGTKLTVL
    #20-m2 VL DNA:
    (SEQ ID NO: 55)
    CAGTCTGTGTTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAACCAGCTCCAACATCGGAAGTTTCTATGTATACTGGTACCAGCAGCTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATACTAATGATCAGCGGCCCTCAGGGGTCCCTGCCCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTG
    ATTATTACTGCCAGTCCTATGACAGCAGCCTGCGTGCTGTGGTTTTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    #20-m2 VL amino acid:
    (SEQ ID NO: 56)
    QSVLTQPPSASGTPGQRVTISCSGTSSNIGSFYVYWYQQLPGTAPKLLIYTNDQRPSGVPARFS
    GSKSGTSASLAITGLQAEDEADYYCQSYDSSLRAVVFGGGTKLTVL
    #20-m3 VL DNA:
    (SEQ ID NO: 57)
    CAGTCTGTGTTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
    GTTCTGGAACCAGCTCCAACATCGGAAGTTACTATGTATACTGGTACCAGCAGCTCCCAGGAAC
    GGCCCCCAAACTCCTCATCTATACTAATGATCAGCGGCCCTCAGGGGTCCCTGCCCGATTCTCT
    GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTG
    ATTATTACTGCCAGTCCTATGACAGCAGCCTGCGTGCTGTGGTTTTCGGCGGAGGGACCAAGCT
    GACCGTCCTA
    #20-m3 VL amino acid:
    (SEQ ID NO: 58)
    QSVLTQPPSASGTPGQRVTISCSGTSSNIGSYYVYWYQQLPGTAPKLLIYTNDQRPSGVPARFS
    GSKSGTSASLAITGLQAEDEADYYCQSYDSSLRAVVFGGGTKLTVL

Claims (9)

