WO2022210830A1 - Anti-sars-cov-2 antibody - Google Patents

Anti-sars-cov-2 antibody Download PDF

Info

Publication number
WO2022210830A1
WO2022210830A1 PCT/JP2022/015813 JP2022015813W WO2022210830A1 WO 2022210830 A1 WO2022210830 A1 WO 2022210830A1 JP 2022015813 W JP2022015813 W JP 2022015813W WO 2022210830 A1 WO2022210830 A1 WO 2022210830A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
set forth
sequence set
Prior art date
Application number
PCT/JP2022/015813
Other languages
French (fr)
Japanese (ja)
Inventor
龍彦 小澤
裕幸 岸
正治 磯部
信幸 黒澤
芳智 森永
善裕 山本
英樹 仁井見
英樹 谷
Original Assignee
国立大学法人 富山大学
富山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 富山大学, 富山県 filed Critical 国立大学法人 富山大学
Publication of WO2022210830A1 publication Critical patent/WO2022210830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus

Definitions

  • the present invention relates to an antibody that binds to the spike protein of the novel coronavirus SARS-CoV-2 and an antigen-binding fragment thereof.
  • SARS-CoV-2 is a type of coronavirus that was first reported in Wuhan, China at the end of 2019 and has since spread widely throughout China and even around the world.
  • the SARS-CoV-2 infection, called COVID-19 is characterized by mild to moderate symptoms in most patients, while severe disease and death in some patients.
  • vaccines have been developed and approved, and vaccination has begun in various countries, but cases of infection after vaccination have been reported (Non-Patent Document 1), and vaccines do not completely suppress viral infections. It is believed that.
  • Patent Document 1 In parallel with the development of vaccines, COVID-19 therapeutic agents are being developed, and therapeutic antibodies have also been reported (Patent Document 1). However, multiple mutant strains of SARS-CoV-2 have been reported, and none of the mutant strains is known to have therapeutic or preventive effects.
  • the present invention is an antibody against SARS-CoV-2 (hereinafter referred to as "anti-SARS-CoV-2 antibody”) that binds to the spike protein of SARS-CoV-2, and in particular, increases infection and transmissibility Antibodies that inhibit the binding of SARS-CoV-2 and ACE2 by binding to SARS-CoV-2 mutants that are concerned about antigenic changes, or those SARS-CoV-2 cells
  • An object of the present invention is to provide an antibody that inhibits internal invasion.
  • the present inventors used plasma obtained from multiple patients with a history of SARS-CoV-2 infection, and found that SARS-CoV-2 spike protein (trimeric structure full-length S protein (ECD)), The presence of antibodies capable of binding to the N-terminal domain (NTD) and receptor binding domain (RBD) was investigated. As a result, it was found that plasma derived from one patient who spontaneously recovered after becoming severe had excellent binding properties to all of ECD, NTD, and RBD. Peripheral blood lymphocytes were isolated from this COVID-19 patient, and the ISAAC method (Immunospot-array assay on a chip) (Jin A et al., Nature medicine (2009) 26: 1088-1092, and Jin A et al. , Nature Protocols (2011) 6:668) were used to purify multiple monoclonal antibodies that specifically bind to the SARS-CoV-2 spike protein.
  • ECD trimeric structure full-length S protein
  • NTD N-terminal domain
  • RBD receptor binding domain
  • SARS-CoV-2 RBD antibody an antibody that binds to SARS-CoV-2 RBD (hereinafter referred to as "SARS-CoV-2 RBD antibody").
  • SARS-CoV-2 RBD antibody an antibody that binds to SARS-CoV-2 RBD
  • SARS-CoV-2 RBD antibody an antibody that binds to SARS-CoV-2 RBD
  • SARS-CoV-2 mutants which are concerned about increased infection and transmissibility and antigenic changes, and found that such mutants RBD We have succeeded in discovering an antibody that binds to and has an infection-suppressing effect.
  • the present invention relates to anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof, therapeutic agents, diagnostic agents, compositions for detecting SARS-CoV-2, etc. containing the antibodies as active ingredients.
  • 1 is a graph showing the results of confirming the binding specificity of an anti-SARS-CoV-2 antibody to a SARS antigen protein.
  • RBD SARS-CoV receptor binding domain
  • ECD trimer SARS-CoV-2 spike protein
  • NTD SARS-CoV-2N- terminal domain (NTD) protein
  • RBD SARS-CoV-2 RBD.
  • the vertical axis indicates absorption (bond strength) at 450 nm. Two or more experiments were performed independently and the data shown are representative.
  • Fig. 3 is a graph showing the results of binding inhibition experiments between SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibody.
  • each anti-SARS-CoV-2 RBD antibody of 1028-05K, 1028-37K, 1028-55K, 1028-61L, and 1028-121K inhibits the binding of SARS-CoV-2 spike protein and ACE2 was verified by ELISA.
  • the horizontal axis is the concentration of anti-SARS-CoV-2 RBD antibody ( ⁇ g/ml), and the vertical axis is the presence of each antibody when the absorbance value measured in the absence of anti-SARS-CoV-2 RBD antibody is set to 100. shows the ratio (%) of absorbance values in . Two or more experiments were performed independently and the data shown are representative. Fig.
  • FIG. 3 is a graph showing the results of an experiment to suppress pseudotype virus infection using an anti-SARS-CoV-2 RBD antibody.
  • the vertical axis shows the logarithmic value of infection reduction ratio (log (% of reduction)) compared to the antibody-free control, and the horizontal axis shows the antibody concentration ( ⁇ g/ml).
  • Black bars (St19pv) show the results for the SARS-CoV-2 spike protein mantle pseudovirus, and white bars show the results for the pseudotyped virus VSVpv used as a control.
  • Fig. 3 is a graph showing the results of binding inhibition experiments between SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibody.
  • Each anti-SARS-CoV-2 RBD antibody 0210-20L, 0210-28K, 0210-30L, 0210-38L, 1028-61L, 1028-55K inhibits the binding of SARS-CoV-2 spike protein and ACE2 or verified by ELISA.
  • the horizontal axis is the concentration of anti-SARS-CoV-2 RBD antibody ( ⁇ g/ml), and the vertical axis is the presence of each antibody when the absorbance value measured in the absence of anti-SARS-CoV-2 RBD antibody is set to 100. (similar to FIGS. 7A and 7B). Two or more experiments were performed independently and the data shown are representative.
  • Fig. 10 is a graph showing the results of an experiment to inhibit the binding of SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibodies 0210-28K and 1028-55K.
  • FIG. 7A shows the results of the same experiment using 0210-30L and 1028-61L.
  • a schematic diagram of the preparation of the SARS-CoV-2 pseudotype virus, a part of the pseudotype virus that envelopes the mutant spike protein used in this experiment, and a virus (VSVpv) that envelopes the envelope protein of VSV as a control are shown.
  • SARS-CoV-2 (Alpha) has a surface spike protein with mutations of HV69-70 deletion, Y144 deletion, N501Y, A570D, P681H, T716I, S982A, and D1118H in the Alpha strain.
  • Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a spike protein of a mutant strain using an anti-SARS-CoV-2 RBD antibody.
  • the vertical axis indicates the logarithmic value (log (% of reduction)) or the real value (% of reduction) of the infection reduction rate compared to the control, and the horizontal axis indicates the antibody concentration ( ⁇ g/ml).
  • Bar graphs at each concentration of antibody show, from left to right, results using pseudotyped viruses with spike proteins of Wuhan type (WT), Alpha strain, and Beta strain of SARS-CoV-2.
  • the rightmost bar graph shows the results using a control pseudotyped virus (VSVpv).
  • (Left) shows the results of a binding experiment between the anti-SARS-CoV-2 RBD antibody 0210-28K and the Epsilon strain SARS-CoV-2 RBD (L452R) protein.
  • the vertical axis indicates the absorption (binding strength) at 450 nm
  • the horizontal axis indicates the concentration (ng/ml) of the anti-SARS-CoV-2 RBD antibody.
  • (Right) Graph showing the results of binding inhibition experiments between SARS-CoV2 spike protein and ACE2 by 0210-28K, an anti-SARS-CoV-2 RBD antibody. It was verified by ELISA whether the binding of the Kappa strain SARS-CoV-2 RBD (L452R, E484Q) protein and ACE2 could be inhibited by the anti-SARS-CoV-2 RBD antibody.
  • FIG. Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a mutant spike protein by the anti-SARS-CoV-2 RBD antibody 0210-28K.
  • the vertical axis shows the real value (% of reduction) of infection reduction compared to the control, and the horizontal axis shows the antibody concentration (ng/ml).
  • FIG. 10 is a graph showing the results of an experiment to inhibit binding between SARS-CoV-2 spike protein and ACE2 by 0210-28K, an anti-SARS-CoV-2 RBD antibody.
  • Wuhan type (WT) RBD protein Alpha strain (N501Y), Beta strain (K417N, E484K, N501Y), Gamma strain (K417T, E484K, N501Y), Kappa strain (L452R, E484Q), Delta strain (L452R, T478K) , and an Epsilon strain (L452R)-derived mutant RBD protein, and whether 0210-28K can inhibit the binding of ACE2 was verified by ELISA.
  • the vertical and horizontal axes are the same as in FIG. Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a mutant spike protein by the anti-SARS-CoV-2 RBD antibody 0210-28K.
  • the vertical axis indicates the rate of infection reduction (% of reduction) compared to the control, and the horizontal axis indicates the antibody concentration (pM).
  • SARS-CoV-2, Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Kappa strain, Delta strain, and results using pseudotype viruses with spike proteins of Omicron strain, and VSV G protein The results are shown using a pseudotyped virus (control) with Two or more experiments were performed independently and the data shown are representative.
  • Fig. 3 is a graph showing the results of investigating the effects of 0210-28K, an anti-SARS-CoV-2 RBD antibody, on SARS-CoV-2 infection and production.
  • Fig. 4 is a graph showing the results of surface plasmon resonance (SPR) analysis of the affinity of 0210-28K, an anti-SARS-CoV-2 RBD antibody, to Wuhan type (WT) RBD and mutant RBD proteins.
  • SPR surface plasmon resonance
  • the graph shows, from top to bottom, Wuhan type (WT), Alpha strain (N501Y), Beta strain (K417N, E484K, N501Y), Gamma strain (K417T, E484K, N501Y), Kappa strain (L452R, E484Q), and mutant RBD proteins from Delta strains (L452R, T478K).
  • WT Wuhan type
  • Alpha strain N501Y
  • Beta strain K417N, E484K, N501Y
  • Gamma strain K417T, E484K, N501Y
  • Kappa strain L452R, E484Q
  • mutant RBD proteins from Delta strains L452R, T478K.
  • the vertical axis indicates the response (RU) and the horizontal axis indicates the measurement time (s). Two or more experiments were performed independently and the data shown are representative.
  • FIG. 2 shows a luminescence image of luciferase (upper diagram), a graph showing the results of luminescence measurement (lower left diagram), and a graph showing the results of calculating the virus infectivity titer of the whole lung (lower right diagram).
  • the vertical axis indicates the relative luminescence level compared with the control.
  • the horizontal axis indicates the type of pseudotype virus, and from left to right, the pseudotype virus having the G protein of VSV, SARS-CoV-2, Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Results using pseudotyped viruses with spike proteins of Kappa, Delta, and Omicron strains are shown.
  • the white bar on the left indicates the results of control
  • the black bar on the right indicates the results of administration of 0210-28K.
  • Antibody dosage is 3 mg/hamster for Beta strain and Omicron strain, and 0.3 mg/hamster for others. Two or more experiments were performed independently and the data shown are representative. p-values were calculated by t-test (*, p ⁇ 0.05, **, p ⁇ 0.01).
  • FIG. 18(a) is a cryo-electron microscopy map densified to 3.1 ⁇ resolution with C3 symmetry, showing the heavy chain variable Regions (VH) and light chain variable regions (VL) are indicated.
  • Figures 18(b), (d) to (g) are the results of X-ray crystallographic analysis with a resolution of 3.75 ⁇ , and Figures 18(d) to (g) show the major residues between RBD and UT28K Fab. Interactions are indicated.
  • FIG. 18(c) shows the results of X-ray crystallographic analysis of the binding of 253XL55 (PDB ID: 7BEO) and SARS-CoV-2 RBD (RBD).
  • Fig. 3 is a graph showing the results of ELISA analysis of the binding of 0210-28K, which is an anti-SARS-CoV-2 RBD antibody, to Wuhan type (WT) RBD and RBD proteins derived from mutant strains.
  • the vertical axis indicates absorption (bond strength) at 450 nm, and the horizontal axis indicates the type of RBD protein. Two or more experiments were performed independently and the data shown are representative.
  • the vertical axis indicates the amount of virus increased or decreased (Fold increase) with the amount of virus obtained in the control set to 1, and the horizontal axis indicates the antibody concentration ( ⁇ g/ml).
  • the vertical axis indicates optical density, and the horizontal axis indicates antibody concentration ( ⁇ g/ml).
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • SARS-CoV-2 spike protein spike protein is a protein consisting of 1273 amino acids (SEQ ID NO: 629) (of which 1 to 13 are signal sequences) reported as the S protein of SARS-CoV-2.
  • S1 14th to 685th
  • S2 686th to 1273rd
  • the receptor binding domain means a portion consisting of amino acids 319 to 541 contained in the S1 subunit or a peptide consisting of the same portion.
  • the N-terminal domain means a portion consisting of the 14th to 305th amino acids or a peptide consisting of the same portion.
  • amino acid positions refer to amino acid positions in the S protein.
  • SARS-CoV-2 has been reported to have many mutations in addition to the first Wuhan type found (for example, Islam, MR et al., Sci Rep; 10: 14004 (2020). See ), and databases also exist (eg, https://nextstrain.org/sars-cov-2/, etc.).
  • the spikes or RBDs to which the antibodies herein bind may be those possessed by the Wuhan type as well as the mutant forms of SARS-CoV-2 reported therein.
  • a “mutant SARS-CoV-2” may have any mutation that has been reported for SARS-CoV-2, such as mutations in the spike of SARS-CoV-2, particularly RBD Mutations in As used herein, "mutant spike” means a spike having a mutation in the spike of SARS-CoV-2, and “mutant RBD” means an RBD having a mutation in the RBD of SARS-CoV-2. do. For example, 20B/501Y. V1, VOC 202012/01 or B.
  • mutant SARS-CoV-2 is, for example, L18F, T19R, H69 deletion, V70 deletion, D80A, G142D, Y144 deletion, E154K, 157 deletion, 158 deletion, D215G, L242 deletion, A243 deletion, L244 ⁇ ,R246I,G339D,S371L,S373P,S375F,K417N,K417T,N440K,G446S,L452R,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,Y505H,A570D,D614G,H655Y,P681H , P681R
  • the mutant SARS-CoV-2 herein may have a mutant RBD, such as G339D, S371L, S373P, S375F, K417N, K417T, N439K, N440K, G446S, One or more, two or more, three or more, four or more selected from L452R, A475V, S477N, T478K, E484A, E484K, E484Q, Q493R, G496S, Q498R, N501Y, and Y505H Above, 5 or more, or 6 or more mutations.
  • RBD such as G339D, S371L, S373P, S375F, K417N, K417T, N439K, N440K, G446S, One or more, two or more, three or more, four or more selected from L452R, A475V, S477N, T478K, E484A, E484K, E484Q,
  • mutant SARS-CoV-2 has include K417N, E484K, and N501Y mutations in RBD; N439K mutation; N440K mutation; A475V mutation; , E484K, and N501Y mutations; L452R and T478K mutations;
  • SARS-CoV-2 will be used to refer to Wuhan-type (non-mutated) SARS-CoV-2 and the mutant SARS-CoV described above, unless it is incompatible to be so construed. -2, or a plurality of SARS-CoV-2 selected from these.
  • SARS-CoV-2 herein refers to one or more selected from Wuhan, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, 2 There may be 1 or more types, 3 or more types, 4 or more types, 5 or more types, or 6 or more types, or all of these may be meant.
  • the antibodies of the invention specifically bind to at least one of SARS-CoV-2 spike, NTD and RBD, more preferably SARS-CoV-2 spike and/or RBD. and more preferably, it specifically binds to SARS-CoV-2 RBD.
  • RBD is important for binding to cells in the SARS-CoV-2 spike (Science (2020) Vol.367, Issue6483, pp.1260-1263, and Science (2020) Vol.369 , Issue 6504, pp. 650-655).
  • binding to the RBD may mean binding to the RBD portion in the SARS-CoV-2 spike, or binding to a peptide consisting of an amino acid sequence that constitutes the RBD. good too.
  • the antibody of the present invention specifically binds to spike (preferably SARS-CoV-2 RBD).
  • spike preferably SARS-CoV-2 RBD.
  • an antibody or immunoreactive fragment thereof “specifically” binds (recognizes) means that the antibody or immunoreactive fragment thereof has a specified affinity for other proteins or peptides. It means binding with substantially high affinity to an antigen (eg spike or RBD).
  • binding with substantially high affinity means that the desired measuring device or method can detect the specific protein or peptide of interest by distinguishing it from other proteins or peptides. means high affinity.
  • a substantially high affinity is 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, as the intensity (e.g., fluorescence intensity) detected by ELISA or EIA. It may mean 9 times or more, 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, or 100 times or more.
  • the antibody of the present invention specifically binds to mutant spike and/or mutant RBD (preferably RBD, in this paragraph, the same shall apply hereinafter). Also preferably, the antibodies of the invention bind to these mutant spikes and/or mutant RBDs and also bind to the spikes and/or RBDs of Wuhan SARS-CoV-2. Furthermore, the antibodies of the present invention may bind to multiple types of mutant spikes and/or mutant RBDs with different mutation patterns, and in this case also preferably Wuhan SARS-CoV-2 spikes and/or Or it also binds to RBD.
  • “having different mutation patterns” means that two or more types of SARS-CoV-2, spikes, or RBDs have different mutations.
  • “different mutation” means that the mutation site and/or the amino acid after mutation are different. If at least one of two types of SARS-CoV-2, spike, or RBD has multiple mutations, even if they have common mutations, the mutation site and/or post-mutation between the two If there are mutations that differ in amino acids, they are considered to have different mutation patterns.
  • the antibody includes Wuhan, K417N, E484K, and N501Y variants, N439K variant, N440K variant, A475V variant, E484K variant, N501Y variant, L452R variant, L452R and E484Q variant, K417T, E484K and N501Y mutants, L452R and T478K mutants, and SARS-H mutants of G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 selected from CoV-2, spike, or RBD or more, or may be combined with all.
  • the antibodies of the present invention are , and Y505H, one or more, two or more, three or more, four or More, 5 or more, 6 or more, or 7 or more may be combined.
  • the antibody of the present invention may be one or more, two or more selected from the above Wuhan type, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, May bind to 3 or more, 4 or more, or all SARS-CoV-2, spike, or RBD.
  • the binding strength of the antibody of the present invention to these mutant strains or mutant RBDs is preferably comparable to that of the Wuhan type.
  • the RBD having the K417N, E484K, and N501Y mutations; the N439K mutation; the N440K mutation; the A475V mutation; the E484K mutation; the N501Y mutation; N501Y", “RBD N439K”, “RBD N440K”, “RBD A475V”, “RBD E484K”, “RBD N501Y”, “RBD L452R”, “RBD L452R, E484Q”) binding to the Wuhan type (WT ) may be 94% or greater, 96% or greater, 100% or greater, 101% or greater, 94% or greater, 100% or greater, 100% or greater, 100% or greater, relative to binding to RBD, respectively.
  • These binding forces are preferably binding forces measured by the ELISA method described in the Examples of the present application.
  • whether the test antibody "binds (recognizes)" to the spike or RBD is determined by measuring the binding of the test antibody to the spike and RBD to be examined for binding by the following method. It can be done by Methods for measuring binding between antibodies and proteins or peptides include, for example, EIA method, ELISA method, FACS method, co-immunoprecipitation method, pull-down assay method, Western blotting method, homobifunctional crosslinker or heterobifunctional crosslinker Cross-linking method using linker, label transfer reaction method, interaction mapping method, surface plasmon resonance method, FRET (fluorescence resonance energy transfer) method, BIACORE method, AlphaPPI assay such as AlphaScreen (registered trademark) and AlphaLISA (registered trademark) (PerkinElmer), etc., and various methods are well known in the art, and suitable methods can be employed depending on the desired binding detection.
  • EIA method EIA method
  • ELISA method ELISA method
  • FACS method co-
  • the term “specifically binds (recognizes)” does not bind to substances or parts thereof that are undesirable for antibodies to bind (for example, proteins present in the human body), and does not bind to SARS- It means binding to CoV-2, spike and/or RBD, preferably only to material derived from SARS-CoV-2 or parts thereof (spike, RBD etc.).
  • the term “specifically binds (recognizes)” means that SARS-CoV-2 does not bind to any substance or part thereof (e.g., NTD, etc.), but only to RBD. You can understand.
  • test antibody specifically binds (recognizes) the spike or RBD depends on the binding of the test antibody to the spike and RBD whose binding is to be tested, and the binding of the test antibody to other peptides, proteins or It can be determined by examining the binding of the test antibody to other antigens (for example, substances to which the antibody should not bind).
  • the test antibody specifically binds (recognizes) the spike and/or RBD of interest if it binds to the spike and/or RBD of interest and not to other peptides, proteins, or other antigens. is determined.
  • the antibody of the present invention collects lymphocytes from patients with a history of COVID-19 infection, SARS-CoV-2 spike protein (hereinafter referred to as "spike"), the N-terminal domain in the spike (hereinafter referred to as “NTD” ), or the spike receptor binding domain (herein, referred to as “RBD”) as antigens, select lymphocytes that produce human antibodies that bind to these antigens, and obtain their cDNAs to obtain human anti- SARS-CoV-2 monoclonal antibodies can be produced as recombinant antibodies. That is, all of the antibodies obtained by this method are antibodies that bind to the SARS-CoV-2 spike, NTD, or RBD, and are antibodies capable of binding to these proteins.
  • the antigen is preferably SARS-CoV-2 spike or RBD, more preferably RBD.
  • the antibody of the present invention can be obtained by the ISAAC method.
  • the ISSAC method is a method for rapid and exhaustive screening of antigen-specific antibody-secreting cells (ASC) using a microwell array chip.
  • ASC antigen-specific antibody-secreting cells
  • a microwell array chip having a large number of wells with a size (about 10 to 15 ⁇ m in diameter) in which one antibody-producing cell can be accommodated, and an anti-immunoglobulin antibody (or antibody) on the chip surface around the wells
  • a microwell array chip coated with the antigen for which you are trying to obtain Peripheral blood lymphocytes, spleen cells, or bone marrow cells containing antibody-producing cells are collected from humans or animals that produce antibodies against specific antigens, and the cells are seeded one by one in the wells of a microwell array chip.
  • the antibodies secreted from the cells that produce and secrete the antibodies spread around the wells in which they were stored. Binds to globulin antibodies (or antigens).
  • the antigen labeled with a fluorescent substance or an antibody against the antibody labeled with a fluorescent substance
  • the labeled antigen (or antibody against the antibody) binds to the antibody secreted around the well, and the signal emitted from the labeled substance indicates which well contains the cells that produce and secrete the antigen-specific antibody. Recognize.
  • the cells are harvested using a microcapillary under a fluorescence microscope. Nucleic acids are extracted from cells, antibody cDNA is amplified by RT-PCR or the like, and antibody genes are cloned. A desired antibody can be produced as a recombinant antibody using the gene.
  • an antibody of the invention is preferably an antibody that inhibits binding of SARS-CoV-2, or its spike or RBD, to ACE2 (preferably human ACE2, as throughout the specification).
  • the antibody of the present invention is preferably an antibody that inhibits the binding of mutant SARS-CoV-2, spike, or RBD to ACE2.
  • Antibodies that inhibit binding to ACE2 preferably also inhibit binding of Wuhan SARS-CoV-2, its spike or RBD, to ACE2.
  • the antibodies of the present invention may inhibit the binding of multiple types of SARS-CoV-2, spikes, or RBDs with different mutation patterns to ACE2.
  • the antibody includes Wuhan, K417N, E484K, and N501Y variants, N439K variant, N440K variant, A475V variant, E484K variant, N501Y variant, L452R variant, L452R and E484Q variant, K417T, E484K and N501Y mutants, L452R and T478K mutants, and SARS-H mutants of G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 selected from CoV-2, spike, or RBD Or more, or all, binding to ACE2 may be inhibited.
  • the antibodies of the present invention are , and Y505H, one or more, two or more, three or more, four or Binding of ACE2 to more, 5 or more, 6 or more, or 7 or more may be inhibited.
  • the antibody of the present invention may be one or more, two or more selected from the above Wuhan type, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, Binding of 3 or more, 4 or more, or all SARS-CoV-2, spike, or RBD to ACE2 may be inhibited.
  • test antibody inhibits the binding of SARS-CoV-2 to the ACE2 protein can be determined, for example, by adding the test antibody and labeled ACE2 to wells immobilized with SARS-CoV-2 spikes or RBDs to be tested. or a labeled ACE2 solution containing no test antibody is added, washed after standing for a certain period of time, and the ACE2 label bound to the immobilized SARS-CoV-2 spike or RBD is measured. can be determined by If the intensity of labeling with antibodies is weaker than the intensity of labeling without antibodies, the test antibody inhibits the binding of SARS-CoV-2 to ACE2 ( neutralize).
  • the IC50 of the inhibition experiment in vitro is 20 ⁇ g/ml or less, 10 ⁇ g/ml or less, 5 ⁇ g/ml or less, 1 ⁇ g/ml or less, 0.6 ⁇ g/ml or less, 0.5 ⁇ g/ml or less, 0.35 ⁇ g/ml ml or less, 0.2 ⁇ g/ml or less, 0.15 ⁇ g/ml or less, or 0.1 to 20 ⁇ g/ml, 0.2 to 10 ⁇ g/ml, 0.2 to 5 ⁇ g/ml, 0.1 ⁇ g/ml or less. It can be 2-1 ⁇ g/ml.
  • the antibodies of the present invention suppress infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 spike-coated pseudotype viruses.
  • the antibodies of the present invention can be used to detect SARS-CoV-2 spike-enveloped pseudotype virus (SARS-CoV-2 St19pv) (Tani H et al., Virology Journal (2021) 18:16). type virus) to TMPRSS2-expressing VeroE6 cells.
  • SARS-CoV-2 St19pv SARS-CoV-2 spike-enveloped pseudotype virus
  • type virus type virus
  • Whether the test antibody suppresses the infection of TMPRSS2-expressing VeroE6 cells by SARS-CoV-2 St19pv can be determined, for example, by the presence of the test antibody in VeroE6 cells (VeroE6/TMPRSS2) overexpressing TMPRSS2.
  • the luminescence value indicating luciferase activity is lower in the presence of antibody than in the case of non-addition of antibody, it is judged that the infection was inhibited by the antibody.
  • the antibody of the present invention preferably exhibits an IC50 value of 500 ng/ml or less in an experiment to suppress infection of ACE2 and TMPRSS2 co-expressing cells with a SARS-CoV-2 spike-enveloped pseudotype virus, more preferably , 100 ng/ml or less, 50 ng/ml or less, or 45 ng/ml or less.
  • the antibody of the present invention is 30 ng/ml or less against Wuhan type (WT), 45 ng/ml or less against Alpha strain, 15 ng/ml or less against Beta strain, and 20 ng/ml or less against Kappa strain. , and/or an antibody that exhibits an IC50 value of 12 ng/ml or less against the Delta strain.
  • the antibody of the present invention is an antibody that suppresses infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2.
  • Whether the test antibody suppresses the infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 is determined by mixing the test antibody and SARS-CoV-2 in a tube and incubating at 37°C for 1 hour. After reacting, it was added to VeroE6/TMPRSS2 cells and allowed to adsorb for 2 hours at 37°C. After that, the mixture containing the unadsorbed test antibody and virus was completely removed, and the culture medium containing the test antibody was added again.
  • test antibody SARS-CoV-2, ACE2 and TMPRSS2 co-expressing cells It is determined that it suppresses the infection of Alternatively, whether the test antibody suppresses the infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 is confirmed by adding the test antibody to VeroE6/TMPRSS2 cells to infect SARS-CoV-2.
  • test antibody After culturing at 37°C for 1 hour, remove the culture supernatant, add the test antibody again and culture for 24 hours. It can be determined by measuring. If the amount of viral genomic RNA decreases in the presence of the test antibody, or if it is absent, it is determined that the test antibody suppresses SARS-CoV-2 infection of ACE2 and TMPRSS2 co-expressing cells.
  • the antibody of the present invention is an antibody that suppresses pulmonary infection by SARS-CoV-2 spike-enveloped pseudotype virus by prophylactic administration of the antibody in an in vivo test, such as a hamster model.
  • an in vivo test such as a hamster model.
  • the test antibody suppresses infection can be determined, for example, by inoculating the pseudotype virus directly into the trachea 24 hours after intraperitoneal administration of the test antibody to hamsters, and after 24 hours, extracting the lungs and adding a luciferase substrate solution. can be determined by incubating with and measuring luciferase activity. When the luminescence value, which indicates luciferase activity, is lower after antibody administration than when antibody is not administered, it is determined that infection is inhibited by antibody.
  • inhibitor binding and “inhibit infection” herein refer to 100% inhibition or suppression. is not meant to bring In other words, “inhibit binding” or “inhibit infection” means that binding is inhibited compared to the absence of the antibody or the presence of an antibody that does not bind to SARS-CoV-2. , or that the infection is suppressed.
  • the antibody of the present invention is a human antibody, or an animal in which a part of the human antibody (e.g., constant region, framework region, or part thereof) is replaced with a sequence derived from a non-human animal antibody It may be a modified antibody.
  • non-human animals include antibodies from mice, rats, hamsters, guinea pigs, rabbits, dogs, cats, monkeys, sheep, goats, camels, chickens and ducks.
  • the immunoglobulin class of the antibody of the present invention is not particularly limited, and may be any immunoglobulin class (isotype) of IgG, IgM, IgA, IgE, IgD, or IgY, preferably IgG.
  • the antibody of the present invention when the antibody of the present invention is IgG, it may be of any subclass (IgG1, IgG2, IgG3, or IgG4).
  • the antibody of the present invention is monospecific, bispecific (bispecific antibody), trispecific (trispecific antibody) (for example, WO1991/003493), or multispecific (multispecific antibody) good too.
  • the Fc region may be mutated to improve the functionality of the antibody, for example, in one embodiment, the Fc region is modified with LALA mutations (L234F, L235E mutations) to reduce ADE activity It may be an antibody.
  • the antibody may be an antibody introduced with M428L and N434S mutations, M252Y, S254T and T256E mutations, T25Q and M428L mutations, which are reported to extend antibody half-life in the Fc region.
  • Antibodies are known to have binding properties conferred by their variable regions (especially CDRs), and it is widely known to those skilled in the art that even antibody fragments that are not complete antibodies can utilize these binding properties. It is as used herein, the term "antigen-binding fragment” refers to a protein or peptide containing a portion (partial fragment) of an antibody and retaining the action (antigen-binding) of the antibody on the antigen. .
  • antigen-binding fragments include F(ab′) 2 , Fab′, Fab, Fab 3 , single-chain Fv (hereinafter referred to as “scFv”), (tandem) bispecific single-chain Fv ( sc(Fv) 2 ), single-chain triple body, nanobody, divalent VHH, pentavalent VHH, minibody, (double-stranded) diabodies, tandem diabodies, bispecific tribodies, bispecific bibodies, dual affinity targeting molecules (DART), triabodies (or tribodies), tetrabodies (or [sc(Fv) 2 ] 2 ), or (scFv-SA) 4 ) disulfide-bonded Fv (hereinafter referred to as “dsFv”), compact IgG, heavy chain antibodies, or polymers thereof (Nature Biotechnology, 29(1): 5-6 (2011); Maneesh Jain et al., TRENDS in Biotechnology, 25(7) (2007): 307
  • antigen-binding fragments may be monospecific, bispecific (bispecific), trispecific (trispecific), and multispecific (multispecific).
  • antibody is also intended to include antigen-binding fragments of antibodies, unless otherwise construed as such.
  • the invention has at least one of the heavy chain CDRs and light chain CDRs described below (preferably CDRH3, more preferably a combination of all six), and SARS-CoV-2 An antibody that specifically binds to spike and/or RBD (preferably SARS-CoV-2 RBD).
  • the present invention is an antibody having a combination of heavy chain variable regions and light chain variable regions described below.
  • the present invention provides an antibody having 80% or more identity with any clone in Table 2, that is, 80% or more with the heavy chain variable region (VH) amino acid sequence described for any clone in Table 2 and an amino acid sequence VL having 80% or more identity with the light chain variable region (VL) amino acid sequence listed in Table 2 for the clone, or an antigen thereof Regarding binding fragments.
  • Amino acid sequence identity means the ratio (%) of the number of amino acids of the same type in the range of amino acid sequences to be compared between two proteins, for example, using known programs such as BLAST and FASTA can decide.
  • the identity of the above VH and VL with the sequences listed in Table 2 is 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more. good too.
  • Antibodies with 80% or more identity to any clone in Table 2 preferably have at least one CDR (preferably CDRH3, more preferably all six) of the antibody indicated by the same clone number in Table 1. CDRs). Antibodies with 80% or more identity to any of the clones in Table 2 also preferably bind specifically to the SARS-CoV-2 spike and RBD.
  • an antibody of the invention can be an antibody having a heavy chain with the following heavy chain (HC) amino acid sequence and a light chain with the light chain (LC) amino acid sequence:
  • HC heavy chain
  • LC light chain
  • underlining indicates the signal sequence. Therefore, an antibody as a mature protein may not have the underlined amino acid sequences.
  • amino acids are represented by single-letter codes. Specifically, A is alanine, L is leucine, R is arginine, K is lysine, N is asparagine, M is methionine, D is aspartic acid, F is phenylalanine, C is cysteine, P is proline, Q is glutamine, S is serine, E is glutamic acid, T is threonine, G is glycine, W is tryptophan, H is histidine, Y is tyrosine, I isoleucine and V is valine.
  • "XNY" (X and Y are amino acid one-letter codes; N is a natural number) indicates that amino acid X is substituted with amino acid Y at the N-position.
  • the present invention relates to an antibody that competes with the antibody or antigen-binding fragment thereof for binding to the SARS-CoV2 spike protein or RBD.
  • Whether the test antibody competes with the antibody or antigen-binding fragment thereof for binding to the SARS-CoV2 spike protein or RBD is determined using the labeled antibody or antigen-binding fragment thereof. It can be determined by contacting with an antigen (SARS-CoV2 spike protein or RBD, the same applies hereinafter in this paragraph) immobilized together.
  • an antigen SARS-CoV2 spike protein or RBD, the same applies hereinafter in this paragraph
  • the test antibody After the test antibody is brought into contact with the antigen, it is washed if necessary, and the labeled amount of the labeled antibody or antigen-binding fragment thereof bound to the antigen is compared between the control and the presence of the test antibody.
  • the amount of binding of the labeled antibody or antigen-binding fragment thereof to the antigen when contacted with the antigen in the presence of the test antibody is the same as that of the labeled antibody or antigen-binding fragment thereof in the control. If less than the binding amount, the test antibody can be determined to compete with the labeled antibody or antigen-binding fragment thereof used in the experiment.
  • Antigen binding tests can be performed according to the above-mentioned methods for measuring binding to RBD, etc. as appropriate.
  • measurement of binding between antibody and antigen can be performed by EIA method, ELISA method, FACS method, co-immunoprecipitation method, pull-down assay method, Far-Western blotting method, homobifunctional crosslinker or heterobifunctional crosslinker cross-linking method, label transfer reaction method, interaction mapping method, surface plasmon resonance method, FRET (Fluorescence resonance energy transfer) method, BIACORE method, AlphaScreen (registered trademark) and AlphaPPI assay such as AlphaLISA (registered trademark) ( A variety of methods are well known in the art, such as PerkinElmer), and any suitable method can be employed.
  • the present invention relates to an antibody that recognizes the same epitope as the antibody or antigen-binding fragment thereof.
  • an antibody that recognizes the same epitope as 28K antibody has at least one selected from these as epitopes (e.g., 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, or 7 ) is an antibody that recognizes the amino acid residues of
  • the epitope of the antibody that recognizes the same epitope as the 28K antibody is a portion selected from RBD A475, G476, S477, and T478 (e.g., one or more, two or more, or three or more) or all.
  • antibodies that recognize the same epitope as the 28K antibody bind by interacting with the backbone of RBD A475, G476, S477, and T478.
  • an antibody that recognizes the same epitope as the 28K antibody has at least one amino acid residue selected from S55, N57, D104, C105, S106, and D107 of its VH, A475, G476, S477, and T478 of RBD. , F486, N487, Y489 and Q493.
  • at least one amino acid residue selected from Y33, Y92 and W97 of VL may be involved in binding to the amino acid residue of F486 of RBD.
  • nucleic acid molecule in another aspect, relates to a nucleic acid molecule comprising a polynucleotide encoding an antibody or immunoreactive fragment thereof of the invention as described above.
  • the invention is a nucleic acid molecule having the nucleic acid sequences of the heavy and light chain variable regions set forth in Table 2, supra.
  • the present invention provides SEQ ID NOs: , 443, 465, 487, 509, 531, 553, 575, or 597, or/and SEQ ID NOS: 14, 36, 58, 80, respectively.
  • a nucleic acid molecule comprising DNA encoding a light chain having the nucleic acid sequence described.
  • the present invention encompasses a vector comprising the nucleic acid molecule.
  • a vector is not particularly limited as long as it can be used for antibody expression, and an appropriate viral vector, plasmid vector, or the like can be selected according to the host to be used.
  • the invention relates to a host cell containing said vector.
  • Host cells are not particularly limited as long as they are host cells that can be used to express antibodies, and mammalian cells (mouse cells, rat cells, hamster cells, rabbit cells, human cells, etc.), yeast, microorganisms (E. coli etc.) can be mentioned.
  • the nucleic acid of the present invention is cloned from the antibody-producing hybridoma obtained above, or by designing a nucleic acid sequence as appropriate based on the amino acid sequence of the antibody or immunoreactive fragment thereof obtained above.
  • the vector of the present invention can be obtained by appropriately integrating the obtained nucleic acid into a vector suitable for expression.
  • the vector of the present invention may contain regions necessary for expression (promoter, enhancer, terminator, etc.) in addition to the nucleic acid of the present invention.
  • the host cell of the present invention can be obtained by introducing the vector of the present invention into an appropriate cell strain (eg, animal cells, insect cells, plant cells, yeast, microorganisms such as E. coli).
  • Antibodies of the present invention can be designed and produced as appropriate based on the sequences described herein.
  • an antibody having a variable region (VR) as described herein can be produced by appropriately introducing a nucleic acid sequence encoding the antibody into a production cell.
  • a nucleic acid sequence encoding a heavy chain and a light chain having the sequence is designed, and after preparing the nucleic acid sequence based on the previous report, production of CHO cells etc. After introduction into cells, clones that bind to the SARS-CoV-2 spike can be selected.
  • Antibodies of the present invention can be obtained by culturing selected cells.
  • the obtained antibody can be purified to homogeneity. Separation and purification of antibodies can be carried out using methods commonly used for separation and purification of proteins. For example, antibodies can be separated and purified by appropriately selecting and combining column chromatography such as affinity chromatography, filter, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, and the like. (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988). Columns used for affinity chromatography include, for example, protein A columns and protein G columns. Furthermore, SARS-CoV-2-immobilized columns, size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, etc. can also be used regardless of the antibody class. Chromatography can also be in mixed mode.
  • the present invention relates to a pharmaceutical composition containing the above-described antibody or immunoreactive fragment thereof of the present invention as an active ingredient.
  • the antibody or immunoreactive fragment thereof of the present invention can be purified, if necessary, and formulated into a pharmaceutical composition according to a conventional method.
  • the target disease of the pharmaceutical composition of the present invention is a coronavirus infection, for example, a coronavirus, in particular, a viral disease caused by SARS-CoV, MERS-CoV, or SARS-CoV-2, or caused by it It is a disease that Therefore, the pharmaceutical composition of the present invention can be used as a prophylactic agent, therapeutic agent, inhibitor of progression, or ameliorative agent for these diseases or disorders.
  • the invention relates to the use of an antibody or immunoreactive fragment thereof of the invention for the manufacture of said pharmaceutical composition.
  • the invention includes the use of the antibodies of the invention, or immunoreactive fragments thereof, for the treatment or prevention of coronavirus infection.
  • the present invention relates to methods of treating or preventing coronavirus infection comprising administering an antibody or immunoreactive fragment thereof of the present invention.
  • a coronavirus infection is preferably a human coronavirus infection.
  • compositions for parenteral administration include, for example, injections, nasal drops, inhalants, eye drops and the like. An injection is preferred. Dosage forms of the pharmaceutical composition of the present invention include, for example, liquid formulations and freeze-dried formulations.
  • solubilizers such as propylene glycol and ethylenediamine
  • buffering agents such as phosphate, tonicity agents such as sodium chloride and glycerin
  • sulfites such as sodium chloride and glycerin
  • Additives such as stabilizers such as phenol, preservatives such as phenol, and soothing agents such as lidocaine (see “Pharmaceutical excipient dictionary” Yakuji Nippo, “Handbook of Pharmaceutical Excipients Fifth Edition” APhA Publications) .
  • storage containers include ampoules, vials, prefilled syringes, pen-type syringe cartridges, and drip bags.
  • the pharmaceutical composition (therapeutic drug or prophylactic drug) of the present invention when used as an injection, it includes dosage forms such as intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and drip injection. do.
  • Such injections can be prepared according to known methods, for example, by dissolving, suspending, or emulsifying the above-mentioned antibody in a sterile aqueous or oily liquid commonly used for injections.
  • Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose, sucrose, mannitol, and other adjuvants.
  • polyalcohols eg, propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80, polysorbate 20, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)
  • Sesame oil, soybean oil, and the like can be used as the oily liquid
  • benzyl benzoate, benzyl alcohol, and the like can be added as solubilizers.
  • the prepared injection solution is usually filled into a suitable ampoule, vial or syringe.
  • the antibody of the present invention or an immunoreactive fragment thereof may be added to a suitable excipient to prepare a lyophilized formulation, and dissolved in water for injection, physiological saline, etc. at the time of use to prepare an injection solution.
  • a suitable excipient to prepare a lyophilized formulation, and dissolved in water for injection, physiological saline, etc. at the time of use to prepare an injection solution.
  • oral administration of proteins such as antibodies is considered difficult because they are degraded in the digestive system, but oral administration is also possible with antibody fragments, modified antibody fragments, and ingenuity in dosage forms.
  • Oral preparations include, for example, capsules, tablets, syrups, granules and the like.
  • the pharmaceutical composition of the present invention is preferably prepared in a dosage unit form suitable for the dosage of the active ingredient.
  • dosage unit dosage forms include injections (ampoules, vials, prefilled syringes), and usually 5 to 500 mg, 5 to 100 mg, and 10 to 250 mg of the antibody of the present invention or its immunological agent per dosage unit dosage form. It may contain a reactive fragment.
  • the administration of the antibody or pharmaceutical composition (therapeutic or prophylactic) of the present invention may be local or systemic.
  • the administration method is not particularly limited, and is administered parenterally or orally as described above.
  • Parenteral routes of administration include intraocular, subcutaneous, intraperitoneal, blood (intravenous or intraarterial) injection or infusion into spinal fluid, preferably intraocular or blood administration.
  • the pharmaceutical composition (therapeutic or prophylactic) of the present invention may be administered temporarily, continuously or intermittently. For example, administration can be sustained for 1 minute to 2 weeks.
  • the antibody of the present invention may be administered alone or in combination with other drugs.
  • the dosage of the pharmaceutical composition of the present invention is not particularly limited as long as the desired therapeutic or preventive effect can be obtained, and can be appropriately determined according to symptoms, sex, age, and the like.
  • the dosage of the pharmaceutical composition of the present invention can be determined, for example, using the therapeutic effect or preventive effect of diseases or disorders in which angiogenesis contributes to the onset or exacerbation of angiogenesis.
  • the active ingredient of the pharmaceutical composition of the present invention is usually added at a dose of 0.2 to 0.5 g/day.
  • 01 to 20 mg/kg body weight preferably 0.1 to 10 mg/kg body weight, more preferably 0.1 to 5 mg/kg body weight, about 1 to 10 times a month, preferably 1 to 5 times a month
  • the amount according to this can be administered. If the symptoms are particularly severe, the dose or frequency of administration may be increased according to the symptoms.
  • Diagnostic/Detective Composition Diagnosis of SARS-CoV2 infection and detection of SARS-CoV2 can be performed by ELISA, radioimmunoassay, immunochromatography, immunohistochemistry using the antibody or antigen-binding fragment thereof. An antibody or immunoreactive fragment thereof may optionally be labeled. Attachment of the title can be carried out by methods common in the art. For example, in the case of fluorescent labeling, after washing the protein or peptide with a phosphate buffer, a dye adjusted with DMSO, a buffer, etc. is added, mixed, and allowed to stand at room temperature for 10 minutes for binding.
  • labeling kits include a biotin labeling kit (Biotin Labeling Kit-NH2, Biotin Labeling Kit-SH: Dojindo Laboratories), an alkaline phosphatase labeling kit (Alkaline Phosphatase Labeling Kit-NH2, Alkaline Phosphatase Labeling Kit- SH: Dojindo Laboratories), Peroxidase Labeling Kit-NH 2 , Peroxidase Labeling Kit-NH 2 : Dojindo Laboratories), Phycobiliprotein Labeling Kit (Allophycocyanin Labeling Kit-NH 2 , Allophycocyanin Labeling Kit-SH, B-Phycoerythrin Labeling Kit-NH 2 , B-Phycoerythrin Labeling Kit-SH, R-Phycoerythrin Labeling Kit-NH 2 , R-Phycoerythrin Labeling Kit-SH: Dojindo Laboratories), fluorescent labeling kit (Fluorescein Labeling Kit
  • Diagnosis and detection using the diagnostic composition or detection composition can be performed by methods such as ELISA and immunochromatography. Detection and measurement herein may be quantitative, semi-quantitative or qualitative.
  • Samples used in diagnostic/detection methods can be, for example, tissue samples or fluids taken from a subject as a biopsy.
  • the specimen to be used is not particularly limited as long as it is the object of the measurement of the present invention. Fluids, saliva, oral/nasal washes or fractions or treatments thereof may be mentioned.
  • the patient-derived sample used in the method of the present invention may be pretreated prior to the measurement test, or the specimen collected from the patient may be used as it is.
  • the diagnostic method may be a method of providing information for diagnosis as appropriate, or a method of monitoring the state or progression of SARS-CoV2 infection.
  • the kit of the present invention comprises a carrier selected from the group consisting of a solid phase, a hapten, magnetic beads and an insoluble carrier on which a first antibody that specifically binds to SARS-CoV2 is immobilized. It is a measurement kit.
  • the kit of the present invention may also contain an appropriately labeled antibody that binds to SARS-CoV2.
  • Example 1 Acquisition of anti-SARS-CoV-2 spike protein-binding antibody Peripheral blood lymphocytes were isolated from one COVID-19 patient who was strongly positive for anti-SARS-CoV-2 spike protein antibody titer, and ISAAC (Immunospot -array assay on a chip) method was used to attempt to generate human monoclonal antibodies that bind to the SARS-CoV-2 spike protein.
  • ISAAC Immunospot -array assay on a chip
  • the separated peripheral blood lymphocytes were mixed with 5 ⁇ g/ml R-848 (EnzoLifeSciences), 5 ⁇ g/ml anti-human CD40 antibody (R & D), 100 ⁇ g/ml human IL-21 (PEPROTECH), 100 ng/ml Human BAFF (PEPROTECH), 2 ng/ml Human IL-17 (PEPROTECH), 10 ng/ml Human IL-4 (ProSpec), 1000 IU/ml Human IL-2 (ProSpec), 2.5 ⁇ g/ml CpG2006 (5′-TCGTCGTTTTGTCGTTTTGTCGT -3′) (SEQ ID NO: 617), cultured in RPMI medium containing 5 ⁇ 10 ⁇ 5 M mercaptoethanol and 10% FCS at 37° C. for 6 days.
  • CD138 + cells were isolated using anti-human CD138-specific antibody-conjugated microbeads (Miltenyi Biotec) and LS columns (Miltenyi Biotec) according to the manufacturer's instructions. Separated cells were subjected to the ISAAC method.
  • the lymphocyte chip and ISAAC method were performed with reference to the above-mentioned literature. Briefly, the surface of the lymphocyte chip was treated with 10 ⁇ g/ml SARS-CoV-2 spike protein (provided by the National Institute of Infectious Diseases), 10 ⁇ g/ml SARS-CoV-2 N-terminal domain (NTD) protein (ACRO Biosystems) or 10 ⁇ g/ml SARS-CoV-2 RBD (ACRO Biosystems) in phosphate-buffered saline (PBS) and incubated overnight at 4°C to extract SARS-CoV-2 spike protein, NTD , or RBD was immobilized on the surface of the lymphocyte chip. After removing the antigen solution, the surface of the lymphocyte chip was blocked with 0.01% Biolipidure (NOF Corporation) at room temperature for 30 minutes. After that, the surface of the lymphocyte chip was washed with RPMI medium containing 10% FCS.
  • SARS-CoV-2 spike protein provided by the National Institute of Infectious
  • the separated CD138+ cells were arranged on the lymphocyte chip, and the cells remaining outside the well were removed by gentle washing using RPMI medium containing 10% FCS.
  • the cells on the lymphocyte chip were cultured in RPMI medium containing 10% FCS at 37°C for 3 hours.
  • the antibody gene amplification method for the VH and VL fragments from the collected single cells was performed according to the method described in the above-mentioned literature. Briefly, 0.25 pmol each of Ig ⁇ -RT (5′-GCGAGTAGAGGCCTGAGGAC-3′) (SEQ ID NO: 618), Ig ⁇ -RT (5′-ACTGTCTTCTCCACGGTGCTCC-3′) (SEQ ID NO: 618) was obtained by 15 U SuperScriptTM III (Invitrogen).
  • Ig ⁇ -RT (5′-GATGCCAGTTGTTTGGGTGGT-3′) (SEQ ID NO: 620) primer, 1U RNase inhibitor (New England Biolabs), 0.5 mM each dNTP, 5 mM DTT, 0.2% Triton- Reverse transcription was performed at 55° C. for 1 hour using X100 and 1 ⁇ 1st strand cDNA buffer (Invitrogen). 3′-tailing of the cDNA was performed by 20 U terminal deoxynucleotide transferase (Roche) in 4 mM MgCl 2 , 0.5 mM dGTP, 50 mM PK buffer (25 mM K 2 HPO 4 and 25 mM KH 2 PO 4 ).
  • the first PCR was performed with a dC adapter primer (5′-AGCAGTAGCAGCAGTTCGATAACTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCDN-3′) (SEQ ID NO: 621) and ⁇ chain (Ig ⁇ -1st: 5′-CGAGTTCCAAGTCACGGTCA-3′) (SEQ ID NO: 622), ⁇ chain (Ig ⁇ -1st: 5′-CTTCTCCACGGTGCTCCCTTCAT-3′) (SEQ ID NO: 623), and a mixture of the constant region of the kappa chain (Ig ⁇ -1st: 5′-CTCCCAGGTGACGGTGACAT-3′) (SEQ ID NO: 624).
  • a dC adapter primer 5′-AGCAGTAGCAGCAGTTCGATAACTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCCCDN-3′
  • ⁇ chain Ig ⁇ -1st: 5′-
  • Amplification of each product was performed using primeSTAR DNA polymerase (TaKaRa) according to the manufacturer's instructions: 30 cycles of denaturation at 94°C for 15 seconds, annealing at 60°C for 5 seconds, and 72 Extension for 1 minute 30 seconds at °C.
  • the resulting PCR products were then diluted 4-fold with water and 2 ⁇ l of each was used for nested PCR.
  • Nested PCR was performed using an adapter primer (5'-AGCAGTAGCAGCAGTTCGATAA-3') (SEQ ID NO: 625) and ⁇ chain (Ig ⁇ -nest: 5'-GCCTTTGACCAAGCAGCCCAA-3') (SEQ ID NO: 626), ⁇ chain (Ig ⁇ -nest: 5'-AGTGTGGCCTTGTTGGCTTG-3') (SEQ ID NO: 627), or the kappa chain constant region (Ig ⁇ -nest: 5'-CGGGAAAGTATTATTCGCCACA-3') (SEQ ID NO: 628) using primeSTAR DNA polymerase with respective nested primers implemented.
  • an adapter primer 5'-AGCAGTAGCAGCAGTTCGATAA-3'
  • ⁇ chain Ig ⁇ -nest: 5'-GCCTTTGACCAAGCAGCCCAA-3'
  • ⁇ chain Ig ⁇ -nest: 5'-AGTGTGGCCTTGTTGGCTTG-3'
  • PCR products were inserted into expression vectors containing the complete constant region cDNAs for human ⁇ , ⁇ , or ⁇ chains.
  • Expi293F® cells (Thermo Fisher Scientific) were then co-transfected with the ⁇ chain encoding the complete antibody molecule and both the ⁇ or ⁇ chain expression vectors using the Expi293 Expression System (Thermo Fisher Scientific).
  • the supernatant of the cultured cells was collected after 7 days, and then the recombinant monoclonal antibody was purified using a protein G column (GE Healthcare).
  • nucleic acid sequences of these heavy chains are SEQ ID NOS: 1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, respectively. , 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, and 595.
  • nucleic acid sequences of these light chains are SEQ ID NOs: 12, 34, 56, 78, 100, 122, 144, 166, 188, 210, 232, 254, 276, 298, 320, respectively.
  • amino acid sequences of these heavy chains are SEQ ID NOs: 2, 24, 46, 68, 90, 112, 133, 156, 178, 200, 222, 244, 266, 288, and 310, respectively. , 332, 354, 376, 398, 420, 442, 464, 486, 508, 530, 552, 574, and 596.
  • amino acid sequences of these light chains are SEQ ID NOs: 13, 35, 57, 79, 101, 123, 145, 167, 189, 211, 233, 255, 277, 299, and 321, respectively. , 343, 365, 387, 409, 431, 453, 475, 497, 519, 541, 563, 585, and 607.
  • Example 2 SARS-CoV-2 spike protein binding assay of obtained antibodies , 1028-61L, 1028-62L, 1028-65K, 1028-68L, 1028-84K, 1028-87L, 1028-106K, 1028-121K, 1028-137K, 1028-164L for SARS-CoV-2 spike protein and It was analyzed by ELISA for binding. Specifically, PBS containing 1 ⁇ g / ml SARS-CoV-2 spike protein is incubated overnight at 4 ° C. in Maxisorp 96 well plate (Nunc) to solidify the SARS-CoV-2 spike protein on the bottom of the well.
  • the cells were blocked with PBS containing 3% bovine serum albumin (BSA) and 0.1% Tween-20 for 1 hour. Next, it was washed with PBS containing 0.1% Tween-20 and incubated with 200 ng/ml of the prepared antibody for 1 hour. Then, the cells were washed with PBS containing 0.1% Tween-20 and incubated with 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment (sigma) for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with TMB substrate (SeraCare Life Sciences), and absorbance at 450 nm was measured using a plate reader FLUOstar OMEGA (BMG LABTECH).
  • BSA bovine serum albumin
  • Example 1 Of the antibodies produced in Example 1, the results of 17 types of antibodies are shown in Figure 1 (ECD trimer). Moreover, all of the 28 types of antibodies produced in Example 1 were confirmed to bind to the SARS-CoV-2 spike protein.
  • Example 3 Binding domain analysis of anti-SARS-CoV-2 spike protein antibody Which domains in the SARS-CoV-2 spike protein do the 17 types of antibodies bound to the spike protein in Example 2 bind to? Analyzed by ELISA. Specifically, PBS containing 1 ⁇ g / ml SARS-CoV Receptor binding domain (RBD) protein (ACRO Biosystems), PBS containing 1 ⁇ g / ml SARS-CoV-2 N-terminal domain (NTD) protein (ACRO Biosystems), and 1 ⁇ g PBS containing /ml SARS-CoV-2 RBD (ACRO Biosystems) was incubated overnight at 4 ° C.
  • RBD SARS-CoV Receptor binding domain
  • NTD N-terminal domain
  • 1028-25K, 1028-30K, 1028-50K, 1028-65K, 1028-68L, 1028-84K, 1028-87L bind to SARS-CoV-2 spike protein, but SARS-CoVRBD, SARS-CoV -2 It did not bind to either NTD or SARS-CoV-2 RBD.
  • ACE2 binding inhibition by anti-SARS-CoV-2 RBD antibodies 1028-55K, 1028-61L, 1028-121K) inhibited the binding of SARS-CoV-2 spike protein to ACE2.
  • PBS containing 1 ⁇ g/ml SARS-CoV-2 spike protein ACRO Biosystems was incubated overnight at 4°C in a Maxisorp 96 well plate to solidify the SARS-CoV-2 spike protein on the bottom of the well. did.
  • the cells were washed with PBS containing 0.1% Tween-20, developed using a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance without antibody as 100, the absorbance with each concentration of antibody was calculated.
  • the cells were blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Next, the cells were washed with PBS containing 0.1% Tween-20, and 200 ng/ml of prepared antibody was incubated for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance obtained by binding to WT as 100, the absorbance obtained by binding to each mutant-derived RBD was calculated.
  • Binding to RBD K417N, E484K, N501Y was reduced to approximately 33 compared to binding to 1028-61L, WT. No reduction in binding was observed for RBD N439K, RBD N440K, RBD A475V, RBD E484K, RBD N501Y. 1028-121K decreased binding to RBD K417N, E484K, N501Y, RBD N439K, RBD N440K, RBD E484K to approximately 62-72 compared to binding to WT. No reduction in binding to RBD A475V, RBD N501Y was observed.
  • 0210-20L did not decrease the binding to any of the mutant-derived RBDs.
  • 0210-28K did not show decreased binding to any of the mutant-derived RBDs.
  • the binding to RBD K417N, E484K, and N501Y decreased to approximately 56 compared to the binding to WT.
  • Binding to RBD E484K decreased to approximately 75.
  • No decrease in binding to RBD N439K, RBD N440K, RBD A475V, and RBD N501Y was observed.
  • 0210-38L reduced the binding to RBD N439K and RBD E484K to approximately 82-90 compared to the binding to WT. No decrease in binding to RBD K417N, E484K, N501Y, RBD N440K, RBD A475V and RBD N501Y was observed.
  • FIG. 10 shows the results of analyzing the binding of the 0210-28K antibody to RBD L452R.
  • the 0210-28K antibody showed binding activity to RBD L452R equivalent to binding to Wuhan-type RBD and RBD K417N, E484K, and N501Y.
  • FIG. 11 shows the results of analyzing the binding of the 0210-28K antibody to RBD L452R and E484Q.
  • the 0210-28K antibody showed binding activity to RBD L452R and E484Q equivalent to binding to Wuhan type RBD, RBD N501Y, and RBD K417N, E484K and N501Y.
  • Example 6 Inhibition of ACE2 binding by anti-SARS-CoV-2 RBD antibodies to mutant antigen-derived RBD Analysis of whether five types of anti-SARS-CoV-2 RBD antibodies inhibit binding between mutant-derived RBD and ACE2 did.
  • PBS containing 1 ⁇ g/ml SARS-CoV-2 RBD WT
  • PBS containing 1 ⁇ g/ml RBD K417N, E484K, N501Y PBS containing 1 ⁇ g/ml RBD N439K
  • PBS containing 1 ⁇ g/ml RBD N440K PBS with 1 ⁇ g/ml SARS-CoV-2 RBD A475V
  • PBS with 1 ⁇ g/ml RBD E484K PBS with 1 ⁇ g/ml RBD N501Y
  • PBS containing 1 ⁇ g/ml SARS-CoV-2 RBD K417T, E484K, N501Y or PBS containing 1 ⁇ g/ml SARS-CoV-2 RBD L452R, T478
  • the cells were washed with PBS containing 0.1% Tween-20, developed using a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance without antibody as 100, the absorbance with each concentration of antibody was calculated.
  • Beta strain SARS-CoV-2 RBD protein (K417N, E484K, N501Y mutations). It was analyzed whether it inhibits the binding of ACE2 to ACE2. In addition, whether the 0210-28K antibody inhibits the binding of RBD L452R, RBD N501Y, RBD K417T, E484K, N501Y, RBD L452R, T478K, RBD L452R, E484Q, or RBD K417N, E484K, N501Y to ACE2 was examined in a similar manner. analyzed by the method.
  • Table 5 shows the results of 1028-05K, 1028-37K, 1028-55K, 1028-61L, and 1028-121K.
  • 1028-05K hardly suppressed the binding of WT and ACE2 to about 90, and the binding of RBD derived from each mutant to ACE2 was about 90 to 96, which was hardly suppressed like WT.
  • 1028-37K suppressed the binding between WT and ACE2 to about 63, whereas the binding between RBD derived from any of the mutant strains and ACE2 was suppressed to about 53-70, which is the same level as WT.
  • 1028-55K suppresses the coupling between WT and ACE2 to about 22, while RBD N439K, RBD N440K, RBD A475V, RBD E484, and RBD N501Y reduce the coupling between WT and ACE2 to about 25-35. reduced to the same extent.
  • the binding between RBD K417N, E484K, N501Y and ACE2 was about 90, which was hardly suppressed.
  • 1028-61L suppresses the coupling between WT and ACE2 to about 20, while RBD N439K, RBD N440K, RBD A475V, RBD E484, and RBD N501Y suppress the coupling between WT and ACE2 to about 18-33. reduced to the same extent.
  • the binding between RBD K417N, E484K, N501Y and ACE2 was about 78, which was hardly suppressed.
  • the binding between WT and ACE2 was hardly suppressed at about 80, and the binding between RBD derived from each mutant strain and ACE2 was also hardly suppressed at about 80-90, similar to WT.
  • Figures 7A and B show the results of inhibition of binding of 0210-28K, 1028-55K, 0210-30L, and 1028-61L to the RBD proteins (RBD K417N, E484K, N501Y) of Beta strain SARS-CoV-2.
  • the IC50 for the RBD protein of 0210-28K Beta strain SARS-CoV-2 was calculated to be 350 ng/ml
  • the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 600 ng/ml.
  • the IC50 for the RBD protein of 1028-55K Beta strain SARS-CoV-2 was calculated to be 10,000 ng/ml or more, and the IC50 for the RBD protein of Wuhan-type SARS-CoV-2 was calculated to be 400 ng/ml. .
  • 0210-30L dose-dependently inhibited the binding of ACE2 to the RBD protein of Beta strain SARS-CoV-2. Its inhibitory effect was weaker than that of the Wuhan-type SARS-CoV-2 RBD protein.
  • the IC50 for the RBD protein of 0210-30L Beta strain SARS-CoV-2 was calculated to be 2,000 ng/ml
  • the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 500 ng/ml.
  • 1028-61L dose-dependently inhibited the binding of ACE2 to the RBD protein of Beta strain SARS-CoV-2. Its inhibitory effect was weaker than that of the Wuhan-type SARS-CoV-2 RBD protein.
  • the IC50 for the RBD protein of 1028-61L Beta strain SARS-CoV-2 was calculated to be 10,000 ng/ml or more, and the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 700 ng/ml. .
  • Fig. 10 shows the results of analyzing whether 0210-28K inhibits the binding of RBD L452R and ACE2.
  • the 0210-28K antibody showed concentration-dependent binding inhibitory activity to RBD L452R equivalent to that of the Wuhan type.
  • Fig. 11 shows the results of analyzing whether the 0210-28K antibody inhibits the binding of RBD K417N, E484K, N501Y, and RBD L452R, E484Q to ACE2.
  • the 0210-28K antibody showed concentration-dependent binding inhibitory activity equivalent to that of the Wuhan type against RBD K417N, E484K, N501Y and RBD L452R, E484Q.
  • FIG. 13 shows the binding of RBD derived from six types of mutants (RBD 501Y, RBD K417N, E484K, N501Y, RBD K417T, E484K, N501Y, RBD L452R, E484Q, RBD L452R, T478K, RBD L452R) to ACE2.
  • RBD 501Y, RBD K417N, E484K, N501Y, RBD K417T, E484K, N501Y, RBD L452R, E484Q, RBD L452R, T478K, RBD L452R concentration-dependent binding inhibitory activity equivalent to that of Wuhan type (WT) against RBD derived from any of the mutant strains.
  • Example 7 Infection suppression experiment using a pseudotype virus enveloped with the spike protein of the new coronavirus
  • the pseudotype virus (SARS-CoV-2 St19pv) enveloped with the spike protein of the new coronavirus is published in the following paper. It was prepared according to the method described. Tani H et al. , Virology Journal (2021) 18:16.
  • VeroE6 cells overexpressing TMPRSS2 (VeroE6/TMPRSS2) were seeded in a 96-well plate, and the next day, when the cells were 90-100% confluent, each concentration of purified antibody was added. Subsequently, SARS-CoV-2 St19pv and VSV-G-encapsulated control pseudotype virus (VSVpv) were subsequently added. After culturing for one day, a luciferase substrate solution containing a cell lysate was added to the cells, and luciferase activity was measured. If the pseudotype virus can infect cells, luciferase activity is observed and quantified as a luminescence value. Since the luminescence value of luciferase would decrease if the infection was inhibited by the antibody, the infection inhibition rate was calculated based on that value.
  • VSVpv VSV-G-encapsulated control pseudotype virus
  • Example 8 Infection control experiment using new coronavirus
  • the new coronavirus uses a virus strain (TIH/SARS2/2020-1) isolated at the Toyama Prefectural Institute of Health from a patient with a new coronavirus infection in Toyama Prefecture. board.
  • Purified antibodies and infectious titers (Infectious Unit; IU) was mixed with 100 IU of virus in a microtube and allowed to react at 37° C. for 1 hour. After that, it was added to VeroE6/TMPRSS2 cells seeded in a 24-well plate and adsorbed at 37° C. for 2 hours.
  • the mixture containing the unadsorbed antibody and virus was completely removed, and the culture medium containing the antibody at each concentration was added again, and culture was continued for 2 days.
  • the culture supernatant of the cells cultured for 2 days was collected, and the virus infectivity titer was measured by plaque assay when each antibody concentration was added.
  • Figure 5 shows the 50% and 90% inhibitory concentrations calculated by statistical analysis based on the numerical values in Figure 4.
  • 1028-61L showed an IC50 of 157 nM and an IC90 of 159 nM
  • 1028-55K showed an IC50 of 102 nM and an IC90 of 106 nM.
  • Example 9 Infection suppression experiment using a pseudotype virus enveloped with a mutant spike protein of the new coronavirus
  • spike proteins with mutations of Wuhan type (WT) WT
  • Alpha strain and Beta strain
  • SARS-CoV-2 St19pv A pseudotyped virus (SARS-CoV-2 St19pv) enveloping was generated (see FIG. 8).
  • Alpha strains are B.
  • Fig. 9 shows the results of infection inhibition experiments conducted using the pseudotype virus of each mutant strain.
  • Each of the four tested antibodies showed concentration-dependent inhibitory effects, with 0210-28K exhibiting the highest effect, and sufficient inhibition of infection was observed even at 0.2 ⁇ g/ml.
  • these antibodies were found to have an inhibitory effect on not only the Wuhan type, but also the Alpha and Beta strains.
  • Pseudotype viruses enveloped with spike proteins with mutations of the Kappa and Delta strains were similarly prepared, and the results of two rounds of infection inhibition experiments on 0210-28K were performed using the pseudotype viruses of each mutant strain. 12. Concentration-dependent inhibitory effects were observed for each of the five pseudotype viruses.
  • the IC50 values for inhibition of Wuhan-type and mutant SARS-CoV-2 St19pv pseudotype virus infection were respectively as follows.
  • pseudotype viruses enveloped with spike proteins having mutations of the Gamma strain and the Omicron strain were prepared, and seven types of pseudotype viruses (Wuhan type (WT), Alpha strain, Beta strain, Gamma, Kappa, Delta, and Omicron strains) were used to perform infection inhibition experiments for 0210-28K.
  • VeroE6/TMPRSS2 was seeded on a 96-well plate, the next day, 0210-28K at each concentration was added in a state of 90-100% confluency, and then the above-mentioned 7 types of pseudotype viruses or VSV-G were coated.
  • a pseudotyped virus (VSVpv) was added. After culturing at 37°C for 24 hours, luciferase activity was measured using a PicaGene Luminescence Kit (Fujifilm Wako) equipped with a GloMax Navigator Microplate Luminometer (Promega).
  • the results are shown in Fig. 14.
  • the vertical axis indicates the rate of infection reduction (% of reduction) compared to the control.
  • Example 10 Infection suppression experiment using a mutated new coronavirus
  • the new coronavirus is the Wuhan type (WK-521/2020) and Alpha strain (QHN002/2020) isolated at the National Institute of Infectious Diseases in Japan.
  • Beta strain TY8-612/2021
  • Gamma strain TY7-503/2021
  • Kappa strain TY11-330/2021
  • Dleta strain TY11-927/2021
  • Omicron strain TY38-873.
  • VeroE6/TMPRSS2 cells were seeded in a 96-well plate at 2 ⁇ 10 4 cells per well, infected with the above viruses at 0.001 moi per cell, and 0210-28K antibody adjusted to each concentration was added.
  • DMEM Dulbecco's modified Eagle medium
  • FBS fetal bovine serum
  • Example 11 Surface Plasmon Resonance (SPR) Analysis To confirm, the affinity of anti-SARS-CoV-2 RBD antibodies to Wuhan-type RBD or mutant-derived RBD was measured using a Biacore T100 (GE Healthcare). were analyzed by SPR.
  • SPR Surface Plasmon Resonance
  • the 0210-28K antibody was immobilized on a protein A sensor chip (GE Healthcare), and each RBD in the range of 0 nM to 30 nM (Wuhan type RBD (WT), RBD derived from Alpha strain (N501Y), Beta strain RBD derived (K417N, E484K, N501Y), RBD derived from Gamma strain (K417T, E484K, N501Y), RBD derived from Kappa strain (L452R, E484Q), and RBD derived from Delta strain (L452R, T478K)) at 30 ⁇ l/ Injection was performed for 1 minute at a flow rate of min, followed by washing with HBS-P buffer for 5 minutes. Biacore Evaluation Software (GE Healthcare) was used to determine the association and dissociation rate constants, and the affinity was calculated from the ratio of the two constants.
  • Example 12 Infection suppression experiment by preventive administration using a hamster model, it was tested whether preventive administration of antibodies inhibits infection by the novel coronavirus and its pseudotype virus enveloped with its mutant spike protein. . Specifically, 0.3 mg/kg per animal for male hamsters aged 6 to 10 weeks (hamsters purchased from Japan SLC Co., Ltd. and bred in a pathogen-free environment within the Department of Animal Resources Development, University of Toyama). Alternatively, 3 mg/kg of an antibody recognizing West Nile virus (Ozawa et al., Antiviral Research 2018, 154, 58) or 0210-28K antibody was administered intraperitoneally.
  • a control antibody that recognizes West Nile virus was used as an antibody that does not recognize SARS-CoV-2. Twenty-four hours after the intraperitoneal administration, each of the following pseudotype viruses was directly inoculated into the trachea by the method described below. Lungs were harvested from hamsters 24 hours after infection and incubated with 1 mg/mL D-luciferin for 5 minutes. Luminescence of luciferase was measured with an In vivo Imaging System (IVIS Lumina II, PerkinElmer), and luminescence from the front and back of the lung was measured to calculate the virus infectivity titer of the whole lung.
  • IVIS Lumina II In vivo Imaging System
  • Pseudotype virus Spike proteins with mutations of Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Kappa strain, Delta strain, and Omicron strain, prepared in the same manner as in Examples 7 and 9, and VSV- Pseudotype virus that coats G Inoculation method: see bioRxiv doi (https://doi.org/10.1101/2021.09.17.460745)
  • FIG. 17 shows the results when the antibody dose was 3 mg/kg hamster for Beta strain and Omicron strain, and 0.3 mg/kg hamster for others.
  • the results showed that luciferase luminescence was clearly lower when the 0210-28K antibody was pre-administered compared to the control. From this, it was clarified that the prophylactic administration of the antibody can inhibit infection by the new coronavirus and its pseudotype virus enveloping its mutant spike protein.
  • Example 13 Structural Analysis of Antibody Bound to SARS-CoV-2 Spike Protein
  • cryo-electron microscopy and X-ray crystallography were used. Analytical method was used.
  • the DNA fragment of the 0210-28K VH gene was subjected to expression composed of elements starting from the N-terminus (human IgG CH1 constant region, flexible linker GSSG, decahistidine His10 tag). inserted into the vector.
  • Expi293F cells were then co-transfected with both the Fab and the light chain expression vector encoding the Fab molecule using the Expi293 Expression System and the cultured cell supernatant was harvested and applied to dialysis membranes (Spectrum Laboratories, Collinso Dominguez). dialyzed using The membrane was immersed in a native buffer (20 mM sodium phosphate, 0.5 M NaCl, pH 7.4) contained in a covered container and shaken at 4°C for 72 hours on a shaker. Fabs were then purified by affinity chromatography using Ni Sepharose 6 Fast Flow (Cytiva).
  • the pretreated supernatant was loaded onto a Poly-Prep column (Bio-Rad, Hercules) filled with Ni Sepharose 6 Fast Flow mix, and after washing, the Fab molecules were eluted with an elution buffer (20 mM sodium phosphate, 0.05%). It was eluted with 5M NaCl, 500 mM imidazole, pH 7.4).
  • the protein of SARS-CoV-2 spike 6P was expressed and purified by a reported procedure (Onodera et al., 2021), and the SARS-CoV-2 spike 6P solution was isolated from 37 After incubation for 1 hour at 18°C, the purified 0210-28K Fab was incubated with SARS-CoV-2 spiked 6P solution at a molar ratio of 1:2 for 1 hour at 18°C.
  • a grid was prepared by placing the sample on a Quantifoil R1.2/1.3 Cu 300 mesh grid (Quantifoil Micro Tools GmbH) that had been glow discharged using a PIB-10 (Vacuum Device) at 10 mA for 120 seconds.
  • FIG. 18(a) is a cryo-electron microscope (cryo-EM) map densified to a resolution of 3.1 ⁇ with C3 symmetry. , was recognized on the left shoulder side of the SARS-CoV-2 RBD shown in the figure.
  • cryo-EM cryo-electron microscope
  • Crystals were cryocooled in liquid nitrogen and X-ray diffraction experiments were performed at beamline BL32XU at SPring-8 (Harima). X-ray diffraction data sets were processed with XDS and scaled using Aimless in the CCP4 program package (see, e.g., Evans, P. Acta Crystallogr D Biol Crystallogr 62, 72-82, doi: 10.1107/S0907444905036693. ). The structure was solved by the molecular replacement method using the Phaser program in the PHENIX package, using the RBD structure (PDB ID: 7jmp) and the 0210-28K Fab fragment generated at the alphafold2 colab website as search probes for molecular replacement.
  • FIG. 18(b) is the result of X-ray crystal structure analysis with a resolution of 3.75 ⁇ , and the 0210-28K Fab (UT28K Fab) was recognized in the same region as the cryo-electron microscope result.
  • the 0210-28K antibody recognized F486 of RBD as a core interacting amino acid residue and interacted with the hydrophobic pocket of the antibody.
  • This binding mode resembled the binding of 253XL55 (PDB ID: 7BEO) and SARS-CoV-2 RBD shown in Figure 18(c).
  • Figures 18(d)-(g) show the key residue interactions between the 0210-28K antibody Fab and the SARS-CoV-2 RBD.
  • the side chain of Q493 of RBD formed hydrogen bonds with S55 and N57 of VH of 0210-28K antibody Fab.
  • the side chain of N487 of RBD not only forms a hydrogen bond with the side chain of D107 of VH of antibody Fab, but also the oxygen atoms of the main chains of C105 and S106 of VH of antibody Fab.
  • the side chain of D107 of the VH of the antibody Fab was hydrogen-bonded to the side chains of S477 and T478 in addition to N487 of RBD, and was also bonded to the nitrogen of these main chains.
  • FIG. 18(f) the side chain of D107 of the VH of the antibody Fab was hydrogen-bonded to the side chains of S477 and T478 in addition to N487 of RBD, and was also bonded to the nitrogen of these main chains.
  • the hydrogen atom in the side chain of D104 of VH of antibody Fab formed a bond with the nitrogen atom of the main chain of S477 of RBD and the oxygen atom of the main chains of A475 and G476 of RBD.
  • N487 of RBD and D104 and D107 of VH of 0210-28K antibody Fab are important residues for antigen-antibody interaction, and they recognize the main chains of interacting molecules. It became clear.
  • the 0210-28K antibody had at least four backbone interactions (RBD A475, G476, S477, and T478) and at least three side chain interactions (RBD F486, N487, and Q493) with RBD.
  • Example 14 Epitope Mapping Analysis The binding of the 0210-28K antibody to the mutant-derived RBD protein was analyzed by ELISA. Specifically 1 ⁇ g/ml SARS-CoV-2 RBD (WT), RBD N439K, RBD N440K, RBD G446V, RBD L452R, RBD Y453F, RBD L455F, RBD F456L, RBD K458R, RBD E471Q, RBD I472V, RBD A472V ,RBD G476S,RBD S477N,RBD P479S,RBD N481D,RBD G482S,RBD V483A,RBD E484K,RBD G485S,RBD F486S,RBD N487R,RBD F490S,RBD S494P,RBD P499R,RBD N501Y,RBD Y505C,RBD N417N,E484K ,
  • the cells were blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Then, it was washed with PBS containing 0.1% Tween-20 and incubated with 100 ng/ml of the produced antibody for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with a TMB substrate, and absorbance at 450 nm was measured using a plate reader.
  • the results are shown in FIG.
  • the 0210-28K antibody did not significantly decrease binding to RBD proteins other than F486S and N487R, but decreased binding to F486S and N487R.
  • These results demonstrate that at least the RBD proteins F486 and N487 are essential for the binding of the 0210-28K antibody.
  • Culture supernatants were harvested 72 hours after infection and passaged again with twice the amount of antibody for subsequent passages. After three passages, culture supernatants were harvested and viral RNA was isolated using the QIAamp Viral RNA Mini Kit (Qiagen). Whole genome amplification was performed using a modified version of ARTIC Network's protocol for SARS-CoV-2 genome sequencing (Itokawa et al., 2020). Next-generation sequencing (NGS) libraries were constructed using the QIAseq FX DNA Library kit (Qiagen) and sequenced using the iSeq platform (Illumina). NGS readings were performed using the bwa mem algorithm (version 0.7.13-r1126) (see Li, H. & Durbin, R.
  • NGS Next-generation sequencing
  • N487 and Y489 of RBD support the orientation of F486 of RBD that interacts with the hydrophobic pocket of the 0210-28K antibody by causing amino acid substitutions to escape antibody recognition. It is thought that there are In addition, the E484 amino acid residue of RBD, which reduces the reactivity of neutralizing antibodies against SARS-CoV-2 mutants, is located outside the antibody binding site, and the 0210-28K antibody is independent of the E484 amino acid substitution.
  • Example 15 Evaluation of antibody-dependent enhancement of infection (ADE) activity ADE activity was confirmed for 0210-28K prepared in Example 1 and newly prepared 0210-28K-LALA.
  • the 0210-28K-LALA antibody in which the L234A and L235A mutations are introduced into the 0210-28K Fc region, the 0210-28K variable region and the full-length constant region containing the L234A and L235A mutations are DNA-synthesized into a vector. , and antibodies were produced and purified in the same manner as in Example 1.
  • the vertical axis indicates the virus fold increase, with the virus amount obtained in the control being set to 1.
  • the virus amount was low at 1.0 ⁇ 10 ⁇ 1 ⁇ g/ml or higher, but the virus amount was high at 1.0 ⁇ 10 ⁇ 2 ⁇ g/ml, indicating ADE activity.
  • the virus amount did not increase even at 1.0 ⁇ 10 ⁇ 2 ⁇ g/ml or less, and no ADE activity was observed.
  • Example 16 Evaluation of activity to enhance interleukin-6 (IL-6) production It was also confirmed that the 0210-28K and 0210-28K-LALA described above have activity to enhance IL-6 production. Specific evaluation was entrusted to Mican Technologies Inc., cMylc-2-K alpha cells under the conditions of the absence of antibody (control), the presence of 0210-28K, and the presence of 0210-28K-LALA was infected with the novel coronavirus (WK-521/2020) and cultured for 72 hours, the culture supernatant was collected, and the amount of IL-6 produced was measured by ELISA. The above antibody was used after preparing a 10-fold dilution series from a final concentration of 1.0 ⁇ g/ml.