What is claimed is:
1. An antibody antigen binding domain which specifically binds HBV Pre-S1, and comprises complementarity determining region (CDR) 1, CDR2 and CDR3, in a combination selected from (a)-(r) as follows, wherein the antibody (Ab), heavy chain (HC) or light chain (LC) and CDR nomenclature system (Kabat, IMGT or composite) from which the CDR combinations derive are shown in the first column, and residues in bold text are Kabat system, and residues underlined are IMGT system:
HCDRs of unique HBV Pre-S1 specific antibodies MAbs CDR1 CDR2 CDR3 m36-HC GFTFDDYA MH G ISWNSGSI GYADSVKG AKTSYGGAFDI K: SEQ ID NO: 59,  K: SEQ ID NO: 60 K: SEQ ID NO: 61,  res. 6-10 res. 3-11 I: SEQ ID NO: 59,  I: SEQ ID NO: 60,  I: SEQ ID NO: 61 res. 1-8 res. 2-9 C: SEQ ID NO: 59 C: SEQ ID NO: 60 C: SEQ ID NO: 61 m36-LC SGN TSNIGSYY AY DNN QRPS ATWDDSLNGPV K: SEQ ID NO: 62 K: SEQ ID NO: 63 K: SEQ ID NO: 64 I: SEQ ID NO: 62,  I: SEQ ID NO: 63,  I: SEQ ID NO: 64 res. 4-11 res. 1-3 C: SEQ ID NO: 62 C: SEQ ID NO: 63 C: SEQ ID NO: 64 71-HC GYTTGYY IH RINPNSGGTN AREGRGGMDV K: SEQ ID NO: 65,  K: SEQ ID NO: 66 K: SEQ ID NO: 67,  res. 5-9 res. 3-10 I: SEQ ID NO: 65,  I: SEQ ID NO: 66 I: SEQ ID NO: 67 res. 1-7 C: SEQ ID NO: 65 C: SEQ ID NO: 66 C: SEQ ID NO: 67 71-LC RSSQSLLHSNGYNY LGSNRAS MQGLQPPIT K: SEQ ID NO: 68,  K: SEQ ID NO: 69 K: SEQ ID NO: 70 res. 1-12 I: SEQ ID NO: 68,  I: SEQ ID NO: 69 I: SEQ ID NO: 70 res. 4-14 C: SEQ ID NO: 68 C: SEQ ID NO: 69 C: SEQ ID NO: 70 76-HC GFTFSSYA MH V ISYDGSNK YYADSVKG ASGAFDI K: SEQ ID NO: 71,  K: SEQ ID NO: 72 K: SEQ ID NO: 73,  res. 6-10 res. 3-7 I: SEQ ID NO: 71,  I: SEQ ID NO: 72,  I: SEQ ID NO: 73 res. 1-8 res. 2-9 C: SEQ ID NO: 71 C: SEQ ID NO: 72 C: SEQ ID NO: 73 76-LC RSS HSLVYSDGNTY LS KVS NRDF MQGTHWPGT K: SEQ ID NO: 74 K: SEQ ID NO: 75 K: SEQ ID NO: 76 I: SEQ ID NO: 74,  I: SEQ ID NO: 75,  I: SEQ ID NO: 76 res. 4-14 res. 1-3 C: SEQ ID NO: 74 C: SEQ ID NO: 75 C: SEQ ID NO: 76 T47-HC GDSVSSNSVA WN R TYYRSKWYN DYAVSVKS ARADGSRGGGYDQ K: SEQ ID NO: 77,  K: SEQ ID NO: 78 K: SEQ ID NO: 79,  res. 6-12 res. 3-13 I: SEQ ID NO: 77,  I: SEQ ID NO: 78,  I: SEQ ID NO: 79 res. 1-10 res. 2-10 C: SEQ ID NO: 77 C: SEQ ID NO: 78 C: SEQ ID NO: 79 T47-LC KSS QSILYRSNNKNY LA WAS TRES QQYYTTPQ T K: SEQ ID NO: 80 K: SEQ ID NO: 81 K: SEQ ID NO: 82 I: SEQ ID NO: 80,  I: SEQ ID NO: 81,  I: SEQ ID NO: 82,  res. 4-15 res. 1-3 res. 1-8 C: SEQ ID NO: 80 C: SEQ ID NO: 81 C: SEQ ID NO: 82 m1Q-HC GFTFSSYA MH V ISYDGSNK YYVDSVKG ARSTYGMDV K: SEQ ID NO: 83,  K: SEQ ID NO: 84 K: SEQ ID NO: 85,  res. 6-10 res. 3-9 I: SEQ ID NO: 83,  I: SEQ ID NO: 84,  I: SEQ ID NO: 85 res. 1-8 res. 2-9 C: SEQ ID NO: 83 C: SEQ ID NO: 84 C: SEQ ID NO: 85 m1Q-LC RSS QSLVHSDGNTY LN KVS NRDS MQGTHWWT K: SEQ ID NO: 86 K: SEQ ID NO: 87 K: SEQ ID NO: 88 I: SEQ ID NO: 86,  I: SEQ ID NO: 87,  I: SEQ ID NO: 88 res. 4-14 res. 1-3 C: SEQ ID NO: 86 C: SEQ ID NO: 87 C: SEQ ID NO: 88 2H5-HC GDSVSSKSAA WN R TYYRSKWHN DYAVS ARGQMGALDV K: SEQ ID NO: 89,  K: SEQ ID NO: 90 K: SEQ ID NO: 91,  res. 6-12 res. 3-10 I: SEQ ID NO: 89,  I: SEQ ID NO: 90,  I: SEQ ID NO: 91 res. 1-10 res. 3-10 C: SEQ ID NO: 89 C: SEQ ID NO: 90 C: SEQ ID NO: 91 2H5-LC SGS SSNIGSYY VYWY GNN QRPS QSYDSSLSGVI K: SEQ ID NO: 92 K: SEQ ID NO: 93 K: SEQ ID NO: 94 I: SEQ ID NO: 92,  I: SEQ ID NO: 93,  I: SEQ ID NO: 94 res. 4-11 res. 1-3 C: SEQ ID NO: 92 C: SEQ ID NO: 93 C: SEQ ID NO: 94 m150-HC GFTFSSYAMH V ISYDGSNK YYADSVKG ARLVAGRSAFDI K: SEQ ID NO: 95,  K: SEQ ID NO: 96 K: SEQ ID NO: 97,  res. 6-10 res. 3-12 I: SEQ ID NO: 95,  I: SEQ ID NO: 96,  I: SEQ ID NO: 97 res. 1-8 res. 2-9 C: SEQ ID NO: 95 C: SEQ ID NO: 96 C: SEQ ID NO: 97 m150-LC RAS QSVSSN LA GAS TRAT QQYNNWPPIT K: SEQ ID NO: 98 K: SEQ ID NO: 99 K: SEQ ID NO: 100 I: SEQ ID NO: 98,  I: SEQ ID NO: 99,  I: SEQ ID NO: 100 res. 4-9 res. 1-3 C: SEQ ID NO: 98 C: SEQ ID NO: 99 C: SEQ ID NO: 100
HCDRs of antibodies derived from 2H5 VH-chain shuffled libraries MAbs HCDR1 HCDR2 HCDR3 #4 VH GDSVSSKSVT WN R TYYRSKWFN DYAVS ARAKMGGMDV K: SEQ ID NO: 101,  K: SEQ ID NO: 102 K: SEQ ID NO: 103,  res 6-12 res 3-10 I: SEQ ID NO: 101,  I: SEQ ID NO: 102,  I: SEQ ID NO: 103 res. 1-10 res. 2-10 C: SEQ ID NO: 101 C: SEQ ID NO: 102 C: SEQ ID NO: 103 #31 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS TRQSWHGMEV K: SEQ ID NO: 104,  K: SEQ ID NO: 105 K: SEQ ID NO: 106,  res 6-12 res 3-10 I: SEQ ID NO: 104,  I: SEQ ID NO: 105,  I: SEQ ID NO: 106 res. 1-10 res. 2-10 C: SEQ ID NO: 104 C: SEQ ID NO: 105 C: SEQ ID NO: 106 #32 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARSIATGTDY K: SEQ ID NO: 107,  K: SEQ ID NO: 108 K: SEQ ID NO: 109,  res 6-12 res 3-10 I: SEQ ID NO: 107,  I: SEQ ID NO: 108,  I: SEQ ID NO: 109 res. 1-10 res. 2-10 C: SEQ ID NO: 107 C: SEQ ID NO: 108 C: SEQ ID NO: 109 #69 VH GDSVSSSRAT WN R TYYRSKWFN DYAVS ARAKMGGMDV K: SEQ ID NO: 110,  K: SEQ ID NO: 111 K: SEQ ID NO: 112,  res 6-12 res 3-10 I: SEQ ID NO: 110,  I: SEQ ID NO: 111,  I: SEQ ID NO: 112 res. 1-10 res. 2-10 C: SEQ ID NO: 110 C: SEQ ID NO: 111 C: SEQ ID NO: 112 A14 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARGTRWGMDV K: SEQ ID NO: 113,  K: SEQ ID NO: 114 K: SEQ ID NO: 115,  res 6-12 res 3-10 I: SEQ ID NO: 113,  I: SEQ ID NO: 114,  I: SEQ ID NO: 115 res. 1-10 res. 2-10 C: SEQ ID NO: 113 C: SEQ ID NO: 114 C: SEQ ID NO: 115 A21 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARAKVYGVDV K: SEQ ID NO: 116,  K: SEQ ID NO: 117 K: SEQ ID NO: 118,  res 6-12 res 3-10 I: SEQ ID NO: 116,  I: SEQ ID NO: 117,  I: SEQ ID NO: 118 res. 1-10 res. 2-10 C: SEQ ID NO: 116 C: SEQ ID NO: 117 C: SEQ ID NO: 118 B103 VH GDSVSSKSAT WN R TYYRSRWFN DYAVS ARGNMGAMDV K: SEQ ID NO: 119,  K: SEQ ID NO: 120 K: SEQ ID NO: 121,  res 6-12 res 3-10 I: SEQ ID NO: 119,  I: SEQ ID NO: 120,  I: SEQ ID NO: 121 res. 1-10 res. 2-10 C: SEQ ID NO: 119 C: SEQ ID NO: 120 C: SEQ ID NO: 121 B129 VH GDRVSSNRAA WN R TYYRSQWYN DYAVS ARGTAMG -DA K: SEQ ID NO: 122,  K: SEQ ID NO: 123 K: SEQ ID NO: 124,  res 6-12 res 3-9 I: SEQ ID NO: 122,  I: SEQ ID NO: 123,  I: SEQ ID NO: 124 res. 1-10 res. 2-10 C: SEQ ID NO: 122 C: SEQ ID NO: 123 C: SEQ ID NO: 124 B139 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARQASNGFDI K: SEQ ID NO: 125,  K: SEQ ID NO: 126 K: SEQ ID NO: 127,  res 6-12 res 3-10 I: SEQ ID NO: 125,  I: SEQ ID NO: 126,  I: SEQ ID NO: 127 res. 1-10 res. 2-10 C: SEQ ID NO: 125 C: SEQ ID NO: 126 C: SEQ ID NO: 127 B172 VH GDSVSSNSAA WN R TYYRSKWYN DYAVS ARQGTTGFDY K: SEQ ID NO: 128,  K: SEQ ID NO: 129 K: SEQ ID NO: 130,  res 6-12 res 3-10 I: SEQ ID NO: 128,  I: SEQ ID NO: 129,  I: SEQ ID NO: 130 res. 1-10 res. 2-10 C: SEQ ID NO: 128 C: SEQ ID NO: 129 C: SEQ ID NO: 130