Abstract

The present invention addresses the problem of providing a novel and effective antibody that binds to the spike protein of SARS-CoV-2, and in particular addresses the problem of providing an antibody that inhibits binding between SARS-CoV-2 and ACE2 or an antibody that inhibits the entry of SARS-CoV-2 into the cell. The present invention provides, for example, an antibody that has the following combination of complementarity-determining regions (CDRs) and that binds to the spike protein of SARS-CoV-2, or an antigen-binding fragment from said antibody: CDRH1, 2, and 3 and CDRL1, 2, and 3 composed of the amino acid sequences of SEQ ID NOS: 9, 10, 11, 20, 21, and 22.

Description

抗SARS-CoV-2抗体Anti-SARS-CoV-2 antibody
 本発明は,新型コロナウイルスSARS-CoV-2のスパイクタンパク質に結合する抗体及びその抗原結合性断片に関する。 The present invention relates to an antibody that binds to the spike protein of the novel coronavirus SARS-CoV-2 and an antigen-binding fragment thereof.
 SARS-CoV-2は,2019年末に中国の武漢で初めて報告され,その後中国全土,さらには世界中に広く拡大したコロナウイルスの一種である。COVID-19と呼ばれるSARS-CoV-2感染症は,患者のほとんどおいて軽度から中等度の症状である一方で,一部の患者においては重症化して死亡に至るという特徴を有する。現在までに,ワクチンが開発及び承認され,各国で接種が始まっているが,ワクチン接種後の感染事例も報告されており(非特許文献1),ワクチンが完全にウイルス感染を抑制するわけではないと考えられている。 SARS-CoV-2 is a type of coronavirus that was first reported in Wuhan, China at the end of 2019 and has since spread widely throughout China and even around the world. The SARS-CoV-2 infection, called COVID-19, is characterized by mild to moderate symptoms in most patients, while severe disease and death in some patients. To date, vaccines have been developed and approved, and vaccination has begun in various countries, but cases of infection after vaccination have been reported (Non-Patent Document 1), and vaccines do not completely suppress viral infections. It is believed that.
 ワクチンの開発と並行して,COVID-19治療薬の開発も進められており,治療用抗体についても報告されている(特許文献1)。しかし,SARS-CoV-2には複数の変異株が報告されており,広く変異株にまで治療・予防効果を奏するものは知られていない。 In parallel with the development of vaccines, COVID-19 therapeutic agents are being developed, and therapeutic antibodies have also been reported (Patent Document 1). However, multiple mutant strains of SARS-CoV-2 have been reported, and none of the mutant strains is known to have therapeutic or preventive effects.
国際公開WO2021/045836号International publication WO2021/045836
 本発明は,SARS-CoV-2に対する抗体(以下,「抗SARS-CoV-2抗体」という)であって,SARS-CoV-2のスパイクタンパク質に結合し,特には,感染・伝播性の増加や抗原性の変化が懸念されるSARS-CoV-2の変異株に結合することで,それらのSARS-CoV-2とACE2との結合を阻害する抗体,又はそれらのSARS-CoV-2の細胞内への侵入を阻害する抗体を提供することを課題とする。 The present invention is an antibody against SARS-CoV-2 (hereinafter referred to as "anti-SARS-CoV-2 antibody") that binds to the spike protein of SARS-CoV-2, and in particular, increases infection and transmissibility Antibodies that inhibit the binding of SARS-CoV-2 and ACE2 by binding to SARS-CoV-2 mutants that are concerned about antigenic changes, or those SARS-CoV-2 cells An object of the present invention is to provide an antibody that inhibits internal invasion.
 本発明者らは,SARS-CoV-2感染履歴のある複数の患者から得られた血漿を用いて,血漿中にSARS-CoV-2スパイクタンパク(三量体構造全長Sタンパク質(ECD)),N末端ドメイン(NTD),及び受容体結合ドメイン(RBD)への結合能を有する抗体が存在するかを調べた。その結果,重症化後に奇跡的に回復した1名の患者由来の血漿がECD,NTD,及びRBDの全てに対して優れた結合性を有することを見出した。このCOVID-19患者より末梢血リンパ球を分離し,既にISAAC法(Immunospot-array assay on a chip)(Jin A et al.,Nature medicine(2009)26:1088-1092,及びJin A et al.,Nature Protocols(2011)6:668)として報告された手法を用いて,SARS-CoV-2スパイクタンパク質に特異的に結合する複数のモノクローナル抗体を精製した。 The present inventors used plasma obtained from multiple patients with a history of SARS-CoV-2 infection, and found that SARS-CoV-2 spike protein (trimeric structure full-length S protein (ECD)), The presence of antibodies capable of binding to the N-terminal domain (NTD) and receptor binding domain (RBD) was investigated. As a result, it was found that plasma derived from one patient who miraculously recovered after becoming severe had excellent binding properties to all of ECD, NTD, and RBD. Peripheral blood lymphocytes were isolated from this COVID-19 patient, and the ISAAC method (Immunospot-array assay on a chip) (Jin A et al., Nature medicine (2009) 26: 1088-1092, and Jin A et al. , Nature Protocols (2011) 6:668) were used to purify multiple monoclonal antibodies that specifically bind to the SARS-CoV-2 spike protein.
 また,本発明者らは,それらのモノクローナル抗体について解析を進めた結果,SARS-CoV-2 RBDに結合する抗体(以下,「SARS-CoV-2 RBD抗体」という)を見出すことに成功した。得られたモノクローナル抗体について,シュードタイプウイルス及びSARS-CoV-2による感染抑制実験等を行ったところ,これらの抗体が感染抑制能を有することを見出した。更に,本発明者らは,感染・伝播性の増加や抗原性の変化が懸念されるSARS-CoV-2の変異株へのそれらの抗体の効果を調べたところ,そのような変異株のRBDへの結合性を有し,かつ感染抑制効果を有する抗体を見出すことに成功した。 In addition, as a result of analyzing these monoclonal antibodies, the present inventors succeeded in finding an antibody that binds to SARS-CoV-2 RBD (hereinafter referred to as "SARS-CoV-2 RBD antibody"). When the obtained monoclonal antibodies were subjected to infection suppression experiments with pseudotype virus and SARS-CoV-2, it was found that these antibodies have the ability to suppress infection. Furthermore, the present inventors examined the effect of these antibodies on SARS-CoV-2 mutants, which are concerned about increased infection and transmissibility and antigenic changes, and found that such mutants RBD We have succeeded in discovering an antibody that binds to and has an infection-suppressing effect.
 よって,本発明は,抗SARS-CoV-2抗体又はその抗原結合性断片及び当該抗体を有効成分として含有する治療薬,診断薬,及びSARS-CoV-2検出用組成物等に関する。 Therefore, the present invention relates to anti-SARS-CoV-2 antibodies or antigen-binding fragments thereof, therapeutic agents, diagnostic agents, compositions for detecting SARS-CoV-2, etc. containing the antibodies as active ingredients.
抗SARS-CoV-2抗体のSARS抗原タンパク質に対する結合特異性を確認した結果を示すグラフである。1028-05K,1028-25K,1028-29K,1028-30K,1028-37K,1028-50K,1028-55K,1028-61L,1028-62L,1028-65K,1028-68L,1028-84K,1028-87L,1028-106K,1028-121K,1028-137K,および1028-164Lの各抗SARS-CoV-2抗体が,SARSのどの抗原タンパク質と結合するかをELISAにて検証した。抗原タンパクとして以下を使用した:「RBD(SARS)」:SARS-CoV Receptor binding domain(RBD)タンパク質;「ECD trimer」:SARS-CoV-2スパイクタンパク質;「NTD」:SARS-CoV-2 N-terminal domain(NTD)タンパク質;「RBD」:SARS-CoV-2 RBD。縦軸は,450nmにおける吸収(結合強度)を示す。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。1 is a graph showing the results of confirming the binding specificity of an anti-SARS-CoV-2 antibody to a SARS antigen protein. 1028-05K, 1028-25K, 1028-29K, 1028-30K, 1028-37K, 1028-50K, 1028-55K, 1028-61L, 1028-62L, 1028-65K, 1028-68L, 1028-84K, 1028- It was verified by ELISA which antigen proteins of SARS each of the 87L, 1028-106K, 1028-121K, 1028-137K, and 1028-164L anti-SARS-CoV-2 antibodies binds. The following antigen proteins were used: "RBD (SARS)": SARS-CoV receptor binding domain (RBD) protein; "ECD trimer": SARS-CoV-2 spike protein; "NTD": SARS-CoV-2N- terminal domain (NTD) protein; "RBD": SARS-CoV-2 RBD. The vertical axis indicates absorption (bond strength) at 450 nm. Two or more experiments were performed independently and the data shown are representative. 抗SARS-CoV-2 RBD抗体による,SARS-CoV-2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。SARS-CoV-2スパイクタンパク質とACE2との結合を,1028-05K,1028-37K,1028-55K,1028-61L,および1028-121Kの各抗SARS-CoV-2 RBD抗体が阻害するか否かを,ELISAにて検証した。横軸は抗SARS-CoV-2 RBD抗体の濃度(μg/ml),縦軸は抗SARS-CoV-2 RBD抗体非存在下で測定された吸光度の値を100とした場合の各抗体存在下における吸光度の値の割合(%)を示している。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 3 is a graph showing the results of binding inhibition experiments between SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibody. Whether each anti-SARS-CoV-2 RBD antibody of 1028-05K, 1028-37K, 1028-55K, 1028-61L, and 1028-121K inhibits the binding of SARS-CoV-2 spike protein and ACE2 was verified by ELISA. The horizontal axis is the concentration of anti-SARS-CoV-2 RBD antibody (μg/ml), and the vertical axis is the presence of each antibody when the absorbance value measured in the absence of anti-SARS-CoV-2 RBD antibody is set to 100. shows the ratio (%) of absorbance values in . Two or more experiments were performed independently and the data shown are representative. 抗SARS-CoV-2 RBD抗体による,シュードタイプウイルス感染抑制実験の結果を表すグラフである。縦軸は抗体非添加のコントロールと比較した感染低下割合の対数値(log(% of reduction))を示し,横軸は抗体濃度(μg/ml)を示す。黒バー(St19pv)はSARS-CoV-2スパイクタンパク質外套シュードウイルスの結果を示し,白色のバーはコントロールとして用いたシュードタイプウイルスVSVpvの結果を示す。Fig. 3 is a graph showing the results of an experiment to suppress pseudotype virus infection using an anti-SARS-CoV-2 RBD antibody. The vertical axis shows the logarithmic value of infection reduction ratio (log (% of reduction)) compared to the antibody-free control, and the horizontal axis shows the antibody concentration (μg/ml). Black bars (St19pv) show the results for the SARS-CoV-2 spike protein mantle pseudovirus, and white bars show the results for the pseudotyped virus VSVpv used as a control. 抗SARS-CoV-2 RBD抗体である1028-61L,1028-55K,及び1028-05KのSARS-CoV-2感染及び産生に与える影響を調べた手順の模式図(上図)及びその結果を示すグラフ(下図)である。グラフ中,縦軸は,左グラフではコントロールに対する低下割合の対数値(log(% of reduction))を示し,右グラフではコントロールに対する低下割合(% of reduction)を示す。横軸は抗体濃度(μg/ml)を示す。*はウイルスプラークが認められなかったことを示す。各抗体濃度のデータにおいて,左の黒バーは1028-61L,真ん中のグレーバーは1028-55K,右の白バーは1028-05Kの結果を示す。A schematic diagram (upper figure) of the procedure for investigating the effects of anti-SARS-CoV-2 RBD antibodies 1028-61L, 1028-55K, and 1028-05K on SARS-CoV-2 infection and production, and the results. It is a graph (below). In the graph, the vertical axis indicates the logarithmic value of the reduction ratio (log (% of reduction)) relative to the control in the left graph, and the reduction ratio (% of reduction) relative to the control in the right graph. The horizontal axis indicates antibody concentration (μg/ml). * indicates that no viral plaques were observed. In the data for each antibody concentration, the black bar on the left indicates results for 1028-61L, the gray bar in the middle indicates results for 1028-55K, and the white bar on the right indicates results for 1028-05K. 各抗体の図4の実験結果を,コントロールに対する低下割合の対数値(log(% of reduction))(縦軸)に対する抗体濃度の対数値(log(濃度(nM)))(横軸)でプロットしたグラフである。The experimental results of FIG. 4 for each antibody are plotted against the logarithm of the reduction ratio (log (% of reduction)) (vertical axis) of the antibody concentration (log (concentration (nM))) (horizontal axis). is a graph. 抗SARS-CoV-2 RBD抗体による,SARS-CoV-2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。SARS-CoV-2スパイクタンパク質とACE2との結合を,0210-20L,0210-28K,0210-30L,0210-38L,1028-61L,1028-55Kの各抗SARS-CoV-2 RBD抗体が阻害するか,ELISAにて検証した。横軸は抗SARS-CoV-2 RBD抗体の濃度(μg/ml),縦軸は抗SARS-CoV-2 RBD抗体非存在下で測定された吸光度の値を100とした場合の各抗体存在下における吸光度の値の割合(%)を示している(図7Aと図7Bにおいて同様)。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 3 is a graph showing the results of binding inhibition experiments between SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibody. Each anti-SARS-CoV-2 RBD antibody 0210-20L, 0210-28K, 0210-30L, 0210-38L, 1028-61L, 1028-55K inhibits the binding of SARS-CoV-2 spike protein and ACE2 or verified by ELISA. The horizontal axis is the concentration of anti-SARS-CoV-2 RBD antibody (μg/ml), and the vertical axis is the presence of each antibody when the absorbance value measured in the absence of anti-SARS-CoV-2 RBD antibody is set to 100. (similar to FIGS. 7A and 7B). Two or more experiments were performed independently and the data shown are representative. 抗SARS-CoV-2 RBD抗体である0210-28K,及び1028-55Kによる,SARS-CoV-2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。Beta株SARS-CoV-2の変異を有するRBDタンパク質(K417N,E484K,N501Y)とACE2との結合を,各抗SARS-CoV-2 RBD抗体により阻害できるか,ELISAにて検証した。縦軸と横軸は図2と同様である(図7Bにおいて同じ)。Fig. 10 is a graph showing the results of an experiment to inhibit the binding of SARS-CoV-2 spike protein and ACE2 by anti-SARS-CoV-2 RBD antibodies 0210-28K and 1028-55K. It was verified by ELISA whether each anti-SARS-CoV-2 RBD antibody can inhibit the binding of ACE2 to RBD proteins (K417N, E484K, N501Y) having mutations of Beta strain SARS-CoV-2. The vertical and horizontal axes are the same as in FIG. 2 (same in FIG. 7B). 図7Aと同じ実験を0210-30L,及び1028-61Lを用いて行った結果を示す。FIG. 7A shows the results of the same experiment using 0210-30L and 1028-61L. SARS-CoV-2シュードタイプウイルスの作製に関する模式図と本実験で用いる変異株スパイクタンパク質を外套するシュードタイプウイルスの一部およびコントロールとなるVSVのエンベロープタンパク質を外套するウイルス(VSVpv)を示す。SARS-CoV-2(Alpha)は,Alpha株における,HV69-70 deletion,Y144 deletion,N501Y,A570D,P681H,T716I,S982A,D1118Hの変異を有するスパイクタンパク質を表面に有する。SARS-CoV-2(Beta)は,Beta株における,D80A,D215G,K417N,A701V,N501Y,E484Kの変異を有するスパイクタンパク質を表面に有する。A schematic diagram of the preparation of the SARS-CoV-2 pseudotype virus, a part of the pseudotype virus that envelopes the mutant spike protein used in this experiment, and a virus (VSVpv) that envelopes the envelope protein of VSV as a control are shown. SARS-CoV-2 (Alpha) has a surface spike protein with mutations of HV69-70 deletion, Y144 deletion, N501Y, A570D, P681H, T716I, S982A, and D1118H in the Alpha strain. SARS-CoV-2 (Beta) has a surface spike protein with mutations D80A, D215G, K417N, A701V, N501Y, E484K in the Beta strain. 抗SARS-CoV-2 RBD抗体による,変異株のスパイクタンパク質を外套するシュードタイプウイルスの感染抑制実験の結果を表すグラフである。縦軸はコントロールと比較した感染低下割合の対数値(log(% of reduction))もしくは実数値(% of reduction)を示し,横軸は抗体濃度(μg/ml)を示す。抗体の各濃度における棒グラフは,左から右へと順に,SARS-CoV-2の,武漢型(WT),Alpha株,及びBeta株のスパイクタンパク質を有するシュードタイプウイルスを用いた結果を示す。一番右の棒グラフは,コントロールシュードタイプウイルス(VSVpv)を用いた結果を示す。Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a spike protein of a mutant strain using an anti-SARS-CoV-2 RBD antibody. The vertical axis indicates the logarithmic value (log (% of reduction)) or the real value (% of reduction) of the infection reduction rate compared to the control, and the horizontal axis indicates the antibody concentration (μg/ml). Bar graphs at each concentration of antibody show, from left to right, results using pseudotyped viruses with spike proteins of Wuhan type (WT), Alpha strain, and Beta strain of SARS-CoV-2. The rightmost bar graph shows the results using a control pseudotyped virus (VSVpv). (左)抗SARS-CoV-2 RBD抗体である0210-28KとEpsilon株SARS-CoV-2のRBD(L452R)タンパク質との結合実験の結果を示す。武漢型(WT)のRBD,Beta株(K417N,E484K,N501Y)変異RBDとの結合実験の結果も併せて示す。縦軸は,450nmにおける吸収(結合強度)を,横軸は抗SARS-CoV-2 RBD抗体の濃度(ng/ml)を示す。(右)抗SARS-CoV-2 RBD抗体である0210-28Kによる,SARS-CoV2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。Epsilon株SARS-CoV-2のRBD(L452R)タンパク質とACE2の結合を,抗SARS-CoV-2 RBD抗体により阻害できるか,ELISAにて検証した。武漢型(WT)のRBD,Beta株(K417N,E484K,N501Y)変異RBDと,ACE2との結合阻害実験の結果も併せて示す。縦軸と横軸は図2と同様である。(Left) shows the results of a binding experiment between the anti-SARS-CoV-2 RBD antibody 0210-28K and the Epsilon strain SARS-CoV-2 RBD (L452R) protein. The results of binding experiments with Wuhan type (WT) RBD, Beta strain (K417N, E484K, N501Y) mutant RBD are also shown. The vertical axis indicates the absorption (binding strength) at 450 nm, and the horizontal axis indicates the concentration (ng/ml) of the anti-SARS-CoV-2 RBD antibody. (Right) Graph showing the results of binding inhibition experiments between SARS-CoV2 spike protein and ACE2 by 0210-28K, an anti-SARS-CoV-2 RBD antibody. It was verified by ELISA whether the binding between the Epsilon strain SARS-CoV-2 RBD (L452R) protein and ACE2 could be inhibited by the anti-SARS-CoV-2 RBD antibody. The results of the binding inhibition experiment between Wuhan type (WT) RBD, Beta strain (K417N, E484K, N501Y) mutant RBD and ACE2 are also shown. The vertical and horizontal axes are the same as in FIG. (左)抗SARS-CoV-2 RBD抗体である0210-28KとKappa株SARS-CoV-2のRBD(L452R,E484Q)タンパク質との結合実験の結果を示す。武漢型(WT)のRBD,Beta株(K417N,E484K,N501Y),及びAlpha株(N501Y)由来の変異RBDとの結合実験の結果も併せて示す。縦軸は,450nmにおける吸収(結合強度)を,横軸は抗SARS-CoV-2 RBD抗体の濃度(ng/ml)を示す。(右)抗SARS-CoV-2 RBD抗体である0210-28Kによる,SARS-CoV2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。Kappa株SARS-CoV-2のRBD(L452R,E484Q)タンパク質とACE2の結合を,抗SARS-CoV-2 RBD抗体により阻害できるか,ELISAにて検証した。武漢型(WT)のRBD,Beta株(K417N,E484K,N501Y),及びAlpha株(N501Y)由来の変異RBDと,ACE2との結合阻害実験の結果も併せて示す。縦軸と横軸は図2と同様である。(Left) shows the results of a binding experiment between the anti-SARS-CoV-2 RBD antibody 0210-28K and the Kappa strain SARS-CoV-2 RBD (L452R, E484Q) proteins. The results of binding experiments with Wuhan type (WT) RBD, beta strains (K417N, E484K, N501Y), and mutated RBDs derived from Alpha strain (N501Y) are also shown. The vertical axis indicates the absorption (binding strength) at 450 nm, and the horizontal axis indicates the concentration (ng/ml) of the anti-SARS-CoV-2 RBD antibody. (Right) Graph showing the results of binding inhibition experiments between SARS-CoV2 spike protein and ACE2 by 0210-28K, an anti-SARS-CoV-2 RBD antibody. It was verified by ELISA whether the binding of the Kappa strain SARS-CoV-2 RBD (L452R, E484Q) protein and ACE2 could be inhibited by the anti-SARS-CoV-2 RBD antibody. The results of binding inhibition experiments between Wuhan type (WT) RBD, Beta strains (K417N, E484K, N501Y), and mutant RBDs derived from Alpha strain (N501Y) and ACE2 are also shown. The vertical and horizontal axes are the same as in FIG. 抗SARS-CoV-2 RBD抗体である0210-28Kによる,変異株のスパイクタンパク質を外套するシュードタイプウイルスの感染抑制実験の結果を表すグラフである。縦軸はコントロールと比較した感染低下割合の実数値(% of reduction)を示し,横軸は抗体濃度(ng/ml)を示す。抗体の各濃度における棒グラフは,左から右へと順に,SARS-CoV-2の,武漢型(WT),Alpha株(Alpha),Beta株(Beta),Kappa株(Kappa),及びDelta株(Delta)のスパイクタンパク質を有するシュードタイプウイルスを用いた結果を示す。一番右の棒グラフは,VSVのGタンパク質を有するシュードタイプウイルス(コントロール)を用いた結果を示す。Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a mutant spike protein by the anti-SARS-CoV-2 RBD antibody 0210-28K. The vertical axis shows the real value (% of reduction) of infection reduction compared to the control, and the horizontal axis shows the antibody concentration (ng/ml). Bar graphs at each concentration of antibody show, from left to right, SARS-CoV-2 Wuhan strain (WT), Alpha strain (Alpha), Beta strain (Beta), Kappa strain (Kappa), and Delta strain ( Delta) shows results using pseudotyped viruses with the spike protein. The rightmost bar graph shows the results using a pseudotyped virus (control) with the VSV G protein. 抗SARS-CoV-2 RBD抗体である0210-28Kによる,SARS-CoV-2スパイクタンパク質とACE2との結合阻害実験の結果を示すグラフである。武漢型(WT)のRBDタンパク質,Alpha株(N501Y),Beta株(K417N,E484K,N501Y),Gamma株(K417T,E484K,N501Y),Kappa株(L452R,E484Q),Delta株(L452R,T478K),及びEpsilon株(L452R)由来の変異RBDタンパク質と,ACE2との結合を,0210-28Kにより阻害できるかELISAにて検証した。縦軸と横軸は図2と同様である。FIG. 10 is a graph showing the results of an experiment to inhibit binding between SARS-CoV-2 spike protein and ACE2 by 0210-28K, an anti-SARS-CoV-2 RBD antibody. FIG. Wuhan type (WT) RBD protein, Alpha strain (N501Y), Beta strain (K417N, E484K, N501Y), Gamma strain (K417T, E484K, N501Y), Kappa strain (L452R, E484Q), Delta strain (L452R, T478K) , and an Epsilon strain (L452R)-derived mutant RBD protein, and whether 0210-28K can inhibit the binding of ACE2 was verified by ELISA. The vertical and horizontal axes are the same as in FIG. 抗SARS-CoV-2 RBD抗体である0210-28Kによる,変異株のスパイクタンパク質を外套するシュードタイプウイルスの感染抑制実験の結果を表すグラフである。縦軸はコントロールと比較した感染低下割合(% of reduction)を示し,横軸は抗体濃度(pM)を示す。SARS-CoV-2の,武漢型(WT),Alpha株,Beta株,Gamma株,Kappa株,Delta株,及びOmicron株のスパイクタンパク質を有するシュードタイプウイルスを用いた結果と,VSVのGタンパク質を有するシュードタイプウイルス(コントロール)を用いた結果を示す。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 10 is a graph showing the results of an experiment to suppress infection of a pseudotype virus that envelopes a mutant spike protein by the anti-SARS-CoV-2 RBD antibody 0210-28K. The vertical axis indicates the rate of infection reduction (% of reduction) compared to the control, and the horizontal axis indicates the antibody concentration (pM). SARS-CoV-2, Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Kappa strain, Delta strain, and results using pseudotype viruses with spike proteins of Omicron strain, and VSV G protein The results are shown using a pseudotyped virus (control) with Two or more experiments were performed independently and the data shown are representative. 抗SARS-CoV-2 RBD抗体である0210-28KのSARS-CoV-2感染及び産生に与える影響を調べた結果を示すグラフである。縦軸はウイルス産生阻害率(% of yield reduction)を示し,横軸は抗体濃度(pM)を示す。SARS-CoV-2の,武漢型(WT),Alpha株,Beta株,Gamma株,Kappa株,Delta株及びOmicron株を用いた結果を示す。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 3 is a graph showing the results of investigating the effects of 0210-28K, an anti-SARS-CoV-2 RBD antibody, on SARS-CoV-2 infection and production. The vertical axis indicates the virus production inhibition rate (% of yield reduction), and the horizontal axis indicates the antibody concentration (pM). Results using Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Kappa strain, Delta strain and Omicron strain of SARS-CoV-2 are shown. Two or more experiments were performed independently and the data shown are representative. 抗SARS-CoV-2 RBD抗体である0210-28Kについて,武漢型(WT)RBD及び変異RBDタンパク質への親和性を,それぞれ表面プラズモン共鳴法(SPR)解析した結果を表すグラフである。グラフは,上から下へと順に,武漢型(WT),Alpha株(N501Y),Beta株(K417N,E484K,N501Y),Gamma株(K417T,E484K,N501Y),Kappa株(L452R,E484Q),及びDelta株(L452R,T478K)由来の変異RBDタンパク質の結果を示す。グラフ中,縦軸はレスポンス(RU)を示し,横軸は測定時間(s)を示す。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 4 is a graph showing the results of surface plasmon resonance (SPR) analysis of the affinity of 0210-28K, an anti-SARS-CoV-2 RBD antibody, to Wuhan type (WT) RBD and mutant RBD proteins. The graph shows, from top to bottom, Wuhan type (WT), Alpha strain (N501Y), Beta strain (K417N, E484K, N501Y), Gamma strain (K417T, E484K, N501Y), Kappa strain (L452R, E484Q), and mutant RBD proteins from Delta strains (L452R, T478K). In the graph, the vertical axis indicates the response (RU) and the horizontal axis indicates the measurement time (s). Two or more experiments were performed independently and the data shown are representative. ハムスターモデルを用いた,抗SARS-CoV-2 RBD抗体である0210-28Kの予防的投与による,SARS-CoV2及びその変異株のスパイクタンパク質を外套するシュードタイプウイルスの感染抑制実験の結果を示し,ルシフェラーゼの発光画像(上図)と,発光測定結果を示すグラフ(左下図)と,肺全体のウイルス感染価を算出した結果を示すグラフ(右下図)である。グラフ中,縦軸はコントロールと比較した相対発光レベルを示す。横軸はシュードタイプウイルスの種類を示し,左から右へと順に,VSVのGタンパク質を有するシュードタイプウイルス,SARS-CoV-2の,武漢型(WT),Alpha株,Beta株,Gamma株,Kappa株,Delta株,及びOmicron株のスパイクタンパク質を有するシュードタイプウイルスを用いた結果を示す。各シュードタイプウイルスのデータにおいて,左の白バーはコントロール,右の黒バーは0210-28K投与の結果を示す。抗体投与量はBeta株,及びOmicron株が3mg/ハムスター,その他は0.3mg/ハムスターである。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。p値はt検定により算出した(*,p<0.05,**,p<0.01)。Using a hamster model, prophylactic administration of the anti-SARS-CoV-2 RBD antibody 0210-28K shows the results of an experiment to suppress the infection of a pseudotype virus that envelopes the spike protein of SARS-CoV2 and its mutants, FIG. 2 shows a luminescence image of luciferase (upper diagram), a graph showing the results of luminescence measurement (lower left diagram), and a graph showing the results of calculating the virus infectivity titer of the whole lung (lower right diagram). In the graph, the vertical axis indicates the relative luminescence level compared with the control. The horizontal axis indicates the type of pseudotype virus, and from left to right, the pseudotype virus having the G protein of VSV, SARS-CoV-2, Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Results using pseudotyped viruses with spike proteins of Kappa, Delta, and Omicron strains are shown. In the data for each pseudotype virus, the white bar on the left indicates the results of control, and the black bar on the right indicates the results of administration of 0210-28K. Antibody dosage is 3 mg/hamster for Beta strain and Omicron strain, and 0.3 mg/hamster for others. Two or more experiments were performed independently and the data shown are representative. p-values were calculated by t-test (*, p<0.05, **, p<0.01). SARS-CoV-2スパイクタンパク質(SARS-CoV-2 spike)に結合した抗SARS-CoV-2 RBD抗体である0210-28K(図においては「UT28K」と表記する)の構造解析結果を表す図である。図18(a)は,C3対称性で3.1Åの解像度に緻密化したクライオ電子顕微鏡マップであり,SARS-CoV-2 RBD(RBD)と0210-28KのFab(UT28K Fab)の重鎖可変領域(VH)及び軽鎖可変領域(VL)について示す。図18(b),(d)~(g)は,3.75Åの解像度のX線結晶構造解析結果であり,図18(d)~(g)にRBDとUT28K Fab間の主要残基の相互作用について示す。なお,比較データとして,図18(c)に253XL55(PDB ID:7BEO)とSARS-CoV-2 RBD(RBD)の結合についてのX線結晶構造解析結果を示す。A diagram showing the structural analysis results of 0210-28K (denoted as "UT28K" in the figure), which is an anti-SARS-CoV-2 RBD antibody bound to the SARS-CoV-2 spike protein (SARS-CoV-2 spike). be. Figure 18(a) is a cryo-electron microscopy map densified to 3.1 Å resolution with C3 symmetry, showing the heavy chain variable Regions (VH) and light chain variable regions (VL) are indicated. Figures 18(b), (d) to (g) are the results of X-ray crystallographic analysis with a resolution of 3.75 Å, and Figures 18(d) to (g) show the major residues between RBD and UT28K Fab. Interactions are indicated. As comparative data, FIG. 18(c) shows the results of X-ray crystallographic analysis of the binding of 253XL55 (PDB ID: 7BEO) and SARS-CoV-2 RBD (RBD). 抗SARS-CoV-2 RBD抗体である0210-28Kについて,武漢型(WT)のRBD及び変異株由来のRBDタンパク質への結合をELISAにて解析した結果を表すグラフである。縦軸は450nmにおける吸収(結合強度)を示し、横軸はRBDタンパク質の種類を示す。独立して2回以上の実験を行い,図示しているデータはその代表例を示している。Fig. 3 is a graph showing the results of ELISA analysis of the binding of 0210-28K, which is an anti-SARS-CoV-2 RBD antibody, to Wuhan type (WT) RBD and RBD proteins derived from mutant strains. The vertical axis indicates absorption (bond strength) at 450 nm, and the horizontal axis indicates the type of RBD protein. Two or more experiments were performed independently and the data shown are representative. 抗体非存在下(コントロール),抗SARS-CoV-2 RBD抗体である0210-28K又は0210-28K-LALA存在下において、新型コロナウイルスを感染させたcMylc-2-K alpha細胞におけるウイルス量の測定結果を表すグラフである。縦軸はコントロールで得られるウイルス量を1として,ウイルスの増減量(Fold increase)を示し,横軸は抗体濃度(μg/ml)を示す。Measurement of viral load in cMylc-2-Kalpha cells infected with the new coronavirus in the absence of antibodies (control) and in the presence of anti-SARS-CoV-2 RBD antibodies 0210-28K or 0210-28K-LALA It is a graph showing a result. The vertical axis indicates the amount of virus increased or decreased (Fold increase) with the amount of virus obtained in the control set to 1, and the horizontal axis indicates the antibody concentration (μg/ml). 抗体非存在下(コントロール),抗SARS-CoV-2 RBD抗体である0210-28K又は0210-28K-LALA存在下において、新型コロナウイルスを感染させたcMylc-2-K alpha細胞におけるIL-6産生量を、ELISAにて測定した結果を表すグラフである。縦軸は光学濃度(Optical Density)を示し,横軸は抗体濃度(μg/ml)を示す。IL-6 production in cMylc-2-Kalpha cells infected with the new coronavirus in the absence of antibodies (control) and in the presence of anti-SARS-CoV-2 RBD antibodies 0210-28K or 0210-28K-LALA It is a graph showing the result of measuring the amount by ELISA. The vertical axis indicates optical density, and the horizontal axis indicates antibody concentration (μg/ml).
 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)は,中国武漢で発生した肺炎の原因ウイルス(当初の名称は2019-nCoV)として報告された(Zhou,P.ら, Nature 579,270-273(2020).及びWu,F.ら,Nature 579,265-269(2020).)コロナウイルスであり,最初に見つかった武漢型のゲノムが解析され,報告されている(NCBI Reference Sequence:NC_045512.2)。本明細書において,SARS-CoV-2スパイクタンパク質(スパイク)は,SARS-CoV-2のSタンパク質として報告されている1273アミノ酸(配列番号629)(うち1~13番目はシグナル配列)からなるタンパク質から構成され,S1(14~685番目)とS2(686~1273番目)の二つのサブユニットからなる(Lan, J.ら,Nature 581,215-220(2020);Huang,Y.ら,Acta Pharmacol Sin 41,1141-1149(2020)参照)。本明細書における「スパイク」は,好ましくは,スパイクタンパク質全長を意味し,かつ/又はスパイクタンパク質の三量体を意味してもよい。受容体結合ドメイン(RBD)は,S1サブユニットに含まれる319~541番目のアミノ酸からなる部分または同部分からなるペプチドを意味する。また,N末端ドメイン(NTD)は,14~305番目のアミノ酸からなる部分又は同部分からなるペプチドを意味する。本明細書における変異の記載において,アミノ酸の位置はこのSタンパク質におけるアミノ酸の位置を示す。 SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) was reported as the causative virus (originally named 2019-nCoV) of pneumonia that occurred in Wuhan, China (Zhou, P. et al., Nature 579, 270-273 (2020).and Wu, F. et al., Nature 579, 265-269 (2020).) It is a coronavirus, and the genome of the first Wuhan type found was analyzed and reported (NCBI Reference Sequence: NC_045512. 2). As used herein, the SARS-CoV-2 spike protein (spike) is a protein consisting of 1273 amino acids (SEQ ID NO: 629) (of which 1 to 13 are signal sequences) reported as the S protein of SARS-CoV-2. consists of two subunits, S1 (14th to 685th) and S2 (686th to 1273rd) (Lan, J. et al., Nature 581, 215-220 (2020); Huang, Y. et al., Acta Pharmacol Sin 41, 1141-1149 (2020)). "Spike" herein preferably refers to the full-length spike protein and/or may refer to trimers of the spike protein. The receptor binding domain (RBD) means a portion consisting of amino acids 319 to 541 contained in the S1 subunit or a peptide consisting of the same portion. Also, the N-terminal domain (NTD) means a portion consisting of the 14th to 305th amino acids or a peptide consisting of the same portion. In describing mutations herein, amino acid positions refer to amino acid positions in the S protein.
 SARS-CoV-2には,最初に見つかった武漢型の他,多くの変異型が報告されており(例えば,Islam,M.R.et al.,Sci Rep;10:14004(2020).参照),かつ,データベースも存在する(例えば,https://nextstrain.org/sars-cov-2/など)。本明細書における抗体が結合する,スパイク又はRBDは,武漢型の他,これらにおいて報告された変異型SARS-CoV-2が有するものであってもよい。「変異型SARS-CoV-2」は,SARS-CoV-2について報告されている変異であればいかなる変異を有していてもよく,例えば,SARS-CoV-2のスパイクにおける変異,特にはRBDにおける変異が挙げられる。本明細書において「変異型スパイク」とは,SARS-CoV-2のスパイクにおける変異を有するスパイクを意味し,「変異型RBD」とは,SARS-CoV-2のRBDにおける変異を有するRBDを意味する。例えば,20B/501Y.V1,VOC 202012/01又はB.1.1.7系統として知られるAlpha株(いわゆる英国型変異株)では,スパイクにおける,H69欠損,V70欠損,Y144欠損,N501Y,A570D,D614G,P681H,T716I,S982A,及びD1118Hの変異が報告されている。また,20C/501Y.V2又はB.1.351系統として知られるBeta株(いわゆる南アフリカ型変異株)では,L18F,D80A,D215G,L242欠損,A243欠損,L244欠損,R246I,K417N,E484K,N501Y,D614G,A701Vの変異が報告されている。また,20J/501Y.V3系統として知られるGamma株(いわゆるブラジル型変異株)では,スパイクにおける,L18F,K417T,E484K,N501Y,H655Yの変異が報告されている。また,20C/S.452R又はB.1.427/9系統として知られるEpsilon株(いわゆるカリフォルニア型変異株)では,スパイクにおける,L452R,D614Gの変異が報告されている。また,B.1.617.1系統として知られるKappa株及びB.1.617.2系統として知られるDelta株(いわゆるインド型変異株)では,スパイクにおける,G142D,E154K,L452R,E484Q,D614G,P681R,及びQ1071H(以上,B1.617.1系統),あるいは,T19R,G142D,157/158欠損,L452R,T478K,D614G,P681R,及びD950N(B.1.617.2系統)の変異が報告されている。更に,B.1.1.529系統として知られるOmicron株では,スパイクにおける,例えばG339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505Hの変異が報告されている。 SARS-CoV-2 has been reported to have many mutations in addition to the first Wuhan type found (for example, Islam, MR et al., Sci Rep; 10: 14004 (2020). See ), and databases also exist (eg, https://nextstrain.org/sars-cov-2/, etc.). The spikes or RBDs to which the antibodies herein bind may be those possessed by the Wuhan type as well as the mutant forms of SARS-CoV-2 reported therein. A "mutant SARS-CoV-2" may have any mutation that has been reported for SARS-CoV-2, such as mutations in the spike of SARS-CoV-2, particularly RBD Mutations in As used herein, "mutant spike" means a spike having a mutation in the spike of SARS-CoV-2, and "mutant RBD" means an RBD having a mutation in the RBD of SARS-CoV-2. do. For example, 20B/501Y. V1, VOC 202012/01 or B. In the Alpha strain (so-called British mutant strain) known as 1.1.7 strain, H69 deletion, V70 deletion, Y144 deletion, N501Y, A570D, D614G, P681H, T716I, S982A, and D1118H mutations in the spike have been reported. It is Also, 20C/501Y. V2 or B. In the Beta strain known as 1.351 strain (so-called South African mutant strain), mutations of L18F, D80A, D215G, L242 deletion, A243 deletion, L244 deletion, R246I, K417N, E484K, N501Y, D614G, and A701V have been reported. there is Also, 20J/501Y. In the Gamma strain known as the V3 strain (so-called Brazilian mutant strain), mutations L18F, K417T, E484K, N501Y, and H655Y in the spike have been reported. Also, 20C/S. 452R or B. 1. In the Epsilon strain known as line 427/9 (the so-called California mutant strain), L452R, D614G mutations in the spike have been reported. Also, B. Kappa strain known as lineage 1.617.1 and B. In the Delta strain (the so-called Indian variant), known as the 1.617.2 strain, G142D, E154K, L452R, E484Q, D614G, P681R, and Q1071H (all B1.617.1 strains) in the spike, or Mutations of T19R, G142D, 157/158 deletion, L452R, T478K, D614G, P681R, and D950N (B.1.617.2 strain) have been reported. Furthermore, B. In the Omicron strain known as line 1.1.529, mutations such as G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H in the spike It has been reported.
 本明細書における変異型SARS-CoV-2が有する変異は,これらの変異株において報告されている全て若しくは一部の変異,又はこれらの変異株において報告された変異から選択された任意の2種類以上の組み合わせの変異であってもよい。すなわち,本明細書における変異型SARS-CoV-2は,例えば,L18F,T19R,H69欠損,V70欠損,D80A,G142D,Y144欠損,E154K,157欠損,158欠損,D215G,L242欠損,A243欠損,L244欠損,R246I,G339D,S371L,S373P,S375F,K417N,K417T,N440K,G446S,L452R,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,Y505H,A570D,D614G,H655Y,P681H,P681R,A701V,T716I,D950N,S982A,Q1071H,及びD1118Hから選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,あるいは,6種類又はそれ以上の変異を有していてもよい。 Mutations possessed by mutant SARS-CoV-2 herein are all or part of the mutations reported in these mutant strains, or any two types selected from the mutations reported in these mutant strains The mutation may be a combination of the above. That is, mutant SARS-CoV-2 in the present specification is, for example, L18F, T19R, H69 deletion, V70 deletion, D80A, G142D, Y144 deletion, E154K, 157 deletion, 158 deletion, D215G, L242 deletion, A243 deletion, L244欠損,R246I,G339D,S371L,S373P,S375F,K417N,K417T,N440K,G446S,L452R,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,Y505H,A570D,D614G,H655Y,P681H , P681R, A701V, T716I, D950N, S982A, Q1071H, and D1118H, one or more, two or more, three or more, four or more, five or more, or , may have 6 or more mutations.