HCDRs of antibodies derived from A14 VL-chain shuffled libraries MAbs LCDR1 HCDR2 HCDR3 #8 VL SGS SSNIGNYY VSWY DNA KRPS QSYDNSLSGLV K: SEQ ID NO: 131 K: SEQ ID NO: 132 K: SEQ ID NO: 133 I: SEQ ID NO: 131,  I: SEQ ID NO: 132,  I: SEQ ID NO: 133 res. 4-11 res. 1-3 C: SEQ ID NO: 131 C: SEQ ID NO: 132 C: SEQ ID NO: 133 #20 VL SGT SSNIGSKY VYWY TND QRPS QSYDSSLRAVV K: SEQ ID NO: 134 K: SEQ ID NO: 135 K: SEQ ID NO: 136 I: SEQ ID NO: 134,  I: SEQ ID NO: 135,  I: SEQ ID NO: 136 res. 4-11 res. 1-3 C: SEQ ID NO: 134 C: SEQ ID NO: 135 C: SEQ ID NO: 136 #20-m1 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV K: SEQ ID NO: 137 K: SEQ ID NO: 138 K: SEQ ID NO: 139 I: SEQ ID NO: 137,  I: SEQ ID NO: 138,  I: SEQ ID NO: 139 res. 4-11 res. 1-3 C: SEQ ID NO: 137 C: SEQ ID NO: 138 C: SEQ ID NO: 139 #20-m2 VL SGT SSNIGSFY VYWY TND QRPS QSYDSSLRAVV K: SEQ ID NO: 140 K: SEQ ID NO: 141 K: SEQ ID NO: 142 I: SEQ ID NO: 140,  I: SEQ ID NO: 141,  I: SEQ ID NO: 142 res. 4-11 res. 1-3 C: SEQ ID NO: 140 C: SEQ ID NO: 141 C: SEQ ID NO: 142 #20-m3 VL SGT SSNIGSYY VYWY TND QRPS QSYDSSLRAVV . K: SEQ ID NO: 143 K: SEQ ID NO: 144 K: SEQ ID NO: 145 I: SEQ ID NO: 143,  I: SEQ ID NO: 144,  I: SEQ ID NO: 145 res. 4-11 res. 1-3 C: SEQ ID NO: 143 C: SEQ ID NO: 144 C: SEQ ID NO: 145.
2. An antibody antigen binding domain according to claim 1 comprising a heavy chain variable region (Vh) comprising a CDR1, CDR2 and CDR3 combination and a light chain variable region (Vl) comprising a CDR1, CDR2 and CDR3 combination, selected from:
m36, 71, 76, T47, m1Q, 2H5, m150; and
4, 31, 32, 69, A14, A21, B103, B129, B139, B172; and
8, 20, 20-m1, 20-m2, 20-m3.
3. An antibody antigen binding domain according to claim 1 comprising a heavy chain variable region (Vh) or a light chain variable region (VD, selected from:
m36, 71, 76, T47, m1Q, 2H5, m150; and
4, 31, 32, 69, A14, A21, B103, B129, B139, B172; and
8, 20, 20-m1, 20-m2, 20-m3.
4. An antibody antigen binding domain according to claim 1 comprising a heavy chain variable region (Vh) and a light chain variable region (Vl), selected from
m36, 71, 76, T47, m1Q, 2H5, m150; and
4, 31, 32, 69, A14, A21, B103, B129, B139, B172; and
8, 20, 20-m1, 20-m2, 20-m3.
5. An antibody antigen binding domain according to any of claims 1-4 which specifically binds aa11-28 or aa19-25 of pre-S1.
6. A monoclonal IgG antibody comprising an antibody antigen binding domain according to any of claims 1-5.
7. A method of using an antibody antigen binding domain according to any of claims 1-5 to treat HBV or HDV infection or to induce antibody-dependent cell-mediated cytotoxicity (ADCC), comprising the step of administering the domain to a person determined to have HBV or HDV infection, to have been exposed to HBV or HDV, to be at high risk for HBV or HDV exposure or infection, to be in need of Pre-S1 domain antagonism, or to be otherwise in need thereof.
9. An expression vector encoding an antibody antigen binding domain according to any of claims 1-5.
10. A cultured cell expressing an antibody antigen binding domain according to any of claims 1-5.
US15/566,555 2015-05-22 2016-05-23 Anti-pre-s1 hbv antibodies Abandoned US20180094047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/864,494 US10544205B2 (en) 2015-05-22 2018-01-08 Anti-Pre-S1 HBV antibodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/079534 2015-05-22
CN2015079534 2015-05-22
PCT/CN2016/082985 WO2016188386A1 (en) 2015-05-22 2016-05-23 Anti-Pre-S1 HBV Antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082985 A-371-Of-International WO2016188386A1 (en) 2015-05-22 2016-05-23 Anti-Pre-S1 HBV Antibodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/864,494 Continuation US10544205B2 (en) 2015-05-22 2018-01-08 Anti-Pre-S1 HBV antibodies

Publications (1)

Publication Number Publication Date
US20180094047A1 true US20180094047A1 (en) 2018-04-05

Family

ID=57392535

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/566,555 Abandoned US20180094047A1 (en) 2015-05-22 2016-05-23 Anti-pre-s1 hbv antibodies
US15/864,494 Active US10544205B2 (en) 2015-05-22 2018-01-08 Anti-Pre-S1 HBV antibodies
US16/711,861 Active 2037-04-05 US11485774B2 (en) 2015-05-22 2019-12-12 Anti-pre-S1 HBV antibodies

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/864,494 Active US10544205B2 (en) 2015-05-22 2018-01-08 Anti-Pre-S1 HBV antibodies
US16/711,861 Active 2037-04-05 US11485774B2 (en) 2015-05-22 2019-12-12 Anti-pre-S1 HBV antibodies

Country Status (10)

Country Link
US (3) US20180094047A1 (en)
EP (2) EP3978521A1 (en)
JP (2) JP6820278B2 (en)
KR (1) KR20180009780A (en)
CN (3) CN113527470B (en)
ES (1) ES2896275T3 (en)
HK (1) HK1243429A1 (en)
MA (1) MA42137A (en)
RU (1) RU2739955C2 (en)
WO (1) WO2016188386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544205B2 (en) 2015-05-22 2020-01-28 Huahui Health Ltd. Anti-Pre-S1 HBV antibodies