 一例において,本明細書における変異型SARS-CoV-2は,変異型RBDを有していてもよく,例えば,RBDにおける,G339D,S371L,S373P,S375F,K417N,K417T,N439K,N440K,G446S,L452R,A475V,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,及びY505Hから選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,あるいは,6種類又はそれ以上の変異を有する。変異型SARS-CoV-2が有する変異の一例としては,RBDにおける,K417N,E484K,及びN501Y変異;N439K変異;N440K変異;A475V変異;E484K変異;N501Y変異;L452R変異;L452R及びE484Q変異;K417T,E484K,及びN501Y変異;L452R及びT478K変異;及び,G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異である。 In one example, the mutant SARS-CoV-2 herein may have a mutant RBD, such as G339D, S371L, S373P, S375F, K417N, K417T, N439K, N440K, G446S, One or more, two or more, three or more, four or more selected from L452R, A475V, S477N, T478K, E484A, E484K, E484Q, Q493R, G496S, Q498R, N501Y, and Y505H Above, 5 or more, or 6 or more mutations. Examples of mutations that mutant SARS-CoV-2 has include K417N, E484K, and N501Y mutations in RBD; N439K mutation; N440K mutation; A475V mutation; , E484K, and N501Y mutations; L452R and T478K mutations;
 本明細書全体にわたって,「SARS-CoV-2」の語は,そのように解することが不適合である場合を除き,武漢型(非変異)SARS-CoV-2及び上述の変異型SARS-CoV-2から選択されるいずれか,または,これらから選択される複数のSARS-CoV-2を意味してもよい。例えば,本明細書における,SARS-CoV-2は,武漢型,Alpha株,Beta株,Gamma株,Epsilon株,Kappa株,Delta株,及びOmicron株から選択される,1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,あるいは,6種類又はそれ以上であってもよく,あるいは,これらの全てを意味していてもよい。 Throughout this specification, the term "SARS-CoV-2" will be used to refer to Wuhan-type (non-mutated) SARS-CoV-2 and the mutant SARS-CoV described above, unless it is incompatible to be so construed. -2, or a plurality of SARS-CoV-2 selected from these. For example, SARS-CoV-2 herein refers to one or more selected from Wuhan, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, 2 There may be 1 or more types, 3 or more types, 4 or more types, 5 or more types, or 6 or more types, or all of these may be meant.
 一態様において,本発明の抗体は,SARS-CoV-2スパイク,NTD,及びRBDの少なくとも一つと特異的に結合し,より好ましくは,SARS-CoV-2スパイク及び/又はRBDと特異的に結合し,更に好ましくは,SARS-CoV-2 RBDと特異的に結合する。SARS-CoV-2スパイクの中でRBDが細胞との結合に重要であることが報告されている(Science(2020)Vol.367,Issue6483,pp.1260-1263,及びScience(2020)Vol.369,Issue6504,pp.650-655参照)。本明細書において,RBDに結合するとは,SARS-CoV-2スパイク中のRBD部分に結合することを意味してもよいし,RBDを構成するアミノ酸配列からなるペプチドに結合することを意味してもよい。 In one embodiment, the antibodies of the invention specifically bind to at least one of SARS-CoV-2 spike, NTD and RBD, more preferably SARS-CoV-2 spike and/or RBD. and more preferably, it specifically binds to SARS-CoV-2 RBD. It has been reported that RBD is important for binding to cells in the SARS-CoV-2 spike (Science (2020) Vol.367, Issue6483, pp.1260-1263, and Science (2020) Vol.369 , Issue 6504, pp. 650-655). As used herein, binding to the RBD may mean binding to the RBD portion in the SARS-CoV-2 spike, or binding to a peptide consisting of an amino acid sequence that constitutes the RBD. good too.
 本発明の抗体は,スパイク(好ましくは,SARS-CoV-2 RBD)と特異的に結合する。本明細書において,抗体又はその免疫反応性断片が「特異的に」結合する(認識する)とは,その抗体又はその免疫反応性断片が他のタンパク質やペプチドに対する親和性よりも,特定された抗原(例えば,スパイク又はRBD)に対して実質的に高い親和性で結合することを意味する。ここで,「実質的に高い親和性で結合する」とは,所望の測定装置又は方法によって,目的とする特定のタンパク質やペプチドを他のタンパク質やペプチドから区別して検出することが可能な程度に高い親和性を意味する。例えば,実質的に高い親和性は,ELISA又はEIAにより検出された強度(例えば,蛍光強度)として,3倍以上,4倍以上,5倍以上,6倍以上,7倍以上,8倍以上,9倍以上,10倍以上,20倍以上,30倍以上,40倍以上,50倍以上,100倍以上であることを意味していてもよい。 The antibody of the present invention specifically binds to spike (preferably SARS-CoV-2 RBD). As used herein, an antibody or immunoreactive fragment thereof "specifically" binds (recognizes) means that the antibody or immunoreactive fragment thereof has a specified affinity for other proteins or peptides. It means binding with substantially high affinity to an antigen (eg spike or RBD). Here, "bind with substantially high affinity" means that the desired measuring device or method can detect the specific protein or peptide of interest by distinguishing it from other proteins or peptides. means high affinity. For example, a substantially high affinity is 3-fold or more, 4-fold or more, 5-fold or more, 6-fold or more, 7-fold or more, 8-fold or more, as the intensity (e.g., fluorescence intensity) detected by ELISA or EIA. It may mean 9 times or more, 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, or 100 times or more.
 ある態様において,本発明の抗体は,変異型スパイク及び/又は変異型RBD(好ましくはRBD,本段落において,以下同様)と特異的に結合する。また,好ましくは,本発明の抗体は,これらの変異型スパイク及び/又は変異型RBDと結合し,かつ,武漢型SARS-CoV-2のスパイク及び/又はRBDとも結合する。更に,本発明の抗体は,異なる変異パターンを有する複数種類の変異型スパイク及び/又は変異型RBDと結合してもよく,この場合も,好ましくは,武漢型SARS-CoV-2のスパイク及び/又はRBDとも結合する。 In some embodiments, the antibody of the present invention specifically binds to mutant spike and/or mutant RBD (preferably RBD, in this paragraph, the same shall apply hereinafter). Also preferably, the antibodies of the invention bind to these mutant spikes and/or mutant RBDs and also bind to the spikes and/or RBDs of Wuhan SARS-CoV-2. Furthermore, the antibodies of the present invention may bind to multiple types of mutant spikes and/or mutant RBDs with different mutation patterns, and in this case also preferably Wuhan SARS-CoV-2 spikes and/or Or it also binds to RBD.
 本明細書において,「異なる変異パターンを有する」とは,2種類以上のSARS-CoV-2,スパイク,若しくはRBDがそれぞれ異なる変異を有することを意味する。ここで,「異なる変異」とは,変異部位及び/又は変異後のアミノ酸が異なることを意味する。2種類のSARS-CoV-2,スパイク,若しくはRBDの少なくとも一方が複数の変異を有する場合,それらが共通する変異を有していても,それらの2種類の間で変異部位及び/又は変異後のアミノ酸が異なる変異が存在する場合には,異なる変異パターンを有すると解される。 As used herein, "having different mutation patterns" means that two or more types of SARS-CoV-2, spikes, or RBDs have different mutations. Here, "different mutation" means that the mutation site and/or the amino acid after mutation are different. If at least one of two types of SARS-CoV-2, spike, or RBD has multiple mutations, even if they have common mutations, the mutation site and/or post-mutation between the two If there are mutations that differ in amino acids, they are considered to have different mutation patterns.
 例えば,本抗体は,武漢型,K417N,E484K,及びN501Y変異型,N439K変異型,N440K変異型,A475V変異型,E484K変異型,N501Y変異型,L452R変異型,L452R及びE484Q変異型,K417T,E484K,及びN501Y変異型,L452R及びT478K変異型,及び,G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異型のSARS-CoV-2,スパイク,若しくはRBDから選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,6種類又はそれ以上,7種類又はそれ以上,あるいは全てに結合してもよい。これに加えて,本発明の抗体は,G339D,S371L,S373P,S375F,K417N,K417T,N439K,N440K,G446S,L452R,A475V,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,及びY505Hから選択される1種類又はそれ以上の変異を有する,SARS-CoV-2,スパイク,若しくはRBDの,1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,6種類又はそれ以上,あるいは7種類又はそれ以上に結合してもよい。あるいは,本発明の抗体は,上述の武漢型,Alpha株,Beta株,Gamma株,Epsilon株,Kappa株,Delta株,及びOmicron株から選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,又は全てのSARS-CoV-2,スパイク,若しくはRBDに結合してもよい。 For example, the antibody includes Wuhan, K417N, E484K, and N501Y variants, N439K variant, N440K variant, A475V variant, E484K variant, N501Y variant, L452R variant, L452R and E484Q variant, K417T, E484K and N501Y mutants, L452R and T478K mutants, and SARS-H mutants of G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 selected from CoV-2, spike, or RBD or more, or may be combined with all. Additionally, the antibodies of the present invention are , and Y505H, one or more, two or more, three or more, four or More, 5 or more, 6 or more, or 7 or more may be combined. Alternatively, the antibody of the present invention may be one or more, two or more selected from the above Wuhan type, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, May bind to 3 or more, 4 or more, or all SARS-CoV-2, spike, or RBD.
 本発明の抗体のこれらの変異株又は変異型RBDへの結合力は,好ましくは武漢型と同程度である。例えば,本抗体の,K417N,E484K,及びN501Y変異;N439K変異;N440K変異;A475V変異;E484K変異;N501Y変異;L452R変異;L452R及びE484Q変異を有するRBD(以下,それぞれ,「RBD K417N,E484K,N501Y」,「RBD N439K」,「RBD N440K」,「RBD A475V」,「RBD E484K」,「RBD N501Y」,「RBD L452R」,「RBD L452R,E484Q」という)への結合は,武漢型(WT)RBDへの結合に対して,それぞれ,94%以上,96%以上,100%以上,101%以上,94%以上,100%以上,100%以上,100%以上であってもよい。これらの結合力は,好ましくは本願実施例に記載のELISA法により測定された結合力である。 The binding strength of the antibody of the present invention to these mutant strains or mutant RBDs is preferably comparable to that of the Wuhan type. For example, the RBD having the K417N, E484K, and N501Y mutations; the N439K mutation; the N440K mutation; the A475V mutation; the E484K mutation; the N501Y mutation; N501Y", "RBD N439K", "RBD N440K", "RBD A475V", "RBD E484K", "RBD N501Y", "RBD L452R", "RBD L452R, E484Q") binding to the Wuhan type (WT ) may be 94% or greater, 96% or greater, 100% or greater, 101% or greater, 94% or greater, 100% or greater, 100% or greater, 100% or greater, relative to binding to RBD, respectively. These binding forces are preferably binding forces measured by the ELISA method described in the Examples of the present application.
 本明細書において,被検抗体が,スパイク又はRBDと「結合する(認識する)」か否かは,結合を調べようとするスパイク及びRBDへの当該被検抗体の結合を以下の方法により測定することにより行うことができる。抗体とタンパク質又はペプチドとの結合の測定方法としては,例えば,EIA法,ELISA法,FACS法,共免疫沈降法,プルダウンアッセイ法,ウェスタンブロッティング法,ホモバイファンクショナルクロスリンカー若しくはヘテロバイファンクショナルクロスリンカーを利用するクロスリンク法,ラベル転移反応法,相互作用マッピング法,表面プラズモン共鳴法,FRET(Fluorescence resonance energy transfer)法,BIACORE法,AlphaScreen(登録商標)やAlphaLISA(登録商標)などのAlphaPPIアッセイ(PerkinElmer)など,多様な方法が本技術分野において周知であり,目的とする結合の検出に応じて適宜好ましい方法を採用することができる。 In this specification, whether the test antibody "binds (recognizes)" to the spike or RBD is determined by measuring the binding of the test antibody to the spike and RBD to be examined for binding by the following method. It can be done by Methods for measuring binding between antibodies and proteins or peptides include, for example, EIA method, ELISA method, FACS method, co-immunoprecipitation method, pull-down assay method, Western blotting method, homobifunctional crosslinker or heterobifunctional crosslinker Cross-linking method using linker, label transfer reaction method, interaction mapping method, surface plasmon resonance method, FRET (fluorescence resonance energy transfer) method, BIACORE method, AlphaPPI assay such as AlphaScreen (registered trademark) and AlphaLISA (registered trademark) (PerkinElmer), etc., and various methods are well known in the art, and suitable methods can be employed depending on the desired binding detection.
 本明細書において,「特異的に結合する(認識する)」とは,抗体が結合することが望ましくない物質又はその部分(例えば,人体内に存在するタンパク質等)には結合せず,SARS-CoV-2,スパイク,及び/又はRBDに結合することを意味し,好ましくは,SARS-CoV-2に由来する物質又はその部分(スパイク,RBDなど)のみに結合することを意味する。必要に応じて,「特異的に結合する(認識する)」の語は,SARS-CoV-2が有する任意の物質又はその部分(例えば,NTDなど)には結合せず,RBDのみに結合すると解してもよい。被検抗体が,スパイク又はRBDと「特異的に結合する(認識する)」か否かは,結合を調べようとするスパイク及びRBDへの当該被検抗体の結合と,その他のペプチド,タンパク質又はその他の抗原(例えば,抗体が結合することが望ましくない物質)への当該被検抗体の結合とを調べることにより判定することができる。目的とするスパイク及び/又はRBDと結合し,その他のペプチド,タンパク質,又はその他の抗原と結合しない場合,当該被検抗体は当該目的のスパイク及び/又はRBDと特異的に結合する(認識する)と判定される。 As used herein, the term "specifically binds (recognizes)" does not bind to substances or parts thereof that are undesirable for antibodies to bind (for example, proteins present in the human body), and does not bind to SARS- It means binding to CoV-2, spike and/or RBD, preferably only to material derived from SARS-CoV-2 or parts thereof (spike, RBD etc.). Optionally, the term "specifically binds (recognizes)" means that SARS-CoV-2 does not bind to any substance or part thereof (e.g., NTD, etc.), but only to RBD. You can understand. Whether the test antibody "specifically binds (recognizes)" the spike or RBD depends on the binding of the test antibody to the spike and RBD whose binding is to be tested, and the binding of the test antibody to other peptides, proteins or It can be determined by examining the binding of the test antibody to other antigens (for example, substances to which the antibody should not bind). The test antibody specifically binds (recognizes) the spike and/or RBD of interest if it binds to the spike and/or RBD of interest and not to other peptides, proteins, or other antigens. is determined.
 本発明の抗体は,COVID-19感染履歴のある患者からリンパ球を採取し,SARS-CoV-2スパイクタンパク質(以下,「スパイク」という。),スパイクにおけるN末端ドメイン(以下,「NTD」という),もしくはスパイクの受容体結合ドメイン(本明細書において,「RBD」という)を抗原として,これらの抗原に結合するヒト抗体を産生するリンパ球を選択し,そのcDNAを得ることで,ヒト抗SARS-CoV-2モノクローナル抗体をリコンビナント抗体として作製することができる。すなわち,本方法により取得された抗体はいずれもSARS-CoV-2スパイク,NTD,もしくはRBDに結合する抗体として取得されたものであり,これらのタンパク質に結合可能な抗体である。本段落において抗原として,好ましくは,SARS-CoV-2スパイクもしくはRBDであり,より好ましくは,RBDである。 The antibody of the present invention collects lymphocytes from patients with a history of COVID-19 infection, SARS-CoV-2 spike protein (hereinafter referred to as "spike"), the N-terminal domain in the spike (hereinafter referred to as "NTD" ), or the spike receptor binding domain (herein, referred to as "RBD") as antigens, select lymphocytes that produce human antibodies that bind to these antigens, and obtain their cDNAs to obtain human anti- SARS-CoV-2 monoclonal antibodies can be produced as recombinant antibodies. That is, all of the antibodies obtained by this method are antibodies that bind to the SARS-CoV-2 spike, NTD, or RBD, and are antibodies capable of binding to these proteins. In this paragraph, the antigen is preferably SARS-CoV-2 spike or RBD, more preferably RBD.
 例えば,本発明の抗体は,ISAAC法により取得することができる。ISSAC法は,マイクロウェルアレイチップを用いて抗原特異的抗体分泌細胞(ASC)を迅速かつ網羅的にスクリーニングする方法である。該方法においては,抗体産生細胞が1個入る程度の大きさ(直径10~15μm程度)のウエルを多数有するマイクロウェルアレイチップであって,ウエルの周辺のチップ表面を抗免疫グロブリン抗体(又は抗体を得ようとする抗原)で被覆したマイクロウェルアレイチップを用いる。特定の抗原に対する抗体を産生するヒトや動物から抗体産生細胞を含む末梢血リンパ球,脾臓細胞,または骨髄細胞を採取し,マイクロウェルアレイチップのウエルに細胞を1個ずつ播種する。培養液中にチップを浸し,分泌された抗体がウエルから前記被覆層に拡散する条件で培養することにより,抗体を産生分泌する細胞から分泌された抗体が,格納されたウエルの周囲の抗免疫グロブリン抗体(又は抗原)に結合する。次いで,蛍光物質で標識した前記抗原(又は蛍光物質で標識した抗体に対する抗体)をマイクロウェルアレイチップに添加する。標識した前記抗原(又は抗体に対する抗体)がウエルの周囲に分泌された抗体に結合し,標識物質から発せられるシグナルにより,どのウエル内に抗原特異的抗体を産生分泌する細胞が格納されているかがわかる。この細胞を蛍光顕微鏡下でマイクロキャピラリーを用いて回収する。細胞から核酸を抽出し,RT-PCR等により抗体のcDNAを増幅し,抗体遺伝子をクローニングする。該遺伝子を用いて,所望の抗体をリコンビナント抗体として作製することができる。 For example, the antibody of the present invention can be obtained by the ISAAC method. The ISSAC method is a method for rapid and exhaustive screening of antigen-specific antibody-secreting cells (ASC) using a microwell array chip. In this method, a microwell array chip having a large number of wells with a size (about 10 to 15 μm in diameter) in which one antibody-producing cell can be accommodated, and an anti-immunoglobulin antibody (or antibody) on the chip surface around the wells Use a microwell array chip coated with the antigen for which you are trying to obtain Peripheral blood lymphocytes, spleen cells, or bone marrow cells containing antibody-producing cells are collected from humans or animals that produce antibodies against specific antigens, and the cells are seeded one by one in the wells of a microwell array chip. By immersing the chip in a culture medium and culturing under conditions in which the secreted antibodies diffuse from the wells to the coating layer, the antibodies secreted from the cells that produce and secrete the antibodies spread around the wells in which they were stored. Binds to globulin antibodies (or antigens). Next, the antigen labeled with a fluorescent substance (or an antibody against the antibody labeled with a fluorescent substance) is added to the microwell array chip. The labeled antigen (or antibody against the antibody) binds to the antibody secreted around the well, and the signal emitted from the labeled substance indicates which well contains the cells that produce and secrete the antigen-specific antibody. Recognize. The cells are harvested using a microcapillary under a fluorescence microscope. Nucleic acids are extracted from cells, antibody cDNA is amplified by RT-PCR or the like, and antibody genes are cloned. A desired antibody can be produced as a recombinant antibody using the gene.
 SARS-CoV-2は,RBDとヒト細胞表面のACE2との結合を介してヒト細胞内に侵入する。よって,本発明の抗体は,好ましくは,SARS-CoV-2,又はそのスパイク若しくはRBDと,ACE2(好ましくは,ヒトACE2,本明細書全体にわたって同様)との結合を阻害する抗体である。また,本発明の抗体は,好ましくは,変異型SARS-CoV-2,スパイク,若しくはRBDと,ACE2との結合を阻害する抗体である。ACE2との結合を阻害する抗体は,好ましくは,武漢型SARS-CoV-2,そのスパイク若しくはRBDと,ACE2との結合も阻害する。また,本発明の抗体は,異なる変異パターンを有する複数種類のSARS-CoV-2,スパイク,若しくはRBDと,ACE2との結合を阻害してもよい。 SARS-CoV-2 enters human cells through the binding of RBD to ACE2 on the surface of human cells. Thus, an antibody of the invention is preferably an antibody that inhibits binding of SARS-CoV-2, or its spike or RBD, to ACE2 (preferably human ACE2, as throughout the specification). Also, the antibody of the present invention is preferably an antibody that inhibits the binding of mutant SARS-CoV-2, spike, or RBD to ACE2. Antibodies that inhibit binding to ACE2 preferably also inhibit binding of Wuhan SARS-CoV-2, its spike or RBD, to ACE2. Also, the antibodies of the present invention may inhibit the binding of multiple types of SARS-CoV-2, spikes, or RBDs with different mutation patterns to ACE2.
 例えば,本抗体は,武漢型,K417N,E484K,及びN501Y変異型,N439K変異型,N440K変異型,A475V変異型,E484K変異型,N501Y変異型,L452R変異型,L452R及びE484Q変異型,K417T,E484K,及びN501Y変異型,L452R及びT478K変異型,及び,G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異型のSARS-CoV-2,スパイク,若しくはRBDから選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,6種類又はそれ以上,7種類又はそれ以上,あるいは全てとACE2との結合を阻害してもよい。これに加えて,本発明の抗体は,G339D,S371L,S373P,S375F,K417N,K417T,N439K,N440K,G446S,L452R,A475V,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,及びY505Hから選択される1種類又はそれ以上の変異を有する,SARS-CoV-2,スパイク,若しくはRBDの,1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,5種類又はそれ以上,6種類又はそれ以上,あるいは7種類又はそれ以上とACE2との結合を阻害してもよい。あるいは,本発明の抗体は,上述の武漢型,Alpha株,Beta株,Gamma株,Epsilon株,Kappa株,Delta株,及びOmicron株から選択される1種類又はそれ以上,2種類又はそれ以上,3種類又はそれ以上,4種類又はそれ以上,又は全てのSARS-CoV-2,スパイク,若しくはRBDとACE2との結合を阻害してもよい。 For example, the antibody includes Wuhan, K417N, E484K, and N501Y variants, N439K variant, N440K variant, A475V variant, E484K variant, N501Y variant, L452R variant, L452R and E484Q variant, K417T, E484K and N501Y mutants, L452R and T478K mutants, and SARS-H mutants of G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 selected from CoV-2, spike, or RBD Or more, or all, binding to ACE2 may be inhibited. Additionally, the antibodies of the present invention are , and Y505H, one or more, two or more, three or more, four or Binding of ACE2 to more, 5 or more, 6 or more, or 7 or more may be inhibited. Alternatively, the antibody of the present invention may be one or more, two or more selected from the above Wuhan type, Alpha strain, Beta strain, Gamma strain, Epsilon strain, Kappa strain, Delta strain, and Omicron strain, Binding of 3 or more, 4 or more, or all SARS-CoV-2, spike, or RBD to ACE2 may be inhibited.
 被検抗体がSARS-CoV-2のACE2タンパク質への結合を阻害するか否かは,例えば,試験しようとするSARS-CoV-2スパイク又はRBDを固層化したウエルに被検抗体と標識ACE2との混合溶液,もしくは被検抗体を含まない標識ACE2溶液を添加し,一定時間静置後に洗浄し,固層化された前記SARS-CoV-2スパイク又はRBDに結合したACE2の標識を測定することにより決定することができる。抗体を含まない場合の標識の強度等と比較して,抗体を含んだ場合の標識の強度が弱い場合には,当該被検抗体は当該SARS-CoV-2のACE2への結合を阻害する(中和する)と判定することができる。例えば,in vitroにおける当該阻害実験のIC50は,20μg/ml以下,10μg/ml以下,5μg/ml以下,1μg/ml以下,0.6μg/ml以下,0.5μg/ml以下,0.35μg/ml以下,0.2μg/ml以下,0.15μg/ml以下とすることができ,あるいは,0.1~20μg/ml,0.2~10μg/ml,0.2~5μg/ml,0.2~1μg/mlとすることができる。 Whether the test antibody inhibits the binding of SARS-CoV-2 to the ACE2 protein can be determined, for example, by adding the test antibody and labeled ACE2 to wells immobilized with SARS-CoV-2 spikes or RBDs to be tested. or a labeled ACE2 solution containing no test antibody is added, washed after standing for a certain period of time, and the ACE2 label bound to the immobilized SARS-CoV-2 spike or RBD is measured. can be determined by If the intensity of labeling with antibodies is weaker than the intensity of labeling without antibodies, the test antibody inhibits the binding of SARS-CoV-2 to ACE2 ( neutralize). For example, the IC50 of the inhibition experiment in vitro is 20 μg/ml or less, 10 μg/ml or less, 5 μg/ml or less, 1 μg/ml or less, 0.6 μg/ml or less, 0.5 μg/ml or less, 0.35 μg/ml ml or less, 0.2 μg/ml or less, 0.15 μg/ml or less, or 0.1 to 20 μg/ml, 0.2 to 10 μg/ml, 0.2 to 5 μg/ml, 0.1 μg/ml or less. It can be 2-1 μg/ml.
 好ましくは,本発明の抗体は,SARS-CoV-2のスパイクを外套したシュードタイプウイルスによる,ACE2及びTMPRSS2共発現細胞への感染を抑制する。例えば,本発明の抗体は,SARS-CoV-2のスパイクを外套したシュードタイプウイルス(SARS-CoV-2 St19pv)(Tani H et al.,Virology Journal(2021)18:16.に記載されたシュードタイプウイルス)による,TMPRSS2発現VeroE6細胞への感染を抑制する。被検抗体が,SARS-CoV-2 St19pvによる,TMPRSS2発現VeroE6細胞への感染を抑制するか否かは,例えば,TMPRSS2を過剰発現しているVeroE6細胞(VeroE6/TMPRSS2)に被検抗体の存在下又は非存在下でSARS-CoV-2 St19pvを添加し,1日培養後,細胞に細胞溶解液を含むルシフェラーゼ基質溶液を添加し,ルシフェラーゼの活性を測定することにより決定することができる。抗体非添加の場合と比較して,抗体添加においてルシフェラーゼ活性を示す発光値が低い場合には,抗体により感染が阻害されたと判定される。 Preferably, the antibodies of the present invention suppress infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 spike-coated pseudotype viruses. For example, the antibodies of the present invention can be used to detect SARS-CoV-2 spike-enveloped pseudotype virus (SARS-CoV-2 St19pv) (Tani H et al., Virology Journal (2021) 18:16). type virus) to TMPRSS2-expressing VeroE6 cells. Whether the test antibody suppresses the infection of TMPRSS2-expressing VeroE6 cells by SARS-CoV-2 St19pv can be determined, for example, by the presence of the test antibody in VeroE6 cells (VeroE6/TMPRSS2) overexpressing TMPRSS2. It can be determined by adding SARS-CoV-2 St19pv in the presence or absence of SARS-CoV-2 St19pv, culturing for 1 day, adding a luciferase substrate solution containing a cell lysate to the cells, and measuring luciferase activity. When the luminescence value indicating luciferase activity is lower in the presence of antibody than in the case of non-addition of antibody, it is judged that the infection was inhibited by the antibody.
 本発明の抗体は,好ましくは,SARS-CoV-2のスパイクを外套したシュードタイプウイルスによる,ACE2及びTMPRSS2共発現細胞への感染抑制実験において,500ng/ml以下のIC50値を示し,より好ましくは,100ng/ml以下,50ng/ml以下,又は45ng/ml以下のIC50値を示す抗体であってもよい。例えば,本発明の抗体は,武漢型(WT)に対して30ng/ml以下,Alpha株に対して45ng/ml以下,Beta株に対して15ng/ml以下,Kappa株に対して20ng/ml以下,及び/又は,Delta株に対して12ng/ml以下のIC50値を示す抗体であってもよい。 The antibody of the present invention preferably exhibits an IC50 value of 500 ng/ml or less in an experiment to suppress infection of ACE2 and TMPRSS2 co-expressing cells with a SARS-CoV-2 spike-enveloped pseudotype virus, more preferably , 100 ng/ml or less, 50 ng/ml or less, or 45 ng/ml or less. For example, the antibody of the present invention is 30 ng/ml or less against Wuhan type (WT), 45 ng/ml or less against Alpha strain, 15 ng/ml or less against Beta strain, and 20 ng/ml or less against Kappa strain. , and/or an antibody that exhibits an IC50 value of 12 ng/ml or less against the Delta strain.
 また,好ましくは,本発明の抗体は,SARS-CoV-2による,ACE2及びTMPRSS2共発現細胞への感染を抑制する抗体である。被検抗体が,SARS-CoV-2による,ACE2及びTMPRSS2共発現細胞への感染を抑制するか否かは,被検抗体とSARS-CoV-2をチューブ内で混合し,37℃で1時間反応させた後,VeroE6/TMPRSS2細胞に添加し,37℃で2時間吸着させ,その後,吸着しなかった被検抗体とウイルスを含む混合液を完全に除き,再び被検抗体を含む培養培地を添加し,2日間培養した細胞の培養上清のウイルス感染価をプラークアッセイ法により測定することにより決定することができる。被検抗体非存在下と比較して,被検抗体存在下においてプラークが減少するか,又はプラークが存在しない場合には,当該被検抗体はSARS-CoV-2による,ACE2及びTMPRSS2共発現細胞への感染を抑制すると判定される。あるいは,被検抗体が,SARS-CoV-2による,ACE2及びTMPRSS2共発現細胞への感染を抑制するか否かは,VeroE6/TMPRSS2細胞に被検抗体を添加してSARS-CoV-2を感染させ,37℃で1時間の培養後に培養上清を除き,再び被検抗体を添加して24時間培養し,培養した細胞の培養上清のウイルス感染価をリアルタイムPCR法によりウイルスゲノムRNA量を測定することにより決定することができる。被検抗体存在下においてウイルスゲノムRNA量が減少するか,又は存在しない場合には,当該被検抗体はSARS-CoV-2による,ACE2及びTMPRSS2共発現細胞への感染を抑制すると判定される。 Also, preferably, the antibody of the present invention is an antibody that suppresses infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2. Whether the test antibody suppresses the infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 is determined by mixing the test antibody and SARS-CoV-2 in a tube and incubating at 37°C for 1 hour. After reacting, it was added to VeroE6/TMPRSS2 cells and allowed to adsorb for 2 hours at 37°C. After that, the mixture containing the unadsorbed test antibody and virus was completely removed, and the culture medium containing the test antibody was added again. It can be determined by measuring the virus infectivity titer of the culture supernatant of the cells added and cultured for 2 days by plaque assay. Compared to the absence of the test antibody, plaques are reduced in the presence of the test antibody, or if no plaques are present, the test antibody is SARS-CoV-2, ACE2 and TMPRSS2 co-expressing cells It is determined that it suppresses the infection of Alternatively, whether the test antibody suppresses the infection of ACE2 and TMPRSS2 co-expressing cells by SARS-CoV-2 is confirmed by adding the test antibody to VeroE6/TMPRSS2 cells to infect SARS-CoV-2. After culturing at 37°C for 1 hour, remove the culture supernatant, add the test antibody again and culture for 24 hours. It can be determined by measuring. If the amount of viral genomic RNA decreases in the presence of the test antibody, or if it is absent, it is determined that the test antibody suppresses SARS-CoV-2 infection of ACE2 and TMPRSS2 co-expressing cells.
 さらに,好ましくは,本発明の抗体は,In vivoの試験,例えばハムスターモデルにおいて,抗体の予防的投与によりSARS-CoV-2のスパイクを外套したシュードタイプウイルスによる肺への感染を抑制する抗体である。被検抗体が感染を抑制するか否かは,例えばハムスターに被検抗体を腹腔内投与した24時間後に,シュードタイプウイルスを気管内に直接接種し,24時間後に肺を採取してシフェラーゼ基質溶液とインキュベートし,ルシフェラーゼの活性を測定することにより決定することができる。抗体非投与の場合と比較して,抗体投与においてルシフェラーゼ活性を示す発光値が低い場合には,抗体により感染が阻害されたと判定される。 Further, preferably, the antibody of the present invention is an antibody that suppresses pulmonary infection by SARS-CoV-2 spike-enveloped pseudotype virus by prophylactic administration of the antibody in an in vivo test, such as a hamster model. be. Whether or not the test antibody suppresses infection can be determined, for example, by inoculating the pseudotype virus directly into the trachea 24 hours after intraperitoneal administration of the test antibody to hamsters, and after 24 hours, extracting the lungs and adding a luciferase substrate solution. can be determined by incubating with and measuring luciferase activity. When the luminescence value, which indicates luciferase activity, is lower after antibody administration than when antibody is not administered, it is determined that infection is inhibited by antibody.
 通常は,抗体による阻害や抑制は完全な阻害や抑制をもたらすものではなく,よって,本明細書における,「結合を阻害する」や「感染を抑制する」の語は,100%の阻害や抑制をもたらすことを意味するものではない。すなわち,「結合を阻害する」や「感染を抑制する」とは,当該抗体が存在しない場合又はSARS-CoV-2とは結合しない抗体が存在する場合と比較して,結合が阻害されること,又は感染が抑制されることを意味するものである。 Generally, inhibition or suppression by antibodies does not result in complete inhibition or suppression, therefore, the terms "inhibit binding" and "inhibit infection" herein refer to 100% inhibition or suppression. is not meant to bring In other words, "inhibit binding" or "inhibit infection" means that binding is inhibited compared to the absence of the antibody or the presence of an antibody that does not bind to SARS-CoV-2. , or that the infection is suppressed.
 本発明の抗体は,本発明の抗体はヒト抗体の他,該ヒト抗体の一部(例えば,定常領域,フレームワーク領域,又はその一部)を非ヒト動物の抗体由来の配列と置き換えた動物化抗体であってもよい。非ヒト動物としては,例えば,マウス,ラット,ハムスター,モルモット,ラビット,イヌ,ネコ,サル,ヒツジ,ヤギ,ラクダ,ニワトリ,アヒル等の抗体を挙げることができる。 The antibody of the present invention is a human antibody, or an animal in which a part of the human antibody (e.g., constant region, framework region, or part thereof) is replaced with a sequence derived from a non-human animal antibody It may be a modified antibody. Examples of non-human animals include antibodies from mice, rats, hamsters, guinea pigs, rabbits, dogs, cats, monkeys, sheep, goats, camels, chickens and ducks.
 本発明の抗体のイムノグロブリンクラスは特に限定されるものではなく,IgG,IgM,IgA,IgE,IgD,又はIgYのいずれのイムノグロブリンクラス(アイソタイプ)であってもよく,好ましくはIgGである。また,本発明の抗体がIgGの場合,いずれのサブクラス(IgG1,IgG2,IgG3,又はIgG4)であってもよい。また,本発明の抗体は,モノスペシフィック,バイスペシフィック(二重特異性抗体),トリスペシフィック(三重特異性抗体)(例えば,WO1991/003493号),又はマルチスペシフィック(多重特異性抗体)であってもよい。また,Fc領域は抗体の機能性を向上させるための変異が導入されていてもよく,例えば,一態様において,ADE活性を低下させるためFc領域にLALA変異(L234F,L235E変異)が修飾された抗体であってもよい。さらに,一態様において,Fc領域に抗体の半減期を伸ばすことが報告されているM428L及びN434S変異や,M252Y,S254T及びT256E変異,T25Q及びM428L変異が導入された抗体であってもよい。 The immunoglobulin class of the antibody of the present invention is not particularly limited, and may be any immunoglobulin class (isotype) of IgG, IgM, IgA, IgE, IgD, or IgY, preferably IgG. Moreover, when the antibody of the present invention is IgG, it may be of any subclass (IgG1, IgG2, IgG3, or IgG4). In addition, the antibody of the present invention is monospecific, bispecific (bispecific antibody), trispecific (trispecific antibody) (for example, WO1991/003493), or multispecific (multispecific antibody) good too. In addition, the Fc region may be mutated to improve the functionality of the antibody, for example, in one embodiment, the Fc region is modified with LALA mutations (L234F, L235E mutations) to reduce ADE activity It may be an antibody. Furthermore, in one embodiment, the antibody may be an antibody introduced with M428L and N434S mutations, M252Y, S254T and T256E mutations, T25Q and M428L mutations, which are reported to extend antibody half-life in the Fc region.
 抗体はその可変領域(特には,CDRs)が結合特性を付与していることが知られており,完全抗体でない抗体断片であってもその結合特性を利用可能であることが当業者に広く知られている。本明細書において,「抗原結合性断片」とは,抗体の一部分(部分断片)を含むタンパク質又はペプチドであって,抗体の抗原への作用(抗原結合性)を保持するタンパク質又はペプチドを意味する。このような抗原結合性断片としては,例えば,F(ab’),Fab’,Fab,Fab,一本鎖Fv(以下,「scFv」という),(タンデム)バイスペシフィック一本鎖Fv(sc(Fv)),一本鎖トリプルボディ,ナノボディ,ダイバレントVHH,ペンタバレントVHH,ミニボディ,(二本鎖)ダイアボディ,タンデムダイアボディ,バイスペシフィックトリボディ,バイスペシフィックバイボディ,デュアルアフィニティリターゲティング分子(DART),トリアボディ(又はトリボディ),テトラボディ(又は[sc(Fv)),若しくは(scFv-SA))ジスルフィド結合Fv(以下,「dsFv」という),コンパクトIgG,重鎖抗体,又はそれらの重合体を挙げることができる(Nature Biotechnology, 29(1):5-6 (2011);Maneesh Jain et al., TRENDS in Biotechnology, 25(7)(2007):307-316;及び,Christoph Steinら,Antibodies(1):88-123(2012)参照)。本明細書において,抗原結合性断片は,モノスペシフィック,バイスペシフィック(二重特異性),トリスペシフィック(三重特異性),及びマルチスペシフィック(多重特異性)のいずれであってもよい。本明細書において,特にそのように解釈することが不整合である場合を除き,「抗体」の語は抗体の抗原結合性断片をも含むことを意図している。 Antibodies are known to have binding properties conferred by their variable regions (especially CDRs), and it is widely known to those skilled in the art that even antibody fragments that are not complete antibodies can utilize these binding properties. It is As used herein, the term "antigen-binding fragment" refers to a protein or peptide containing a portion (partial fragment) of an antibody and retaining the action (antigen-binding) of the antibody on the antigen. . Examples of such antigen-binding fragments include F(ab′) 2 , Fab′, Fab, Fab 3 , single-chain Fv (hereinafter referred to as “scFv”), (tandem) bispecific single-chain Fv ( sc(Fv) 2 ), single-chain triple body, nanobody, divalent VHH, pentavalent VHH, minibody, (double-stranded) diabodies, tandem diabodies, bispecific tribodies, bispecific bibodies, dual affinity targeting molecules (DART), triabodies (or tribodies), tetrabodies (or [sc(Fv) 2 ] 2 ), or (scFv-SA) 4 ) disulfide-bonded Fv (hereinafter referred to as “dsFv”), compact IgG, heavy chain antibodies, or polymers thereof (Nature Biotechnology, 29(1): 5-6 (2011); Maneesh Jain et al., TRENDS in Biotechnology, 25(7) (2007): 307- 316; and Christoph Stein et al., Antibodies (1):88-123 (2012)). As used herein, antigen-binding fragments may be monospecific, bispecific (bispecific), trispecific (trispecific), and multispecific (multispecific). As used herein, the term "antibody" is also intended to include antigen-binding fragments of antibodies, unless otherwise construed as such.
 一態様において,本発明は,以下に記載する重鎖CDR及び軽鎖CDRの少なくとも1つ,(好ましくは,CDRH3,更に好ましくは6つ全ての組み合わせ)を有し,かつ,SARS-CoV-2スパイク及び/又はRBD(好ましくはSARS-CoV-2 RBD)に特異的に結合する抗体である。 In one aspect, the invention has at least one of the heavy chain CDRs and light chain CDRs described below (preferably CDRH3, more preferably a combination of all six), and SARS-CoV-2 An antibody that specifically binds to spike and/or RBD (preferably SARS-CoV-2 RBD).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一態様において,本発明は,以下に記載する重鎖可変領域及び軽鎖可変領域の組み合わせを有する抗体である。 In one aspect, the present invention is an antibody having a combination of heavy chain variable regions and light chain variable regions described below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 また,本発明は,表2のいずれかのクローンと80%以上の同一性を有する抗体,すなわち,表2のいずれかのクローンについて記載された重鎖可変領域(VH)アミノ酸配列と80%以上の同一性を有するアミノ酸配列のVH,及び,当該クローンについて表2に記載された軽鎖可変領域(VL)アミノ酸配列と80%以上の同一性を有するアミノ酸配列のVLを有する抗体,あるいはその抗原結合性断片に関する。アミノ酸配列の同一性は,2種類のタンパク質間において,比較対象とするアミノ酸配列範囲における種類が同一なアミノ酸数の割合(%)を意味し,例えば,BLAST,FASTA等の公知のプログラムを用いて決定することができる。上述のVH及VLが表2に記載の配列との間で有する同一性は,80%以上の他,85%以上,90%以上,95%以上,98%以上,又は99%以上であってもよい。 In addition, the present invention provides an antibody having 80% or more identity with any clone in Table 2, that is, 80% or more with the heavy chain variable region (VH) amino acid sequence described for any clone in Table 2 and an amino acid sequence VL having 80% or more identity with the light chain variable region (VL) amino acid sequence listed in Table 2 for the clone, or an antigen thereof Regarding binding fragments. Amino acid sequence identity means the ratio (%) of the number of amino acids of the same type in the range of amino acid sequences to be compared between two proteins, for example, using known programs such as BLAST and FASTA can decide. The identity of the above VH and VL with the sequences listed in Table 2 is 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, or 99% or more. good too.
 表2のいずれかのクローンと80%以上の同一性を有する抗体は,好ましくは,表1において同一クローン番号で示された抗体の少なくとも一つのCDR(好ましくはCDRH3,更に好ましくは6つの全てのCDR)を有する。また,表2のいずれかのクローンと80%以上の同一性を有する抗体は,好ましくは,SARS-CoV-2スパイク及びRBDに特異的に結合する。 Antibodies with 80% or more identity to any clone in Table 2 preferably have at least one CDR (preferably CDRH3, more preferably all six) of the antibody indicated by the same clone number in Table 1. CDRs). Antibodies with 80% or more identity to any of the clones in Table 2 also preferably bind specifically to the SARS-CoV-2 spike and RBD.
 例えば,本発明の抗体は以下の重鎖(HC)アミノ酸配列の重鎖,及び軽鎖(LC)アミノ酸配列の軽鎖を有する抗体であってもよい。以下において,下線はシグナル配列を示す。よって,成熟タンパク質としての抗体は,下線部分のアミノ酸配列は有さなくてもよい。
 
1028-05K HC(配列番号2)
MDTLCYTLLLLTTPSWVLSQVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKALEWLAHIFSNDEKSYSTSLKRRLTISKDTPKSQVVLTMTNMDPVDTATYYCARTLGFWSGEYYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-05K LC(配列番号13)
MEAPAQLLFLLLLWLPDTTGEIVMTQSPATLSVSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQHYNNWPPLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-25K HC(配列番号24)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASEFTFSGYAMHWVRQAPGKGLEWVAVISYDGINKYYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAVYYCARDPDYGDEGAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-25K LC(配列番号35)
MRLPAQLLGLLMLWVPGSSGDVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQGTHWPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-29K HC(配列番号46)
MDWTWRVFCLLAVAPGAHSQVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARDGTPDIVVVPAAPLDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-29K LC(配列番号57)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDVSNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPVLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-30K HC(配列番号68)
MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFNTYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGEPGYCSGGNCYSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-30K LC(配列番号79)
MRLPAQLLGLLMLWVPGSSGDVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-37K HC(配列番号90)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSLTCDISGDSVSSNSVAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCASGGYQLLYDDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-37K LC(配列番号101)
MEAPAQLLFLLLLWLPDTTGEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYSNWLLYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-50K HC(配列番号112)
MELGLRWVFLVAILEGVQCEVQLVESGGGLVKPGGSLRLSCAASGFTFSSYIMNWVRQAPGKGLEWVSSISSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARIVGATSYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-50K LC(配列番号123)
MDMRVPAQLLGLLLLWLRGARCDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-55K HC(配列番号134)
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSLIYSGGSTYYVDSVKGRFTISRDNTKNTLYLQMNSLRAEDTAVYYCARDLDVRGALDIWGQGTMVIVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-55K LC(配列番号145)
METPAQLLFLLLLWLPDTTGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPQTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-61L HC(配列番号156)
MEFWLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAASGIDVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADAVRGRFTISRHNSKNTLYLQMNSLRAEDAAVYYCARDAQRYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-61L LC(配列番号167)
MAWTFLLLGLLSHCTASVTSYVLTQPPSVSVAPGKTARITCGGNNIGSNTVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQLWDSSSDHVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
1028-62L HC(配列番号178)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSGTLSLTCAVSGGSISSSNWWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVDKSNNQFSLKLSSVTAADTAVYYCARGWNYDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-62L LC(配列番号189)
MAWALLLLTLLTQDTGSWAQSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
1028-65K HC(配列番号200)
MDWTWRVFCLLAVAPGAHSQVQLVQSGAEVKKPGASVKVSCKASGYTFSSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYFCAREGRAAAETDNNWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-65K LC(配列番号211)
MVLQTQVFISLLLWISGAYGDIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNTPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-68L HC(配列番号222)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGSGWNYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-68L LC(配列番号233)
MAWTFLLLGLLTLCTGSEASYELTQPPSVSVSPGQTARITCSGDPLPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYGWEFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
1028-84K HC(配列番号244)
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMHWVFQAPGMGLEWVAVISYDGINKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASHRDDYVDSADAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-84K LC(配列番号255)
MRLPAQLLGLLMLWVPGSSGDVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-87L HC(配列番号266)
MDWTWRILFLVAAATGAHSQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCLASFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-87L LC(配列番号277)
MPWALLLLTLLTHSAVSVVQAGLTQPPSVSKGLRQTATLTCTGNSNNVGNQGAAWLQQHQGHPPKLLSYRNNNRPSGISERLSASRSGNTASLTITGLQPEDEADYYCSAWDSSLSAQVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
1028-106K HC(配列番号288)
MDLMCKKMKHLWFFLLLVAAPRWVLSQLQLQESGPGLVKPSETLSLTCTVSGGSISSSYHYWGWIRQPPGKGLEWIGTIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARRGYSYDSSGDGVDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-106K LC(配列番号299)
MDMRVPAQLLGLLLLWFPGARCDIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-121K HC(配列番号310)
MDTLCYTLLLLTTPSWVLSQVTLKESGPVLVKPTETLTLTCTVSGFSLSDARMGVSWIRQPPGKALEWLAHIFSNDEKSYNTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARALGFWSGYYYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-121K LC(配列番号321)
MEAPAQLLFLLLLWLPDTTGEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-137K HC(配列番号332)
MEFGLSWVFLVALLRGVQCQVHLVESGGGVVQPGRSLRLSCAASGFTFNSYAMHWVRQAPGKGLEWVAVISYDGNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDDSGSYLYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-137K LC(配列番号343)
MRLPAQLLGLLMLWVPGSSGDVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLTWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1028-164L HC(配列番号354)
MDILCSTLLLLTVPSWVLSQVTLRESGPALVKPTQTLTLTCTFSGFSLSTSGMCVSWIRQPPGKALEWLALIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARIPVEMATIGDYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1028-164L LC(配列番号365)
MAGFPLLLTLLTHCAGSWAQSVLTQPPSESGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-19K HC(配列番号376)
MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQLSLQLNSVTPEDTAVYYCARSPSYQLLYPYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-19K LC(配列番号387)
MDMRVPAQLLGLLLLWLPGTRCDIQMTQSPSSLSASVGDRVTITCRASQGISNSLAWYQQKPGKAPELLLYAASRLESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQYYSTPYTFGQGTKLEIRRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
0210-20L HC(配列番号398)
MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARALGYSGYGSTYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-20L LC(配列番号409)
MAWSPLLLTLLAHCTGSWAQSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGGVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-28K HC(配列番号420)
MDWIWRILFLVGAATGAHSQMQLVQSGPEVKKPGTSVKVSCKASGFTFSISAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRFEDTAVYYCAAPYCGGDCSDGFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-28K LC(配列番号431)
METPAQLLFLLLLWLPDTTGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
0210-30L HC(配列番号442)
MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAINWVRQAPGQGLEWMGRIIPILGRANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARNPEEFSSSYVYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-30L LC(配列番号453)
MAWALLLLSLLTQGTGSWAQSALTQPRSVSGSPGQSVTISCTGTSSDVGGYSYVSWYQQHPDKAPKLMIYDVSKRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTSWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-31L HC(配列番号464)
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWVRQAPGKGLEWVGFIRSKAYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDTAVYYCTRDSITMVQGVIIRLDYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-31L LC(配列番号475)
MAWAPLLLTLLAHCTGSWANFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNKVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-35K HC(配列番号486)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYSGSANYNPSLRSRVTISVDTSKNHFSLKLSSVTAADTAVYYCARDIGYDSSGPDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-35K LC(配列番号497)
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPGTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
0210-38L HC(配列番号508)
MELGLSWVFLVAILEGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYWMSWVRQAPGKGLEWVADIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARQLYYYGPIDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-38L LC(配列番号519)
MAWAPLLLTLLAHCTGSWANFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSNNRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-52L HC(配列番号530)
MGSTAILALLLAVLQGVCAEVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKFISTAYLQWSSLKASDTAMYYCARRSGYDLASSHNWLDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-52L LC(配列番号541)
MAWSPLLLTLLAHCTGSWAQSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNTLSGSLFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
 
0210-58K HC(配列番号552)
MDTLCYTLLLLTTPSWVLSQVTLKESGPVLVKPTETLTLTCTVSGFSLSNAKMGVSWIRQPPGKALEWLAHIFSGDEKSYSTSLKSRLTISKDTSKSQVVVTMTNMDPVDTATYYCARILWFRSYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
0210-58K LC(配列番号563)
MDMRVPAQLLGLLLLWFPGSRCDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1-15 HC(配列番号574)
MELGLSWVFLVAILEGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSTIGTAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARGIQQQLALRYYYYLDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1-15 LC(配列番号585)
MRVPAQLLGLLLLWLRGARCDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSNPTWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
 
1-44 HC(配列番号596)
MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLLMNSLRAEDTAVYYCAKDGEWYYDFWSGPVYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 
1-44 LC(配列番号607)
MDMRVPAQLLGLLLLWLPGAKCDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSRTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
For example, an antibody of the invention can be an antibody having a heavy chain with the following heavy chain (HC) amino acid sequence and a light chain with the light chain (LC) amino acid sequence: In the following, underlining indicates the signal sequence. Therefore, an antibody as a mature protein may not have the underlined amino acid sequences.

1028-05K HC (SEQ ID NO:2)
MDTLCYTLLLLTTPSWVLS QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKALEWLAHIFSNDEKSYSTSLKRRLTISKDTPKSQVVLTMTNMDPVDTATYYCARTLGFWSGEYYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-05K LC (SEQ ID NO: 13)
MEAPAQLLFLLLLWLPDTTG EIVMTQSPATLSVSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQHYNNWPPLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGCSPVTKQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTGLGENRHQ

1028-25K HC (SEQ ID NO:24)
MEFGLSWVFLVALLRGVQC QVQLVESGGGVVQPGRSLRLSCAASEFTFSGYAMHWVRQAPGKGLEWVAVISYDGINKYYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAVYYCARDPDYGDEGAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-25K LC (SEQ ID NO:35)
MRLPAQLLGLLMLWVPGSSG DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQGTHWPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKKTKVDNALQSGNSQESVTEQDSKDSTYSLSVSSTLGSGLACEDYVTSFCPVSSTLKAHQHQ

1028-29K HC (SEQ ID NO:46)
MDWTWRVFCLLAVAPGAHS QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARDGTPDIVVVPAAPLDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-29K LC (SEQ ID NO:57)
MEAPAQLLFLLLLWLPDTTG EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDVSNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPVLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSSSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVNSTKQESVTEQDSKDSTYSLSSTLGENRCSFVTEKHKVYACENRCSFHQ

1028-30K HC (SEQ ID NO:68)
MDWTWRFLFVVAAATGVQS QVQLVQSGAEVKKPGSSVKVSCKASGGTFNTYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGEPGYCSGGNCYSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-30K LC (SEQ ID NO:79)
MRLPAQLLGLLMLWVPGSSG DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKTKKVDNALQSGNSQESVTEQDSKDSTYSLSSTLSVTCPVSSTLGSPVACEDGEHQHK

1028-37K HC (SEQ ID NO:90)
MSVSFLIFLPVLGLPWGVLS QVQLQQSGPGLVKPSQTLSLTCDISGDSVSSNSVAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCASGGYQLLYDDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-37K LC (SEQ ID NO: 101)
MEAPAQLLFLLLLWLPDTTG EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYSNWLLYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSPVTKQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTGLGENRHQ

1028-50K HC (SEQ ID NO: 112)
MELGLRWVFLVAILEGVQC EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYIMNWVRQAPGKGLEWVSSISSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARIVGATSYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-50K LC (SEQ ID NO: 123)
MDMRVPAQLLGLLLLWLRGARC DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVNSTKQESVTEQDSKDSTYSLSSTLGENRCSFVTEKHKVYACE

1028-55K HC (SEQ ID NO: 134)
MEFGLSWVFLVAILKGVQC EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSLIYSGGSTYYVDSVKGRFTISRDNTKNTLYLQMNSLRAEDTAVYYCARDLDVRGALDIWGQGTMVIVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-55K LC (SEQ ID NO: 145)
METPAQLLFLLLLWLPDTTG EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPQTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVNSQESVTEQDSKDSTYSLGLSSTLTLSKASFKDSTYSLGSTLTLSKASFKHKGSSTKVYHQ

1028-61L HC (SEQ ID NO: 156)
MEFWLSWVFLVAILKGVQC EVQLVESGGGLVQPGGSLRLSCAASGIDVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADAVRGRFTISRHNSKNTLYLQMNSLRAEDAAVYYCARDAQRYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-61L LC (SEQ ID NO: 167)
MAWTFLLLGLLSHCTASVT SYVLTQPPSVVSVAPGKTARITCGGNNIGSNTVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQLWDSSSDHVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCTAGSTECSVTHETV

1028-62L HC (SEQ ID NO: 178)
MKHLWFFLLLVAAPRWVLS QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSNWWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVDKSNNQFSLKLSSVTAADTAVYYCARGWNYDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-62L LC (SEQ ID NO: 189)
MAWALLLLTLLTQDTGSWA QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQTEGSTVVTHE

1028-65K HC (SEQ ID NO:200)
MDWTWRVFCLLAVAPGAHS QVQLVQSGAEVKKPGASVKVSCKASGYTFSSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYFCAREGRAAAETDNNWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-65K LC (SEQ ID NO:211)
MVLQTQVFISLLLWISGAYG DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNTPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKTKVDNALQSGNSQESVTEQDSKDSSFCPVSSKGLSSTLGSKACEDYVTSFCPVSSTLKAACEDY

1028-68L HC (SEQ ID NO:222)
MEFGLSWVFLVALLRGVQC QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGSGWNYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-68L LC (SEQ ID NO:233)
MAWTFLLLGLLTLCTGSEA SYELTQPPSVSVSPGQTARITCSGDPLPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYGWEFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTTVQWKSTVGSHREKCSAPTECSTVGSHREKCQVTHE

1028-84K HC (SEQ ID NO:244)
MEFGLSWVFLVALLRGVQC QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMHWVFQAPGMGLEWVAVISYDGINKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASHRDDYVDSADAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-84K LC (SEQ ID NO:255)
MRLPAQLLGLLMLWVPGSSG DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQPVTKKVDNALQSGNSQESVTEQDSKDSSFHSLSSTLGSGLSTLKAACEDY

1028-87L HC (SEQ ID NO:266)
MDWTWRILFLVAAATGAHS QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCLASFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-87L LC (SEQ ID NO:277)
MPWALLLLTLLTHSAVSVV QAGLTQPPSVSKGLRQTATLTCTGNSNNVGNQGAAWLQQHQGHPPKLLSYRNNNRPSGISERLSASRSGNTASLTITGLQPEDEADYYCSAWDSSLSAQVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRTECSTVEKVVTECSTVEKQ

1028-106K HC (SEQ ID NO:288)
MDLMCKKMKHLWFFLLLVAAPRWVLS QLQLQESGPGLVKPSETLSLTCTVSGGSISSSYHYWGWIRQPPGKGLEWIGTIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARRGYSYDSSGDGVDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-106K LC (SEQ ID NO:299)
MDMRVPAQLLGLLLLWFPGARC DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSPVTKQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTGLGENRHQ

1028-121K HC (SEQ ID NO:310)
MDTLCYTLLLLTTPSWVLS QVTLKESGPVLVKPTETLTLTCTVSGFSLSDARMGVSWIRQPPGKALEWLAHIFSNDEKSYNTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARALGFWSGYYYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-121K LC (SEQ ID NO:321)
MEAPAQLLFLLLLWLPDTTG EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGCSPVTKQESVTEQDSKDSTYSLSSTLTLSKADYEKHKSSSFGLVTGLGENRHQ

1028-137K HC (SEQ ID NO:332)
MEFGLSWVFLVALLRGVQC QVHLVESGGGVVQPGRSLRLSCAASGFTFNSYAMHWVRQAPGKGLEWVAVISYDGNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDDSGSYLYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-137K LC (SEQ ID NO:343)
MRLPAQLLGLLMLWVPGSSG DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLTWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKKTKVDNALQSGNSQESVTEQDSKDSTYSLVSSTLKAACEDYVTSFCPVSSTLKAACEDKHQ

1028-164L HC (SEQ ID NO:354)
MDILCSTLLLLTVPSWVLS QVTLRESGPALVKPTQTLTLTCTFSGFSLSTSGMCVSWIRQPPGKALEWLALIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARIPVEMATIGDYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1028-164L LC (SEQ ID NO:365)
MAGFPLLLTLLTHCAGSWA QSVLTQPPSESGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSTECSTVSYSCQVTHEGSTECSTVEKQ

0210-19K HC (SEQ ID NO:376)
MSVSFLIFLPVLGLPWGVLS QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQLSLQLNSVTPEDTAVYYCARSPSYQLLYPYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-19K LC (SEQ ID NO:387)
MDMRVPAQLLGLLLLWLPGTRC DIQMTQSPSSLSASVGDRVTITCRASQGISNSLAWYQQKPGKAPELLLYAASRLESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQYYSTPYTFGQGTKLEIRRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVNSQESVTEQDSKDSTYSLSSTLTLSKASFKDSTYSLGSTLTLSKASFTK

0210-20L HC (SEQ ID NO:398)
MDWTWRFLFVVAAATGVQS QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARALGYSGYGSTYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-20L LC (SEQ ID NO: 409)
MAWSPLLLTLLAHCTGSWA QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGGVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSTVECTVAPTECVTHE

0210-28K HC (SEQ ID NO:420)
MDWIWRILFLVGAATGAHS QMQLVQSGPEVKKPGTSVKVSCKASGFTFSISAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRFEDTAVYYCAAPYCGGDCSDGFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-28K LC (SEQ ID NO:431)
METPAQLLFLLLLWLPDTTG EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVNSQESVTEQDSKDSTYSLGLSSTLTLSKASFKDSTYSLSSTLTLSKASFKHKGSSTKVYACE

0210-30L HC (SEQ ID NO:442)
MDWTWRFLFVVAAATGVQS QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAINWVRQAPGQGLEWMGRIIPILGRANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARNPEEFSSSYVYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-30L LC (SEQ ID NO:453)
MAWALLLLSLLTQGTGSWA QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYSYVSWYQQHPDKAPKLMIYDVSKRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTSWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSTVEKSTVTECTVAPQVTHE

0210-31L HC (SEQ ID NO:464)
MEFGLSWVFLVAILKGVQC EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWVRQAPGKGLEWVGFIRSKAYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDTAVYYCTRDSITMVQGVIIRLDYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-31L LC (SEQ ID NO:475)
MAWAPLLLTLLAHCTGSWA NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNKVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQGSEKSTVTHETV

0210-35K HC (SEQ ID NO:486)
MKHLWFFLLLVAAPRWVLS QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYSGSANYNPSLRSRVTISVDTSKNHFSLKLSSVTAADTAVYYCARDIGYDSSGPDAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-35K LC (SEQ ID NO:497)
MEAPAQLLFLLLLWLPDTTG EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPGTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSPVTKQESVTEQDSKDSTYSLSSTLTLSKADYEKHKSSTLTLSKADYEKHKSSTLTLSVTGLGENRHQ

0210-38L HC (SEQ ID NO:508)
MELGLSWVFLVAILEGVQC EVQLVESGGGLVQPGGSLRLSCAASGFTFNSYWMSWVRQAPGKGLEWVADIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARQLYYYGPIDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-38L LC (SEQ ID NO:519)
MAWAPLLLTLLAHCTGSWA NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSNNRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQGSKAPTSTHETV

0210-52L HC (SEQ ID NO:530)
MGSTAILALLLAVLQGVCA EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKFISTAYLQWSSLKASDTAMYYCARRSGYDLASSHNWLDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-52L LC (SEQ ID NO: 541)
MAWSPLLLTLLAHCTGSWA QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNTLSGSLFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQTECSTVVTHE

0210-58K HC (SEQ ID NO:552)
MDTLCYTLLLLTTPSWVLS QVTLKESGPVLVKPTETLTLTCTVSGFSLSNAKMGVSWIRQPPGKALEWLAHIFSGDEKSYSTSLKSRLTISKDTSKSQVVVTMTNMDPVDTATYYCARILWFRSYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

0210-58K LC (SEQ ID NO:563)
MDMRVPAQLLGLLLLWFPGSRC DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSSSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVTKQESVTEQDSKDSTYSLSSTLGENRCSFVTEKHKVYACENRCSF

1-15HC (SEQ ID NO:574)
MELGLSWVFLVAILEGVQC EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSTIGTAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARGIQQQLALRYYYYLDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1-15 LC (SEQ ID NO: 585)
MRVPAQLLGLLLLWLRGARC DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSNPTWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSSSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVTKQESVTEQDSKDSTYSLSSTLGENRCSFVTEKHKVYACE VTKDSTYSLSSTLGENRKASF

1-44HC (SEQ ID NO:596)
MEFGLSWLFLVAILKGVQC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLLMNSLRAEDTAVYYCAKDGEWYYDFWSGPVYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

1-44 LC (SEQ ID NO: 607)
MDMRVPAQLLGLLLLWLPGAKC DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSRTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGPVTKQESVTEQDSKDSTYSLSSTLGENRCSFDEKHKVYACENRCSF
 本明細書において,アミノ酸は一文字表記で表される。具体的には,Aはアラニン,Lはロイシン,Rはアルギニン,Kはリシン,Nはアスパラギン,Mはメチオニン,Dはアスパラギン酸,Fはフェニルアラニン,Cはシステイン,Pはプロリン,Qはグルタミン,Sはセリン,Eはグルタミン酸,Tはトレオニン,Gはグリシン,Wはトリプトファン,Hはヒスチジン,Yはチロシン,Iはイソロイシン,Vはバリンを表す。本明細書において,「XNY」(X及びYはアミノ酸一文字表記;Nは自然数)は,N位のアミノ酸Xがアミノ酸Yに置換されていることを示す。 In this specification, amino acids are represented by single-letter codes. Specifically, A is alanine, L is leucine, R is arginine, K is lysine, N is asparagine, M is methionine, D is aspartic acid, F is phenylalanine, C is cysteine, P is proline, Q is glutamine, S is serine, E is glutamic acid, T is threonine, G is glycine, W is tryptophan, H is histidine, Y is tyrosine, I isoleucine and V is valine. As used herein, "XNY" (X and Y are amino acid one-letter codes; N is a natural number) indicates that amino acid X is substituted with amino acid Y at the N-position.
 別の態様において,本発明は,前記抗体又はその抗原結合断片と,SARS-CoV2スパイクタンパク質又はRBDへの結合において競合する抗体に関する。被検抗体が,前記抗体又はその抗原結合断片と,SARS-CoV2スパイクタンパク質又はRBDへの結合において競合するか否かは,標識化された前記抗体又はその抗原結合断片を用いて,被検抗体と共に固相化された抗原(SARS-CoV2スパイクタンパク質又はRBD,本段落において以下同様)に接触させることにより決定することができる。コントロールとして,標識化された前記抗体又はその抗原結合断片を単独で(被検抗体非存在下で)抗原に接触させる。被検抗体を抗原に接触させた後,必要に応じて洗浄し,抗原に結合した標識化された前記抗体又はその抗原結合断片の標識量をコントロールと,被検抗体存在下とで比較する。被検抗体の存在下で抗原に接触させた場合の標識化された前記抗体又はその抗原結合断片の抗原への結合量が,コントロールにおける標識化された前記抗体又はその抗原結合断片の抗原への結合量よりも少ない場合には,当該被検抗体は,当該実験において用いられた標識化された前記抗体又はその抗原結合断片と競合すると決定することができる。 In another aspect, the present invention relates to an antibody that competes with the antibody or antigen-binding fragment thereof for binding to the SARS-CoV2 spike protein or RBD. Whether the test antibody competes with the antibody or antigen-binding fragment thereof for binding to the SARS-CoV2 spike protein or RBD is determined using the labeled antibody or antigen-binding fragment thereof. It can be determined by contacting with an antigen (SARS-CoV2 spike protein or RBD, the same applies hereinafter in this paragraph) immobilized together. As a control, the labeled antibody or antigen-binding fragment thereof alone (in the absence of the antibody to be tested) is brought into contact with the antigen. After the test antibody is brought into contact with the antigen, it is washed if necessary, and the labeled amount of the labeled antibody or antigen-binding fragment thereof bound to the antigen is compared between the control and the presence of the test antibody. The amount of binding of the labeled antibody or antigen-binding fragment thereof to the antigen when contacted with the antigen in the presence of the test antibody is the same as that of the labeled antibody or antigen-binding fragment thereof in the control. If less than the binding amount, the test antibody can be determined to compete with the labeled antibody or antigen-binding fragment thereof used in the experiment.
 抗原への結合試験は,適宜上述のRBD等への結合を測定する方法に準じて行うことができる。例えば,抗体と抗原との結合の測定は,例えば,EIA法,ELISA法,FACS法,共免疫沈降法,プルダウンアッセイ法,ファーウェスタンブロッティング法,ホモバイファンクショナルクロスリンカー若しくはヘテロバイファンクショナルクロスリンカーを利用するクロスリンク法,ラベル転移反応法,相互作用マッピング法,表面プラズモン共鳴法,FRET(Fluorescence resonance energy transfer)法,BIACORE法,AlphaScreen(登録商標)やAlphaLISA(登録商標)などのAlphaPPIアッセイ(PerkinElmer)など,多様な方法が本技術分野において周知であり,適宜好ましい方法を採用することができる。 Antigen binding tests can be performed according to the above-mentioned methods for measuring binding to RBD, etc. as appropriate. For example, measurement of binding between antibody and antigen can be performed by EIA method, ELISA method, FACS method, co-immunoprecipitation method, pull-down assay method, Far-Western blotting method, homobifunctional crosslinker or heterobifunctional crosslinker cross-linking method, label transfer reaction method, interaction mapping method, surface plasmon resonance method, FRET (Fluorescence resonance energy transfer) method, BIACORE method, AlphaScreen (registered trademark) and AlphaPPI assay such as AlphaLISA (registered trademark) ( A variety of methods are well known in the art, such as PerkinElmer), and any suitable method can be employed.
 更に別の態様において,本発明は,前記抗体又はその抗原結合断片と,同じエピトープを認識する抗体に関する。例えば、0210-28K(28K)抗体の場合、SARS-CoV-2 RBDのA475,G476,S477,T478,F486,N487,Y489及びQ493と相互作用することから、28K抗体と同じエピトープを認識する抗体は、エピトープとしてこれらから選択される少なくとも1個(例えば、1個、2個またはそれ以上、3個またはそれ以上、4個またはそれ以上、5個またはそれ以上、6個またはそれ以上、あるいは7個)のアミノ酸残基を認識する抗体である。特に、28K抗体と同じエピトープを認識する抗体のエピトープは、RBDのA475,G476,S477,及びT478から選択される一部(例えば、1個またはそれ以上、2個またはそれ以上、あるいは、3個またはそれ以上)又は全てを含む。好ましくは、28K抗体と同じエピトープを認識する抗体は、RBDのA475,G476,S477,及びT478の主鎖と相互作用することにより結合する。例えば,28K抗体と同じエピトープを認識する抗体は、そのVHのS55,N57,D104,C105,S106,及びD107から選択される少なくとも1個のアミノ酸残基が,RBDのA475,G476,S477,T478,F486,N487,Y489及びQ493から選択される少なくとも1個のアミノ酸残基と結合してもよい。また,VLのY33,Y92,W97から選択される少なくとも1個のアミノ酸残基が,RBDのF486のアミノ酸残基との結合に関与していてもよい。 In yet another aspect, the present invention relates to an antibody that recognizes the same epitope as the antibody or antigen-binding fragment thereof. For example, in the case of 0210-28K (28K) antibody, since it interacts with A475, G476, S477, T478, F486, N487, Y489 and Q493 of SARS-CoV-2 RBD, an antibody that recognizes the same epitope as 28K antibody has at least one selected from these as epitopes (e.g., 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, or 7 ) is an antibody that recognizes the amino acid residues of In particular, the epitope of the antibody that recognizes the same epitope as the 28K antibody is a portion selected from RBD A475, G476, S477, and T478 (e.g., one or more, two or more, or three or more) or all. Preferably, antibodies that recognize the same epitope as the 28K antibody bind by interacting with the backbone of RBD A475, G476, S477, and T478. For example, an antibody that recognizes the same epitope as the 28K antibody has at least one amino acid residue selected from S55, N57, D104, C105, S106, and D107 of its VH, A475, G476, S477, and T478 of RBD. , F486, N487, Y489 and Q493. In addition, at least one amino acid residue selected from Y33, Y92 and W97 of VL may be involved in binding to the amino acid residue of F486 of RBD.
(核酸分子)
 別の態様において,本発明は,上述の本発明の抗体又はその免疫反応性断片をコードするポリヌクレオチドを有する核酸分子に関する。一態様において,本発明は,上述の表2に記載された重鎖可変領域及び軽鎖可変領域の核酸配列を有する核酸分子である。また,一例において,本発明は,配列番号3,25,47,69,91,113,135,157,179,201,223,245,267,289,311,333,355,377,399,421,443,465,487,509,531,553,575,又は597に記載の核酸配列を有する重鎖をコードするDNAを含む核酸分子,あるいは/並びに,それぞれ,配列番号14,36,58,80,102,124,146,168,190,212,234,256,278,300,322,344,366,388,410,432,454,476,498,520,542,564,586,又は608に記載の核酸配列を有する軽鎖をコードするDNAを含む核酸分子である。
(nucleic acid molecule)
In another aspect, the invention relates to a nucleic acid molecule comprising a polynucleotide encoding an antibody or immunoreactive fragment thereof of the invention as described above. In one aspect, the invention is a nucleic acid molecule having the nucleic acid sequences of the heavy and light chain variable regions set forth in Table 2, supra. Also, in one example, the present invention provides SEQ ID NOs: , 443, 465, 487, 509, 531, 553, 575, or 597, or/and SEQ ID NOS: 14, 36, 58, 80, respectively. , 102,124,146,168,190,212,234,256,278,300,322,344,366,388,410,432,454,476,498,520,542,564,586, or 608 A nucleic acid molecule comprising DNA encoding a light chain having the nucleic acid sequence described.
 更に,本発明は,前記核酸分子を有するベクターを包含する。このようなベクターとしては,抗体の発現に利用可能なベクターであれば特に制限されるものではなく,適切なウイルスベクター又はプラスミドベクターなどを使用する宿主に応じて選択することができる。別の態様において,本発明は,前記ベクターを含有する宿主細胞に関する。宿主細胞としては,抗体の発現に利用可能な宿主細胞であれば特に制限されるものではなく,哺乳類細胞(マウス細胞,ラット細胞,ハムスター細胞,ウサギ細胞,ヒト細胞など),酵母,微生物(大腸菌など)を挙げることができる。 Furthermore, the present invention encompasses a vector comprising the nucleic acid molecule. Such a vector is not particularly limited as long as it can be used for antibody expression, and an appropriate viral vector, plasmid vector, or the like can be selected according to the host to be used. In another aspect, the invention relates to a host cell containing said vector. Host cells are not particularly limited as long as they are host cells that can be used to express antibodies, and mammalian cells (mouse cells, rat cells, hamster cells, rabbit cells, human cells, etc.), yeast, microorganisms (E. coli etc.) can be mentioned.
 本発明の核酸は,上述において得られた抗体を産生するハイブリドーマからクローニングするか,あるいは,上述において得られた抗体又はその免疫反応性断片のアミノ酸配列を基に,適宜核酸配列を設計することにより得ることができる。本発明のベクターは,得られた核酸を適宜発現に適したベクターに組み込むことにより得ることができる。本発明のベクターは,本発明の核酸の他,発現に必要な領域(プロモーター,エンハンサー,ターミネーター等)を含んでいてもよい。また,本発明の宿主細胞は,本発明のベクターを適切な細胞株(例えば,動物細胞,昆虫細胞,植物細胞,酵母,大腸菌等の微生物)に導入することにより得ることができる。 The nucleic acid of the present invention is cloned from the antibody-producing hybridoma obtained above, or by designing a nucleic acid sequence as appropriate based on the amino acid sequence of the antibody or immunoreactive fragment thereof obtained above. Obtainable. The vector of the present invention can be obtained by appropriately integrating the obtained nucleic acid into a vector suitable for expression. The vector of the present invention may contain regions necessary for expression (promoter, enhancer, terminator, etc.) in addition to the nucleic acid of the present invention. Also, the host cell of the present invention can be obtained by introducing the vector of the present invention into an appropriate cell strain (eg, animal cells, insect cells, plant cells, yeast, microorganisms such as E. coli).
(抗体の製造)
 本発明の抗体は,本明細書記載の配列に基づき適宜設計して作成することができる。例えば,本明細書記載の可変領域(VR)を有する抗体は,当該抗体をコードする核酸配列を適宜産生細胞に導入して抗体を産生させることができる。また,例えば,本明細書記載のCDRを有する抗体の場合,当該配列を有する重鎖及び軽鎖をコードする核酸配列を設計し,当該核酸配列を既報に基づいて調製後,CHO細胞などの産生細胞に導入した後,SARS-CoV-2スパイクに結合するクローンを選択することができる。具体的には,当該細胞を培養後,培養上清を採取し,上清中の抗体のSARS-CoV-2スパイクへの結合を測定することによりSARS-CoV-2スパイクへ結合するクローンを選択する。選択された細胞を培養して本発明の抗体を取得することができる。
(Manufacturing of antibody)
Antibodies of the present invention can be designed and produced as appropriate based on the sequences described herein. For example, an antibody having a variable region (VR) as described herein can be produced by appropriately introducing a nucleic acid sequence encoding the antibody into a production cell. In addition, for example, in the case of an antibody having the CDRs described herein, a nucleic acid sequence encoding a heavy chain and a light chain having the sequence is designed, and after preparing the nucleic acid sequence based on the previous report, production of CHO cells etc. After introduction into cells, clones that bind to the SARS-CoV-2 spike can be selected. Specifically, after culturing the cells, the culture supernatant is collected and the binding of antibodies in the supernatant to the SARS-CoV-2 spike is measured to select clones that bind to the SARS-CoV-2 spike. do. Antibodies of the present invention can be obtained by culturing selected cells.
 得られた抗体は,均一にまで精製することができる。抗体の分離,精製は通常のタンパク質で使用されている分離,精製方法を使用することができる。例えば,アフィニティークロマトグラフィ等のカラムクロマトグラフィ,フィルター,限外濾過,塩析,透析,SDSポリアクリルアミドゲル電気泳動,等電点電気泳動等を適宜選択,組み合わせることにより,抗体を分離,精製することができる(Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory,1988)。アフィニティークロマトグラフィに用いるカラムとしては,例えば,プロテインAカラム,プロテインGカラムを挙げることができる。更に,抗体のクラスによらず,SARS-CoV-2固相化カラム,サイズ排除クロマトグラフィ,イオン交換クロマトグラフィ,疎水相互作用クロマトグラフィ等を用いることもできる。また,クロマトグラフィをミックスモードとすることもできる。 The obtained antibody can be purified to homogeneity. Separation and purification of antibodies can be carried out using methods commonly used for separation and purification of proteins. For example, antibodies can be separated and purified by appropriately selecting and combining column chromatography such as affinity chromatography, filter, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, and the like. (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988). Columns used for affinity chromatography include, for example, protein A columns and protein G columns. Furthermore, SARS-CoV-2-immobilized columns, size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, etc. can also be used regardless of the antibody class. Chromatography can also be in mixed mode.
(医薬組成物(治療薬,予防薬)及び治療方法)
 また,別の態様において,本発明は,上述の本発明の抗体又はその免疫反応性断片を有効成分として含有する医薬組成物に関する。本発明の抗体又はその免疫反応性断片は,必要により精製した後,常法に従って製剤化して,医薬組成物とすることができる。本発明の医薬組成物の対象疾患は,コロナウイルス感染症であり,例えば,コロナウイルス,特には,SARS-CoV,MERS-CoV,若しくはSARS-CoV-2が原因のウイルス性疾患,又はそれに起因する疾患である。よって,本発明の医薬組成物は,これらの疾患又は障害の予防薬,治療薬,進行抑制剤又は改善薬とすることができる。あるいは,本発明は,前記医薬組成物を製造するための,本発明の抗体又はその免疫反応性断片の使用に関する。あるいは,本発明は,本発明の抗体又はその免疫反応性断片の,コロナウイルス感染症の治療若しくは予防のための使用を含む。更に,本発明は,本発明の抗体又はその免疫反応性断片を投与することを含む,コロナウイルス感染症の治療方法若しくは予防方法に関する。コロナウイルス感染症は,好ましくは,ヒトコロナウイルス感染症である。
(Pharmaceutical composition (therapeutic drug, prophylactic drug) and treatment method)
In another aspect, the present invention relates to a pharmaceutical composition containing the above-described antibody or immunoreactive fragment thereof of the present invention as an active ingredient. The antibody or immunoreactive fragment thereof of the present invention can be purified, if necessary, and formulated into a pharmaceutical composition according to a conventional method. The target disease of the pharmaceutical composition of the present invention is a coronavirus infection, for example, a coronavirus, in particular, a viral disease caused by SARS-CoV, MERS-CoV, or SARS-CoV-2, or caused by it It is a disease that Therefore, the pharmaceutical composition of the present invention can be used as a prophylactic agent, therapeutic agent, inhibitor of progression, or ameliorative agent for these diseases or disorders. Alternatively, the invention relates to the use of an antibody or immunoreactive fragment thereof of the invention for the manufacture of said pharmaceutical composition. Alternatively, the invention includes the use of the antibodies of the invention, or immunoreactive fragments thereof, for the treatment or prevention of coronavirus infection. Additionally, the present invention relates to methods of treating or preventing coronavirus infection comprising administering an antibody or immunoreactive fragment thereof of the present invention. A coronavirus infection is preferably a human coronavirus infection.
 本発明の医薬組成物は,患者に投与することができる製剤であれば経口又は非経口のいかなる製剤を採用してもよい。非経口投与のための組成物としては,例えば,注射剤,点鼻剤,吸入剤,点眼剤等を挙げることができる。好ましくは,注射剤である。本発明の医薬組成物の剤形は,例えば,液剤又は凍結乾燥製剤を挙げることができる。本発明の医薬組成物を注射剤として使用する場合,必要に応じて,プロピレングリコール,エチレンジアミン等の溶解補助剤,リン酸塩等の緩衝材,塩化ナトリウム,グリセリン等の等張化剤,亜硫酸塩等の安定剤,フェノール等の保存剤,リドカイン等の無痛化剤等の添加物(「医薬品添加物事典」薬事日報社,「Handbook of Pharmaceutical Excipients Fifth Edition」APhA Publications社参照)を加えることができる。また,本発明の医薬組成物を注射剤として使用する場合,保存容器としては,アンプル,バイアル,プレフィルドシリンジ,ペン型注射器用カートリッジ,及び,点滴用バッグ等を挙げることができる。 The pharmaceutical composition of the present invention may adopt any oral or parenteral formulation as long as it can be administered to a patient. Compositions for parenteral administration include, for example, injections, nasal drops, inhalants, eye drops and the like. An injection is preferred. Dosage forms of the pharmaceutical composition of the present invention include, for example, liquid formulations and freeze-dried formulations. When the pharmaceutical composition of the present invention is used as an injection, if necessary, solubilizers such as propylene glycol and ethylenediamine, buffering agents such as phosphate, tonicity agents such as sodium chloride and glycerin, and sulfites. Additives such as stabilizers such as phenol, preservatives such as phenol, and soothing agents such as lidocaine (see "Pharmaceutical excipient dictionary" Yakuji Nippo, "Handbook of Pharmaceutical Excipients Fifth Edition" APhA Publications) . When the pharmaceutical composition of the present invention is used as an injection, storage containers include ampoules, vials, prefilled syringes, pen-type syringe cartridges, and drip bags.
 例えば,本発明の医薬組成物(治療薬若しくは予防薬)は,注射剤として利用する場合,静脈注射剤,皮下注射剤,皮内注射剤,筋肉注射剤,点滴注射剤などの剤形を包含する。このような注射剤は,公知の方法に従って,例えば,上記抗体等を通常注射剤に用いられる無菌の水性もしくは油性液に溶解,懸濁又は乳化することによって調製することができる。注射用の水性液としては,例えば,生理食塩水,ブドウ糖,ショ糖,マンニトール,その他の補助薬を含む等張液等が用いることができ,適当な溶解補助剤,例えば,アルコール(例,エタノール),ポリアルコール(例,プロピレングリコール,ポリエチレングリコール),非イオン界面活性剤〔例,ポリソルベート80,ポリソルベート20,HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil)〕等を添加することができる。油性液としては,例えば,ゴマ油,大豆油などを用いることができ,溶解補助剤として安息香酸ベンジル,ベンジルアルコール等を添加することができる。調製された注射液は,通常,適当なアンプル,バイアル,シリンジに充填される。また,本発明の抗体又はその免疫反応性断片に適当な賦形剤を添加することにより,凍結乾燥製剤を調製し,用時,注射用水,生理食塩水などで溶解して注射液とすることもできる。なお,一般的に抗体などのタンパク質の経口投与は消化器により分解されるため困難とされるが,抗体断片や修飾した抗体断片と剤形の創意工夫により,経口投与の可能性もある。経口投与の製剤としては,例えば,カプセル剤,錠剤,シロップ剤,顆粒剤等を挙げることができる。 For example, when the pharmaceutical composition (therapeutic drug or prophylactic drug) of the present invention is used as an injection, it includes dosage forms such as intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and drip injection. do. Such injections can be prepared according to known methods, for example, by dissolving, suspending, or emulsifying the above-mentioned antibody in a sterile aqueous or oily liquid commonly used for injections. Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose, sucrose, mannitol, and other adjuvants. ), polyalcohols (eg, propylene glycol, polyethylene glycol), nonionic surfactants [eg, polysorbate 80, polysorbate 20, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. can be added. . Sesame oil, soybean oil, and the like can be used as the oily liquid, and benzyl benzoate, benzyl alcohol, and the like can be added as solubilizers. The prepared injection solution is usually filled into a suitable ampoule, vial or syringe. Alternatively, the antibody of the present invention or an immunoreactive fragment thereof may be added to a suitable excipient to prepare a lyophilized formulation, and dissolved in water for injection, physiological saline, etc. at the time of use to prepare an injection solution. can also In general, oral administration of proteins such as antibodies is considered difficult because they are degraded in the digestive system, but oral administration is also possible with antibody fragments, modified antibody fragments, and ingenuity in dosage forms. Oral preparations include, for example, capsules, tablets, syrups, granules and the like.
 本発明の医薬組成物は,活性成分の投与量に適合するような投薬単位の剤形に調製されることが好適である。このような投薬単位の剤形としては,注射剤(アンプル,バイアル,プレフィルドシリンジ)が例示され,投薬単位剤形当たり通常5~500mg,5~100mg,10~250mgの本発明の抗体又はその免疫反応性断片を含有していても良い。 The pharmaceutical composition of the present invention is preferably prepared in a dosage unit form suitable for the dosage of the active ingredient. Examples of such dosage unit dosage forms include injections (ampoules, vials, prefilled syringes), and usually 5 to 500 mg, 5 to 100 mg, and 10 to 250 mg of the antibody of the present invention or its immunological agent per dosage unit dosage form. It may contain a reactive fragment.
 本発明の抗体や医薬組成物(治療薬若しくは予防薬)の投与は,局所的であってもよく,全身的であってもよい。投与方法には特に制限はなく,上述のとおり非経口的又は経口的に投与される。非経口的投与経路としては,眼内,皮下,腹腔内,血中(静脈内,若しくは動脈内)又は脊髄液への注射又は点滴等が挙げられ,好ましくは,眼内又は血中への投与である。本発明の医薬組成物(治療薬若しくは予防薬)は,一時的に投与してもよいし,持続的又は断続的に投与してもよい。例えば,投与は,1分間~2週間の持続投与することもできる。また,本発明の抗体は,単独で投与されてもよいし,他の薬剤と共に併用により投与されてもよい。 The administration of the antibody or pharmaceutical composition (therapeutic or prophylactic) of the present invention may be local or systemic. The administration method is not particularly limited, and is administered parenterally or orally as described above. Parenteral routes of administration include intraocular, subcutaneous, intraperitoneal, blood (intravenous or intraarterial) injection or infusion into spinal fluid, preferably intraocular or blood administration. is. The pharmaceutical composition (therapeutic or prophylactic) of the present invention may be administered temporarily, continuously or intermittently. For example, administration can be sustained for 1 minute to 2 weeks. Moreover, the antibody of the present invention may be administered alone or in combination with other drugs.
 本発明の医薬組成物の投与量は,所望の治療効果又は予防効果が得られる投与量であれば特に限定は無く,症状,性別,年齢等により適宜決定することができる。本発明の医薬組成物の投与量は,例えば,血管新生が発症又は増悪化に寄与する疾患又は障害の治療効果又は予防効果を指標として決定することができる。例えば,血管新生が発症又は増悪化に寄与する疾患又は障害の患者の予防及び/又は治療のために使用する場合には,本発明の医薬組成物の有効成分の1回量として,通常0.01~20mg/kg体重程度,好ましくは0.1~10mg/kg体重程度,さらに好ましくは0.1~5mg/kg体重程度を,1月1~10回程度,好ましくは1月1~5回程度,静脈注射により投与するのが好都合である。他の非経口投与及び経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には,その症状に応じて増量又は投与回数を増加させてもよい。 The dosage of the pharmaceutical composition of the present invention is not particularly limited as long as the desired therapeutic or preventive effect can be obtained, and can be appropriately determined according to symptoms, sex, age, and the like. The dosage of the pharmaceutical composition of the present invention can be determined, for example, using the therapeutic effect or preventive effect of diseases or disorders in which angiogenesis contributes to the onset or exacerbation of angiogenesis. For example, when used for the prevention and/or treatment of a patient with a disease or disorder in which angiogenesis contributes to the onset or exacerbation of angiogenesis, the active ingredient of the pharmaceutical composition of the present invention is usually added at a dose of 0.2 to 0.5 g/day. 01 to 20 mg/kg body weight, preferably 0.1 to 10 mg/kg body weight, more preferably 0.1 to 5 mg/kg body weight, about 1 to 10 times a month, preferably 1 to 5 times a month To some extent, it is convenient to administer by intravenous injection. In the case of other parenteral administration and oral administration, the amount according to this can be administered. If the symptoms are particularly severe, the dose or frequency of administration may be increased according to the symptoms.
(診断用・検出用組成物)
 SARS-CoV2感染症の診断及びSARS-CoV2の検出は,前記抗体又はその抗原結合性断片を用いて,ELISA,ラジオイムノアッセイ,イムノクロマト,免疫組織化学的方法により行うことができる。抗体又はその免疫反応性断片は,必要に応じて標識されていてもよい。標記の結合は当分野において一般的な方法により行うことができる。例えば,蛍光標識する場合,タンパク質又はペプチドをリン酸緩衝液で洗浄した後,DMSO,緩衝液等で調整した色素を加え,混合した後室温で10分間静置することにより結合させることができる。また,市販の標識キットとして,ビオチン標識キット(Biotin Labeling Kit-NH2,Biotin Labeling Kit-SH:株式会社同仁化学研究所),アルカリフォスファターゼ標識用キット(Alkaline Phosphatase Labeling Kit-NH2,Alkaline Phosphatase Labeling Kit-SH:株式会社同仁化学研究所),ペルオキシダーゼ標識キット(Peroxidase Labering Kit-NH,Peroxidase Labering Kit-NH:株式会社同仁化学研究所),フィコビリプロテイン標識キット(Allophycocyanin Labeling Kit-NH,Allophycocyanin Labeling Kit-SH,B-Phycoerythrin Labeling Kit-NH,B-Phycoerythrin Labeling Kit-SH,R-Phycoerythrin Labeling Kit-NH,R-Phycoerythrin Labeling Kit-SH:株式会社同仁化学研究所),蛍光標識キット(Fluorescein Labeling Kit-NH,HiLyte Fluor(登録商標) 555 Labeling Kit-NH,HiLyte Fluor(登録商標) 647 Labeling Kit-NH:株式会社同仁化学研究所),DyLight547,DyLight647(テクノケミカル株式会社),Zenon(登録商標)Alexa Fluor(登録商標)抗体標識キット,Qdot(登録商標)抗体標識キット(インビトロゲン社),EZ-Label Protein Labeling Kit(フナコシ株式会社)等を用いて標識することもできる。
(Diagnostic/Detective Composition)
Diagnosis of SARS-CoV2 infection and detection of SARS-CoV2 can be performed by ELISA, radioimmunoassay, immunochromatography, immunohistochemistry using the antibody or antigen-binding fragment thereof. An antibody or immunoreactive fragment thereof may optionally be labeled. Attachment of the title can be carried out by methods common in the art. For example, in the case of fluorescent labeling, after washing the protein or peptide with a phosphate buffer, a dye adjusted with DMSO, a buffer, etc. is added, mixed, and allowed to stand at room temperature for 10 minutes for binding. In addition, commercially available labeling kits include a biotin labeling kit (Biotin Labeling Kit-NH2, Biotin Labeling Kit-SH: Dojindo Laboratories), an alkaline phosphatase labeling kit (Alkaline Phosphatase Labeling Kit-NH2, Alkaline Phosphatase Labeling Kit- SH: Dojindo Laboratories), Peroxidase Labeling Kit-NH 2 , Peroxidase Labeling Kit-NH 2 : Dojindo Laboratories), Phycobiliprotein Labeling Kit (Allophycocyanin Labeling Kit-NH 2 , Allophycocyanin Labeling Kit-SH, B-Phycoerythrin Labeling Kit-NH 2 , B-Phycoerythrin Labeling Kit-SH, R-Phycoerythrin Labeling Kit-NH 2 , R-Phycoerythrin Labeling Kit-SH: Dojindo Laboratories), fluorescent labeling kit (Fluorescein Labeling Kit-NH 2 , HiLyte Fluor (registered trademark) 555 Labeling Kit-NH 2 , HiLyte Fluor (registered trademark) 647 Labeling Kit-NH 2 : Dojindo Laboratories), DyLight 547, DyLight 647 (Techno Chemical Co., Ltd.) ), Zenon (registered trademark) Alexa Fluor (registered trademark) antibody labeling kit, Qdot (registered trademark) antibody labeling kit (Invitrogen), EZ-Label Protein Labeling Kit (Funakoshi Co., Ltd.), etc. can.
 前記診断用組成物又は検出用組成物を用いた診断及び検出は,ELISA,イムノクロマトなどの方法で行うことができる。本明細書における検出や測定は,定量的,反定量的,定性的であってもよい。診断/検出方法において使用するサンプルとしては,例えば,生検として被験者から採取した組織試料または液体を使用することができる。使用される検体は,本発明の測定の対象となるものであれば特に限定はなく,例えば,組織,血液,血漿,血清,リンパ液,尿,漿液,髄液,関節液,眼房水,涙液,唾液,口腔内/鼻腔内洗浄液またはそれらの分画物若しくは処理物を挙げることができる。また,本発明の方法において使用する患者由来の試料は,測定試験に先立ち前処理されたものであってもよいし,患者から採取した検体をそのまま使用してもよい。診断方法は,適宜診断ための情報を提供する方法,又は,SARS-CoV2感染症の状態又は進行をモニターする方法であってもよい。 Diagnosis and detection using the diagnostic composition or detection composition can be performed by methods such as ELISA and immunochromatography. Detection and measurement herein may be quantitative, semi-quantitative or qualitative. Samples used in diagnostic/detection methods can be, for example, tissue samples or fluids taken from a subject as a biopsy. The specimen to be used is not particularly limited as long as it is the object of the measurement of the present invention. Fluids, saliva, oral/nasal washes or fractions or treatments thereof may be mentioned. In addition, the patient-derived sample used in the method of the present invention may be pretreated prior to the measurement test, or the specimen collected from the patient may be used as it is. The diagnostic method may be a method of providing information for diagnosis as appropriate, or a method of monitoring the state or progression of SARS-CoV2 infection.
(検出用キット)
 本発明のキットは,SARS-CoV2と特異的に結合する第一抗体が固定化した,固相,ハプテン,磁気ビーズ及び不溶性担体からなる群より選択される担体を含むことを特徴とする免疫化学測定のキットである。また,本発明のキットは,適宜標識されたSARS-CoV2と結合する抗体を含んでいてもよい。
(Detection kit)
The kit of the present invention comprises a carrier selected from the group consisting of a solid phase, a hapten, magnetic beads and an insoluble carrier on which a first antibody that specifically binds to SARS-CoV2 is immobilized. It is a measurement kit. The kit of the present invention may also contain an appropriately labeled antibody that binds to SARS-CoV2.
 以下,実施例に基づいて本発明をより具体的に説明する。ただし,本発明はこれらの実施例に限定されるものではない。なお,本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。 The present invention will be described more specifically below based on examples. However, the present invention is not limited to these examples. All documents cited throughout this application are hereby incorporated by reference in their entirety.
(実施例1)抗SARS-CoV-2スパイクタンパク質結合抗体の取得
 抗SARS-CoV-2スパイクタンパク質抗体価強陽性である1名のCOVID-19患者より末梢血リンパ球を分離し,ISAAC(Immunospot-array assay on a chip)法を用いて,SARS-CoV-2スパイクタンパク質に結合するヒトモノクローナル抗体の作製を試みた。ISAAC法については,Jin A et al.,Nature medicine(2009)26:1088-1092,及びJin A et al.,Nature Protocols(2011)6:668,日本国特許第4148367号及び第6293409号,並びに,日本国特許公開公報第2014-162772号,特開2018-38364,特開2018-77194,及び特開2018-127443参照。
(Example 1) Acquisition of anti-SARS-CoV-2 spike protein-binding antibody Peripheral blood lymphocytes were isolated from one COVID-19 patient who was strongly positive for anti-SARS-CoV-2 spike protein antibody titer, and ISAAC (Immunospot -array assay on a chip) method was used to attempt to generate human monoclonal antibodies that bind to the SARS-CoV-2 spike protein. For the ISAAC method, see Jin A et al. , Nature medicine (2009) 26:1088-1092, and Jin A et al. , Nature Protocols (2011) 6:668, Japanese Patent Nos. 4148367 and 6293409, and Japanese Patent Publication Nos. 2014-162772, JP 2018-38364, JP 2018-77194, and JP 2018 See -127443.
 具体的には,まず,分離した末梢血リンパ球を,5μg/ml R-848(EnzoLifeSciences),5μg/ml抗ヒトCD40抗体(R&D),100μg/ml ヒトIL-21(PEPROTECH),100ng/ml ヒトBAFF(PEPROTECH),2ng/ml ヒトIL-17(PEPROTECH),10ng/ml ヒトIL-4(ProSpec),1000IU/ml ヒトIL-2(ProSpec),2.5μg/ml CpG2006(5’-TCGTCGTTTTGTCGTTTTGTCGT-3’)(配列番号617),5×10-5M メルカプトエタノール,10% FCSを含むRPMI培地にて37℃で6日間培養した。 Specifically, first, the separated peripheral blood lymphocytes were mixed with 5 μg/ml R-848 (EnzoLifeSciences), 5 μg/ml anti-human CD40 antibody (R & D), 100 μg/ml human IL-21 (PEPROTECH), 100 ng/ml Human BAFF (PEPROTECH), 2 ng/ml Human IL-17 (PEPROTECH), 10 ng/ml Human IL-4 (ProSpec), 1000 IU/ml Human IL-2 (ProSpec), 2.5 μg/ml CpG2006 (5′-TCGTCGTTTTGTCGTTTTGTCGT -3′) (SEQ ID NO: 617), cultured in RPMI medium containing 5×10 −5 M mercaptoethanol and 10% FCS at 37° C. for 6 days.
 培養後,CD138細胞を,抗ヒトCD138特異的抗体コンジュゲートマイクロビーズ(Miltenyi Biotec)と,LSカラム(Miltenyi Biotec)を用いて,製造者の説明書にしたがって分離した。分離した細胞をISAAC法に供した。 After culturing, CD138 + cells were isolated using anti-human CD138-specific antibody-conjugated microbeads (Miltenyi Biotec) and LS columns (Miltenyi Biotec) according to the manufacturer's instructions. Separated cells were subjected to the ISAAC method.
 リンパ球チップ及びISAAC法は上掲の文献を参照して実施した。簡潔には,リンパ球チップの表面を10μg/ml SARS-CoV-2スパイクタンパク質(感染研より供与いただいたもの),10μg/ml SARS-CoV-2 N-terminal domain(NTD)タンパク質(ACRO Biosystems)を含むPBS,もしくは,10μg/ml SARS-CoV-2 RBD(ACRO Biosystems)を含むリン酸緩衝生理食塩水(PBS)で浸し,4℃で一夜保温することでSARS-CoV-2スパイクタンパク質,NTD,もしくはRBDをリンパ球チップの表面に固層化した。その抗原溶液を除去した後,そのリンパ球チップの表面を0.01% Biolipidure(NOF Corporation)で室温において30分間ブロッキングした。その後リンパ球チップの表面を,10%FCSを含むRPMI培地で洗浄した。 The lymphocyte chip and ISAAC method were performed with reference to the above-mentioned literature. Briefly, the surface of the lymphocyte chip was treated with 10 μg/ml SARS-CoV-2 spike protein (provided by the National Institute of Infectious Diseases), 10 μg/ml SARS-CoV-2 N-terminal domain (NTD) protein (ACRO Biosystems) or 10 μg/ml SARS-CoV-2 RBD (ACRO Biosystems) in phosphate-buffered saline (PBS) and incubated overnight at 4°C to extract SARS-CoV-2 spike protein, NTD , or RBD was immobilized on the surface of the lymphocyte chip. After removing the antigen solution, the surface of the lymphocyte chip was blocked with 0.01% Biolipidure (NOF Corporation) at room temperature for 30 minutes. After that, the surface of the lymphocyte chip was washed with RPMI medium containing 10% FCS.
 洗浄後,分離したCD138+細胞をそのリンパ球チップに配列し,ウエルの外側に残った細胞を10%FCSを含むRPMI培地を用い穏やかな洗浄により除去した。そのリンパ球チップ上の細胞を,10%FCSを含むRPMI培地にて37℃で3時間培養した。 After washing, the separated CD138+ cells were arranged on the lymphocyte chip, and the cells remaining outside the well were removed by gentle washing using RPMI medium containing 10% FCS. The cells on the lymphocyte chip were cultured in RPMI medium containing 10% FCS at 37°C for 3 hours.
 培養後PBSにて穏やかに洗浄した後,そのチップ上にCy3コンジュゲート抗ヒトIgG-Fc抗体(Sigma)を添加して30分間保温した。PBSにて緩やかな洗浄後,最後に1μMのCell Trace Oregon Green(Molecular Probes)を用いて室温で5分間染色した。単一の細胞から放出された抗原特異的抗体を蛍光顕微鏡(BX51WI,Olympus)の下で観察した。抗原特異的抗体産生細胞を個々のウエルから蛍光顕微鏡下で毛細管(Primetech)を取り付けたマイクロマニピュレーター(TransferMan 4r, Eppendorf)を用いて回収し,次いでそれらを逆転写のためにマイクロチューブに吐出した。 After culturing and gently washing with PBS, a Cy3-conjugated anti-human IgG-Fc antibody (Sigma) was added to the chip and incubated for 30 minutes. After gentle washing with PBS, the cells were finally stained with 1 μM Cell Trace Oregon Green (Molecular Probes) at room temperature for 5 minutes. Antigen-specific antibodies released from single cells were observed under a fluorescence microscope (BX51WI, Olympus). Antigen-specific antibody-producing cells were collected from individual wells under a fluorescence microscope using a micromanipulator (TransferMan 4r, Eppendorf) fitted with a capillary tube (Primetech), and then ejected into microtubes for reverse transcription.
 回収した単一細胞からのVH及びVL断片に関する抗体遺伝子の増幅法は,上掲の文献に記載された方法に準じて行った。簡潔には,15U SuperScriptTM III(Invitrogen)により,それぞれ0.25pmolのIgγ-RT(5’-GCGAGTAGAGGCCTGAGGAC-3’)(配列番号618),Igλ-RT(5’-ACTGTCTTCTCCACGGTGCTCC-3’)(配列番号619),及びIgκ-RT(5’-GATGCCAGTTGTTTGGGTGGT-3’)(配列番号620)プライマー,1U RNase阻害剤(New England Biolabs),0.5mMのそれぞれのdNTP,5mM DTT,0.2% Triton-X100,及び1×1st strand cDNA緩衝液(Invitrogen)を用いて,55℃で1時間逆転写を実施した。cDNAの3’テイリング(3’-tailing)を,20U 末端デオキシヌクレオチドトランスフェラーゼ(Roche)により,4mM MgCl,0.5mM dGTP,50mM P-K緩衝液 (25mM KHPO及び25mM KHPO,pH7.0)及び1U RNase阻害剤を用いて,37℃で1時間実施した。第1PCRを,dCアダプタープライマー(5’-AGCAGTAGCAGCAGTTCGATAACTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3’)(配列番号621)ならびにγ鎖(Igγ-1st:5’-CGAGTTCCAAGTCACGGTCA-3’)(配列番号622),λ鎖(Igλ-1st:5’-CTTCTCCACGGTGCTCCCTTCAT-3’)(配列番号623),及びκ鎖の定常領域(Igκ-1st:5’-CTCCCAGGTGACGGTGACAT-3’)(配列番号624)の混合物を用いて実施した。それぞれの産生物の増幅を,primeSTAR DNAポリメラーゼ(TaKaRa)を用いて,製造業者の説明書にしたがって実施した:30サイクルの,94℃で15秒間の変性,60℃で5秒間のアニーリング,及び72℃で1分30秒間の伸長。次に,結果として得られたPCR産物を水で4倍希釈し,それぞれ2μlをネステッドPCRのために用いた。ネステッドPCRをアダプタープライマー(5’-AGCAGTAGCAGCAGTTCGATAA-3’)(配列番号625)及びγ鎖(Igγ-nest:5’-GCCTTTGACCAAGCAGCCCAA-3’)(配列番号626),λ鎖(Igλ-nest:5’-AGTGTGGCCTTGTTGGCTTG-3’)(配列番号627),又はκ鎖定常領域(Igκ-nest:5’-CGGGAAAGTATTTATTCGCCACA-3’)(配列番号628)に特異的なそれぞれのネステッドプライマーにより,primeSTAR DNAポリメラーゼを用いて実施した。そのPCR産物を,ヒトγ鎖,λ鎖,又はκ鎖に関する完全な定常領域cDNAを含有する発現ベクターの中に挿入した。その後,Expi293F(登録商標)細胞(Thermo Fisher Scientific)をその完全な抗体分子をコードするγ鎖及び,λ鎖もしくはκ鎖発現ベクター両方をExpi293 Expression System(Thermo Fisher Scientific)を用いて同時形質移入し,培養した細胞の上清を7日後に集め,次いでリコンビナントモノクローナル抗体をプロテインGカラム(GE Healthcare)を用いて精製した。 The antibody gene amplification method for the VH and VL fragments from the collected single cells was performed according to the method described in the above-mentioned literature. Briefly, 0.25 pmol each of Igγ-RT (5′-GCGAGTAGAGGCCTGAGGAC-3′) (SEQ ID NO: 618), Igλ-RT (5′-ACTGTCTTCTCCACGGTGCTCC-3′) (SEQ ID NO: 618) was obtained by 15 U SuperScript™ III (Invitrogen). 619), and Igκ-RT (5′-GATGCCAGTTGTTTGGGTGGT-3′) (SEQ ID NO: 620) primer, 1U RNase inhibitor (New England Biolabs), 0.5 mM each dNTP, 5 mM DTT, 0.2% Triton- Reverse transcription was performed at 55° C. for 1 hour using X100 and 1×1st strand cDNA buffer (Invitrogen). 3′-tailing of the cDNA was performed by 20 U terminal deoxynucleotide transferase (Roche) in 4 mM MgCl 2 , 0.5 mM dGTP, 50 mM PK buffer (25 mM K 2 HPO 4 and 25 mM KH 2 PO 4 ). , pH 7.0) and 1 U RNase inhibitor at 37°C for 1 hour. The first PCR was performed with a dC adapter primer (5′-AGCAGTAGCAGCAGTTCGATAACTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3′) (SEQ ID NO: 621) and γ chain (Igγ-1st: 5′-CGAGTTCCAAGTCACGGTCA-3′) (SEQ ID NO: 622), λ chain (Igλ-1st: 5′-CTTCTCCACGGTGCTCCCTTCAT-3′) (SEQ ID NO: 623), and a mixture of the constant region of the kappa chain (Igκ-1st: 5′-CTCCCAGGTGACGGTGACAT-3′) (SEQ ID NO: 624). Amplification of each product was performed using primeSTAR DNA polymerase (TaKaRa) according to the manufacturer's instructions: 30 cycles of denaturation at 94°C for 15 seconds, annealing at 60°C for 5 seconds, and 72 Extension for 1 minute 30 seconds at °C. The resulting PCR products were then diluted 4-fold with water and 2 μl of each was used for nested PCR. Nested PCR was performed using an adapter primer (5'-AGCAGTAGCAGCAGTTCGATAA-3') (SEQ ID NO: 625) and γ chain (Igγ-nest: 5'-GCCTTTGACCAAGCAGCCCAA-3') (SEQ ID NO: 626), λ chain (Igλ-nest: 5'-AGTGTGGCCTTGTTGGCTTG-3') (SEQ ID NO: 627), or the kappa chain constant region (Igκ-nest: 5'-CGGGAAAGTATTATTCGCCACA-3') (SEQ ID NO: 628) using primeSTAR DNA polymerase with respective nested primers implemented. The PCR products were inserted into expression vectors containing the complete constant region cDNAs for human γ, λ, or κ chains. Expi293F® cells (Thermo Fisher Scientific) were then co-transfected with the γ chain encoding the complete antibody molecule and both the λ or κ chain expression vectors using the Expi293 Expression System (Thermo Fisher Scientific). , the supernatant of the cultured cells was collected after 7 days, and then the recombinant monoclonal antibody was purified using a protein G column (GE Healthcare).
 その結果,クローン番号1028-05K,1028-25K,1028-29K,1028-30K,1028-37K,1028-50K,1028-55K,1028-61L,1028-62L,1028-65K,1028-68L,1028-84K,1028-87L,1028-106K,1028-121K,1028-137K,1028-164L,0210-19K,0210-20L,0210-28K,0210-30L,0210-31L,0210-35K,0210-38L,0210-52L,0210-58K,1-15,及び1-44の抗体が得られた。これらの重鎖(シグナルペプチドを含む)の核酸配列は,それぞれ,配列番号1,23,45,67,89,111,133,155,177,199,221,243,265,287,309,331,353,375,397,419,441,463,485,507,529,551,573,及び595に記載の通りであった。また,これらの軽鎖(シグナルペプチドを含む)の核酸配列は,それぞれ,配列番号12,34,56,78,100,122,144,166,188,210,232,254,276,298,320,342,364,386,408,430,452,474,496,518,540,562,584,及び606に記載の通りであった。また,これらの重鎖(シグナルペプチドを含む)のアミノ酸配列は,それぞれ,配列番号2,24,46,68,90,112,133,156,178,200,222,244,266,288,310,332,354,376,398,420,442,464,486,508,530,552,574,及び596に記載の通りであった。また,これらの軽鎖(シグナルペプチドを含む)のアミノ酸配列は,それぞれ,配列番号13,35,57,79,101,123,145,167,189,211,233,255,277,299,321,343,365,387,409,431,453,475,497,519,541,563,585,及び607に記載の通りであった。 As a result, clone numbers 1028-05K, 1028-25K, 1028-29K, 1028-30K, 1028-37K, 1028-50K, 1028-55K, 1028-61L, 1028-62L, 1028-65K, 1028-68L, 1028 -84K, 1028-87L, 1028-106K, 1028-121K, 1028-137K, 1028-164L, 0210-19K, 0210-20L, 0210-28K, 0210-30L, 0210-31L, 0210-35K, 0210-38L , 0210-52L, 0210-58K, 1-15, and 1-44 antibodies were obtained. The nucleic acid sequences of these heavy chains (including signal peptides) are SEQ ID NOS: 1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, respectively. , 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, and 595. Also, the nucleic acid sequences of these light chains (including signal peptides) are SEQ ID NOs: 12, 34, 56, 78, 100, 122, 144, 166, 188, 210, 232, 254, 276, 298, 320, respectively. , 342, 364, 386, 408, 430, 452, 474, 496, 518, 540, 562, 584, and 606. The amino acid sequences of these heavy chains (including signal peptides) are SEQ ID NOs: 2, 24, 46, 68, 90, 112, 133, 156, 178, 200, 222, 244, 266, 288, and 310, respectively. , 332, 354, 376, 398, 420, 442, 464, 486, 508, 530, 552, 574, and 596. The amino acid sequences of these light chains (including signal peptides) are SEQ ID NOs: 13, 35, 57, 79, 101, 123, 145, 167, 189, 211, 233, 255, 277, 299, and 321, respectively. , 343, 365, 387, 409, 431, 453, 475, 497, 519, 541, 563, 585, and 607.
(実施例2)取得抗体のSARS-CoV-2スパイクタンパク質結合アッセイ
 作製した抗体のうち,1028-05K,1028-25K,1028-29K,1028-30K,1028-37K,1028-50K,1028-55K,1028-61L,1028-62L,1028-65K,1028-68L,1028-84K,1028-87L,1028-106K,1028-121K,1028-137K,1028-164Lについて,SARS-CoV-2スパイクタンパク質と結合するかELISAにて解析した。具体的には1μg/ml SARS-CoV-2スパイクタンパク質を含むPBSを,Maxisorp 96 well plate(Nunc)に4℃で一夜保温することで,SARS-CoV-2スパイクタンパク質をウエルの底面に固層化した。抗原溶液を除去した後,3%牛血清アルブミン(BSA)と0.1% Tween-20を含むPBSで1時間ブロッキングした。次に,0.1% Tween-20を含むPBSで洗浄し,200ng/mlの作製した抗体を1時間インキュベートした。その後0.1% Tween-20を含むPBSで洗浄し,200 ng/mlペルオキシダーゼ標識抗ヒトIgG-Fc F(ab)’フラグメント(sigma)で1時間インキュベートした。最後に0.1% Tween-20を含むPBSで洗浄し,TMB基質(SeraCare Life Sciences)を用いて発色させ,プレートリーダーFLUOstar OMEGA (BMG LABTECH)を用いて吸光度450nmの測定を行った。
(Example 2) SARS-CoV-2 spike protein binding assay of obtained antibodies , 1028-61L, 1028-62L, 1028-65K, 1028-68L, 1028-84K, 1028-87L, 1028-106K, 1028-121K, 1028-137K, 1028-164L for SARS-CoV-2 spike protein and It was analyzed by ELISA for binding. Specifically, PBS containing 1 μg / ml SARS-CoV-2 spike protein is incubated overnight at 4 ° C. in Maxisorp 96 well plate (Nunc) to solidify the SARS-CoV-2 spike protein on the bottom of the well. turned into After removing the antigen solution, the cells were blocked with PBS containing 3% bovine serum albumin (BSA) and 0.1% Tween-20 for 1 hour. Next, it was washed with PBS containing 0.1% Tween-20 and incubated with 200 ng/ml of the prepared antibody for 1 hour. Then, the cells were washed with PBS containing 0.1% Tween-20 and incubated with 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment (sigma) for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with TMB substrate (SeraCare Life Sciences), and absorbance at 450 nm was measured using a plate reader FLUOstar OMEGA (BMG LABTECH).
 実施例1において作製した抗体のうち,17種類の抗体の結果を図1(ECD trimer)に示す。また,実施例1において作製した28種類の抗体は,いずれもSARS-CoV-2スパイクタンパク質との結合を確認した。 Of the antibodies produced in Example 1, the results of 17 types of antibodies are shown in Figure 1 (ECD trimer). Moreover, all of the 28 types of antibodies produced in Example 1 were confirmed to bind to the SARS-CoV-2 spike protein.
(実施例3)抗SARS-CoV-2スパイクタンパク質抗体の結合ドメイン解析
 実施例2でスパイクタンパクに結合した17種類の抗体が,SARS-CoV-2スパイクタンパク質内に存在するどのドメインと結合するかELISAにて解析した。具体的には1μg/ml SARS-CoV Receptor binding domain(RBD)タンパク質(ACRO Biosystems)含むPBS,1μg/ml SARS-CoV-2 N-terminal domain(NTD)タンパク質(ACRO Biosystems)を含むPBS,及び1μg/ml SARS-CoV-2 RBD(ACRO Biosystems)含むPBSをそれぞれMaxisorp 96 well plate(Nunc)に4℃で一夜保温することで,SARS-CoV RBD,SARS-CoV-2 NTD,及びSARS-CoV-2 RBDをウエルの底面にそれぞれ固層化した。抗原溶液を除去した後,3%BSAと0.1%Tween-20を含むPBSで1時間ブロッキングした。次に,0.1%Tween-20を含むPBSで洗浄し,200ng/mlの作製した抗体を1時間インキュベートした。その後0.1%Tween-20を含むPBSで洗浄し,200ng/mlペルオキシダーゼ標識抗ヒトIgG-Fc F(ab)’フラグメントを1時間インキュベートした。最後に0.1%Tween-20を含むPBSで洗浄し,TMB基質を用いて発色させ,プレートリーダーを用いて吸光度450nmの測定を行った。
(Example 3) Binding domain analysis of anti-SARS-CoV-2 spike protein antibody Which domains in the SARS-CoV-2 spike protein do the 17 types of antibodies bound to the spike protein in Example 2 bind to? Analyzed by ELISA. Specifically, PBS containing 1 μg / ml SARS-CoV Receptor binding domain (RBD) protein (ACRO Biosystems), PBS containing 1 μg / ml SARS-CoV-2 N-terminal domain (NTD) protein (ACRO Biosystems), and 1 μg PBS containing /ml SARS-CoV-2 RBD (ACRO Biosystems) was incubated overnight at 4 ° C. in Maxisorp 96 well plate (Nunc) to generate SARS-CoV RBD, SARS-CoV-2 NTD, and SARS-CoV- 2 RBDs were immobilized on the bottom of each well. After removing the antigen solution, the cells were blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Next, the cells were washed with PBS containing 0.1% Tween-20, and 200 ng/ml of prepared antibody was incubated for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed using a TMB substrate, and absorbance at 450 nm was measured using a plate reader.
 結果を図1(RBD(SARS),NTD,及びRBD)に示す。1028-05K,1028-37K,1028-121Kは,SARS-CoV RBDとSARS-CoV-2 RBDに結合し,SARS-CoV-2 NTDには結合しなかった。1028-55K,1028-61L,は,SARS-CoV-2 RBDに結合し,SARS-CoV RBDとSARS-CoV-2 NTDには結合しなかった。1028-29K,1028-62L,1028-106K,1028-137K,1028-164Lは,SARS-CoV-2 NTDに結合し,SARS-CoV RBDとSARS-CoV-2 RBDには結合しなかった。1028-25K,1028-30K,1028-50K,1028-65K,1028-68L,1028-84K,1028-87Lは,SARS-CoV-2スパイクタンパク質には結合するが,SARS-CoV RBD,SARS-CoV-2 NTD,及びSARS-CoV-2 RBDのいずれにも結合しなかった。 The results are shown in Figure 1 (RBD (SARS), NTD, and RBD). 1028-05K, 1028-37K, and 1028-121K bound to SARS-CoV RBD and SARS-CoV-2 RBD, but did not bind to SARS-CoV-2 NTD. 1028-55K, 1028-61L, bound to SARS-CoV-2 RBD, but not to SARS-CoV RBD and SARS-CoV-2 NTD. 1028-29K, 1028-62L, 1028-106K, 1028-137K, and 1028-164L bound to SARS-CoV-2 NTD, but not to SARS-CoV RBD and SARS-CoV-2 RBD. 1028-25K, 1028-30K, 1028-50K, 1028-65K, 1028-68L, 1028-84K, 1028-87L bind to SARS-CoV-2 spike protein, but SARS-CoVRBD, SARS-CoV -2 It did not bind to either NTD or SARS-CoV-2 RBD.
(実施例4)抗SARS-CoV-2 RBD抗体によるACE2結合阻害
 実施例3でSARS-CoV-2 RBDに結合した5種類の抗SARS-CoV-2 RBD抗体(1028-05K,1028-37K,1028-55K,1028-61L,1028-121K)が,SARS-CoV-2スパイクタンパク質とACE2との結合を阻害するか解析した。
具体的には1μg/ml SARS-CoV-2スパイクタンパク質(ACRO Biosystems)含むPBS をMaxisorp 96 well plateに4℃で一夜保温することで,SARS-CoV-2スパイクタンパク質をウエルの底面に固層化した。
(Example 4) ACE2 binding inhibition by anti-SARS-CoV-2 RBD antibodies 1028-55K, 1028-61L, 1028-121K) inhibited the binding of SARS-CoV-2 spike protein to ACE2.
Specifically, PBS containing 1 μg/ml SARS-CoV-2 spike protein (ACRO Biosystems) was incubated overnight at 4°C in a Maxisorp 96 well plate to solidify the SARS-CoV-2 spike protein on the bottom of the well. did.
 抗原溶液を除去した後,3%BSAと0.1%Tween-20を含むPBSで1時間ブロッキングした。次に,0.1%Tween-20を含むPBSで洗浄し,50ng/mlビオチン標識ACE2(Sino Bioligical)と10,000~20ng/ml抗SARS-CoV-2 RBD抗体の混合溶液,もしくは抗SARS-CoV-2 RBD抗体を含まない50ng/mlビオチン標識ACE2溶液を1時間インキュベートした。その後0.1%Tween-20を含むPBSで洗浄し,200ng/mlペルオキシダーゼ標識ストレプトアビジン(Abcam)を1時間インキュベートした。最後に0.1%Tween-20を含むPBSで洗浄し,TMB基質を用いて発色させ,プレートリーダーを用いて吸光度450nmの測定を行った。抗体を含まない場合の吸光度を100として,各濃度の抗体を含んだ場合の吸光度を算出した。 After removing the antigen solution, it was blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Next, wash with PBS containing 0.1% Tween-20, mixed solution of 50 ng/ml biotin-labeled ACE2 (Sino Biological) and 10,000 to 20 ng/ml anti-SARS-CoV-2 RBD antibody, or anti-SARS -50 ng/ml biotin-labeled ACE2 solution without CoV-2 RBD antibody was incubated for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled streptavidin (Abcam) was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed using a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance without antibody as 100, the absorbance with each concentration of antibody was calculated.
 結果を図2に示した。5種類の抗SARS-CoV-2 RBD抗体は,いずれも量依存的に,ACE2がSARS-CoV-2スパイクタンパク質と結合することを阻害していた。本実験系において,1028-05KのIC50は10,000ng/ml以上,1028-37KのIC50はおおよそ700ng/ml,1028-55KのIC50はおおよそ300ng/ml,1028-61LのIC50はおおよそ250ng/ml,1028-121KのIC50はおおよそ7,500ng/mlと算出された。 The results are shown in Figure 2. All five types of anti-SARS-CoV-2 RBD antibodies dose-dependently inhibited the binding of ACE2 to the SARS-CoV-2 spike protein. In this experimental system, the IC50 for 1028-05K is 10,000 ng/ml or more, the IC50 for 1028-37K is approximately 700 ng/ml, the IC50 for 1028-55K is approximately 300 ng/ml, and the IC50 for 1028-61L is approximately 250 ng/ml. , 1028-121K was calculated to be approximately 7,500 ng/ml.
 更に4種類の抗SARS-CoV-2 RBD抗体(0210-20L,0210-28K,0210-30L,及び0210-38L)が,SARS-CoV-2スパイクタンパク質とACE2との結合を阻害するかについて,同様に解析した。 Furthermore, whether four types of anti-SARS-CoV-2 RBD antibodies (0210-20L, 0210-28K, 0210-30L, and 0210-38L) inhibit the binding of SARS-CoV-2 spike protein and ACE2, analyzed in the same way.
 結果を図6に示した。4種類の抗SARS-CoV-2 RBD抗体のうち,0210-20L以外は,いずれも量依存的に,ACE2がSARS-CoV-2スパイクタンパク質と結合することを阻害していた。本実験系において,0210-28KのIC50はおおよそ150ng/ml,0210-30LのIC50はおおよそ200ng/ml,0210-38LのIC50はおおよそ1,500ng/mlと算出された。 The results are shown in Figure 6. Of the four anti-SARS-CoV-2 RBD antibodies, all but 0210-20L inhibited the binding of ACE2 to the SARS-CoV-2 spike protein in a dose-dependent manner. In this experimental system, the IC50 of 0210-28K was calculated to be approximately 150 ng/ml, the IC50 of 0210-30L to approximately 200 ng/ml, and the IC50 of 0210-38L to approximately 1,500 ng/ml.
(実施例5)変異抗原由来RBDに対する抗SARS-CoV-2 RBD抗体結合解析
 最近報告されている変異株由来のRBDに対して,9種類の抗SARS-CoV-2 RBD抗体が結合するか解析した。具体的には1μg/ml SARS-CoV-2 RBD(WT)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD K417N,E484K,N501Y)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD N439K)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD N440K)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD A475V)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD E484K)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD N501Y)(ACRO Biosystems)を含むPBS,1μg/ml SARS-CoV-2 RBD(RBD L452R)(ACRO Biosystems)を含むPBS,又は1μg/ml SARS-CoV-2 RBD(RBD L452R,E484Q)(ACRO Biosystems)を含むPBSをそれぞれMaxisorp 96 well plateに4℃で一夜保温することで,それぞれのタンパク質をウエルの底面にそれぞれ固層化した。
(Example 5) Anti-SARS-CoV-2 RBD antibody binding analysis to mutant antigen-derived RBD Analysis of whether nine types of anti-SARS-CoV-2 RBD antibodies bind to recently reported mutant strain-derived RBD did. Specifically, PBS containing 1 μg/ml SARS-CoV-2 RBD (WT) (ACRO Biosystems), PBS containing 1 μg/ml SARS-CoV-2 RBD (RBD K417N, E484K, N501Y) (ACRO Biosystems), 1 μg /ml SARS-CoV-2 RBD (RBD N439K) (ACRO Biosystems) in PBS, 1 μg/ml SARS-CoV-2 RBD (RBD N440K) (ACRO Biosystems) in PBS, 1 μg/ml SARS-CoV-2 RBD PBS with (RBD A475V) (ACRO Biosystems), 1 μg/ml SARS-CoV-2 RBD (RBD E484K) (ACRO Biosystems) in PBS, 1 μg/ml SARS-CoV-2 RBD (RBD N501Y) (ACRO Biosystems) PBS containing 1 μg/ml SARS-CoV-2 RBD (RBD L452R) (ACRO Biosystems), or PBS containing 1 μg/ml SARS-CoV-2 RBD (RBD L452R, E484Q) (ACRO Biosystems), respectively By incubating the Maxisorp 96 well plate at 4° C. overnight, each protein was immobilized on the bottom surface of the well.
 抗原溶液を除去した後,3%BSAと0.1%Tween-20を含むPBSで1時間ブロッキングした。次に,0.1%Tween-20を含むPBSで洗浄し,200ng/mlの作製した抗体を1時間インキュベートした。その後0.1%Tween-20を含むPBSで洗浄し,200ng/mlペルオキシダーゼ標識抗ヒトIgG-Fc F(ab)’フラグメントを1時間インキュベートした。最後に0.1% Tween-20を含むPBSで洗浄し,TMB基質を用いて発色させ,プレートリーダーを用いて吸光度450nmの測定を行った。WTに対する結合で得られた吸光度を100として,各変異株由来RBDに対する結合で得られた吸光度を算出した。 After removing the antigen solution, the cells were blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Next, the cells were washed with PBS containing 0.1% Tween-20, and 200 ng/ml of prepared antibody was incubated for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance obtained by binding to WT as 100, the absorbance obtained by binding to each mutant-derived RBD was calculated.
 結果を表3及び表4に示した。1028-05Kは,WTに対する結合に比べてRBD K417N,E484K,N501Y,RBD N439K,RBD N440K,RBD E484Kに対する結合が,おおよそ75~88に減少した。RBD A475V,RBD N501Yに対する結合の減少は認められなかった。1028-37Kは,いずれの各変異株由来RBDに対する結合の減少は認められなかった。
1028-55Kは,WTに対する結合に比べてRBD K417N,E484K,N501Yに対する結合が,おおよそ3に減少した。RBD N439K,RBD N440K,RBD A475V,RBD E484K,RBD N501Yに対する結合の減少は認められなかった。1028-61L,WTに対する結合に比べてRBD K417N, E484K,N501Yに対する結合が,おおよそ33に減少した。RBD N439K,RBD N440K,RBD A475V,RBD E484K,RBD N501Yに対する結合の減少は認められなかった。1028-121Kは,WTに対する結合に比べてRBD K417N,E484K,N501Y,RBD N439K,RBD N440K,RBD E484Kに対する結合が,おおよそ62~72に減少した。RBD A475V,RBD N501Yに対する結合の減少は認められなかった。
The results are shown in Tables 3 and 4. 1028-05K reduced binding to RBD K417N, E484K, N501Y, RBD N439K, RBD N440K, RBD E484K to approximately 75-88 compared to binding to WT. No reduction in binding to RBD A475V, RBD N501Y was observed. 1028-37K did not show decreased binding to any of the mutant-derived RBDs.
1028-55K reduced binding to RBD K417N, E484K, N501Y by approximately 3 compared to binding to WT. No reduction in binding was observed for RBD N439K, RBD N440K, RBD A475V, RBD E484K, RBD N501Y. Binding to RBD K417N, E484K, N501Y was reduced to approximately 33 compared to binding to 1028-61L, WT. No reduction in binding was observed for RBD N439K, RBD N440K, RBD A475V, RBD E484K, RBD N501Y. 1028-121K decreased binding to RBD K417N, E484K, N501Y, RBD N439K, RBD N440K, RBD E484K to approximately 62-72 compared to binding to WT. No reduction in binding to RBD A475V, RBD N501Y was observed.
 また,0210-20Lは,いずれの各変異株由来RBDに対する結合の減少は認められなかった。0210-28Kは,いずれの各変異株由来RBDに対する結合の減少は認められなかった。0210-30Lは,WTに対する結合に比べてRBD K417N,E484K,N501Yに対する結合が,おおよそ56に減少した。RBD E484Kに対する結合が,おおよそ75に減少した。RBD N439K,RBD N440K,RBD A475V,RBD N501Yに対する結合の減少は認められなかった。0210-38Lは,WTに対する結合に比べてRBD N439K,RBD E484Kに対する結合が,おおよそ82~90に減少したに減少した。RBD K417N,E484K,N501Y,RBD N440K,RBD A475V,RBD N501Yに対する結合の減少は認められなかった。 In addition, 0210-20L did not decrease the binding to any of the mutant-derived RBDs. 0210-28K did not show decreased binding to any of the mutant-derived RBDs. For 0210-30L, the binding to RBD K417N, E484K, and N501Y decreased to approximately 56 compared to the binding to WT. Binding to RBD E484K decreased to approximately 75. No decrease in binding to RBD N439K, RBD N440K, RBD A475V, and RBD N501Y was observed. 0210-38L reduced the binding to RBD N439K and RBD E484K to approximately 82-90 compared to the binding to WT. No decrease in binding to RBD K417N, E484K, N501Y, RBD N440K, RBD A475V and RBD N501Y was observed.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 また,RBD L452Rに対する0210-28K抗体の結合を解析した結果を図10(左図)に示す。0210-28K抗体は,RBD L452Rに対して,武漢型のRBD,及びRBD K417N,E484K,N501Yへの結合と同等の結合活性を示した。さらに、RBD L452R,E484Qに対する0210-28K抗体の結合を解析した結果を図11(左図)に示す。0210-28K抗体は,RBD L452R,E484Qに対して,武漢型のRBD,RBD N501Y,及びRBD K417N,E484K,N501Yへの結合と同等の結合活性を示した。 Figure 10 (left figure) shows the results of analyzing the binding of the 0210-28K antibody to RBD L452R. The 0210-28K antibody showed binding activity to RBD L452R equivalent to binding to Wuhan-type RBD and RBD K417N, E484K, and N501Y. Furthermore, FIG. 11 (left) shows the results of analyzing the binding of the 0210-28K antibody to RBD L452R and E484Q. The 0210-28K antibody showed binding activity to RBD L452R and E484Q equivalent to binding to Wuhan type RBD, RBD N501Y, and RBD K417N, E484K and N501Y.
(実施例6)変異抗原由来RBDに対する抗SARS-CoV-2 RBD抗体によるACE2結合阻害
 5種類の抗SARS-CoV-2 RBD抗体が,変異株由来のRBDとACE2との結合を阻害するか解析した。具体的には1μg/ml SARS-CoV-2 RBD(WT)含むPBS,1μg/ml RBD K417N,E484K,N501Yを含むPBS,1μg/ml RBD N439Kを含むPBS,1μg/ml RBD N440Kを含むPBS,1μg/ml SARS-CoV-2 RBD A475Vを含むPBS,1μg/ml RBD E484Kを含むPBS,1μg/ml RBD N501Yを含むPBS,1μg/ml SARS-CoV-2 RBD L452R,1μg/ml SARS-CoV-2 RBD L452R,E484Qを含むPBS,1μg/ml SARS-CoV-2 RBD K417T,E484K,N501Yを含むPBS,又は1μg/ml SARS-CoV-2 RBD L452R,T478K(いずれもACRO Biosystems)を含むPBSをそれぞれMaxisorp 96well plateに4℃で一夜保温することで,それぞれのタンパク質をウエルの底面にそれぞれ固層化した。
(Example 6) Inhibition of ACE2 binding by anti-SARS-CoV-2 RBD antibodies to mutant antigen-derived RBD Analysis of whether five types of anti-SARS-CoV-2 RBD antibodies inhibit binding between mutant-derived RBD and ACE2 did. Specifically, PBS containing 1 μg/ml SARS-CoV-2 RBD (WT), PBS containing 1 μg/ml RBD K417N, E484K, N501Y, PBS containing 1 μg/ml RBD N439K, PBS containing 1 μg/ml RBD N440K, PBS with 1 μg/ml SARS-CoV-2 RBD A475V, PBS with 1 μg/ml RBD E484K, PBS with 1 μg/ml RBD N501Y, 1 μg/ml SARS-CoV-2 RBD L452R, 1 μg/ml SARS-CoV- 2 PBS containing RBD L452R, E484Q, PBS containing 1 μg/ml SARS-CoV-2 RBD K417T, E484K, N501Y, or PBS containing 1 μg/ml SARS-CoV-2 RBD L452R, T478K (all from ACRO Biosystems) Each protein was immobilized on the bottom of each well by incubating each Maxisorp 96-well plate at 4° C. overnight.
 抗原溶液を除去した後,3%BSAと0.1%Tween-20を含むPBSで1時間ブロッキングした。次に,0.1%Tween-20を含むPBSで洗浄し,50ng/mlビオチン標識ACE2(Sino Bioligical)と1,000ng/ml 抗SARS-CoV-2 RBD抗体の混合溶液,もしくは抗SARS-CoV-2 RBD抗体を含まない50ng/mlビオチン標識ACE2溶液を1時間インキュベートした。その後0.1%Tween-20を含むPBSで洗浄し,200ng/mlペルオキシダーゼ標識ストレプトアビジン(Abcam)を1時間インキュベートした。最後に0.1%Tween-20を含むPBSで洗浄し,TMB基質を用いて発色させ,プレートリーダーを用いて吸光度450nmの測定を行った。抗体を含まない場合の吸光度を100として,各濃度の抗体を含んだ場合の吸光度を算出した。 After removing the antigen solution, it was blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Next, wash with PBS containing 0.1% Tween-20, mixed solution of 50 ng/ml biotin-labeled ACE2 (Sino Biological) and 1,000 ng/ml anti-SARS-CoV-2 RBD antibody, or anti-SARS-CoV -2 A 50 ng/ml biotin-labeled ACE2 solution containing no RBD antibody was incubated for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled streptavidin (Abcam) was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed using a TMB substrate, and absorbance at 450 nm was measured using a plate reader. Taking the absorbance without antibody as 100, the absorbance with each concentration of antibody was calculated.
 同様に4種類の抗SARS-CoV-2 RBD抗体(0210-28K,0210-30L,1028-55K,1028-61L)が,Beta株SARS-CoV-2のRBDタンパク質(K417N,E484K,N501Y変異を有する)とACE2との結合を阻害するかを解析した。また,0210-28K抗体が,RBD L452R,RBD N501Y,RBD K417T,E484K,N501Y,RBD L452R,T478K,RBD L452R,E484Q,又はRBD K417N,E484K,N501YとACE2との結合を阻害するかを同様の方法で解析した。 Similarly, four types of anti-SARS-CoV-2 RBD antibodies (0210-28K, 0210-30L, 1028-55K, 1028-61L) inhibited the Beta strain SARS-CoV-2 RBD protein (K417N, E484K, N501Y mutations). It was analyzed whether it inhibits the binding of ACE2 to ACE2. In addition, whether the 0210-28K antibody inhibits the binding of RBD L452R, RBD N501Y, RBD K417T, E484K, N501Y, RBD L452R, T478K, RBD L452R, E484Q, or RBD K417N, E484K, N501Y to ACE2 was examined in a similar manner. analyzed by the method.
 1028-05K,1028-37K,1028-55K,1028-61L,及び1028-121Kの結果を表5に示す。1028-05Kは,WTとACE2との結合を90程度と殆ど抑えられず,いずれの各変異株由来RBDとACE2との結合も90-96程度と,WTと同様に殆ど抑えられなかった。1028-37Kは,WTとACE2との結合を63程度までに抑えるのに対し,いずれの各変異株由来RBDとACE2との結合を53-70程度と,WTと同程度に抑えた。1028-55Kは,WTとACE2との結合を22程度までに抑えるのに対し,RBD N439K,RBD N440K,RBD A475V,RBD E484,及びRBD N501YとACE2との結合を25-35程度と,WTと同程度に抑えた。一方RBD K417N,E484K,N501YとACE2との結合は90程度と,殆ど抑えられなかった。1028-61Lは,WTとACE2との結合を20程度までに抑えるのに対し,RBD N439K,RBD N440K,RBD A475V,RBD E484,及びRBD N501YとACE2との結合を18-33程度と,WTと同程度に抑えた。一方RBD K417N,E484K,N501YとACE2との結合は78程度と,殆ど抑えられなかった。1028-121Kは,WTとACE2との結合を80程度と殆ど抑えられず,いずれの各変異株由来RBDとACE2との結合も80-90程度と,WTと同様に殆ど抑えられなかった。 Table 5 shows the results of 1028-05K, 1028-37K, 1028-55K, 1028-61L, and 1028-121K. 1028-05K hardly suppressed the binding of WT and ACE2 to about 90, and the binding of RBD derived from each mutant to ACE2 was about 90 to 96, which was hardly suppressed like WT. 1028-37K suppressed the binding between WT and ACE2 to about 63, whereas the binding between RBD derived from any of the mutant strains and ACE2 was suppressed to about 53-70, which is the same level as WT. 1028-55K suppresses the coupling between WT and ACE2 to about 22, while RBD N439K, RBD N440K, RBD A475V, RBD E484, and RBD N501Y reduce the coupling between WT and ACE2 to about 25-35. reduced to the same extent. On the other hand, the binding between RBD K417N, E484K, N501Y and ACE2 was about 90, which was hardly suppressed. 1028-61L suppresses the coupling between WT and ACE2 to about 20, while RBD N439K, RBD N440K, RBD A475V, RBD E484, and RBD N501Y suppress the coupling between WT and ACE2 to about 18-33. reduced to the same extent. On the other hand, the binding between RBD K417N, E484K, N501Y and ACE2 was about 78, which was hardly suppressed. In 1028-121K, the binding between WT and ACE2 was hardly suppressed at about 80, and the binding between RBD derived from each mutant strain and ACE2 was also hardly suppressed at about 80-90, similar to WT.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 0210-28K,1028-55K,0210-30L,及び1028-61LのBeta株SARS-CoV-2のRBDタンパク質(RBD K417N,E484K,N501Y)との結合阻害の結果を図7A及びBに示す。 Figures 7A and B show the results of inhibition of binding of 0210-28K, 1028-55K, 0210-30L, and 1028-61L to the RBD proteins (RBD K417N, E484K, N501Y) of Beta strain SARS-CoV-2.
 0210-28Kは,量依存的に,ACE2がBeta株SARS-CoV-2のRBDタンパク質(RBD K417N,E484K,N501Y)と結合することを阻害していた。その阻害効果は,武漢型のSARS-CoV-2のRBDタンパク質よりも強かった。本実験系において,0210-28KのBeta株SARS-CoV-2のRBDタンパク質に対するIC50は350ng/ml,武漢型のSARS-CoV-2のRBDタンパク質に対するIC50は600ng/mlと算出された。  0210-28K dose-dependently inhibited the binding of ACE2 to the RBD proteins (RBD K417N, E484K, N501Y) of Beta strain SARS-CoV-2. Its inhibitory effect was stronger than that of the Wuhan-type SARS-CoV-2 RBD protein. In this experimental system, the IC50 for the RBD protein of 0210-28K Beta strain SARS-CoV-2 was calculated to be 350 ng/ml, and the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 600 ng/ml.
 1028-55Kは,量依存的に,ACE2が武漢型のSARS-CoV-2のRBDタンパク質と結合することを阻害していた。一方で,Beta株SARS-CoV-2のRBDタンパク質と結合することを,阻害できなかった。本実験系において,1028-55KのBeta株SARS-CoV-2のRBDタンパク質に対するIC50は10,000ng/ml以上,武漢型のSARS-CoV-2のRBDタンパク質に対するIC50は400ng/mlと算出された。  1028-55K dose-dependently inhibited the binding of ACE2 to the RBD protein of Wuhan-type SARS-CoV-2. On the other hand, it failed to inhibit binding to the RBD protein of Beta strain SARS-CoV-2. In this experimental system, the IC50 for the RBD protein of 1028-55K Beta strain SARS-CoV-2 was calculated to be 10,000 ng/ml or more, and the IC50 for the RBD protein of Wuhan-type SARS-CoV-2 was calculated to be 400 ng/ml. .
 0210-30Lは,量依存的に,ACE2がBeta株SARS-CoV-2のRBDタンパク質と結合することを阻害していた。その阻害効果は,武漢型のSARS-CoV-2のRBDタンパク質よりも弱かった。本実験系において,0210-30LのBeta株SARS-CoV-2のRBDタンパク質に対するIC50は2,000ng/ml,武漢型のSARS-CoV-2のRBDタンパク質に対するIC50は500ng/mlと算出された。  0210-30L dose-dependently inhibited the binding of ACE2 to the RBD protein of Beta strain SARS-CoV-2. Its inhibitory effect was weaker than that of the Wuhan-type SARS-CoV-2 RBD protein. In this experimental system, the IC50 for the RBD protein of 0210-30L Beta strain SARS-CoV-2 was calculated to be 2,000 ng/ml, and the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 500 ng/ml.
 1028-61Lは,量依存的に,ACE2がBeta株SARS-CoV-2のRBDタンパク質と結合することを阻害していた。その阻害効果は,武漢型のSARS-CoV-2のRBDタンパク質よりも弱かった。本実験系において,1028-61LのBeta株SARS-CoV-2のRBDタンパク質に対するIC50は10,000ng/ml以上,武漢型のSARS-CoV-2のRBDタンパク質に対するIC50は700ng/mlと算出された。  1028-61L dose-dependently inhibited the binding of ACE2 to the RBD protein of Beta strain SARS-CoV-2. Its inhibitory effect was weaker than that of the Wuhan-type SARS-CoV-2 RBD protein. In this experimental system, the IC50 for the RBD protein of 1028-61L Beta strain SARS-CoV-2 was calculated to be 10,000 ng/ml or more, and the IC50 for the RBD protein of Wuhan type SARS-CoV-2 was calculated to be 700 ng/ml. .
 また,0210-28KがRBD L452RとACE2との結合を阻害するか解析した結果を図10(右図)に示す。0210-28K抗体は,RBD L452Rに対して,武漢型と同等の濃度依存的結合阻害活性を示した。 Fig. 10 (right figure) shows the results of analyzing whether 0210-28K inhibits the binding of RBD L452R and ACE2. The 0210-28K antibody showed concentration-dependent binding inhibitory activity to RBD L452R equivalent to that of the Wuhan type.
 さらに,0210-28K抗体がRBD K417N,E484K,N501Y,及びRBD L452R,E484QとACE2との結合を阻害するか解析した結果を図11(右図)に示す。0210-28K抗体は,RBD K417N,E484K,N501Y,及びRBD L452R,E484Qに対して,武漢型と同等の濃度依存的結合阻害活性を示した。 Furthermore, Fig. 11 (right figure) shows the results of analyzing whether the 0210-28K antibody inhibits the binding of RBD K417N, E484K, N501Y, and RBD L452R, E484Q to ACE2. The 0210-28K antibody showed concentration-dependent binding inhibitory activity equivalent to that of the Wuhan type against RBD K417N, E484K, N501Y and RBD L452R, E484Q.
 さらに,図13に,6種類の変異株由来のRBD(RBD 501Y,RBD K417N,E484K,N501Y,RBD K417T,E484K,N501Y,RBD L452R,E484Q,RBD L452R,T478K,RBD L452R)とACE2との結合を,0210-28K抗体が阻害するか解析した結果を示す。いずれの変異株由来のRBDに対しても,武漢型(WT)と同等の濃度依存的結合阻害活性を示した。 Furthermore, FIG. 13 shows the binding of RBD derived from six types of mutants (RBD 501Y, RBD K417N, E484K, N501Y, RBD K417T, E484K, N501Y, RBD L452R, E484Q, RBD L452R, T478K, RBD L452R) to ACE2. is inhibited by the 0210-28K antibody. It showed concentration-dependent binding inhibitory activity equivalent to that of Wuhan type (WT) against RBD derived from any of the mutant strains.
(実施例7)新型コロナウイルスのスパイクタンパク質を外套したシュードタイプウイルスを用いた感染抑制実験
 新型コロナウイルスのスパイクタンパク質を外套したシュードタイプウイルス(SARS-CoV-2 St19pv)は,以下の論文に掲載してある方法で作製した。Tani H et al.,Virology Journal(2021)18:16.
(Example 7) Infection suppression experiment using a pseudotype virus enveloped with the spike protein of the new coronavirus The pseudotype virus (SARS-CoV-2 St19pv) enveloped with the spike protein of the new coronavirus is published in the following paper. It was prepared according to the method described. Tani H et al. , Virology Journal (2021) 18:16.
 TMPRSS2を過剰発現しているVeroE6細胞(VeroE6/TMPRSS2)を96wellプレートに播種し,翌日90~100%コンフルエントの状態で,各濃度の精製抗体を添加した。その後,続けてSARS-CoV-2 St19pv及びVSV-Gを外套したコントロールのシュードタイプウイルス(VSVpv)を添加した。1日培養後,細胞に細胞溶解液を含むルシフェラーゼ基質溶液を添加し,ルシフェラーゼの活性を測定した。シュードタイプウイルスが細胞に感染できれば,ルシフェラーゼ活性が見られ発光値として数値化される。抗体により感染が阻害されればルシフェラーゼの発光値が低くなるため,その数値を元に感染阻止率を計算した。  VeroE6 cells overexpressing TMPRSS2 (VeroE6/TMPRSS2) were seeded in a 96-well plate, and the next day, when the cells were 90-100% confluent, each concentration of purified antibody was added. Subsequently, SARS-CoV-2 St19pv and VSV-G-encapsulated control pseudotype virus (VSVpv) were subsequently added. After culturing for one day, a luciferase substrate solution containing a cell lysate was added to the cells, and luciferase activity was measured. If the pseudotype virus can infect cells, luciferase activity is observed and quantified as a luminescence value. Since the luminescence value of luciferase would decrease if the infection was inhibited by the antibody, the infection inhibition rate was calculated based on that value.
 その結果,図3に示すように1028-55K及び1028-61Lにおいて顕著に,抗体濃度依存的かつSARS-CoV-2 St19pv特異的な感染阻害が認められた。また,1028-55Kや1028-61Lに比べると弱いながらも1028-05K及び1028-121KでもSARS-CoV-2 St19pv特異的な感染阻害が認められた。 As a result, as shown in Figure 3, significant antibody concentration-dependent and SARS-CoV-2 St19pv-specific inhibition of infection was observed at 1028-55K and 1028-61L. SARS-CoV-2 St19pv-specific inhibition of infection was also observed with 1028-05K and 1028-121K, although weaker than with 1028-55K and 1028-61L.
(実施例8)新型コロナウイルスを用いた感染抑制実験
 新型コロナウイルスは,富山県内新型コロナウイルス感染症罹患患者より富山県衛生研究所で分離したウイルス株(TIH/SARS2/2020-1)を用いた。終濃度0.0625,0.125,0.25,0.5,1.0μg/mlになるように,それぞれ1028-05K,1028-55K及び1028-61Lの精製抗体と感染価(Infectious Unit;IU)で100IUのウイルスをマイクロチューブ内で混合し,37℃で1時間反応させた。その後,24wellプレートに播種したVeroE6/TMPRSS2細胞に添加し,37℃で2時間吸着させた。その後,吸着しなかった抗体とウイルスを含む混合液を完全に除き,再び各濃度の抗体を含む培養培地を添加し,2日間培養を続けた。2日間培養した細胞の培養上清を回収し,各抗体濃度添加時のウイルス感染価をプラークアッセイ法により測定した。
(Example 8) Infection control experiment using new coronavirus The new coronavirus uses a virus strain (TIH/SARS2/2020-1) isolated at the Toyama Prefectural Institute of Health from a patient with a new coronavirus infection in Toyama Prefecture. board. Purified antibodies and infectious titers (Infectious Unit; IU) was mixed with 100 IU of virus in a microtube and allowed to react at 37° C. for 1 hour. After that, it was added to VeroE6/TMPRSS2 cells seeded in a 24-well plate and adsorbed at 37° C. for 2 hours. After that, the mixture containing the unadsorbed antibody and virus was completely removed, and the culture medium containing the antibody at each concentration was added again, and culture was continued for 2 days. The culture supernatant of the cells cultured for 2 days was collected, and the virus infectivity titer was measured by plaque assay when each antibody concentration was added.
 それぞれ3wellのウイルスプラーク数を数え,平均値を計算し,抗体非存在下におけるウイルス産生量を100として,抗体存在下におけるウイルス産生量の割合を図4に示す。その結果,1028-05Kにおいては,ウイルス産生量は抗体濃度1μg/mlでもほとんど低下しなかったが,1028-55K及び1028-61Lでは濃度依存的にウイルス産生量が低下することがわかった。1028-61Lでは1μg/mlの濃度で完全にウイルス産生を抑えられることがわかった。 The number of viral plaques in each of the 3 wells was counted, the average value was calculated, and the virus production amount in the absence of antibody was set to 100, and the ratio of the virus production amount in the presence of antibody is shown in Figure 4. As a result, it was found that at 1028-05K, the virus yield hardly decreased even at an antibody concentration of 1 μg/ml, but at 1028-55K and 1028-61L, the virus yield decreased in a concentration-dependent manner. With 1028-61L, it was found that virus production could be completely suppressed at a concentration of 1 μg/ml.
 図4の数値を元に統計解析して50%及び90%阻害濃度を算出したものを図5に示す。1028-61LではIC50が157nM,IC90が159nMであることが,1028-55KではIC50が102nM,IC90が106nMであることが示された。  Figure 5 shows the 50% and 90% inhibitory concentrations calculated by statistical analysis based on the numerical values in Figure 4. 1028-61L showed an IC50 of 157 nM and an IC90 of 159 nM, while 1028-55K showed an IC50 of 102 nM and an IC90 of 106 nM.
(実施例9)新型コロナウイルスの変異型スパイクタンパク質を外套したシュードタイプウイルスを用いた感染抑制実験
 実施例7と同様にして,武漢型(WT),Alpha株,Beta株の変異を有するスパイクタンパク質を外套したシュードタイプウイルス(SARS-CoV-2 St19pv)を作製した(図8参照)。Alpha株は,B.1.1.7 lineage(HV69-70deletion,Y144 deletion,N501Y,A570D,P681H,T716I,S982A,D1118H)を,Beta株は,B.1.351(D80A,D215G,K417N,A701V,N501Y,E484K)を元にヒトコドンに最適化した配列の挿入されたプラスミドを用いている(大阪大学微生物病研究所松浦善治教授より分与)。
(Example 9) Infection suppression experiment using a pseudotype virus enveloped with a mutant spike protein of the new coronavirus In the same manner as in Example 7, spike proteins with mutations of Wuhan type (WT), Alpha strain, and Beta strain A pseudotyped virus (SARS-CoV-2 St19pv) enveloping was generated (see FIG. 8). Alpha strains are B. 1.1.7 lineage (HV69-70 deletion, Y144 deletion, N501Y, A570D, P681H, T716I, S982A, D1118H); Based on 1.351 (D80A, D215G, K417N, A701V, N501Y, E484K), a plasmid inserted with sequences optimized for human codons is used (provided by Professor Yoshiharu Matsuura, Research Institute for Microbial Diseases, Osaka University).
 各変異株のシュードタイプウイルスを用いて行なった感染阻害実験の結果を図9に示す。調べた4種の抗体では,それぞれ濃度依存的に阻害効果が認められたが,0210-28Kが最も効果が高く,0.2μg/mlでも十分な感染阻害が認められた。また,これらの抗体は,武漢型だけでなく,Alpha株,Beta株にも同様に感染阻害効果が認められた。 Fig. 9 shows the results of infection inhibition experiments conducted using the pseudotype virus of each mutant strain. Each of the four tested antibodies showed concentration-dependent inhibitory effects, with 0210-28K exhibiting the highest effect, and sufficient inhibition of infection was observed even at 0.2 μg/ml. In addition, these antibodies were found to have an inhibitory effect on not only the Wuhan type, but also the Alpha and Beta strains.
 同様にKappa株,Delta株の変異を有するスパイクタンパク質を外套したシュードタイプウイルスも作製し,各変異株のシュードタイプウイルスを用いて,0210-28Kについて行なった2回の感染阻害実験の結果を図12に示す。5種類のシュードタイプウイルスで,それぞれ濃度依存的に阻害効果が認められた。武漢型及び変異型SARS-CoV-2 St19pvシュードタイプウイルス感染阻害におけるIC50値は,それぞれ以下の通りであった。
1回目
 武漢型(WT):8.4ng/ml
 Alpha株:12.3ng/ml
 Beta株:23.0ng/ml
 Kappa株:10.8ng/ml
 Delta株:<7.5ng/ml
2回目
 武漢型(WT):30.3±5.7ng/ml
 Alpha株:45.4±20.5ng/ml
 Beta株:15.2±6.3ng/ml
 Kappa株:20.3±3.5ng/ml
 Delta株:12.1±1.8ng/ml
Pseudotype viruses enveloped with spike proteins with mutations of the Kappa and Delta strains were similarly prepared, and the results of two rounds of infection inhibition experiments on 0210-28K were performed using the pseudotype viruses of each mutant strain. 12. Concentration-dependent inhibitory effects were observed for each of the five pseudotype viruses. The IC50 values for inhibition of Wuhan-type and mutant SARS-CoV-2 St19pv pseudotype virus infection were respectively as follows.
1st Wuhan type (WT): 8.4 ng/ml
Alpha strain: 12.3ng/ml
Beta strain: 23.0ng/ml
Kappa strain: 10.8 ng/ml
Delta strain: <7.5ng/ml
2nd Wuhan type (WT): 30.3 ± 5.7 ng/ml
Alpha strain: 45.4±20.5ng/ml
Beta strain: 15.2±6.3ng/ml
Kappa strain: 20.3±3.5 ng/ml
Delta strain: 12.1±1.8 ng/ml
 さらに,実施例7と同様にして,Gamma株,Omicron株の変異を有するスパイクタンパク質を外套したシュードタイプウイルスを作製し,7種類のシュードタイプウイルス(武漢型(WT),Alpha株,Beta株,Gamma株,Kappa株,Delta株,及びOmicron株)を用いて,0210-28Kについて感染阻害実験を行った。VeroE6/TMPRSS2を96wellプレートに播種し,翌日90~100%コンフルエントの状態で,各濃度の0210-28Kを添加し,その後,続けて上記7種類のシュードタイプウイルス又はVSV-Gを外套したコントロールのシュードタイプウイルス(VSVpv)を添加した。37℃で24時間培養後,GloMax Navigator Microplate Luminometer (Promega)を備えたPicaGene Luminescence Kit (Fujifilm Wako)を用いてルシフェラーゼの活性を測定した。  Furthermore, in the same manner as in Example 7, pseudotype viruses enveloped with spike proteins having mutations of the Gamma strain and the Omicron strain were prepared, and seven types of pseudotype viruses (Wuhan type (WT), Alpha strain, Beta strain, Gamma, Kappa, Delta, and Omicron strains) were used to perform infection inhibition experiments for 0210-28K. VeroE6/TMPRSS2 was seeded on a 96-well plate, the next day, 0210-28K at each concentration was added in a state of 90-100% confluency, and then the above-mentioned 7 types of pseudotype viruses or VSV-G were coated. A pseudotyped virus (VSVpv) was added. After culturing at 37°C for 24 hours, luciferase activity was measured using a PicaGene Luminescence Kit (Fujifilm Wako) equipped with a GloMax Navigator Microplate Luminometer (Promega). 
 結果を図14に示す。縦軸はコントロールと比較した感染低下割合(% of reduction)を示す。Omicron株に対する感染阻害効果(IC50値:約200pM)は,他の6種類のシュードタイプウイルスに対する阻害効果に比べて低下したものの,0210-28K抗体によって,調べた7種類のシュードタイプウイルスで阻害効果が認められた。 The results are shown in Fig. 14. The vertical axis indicates the rate of infection reduction (% of reduction) compared to the control. Although the inhibitory effect on the Omicron strain (IC50 value: about 200 pM) was lower than the inhibitory effect on the other 6 pseudotype viruses, the 0210-28K antibody inhibited the 7 pseudotype viruses examined. was accepted.
(実施例10)変異型の新型コロナウイルスを用いた感染抑制実験
 新型コロナウイルスは,日本の国立感染症研究所で分離された武漢型(WK-521/2020),Alpha株(QHN002/2020),Beta株(TY8-612/2021),Gamma株(TY7-503/2021),Kappa株(TY11-330/2021),Dleta株(TY11-927/2021),及びOmicron株(TY38-873)を用いた。VeroE6/TMPRSS2細胞を1wellあたり2×10細胞となるように96wellプレートに播種し,上記ウイルスをそれぞれ1細胞あたり0.001moiで感染させ,各濃度に調整した0210-28K抗体を添加した。37℃で1時間の培養後,培養上清を除き,再び各濃度の抗体を添加して10%ウシ胎児血清(FBS)を含むダルベッコの改変イーグルミディアム(DMEM)を用いて24時間培養した。その後,培養した細胞から培養上清を回収し,SARS-CoV-2直接検出RT-qPCRキット(タカラバイオ株式会社)を用いたリアルタイムPCR法によりウイルスゲノムRNA量を測定することで,各濃度の抗体を添加した際のウイルス感染価を評価した。
(Example 10) Infection suppression experiment using a mutated new coronavirus The new coronavirus is the Wuhan type (WK-521/2020) and Alpha strain (QHN002/2020) isolated at the National Institute of Infectious Diseases in Japan. , Beta strain (TY8-612/2021), Gamma strain (TY7-503/2021), Kappa strain (TY11-330/2021), Dleta strain (TY11-927/2021), and Omicron strain (TY38-873). Using. VeroE6/TMPRSS2 cells were seeded in a 96-well plate at 2×10 4 cells per well, infected with the above viruses at 0.001 moi per cell, and 0210-28K antibody adjusted to each concentration was added. After culturing at 37° C. for 1 hour, the culture supernatant was removed, antibodies of various concentrations were added again, and the cells were cultured for 24 hours using Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS). After that, the culture supernatant was collected from the cultured cells, and the amount of viral genome RNA was measured by real-time PCR using the SARS-CoV-2 direct detection RT-qPCR kit (Takara Bio Inc.). The virus infectivity titer was evaluated when the antibody was added.
 それぞれ3wellのウイルスゲノム量を測定して平均値を計算し,各濃度の0210-28K抗体存在下におけるウイルス産生阻害率を図15に示す。その結果,Omicron株に対するウイルス産生阻害効果は,他の6種類のシュードタイプウイルスに対する阻害効果に比べて低下したものの,0210-28K抗体によって,調べた7種類の新型コロナウイルスのウイルス産生阻害効果が認められた。 The virus genome amount of each 3 wells was measured and the average value was calculated, and the virus production inhibition rate in the presence of each concentration of 0210-28K antibody is shown in Figure 15. As a result, although the viral production inhibitory effect on the Omicron strain was lower than the inhibitory effect on the other 6 pseudotype viruses, the 0210-28K antibody inhibited the viral production of the 7 tested novel coronaviruses. Admitted.
(実施例11)表面プラズモン共鳴法(SPR)解析
 確認的に,抗SARS-CoV-2 RBD抗体について,武漢型のRBD又は変異株由来のRBDに対する親和性を、Biacore T100(GE Healthcare)を用いてSPR解析した。具体的には,0210-28K抗体をプロテインAセンサーチップ(GEヘルスケア)に固定化し,0nMから30nM範囲の各RBD(武漢型のRBD(WT),Alpha株由来のRBD(N501Y),Beta株由来のRBD(K417N,E484K,N501Y),Gamma株由来のRBD(K417T,E484K,N501Y),Kappa株由来のRBD(L452R,E484Q),及びDelta株由来のRBD(L452R,T478K))を30μl/minの流速で1分間注入し,その後,HBS-Pバッファで5分間洗浄した。Biacore Evaluation Software(GE Healthcare)を使用して,結合速度定数と解離速度定数を求め,2つの定数の比から親和性を算出した。
Example 11 Surface Plasmon Resonance (SPR) Analysis To confirm, the affinity of anti-SARS-CoV-2 RBD antibodies to Wuhan-type RBD or mutant-derived RBD was measured using a Biacore T100 (GE Healthcare). were analyzed by SPR. Specifically, the 0210-28K antibody was immobilized on a protein A sensor chip (GE Healthcare), and each RBD in the range of 0 nM to 30 nM (Wuhan type RBD (WT), RBD derived from Alpha strain (N501Y), Beta strain RBD derived (K417N, E484K, N501Y), RBD derived from Gamma strain (K417T, E484K, N501Y), RBD derived from Kappa strain (L452R, E484Q), and RBD derived from Delta strain (L452R, T478K)) at 30 µl/ Injection was performed for 1 minute at a flow rate of min, followed by washing with HBS-P buffer for 5 minutes. Biacore Evaluation Software (GE Healthcare) was used to determine the association and dissociation rate constants, and the affinity was calculated from the ratio of the two constants.
 結果を図16に示す。0210-28K抗体の上記RBDに対する親和性は,それぞれ以下の通りであった。
 武漢型のRBD(WT):1.82×10-10(M)
 Alpha株由来のRBD(N501Y):1.67×10-9(M)
 Beta株由来のRBD(K417N,E484K,N501Y):4.02×10-9(M)
 Gamma株由来のRBD(K417T,E484K,N501Y):1.59×10-9(M)
 Kappa株由来のRBD(L452R,E484Q):3.14×10-9(M)
 Delta株由来のRBD(L452R,T478K):1.41×10-9(M)
The results are shown in FIG. The affinities of the 0210-28K antibodies to the RBD were as follows.
 Wuhan type RBD (WT): 1.82×10 −10 (M)
RBD from Alpha strain (N501Y): 1.67×10 −9 (M)
RBD from Beta strain (K417N, E484K, N501Y): 4.02×10 −9 (M)
RBD from Gamma strain (K417T, E484K, N501Y): 1.59×10 −9 (M)
RBD from Kappa strain (L452R, E484Q): 3.14×10 −9 (M)
RBD from Delta strain (L452R, T478K): 1.41×10 −9 (M)
(実施例12)ハムスターモデルを用いた予防的投与による感染抑制実験
 ハムスターモデルにおいて,抗体の予防的投与により新型コロナウイルス及びその変異型スパイクタンパク質を外套したシュードタイプウイルスによる感染を阻害するか実験した。具体的には6~10週齢の雄ハムスター(日本エスエルシー株式会社から購入し,富山大学動物資源開発部内で病原体のない環境で飼育したハムスター)に対して,1匹につき0.3mg/kg又は3mg/kgのウエストナイルウイルスを認識する抗体(Ozawa et al., Antiviral Research 2018, 154, 58),又は0210-28K抗体を腹腔内に投与した。コントロールであるウエストナイルウイルスを認識する抗体は,SARS-CoV-2を認識しない抗体として用いた。上記腹腔内投与24時間後に,下記シュードタイプウイルスをそれぞれ,下記方法により気管内に直接接種した。感染から24時間後にハムスターから肺を採取し,1mg/mLのD-ルシフェリンと5分間インキュベートした。ルシフェラーゼの発光をIn vivo イメージングシステム(IVIS Lumina II,パーキンエルマー)で測定し,肺の表と裏からの発光を測定して肺全体のウイルス感染価を算出した。
 シュードタイプウイルス:実施例7,9と同様にして作製した,武漢型(WT),Alpha株,Beta株,Gamma株,Kappa株,Delta株,及びOmicron株の変異を有するスパイクタンパク質,及びVSV-Gを外套したシュードタイプウイルス
 接種方法:bioRxiv doi(https://doi.org/10.1101/2021.09.17.460745)参照
(Example 12) Infection suppression experiment by preventive administration using a hamster model In a hamster model, it was tested whether preventive administration of antibodies inhibits infection by the novel coronavirus and its pseudotype virus enveloped with its mutant spike protein. . Specifically, 0.3 mg/kg per animal for male hamsters aged 6 to 10 weeks (hamsters purchased from Japan SLC Co., Ltd. and bred in a pathogen-free environment within the Department of Animal Resources Development, University of Toyama). Alternatively, 3 mg/kg of an antibody recognizing West Nile virus (Ozawa et al., Antiviral Research 2018, 154, 58) or 0210-28K antibody was administered intraperitoneally. A control antibody that recognizes West Nile virus was used as an antibody that does not recognize SARS-CoV-2. Twenty-four hours after the intraperitoneal administration, each of the following pseudotype viruses was directly inoculated into the trachea by the method described below. Lungs were harvested from hamsters 24 hours after infection and incubated with 1 mg/mL D-luciferin for 5 minutes. Luminescence of luciferase was measured with an In vivo Imaging System (IVIS Lumina II, PerkinElmer), and luminescence from the front and back of the lung was measured to calculate the virus infectivity titer of the whole lung.
Pseudotype virus: Spike proteins with mutations of Wuhan type (WT), Alpha strain, Beta strain, Gamma strain, Kappa strain, Delta strain, and Omicron strain, prepared in the same manner as in Examples 7 and 9, and VSV- Pseudotype virus that coats G Inoculation method: see bioRxiv doi (https://doi.org/10.1101/2021.09.17.460745)
 その結果を図17に示す。図17は,抗体投与量がBeta株,及びOmicron株は3mg/kgハムスターで,そのほかは0.3mg/kgハムスターの場合の結果である。結果から,0210-28K抗体を事前に投与した場合には,コントロールに比べてルシフェラーゼの発光が明らかに低かった。このことから,新型コロナウイルス及びその変異型スパイクタンパク質を外套したシュードタイプウイルスによる感染を,抗体の予防的投与により阻害できることが明らかとなった。 The results are shown in FIG. FIG. 17 shows the results when the antibody dose was 3 mg/kg hamster for Beta strain and Omicron strain, and 0.3 mg/kg hamster for others. The results showed that luciferase luminescence was clearly lower when the 0210-28K antibody was pre-administered compared to the control. From this, it was clarified that the prophylactic administration of the antibody can inhibit infection by the new coronavirus and its pseudotype virus enveloping its mutant spike protein.
(実施例13)SARS-CoV-2スパイクタンパク質に結合した抗体の構造解析
 SARS-CoV-2スパイクタンパク質に結合した0210-28K抗体の構造を解析するために,クライオ電子顕微鏡法とX線結晶構造解析法を用いた。
 まず,0210-28KのFabを生成するために,0210-28KのVH遺伝子のDNA断片を,N末端から始まる要素(ヒトIgG CH1の定常領域,フレキシブルリンカーGSSG,decahistidine His10 tag)で構成される発現ベクターに挿入した。その後,Expi293F細胞を,FabとFab分子をコードする軽鎖発現ベクター両方をExpi293 Expression Systemを用いて同時形質移入し,培養した細胞の上清を回収して透析膜(Spectrum Laboratories, Rancho Dominguez)を使用して透析した。膜はカバー付き容器に含んだネイティブ緩衝液(20mMリン酸ナトリウム,0.5M NaCl,pH7.4)に浸し,4°C,72時間シェーカーで振った。その後,Ni Sepharose 6 Fast Flow(Cytiva)を使用したアフィニティークロマトグラフィによりFabを精製した。具体的には,Ni Sepharose 6 Fast Flowミックスを充填したPoly-Prepカラム(Bio-Rad,Hercules)に前処理した上清をロードし,洗浄後にFab分子を溶出バッファ(20mMリン酸ナトリウム,0.5M NaCl,500mMイミダゾール,pH7.4)で溶出した。
Example 13 Structural Analysis of Antibody Bound to SARS-CoV-2 Spike Protein To analyze the structure of the 0210-28K antibody bound to the SARS-CoV-2 spike protein, cryo-electron microscopy and X-ray crystallography were used. Analytical method was used.
First, in order to generate the 0210-28K Fab, the DNA fragment of the 0210-28K VH gene was subjected to expression composed of elements starting from the N-terminus (human IgG CH1 constant region, flexible linker GSSG, decahistidine His10 tag). inserted into the vector. Expi293F cells were then co-transfected with both the Fab and the light chain expression vector encoding the Fab molecule using the Expi293 Expression System and the cultured cell supernatant was harvested and applied to dialysis membranes (Spectrum Laboratories, Rancho Dominguez). dialyzed using The membrane was immersed in a native buffer (20 mM sodium phosphate, 0.5 M NaCl, pH 7.4) contained in a covered container and shaken at 4°C for 72 hours on a shaker. Fabs were then purified by affinity chromatography using Ni Sepharose 6 Fast Flow (Cytiva). Specifically, the pretreated supernatant was loaded onto a Poly-Prep column (Bio-Rad, Hercules) filled with Ni Sepharose 6 Fast Flow mix, and after washing, the Fab molecules were eluted with an elution buffer (20 mM sodium phosphate, 0.05%). It was eluted with 5M NaCl, 500 mM imidazole, pH 7.4).
 クライオ電子顕微鏡法で画像化するために,SARS-CoV-2スパイク6Pのタンパク質を報告されている手法で発現および精製し(Onodera et al.,2021),SARS-CoV-2スパイク6P溶液を37℃,1時間インキュベートしてから,精製した0210-28KのFabをSARS-CoV-2スパイク6P溶液とモル比1:2で18℃,1時間インキュベートした。このサンプルをPIB-10(Vacuum Device)を使用して10mAで120秒間グロー放電処理したQuantifoil R1.2/1.3 Cu 300メッシュグリッド(Quantifoil Micro Tools GmbH)に載せることによりグリッドを作製した。サンプルを18℃,湿度100%,5の力で5秒間Vitrobot mark IV(Thermo Fisher Scientific)を用いてブロットし,液体エタンに浸した。顕微鏡写真は,K3直接電子検出器(Gatan)を備えた300kVで動作するKrios G4(Thermo Fisher Scientific)を使用し,公称倍率130,000(物理ピクセルあたり0.67),20eVスリット幅のGIF-Biocontinuumエネルギーフィルター(Gatan)を用いて,50フレームにわたって総被ばく1.5秒で総線量を53.14e/Å2として取得した。
 すべての画像処理ステップはRelion 3.1(例えば,Zivanov, J. et al., eLife 7; 10.7554/eLife.42166 (2018).参照)で実行された。MotionCor2(Zheng, S. Q. et al., Nat Methods 14, 331-332, doi:10.1038/nmeth.4193 (2017).参照)を用いて電子線誘起性ドリフトを補正し,コントラスト伝達関数の推定はCTFFIND465(Rohou, A. & Grigorieff, N., J Struct Biol 192, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).参照)を使用して実行された。LaPlacian-Gaussianフィルターと2D分類ジョブタイプを用いた粒子ピッキングにより生成されたテンプレートに基づいて,711242粒子を自動ピッキングし,3D分類と2D分類でノイズ粒子を除去したのち,3D分類ジョブタイプを実行して,3つのFabと1つのスパイクを含む1クラスを識別した。このクラスには,コントラスト伝達関数の補正とBayesian polishingのあとに,3.1Åの解像度でマップを生成するためにC3対称性を使用した最終的な3D再構成で使用される56247個の粒子が含まれる。なお,解像度はフーリエシェル相関曲線(FSC = 0.143)基準に基づき,図はChimeraとChimeraX(Pettersen, E. F. et al., J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).参照)を用いて作成された。
For imaging by cryo-electron microscopy, the protein of SARS-CoV-2 spike 6P was expressed and purified by a reported procedure (Onodera et al., 2021), and the SARS-CoV-2 spike 6P solution was isolated from 37 After incubation for 1 hour at 18°C, the purified 0210-28K Fab was incubated with SARS-CoV-2 spiked 6P solution at a molar ratio of 1:2 for 1 hour at 18°C. A grid was prepared by placing the sample on a Quantifoil R1.2/1.3 Cu 300 mesh grid (Quantifoil Micro Tools GmbH) that had been glow discharged using a PIB-10 (Vacuum Device) at 10 mA for 120 seconds. Samples were blotted using a Vitrobot mark IV (Thermo Fisher Scientific) at 18° C., 100% humidity, force of 5 for 5 seconds and immersed in liquid ethane. Photomicrographs were obtained using a Krios G4 (Thermo Fisher Scientific) operating at 300 kV with a K3 direct electron detector (Gatan), nominal magnification of 130,000 (0.67 per physical pixel), GIF-scan with 20 eV slit width. A total dose of 53.14 e/Å2 was acquired with a total exposure of 1.5 sec over 50 frames using a Biocontinuum energy filter (Gatan).
All image processing steps were performed in Relion 3.1 (see, eg, Zivanov, J. et al., eLife 7; 10.7554/eLife.42166 (2018).). MotionCor2 (Zheng, S.Q. et al., Nat Methods 14, 331-332, doi: 10.1038/nmeth.4193 (2017).) was used to correct for electron beam-induced drift, and the contrast transfer function was was performed using CTFFIND465 (Rohou, A. & Grigorieff, N., J Struct Biol 192, 216-221, doi: 10.1016/j.jsb.2015.08.008 (2015). See) was done. Based on a template generated by particle picking using a LaPlacian-Gaussian filter and a 2D classification job type, 711242 particles were automatically picked, noise particles were removed by 3D classification and 2D classification, and then the 3D classification job type was run. We identified one class containing 3 Fabs and 1 spike. This class contains 56247 particles that, after contrast transfer function correction and Bayesian polishing, are used in the final 3D reconstruction using C3 symmetry to generate a map with a resolution of 3.1 Å. included. The resolution is based on the Fourier shell correlation curve (FSC = 0.143) standard, and the figure is based on Chimera and ChimeraX (Pettersen, EF et al., J Comput Chem 25, 1605-1612, doi: 10.1002/ Jcc.20084 (2004).
 その結果を図18(a)に示す。図18(a)はC3対称性で3.1Åの解像度に緻密化したクライオ電子顕微鏡(cryo-EM)マップであり,0210-28KのFab(図18においては「UT28K Fab」と表記する)は,図で示すSARS-CoV-2 RBDの左肩側に認識された。 The result is shown in FIG. 18(a). FIG. 18(a) is a cryo-electron microscope (cryo-EM) map densified to a resolution of 3.1 Å with C3 symmetry. , was recognized on the left shoulder side of the SARS-CoV-2 RBD shown in the figure.
 次に,精製されたSARS-CoV-2 RBDと0210-28KのFabをモル比1:1.3で混合し,20mMTris pH8.0,100mM NaClで平衡化したsuperdex200 10/300(Cytiva)でRBD/Fab複合体を精製し,RBD及びFabの両方を含む画分を収集して13mg/mlまで濃縮した。結晶化スクリーニングは市販のスクリーニングキットを使用して実施した。RBD/Fab複合体の結晶はシッティングドロップ蒸気拡散法により293Kで成長し,最終的な結晶化条件は0.1Mクエン酸 pH5.0,1.0M塩化リチウム,10%(w/v)PEG6000であった。
 結晶を液体窒素で低温冷却し,X線回折実験をSPring-8(Harima)のビームラインBL32XUで実施した。X線回折データセットはXDSで処理され,CCP4プログラムパッケージでAimlessを使用してスケーリングされた(例えば,Evans, P.Acta Crystallogr D Biol Crystallogr 62, 72-82, doi:10.1107/S0907444905036693.参照)。構造はPHENIXパッケージのPhaserプログラムを使用した分子置換法により解析され,RBD構造(PDB ID:7jmp)とalphafold2 colab Webサイトで生成された0210-28KのFabフラグメントを分子置換の検索プローブとして使用した。構造精密化はphenix.refineとCOOT(例えば,Liebschner, D. et al., Acta Crystallogr D Struct Biol 75, 861-877, doi:10.1107/S2059798319011471.参照)を使用し,構造の立体化学的特性はMolProbity(Davis, I. W. et al.,Nucleic Acids Res 35, W375-383, doi:10.1093/nar/gkm216.参照)を使用して評価した。図はPyMOL(http://pymol.sourceforge.net)を用いて作成し,分子間接触原子はCCP4プログラムパッケージのPISAおよびCONTACTを使用して分析された(Krissinel, E. & Henrick, K. J Mol Biol 372, 774-797, doi:10.1016/j.jmb.2007.05.022.参照)。
Purified SARS-CoV-2 RBD and 0210-28K Fabs were then mixed at a molar ratio of 1:1.3 and RBDs were treated with superdex200 10/300 (Cytiva) equilibrated with 20 mM Tris pH 8.0, 100 mM NaCl. The /Fab conjugate was purified and fractions containing both RBD and Fab were collected and concentrated to 13 mg/ml. Crystallization screening was performed using a commercially available screening kit. Crystals of the RBD/Fab complex were grown at 293 K by the sitting drop vapor diffusion method, and the final crystallization conditions were 0.1 M citric acid pH 5.0, 1.0 M lithium chloride, 10% (w/v) PEG6000. there were.
Crystals were cryocooled in liquid nitrogen and X-ray diffraction experiments were performed at beamline BL32XU at SPring-8 (Harima). X-ray diffraction data sets were processed with XDS and scaled using Aimless in the CCP4 program package (see, e.g., Evans, P. Acta Crystallogr D Biol Crystallogr 62, 72-82, doi: 10.1107/S0907444905036693. ). The structure was solved by the molecular replacement method using the Phaser program in the PHENIX package, using the RBD structure (PDB ID: 7jmp) and the 0210-28K Fab fragment generated at the alphafold2 colab website as search probes for molecular replacement. Structural refinement was performed using phenix. Refine and COOT (see, e.g., Liebschner, D. et al., Acta Crystallogr D Struct Biol 75, 861-877, doi: 10.1107/S2059798319011471.) were used, and the stereochemical characterization of structures was performed using MolProbity (Davis, IW et al., Nucleic Acids Res 35, W375-383, doi: 10.1093/nar/gkm216.). Figures were generated using PyMOL (http://pymol.sourceforge.net) and intermolecular contact atoms were analyzed using PISA and CONTACT in the CCP4 program package (Krissinel, E. & Henrick, K.J. Mol Biol 372, 774-797, doi: 10.1016/j.jmb.2007.05.022.).
 その結果を図18(b),(d)~(g)に示す。
 図18(b)は,3.75Åの解像度のX線結晶構造解析結果であり,0210-28KのFab(UT28K Fab)がクライオ電子顕微鏡での結果と同様の領域に認識された。0210-28K抗体は,RBDのF486をコア相互作用アミノ酸残基として認識し,抗体の疎水性ポケットと相互作用していた。この結合モードは,図18(c)に示す253XL55(PDB ID:7BEO)とSARS-CoV-2 RBDの結合に似ていた。
 図18(d)~(g)に,0210-28K抗体FabとSARS-CoV-2 RBD間の主要残基の相互作用について示す。図18(d)からRBDのQ493の側鎖は,0210-28K抗体FabのVHのS55及びN57と水素結合を形成していた。また,図18(e)から,RBDのN487の側鎖は,抗体FabのVHのD107の側鎖と水素結合を形成するだけでなく,抗体FabのVHのC105及びS106の主鎖の酸素原子と結合していた。また,図18(f)から,抗体FabのVHのD107の側鎖はRBDのN487に加えて,S477及びT478の側鎖と水素結合し,これらの主鎖の窒素とも結合していた。さらに,図18(g)から,抗体FabのVHのD104の側鎖の水素原子は,RBDのS477の主鎖の窒素原子及びA475とG476の主鎖の酸素原子と結合を形成していた。
 これらの結果から,RBDのN487と,0210-28K抗体FabのVHのD104及びD107は,抗原抗体相互作用の重要な残基であり,相互作用する分子の主鎖を認識し合っていることが明らかとなった。0210-28K抗体はRBDと,少なくとも4つの主鎖相互作用(RBDのA475,G476,S477,及びT478)と,少なくとも3つの側鎖相互作用(RBDのF486,N487,及びQ493)があった。
The results are shown in FIGS. 18(b), (d) to (g).
FIG. 18(b) is the result of X-ray crystal structure analysis with a resolution of 3.75 Å, and the 0210-28K Fab (UT28K Fab) was recognized in the same region as the cryo-electron microscope result. The 0210-28K antibody recognized F486 of RBD as a core interacting amino acid residue and interacted with the hydrophobic pocket of the antibody. This binding mode resembled the binding of 253XL55 (PDB ID: 7BEO) and SARS-CoV-2 RBD shown in Figure 18(c).
Figures 18(d)-(g) show the key residue interactions between the 0210-28K antibody Fab and the SARS-CoV-2 RBD. From FIG. 18(d), the side chain of Q493 of RBD formed hydrogen bonds with S55 and N57 of VH of 0210-28K antibody Fab. In addition, from FIG. 18 (e), the side chain of N487 of RBD not only forms a hydrogen bond with the side chain of D107 of VH of antibody Fab, but also the oxygen atoms of the main chains of C105 and S106 of VH of antibody Fab. was connected with Further, from FIG. 18(f), the side chain of D107 of the VH of the antibody Fab was hydrogen-bonded to the side chains of S477 and T478 in addition to N487 of RBD, and was also bonded to the nitrogen of these main chains. Furthermore, from FIG. 18(g), the hydrogen atom in the side chain of D104 of VH of antibody Fab formed a bond with the nitrogen atom of the main chain of S477 of RBD and the oxygen atom of the main chains of A475 and G476 of RBD.
From these results, N487 of RBD and D104 and D107 of VH of 0210-28K antibody Fab are important residues for antigen-antibody interaction, and they recognize the main chains of interacting molecules. It became clear. The 0210-28K antibody had at least four backbone interactions (RBD A475, G476, S477, and T478) and at least three side chain interactions (RBD F486, N487, and Q493) with RBD.
(実施例14)エピトープマッピング解析
 変異株由来のRBDタンパク質への0210-28K抗体の結合をELISAにて解析した。具体的には1μg/mlのSARS-CoV-2 RBD(WT),RBD N439K,RBD N440K,RBD G446V,RBD L452R,RBD Y453F,RBD L455F,RBD F456L,RBD K458R,RBD E471Q,RBD I472V,RBD A475V,RBD G476S,RBD S477N,RBD P479S,RBD N481D,RBD G482S,RBD V483A,RBD E484K,RBD G485S,RBD F486S,RBD N487R,RBD F490S,RBD S494P,RBD P499R,RBD N501Y,RBD Y505C,RBD N417N,E484K,N501Y,RBD K417T,E484K,N501Y,RBD L452R,T478K,及びRBD L452R,E484Qをそれぞれ含むPBSを,それぞれMaxisorp 96 well plateに4℃で一夜保温することで,それぞれのタンパク質をウエルの底面にそれぞれ固層化した。
(Example 14) Epitope Mapping Analysis The binding of the 0210-28K antibody to the mutant-derived RBD protein was analyzed by ELISA. Specifically 1 μg/ml SARS-CoV-2 RBD (WT), RBD N439K, RBD N440K, RBD G446V, RBD L452R, RBD Y453F, RBD L455F, RBD F456L, RBD K458R, RBD E471Q, RBD I472V, RBD A472V ,RBD G476S,RBD S477N,RBD P479S,RBD N481D,RBD G482S,RBD V483A,RBD E484K,RBD G485S,RBD F486S,RBD N487R,RBD F490S,RBD S494P,RBD P499R,RBD N501Y,RBD Y505C,RBD N417N,E484K , N501Y, RBD K417T, E484K, N501Y, RBD L452R, T478K, and RBD L452R, E484Q in PBS, respectively. solidified.
 抗原溶液を除去した後,3%BSAと0.1% Tween-20を含むPBSで1時間ブロッキングした。次に,0.1% Tween-20を含むPBSで洗浄し,100ng/mlの作製した抗体を1時間インキュベートした。その後0.1% Tween-20を含むPBSで洗浄し,200 ng/mlペルオキシダーゼ標識抗ヒトIgG-Fc F(ab)’フラグメントを1時間インキュベートした。最後に0.1% Tween-20を含むPBSで洗浄し,TMB基質を用いて発色させ,プレートリーダーを用いて吸光度450nmの測定を行った。 After removing the antigen solution, the cells were blocked with PBS containing 3% BSA and 0.1% Tween-20 for 1 hour. Then, it was washed with PBS containing 0.1% Tween-20 and incubated with 100 ng/ml of the produced antibody for 1 hour. After washing with PBS containing 0.1% Tween-20, 200 ng/ml peroxidase-labeled anti-human IgG-Fc F(ab)' 2 fragment was incubated for 1 hour. Finally, the cells were washed with PBS containing 0.1% Tween-20, developed with a TMB substrate, and absorbance at 450 nm was measured using a plate reader.
 その結果を図19に示す。0210-28K抗体は,F486SとN487Rを除くRBDタンパク質に対する結合の有意な減少は認められなかったが,F486SとN487Rに対しては結合の減少が認められた。これらの結果から,0210-28K抗体の結合に,少なくともRBDタンパク質であるF486とN487が不可欠であることが明らかとなった。
 これは,0210-28K抗体が,実施例13において主鎖相互作用することが明らかとなったRBDのA475V,G476S,S477N,及びT478Kには反応したが,側鎖相互作用するF486S及びN487Rに対する突然変異に反応しなかったことを示し,0210-28K抗体が主鎖優位抗原抗体相互作用であることが明らかとなった。
The results are shown in FIG. The 0210-28K antibody did not significantly decrease binding to RBD proteins other than F486S and N487R, but decreased binding to F486S and N487R. These results demonstrate that at least the RBD proteins F486 and N487 are essential for the binding of the 0210-28K antibody.
This shows that the 0210-28K antibody reacted with A475V, G476S, S477N, and T478K of RBD, which were shown to interact with the main chain in Example 13, but suddenly reacted with F486S and N487R with side chain interactions. It was shown that the 0210-28K antibody did not react to the mutation, revealing that the 0210-28K antibody is a main chain-dominant antigen-antibody interaction.
 さらに,0210-28K抗体存在下において,ウイルス増殖中に発生する可能性がある変異について調べた。実験は,日本の国立感染症研究所で分離された武漢型(WK-521/2020)を,阻害濃度90%(IC90)の0210-28K抗体またはウエストナイルウイルスを認識する抗体(Ozawa et al., Antiviral Research 2018, 154, 58)1.0μg/mlとプレインキュベートし,VeroE6/TMPRSS2細胞に接種した。コントロール抗体であるウエストナイルウイルスを認識する抗体は,SARS-CoV-2を認識しない抗体として用いた。感染後72時間で培養上清を回収し,その後の継代のために抗体量を2倍にして再び継代した。3回の継代後,培養上清を回収し,QIAamp Viral RNA Mini Kit(Qiagen)を使用してウイルスRNAを単離した。全ゲノム増幅は,SARS-CoV-2 genome sequencing(Itokawa et al., 2020)のためのARTIC Network’s protocol修正版を使用して実行した。次世代シーケンシング(NGS)ライブラリは,QIAseq FX DNA Library kit (Qiagen)を使用して構築され,iSeq platform (Illumina)を使用してシーケンシングした。NGS読み取りは,bwa mem algorithm (version 0.7.13-r1126)(Li, H. & Durbin, R. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324.参照)を使用してSARS-CoV-2 Wuhan-Hu-1 reference genome sequence (GenBank accession no. MN908947.3)にマッピングし,VarScan version 2.4.3(Koboldt, D. C. et al., Genome Res 22, 568-576, doi:10.1101/gr.129684.111.参照)を使用して変異対立遺伝子頻度を分析した。
 実験の結果,0210-28K抗体存在下において,独立して3回実験したすべての武漢型SARS-CoV-2スパイクタンパク質にY489H変異が含まれていた。一方,コントロール抗体には3株中2株にそれぞれA475VまたはH655Y変異が含まれていた。
Furthermore, in the presence of the 0210-28K antibody, possible mutations during virus growth were investigated. In the experiment, the Wuhan type (WK-521/2020) isolated at the National Institute of Infectious Diseases in Japan was treated with the 0210-28K antibody with an inhibitory concentration of 90% (IC90) or an antibody that recognizes West Nile virus (Ozawa et al. , Antiviral Research 2018, 154, 58) were preincubated with 1.0 μg/ml and inoculated into VeroE6/TMPRSS2 cells. An antibody that recognizes West Nile virus, which is a control antibody, was used as an antibody that does not recognize SARS-CoV-2. Culture supernatants were harvested 72 hours after infection and passaged again with twice the amount of antibody for subsequent passages. After three passages, culture supernatants were harvested and viral RNA was isolated using the QIAamp Viral RNA Mini Kit (Qiagen). Whole genome amplification was performed using a modified version of ARTIC Network's protocol for SARS-CoV-2 genome sequencing (Itokawa et al., 2020). Next-generation sequencing (NGS) libraries were constructed using the QIAseq FX DNA Library kit (Qiagen) and sequenced using the iSeq platform (Illumina). NGS readings were performed using the bwa mem algorithm (version 0.7.13-r1126) (see Li, H. & Durbin, R. Bioinformatics 25, 1754-1760, doi: 10.1093/bioinformatics/btp324.). Mapped to the SARS-CoV-2 Wuhan-Hu-1 reference genome sequence (GenBank accession no. MN908947.3) and VarScan version 2.4.3 (Koboldt, D.C. 576, doi: 10.1101/gr.129684.111.) was used to analyze mutation allele frequencies.
As a result of the experiment, in the presence of the 0210-28K antibody, all Wuhan-type SARS-CoV-2 spike proteins independently tested three times contained the Y489H mutation. On the other hand, the control antibody contained the A475V or H655Y mutation in two of the three strains, respectively.
 実施例13,14の結果から,RBDのN487及びY489は,抗体認識から逃れるためにアミノ酸置換を引き起こすことで,0210-28K抗体の疎水性ポケットと相互作用するRBDのF486の配向をサポートしていると考えられる。また,SARS-CoV-2変異株に対する中和抗体の反応性を低下させるRBDのE484のアミノ酸残基が,抗体結合部位である外側に位置し,E484アミノ酸置換とは無関係に0210-28K抗体が存在すると考えられ,これらの特徴は0210-28K抗体がRBDの幅広い主鎖を認識する相互作用とともに,高い中和能力の構造的基盤であると考察している。
 なお,実施例9,10において,0210-28K抗体のOmicron株に対する反応が他の変異株と比較して低下したのは,Omicron株の変異の1つであるQ493R突然変異によって水素結合の消失を引き起こしたためではないかと推測している。また,0210-28K抗体存在下において,ウイルス増殖中に発生する可能性がある変異について調べたが,循環するSARS-CoV-2に対する競争上の優位性を失う可能性が高いため,0210-28K抗体中和耐性SARS-CoV-2変異体の出現は起こり得ないと考えられる。
From the results of Examples 13 and 14, N487 and Y489 of RBD support the orientation of F486 of RBD that interacts with the hydrophobic pocket of the 0210-28K antibody by causing amino acid substitutions to escape antibody recognition. It is thought that there are In addition, the E484 amino acid residue of RBD, which reduces the reactivity of neutralizing antibodies against SARS-CoV-2 mutants, is located outside the antibody binding site, and the 0210-28K antibody is independent of the E484 amino acid substitution. These features, along with interactions that allow the 0210-28K antibody to recognize a broad backbone of RBD, are the structural basis for its high neutralizing ability.
In Examples 9 and 10, the reaction of the 0210-28K antibody to the Omicron strain was reduced compared to other mutant strains because the Q493R mutation, which is one of the mutations in the Omicron strain, caused the loss of hydrogen bonding. I'm assuming that's what caused it. In addition, in the presence of 0210-28K antibody, we investigated mutations that may occur during virus growth, but since there is a high possibility of losing competitive advantage against circulating SARS-CoV-2, 0210-28K antibody The emergence of antibody-neutralizing resistant SARS-CoV-2 variants is considered unlikely.
(実施例15)抗体依存性感染増強(ADE)活性の評価
 実施例1で作製した0210-28Kと,新たに作製した0210-28K-LALAに関してADE活性を確認した。0210-28KのFc領域にL234A,L235A変異を導入した0210-28K-LALAの抗体を得るために,0210-28Kの可変領域とL234A,L235A変異を含む定常領域全長とをDNA合成してベクター中に挿入し,実施例1と同様の方法で抗体産生及び精製した。具体的な評価はマイキャン・テクノロジーズ株式会社に委託し,抗体非存在下(コントロール),0210-28K存在下,及び0210-28K-LALA存在下のそれぞれの条件下で,同社が開発した新型コロナウイルス研究用細胞(cMylc-2-K alpha細胞)に新型コロナウイルスを感染させて72時間培養した。新型コロナウイルスは,日本の国立感染症研究所で分離された武漢型(WK-521/2020)を用いた。培養した細胞から培養上清を回収し,ウイルス量を測定してADE活性を確認した。ウイルス量はQIAamp(登録商標)ウイルスRNAミニキット(QIAGEN)を用いたqPCR(quantitative PCR)にて測定した。上記抗体は最終濃度を1.0μg/mlから10倍希釈列を調製して用いた。
(Example 15) Evaluation of antibody-dependent enhancement of infection (ADE) activity ADE activity was confirmed for 0210-28K prepared in Example 1 and newly prepared 0210-28K-LALA. In order to obtain the 0210-28K-LALA antibody in which the L234A and L235A mutations are introduced into the 0210-28K Fc region, the 0210-28K variable region and the full-length constant region containing the L234A and L235A mutations are DNA-synthesized into a vector. , and antibodies were produced and purified in the same manner as in Example 1. Specific evaluation was entrusted to Mican Technologies Co., Ltd., and under the conditions of the absence of antibodies (control), the presence of 0210-28K, and the presence of 0210-28K-LALA, the new coronavirus developed by the company Research cells (cMylc-2-K alpha cells) were infected with the novel coronavirus and cultured for 72 hours. For the new coronavirus, the Wuhan type (WK-521/2020) isolated by the National Institute of Infectious Diseases in Japan was used. The culture supernatant was collected from the cultured cells, and the viral load was measured to confirm the ADE activity. The viral load was measured by qPCR (quantitative PCR) using the QIAamp® Viral RNA Mini Kit (QIAGEN). The above antibody was used by preparing a 10-fold dilution series from a final concentration of 1.0 μg/ml.
 その結果を図20に示す。グラフ中,縦軸はコントロールで得られるウイルス量を1として,ウイルスの増減量(Fold increase)を示している。0210-28K存在下においては,1.0×10-1μg/ml以上ではウイルス量が少ないが,1.0×10-2μg/mlではウイルス量が多く,ADE活性を示した。一方,0210-28K-LALA存在下においては,1.0×10-2μg/ml以下でもウイルス量が多くならず,ADE活性が認められなかった。 The results are shown in FIG. In the graph, the vertical axis indicates the virus fold increase, with the virus amount obtained in the control being set to 1. In the presence of 0210-28K, the virus amount was low at 1.0×10 −1 μg/ml or higher, but the virus amount was high at 1.0×10 −2 μg/ml, indicating ADE activity. On the other hand, in the presence of 0210-28K-LALA, the virus amount did not increase even at 1.0×10 −2 μg/ml or less, and no ADE activity was observed.
(実施例16)インターロイキン-6(IL-6)産生増強活性の評価
 上記0210-28K及び0210-28K-LALAに関して,IL-6産生を増強させる活性を有しているかも確認した。具体的な評価はマイキャン・テクノロジーズ株式会社に委託し,抗体非存在下(コントロール),0210-28K存在下,及び0210-28K-LALA存在下のそれぞれの条件下で,cMylc-2-K alpha細胞に新型コロナウイルス(WK-521/2020)を感染させて72時間培養し,培養上清を回収してIL-6産生量をELISAにて測定した。上記抗体は最終濃度を1.0μg/mlから10倍希釈列を調製し用いた。
(Example 16) Evaluation of activity to enhance interleukin-6 (IL-6) production It was also confirmed that the 0210-28K and 0210-28K-LALA described above have activity to enhance IL-6 production. Specific evaluation was entrusted to Mican Technologies Inc., cMylc-2-K alpha cells under the conditions of the absence of antibody (control), the presence of 0210-28K, and the presence of 0210-28K-LALA was infected with the novel coronavirus (WK-521/2020) and cultured for 72 hours, the culture supernatant was collected, and the amount of IL-6 produced was measured by ELISA. The above antibody was used after preparing a 10-fold dilution series from a final concentration of 1.0 μg/ml.
 その結果を図21に示す。新型コロナウイルスに感染した重症化患者の血清では,cMylc-2-K alpha細胞からの高いIL-6産生増強活性が認められることが報告されている(例えば,Optical Densityが約1.1程度)。本実施例の結果から,0210-28K及び0210-28K-LALA存在下においては,抗体の各濃度のいずれでもIL-6産生量に大きな差がみられず,cMylc-2-K alpha細胞に対するIL-6の産生増強活性が認められなかった。 The results are shown in FIG. It has been reported that the serum of severely ill patients infected with the new coronavirus shows high IL-6 production enhancement activity from cMylc-2-K alpha cells (for example, Optical Density is about 1.1). . From the results of this example, in the presence of 0210-28K and 0210-28K-LALA, no significant difference in IL-6 production was observed at any of the antibody concentrations, and IL-6 production against cMylc-2-K alpha cells -6 production enhancing activity was not observed.

Claims (34)

  1.  以下の(i)~(xii)の全てのアミノ酸部分に結合可能な抗体又はその抗原結合性断片:
    (i)配列番号629に記載のアミノ酸配列の319~541番目のアミノ酸からなる部分,
    (ii)K417N,E484K,及びN501Y変異を有する前記(i)のアミノ酸部分,
    (iii)N439K変異を有する前記(i)に記載のアミノ酸部分,
    (iv)N440K変異を有する前記(i)に記載のアミノ酸部分,
    (v)A475V変異を有する前記(i)に記載のアミノ酸部分,
    (vi)E484K変異を有する前記(i)に記載のアミノ酸部分,
    (vii)N501Y変異を有する前記(i)に記載のアミノ酸部分,
    (viii)L452R変異を有する前記(i)に記載のアミノ酸部分,
    (ix)L452R及びE484Q変異を有する前記(i)に記載のアミノ酸部分,
    (x)K417T,E484K,及びN501Y変異を有する前記(i)に記載のアミノ酸部分,
    (xi)L452R及びT478K変異を有する前記(i)に記載のアミノ酸部分,及び,
    (xii)G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異を有する前記(i)に記載のアミノ酸部分。
    An antibody or an antigen-binding fragment thereof capable of binding to all of the following amino acid moieties (i) to (xii):
    (i) a portion consisting of the 319th to 541st amino acids of the amino acid sequence set forth in SEQ ID NO: 629;
    (ii) the amino acid portion of (i) having K417N, E484K, and N501Y mutations;
    (iii) the amino acid moiety according to (i) above having the N439K mutation;
    (iv) the amino acid moiety according to (i) above, which has an N440K mutation;
    (v) the amino acid moiety of (i) above having the A475V mutation;
    (vi) the amino acid moiety according to (i) above, which has an E484K mutation;
    (vii) the amino acid moiety according to (i) above, which has the N501Y mutation;
    (viii) the amino acid moiety according to (i) above, which has the L452R mutation;
    (ix) the amino acid moiety of (i) above having L452R and E484Q mutations;
    (x) the amino acid moiety of (i) above having K417T, E484K, and N501Y mutations;
    (xi) the amino acid portion of (i) above having L452R and T478K mutations, and
    (xii) The amino acid moiety of (i) above having mutations G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H.
  2.  以下の(i)~(xii)の全てのペプチドと,ヒトACE2との結合を阻害可能な,請求項1に記載の抗体又はその抗原結合性断片:
    (i)配列番号629に記載のアミノ酸配列の319~541番目のアミノ酸からなるペプチド,
    (ii)K417N,E484K,及びN501Y変異を有する前記(i)のペプチド,
    (iii)N439K変異を有する前記(i)に記載のペプチド,
    (iv)N440K変異を有する前記(i)に記載のペプチド,
    (v)A475V変異を有する前記(i)に記載のペプチド,
    (vi)E484K変異を有する前記(i)に記載のペプチド,
    (vii)N501Y変異を有する前記(i)に記載のペプチド,
    (viii)L452R変異を有する前記(i)に記載のペプチド,
    (ix)L452R及びE484Q変異を有する前記(i)に記載のペプチド,
    (x)K417T,E484K,及びN501Y変異を有する前記(i)に記載のペプチド,
    (xi)L452R及びT478K変異を有する前記(i)に記載のペプチド,及び,
    (xii)G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異を有する前記(i)に記載のペプチド。
    The antibody or antigen-binding fragment thereof according to claim 1, which is capable of inhibiting binding of all of the following peptides (i) to (xii) to human ACE2:
    (i) a peptide consisting of the 319th to 541st amino acids of the amino acid sequence set forth in SEQ ID NO: 629;
    (ii) the peptide of (i) having K417N, E484K, and N501Y mutations;
    (iii) the peptide of (i) above having the N439K mutation;
    (iv) the peptide of (i) above, which has the N440K mutation;
    (v) the peptide of (i) above having the A475V mutation;
    (vi) the peptide according to (i) above, which has an E484K mutation;
    (vii) the peptide of (i) above having the N501Y mutation;
    (viii) the peptide according to (i) above, which has the L452R mutation;
    (ix) the peptide of (i) above having L452R and E484Q mutations;
    (x) the peptide of (i) having K417T, E484K, and N501Y mutations;
    (xi) the peptide according to (i) above having L452R and T478K mutations, and
    (xii) The peptide of (i) above having mutations G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H.
  3.  以下の(i)~(xii)のタンパク質を有するシュードウイルスのVero細胞への感染を阻害可能な,請求項1又は請求項2に記載の抗体又はその抗原結合性断片:
    (i)配列番号629に記載のアミノ酸配列からなるタンパク質,
    (ii)K417N,E484K,及びN501Y変異を有する前記(i)に記載のタンパク質,
    (iii)N439K変異を有する前記(i)に記載のタンパク質,
    (iv)N440K変異を有する前記(i)に記載のタンパク質,
    (v)A475V変異を有する前記(i)に記載のタンパク質,
    (vi)E484K変異を有する前記(i)に記載のタンパク質,
    (vii)N501Y変異を有する前記(i)に記載のタンパク質,
    (viii)L452R変異を有する前記(i)に記載のタンパク質,
    (ix)L452R及びE484Q変異を有する前記(i)に記載のタンパク質,
    (x)K417T,E484K,及びN501Y変異を有する前記(i)に記載のタンパク質,
    (xi)L452R及びT478K変異を有する前記(i)に記載のタンパク質,及び,
    (xii)G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異を有する前記(i)に記載のタンパク質。
    The antibody or antigen-binding fragment thereof according to claim 1 or claim 2, which is capable of inhibiting infection of Vero cells with a pseudovirus having the following proteins (i) to (xii):
    (i) a protein consisting of the amino acid sequence set forth in SEQ ID NO: 629;
    (ii) the protein of (i) above having K417N, E484K, and N501Y mutations;
    (iii) the protein of (i) above having the N439K mutation;
    (iv) the protein of (i) above, which has the N440K mutation;
    (v) the protein of (i) above having the A475V mutation;
    (vi) the protein of (i) above, which has the E484K mutation;
    (vii) the protein of (i) above having the N501Y mutation;
    (viii) the protein of (i) above, which has the L452R mutation;
    (ix) the protein of (i) above having L452R and E484Q mutations;
    (x) the protein of (i) above having K417T, E484K, and N501Y mutations;
    (xi) the protein of (i) above having L452R and T478K mutations, and
    (xii) The protein of (i), having mutations G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H.
  4.  以下から選択されるいずれかの組み合わせの相補性決定領域(CDR)を有し,かつ,SARS-CoV-2スパイクタンパク質又はRBDに結合する抗体又はその抗原結合性断片:
    (a)GFSLSNARMG(配列番号9)のアミノ酸配列からなる重鎖CDR(CDRH)1,
      IFSNDEK(配列番号10)のアミノ酸配列からなるCDRH2,及び
      ARTLGFWSGEYYYYYMDV(配列番号11)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSSY(配列番号20)のアミノ酸配列からなる軽鎖CDR(CDRL)1,
      GAS(配列番号21)のアミノ酸配列からなるCDRL2,及び
      QHYNNWPPLFT(配列番号22)のアミノ酸配列からなるCDRL3;
    (b)EFTFSGYA(配列番号31)のアミノ酸配列からなるCDRH1,
      ISYDGINK(配列番号32)のアミノ酸配列からなるCDRH2,及び
      ARDPDYGDEGAFDY(配列番号33)のアミノ酸配列からなるCDRH3,並びに,
      QSLVHSDGNTY(配列番号42)のアミノ酸配列からなるCDRL1,
      KVS(配列番号43)のアミノ酸配列からなるCDRL2,及び
      MQGTHWPPWT(配列番号44)のアミノ酸配列からなるCDRL3;
    (c)GYTFTSYY(配列番号53)のアミノ酸配列からなるCDRH1,
      INPSGGST(配列番号54)のアミノ酸配列からなるCDRH2,及び
      ARDGTPDIVVVPAAPLDY(配列番号55)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSY(配列番号64)のアミノ酸配列からなるCDRL1,
      DVS(配列番号65)のアミノ酸配列からなるCDRL2,及び
      QQRSNWPPVLT(配列番号66)のアミノ酸配列からなるCDRL3;
    (d)GGTFNTYA(配列番号75)のアミノ酸配列からなるCDRH1,
      IIPIFGTA(配列番号76)のアミノ酸配列からなるCDRH2,及び
      ARGEPGYCSGGNCYSSDY(配列番号77)のアミノ酸配列からなるCDRH3,並びに,
      QSLVHSDGNTY(配列番号86)のアミノ酸配列からなるCDRL1,
      KVS(配列番号87)のアミノ酸配列からなるCDRL2,及び
      MQGTHWPPT(配列番号88)のアミノ酸配列からなるCDRL3;
    (e)GDSVSSNSVA(配列番号97)のアミノ酸配列からなるCDRH1,
      TYYRSKWYN(配列番号98)のアミノ酸配列からなるCDRH2,及び
      ASGGYQLLYDDAFDI(配列番号99)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSN(配列番号108)のアミノ酸配列からなるCDRL1,
      GAS(配列番号109)のアミノ酸配列からなるCDRL2,及び
      QQYSNWLLYT(配列番号110)のアミノ酸配列からなるCDRL3;
    (f)GFTFSSYI(配列番号119)のアミノ酸配列からなるCDRH1,
      ISSSSYI(配列番号120)のアミノ酸配列からなるCDRH2,及び
      ARIVGATSYYYYGMDV(配列番号121)のアミノ酸配列からなるCDRH3,並びに,
      QSISSY(配列番号130)のアミノ酸配列からなるCDRL1,
      AAS(配列番号131)のアミノ酸配列からなるCDRL2,及び
      QQSYSTPPT(配列番号132)のアミノ酸配列からなるCDRL3;
    (g)GFIVSSNY(配列番号141)のアミノ酸配列からなるCDRH1,
      IYSGGST配列番号142)のアミノ酸配列からなるCDRH2,及び
      ARDLDVRGALDI(配列番号143)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSSY(配列番号152)のアミノ酸配列からなるCDRL1,
      GAS(配列番号153)のアミノ酸配列からなるCDRL2,及び
      QQYGSSPQT(配列番号154)のアミノ酸配列からなるCDRL3;
    (h)GIDVSSNY(配列番号163)のアミノ酸配列からなるCDRH1,
      IYSGGST(配列番号164)のアミノ酸配列からなるCDRH2,及び
      ARDAQRYGMDV(配列番号165)のアミノ酸配列からなるCDRH3,並びに,
      NIGSNT(配列番号174)のアミノ酸配列からなるCDRL1,
      YDS(配列番号175)のアミノ酸配列からなるCDRL2,及び
      QLWDSSSDHVV(配列番号176)のアミノ酸配列からなるCDRL3;
    (i)GGSISSSNW(配列番号185)のアミノ酸配列からなるCDRH1,
      IYHSGST(配列番号186)のアミノ酸配列からなるCDRH2,及び
      ARGWNYDY(配列番号187)のアミノ酸配列からなるCDRH3,並びに,
      SSDVGSYNL(配列番号196)のアミノ酸配列からなるCDRL1,
      EGS(配列番号197)のアミノ酸配列からなるCDRL2,及び
      CSYAGSSTWV(配列番号198)のアミノ酸配列からなるCDRL3;
    (j)GYTFSSYY(配列番号207)のアミノ酸配列からなるCDRH1,
      INPSGGST(配列番号208)のアミノ酸配列からなるCDRH2,及び
      AREGRAAAETDNNWFDP(配列番号209)のアミノ酸配列からなるCDRH3,並びに,
      QSVLYSSNNKNY(配列番号218)のアミノ酸配列からなるCDRL1,
      WAS(配列番号219)のアミノ酸配列からなるCDRL2,及び
      QQYYNTPYT(配列番号220)のアミノ酸配列からなるCDRL3;
    (k)GFTFSSYA(配列番号229)のアミノ酸配列からなるCDRH1,
      ISYDGSNK(配列番号230)のアミノ酸配列からなるCDRH2,及び
      ARADGSGWNY(配列番号231)のアミノ酸配列からなるCDRH3,並びに,
      PLPKQY(配列番号240)のアミノ酸配列からなるCDRL1,
      KDS(配列番号241)のアミノ酸配列からなるCDRL2,及び
      QSADSSGTYGWE(配列番号242)のアミノ酸配列からなるCDRL3;
    (l)GFTFSNYA(配列番号251)のアミノ酸配列からなるCDRH1,
      ISYDGINK(配列番号252)のアミノ酸配列からなるCDRH2,及び
      ASHRDDYVDSADAFDI(配列番号253)のアミノ酸配列からなるCDRH3,並びに,
      QSLVHSDGNTY(配列番号262)のアミノ酸配列からなるCDRL1,
      KVS(配列番号263)のアミノ酸配列からなるCDRL2,及び
      MQGTHWPPWT(配列番号264)のアミノ酸配列からなるCDRL3;
    (m)GYTFTGYY(配列番号273)のアミノ酸配列からなるCDRH1,
      INPNSGGT(配列番号274)のアミノ酸配列からなるCDRH2,及び
      LASFDY(配列番号275)のアミノ酸配列からなるCDRH3,並びに,
      SNNVGNQG(配列番号284)のアミノ酸配列からなるCDRL1,
      RNN(配列番号285)のアミノ酸配列からなるCDRL2,及び
      SAWDSSLSAQV(配列番号286)のアミノ酸配列からなるCDRL3;
    (n)GGSISSSYHY(配列番号295)のアミノ酸配列からなるCDRH1,
      IYYSGST(配列番号296)のアミノ酸配列からなるCDRH2,及び
      ARRGYSYDSSGDGVDY(配列番号297)のアミノ酸配列からなるCDRH3,並びに,
      QGIRND(配列番号306)のアミノ酸配列からなるCDRL1,
      AAS(配列番号307)のアミノ酸配列からなるCDRL2,及び
      LQHNSYPLT(配列番号308)のアミノ酸配列からなるCDRL3;
    (o)GFSLSDARMG(配列番号317)のアミノ酸配列からなるCDRH1,
      IFSNDEK(配列番号318)のアミノ酸配列からなるCDRH2,及び
      ARALGFWSGYYYYYYMDV(配列番号319)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSN(配列番号328)のアミノ酸配列からなるCDRL1,
      GAS(配列番号329)のアミノ酸配列からなるCDRL2,及び
      QQYNNWPPLFT(配列番号330)のアミノ酸配列からなるCDRL3;
    (p)GFTFNSYA(配列番号339)のアミノ酸配列からなるCDRH1,
      ISYDGNNK(配列番号340)のアミノ酸配列からなるCDRH2,及び
      ARDDDSGSYLYYFDY(配列番号341)のアミノ酸配列からなるCDRH3,並びに,
      QSLVHSDGNTY(配列番号350)のアミノ酸配列からなるCDRL1,
      KVS(配列番号351)のアミノ酸配列からなるCDRL2,及び
      MQGTHWPPLT(配列番号352)のアミノ酸配列からなるCDRL3;

    (q)GFSLSTSGMC(配列番号361)のアミノ酸配列からなるCDRH1,
      IDWDDDK(配列番号362)のアミノ酸配列からなるCDRH2,及び
      ARIPVEMATIGDYYYYGMDV(配列番号363)のアミノ酸配列からなるCDRH3,並びに,
      SSNIGSNY(配列番号372)のアミノ酸配列からなるCDRL1,
      RNN(配列番号373)のアミノ酸配列からなるCDRL2,及び
      AAWDDSLSGWV(配列番号374)のアミノ酸配列からなるCDRL3;
    (r)GDSVSSNRAA(配列番号383)のアミノ酸配列からなるCDRH1,
      TYYRSKWYN(配列番号384)のアミノ酸配列からなるCDRH2,及び
      ARSPSYQLLYPYYFDY(配列番号385)のアミノ酸配列からなるCDRH3,並びに,
      QGISNS(配列番号394)のアミノ酸配列からなるCDRL1,
      AAS(配列番号395)のアミノ酸配列からなるCDRL2,及び
      QQYYSTPYT(配列番号396)のアミノ酸配列からなるCDRL3;
    (s)GGTFSSYA(配列番号405)のアミノ酸配列からなるCDRH1,
      IIPILGIA(配列番号406)のアミノ酸配列からなるCDRH2,及び
      ARALGYSGYGSTYYMDV(配列番号407)のアミノ酸配列からなるCDRH3,並びに,
      SSNIGAGYD(配列番号416)のアミノ酸配列からなるCDRL1,
      GNS(配列番号417)のアミノ酸配列からなるCDRL2,及び
      QSYDSSLSGGV(配列番号418)のアミノ酸配列からなるCDRL3;
    (t)GFTFSISA(配列番号427)のアミノ酸配列からなるCDRH1,
      IVVGSGNT(配列番号428)のアミノ酸配列からなるCDRH2,及び
      AAPYCGGDCSDGFDI(配列番号429)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSSY(配列番号438)のアミノ酸配列からなるCDRL1,
      GAS(配列番号439)のアミノ酸配列からなるCDRL2,及び
      QQYGNSPWT(配列番号440)のアミノ酸配列からなるCDRL3;
    (u)GGTFSSYA(配列番号427)のアミノ酸配列からなるCDRH1,
      IIPILGRA(配列番号428)のアミノ酸配列からなるCDRH2,及び
      ARNPEEFSSSYVYYYYMDV(配列番号429)のアミノ酸配列からなるCDRH3,並びに,
      SSDVGGYSY(配列番号460)のアミノ酸配列からなるCDRL1,
      DVS(配列番号461)のアミノ酸配列からなるCDRL2,及び
      CSYAGSYTSWV(配列番号462)のアミノ酸配列からなるCDRL3;
    (v)GFTFGDYA(配列番号471)のアミノ酸配列からなるCDRH1,
      IRSKAYGGTT(配列番号472)のアミノ酸配列からなるCDRH2,及び
      TRDSITMVQGVIIRLDYFDY(配列番号473)のアミノ酸配列からなるCDRH3,並びに,
      SGSIASNY(配列番号482)のアミノ酸配列からなるCDRL1,
      EDN(配列番号483)のアミノ酸配列からなるCDRL2,及び
      QSYDSSNKV(配列番号484)のアミノ酸配列からなるCDRL3;
    (w)GGSISSYY(配列番号493)のアミノ酸配列からなるCDRH1,
      IFYSGSA(配列番号494)のアミノ酸配列からなるCDRH2,及び
      ARDIGYDSSGPDAFDI(配列番号495)のアミノ酸配列からなるCDRH3,並びに,
      QSVSSY(配列番号504)のアミノ酸配列からなるCDRL1,
      DAS(配列番号505)のアミノ酸配列からなるCDRL2,及び
      QQRSNWPGT(配列番号506)のアミノ酸配列からなるCDRL3;
    (x)GFTFNSYW(配列番号515)のアミノ酸配列からなるCDRH1,
      IKQDGSEK(配列番号516)のアミノ酸配列からなるCDRH2,及び
      ARQLYYYGPIDY(配列番号517)のアミノ酸配列からなるCDRH3,並びに,
      SGSIASNY(配列番号526)のアミノ酸配列からなるCDRL1,
      EDN(配列番号527)のアミノ酸配列からなるCDRL2,及び
      QSYDSNNRV(配列番号528)のアミノ酸配列からなるCDRL3;
    (y)GYSFTSYW(配列番号537)のアミノ酸配列からなるCDRH1,
      IYPGDSDT(配列番号538)のアミノ酸配列からなるCDRH2,及び
      ARRSGYDLASSHNWLDP(配列番号539)のアミノ酸配列からなるCDRH3,並びに,
      SSNIGAGYD(配列番号548)のアミノ酸配列からなるCDRL1,
      GNS(配列番号549)のアミノ酸配列からなるCDRL2,及び
      QSYDNTLSGSL(配列番号550)のアミノ酸配列からなるCDRL3;
    (z)GFSLSNAKMG(配列番号559)のアミノ酸配列からなるCDRH1,
      IFSGDEK(配列番号560)のアミノ酸配列からなるCDRH2,及び
      ARILWFRSYYFDY(配列番号561)のアミノ酸配列からなるCDRH3,並びに,
      QGISSW(配列番号570)のアミノ酸配列からなるCDRL1,
      AAS(配列番号571)のアミノ酸配列からなるCDRL2,及び
      QQANSFPFT(配列番号572)のアミノ酸配列からなるCDRL3;
    (aa)GFTFSSYD(配列番号581)のアミノ酸配列からなるCDRH1,
      IGTAGDT(配列番号582)のアミノ酸配列からなるCDRH2,及び
      ARGIQQQLALRYYYYLDV(配列番号583)のアミノ酸配列からなるCDRH3,並びに,
      QSISSY(配列番号592)のアミノ酸配列からなるCDRL1,
      AAS(配列番号593)のアミノ酸配列からなるCDRL2,及び
      FGQGTKVEIK(配列番号594)のアミノ酸配列からなるCDRL3;並びに,
    (ab)GFTFSSYA(配列番号603)のアミノ酸配列からなるCDRH1,
      ISGSGGST(配列番号604)のアミノ酸配列からなるCDRH2,及び
      AKDGEWYYDFWSGPVYFDY(配列番号605)のアミノ酸配列からなるCDRH3,並びに,
      QSISSW(配列番号614)のアミノ酸配列からなるCDRL1,
      KAS(配列番号615)のアミノ酸配列からなるCDRL2,及び
      QQYNSYSRT(配列番号616)のアミノ酸配列からなるCDRL3。
    An antibody or antigen-binding fragment thereof that has any combination of complementarity determining regions (CDRs) selected from the following and binds to SARS-CoV-2 spike protein or RBD:
    (a) a heavy chain CDR (CDRH) 1 consisting of the amino acid sequence of GFSLSSNARMG (SEQ ID NO: 9);
    CDRH2 consisting of the amino acid sequence of IFSNDEK (SEQ ID NO: 10) and CDRH3 consisting of the amino acid sequence of ARTLGFWSGEYYYYYMDV (SEQ ID NO: 11), and
    a light chain CDR (CDRL) 1 consisting of the amino acid sequence of QSVSSSY (SEQ ID NO: 20),
    CDRL2 consisting of the amino acid sequence of GAS (SEQ ID NO: 21) and CDRL3 consisting of the amino acid sequence of QHYNNWPPLFT (SEQ ID NO: 22);
    (b) CDRH1, consisting of the amino acid sequence of EFTFSGYA (SEQ ID NO: 31);
    CDRH2 consisting of the amino acid sequence of ISYDGINK (SEQ ID NO: 32) and CDRH3 consisting of the amino acid sequence of ARDPDYGDEGAFDY (SEQ ID NO: 33), and
    CDRL1 consisting of the amino acid sequence of QSLVHSDGNTY (SEQ ID NO: 42),
    CDRL2 consisting of the amino acid sequence of KVS (SEQ ID NO: 43) and CDRL3 consisting of the amino acid sequence of MQGTHWPPWT (SEQ ID NO: 44);
    (c) CDRH1, consisting of the amino acid sequence of GYTFTSYY (SEQ ID NO: 53);
    CDRH2 consisting of the amino acid sequence of INPSGGST (SEQ ID NO: 54) and CDRH3 consisting of the amino acid sequence of ARDGTPDIVVVPAAPLDY (SEQ ID NO: 55), and
    CDRL1 consisting of the amino acid sequence of QSVSSY (SEQ ID NO: 64),
    CDRL2 consisting of the amino acid sequence of DVS (SEQ ID NO: 65) and CDRL3 consisting of the amino acid sequence of QQRSNWPPVLT (SEQ ID NO: 66);
    (d) CDRH1, consisting of the amino acid sequence of GGTFNTYA (SEQ ID NO: 75);
    CDRH2 consisting of the amino acid sequence IIIPIFGTA (SEQ ID NO: 76) and CDRH3 consisting of the amino acid sequence ARGEPGYCSGGNCYSSDY (SEQ ID NO: 77), and
    CDRL1 consisting of the amino acid sequence of QSLVHSDGNTY (SEQ ID NO: 86),
    CDRL2 consisting of the amino acid sequence of KVS (SEQ ID NO: 87) and CDRL3 consisting of the amino acid sequence of MQGTHWPPT (SEQ ID NO: 88);
    (e) CDRH1, consisting of the amino acid sequence of GDSVSSNSVA (SEQ ID NO: 97);
    CDRH2 consisting of the amino acid sequence TYYRSKWYN (SEQ ID NO: 98) and CDRH3 consisting of the amino acid sequence ASGGYQLLYDDAFDI (SEQ ID NO: 99), and
    CDRL1 consisting of the amino acid sequence of QSVSSN (SEQ ID NO: 108),
    CDRL2 consisting of the amino acid sequence of GAS (SEQ ID NO: 109) and CDRL3 consisting of the amino acid sequence of QQYSNWLLYT (SEQ ID NO: 110);
    (f) CDRH1, consisting of the amino acid sequence of GFTFSSYI (SEQ ID NO: 119);
    CDRH2 consisting of the amino acid sequence of ISSSSYI (SEQ ID NO: 120) and CDRH3 consisting of the amino acid sequence of ARIVGATSYYYYGMDV (SEQ ID NO: 121), and
    CDRL1 consisting of the amino acid sequence of QSISSY (SEQ ID NO: 130),
    CDRL2 consisting of the amino acid sequence of AAS (SEQ ID NO: 131) and CDRL3 consisting of the amino acid sequence of QQSYSTPPT (SEQ ID NO: 132);
    (g) CDRH1, consisting of the amino acid sequence of GFIVSSNY (SEQ ID NO: 141);
    CDRH2 consisting of the amino acid sequence of IYSGGST SEQ ID NO: 142) and CDRH3 consisting of the amino acid sequence of ARDLDVRGALDI (SEQ ID NO: 143), and
    CDRL1 consisting of the amino acid sequence of QSVSSSY (SEQ ID NO: 152),
    CDRL2 consisting of the amino acid sequence of GAS (SEQ ID NO: 153) and CDRL3 consisting of the amino acid sequence of QQYGSSPQT (SEQ ID NO: 154);
    (h) CDRH1 consisting of the amino acid sequence of GIDVSSNY (SEQ ID NO: 163);
    CDRH2 consisting of the amino acid sequence of IYSGGST (SEQ ID NO: 164) and CDRH3 consisting of the amino acid sequence of ARDAQRYGMDV (SEQ ID NO: 165), and
    CDRL1 consisting of the amino acid sequence of NIGSNT (SEQ ID NO: 174),
    CDRL2 consisting of the amino acid sequence of YDS (SEQ ID NO: 175) and CDRL3 consisting of the amino acid sequence of QLWDSSSDHVV (SEQ ID NO: 176);
    (i) a CDRH1 consisting of the amino acid sequence of GGSISSSNW (SEQ ID NO: 185),
    CDRH2 consisting of the amino acid sequence of IYHSGST (SEQ ID NO: 186) and CDRH3 consisting of the amino acid sequence of ARGWNYDY (SEQ ID NO: 187), and
    CDRL1 consisting of the amino acid sequence of SSDVGSYNL (SEQ ID NO: 196),
    CDRL2 consisting of the amino acid sequence of EGS (SEQ ID NO: 197) and CDRL3 consisting of the amino acid sequence of CSYAGSSTWV (SEQ ID NO: 198);
    (j) CDRH1, consisting of the amino acid sequence of GYTFSSYY (SEQ ID NO: 207);
    CDRH2 consisting of the amino acid sequence of INPSGGST (SEQ ID NO: 208) and CDRH3 consisting of the amino acid sequence of AREGRAAAETDNNWFDP (SEQ ID NO: 209), and
    CDRL1 consisting of the amino acid sequence of QSVLYSSNNKNY (SEQ ID NO: 218),
    CDRL2 consisting of the amino acid sequence of WAS (SEQ ID NO: 219) and CDRL3 consisting of the amino acid sequence of QQYYNTPYT (SEQ ID NO: 220);
    (k) CDRH1, consisting of the amino acid sequence of GFTFSSSYA (SEQ ID NO: 229);
    CDRH2 consisting of the amino acid sequence of ISYDGSNK (SEQ ID NO: 230) and CDRH3 consisting of the amino acid sequence of ARADGSGWNY (SEQ ID NO: 231), and
    CDRL1 consisting of the amino acid sequence PLPKQY (SEQ ID NO: 240),
    CDRL2 consisting of the amino acid sequence of KDS (SEQ ID NO: 241) and CDRL3 consisting of the amino acid sequence of QSADSSGTYGWE (SEQ ID NO: 242);
    (l) CDRH1 consisting of the amino acid sequence of GFTFSNYA (SEQ ID NO: 251),
    CDRH2 consisting of the amino acid sequence of ISYDGINK (SEQ ID NO: 252) and CDRH3 consisting of the amino acid sequence of ASHRDDYVDSADAFDI (SEQ ID NO: 253), and
    CDRL1 consisting of the amino acid sequence of QSLVHSDGNTY (SEQ ID NO: 262),
    CDRL2 consisting of the amino acid sequence of KVS (SEQ ID NO: 263) and CDRL3 consisting of the amino acid sequence of MQGTHWPPWT (SEQ ID NO: 264);
    (m) CDRH1, consisting of the amino acid sequence of GYTFTGYY (SEQ ID NO: 273);
    CDRH2 consisting of the amino acid sequence of INPNSGGT (SEQ ID NO: 274), and CDRH3 consisting of the amino acid sequence of LASFDY (SEQ ID NO: 275), and
    CDRL1 consisting of the amino acid sequence of SNNVGNQG (SEQ ID NO: 284),
    CDRL2 consisting of the amino acid sequence of RNN (SEQ ID NO:285) and CDRL3 consisting of the amino acid sequence of SAWDSSLSAQV (SEQ ID NO:286);
    (n) CDRH1, consisting of the amino acid sequence of GGSISSSYHY (SEQ ID NO: 295);
    CDRH2 consisting of the amino acid sequence of IYYSGST (SEQ ID NO: 296) and CDRH3 consisting of the amino acid sequence of ARRGYSYDSSGDGVDY (SEQ ID NO: 297), and
    CDRL1 consisting of the amino acid sequence of QGIRND (SEQ ID NO: 306),
    CDRL2 consisting of the amino acid sequence of AAS (SEQ ID NO: 307) and CDRL3 consisting of the amino acid sequence of LQHNSYPLT (SEQ ID NO: 308);
    (o) CDRH1 consisting of the amino acid sequence of GFSLSDARMG (SEQ ID NO: 317);
    CDRH2 consisting of the amino acid sequence of IFSNDEK (SEQ ID NO: 318) and CDRH3 consisting of the amino acid sequence of ARALGFWSGYYYYYYMDV (SEQ ID NO: 319), and
    CDRL1 consisting of the amino acid sequence of QSVSSN (SEQ ID NO: 328),
    CDRL2 consisting of the amino acid sequence of GAS (SEQ ID NO:329) and CDRL3 consisting of the amino acid sequence of QQYNNWPPLFT (SEQ ID NO:330);
    (p) CDRH1, consisting of the amino acid sequence of GFTFNSYA (SEQ ID NO: 339);
    CDRH2 consisting of the amino acid sequence of ISYDGNNK (SEQ ID NO: 340) and CDRH3 consisting of the amino acid sequence of ARDDDSGSYLYYFDY (SEQ ID NO: 341), and
    CDRL1 consisting of the amino acid sequence of QSLVHSDGNTY (SEQ ID NO: 350),
    CDRL2 consisting of the amino acid sequence of KVS (SEQ ID NO: 351) and CDRL3 consisting of the amino acid sequence of MQGTHWPPLT (SEQ ID NO: 352);
    ;
    (q) CDRH1, consisting of the amino acid sequence of GFSLSTSGMC (SEQ ID NO: 361);
    CDRH2 consisting of the amino acid sequence IDWDDDK (SEQ ID NO: 362) and CDRH3 consisting of the amino acid sequence ARIPVEMATIGDYYYYGMDV (SEQ ID NO: 363), and
    CDRL1 consisting of the amino acid sequence of SSNIGSNY (SEQ ID NO: 372),
    CDRL2 consisting of the amino acid sequence of RNN (SEQ ID NO: 373) and CDRL3 consisting of the amino acid sequence of AAWDDSLSGWV (SEQ ID NO: 374);
    (r) CDRH1 consisting of the amino acid sequence of GDSVSSNRAA (SEQ ID NO: 383),
    CDRH2 consisting of the amino acid sequence TYYRSKWYN (SEQ ID NO: 384) and CDRH3 consisting of the amino acid sequence ARSPSYQLLYPYYFDY (SEQ ID NO: 385), and
    CDRL1 consisting of the amino acid sequence of QGISNS (SEQ ID NO: 394),
    CDRL2 consisting of the amino acid sequence of AAS (SEQ ID NO:395) and CDRL3 consisting of the amino acid sequence of QQYYSTPYT (SEQ ID NO:396);
    (s) CDRH1 consisting of the amino acid sequence of GGTFSSSYA (SEQ ID NO: 405),
    CDRH2 consisting of the amino acid sequence of IIPILGIA (SEQ ID NO: 406) and CDRH3 consisting of the amino acid sequence of ARALGYSGYGSTYYMDV (SEQ ID NO: 407), and
    CDRL1 consisting of the amino acid sequence of SSNIGAGYD (SEQ ID NO: 416),
    CDRL2 consisting of the amino acid sequence of GNS (SEQ ID NO: 417) and CDRL3 consisting of the amino acid sequence of QSYDSSLSGGV (SEQ ID NO: 418);
    (t) CDRH1, consisting of the amino acid sequence of GFTFSISA (SEQ ID NO: 427);
    CDRH2 consisting of the amino acid sequence IVVGSGNT (SEQ ID NO: 428) and CDRH3 consisting of the amino acid sequence AAPYCGGDCSDGFDI (SEQ ID NO: 429), and
    CDRL1 consisting of the amino acid sequence of QSVSSSY (SEQ ID NO: 438),
    CDRL2 consisting of the amino acid sequence of GAS (SEQ ID NO: 439) and CDRL3 consisting of the amino acid sequence of QQYGNSPWT (SEQ ID NO: 440);
    (u) CDRH1, consisting of the amino acid sequence of GGTFSSSYA (SEQ ID NO: 427);
    CDRH2 consisting of the amino acid sequence of IIPILGRA (SEQ ID NO: 428) and CDRH3 consisting of the amino acid sequence of ARNPEEFSSSSYVYYYYMDV (SEQ ID NO: 429), and
    CDRL1 consisting of the amino acid sequence of SSDVGGYSY (SEQ ID NO: 460),
    CDRL2 consisting of the amino acid sequence of DVS (SEQ ID NO: 461) and CDRL3 consisting of the amino acid sequence of CSYAGSYTSWV (SEQ ID NO: 462);
    (v) CDRH1 consisting of the amino acid sequence of GFTFGDYA (SEQ ID NO: 471);
    CDRH2 consisting of the amino acid sequence IRSKAYGGTT (SEQ ID NO: 472) and CDRH3 consisting of the amino acid sequence TRDSITMVQGVIIRLDYFDY (SEQ ID NO: 473), and
    CDRL1 consisting of the amino acid sequence of SGSIASNY (SEQ ID NO: 482),
    CDRL2 consisting of the amino acid sequence of EDN (SEQ ID NO: 483) and CDRL3 consisting of the amino acid sequence of QSYDSSNKV (SEQ ID NO: 484);
    (w) CDRH1 consisting of the amino acid sequence of GGSISSYY (SEQ ID NO: 493);
    CDRH2 consisting of the amino acid sequence of IFYSGSA (SEQ ID NO: 494) and CDRH3 consisting of the amino acid sequence of ARDIGYDSSGPDAFDI (SEQ ID NO: 495), and
    CDRL1 consisting of the amino acid sequence of QSVSSY (SEQ ID NO: 504),
    CDRL2 consisting of the amino acid sequence of DAS (SEQ ID NO: 505) and CDRL3 consisting of the amino acid sequence of QQRSNWPGT (SEQ ID NO: 506);
    (x) CDRH1 consisting of the amino acid sequence of GFTFNSYW (SEQ ID NO: 515),
    CDRH2 consisting of the amino acid sequence of IKQDGSEK (SEQ ID NO: 516) and CDRH3 consisting of the amino acid sequence of ARQLYYYGPIDY (SEQ ID NO: 517), and
    CDRL1 consisting of the amino acid sequence of SGSIASNY (SEQ ID NO: 526),
    CDRL2 consisting of the amino acid sequence of EDN (SEQ ID NO:527) and CDRL3 consisting of the amino acid sequence of QSYDSNNRV (SEQ ID NO:528);
    (y) CDRH1 consisting of the amino acid sequence of GYSFTSYW (SEQ ID NO: 537);
    CDRH2 consisting of the amino acid sequence of IYPGDSDT (SEQ ID NO: 538) and CDRH3 consisting of the amino acid sequence of ARRSGYDLASSHNWLDP (SEQ ID NO: 539), and
    CDRL1 consisting of the amino acid sequence of SSNIGAGYD (SEQ ID NO: 548),
    CDRL2 consisting of the amino acid sequence of GNS (SEQ ID NO: 549) and CDRL3 consisting of the amino acid sequence of QSYDNTTLSGSL (SEQ ID NO: 550);
    (z) CDRH1, consisting of the amino acid sequence of GFSLSNAKMG (SEQ ID NO: 559);
    CDRH2 consisting of the amino acid sequence of IFSGDEK (SEQ ID NO: 560) and CDRH3 consisting of the amino acid sequence of ARILWFRSYYFDY (SEQ ID NO: 561), and
    CDRL1 consisting of the amino acid sequence of QGISSW (SEQ ID NO: 570),
    CDRL2 consisting of the amino acid sequence of AAS (SEQ ID NO: 571) and CDRL3 consisting of the amino acid sequence of QQANSFPFT (SEQ ID NO: 572);
    (aa) CDRH1, consisting of the amino acid sequence of GFTFSSYD (SEQ ID NO: 581);
    CDRH2 consisting of the amino acid sequence IGTAGDT (SEQ ID NO: 582) and CDRH3 consisting of the amino acid sequence ARGIQQQLALRYYYYLDV (SEQ ID NO: 583), and
    CDRL1 consisting of the amino acid sequence of QSISSY (SEQ ID NO: 592),
    CDRL2 consisting of the amino acid sequence of AAS (SEQ ID NO: 593) and CDRL3 consisting of the amino acid sequence of FGQGTKVEIK (SEQ ID NO: 594);
    (ab) CDRH1, consisting of the amino acid sequence of GFTFSSSYA (SEQ ID NO: 603);
    CDRH2 consisting of the amino acid sequence of ISGSGGST (SEQ ID NO: 604) and CDRH3 consisting of the amino acid sequence of AKDGEWYYDFWSGPVYFDY (SEQ ID NO: 605), and
    CDRL1 consisting of the amino acid sequence of QSISSW (SEQ ID NO: 614),
    CDRL2 consisting of the amino acid sequence of KAS (SEQ ID NO:615) and CDRL3 consisting of the amino acid sequence of QQYNSYSRT (SEQ ID NO:616).
  5.  以下から選択されるいずれかの組み合わせの可変領域を有し,かつ,SARS-CoV-2スパイクタンパク質に結合する,請求項4に記載の抗体又はその抗原結合性断片:
    (a1)請求項4の(a)の抗体であって,配列番号8に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号19に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (b1)請求項4の(b)の抗体であって,配列番号30に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号41に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (c1)請求項4の(c)の抗体であって,配列番号52に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号63に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (d1)請求項4の(d)の抗体であって,配列番号74に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号85に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (e1)請求項4の(e)の抗体であって,配列番号96に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号107に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (f1)請求項4の(f)の抗体であって,配列番号118に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号129に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (g1)請求項4の(g)の抗体であって,配列番号140に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号151に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (h1)請求項4の(h)の抗体であって,配列番号162に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号173に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (i1)請求項4の(i)の抗体であって,配列番号184に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号195に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (j1)請求項4の(j)の抗体であって,配列番号206に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号217に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (k1)請求項4の(k)の抗体であって,配列番号228に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号239に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (l1)請求項4の(l)の抗体であって,配列番号250に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号261に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (m1)請求項4の(m)の抗体であって,配列番号272に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号283に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (n1)請求項4の(n)の抗体であって,配列番号294に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号305に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (o1)請求項4の(o)の抗体であって,配列番号316に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号327に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (p1)請求項4の(p)の抗体であって,配列番号338に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号349に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (q1)請求項4の(q)の抗体であって,配列番号360に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号371に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (r1)請求項4の(r)の抗体であって,配列番号382に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号393に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (s1)請求項4の(s)の抗体であって,配列番号404に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号415に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (t1)請求項4の(t)の抗体であって,配列番号426に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号437に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (u1)請求項4の(u)の抗体であって,配列番号448に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号459に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (v1)請求項4の(v)の抗体であって,配列番号470に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号481に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (w1)請求項4の(w)の抗体であって,配列番号492に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号503に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (x1)請求項4の(x)の抗体であって,配列番号514に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号525に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (y1)請求項4の(y)の抗体であって,配列番号536に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号547に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (z1)請求項4の(z)の抗体であって,配列番号558に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号569に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;
    (aa1)請求項4の(aa)の抗体であって,配列番号580に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号591に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL;並びに,
    (ab1)請求項4の(ab)の抗体であって,配列番号602に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVH,及び,配列番号613に記載されたアミノ酸配列と80%以上の同一性であるアミノ酸配列を有するVL。
    The antibody or antigen-binding fragment thereof according to claim 4, which has any combination of variable regions selected from the following and binds to SARS-CoV-2 spike protein:
    (a1) The antibody of (a) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 8, and the amino acid set forth in SEQ ID NO: 19 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (b1) the antibody of claim 4 (b), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 30, and the amino acid set forth in SEQ ID NO: 41 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (c1) The antibody of (c) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 52, and the amino acid set forth in SEQ ID NO: 63 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (d1) The antibody of claim 4 (d), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 74, and the amino acid set forth in SEQ ID NO: 85 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (e1) The antibody of claim 4 (e), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 96 and the amino acid set forth in SEQ ID NO: 107 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (f1) the antibody of claim 4 (f), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 118, and the amino acid set forth in SEQ ID NO: 129 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (g1) The antibody of (g) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 140, and the amino acid set forth in SEQ ID NO: 151 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (h1) The antibody of claim 4 (h), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 162, and the amino acid set forth in SEQ ID NO: 173 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (i1) The antibody of (i) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 184, and the amino acid set forth in SEQ ID NO: 195. a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (j1) The antibody of claim 4 (j), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 206, and the amino acid set forth in SEQ ID NO: 217 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (k1) The antibody of claim 4 (k), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 228, and the amino acid set forth in SEQ ID NO: 239 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (l1) The antibody of claim 4 (l), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 250, and the amino acid set forth in SEQ ID NO: 261 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (m1) The antibody of claim 4 (m), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 272, and the amino acid set forth in SEQ ID NO: 283 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (n1) The antibody of claim 4 (n), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 294, and the amino acid set forth in SEQ ID NO: 305 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (o1) The antibody of (o) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 316, and the amino acid set forth in SEQ ID NO: 327 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (p1) The antibody of (p) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 338, and the amino acid set forth in SEQ ID NO: 349 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (q1) The antibody of (q) of claim 4, which VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 360, and the amino acid set forth in SEQ ID NO: 371 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (r1) The antibody of claim 4 (r), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 382, and the amino acid set forth in SEQ ID NO: 393 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (s1) The antibody of (s) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 404, and the amino acid set forth in SEQ ID NO: 415 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (t1) The antibody of claim 4 (t), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 426 and the amino acid set forth in SEQ ID NO: 437 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (u1) The antibody of claim 4 (u), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 448, and the amino acid set forth in SEQ ID NO: 459 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (v1) The antibody of (v) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 470, and the amino acid set forth in SEQ ID NO: 481 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (w1) The antibody of claim 4 (w), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 492, and the amino acid set forth in SEQ ID NO: 503 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (x1) The antibody of claim 4 (x), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 514, and the amino acid set forth in SEQ ID NO: 525 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (y1) The antibody of claim 4 (y), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 536, and the amino acid set forth in SEQ ID NO: 547 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (z1) The antibody of claim 4 (z), wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 558, and the amino acid set forth in SEQ ID NO: 569 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (aa1) The antibody of (aa) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 580, and the amino acid set forth in SEQ ID NO: 591 a VL having an amino acid sequence that is 80% or more identical to the sequence;
    (ab1) The antibody of (ab) of claim 4, wherein the VH has an amino acid sequence that is 80% or more identical to the amino acid sequence set forth in SEQ ID NO: 602, and the amino acid set forth in SEQ ID NO: 613 A VL having an amino acid sequence that is 80% or more identical to the sequence.
  6.  以下から選択されるいずれかの組み合わせの可変領域を有する抗体又はその抗原結合性断片:
    (a2)配列番号8に記載されたアミノ酸配列を有するVH,及び,配列番号19に記載されたアミノ酸配列を有するVL;
    (b2)配列番号30に記載されたアミノ酸配列を有するVH,及び,配列番号41に記載されたアミノ酸配列を有するVL;
    (c2)配列番号52に記載されたアミノ酸配列を有するVH,及び,配列番号63に記載されたアミノ酸配列を有するVL;
    (d2)配列番号74に記載されたアミノ酸配列を有するVH,及び,配列番号85に記載されたアミノ酸配列を有するVL;
    (e2)配列番号96に記載されたアミノ酸配列を有するVH,及び,配列番号107に記載されたアミノ酸配列を有するVL;
    (f2)配列番号118に記載されたアミノ酸配列を有するVH,及び,配列番号129に記載されたアミノ酸配列を有するVL;
    (g2)配列番号140に記載されたアミノ酸配列を有するVH,及び,配列番号151に記載されたアミノ酸配列を有するVL;
    (h2)配列番号162に記載されたアミノ酸配列を有するVH,及び,配列番号173に記載されたアミノ酸配列を有するVL;
    (i2)配列番号184に記載されたアミノ酸配列を有するVH,及び,配列番号195に記載されたアミノ酸配列を有するVL;
    (j2)配列番号206に記載されたアミノ酸配列を有するVH,及び,配列番号217に記載されたアミノ酸配列を有するVL;
    (k2)配列番号228に記載されたアミノ酸配列を有するVH,及び,配列番号239に記載されたアミノ酸配列を有するVL;
    (l2)配列番号250に記載されたアミノ酸配列を有するVH,及び,配列番号261に記載されたアミノ酸配列を有するVL;
    (m2)配列番号272に記載されたアミノ酸配列を有するVH,及び,配列番号283に記載されたアミノ酸配列を有するVL;
    (n2)配列番号294に記載されたアミノ酸配列を有するVH,及び,配列番号305に記載されたアミノ酸配列を有するVL;
    (o2)配列番号316に記載されたアミノ酸配列を有するVH,及び,配列番号327に記載されたアミノ酸配列を有するVL;
    (p2)配列番号338に記載されたアミノ酸配列を有するVH,及び,配列番号349に記載されたアミノ酸配列を有するVL;
    (q2)配列番号360に記載されたアミノ酸配列を有するVH,及び,配列番号371に記載されたアミノ酸配列を有するVL;
    (r2)配列番号382に記載されたアミノ酸配列を有するVH,及び,配列番号393に記載されたアミノ酸配列を有するVL;
    (s2)配列番号404に記載されたアミノ酸配列を有するVH,及び,配列番号415に記載されたアミノ酸配列を有するVL;
    (t2)配列番号426に記載されたアミノ酸配列を有するVH,及び,配列番号437に記載されたアミノ酸配列を有するVL;
    (u2)配列番号448に記載されたアミノ酸配列を有するVH,及び,配列番号459に記載されたアミノ酸配列を有するVL;
    (v2)配列番号470に記載されたアミノ酸配列を有するVH,及び,配列番号481に記載されたアミノ酸配列を有するVL;
    (w2)配列番号492に記載されたアミノ酸配列を有するVH,及び,配列番号503に記載されたアミノ酸配列を有するVL;
    (x2)配列番号514に記載されたアミノ酸配列を有するVH,及び,配列番号525に記載されたアミノ酸配列を有するVL;
    (y2)配列番号536に記載されたアミノ酸配列を有するVH,及び,配列番号547に記載されたアミノ酸配列を有するVL;
    (z2)配列番号558に記載されたアミノ酸配列を有するVH,及び,配列番号569に記載されたアミノ酸配列を有するVL;
    (aa2)配列番号580に記載されたアミノ酸配列を有するVH,及び,配列番号591に記載されたアミノ酸配列を有するVL;並びに,
    (ab2)配列番号602に記載されたアミノ酸配列を有するVH,及び,配列番号613に記載されたアミノ酸配列を有するVL。
    An antibody or antigen-binding fragment thereof having any combination of variable regions selected from the following:
    (a2) VH having the amino acid sequence set forth in SEQ ID NO: 8 and VL having the amino acid sequence set forth in SEQ ID NO: 19;
    (b2) VH having the amino acid sequence set forth in SEQ ID NO: 30 and VL having the amino acid sequence set forth in SEQ ID NO: 41;
    (c2) VH having the amino acid sequence set forth in SEQ ID NO: 52 and VL having the amino acid sequence set forth in SEQ ID NO: 63;
    (d2) VH having the amino acid sequence set forth in SEQ ID NO: 74 and VL having the amino acid sequence set forth in SEQ ID NO: 85;
    (e2) VH having the amino acid sequence set forth in SEQ ID NO: 96 and VL having the amino acid sequence set forth in SEQ ID NO: 107;
    (f2) VH having the amino acid sequence set forth in SEQ ID NO: 118 and VL having the amino acid sequence set forth in SEQ ID NO: 129;
    (g2) VH having the amino acid sequence set forth in SEQ ID NO: 140 and VL having the amino acid sequence set forth in SEQ ID NO: 151;
    (h2) VH having the amino acid sequence set forth in SEQ ID NO: 162 and VL having the amino acid sequence set forth in SEQ ID NO: 173;
    (i2) VH having the amino acid sequence set forth in SEQ ID NO: 184 and VL having the amino acid sequence set forth in SEQ ID NO: 195;
    (j2) VH having the amino acid sequence set forth in SEQ ID NO: 206 and VL having the amino acid sequence set forth in SEQ ID NO: 217;
    (k2) VH having the amino acid sequence set forth in SEQ ID NO: 228 and VL having the amino acid sequence set forth in SEQ ID NO: 239;
    (l2) VH having the amino acid sequence set forth in SEQ ID NO: 250 and VL having the amino acid sequence set forth in SEQ ID NO: 261;
    (m2) VH having the amino acid sequence set forth in SEQ ID NO: 272 and VL having the amino acid sequence set forth in SEQ ID NO: 283;
    (n2) VH having the amino acid sequence set forth in SEQ ID NO: 294 and VL having the amino acid sequence set forth in SEQ ID NO: 305;
    (o2) VH having the amino acid sequence set forth in SEQ ID NO: 316 and VL having the amino acid sequence set forth in SEQ ID NO: 327;
    (p2) VH having the amino acid sequence set forth in SEQ ID NO: 338 and VL having the amino acid sequence set forth in SEQ ID NO: 349;
    (q2) VH having the amino acid sequence set forth in SEQ ID NO: 360 and VL having the amino acid sequence set forth in SEQ ID NO: 371;
    (r2) VH having the amino acid sequence set forth in SEQ ID NO: 382 and VL having the amino acid sequence set forth in SEQ ID NO: 393;
    (s2) VH having the amino acid sequence set forth in SEQ ID NO: 404 and VL having the amino acid sequence set forth in SEQ ID NO: 415;
    (t2) VH having the amino acid sequence set forth in SEQ ID NO: 426 and VL having the amino acid sequence set forth in SEQ ID NO: 437;
    (u2) VH having the amino acid sequence set forth in SEQ ID NO: 448 and VL having the amino acid sequence set forth in SEQ ID NO: 459;
    (v2) VH having the amino acid sequence set forth in SEQ ID NO: 470 and VL having the amino acid sequence set forth in SEQ ID NO: 481;
    (w2) VH having the amino acid sequence set forth in SEQ ID NO: 492 and VL having the amino acid sequence set forth in SEQ ID NO: 503;
    (x2) VH having the amino acid sequence set forth in SEQ ID NO: 514 and VL having the amino acid sequence set forth in SEQ ID NO: 525;
    (y2) VH having the amino acid sequence set forth in SEQ ID NO: 536 and VL having the amino acid sequence set forth in SEQ ID NO: 547;
    (z2) VH having the amino acid sequence set forth in SEQ ID NO: 558 and VL having the amino acid sequence set forth in SEQ ID NO: 569;
    (aa2) VH having the amino acid sequence set forth in SEQ ID NO: 580 and VL having the amino acid sequence set forth in SEQ ID NO: 591;
    (ab2) VH having the amino acid sequence set forth in SEQ ID NO:602 and VL having the amino acid sequence set forth in SEQ ID NO:613.
  7.  以下から選択されるいずれかの組み合わせの重鎖及び軽鎖を有する,請求項6に記載の抗体又はその抗原結合性断片:
    (a3)配列番号4に記載されたアミノ酸配列を有する重鎖,及び,配列番号15に記載されたアミノ酸配列を有する軽鎖;
    (b3)配列番号26に記載されたアミノ酸配列を有する重鎖,及び,配列番号37に記載されたアミノ酸配列を有する軽鎖;
    (c3)配列番号48に記載されたアミノ酸配列を有する重鎖,及び,配列番号59に記載されたアミノ酸配列を有する軽鎖;
    (d3)配列番号70に記載されたアミノ酸配列を有する重鎖,及び,配列番号81に記載されたアミノ酸配列を有する軽鎖;
    (e3)配列番号92に記載されたアミノ酸配列を有する重鎖,及び,配列番号103に記載されたアミノ酸配列を有する軽鎖;
    (f3)配列番号114に記載されたアミノ酸配列を有する重鎖,及び,配列番号125に記載されたアミノ酸配列を有する軽鎖;
    (g3)配列番号136に記載されたアミノ酸配列を有する重鎖,及び,配列番号147に記載されたアミノ酸配列を有する軽鎖;
    (h3)配列番号158に記載されたアミノ酸配列を有する重鎖,及び,配列番号169に記載されたアミノ酸配列を有する軽鎖;
    (i3)配列番号180に記載されたアミノ酸配列を有する重鎖,及び,配列番号191に記載されたアミノ酸配列を有する軽鎖;
    (j3)配列番号202に記載されたアミノ酸配列を有する重鎖,及び,配列番号213に記載されたアミノ酸配列を有する軽鎖;
    (k3)配列番号224に記載されたアミノ酸配列を有する重鎖,及び,配列番号235に記載されたアミノ酸配列を有する軽鎖;
    (l3)配列番号246に記載されたアミノ酸配列を有する重鎖,及び,配列番号257に記載されたアミノ酸配列を有する軽鎖;
    (m3)配列番号268に記載されたアミノ酸配列を有する重鎖,及び,配列番号279に記載されたアミノ酸配列を有する軽鎖;
    (n3)配列番号290に記載されたアミノ酸配列を有する重鎖,及び,配列番号301に記載されたアミノ酸配列を有する軽鎖;
    (o3)配列番号312に記載されたアミノ酸配列を有する重鎖,及び,配列番号323に記載されたアミノ酸配列を有する軽鎖;
    (p3)配列番号334に記載されたアミノ酸配列を有する重鎖,及び,配列番号345に記載されたアミノ酸配列を有する軽鎖;
    (q3)配列番号356に記載されたアミノ酸配列を有する重鎖,及び,配列番号367に記載されたアミノ酸配列を有する軽鎖;
    (r3)配列番号378に記載されたアミノ酸配列を有する重鎖,及び,配列番号389に記載されたアミノ酸配列を有する軽鎖;
    (s3)配列番号400に記載されたアミノ酸配列を有する重鎖,及び,配列番号411に記載されたアミノ酸配列を有する軽鎖;
    (t3)配列番号422に記載されたアミノ酸配列を有する重鎖,及び,配列番号433に記載されたアミノ酸配列を有する軽鎖;
    (u3)配列番号444に記載されたアミノ酸配列を有する重鎖,及び,配列番号455に記載されたアミノ酸配列を有する軽鎖;
    (v3)配列番号466に記載されたアミノ酸配列を有する重鎖,及び,配列番号477に記載されたアミノ酸配列を有する軽鎖;
    (w3)配列番号488に記載されたアミノ酸配列を有する重鎖,及び,配列番号499に記載されたアミノ酸配列を有する軽鎖;
    (x3)配列番号510に記載されたアミノ酸配列を有する重鎖,及び,配列番号521に記載されたアミノ酸配列を有する軽鎖;
    (y3)配列番号532に記載されたアミノ酸配列を有する重鎖,及び,配列番号543に記載されたアミノ酸配列を有する軽鎖;
    (z3)配列番号554に記載されたアミノ酸配列を有する重鎖,及び,配列番号565に記載されたアミノ酸配列を有する軽鎖;
    (aa3)配列番号576に記載されたアミノ酸配列を有する重鎖,及び,配列番号587に記載されたアミノ酸配列を有する軽鎖;並びに,
    (ab3)配列番号598に記載されたアミノ酸配列を有する重鎖,及び,配列番号609に記載されたアミノ酸配列を有する軽鎖。
    7. The antibody or antigen-binding fragment thereof according to claim 6, which has any combination of heavy and light chains selected from:
    (a3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 4 and a light chain having the amino acid sequence set forth in SEQ ID NO: 15;
    (b3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 26 and a light chain having the amino acid sequence set forth in SEQ ID NO: 37;
    (c3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 48 and a light chain having the amino acid sequence set forth in SEQ ID NO: 59;
    (d3) a heavy chain having the amino acid sequence set forth in SEQ ID NO:70 and a light chain having the amino acid sequence set forth in SEQ ID NO:81;
    (e3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 92 and a light chain having the amino acid sequence set forth in SEQ ID NO: 103;
    (f3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 114 and a light chain having the amino acid sequence set forth in SEQ ID NO: 125;
    (g3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 136 and a light chain having the amino acid sequence set forth in SEQ ID NO: 147;
    (h3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 158 and a light chain having the amino acid sequence set forth in SEQ ID NO: 169;
    (i3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 180 and a light chain having the amino acid sequence set forth in SEQ ID NO: 191;
    (j3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 202 and a light chain having the amino acid sequence set forth in SEQ ID NO: 213;
    (k3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 224 and a light chain having the amino acid sequence set forth in SEQ ID NO: 235;
    (l3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 246 and a light chain having the amino acid sequence set forth in SEQ ID NO: 257;
    (m3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 268 and a light chain having the amino acid sequence set forth in SEQ ID NO: 279;
    (n3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 290 and a light chain having the amino acid sequence set forth in SEQ ID NO: 301;
    (o3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 312 and a light chain having the amino acid sequence set forth in SEQ ID NO: 323;
    (p3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 334 and a light chain having the amino acid sequence set forth in SEQ ID NO: 345;
    (q3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 356 and a light chain having the amino acid sequence set forth in SEQ ID NO: 367;
    (r3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 378 and a light chain having the amino acid sequence set forth in SEQ ID NO: 389;
    (s3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 400 and a light chain having the amino acid sequence set forth in SEQ ID NO: 411;
    (t3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 422 and a light chain having the amino acid sequence set forth in SEQ ID NO: 433;
    (u3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 444 and a light chain having the amino acid sequence set forth in SEQ ID NO: 455;
    (v3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 466 and a light chain having the amino acid sequence set forth in SEQ ID NO: 477;
    (w3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 488 and a light chain having the amino acid sequence set forth in SEQ ID NO: 499;
    (x3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 510 and a light chain having the amino acid sequence set forth in SEQ ID NO: 521;
    (y3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 532 and a light chain having the amino acid sequence set forth in SEQ ID NO: 543;
    (z3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 554 and a light chain having the amino acid sequence set forth in SEQ ID NO: 565;
    (aa3) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 576 and a light chain having the amino acid sequence set forth in SEQ ID NO: 587;
    (ab3) A heavy chain having the amino acid sequence set forth in SEQ ID NO:598 and a light chain having the amino acid sequence set forth in SEQ ID NO:609.
  8.  Fc領域におけるL234A,L235Aのアミノ酸変異を有する,請求項1~請求項7のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 7, which has L234A and L235A amino acid mutations in the Fc region.
  9.  以下から選択されるいずれかの組み合わせの重鎖及び軽鎖を有する,請求項6に記載の抗体
    (a3’)配列番号630に記載されたアミノ酸配列を有する重鎖,及び,配列番号15に記載されたアミノ酸配列を有する軽鎖;
    (b3’)配列番号631に記載されたアミノ酸配列を有する重鎖,及び,配列番号37に記載されたアミノ酸配列を有する軽鎖;
    (c3’)配列番号632に記載されたアミノ酸配列を有する重鎖,及び,配列番号59に記載されたアミノ酸配列を有する軽鎖;
    (d3’)配列番号633に記載されたアミノ酸配列を有する重鎖,及び,配列番号81に記載されたアミノ酸配列を有する軽鎖;
    (e3’)配列番号634に記載されたアミノ酸配列を有する重鎖,及び,配列番号103に記載されたアミノ酸配列を有する軽鎖;
    (f3’)配列番号635に記載されたアミノ酸配列を有する重鎖,及び,配列番号125に記載されたアミノ酸配列を有する軽鎖;
    (g3’)配列番号636に記載されたアミノ酸配列を有する重鎖,及び,配列番号147に記載されたアミノ酸配列を有する軽鎖;
    (h3’)配列番号637に記載されたアミノ酸配列を有する重鎖,及び,配列番号169に記載されたアミノ酸配列を有する軽鎖;
    (i3’)配列番号638に記載されたアミノ酸配列を有する重鎖,及び,配列番号191に記載されたアミノ酸配列を有する軽鎖;
    (j3’)配列番号639に記載されたアミノ酸配列を有する重鎖,及び,配列番号213に記載されたアミノ酸配列を有する軽鎖;
    (k3’)配列番号640に記載されたアミノ酸配列を有する重鎖,及び,配列番号235に記載されたアミノ酸配列を有する軽鎖;
    (l3’)配列番号641に記載されたアミノ酸配列を有する重鎖,及び,配列番号257に記載されたアミノ酸配列を有する軽鎖;
    (m3’)配列番号642に記載されたアミノ酸配列を有する重鎖,及び,配列番号279に記載されたアミノ酸配列を有する軽鎖;
    (n3’)配列番号643に記載されたアミノ酸配列を有する重鎖,及び,配列番号301に記載されたアミノ酸配列を有する軽鎖;
    (o3’)配列番号644に記載されたアミノ酸配列を有する重鎖,及び,配列番号323に記載されたアミノ酸配列を有する軽鎖;
    (p3’)配列番号645に記載されたアミノ酸配列を有する重鎖,及び,配列番号345に記載されたアミノ酸配列を有する軽鎖;
    (q3’)配列番号646に記載されたアミノ酸配列を有する重鎖,及び,配列番号367に記載されたアミノ酸配列を有する軽鎖;
    (r3’)配列番号647に記載されたアミノ酸配列を有する重鎖,及び,配列番号389に記載されたアミノ酸配列を有する軽鎖;
    (s3’)配列番号648に記載されたアミノ酸配列を有する重鎖,及び,配列番号411に記載されたアミノ酸配列を有する軽鎖;
    (t3’)配列番号649に記載されたアミノ酸配列を有する重鎖,及び,配列番号433に記載されたアミノ酸配列を有する軽鎖;
    (u3’)配列番号650に記載されたアミノ酸配列を有する重鎖,及び,配列番号455に記載されたアミノ酸配列を有する軽鎖;
    (v3’)配列番号651に記載されたアミノ酸配列を有する重鎖,及び,配列番号477に記載されたアミノ酸配列を有する軽鎖;
    (w3’)配列番号652に記載されたアミノ酸配列を有する重鎖,及び,配列番号499に記載されたアミノ酸配列を有する軽鎖;
    (x3’)配列番号653に記載されたアミノ酸配列を有する重鎖,及び,配列番号521に記載されたアミノ酸配列を有する軽鎖;
    (y3’)配列番号654に記載されたアミノ酸配列を有する重鎖,及び,配列番号543に記載されたアミノ酸配列を有する軽鎖;
    (z3’)配列番号655に記載されたアミノ酸配列を有する重鎖,及び,配列番号565に記載されたアミノ酸配列を有する軽鎖;
    (aa3’)配列番号656に記載されたアミノ酸配列を有する重鎖,及び,配列番号587に記載されたアミノ酸配列を有する軽鎖;並びに,
    (ab3’)配列番号657に記載されたアミノ酸配列を有する重鎖,及び,配列番号609に記載されたアミノ酸配列を有する軽鎖。
    The antibody (a3') according to claim 6, having any combination of heavy and light chains selected from the following: a light chain having the amino acid sequence identified;
    (b3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 631 and a light chain having the amino acid sequence set forth in SEQ ID NO: 37;
    (c3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 632 and a light chain having the amino acid sequence set forth in SEQ ID NO: 59;
    (d3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 633 and a light chain having the amino acid sequence set forth in SEQ ID NO: 81;
    (e3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 634 and a light chain having the amino acid sequence set forth in SEQ ID NO: 103;
    (f3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 635 and a light chain having the amino acid sequence set forth in SEQ ID NO: 125;
    (g3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 636 and a light chain having the amino acid sequence set forth in SEQ ID NO: 147;
    (h3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 637 and a light chain having the amino acid sequence set forth in SEQ ID NO: 169;
    (i3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 638 and a light chain having the amino acid sequence set forth in SEQ ID NO: 191;
    (j3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 639 and a light chain having the amino acid sequence set forth in SEQ ID NO: 213;
    (k3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 640 and a light chain having the amino acid sequence set forth in SEQ ID NO: 235;
    (l3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 641 and a light chain having the amino acid sequence set forth in SEQ ID NO: 257;
    (m3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO:642 and a light chain having the amino acid sequence set forth in SEQ ID NO:279;
    (n3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 643 and a light chain having the amino acid sequence set forth in SEQ ID NO: 301;
    (o3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 644 and a light chain having the amino acid sequence set forth in SEQ ID NO: 323;
    (p3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 645 and a light chain having the amino acid sequence set forth in SEQ ID NO: 345;
    (q3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 646 and a light chain having the amino acid sequence set forth in SEQ ID NO: 367;
    (r3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 647 and a light chain having the amino acid sequence set forth in SEQ ID NO: 389;
    (s3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 648 and a light chain having the amino acid sequence set forth in SEQ ID NO: 411;
    (t3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 649 and a light chain having the amino acid sequence set forth in SEQ ID NO: 433;
    (u3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 650 and a light chain having the amino acid sequence set forth in SEQ ID NO: 455;
    (v3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 651 and a light chain having the amino acid sequence set forth in SEQ ID NO: 477;
    (w3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 652 and a light chain having the amino acid sequence set forth in SEQ ID NO: 499;
    (x3') a heavy chain having the amino acid sequence set forth in SEQ ID NO: 653 and a light chain having the amino acid sequence set forth in SEQ ID NO: 521;
    (y3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 654 and a light chain having the amino acid sequence set forth in SEQ ID NO: 543;
    (z3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 655 and a light chain having the amino acid sequence set forth in SEQ ID NO: 565;
    (aa3′) a heavy chain having the amino acid sequence set forth in SEQ ID NO: 656 and a light chain having the amino acid sequence set forth in SEQ ID NO: 587;
    (ab3') A heavy chain having the amino acid sequence set forth in SEQ ID NO:657 and a light chain having the amino acid sequence set forth in SEQ ID NO:609.
  10.  請求項6,請求項7又は請求項9に記載の抗体又はその抗原結合性断片とSARS-CoV-2スパイクタンパク質又はRBDへの結合において競合する抗体又はその抗原結合性断片,あるいは,請求項6,請求項7又は請求項9に記載の抗体又はその抗原結合性断片と同じエピトープを認識する抗体又はその抗原結合性断片。 An antibody or antigen-binding fragment thereof that competes with the antibody or antigen-binding fragment thereof of claim 6, claim 7 or claim 9 in binding to SARS-CoV-2 spike protein or RBD, or claim 6 An antibody or antigen-binding fragment thereof that recognizes the same epitope as the antibody or antigen-binding fragment thereof according to claim 7 or claim 9.
  11.  RBDのA475,G476,S477,T478,F486,N487,Y489及びQ493から選択される少なくとも1個のアミノ酸残基を認識する,請求項10に記載の抗体又はその抗原結合性断片。 The antibody or antigen-binding fragment thereof according to claim 10, which recognizes at least one amino acid residue selected from A475, G476, S477, T478, F486, N487, Y489 and Q493 of RBD.
  12.  請求項11に記載の抗体又はその抗原結合性断片であって,VHのS55,N57,D104,C105,S106,及びD107から選択される少なくとも1個のアミノ酸残基を有し,かつこれらのアミノ酸残基が,RBDのA475,G476,S477,T478,F486,N487,Y489及びQ493から選択される少なくとも1個のアミノ酸残基と結合する抗体又はその抗原結合性断片。 12. The antibody or antigen-binding fragment thereof of claim 11, having at least one amino acid residue selected from VH S55, N57, D104, C105, S106, and D107, and An antibody or antigen-binding fragment thereof, wherein residues bind to at least one amino acid residue selected from A475, G476, S477, T478, F486, N487, Y489 and Q493 of RBD.
  13.  請求項4~請求項9のいずれか1項に記載の抗体の重鎖及び/若しくは軽鎖,又はそれらの抗原結合性断片のアミノ酸配列をコードする核酸分子。 A nucleic acid molecule encoding the amino acid sequence of the heavy chain and/or light chain of the antibody according to any one of claims 4 to 9, or an antigen-binding fragment thereof.
  14.  以下の群から選択されるいずれか1つのポリヌクレオチドを含有する,請求項13に記載の核酸分子:
    (a4)配列番号5若しくは配列番号7に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号16若しくは配列番号18に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (b4)配列番号27若しくは配列番号29に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号38若しくは配列番号40に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (c4)配列番号49若しくは配列番号51に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号60若しくは配列番号62に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (d4)配列番号71若しくは配列番号73に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号82若しくは配列番号84に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (e4)配列番号93若しくは配列番号95に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号104若しくは配列番号106に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (f4)配列番号115若しくは配列番号117に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号126若しくは配列番号128に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (g4)配列番号137若しくは配列番号139に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号148若しくは配列番号150に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (h4)配列番号159若しくは配列番号161に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号170若しくは配列番号172に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (i4)配列番号181若しくは配列番号183に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号192若しくは配列番号194に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (j4)配列番号203若しくは配列番号205に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号214若しくは配列番号216に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (k4)配列番号225若しくは配列番号227に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号236若しくは配列番号238に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (l4)配列番号247若しくは配列番号249に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号258若しくは配列番号260に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (m4)配列番号269若しくは配列番号271に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号280若しくは配列番号282に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (n4)配列番号291若しくは配列番号293に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号302若しくは配列番号304に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (o4)配列番号313若しくは配列番号315に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号324若しくは配列番号326に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (p4)配列番号335若しくは配列番号337に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号346若しくは配列番号348に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (q4)配列番号357若しくは配列番号359に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号368若しくは配列番号370に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (r4)配列番号379若しくは配列番号381に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号390若しくは配列番号392に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (s4)配列番号401若しくは配列番号403に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号412若しくは配列番号414に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (t4)配列番号423若しくは配列番号425に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号424若しくは配列番号436に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (u4)配列番号445若しくは配列番号447に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号456若しくは配列番号458に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (v4)配列番号467若しくは配列番号469に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号478若しくは配列番号480に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (w4)配列番号489若しくは配列番号491に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号500若しくは配列番号502に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (x4)配列番号511若しくは配列番号513に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号522若しくは配列番号524に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (y4)配列番号533若しくは配列番号535に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号544若しくは配列番号546に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (z4)配列番号555若しくは配列番号557に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号566若しくは配列番号568に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (aa4)配列番号577若しくは配列番号579に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号588若しくは配列番号590に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド;
    (ab4)配列番号599若しくは配列番号601に記載のヌクレオチド配列を有するVHをコードするポリヌクレオチド,及び/又は,配列番号610若しくは配列番号612に記載のヌクレオチド配列を有するVLをコードするポリヌクレオチド。
    14. The nucleic acid molecule of claim 13, comprising any one polynucleotide selected from the group of:
    (a4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 5 or SEQ ID NO: 7, and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 16 or SEQ ID NO: 18;
    (b4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO:27 or SEQ ID NO:29 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO:38 or SEQ ID NO:40;
    (c4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 49 or SEQ ID NO: 51 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 60 or SEQ ID NO: 62;
    (d4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO:71 or SEQ ID NO:73 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO:82 or SEQ ID NO:84;
    (e4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO: 93 or SEQ ID NO: 95 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO: 104 or SEQ ID NO: 106;
    (f4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 115 or SEQ ID NO: 117 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 126 or SEQ ID NO: 128;
    (g4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 137 or SEQ ID NO: 139 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 148 or SEQ ID NO: 150;
    (h4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 159 or SEQ ID NO: 161 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 170 or SEQ ID NO: 172;
    (i4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 181 or SEQ ID NO: 183, and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 192 or SEQ ID NO: 194;
    (j4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO:203 or SEQ ID NO:205 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO:214 or SEQ ID NO:216;
    (k4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO:225 or SEQ ID NO:227 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO:236 or SEQ ID NO:238;
    (l4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO: 247 or SEQ ID NO: 249 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO: 258 or SEQ ID NO: 260;
    (m4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO: 269 or SEQ ID NO: 271 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO: 280 or SEQ ID NO: 282;
    (n4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 291 or SEQ ID NO: 293, and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 302 or SEQ ID NO: 304;
    (o4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:313 or SEQ ID NO:315, and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:324 or SEQ ID NO:326;
    (p4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:335 or SEQ ID NO:337 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:346 or SEQ ID NO:348;
    (q4) a polynucleotide encoding VH having the nucleotide sequence set forth in SEQ ID NO: 357 or SEQ ID NO: 359 and/or a polynucleotide encoding VL having the nucleotide sequence set forth in SEQ ID NO: 368 or 370;
    (r4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:379 or SEQ ID NO:381 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:390 or SEQ ID NO:392;
    (s4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 401 or SEQ ID NO: 403 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 412 or SEQ ID NO: 414;
    (t4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 423 or SEQ ID NO: 425 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 424 or SEQ ID NO: 436;
    (u4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 445 or SEQ ID NO: 447 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 456 or SEQ ID NO: 458;
    (v4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 467 or SEQ ID NO: 469 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 478 or SEQ ID NO: 480;
    (w4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 489 or SEQ ID NO: 491 and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 500 or SEQ ID NO: 502;
    (x4) a polynucleotide encoding VH having the nucleotide sequence set forth in SEQ ID NO: 511 or SEQ ID NO: 513, and/or a polynucleotide encoding VL having the nucleotide sequence set forth in SEQ ID NO: 522 or 524;
    (y4) a polynucleotide encoding VH having the nucleotide sequence set forth in SEQ ID NO: 533 or 535 and/or a polynucleotide encoding VL having the nucleotide sequence set forth in SEQ ID NO: 544 or 546;
    (z4) a polynucleotide encoding VH having the nucleotide sequence set forth in SEQ ID NO: 555 or SEQ ID NO: 557 and/or a polynucleotide encoding VL having the nucleotide sequence set forth in SEQ ID NO: 566 or 568;
    (aa4) a polynucleotide encoding a VH having the nucleotide sequence set forth in SEQ ID NO: 577 or SEQ ID NO: 579 and/or a polynucleotide encoding a VL having the nucleotide sequence set forth in SEQ ID NO: 588 or 590;
    (ab4) a VH-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:599 or SEQ ID NO:601, and/or a VL-encoding polynucleotide having the nucleotide sequence set forth in SEQ ID NO:610 or SEQ ID NO:612;
  15.  以下の群から選択されるいずれか1つのポリヌクレオチドを含有する,請求項14に記載の核酸分子:
    (a5)配列番号1若しくは配列番号3に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号12若しくは配列番号14に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (b5)配列番号23若しくは配列番号25に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号34若しくは配列番号36に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (c5)配列番号45若しくは配列番号47に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号56若しくは配列番号58に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (d5)配列番号67若しくは配列番号69に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号78若しくは配列番号80に載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (e5)配列番号89若しくは配列番号91に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号100若しくは配列番号102に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (f5)配列番号111若しくは配列番号113に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号122若しくは配列番号124に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (g5)配列番号133若しくは配列番号135に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号144若しくは配列番号146に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (h5)配列番号155若しくは配列番号157に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号166若しくは配列番号168に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (i5)配列番号177若しくは配列番号179に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号188若しくは配列番号190に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (j5)配列番号199若しくは配列番号201に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号210若しくは配列番号212に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (k5)配列番号221若しくは配列番号223に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号232若しくは配列番号234に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (l5)配列番号243若しくは配列番号245に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号254若しくは配列番号256に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (m5)配列番号265若しくは配列番号267に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号276若しくは配列番号278に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (n5)配列番号287若しくは配列番号289に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号298若しくは配列番号300に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (o5)配列番号309若しくは配列番号311に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号320若しくは配列番号322に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (p5)配列番号331若しくは配列番号333に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号342若しくは配列番号345に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (q5)配列番号353若しくは配列番号355に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号364若しくは配列番号366に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (r5)配列番号375若しくは配列番号377に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号386若しくは配列番号388に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (s5)配列番号397若しくは配列番号399に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号408若しくは配列番号410に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (t5)配列番号419若しくは配列番号421に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号430若しくは配列番号432に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (u5)配列番号441若しくは配列番号443に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号452若しくは配列番号454に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (v5)配列番号463若しくは配列番号465に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号474若しくは配列番号476に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (w5)配列番号485若しくは配列番号487に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号496若しくは配列番号498に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (x5)配列番号507若しくは配列番号509に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号518若しくは配列番号520に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (y5)配列番号529若しくは配列番号531に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号540若しくは配列番号542に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (z5)配列番号551若しくは配列番号553に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号562若しくは配列番号564に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (aa5)配列番号573若しくは配列番号575に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号584若しくは配列番号586に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド;
    (ab5)配列番号595若しくは配列番号597に記載のヌクレオチド配列を有する重鎖をコードするポリヌクレオチド,及び/又は,配列番号606若しくは配列番号608に記載のヌクレオチド配列を有する軽鎖をコードするポリヌクレオチド。
    15. The nucleic acid molecule of claim 14, containing any one polynucleotide selected from the group of:
    (a5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 12 or SEQ ID NO: 14 ;
    (b5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 23 or SEQ ID NO: 25 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 34 or 36 ;
    (c5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 45 or SEQ ID NO: 47 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 56 or 58 ;
    (d5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 67 or SEQ ID NO: 69 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 78 or SEQ ID NO: 80 ;
    (e5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 89 or SEQ ID NO: 91 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 100 or SEQ ID NO: 102 ;
    (f5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 111 or SEQ ID NO: 113 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 122 or 124 ;
    (g5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 133 or SEQ ID NO: 135 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 144 or 146 ;
    (h5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 155 or SEQ ID NO: 157 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 166 or 168 ;
    (i5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 177 or SEQ ID NO: 179 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 188 or 190 ;
    (j5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 199 or SEQ ID NO: 201 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 210 or 212 ;
    (k5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 221 or SEQ ID NO: 223 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 232 or 234 ;
    (l5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 243 or SEQ ID NO: 245 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 254 or 256 ;
    (m5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 265 or SEQ ID NO: 267 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 276 or 278 ;
    (n5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 287 or SEQ ID NO: 289 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 298 or 300 ;
    (o5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 309 or SEQ ID NO: 311 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 320 or 322 ;
    (p5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 331 or SEQ ID NO: 333 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 342 or 345 ;
    (q5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 353 or 355 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 364 or 366 ;
    (r5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 375 or SEQ ID NO: 377 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 386 or 388 ;
    (s5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 397 or SEQ ID NO: 399 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 408 or 410 ;
    (t5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 419 or SEQ ID NO: 421 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 430 or 432 ;
    (u5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 441 or SEQ ID NO: 443 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 452 or 454 ;
    (v5) A polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 463 or SEQ ID NO: 465 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 474 or 476 ;
    (w5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 485 or SEQ ID NO: 487 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 496 or 498 ;
    (x5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 507 or SEQ ID NO: 509 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 518 or 520 ;
    (y5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 529 or 531 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 540 or 542 ;
    (z5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 551 or 553 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 562 or 564 ;
    (aa5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 573 or SEQ ID NO: 575 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 584 or 586 ;
    (ab5) a polynucleotide encoding a heavy chain having the nucleotide sequence set forth in SEQ ID NO: 595 or 597 and/or a polynucleotide encoding a light chain having the nucleotide sequence set forth in SEQ ID NO: 606 or 608 .
  16.  請求項13~請求項15のいずれか1項に記載の核酸分子を有するベクター。 A vector comprising the nucleic acid molecule according to any one of claims 13 to 15.
  17.  請求項16に記載のベクターを有する宿主細胞。 A host cell having the vector according to claim 16.
  18.  請求項17に記載の宿主細胞を培養することを含む,請求項3~請求項9のいずれか1項に記載の抗体又はその抗原結合性断片の製造方法。 A method for producing the antibody or antigen-binding fragment thereof according to any one of claims 3 to 9, comprising culturing the host cell according to claim 17.
  19.  SARS-CoV-2のスパイクタンパク質又はRBDとACE2との結合を阻害するための,請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を含有する組成物。 A composition containing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12 for inhibiting the binding of SARS-CoV-2 spike protein or RBD to ACE2.
  20.  SARS-CoV-2の細胞への侵入を阻害するための,請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を含有する組成物。 A composition containing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12 for inhibiting entry of SARS-CoV-2 into cells.
  21.  SARS-CoV-2と結合させるための,請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を含有する組成物。 A composition containing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12 for binding to SARS-CoV-2.
  22.  請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を有効成分として含有する,医薬組成物。 A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12 as an active ingredient.
  23.  SARS-CoV-2の感染に基づく疾患の治療用又は予防用である,請求項22に記載の医薬組成物。 The pharmaceutical composition according to claim 22, which is for treatment or prevention of diseases based on SARS-CoV-2 infection.
  24.  請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を有効成分として含有する,診断用組成物。 A diagnostic composition comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12 as an active ingredient.
  25.  SARS CoV-2感染症の診断用である,請求項24に記載の診断用組成物。 The diagnostic composition according to claim 24, which is used for diagnosing SARS CoV-2 infection.
  26.  請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を含有する,SARS CoV-2検出用組成物。 A composition for detecting SARS CoV-2, containing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12.
  27.  前記SARS-CoV-2が,RBDにおける変異の無いSARS-CoV-2,並びに,RBDにおける,G339D,S371L,S373P,S375F,K417N,K417T,N439K,N440K,G446S,L452R,A475V,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,及びY505Hから選択される1種類以上の変異を有するSARS-CoV-2から選択される1種類以上のSARS-CoV-2である,請求項19~請求項26のいずれか1項に記載の組成物。 SARS-CoV-2 is SARS-CoV-2 without mutation in RBD, and G339D, S371L, S373P, S375F, K417N, K417T, N439K, N440K, G446S, L452R, A475V, S477N, T478K, E484A, E484K, E484Q, Q493R, G496S, Q498R, N501Y, and one or more SARS-CoV-2 selected from SARS-CoV-2 having one or more mutations selected from Y505H, claims A composition according to any one of claims 19-26.
  28.  前記SARS-CoV-2が,RBDにおける変異の無いSARS-CoV-2,並びに,RBDにおける変異であって,G339D,S371L,S373P,S375F,K417N,K417T,N439K,N440K,G446S,L452R,A475V,S477N,T478K,E484A,E484K,E484Q,Q493R,G496S,Q498R,N501Y,及びY505Hから選択される1種類以上の変異を有するSARS-CoV-2から選択される1種類以上のSARS-CoV-2である,請求項19~請求項26のいずれか1項に記載の組成物。 The SARS-CoV-2 is SARS-CoV-2 without mutations in RBD, and mutations in RBD, G339D, S371L, S373P, S375F, K417N, K417T, N439K, N440K, G446S, L452R, A475V, At least one SARS-CoV-2 selected from SARS-CoV-2 having one or more mutations selected from S477N, T478K, E484A, E484K, E484Q, Q493R, G496S, Q498R, N501Y, and Y505H The composition of any one of claims 19-26, wherein the composition is
  29.  前記RBDにおける変異が,以下の(ii)~(xii)から選択される1種類以上の変異である,請求項28に記載の組成物。
    (ii)K417N,E484K,及びN501Y変異,
    (iii)N439K変異,
    (iv)N440K変異,
    (v)A475V変異,
    (vi)E484K変異,
    (vii)N501Y変異,
    (viii)L452R変異,
    (ix)L452R及びE484Q変異,
    (x)K417T,E484K,及びN501Y変異,
    (xi)L452R及びT478K変異,及び,
    (xii)G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異。
    29. The composition according to claim 28, wherein the mutation in said RBD is one or more mutations selected from (ii) to (xii) below.
    (ii) K417N, E484K, and N501Y mutations,
    (iii) the N439K mutation,
    (iv) the N440K mutation,
    (v) A475V mutation,
    (vi) E484K mutation,
    (vii) N501Y mutation,
    (viii) L452R mutation,
    (ix) L452R and E484Q mutations,
    (x) K417T, E484K, and N501Y mutations,
    (xi) L452R and T478K mutations, and
    (xii) G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H mutations.
  30.  前記SARS-CoV-2が,
    (i)RBDにおける変異を有しないSARS-CoV-2,
    (ii)K417N,E484K,及びN501Y変異を有するSARS-CoV-2,
    (iii)N439K変異を有するSARS-CoV-2,
    (iv)N440K変異を有するSARS-CoV-2,
    (v)A475V変異を有するSARS-CoV-2,
    (vi)E484K変異を有するSARS-CoV-2,
    (vii)N501Y変異を有するSARS-CoV-2,
    (viii)L452R変異を有するSARS-CoV-2,
    (ix)L452R及びE484Q変異を有するSARS-CoV-2,
    (x)K417T,E484K,及びN501Y変異を有するSARS-CoV-2,
    (xi)L452R及びT478K変異を有するSARS-CoV-2,及び,
    (xii)G339D,S371L,S373P,S375F,K417N,N440K,G446S,S477N,T478K,E484A,Q493R,G496S,Q498R,N501Y,及びY505H変異を有するSARS-CoV-2である,
     請求項29に記載の組成物。
    The SARS-CoV-2 is
    (i) SARS-CoV-2 without mutations in RBD,
    (ii) SARS-CoV-2 with K417N, E484K, and N501Y mutations,
    (iii) SARS-CoV-2 with N439K mutation,
    (iv) SARS-CoV-2 with N440K mutation,
    (v) SARS-CoV-2 with A475V mutation,
    (vi) SARS-CoV-2 with the E484K mutation,
    (vii) SARS-CoV-2 with N501Y mutation,
    (viii) SARS-CoV-2 with L452R mutation,
    (ix) SARS-CoV-2 with L452R and E484Q mutations,
    (x) SARS-CoV-2 with K417T, E484K, and N501Y mutations,
    (xi) SARS-CoV-2 with L452R and T478K mutations, and
    (xii) SARS-CoV-2 having the G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H mutations;
    30. A composition according to claim 29.
  31.  請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片を含有する,SARS-CoV-2検出用キット。 A SARS-CoV-2 detection kit containing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12.
  32.  イムノクロマト又はELISAである,請求項31に記載の検出用キット。 The detection kit according to claim 31, which is immunochromatography or ELISA.
  33.  サンプル中のSARS-CoV-2の検出方法であって:
     前記サンプルと請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片とを接触させること,
     前記抗体又はその抗原結合性断片と結合した,前記サンプル中のSARS-CoV-2を検出すること,及び,
     SARS-CoV-2が検出されたサンプルについてSARS-CoV-2が存在すると判定することを含む方法。
    A method of detecting SARS-CoV-2 in a sample, comprising:
    contacting the sample with the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12;
    detecting SARS-CoV-2 in the sample bound to the antibody or antigen-binding fragment thereof; and
    A method comprising determining that SARS-CoV-2 is present for a sample in which SARS-CoV-2 is detected.
  34.  被験者のSARSへの感染を判定する方法であって,
     被験者由来のサンプルと請求項1~請求項12のいずれか1項に記載の抗体又はその抗原結合性断片とを接触させること,及び,
     前記抗体又はその抗原結合性断片と結合したSARS-CoV-2が検出された,前記サンプル中に由来する被験者を,SARS-CoV-2に感染していると判定することを含む方法。
    A method for determining SARS infection in a subject, comprising:
    Contacting a subject-derived sample with the antibody or antigen-binding fragment thereof according to any one of claims 1 to 12, and
    determining that a subject from said sample in whom SARS-CoV-2 bound to said antibody or antigen-binding fragment thereof is detected is infected with SARS-CoV-2.
PCT/JP2022/015813 2021-03-30 2022-03-30 Anti-sars-cov-2 antibody WO2022210830A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-056423 2021-03-30
JP2021056423 2021-03-30
JP2021089119 2021-05-27
JP2021-089119 2021-05-27
JP2021-098970 2021-06-14
JP2021098970 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022210830A1 true WO2022210830A1 (en) 2022-10-06

Family

ID=83456449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015813 WO2022210830A1 (en) 2021-03-30 2022-03-30 Anti-sars-cov-2 antibody

Country Status (1)

Country Link
WO (1) WO2022210830A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Newly acquired "super-neutralizing antibody" protects against infection of a variety of SARS-CoV-2 variants by combining Toyama University's unique core technologies", NEWS RELEASE, PUBLIC RELATIONS AND FUND OFFICE, GENERAL AFFAIRS DIVISION, GENERAL AFFAIRS DEPARTMENT, UNIVERSITY OF TOYAMA, JP, JP, pages 1 - 13, XP009540083, Retrieved from the Internet <URL:https://www.u-toyama.ac.jp/wp/wp-content/uploads/20210616.pdf> *
CHI XIAOJING, ZHANG XINHUI, PAN SHENGNAN, YU YANYING, SHI YUJIN, LIN TIANLI, DUAN HUARUI, LIU XIUYING, CHEN WENFANG, YANG XUEHUA, : "An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants", SIGNAL TRANSDUCTION AND TARGETED THERAPY, vol. 7, no. 1, 1 January 2022 (2022-01-01), pages 621, XP055951235, DOI: 10.1038/s41392-022-00912-4 *
KITAJIMA ISAO: ""super-neutralizing antibody" protects against infection of a variety of SARS-CoV-2 variants", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 28, no. 9, 26 February 2022 (2022-02-26), XP055972680 *
PLANAS DELPHINE; SAUNDERS NELL; MAES PIET; GUIVEL-BENHASSINE FLORENCE; PLANCHAIS CYRIL; BUCHRIESER JULIAN; BOLLAND WILLIAM-HENRY; : "Considerable escape of SARS-CoV-2 Omicron to antibody neutralization", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 602, no. 7898, 23 December 2021 (2021-12-23), London, pages 671 - 675, XP037700793, ISSN: 0028-0836, DOI: 10.1038/s41586-021-04389-z *
WANG PENGFEI; NAIR MANOJ S.; LIU LIHONG; IKETANI SHO; LUO YANG; GUO YICHENG; WANG MAPLE; YU JIAN; ZHANG BAOSHAN; KWONG PETER D.; G: "Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 593, no. 7857, 8 March 2021 (2021-03-08), London, pages 130 - 135, XP037443288, ISSN: 0028-0836, DOI: 10.1038/s41586-021-03398-2 *

Similar Documents

Publication Publication Date Title
JP7284790B2 (en) polyoma virus neutralizing antibody
Zhang et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections
CN106432484B (en) Neutralizing antibodies to human immunodeficiency virus and methods of use thereof
JP2019516348A (en) Antibody binding to outer membrane glycoprotein of severe fever thrombocytopenia syndrome virus and use thereof
CN110088131B (en) anti-CHIKV antibodies and uses thereof
WO2018022786A1 (en) Antibodies to zika virus and methods of use thereof
EP4206224A1 (en) Human antibody or antigen-binding fragment thereof against coronavirus spike protein
Takeshita et al. Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models
US20210277093A1 (en) Immunotherapeutic compositions and methods of production for coronavirus
WO2021105669A1 (en) Antibodies
WO2014115893A1 (en) Human antibody specific to human metapneumovirus, or antigen-binding fragment thereof
WO2023154824A1 (en) Human monoclonal antibodies that broadly target coronaviruses
WO2022210830A1 (en) Anti-sars-cov-2 antibody
CN115087667B (en) Antigen binding proteins that specifically bind SARS-CoV-2
CN113698487B (en) Anti-human ACE2 monoclonal antibody and application thereof
CN114805570B (en) Anti-human ACE2 monoclonal antibody and application thereof
WO2022250107A1 (en) Human neutralizing antibody against wild-type strain and mutant strain of sars-cov-2, and antigen-binding fragment thereof
JP7372638B2 (en) Anti-hepatitis B virus antibody and its use
WO2023145859A1 (en) HUMAN NEUTRALIZING ANTIBODY AGAINST SARS-CoV-2 HAVING BREADTH TO VARIANT STRAINS, AND ANTIGEN-BINDING FRAGMENT THEREOF
EP4230650A1 (en) Antibodies capable of binding to the spike protein of coronavirus sars-cov-2
JP7445895B2 (en) Conformational epitopes of the central conserved region of respiratory syncytial virus G protein
KR20220139244A (en) Composition Comprising Two or more SARS-CoV-2 Virus Neutralizing Binding Molecules
WO2023148641A1 (en) Monoclonal antibodies specific to receptor binding domain of sars-cov2 and uses thereof
WO2022147290A1 (en) Cross-neutralizing sars-cov2 antibodies
WO2023172881A1 (en) Hmpv antibodies and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781041

Country of ref document: EP

Kind code of ref document: A1