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020010913A (en) 2018-04-17 2021-01-08 Celldex Therapeutics Inc Anti-cd27 and anti-pd-l1 antibodies and bispecific constructs.
WO2020130138A1 (en) * 2018-12-21 2020-06-25 国立大学法人広島大学 Anti-pres1 antibody and use thereof
CA3145057A1 (en) * 2019-07-20 2021-01-28 Wenhui Li A method of treating hbv infection by using anti-pre-s1 hbv antibodies
EP4357360A1 (en) * 2021-06-15 2024-04-24 ApitBio, Inc. Human antibody specifically binding to binding site of hepatocyte receptor of hepatitis b virus pres1 antigen, and use thereof
WO2023039243A2 (en) * 2021-09-13 2023-03-16 Achelois Biopharma, Inc. Hepatitis b virus antivirus (hbv-antivirus) compositions and methods of use
WO2023066171A1 (en) * 2021-10-19 2023-04-27 北京三诺佳邑生物技术有限责任公司 Antibody specifically binding to surface antigen pre-s1 of hepatitis b virus and application of the antibody
CN114685663B (en) * 2022-04-07 2023-09-08 西南大学 Antibody for resisting cholesterol-dependent cytolysin and application thereof
CN117304308A (en) * 2022-06-20 2023-12-29 华辉安健(北京)生物科技有限公司 Anti-hepatitis B virus antibody, preparation and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
CA2041772A1 (en) * 1990-05-11 1991-11-12 Larry T. Mimms Monoclonal antibodies to pres2 and pres1 polypeptide of the hepatitis b viral envelope
RU2146706C1 (en) * 1992-11-06 2000-03-20 Новартис Аг Monoclonal antibody binding with hepatitis b virus surface antigen, fab-fragment and method of decrease of level of circulating surface antigen of hepatitis b virus antigen in patients
KR100345463B1 (en) * 1998-11-19 2003-01-08 주)녹십자 Preparation of humanized antibody on surface antigen pre-s1 of hepatitis b virus
CN1216914C (en) * 2000-05-17 2005-08-31 韩国科学技术研究院 Humanized antibody with specificity to HBV surface antigen PRE-S1 and its producing process
KR100423614B1 (en) * 2001-05-16 2004-03-22 주식회사유한양행 A variable region of the monoclonal antibody against a s-surface antigen of hepatitis b virus and a gene encoding the same
EP1281761A1 (en) * 2001-07-27 2003-02-05 Institut National De La Sante Et De La Recherche Medicale (Inserm) Hepatitis B virus pre-S1 derived synthetic polypeptides and their use thereof.
US7601351B1 (en) * 2002-06-26 2009-10-13 Human Genome Sciences, Inc. Antibodies against protective antigen
CN1733798B (en) * 2005-08-12 2012-07-04 上海贺普生物科技有限公司 Hepatitis B virus surface L protein related peptide
WO2011045079A1 (en) * 2009-10-15 2011-04-21 Intercell Ag Hepatitis b virus specific human antibodies
CN109354623B (en) * 2012-04-25 2022-06-24 华辉安健(北京)生物科技有限公司 Compositions and related uses of functional receptors for hepatitis b virus
EP3978521A1 (en) 2015-05-22 2022-04-06 Huahui Health Ltd. Anti-pre-s1 hbv antibodies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544205B2 (en) 2015-05-22 2020-01-28 Huahui Health Ltd. Anti-Pre-S1 HBV antibodies
US11485774B2 (en) 2015-05-22 2022-11-01 Huahui Health Ltd. Anti-pre-S1 HBV antibodies

Also Published As

Publication number Publication date
RU2017145085A3 (en) 2020-01-23
EP3298038B1 (en) 2021-08-04
CN107614525B (en) 2021-07-06
JP7304320B2 (en) 2023-07-06
JP2018519804A (en) 2018-07-26
HK1243429A1 (en) 2018-07-13
CN113527470A (en) 2021-10-22
JP6820278B2 (en) 2021-01-27
WO2016188386A1 (en) 2016-12-01
CN113527470B (en) 2023-08-25
US20180148496A1 (en) 2018-05-31
US11485774B2 (en) 2022-11-01
CN117247944A (en) 2023-12-19
US10544205B2 (en) 2020-01-28
US20200109186A1 (en) 2020-04-09
EP3298038A1 (en) 2018-03-28
JP2020171311A (en) 2020-10-22
MA42137A (en) 2021-04-07
RU2017145085A (en) 2019-06-24
US20220275060A9 (en) 2022-09-01
CN107614525A (en) 2018-01-19
EP3298038A4 (en) 2019-04-24
KR20180009780A (en) 2018-01-29
EP3978521A1 (en) 2022-04-06
RU2739955C2 (en) 2020-12-30
ES2896275T3 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US11485774B2 (en) Anti-pre-S1 HBV antibodies
US11472868B2 (en) Highly active agonistic CD4 binding site anti-HIV antibodies (HAADS) comprising modified CDRH2 regions that improve contact with GP120
US9493549B2 (en) Antibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth
CN108026166B (en) Polyoma virus neutralizing antibodies
WO2013090644A2 (en) Anti-hiv antibodies having increased potency and breadth
JP2013515477A (en) Human antibodies that specifically bind to hepatitis B virus surface antigen
JP2018148915A (en) Anti-vasa antibodies, and methods of production and use thereof
US11578138B2 (en) Anti-human TLR7 antibody
US20230312689A1 (en) Human antibody or antigen-binding fragment thereof against coronavirus spike protein
CN113817052A (en) Anti SARS-CoV-2 nucleocapsid protein monoclonal antibody and its preparation method and use
WO2022210830A1 (en) Anti-sars-cov-2 antibody
WO2023046057A1 (en) Monoclonal antibody against sars-cov-2 spike protein l452r mutant and use thereof
CA3229447A1 (en) Antibodies that target hla-e-host peptide complexes and uses thereof
TW202204396A (en) Anti-hbv antibodies and methods of use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION)