US20180074457A1 - Near-to-Eye and See-Through Holographic Displays - Google Patents

Near-to-Eye and See-Through Holographic Displays Download PDF

Info

Publication number
US20180074457A1
US20180074457A1 US15/658,388 US201715658388A US2018074457A1 US 20180074457 A1 US20180074457 A1 US 20180074457A1 US 201715658388 A US201715658388 A US 201715658388A US 2018074457 A1 US2018074457 A1 US 2018074457A1
Authority
US
United States
Prior art keywords
holographic
waveguide
video display
display
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/658,388
Inventor
Sundeep Jolly
Nickolaos Savidis
V. Michael Bove, Jr.
Bianca Datta
Daniel E. Smalley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Priority to US15/658,388 priority Critical patent/US20180074457A1/en
Publication of US20180074457A1 publication Critical patent/US20180074457A1/en
Priority to US16/945,788 priority patent/US11693363B2/en
Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRIGHAM YOUNG UNIVERSITY
Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAVIDIS, Nickolaos, Datta, Bianca, Jolly, Sundeep, BOVE, V. MICHAEL, JR
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/332Acousto-optical deflection devices comprising a plurality of transducers on the same crystal surface, e.g. multi-channel Bragg cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/23Diffractive element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/24Reflector; Mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/21Acousto-optic SLM [AO-SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/02Computing or processing means, e.g. digital signal processor [DSP]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/02Handheld portable device, e.g. holographic camera, mobile holographic display

Definitions

  • the present invention relates to holographic video displays and, in particular, to a transparent flat-panel holographic video display suitable for near-to-eye and see-through augmented reality applications.
  • holographic video displays are chiefly dictated by the spatial light modulators upon which they are built.
  • the temporal bandwidth of the spatial light modulator determines the display size, view angle, and frame rate.
  • the pixel pitch determines the angle of the display or the power of the lenses needed to achieve a wide view angle.
  • the space-bandwidth product which is related to the numerical aperture of the holographic grating, determines the maximum depth range and number of resolvable views the display will possess.
  • optical non-idealities of the modulator give rise to noise and artifacts in the display output.
  • the present invention is a transparent holographic video display system that is suitable for near-to-eye augmented reality and see-through applications.
  • a preferred embodiment Based on monolithic guided-wave acousto-optics with integrated volume gratings, a preferred embodiment has a composite display comprised of space-multiplexed elemental modulators, each of which exploit leaky-mode diffraction of guided-mode light.
  • Each elemental modulator consists of a surface acoustic wave transducer atop an anisotropic waveguide.
  • each “line” of the overall display consists of a single anisotropic waveguide across the display's length, with multiple surface acoustic wave transducers spaced along the length of the waveguide.
  • the waveguide may be divided into segments, with each being provided with separate illumination.
  • Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers.
  • Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer.
  • the display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
  • a holographic video display comprises a plurality of space-multiplexed elemental modulators.
  • Each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display and includes an anisotropic waveguide, at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide, at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, wherein each surface acoustic wave transducer is configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light, and at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer.
  • the display may include an electrical control layer comprising a graphics processing unit, circuitry for RF up-conversion and amplification, and a multiplexor for switching amongst holographic lines to drive multiple holographic lines in sequence. It include a substrate on which the plurality of elemental modulators are disposed. The substrate may be lithium niobate. Each waveguide may be divided into segments, each provided with separate illumination. The display may be transparent and all reflection volume gratings may operate in the Bragg regime. Each waveguide may be associated with multiple one-to-one associated acoustic transducers and volume reflection gratings, arranged along the anisotropic waveguide to produce multiple output lines. There may be multiple acoustic transducers disposed along the anisotropic waveguide in order to provide a desired length of optical line.
  • the invention includes any holographic video image created by the display.
  • a method for generating a holographic image includes providing one or more wavelengths of light to a holographic video display, the display comprising a plurality of space-multiplexed elemental modulators, providing holographic information to the video display; coupling the light received at the holographic video display into the elemental modulators for diffraction according to the holographic information; and scanning the steered light to form the holographic image.
  • Each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display and includes an anisotropic waveguide, at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide, at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, wherein each surface acoustic wave transducer is configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light, and at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer.
  • the invention includes a holographic video display that employs the method.
  • FIG. 1 is an x-y cross-section (side view) of an example guided optical wave SAW device with integrated Bragg gratings, according to one aspect of the invention.
  • FIG. 2 is a z-y cross-section (top view) of the guided optical wave SAW device of FIG. 1 , according to one aspect of the invention.
  • FIG. 4 depicts conservation of momentum in a nearly collinear acousto-optic guided-to-leaky mode transition.
  • FIG. 5 is an x-y cross-section (side view) of an example multi-element SAW device, according to one aspect of the invention.
  • FIG. 6 is a z-y cross-section (top view) of the multi-element SAW Device of FIG. 5 , according to one aspect of the invention.
  • FIG. 7 is an example timing diagram for pulsed laser illumination of SAW devices.
  • FIG. 8 is an example timing diagram for hsync pulses, with ⁇ fill being the time duration over which the aperture is filled by the acoustic pixel stream.
  • FIG. 9 is a z-y cross-section (top view) of an example multi-element, multi-channel SAW device, according to one aspect of the invention.
  • FIG. 10 depicts an example embodiment of an electrical control layer path for GPU signal output, RF up-conversion and amplification, and switching amongst holographic lines for driving multiple holographic lines in sequence, according to one aspect of the invention.
  • FIG. 11 depicts focused laser spot in femtosecond laser micromachining.
  • FIGS. 12A-C depict index ellipsoids for uniaxial lithium niobate, wherein FIG. 12A depicts unperturbed LiNbO 3 , FIG. 12B depicts proton-exchanged LiNbO 3 , and FIG. 12C depicts femtosecond laser photo-perturbed LiNbO 3 .
  • a flat-panel, transparent holographic display solution suitable for near-to-eye augmented reality applications according to the invention is based on monolithic guided-wave acousto-optics with integrated volume gratings.
  • a preferred embodiment has a composite display comprised of space-multiplexed elemental modulators, each of which exploit leaky-mode diffraction of guided-mode light. Fabrication of modulator sub-components may be achieved via femtosecond laser micromachining processes.
  • the display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide.
  • Each “line” of the overall display typically consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along its length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination.
  • Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers.
  • guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer.
  • the display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
  • the present invention builds on and employs the guided-wave light modulation technologies previously described in U.S. patent application Ser. No. 14/985,453, U.S. Pat. No. 8,149,265, U.S. patent application Ser. No. 13/437,850, U.S. patent application Ser. No. 14/213,333, and U.S. patent application Ser. No. 14/217,215, all of which are incorporated by reference herein in their entirety.
  • As a method for transparent display it allows for augmented reality applications naturally.
  • the use of integrated reflection volume gratings to direct leaky-mode diffracted light towards a viewer presents an extremely light- efficient solution for direct viewing of the displayed 3-D wavefield from the surface of the modulator without any additional requisite supporting optics.
  • the solution has natural applications in augmented reality but can also be adapted for virtual reality. Larger versions of the device could be used in heads-up displays, see-through hand-held devices, and similar applications.
  • a preferred embodiment of a system according to the invention employs a guided-wave acousto-optic platform implemented in lithium niobate (LiNbO 3 ), in order to realize a fully-monolithic, transparent, flat-panel holographic video display.
  • LiNbO 3 lithium niobate
  • All elements including the in-coupling grating, anisotropic waveguide, and output volume hologram, can be realized within a single LiNbO 3 substrate without the need for any additional supporting optics.
  • the platform therefore provides a path towards a fully-monolithic, integrated-optic platform for transparent holographic video display for near-to-eye display and other see-through display applications.
  • FIGS. 1 and 2 depict the basic structure of an example guided optical wave surface acoustic device according to a preferred embodiment of the invention.
  • the z-axis is the extraordinary axis.
  • FIG. 1 is an x-y cross-section (side view) of a guided optical wave SAW device with integrated Bragg gratings, according to one aspect of the invention.
  • the incident light 105 is linearly polarized in the TE orientation and is reflected off surface (TE) Bragg in-coupling reflection grating 110 , which couples it into anisotropic (TE) waveguide 115 (n e >n e0 ) on bulk X-cut lithium niobate (n e0 , n o0 ) substrate 120 , producing guided-mode light 125 .
  • the waveguide 115 has an extraordinary index perturbation of ⁇ n e relative to the substrate 120 , but no ordinary index change.
  • the interdigitated electrodes 130 When excited by an RF signal containing the holographic information, the interdigitated electrodes 130 (pictured in FIG. 2 ) launch a surface acoustic wave (SAW) 135 .
  • SAW surface acoustic wave
  • the guided-mode light 125 interacts with the SAW 135 and is mode-converted into a diffracted TM mode that exits the waveguide as a leaky mode 140 .
  • the leaky mode 140 Upon entering the substrate region 120 , the leaky mode 140 is incident upon a reflection mode volume holographic Bragg grating 145 ( ⁇ n e , ⁇ n o ) with grating vector nearly parallel to the center wavevector of the incident leaky mode's angular fan. Due to the volume hologram's wide angular acceptance range (see FIG. 3 ), the leaky mode is reflected 150 to exit substrate 120 through the waveguide 115 towards the viewer 155 .
  • FIG. 2 is a z-y cross-section (top view) of the example SAW device of FIG. 1 .
  • the z-axis is the extraordinary axis.
  • ⁇ guided 210 is the propagation constant of the guided-mode TE light 125 ( FIG. 1 ) in the waveguide 115 and ⁇ right arrow over (K) ⁇ grating 220 is the acoustic grating's wavevector.
  • FIG. 4 depicts conservation of momentum (phase-matching condition) in a nearly collinear acousto-optic guided-to-leaky mode transition.
  • ⁇ guided is the propagation vector of the TE-polarized guided mode light (i.e., the component of the guided mode wavevector along the propagation direction)
  • ⁇ leaky is the component of the TM-polarized leaky mode light along the waveguide axis
  • ⁇ right arrow over (K) ⁇ grating is the acoustic grating wavevector
  • ⁇ right arrow over (K) ⁇ leaky is the total wavevector of the leaky mode light.
  • the device pictured in FIGS. 1 and 2 represents a single acousto-optic element capable of modulating only some portion of a holographic image (i.e., in an elemental hologram sense). This is due to the fact that the surface acoustic wave has only a limited interaction length with the guided-mode light before the efficiency of the interaction approaches zero. Therefore, placement of several acousto-optic transducers on the same waveguide is necessary in order to obtain a longer holographic line.
  • a multi-element device is comprised of multiple elements of the type depicted in FIG. 1 .
  • Guided-mode light that is undiffracted by a surface acoustic wave continues to propagate in the waveguide and is available for diffraction for subsequent surface acoustic waves.
  • Multiple SAW transducers are positioned along the waveguide axis and interact progressively with guided-wave light in a resonant fashion.
  • Volume holographic Bragg gratings are positioned for reflection of every leaky mode exiting the waveguide. This type of scheme is depicted in FIGS. 5 (side view) and 6 (top view).
  • FIG. 5 is an x-y cross-section (side view) of an example multi-element SAW device, according to one aspect of the invention.
  • incident TE light 505 is reflected off surface (TE) Bragg in-coupling reflection grating 510 ( ⁇ n e ), which couples it into anisotropic (TE) waveguide 515 (n e >n e0 ) on bulk X-cut lithium niobate (n e0 , n o0 ) substrate 520 , producing guided-mode light 525 .
  • TE surface
  • the guided-mode light 525 interacts with the SAWs 535 , 536 , 537 and is mode-converted into diffracted TM modes that exits the waveguide as leaky modes 540 541 , 542 .
  • Light 525 that is undiffracted by the first transducer 530 is available for diffraction by subsequent transducer 531 , and so on.
  • leaky modes 540 , 541 , 542 are incident upon respective reflection mode volume holographic Bragg gratings 545 , 546 , 547 ( ⁇ e , ⁇ n o ) with grating vectors nearly parallel to the center wavevector of the incident leaky mode's angular fan.
  • the leaky modes are reflected 550 , 551 , 552 by respective reflection mode volume holographic Bragg gratings 545 , 546 , 547 to exit the substrate 520 through the waveguide 515 towards the viewer.
  • FIG. 6 is a z-y cross-section (top view) of the multi-element SAW Device of FIG. 5 , according to one aspect of the invention.
  • ⁇ guided 610 is the propagation constant of the guided-mode TE light 525 ( FIG. 5 ) in waveguide 515 and ⁇ right arrow over (K) ⁇ grating 620 is the acoustic grating's wavevector.
  • FIG. 7 An example timing diagram for strobed operation of a device according to the invention is depicted in FIG. 7 .
  • ⁇ fill 710 is the time duration over which the aperture is filled by the acoustic pixel stream and ⁇ pixel 720 is the time duration over which a single pixel is acoustically drawn.
  • Each illumination pulse is tied to the length of time taken for the graphics processing unit to output one filled aperture's worth of pixels; this can readily be set to be one horizontal line on the GPU framebuffer and hence the pulses can be triggered on the GPU's hsync pulses (depicted in FIG. 8 ).
  • the aperture may be spread across multiple framebuffer lines and the illumination triggered by a counter driven by hsync pulses.
  • FIG. 8 is an example timing diagram for hsync pulses, with ⁇ fill 810 being the time duration over which the aperture is filled by the acoustic pixel stream.
  • Each waveguide being driven with either a single or multiple SAW transducers, is responsible for delivering a single horizontal parallax-only holographic line to the viewer. In order to deliver imagery with greater vertical resolution, multiple such holographic lines are required in the output.
  • Scanned-aperture displays based around bulk-wave acousto-optic modulators [P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” Journal of the Optical Society of America A, vol. 9, no. 11, pp. 1969-1977, 1992; P. St. Hilaire, Scalable Optical Architectures for Electronic Holography, Ph. D.
  • FIG. 9 depicts a z-y cross-section (top view) of an example multi-element, multi-channel SAW device, according to this aspect of the invention.
  • light is coupled into all waveguides simultaneously via in-coupling Bragg gratings 910 , 911 , 912 that are positioned on top of each waveguide 915 , 916 , 917 on substrate 920 .
  • in-coupling Bragg gratings 910 , 911 , 912 that are positioned on top of each waveguide 915 , 916 , 917 on substrate 920 .
  • multiple SAW transducers 930 , 931 , 932 , 933 , 934 , 935 , 936 , 937 , 938 and reflection Bragg gratings 910 , 911 , 912 are positioned along the length of each waveguide 915 , 916 , 917 .
  • each column of SAW elements spanning multiple waveguides may be driven by a single analog output channel of a graphics processing unit in a time-sequential fashion. This allows for the possibility of coherence amongst surface acoustic waves generated by multiple SAW transducer elements on a single waveguide, so that all of the holographic information spanning multiple SAW transducers on a single holographic line is drawn at the same time, as well as reduces the number of analog GPU channels needed.
  • FIG. 10 depicts an example embodiment of an electrical path for GPU signal output, RF up-conversion and amplification, and switching amongst holographic lines for driving multiple holographic lines in sequence, according to one aspect of the invention.
  • the output analog video signal 1005 from graphics card (GPU) 1010 (containing holographic information) is appropriately up-converted via RF mixer 1015 with local oscillator 1020 to the RF frequency operating band of SAW transducers 1025 , 1026 , 1027 , 1028 , 1030 and amplified by RF amplifier 1035 .
  • This up-converted, amplified signal 1040 is input to 1-to-2 N RF de-multiplexer 1045 , which acts to switch input signal 1040 to one of 2 N outputs 1050 , 1051 , 1052 , 1053 , 1055 depending on control input 1060 .
  • control input 1060 is the output of counter 1065 that accumulates the number of hsync pulses output 1070 from the GPU 1010 . This control scheme necessitates that the holographic information driving a single transducer is contained on a single framebuffer line in the GPU's memory.
  • the holographic information for the ith holographic line is drawn.
  • the GPU 1010 fires an hsync pulse 1070 , incrementing the pulse counter 1065 , and thereby switching the output to a transducer on the next holographic line.
  • counter 1065 is reset 1075 upon receiving a vsync pulse 1080 from GPU 1010 and de-multiplexer 1045 is thereby reset to output 1050 to the first holographic line's transducer 1025 .
  • All independent sequential transducers per holographic line may be addressed by independent GPU channels and de-multiplexing hardware. In this way, multiple transducers per holographic line are addressed in a parallel fashion, while separate holographic lines are addressed in a serial fashion. Other variations on this addressing scheme, as would be known to those skilled in the art, may be used as appropriate for the number of lines, transducers, and simultaneous video signals available.
  • Femtosecond laser micromachining has emerged in the last several decades as a versatile tool for the fabrication of microdevices in transparent materials [R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, vol. 2, no. 4, pp. 219-225, April 2008].
  • the use of femtosecond laser micromachining has been explored for the generation of waveguides [M. Dubov, S. Boscolo, and D. J. Webb, “Microstructured waveguides in z-cut LiNbO 3 by high-repetition rate direct femtosecond laser inscription,” Optical Materials Express, vol. 4, no. 8, pp.
  • a device according to the invention can be fabricated entirely via a femtosecond laser micromachining process.
  • the anisotropic waveguide can be fabricated by an index change ⁇ n e , which has been shown to be possible via short duration pulse widths [J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Applied Physics A, vol. 86, no. 2, pp. 165-170, 2007], relative to the substrate.
  • the Bragg in-coupling grating can be fabricated via surface ablation [D.
  • the out-coupling grating can be fabricated via isotropic refractive index modulation in the bulk of the substrate.
  • Metal SAW transducers may also be fabricated [T. Gertus, P. Ka ⁇ hacek over (z) ⁇ dailis, R. Rimeika, D. Ciplys, and V. Smilgevi ⁇ hacek over (c) ⁇ ius, “Surface acoustic wave transducers fabricated by femtosecond laser ablation”, Electronics Letters, vol. 46, no. 17, 19 August 2010].
  • FIG. 11 depicts an example focused laser spot in femtosecond laser micromachining. Material perturbation or ablation only occurs within a small region around the focus. Shown in FIG. 11 are glass material 1120 , absorption spot 1130 , and caustic 1140 .
  • FIGS. 12A-C depict example index ellipsoids for uniaxial lithium niobate, wherein FIG. 12A depicts unperturbed LiNbO 3 , FIG. 12B depicts proton-exchanged LiNbO 3 , and FIG. 12C depicts femtosecond laser photo-perturbed LiNbO 3 .
  • femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate
  • femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate
  • femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate
  • femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate
  • femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection grat
  • LIFT laser induced forward transfer
  • the laser is used to ablatively transfer material from a thin film on a support substrate to a target substrate by pulsed laser through a photothermal deposition process via vapor-driven propulsion of metal from the film onto the second (target) substrate.
  • the substrate material primarily experiences multi-photon effects (which are minimal here)
  • absorption of laser energy occurs primarily at the metal-substrate interface since the majority of energy is absorbed by the metal, with laser light attenuation toward the surface of the metal film.
  • pulsed illumination to create a stationary display output in conjunction with the use of traveling acoustic waves for index modulation
  • use of integrated volume reflection gratings to direct diffracted leaky-mode light towards a viewer and use of an RF switching scheme in conjunction with an analog GPU output to allow for time-multiplexed,“rastered” operation.

Abstract

A holographic display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide. Each “line” of the overall display consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along the waveguide length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application Ser. No. 62/365,973, filed Jul. 22, 2016, the entire disclosure of which is herein incorporated by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • This invention was made with U.S. Government Support under Grant Number FA8650-14-C-6571, awarded by the Air Force Research Laboratory. The Government has certain rights in this invention.
  • FIELD OF THE TECHNOLOGY
  • The present invention relates to holographic video displays and, in particular, to a transparent flat-panel holographic video display suitable for near-to-eye and see-through augmented reality applications.
  • BACKGROUND
  • The limitations and affordances of holographic video displays are chiefly dictated by the spatial light modulators upon which they are built. The temporal bandwidth of the spatial light modulator determines the display size, view angle, and frame rate. The pixel pitch determines the angle of the display or the power of the lenses needed to achieve a wide view angle. The space-bandwidth product, which is related to the numerical aperture of the holographic grating, determines the maximum depth range and number of resolvable views the display will possess. Finally, optical non-idealities of the modulator give rise to noise and artifacts in the display output.
  • Current state-of-the-art technologies for spatial light modulation, such as liquid crystal (LC), micro-electro-mechanical systems (MEMS) [Kreis, T., Aswendt, P., and Hofling, R., “Hologram reconstruction using a digital micromirror device,” Optical Engineering, vol. 40, pp. 926-933 (2001); Pearson, E., “MEMS spatial light modulator for holographic displays”, S.M. Thesis, Massachusetts Institute of Technology (2001)], and bulk-wave acousto-optic modulators [Hilaire, P., Benton, S., and Lucente, M., “Synthetic aperture holography: a novel approach to three-dimensional displays,” Journal of the Optical Society of America A, vol. 9, pp. 1969-1977 (1992)], have proven challenging to employ in holographic video displays. The modulators employed currently are challenging to use for several reasons: low bandwidth (relative to holograms), high cost, low diffraction angle, poor scalability, quantization error, and the presence of noise, unwanted diffractive orders, and zero-order light, as well as the requirement for spatial or temporal multiplexing of color. These issues must therefore be addressed before using these modulators in a holographic display system.
  • Much of the cost and complexity of modern holographic displays is due to efforts to compensate for these deficiencies by, for example, adding eye tracking to deal with low diffraction angle [Haussler, R., Schwerdtner, A., and Leister, N., “Large holographic displays as an alternative to stereoscopic displays,” Proceedings of SPIE Stereoscopic Displays and Applications XIX, p. 68030M (2008)], duplicating and phase shifting the optical path in order to eliminate the zero order [Chen, G.-L., Lin, C.-Y., Kuo, M.-K., and Chang, C.-C., “Numerical suppression of zero-order image in digital holography.” Optics Express, vol. 15, pp. 8851-8856 (2007)], or creating large arrays of spatial light modulators in order to increase the display size [Sato, K., A. Sugita, M. Morimoto, and K. Fujii, “Reconstruction of Color Images at High Quality by a Holographic Display”, Proc. SPIE Practical Holography XX, p. 6136 (2006)]. The cost and complexity of holographic video displays can be greatly reduced if a spatial light modulator can be made to have better affordances than the LC and MEMS devices that are currently employed.
  • Full-color, video-rate holographic stereograms using arrays of waveguides with acoustic grating patterns that diffract in one axis only (horizontal parallax only or HPO) have previously been produced [D. Smalley, Q. Smithwick, V. M. Bove, Jr., J. Barabas, S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays.” Nature 498.7454, pp. 313-317 (2013); D. Smalley, Q. Smithwick, J. Barabas, V. M. Bove, Jr., S. Jolly, and C DellaSilva, “Holovideo for everyone: a low-cost holovideo monitor,” Proc. 9th International Symposium on Display Holography (ISDH 2012) (2012)]. The advantages of polarization rotation, enlarged angular diffraction, and wavelength division for red, green, and blue light have therefore been demonstrated.
  • SUMMARY
  • In one aspect, the present invention is a transparent holographic video display system that is suitable for near-to-eye augmented reality and see-through applications. Based on monolithic guided-wave acousto-optics with integrated volume gratings, a preferred embodiment has a composite display comprised of space-multiplexed elemental modulators, each of which exploit leaky-mode diffraction of guided-mode light. Each elemental modulator consists of a surface acoustic wave transducer atop an anisotropic waveguide. In a typical implementation. each “line” of the overall display consists of a single anisotropic waveguide across the display's length, with multiple surface acoustic wave transducers spaced along the length of the waveguide. For larger displays, the waveguide may be divided into segments, with each being provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
  • In one aspect of the invention, a holographic video display comprises a plurality of space-multiplexed elemental modulators. Each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display and includes an anisotropic waveguide, at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide, at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, wherein each surface acoustic wave transducer is configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light, and at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer.
  • The display may include an electrical control layer comprising a graphics processing unit, circuitry for RF up-conversion and amplification, and a multiplexor for switching amongst holographic lines to drive multiple holographic lines in sequence. It include a substrate on which the plurality of elemental modulators are disposed. The substrate may be lithium niobate. Each waveguide may be divided into segments, each provided with separate illumination. The display may be transparent and all reflection volume gratings may operate in the Bragg regime. Each waveguide may be associated with multiple one-to-one associated acoustic transducers and volume reflection gratings, arranged along the anisotropic waveguide to produce multiple output lines. There may be multiple acoustic transducers disposed along the anisotropic waveguide in order to provide a desired length of optical line. The invention includes any holographic video image created by the display.
  • In another aspect of the invention, a method for generating a holographic image includes providing one or more wavelengths of light to a holographic video display, the display comprising a plurality of space-multiplexed elemental modulators, providing holographic information to the video display; coupling the light received at the holographic video display into the elemental modulators for diffraction according to the holographic information; and scanning the steered light to form the holographic image. Each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display and includes an anisotropic waveguide, at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide, at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, wherein each surface acoustic wave transducer is configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light, and at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer. The invention includes a holographic video display that employs the method.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other aspects, advantages and novel features of the invention will become more apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is an x-y cross-section (side view) of an example guided optical wave SAW device with integrated Bragg gratings, according to one aspect of the invention.
  • FIG. 2 is a z-y cross-section (top view) of the guided optical wave SAW device of FIG. 1, according to one aspect of the invention.
  • FIG. 3 depicts diffraction efficiency for red, green, and blue wavelengths vs. angular deviation from the Bragg angle for a reflection-mode volume holographic Bragg grating with Λ=1 μm and thickness of 800 μm as indicated by Kogelnik's coupled-mode theory.
  • FIG. 4 depicts conservation of momentum in a nearly collinear acousto-optic guided-to-leaky mode transition.
  • FIG. 5 is an x-y cross-section (side view) of an example multi-element SAW device, according to one aspect of the invention.
  • FIG. 6 is a z-y cross-section (top view) of the multi-element SAW Device of FIG. 5, according to one aspect of the invention.
  • FIG. 7 is an example timing diagram for pulsed laser illumination of SAW devices.
  • FIG. 8 is an example timing diagram for hsync pulses, with τfill being the time duration over which the aperture is filled by the acoustic pixel stream.
  • FIG. 9 is a z-y cross-section (top view) of an example multi-element, multi-channel SAW device, according to one aspect of the invention.
  • FIG. 10 depicts an example embodiment of an electrical control layer path for GPU signal output, RF up-conversion and amplification, and switching amongst holographic lines for driving multiple holographic lines in sequence, according to one aspect of the invention.
  • FIG. 11 depicts focused laser spot in femtosecond laser micromachining.
  • FIGS. 12A-C depict index ellipsoids for uniaxial lithium niobate, wherein FIG. 12A depicts unperturbed LiNbO3, FIG. 12B depicts proton-exchanged LiNbO3, and FIG. 12C depicts femtosecond laser photo-perturbed LiNbO3.
  • DETAILED DESCRIPTION
  • A flat-panel, transparent holographic display solution suitable for near-to-eye augmented reality applications according to the invention is based on monolithic guided-wave acousto-optics with integrated volume gratings. A preferred embodiment has a composite display comprised of space-multiplexed elemental modulators, each of which exploit leaky-mode diffraction of guided-mode light. Fabrication of modulator sub-components may be achieved via femtosecond laser micromachining processes.
  • The display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide. Each “line” of the overall display typically consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along its length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
  • The present invention builds on and employs the guided-wave light modulation technologies previously described in U.S. patent application Ser. No. 14/985,453, U.S. Pat. No. 8,149,265, U.S. patent application Ser. No. 13/437,850, U.S. patent application Ser. No. 14/213,333, and U.S. patent application Ser. No. 14/217,215, all of which are incorporated by reference herein in their entirety. As a method for transparent display, it allows for augmented reality applications naturally. The use of integrated reflection volume gratings to direct leaky-mode diffracted light towards a viewer presents an extremely light- efficient solution for direct viewing of the displayed 3-D wavefield from the surface of the modulator without any additional requisite supporting optics. As a flat, transparent holographic display, the solution has natural applications in augmented reality but can also be adapted for virtual reality. Larger versions of the device could be used in heads-up displays, see-through hand-held devices, and similar applications.
  • A preferred embodiment of a system according to the invention employs a guided-wave acousto-optic platform implemented in lithium niobate (LiNbO3), in order to realize a fully-monolithic, transparent, flat-panel holographic video display.
  • Basic Optical Principles. The optical design employs several concepts that have already been explored in other contexts: (1) the use of anisotropic guided-wave acousto-optics for spatial light modulation in holographic video displays [D. E. Smalley, Holovideo on a Stick: Integrated Optics for Holographic Video Displays, Ph. D. Thesis, Massachusetts Institute of Technology, 2013; D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, Jr., J. Barabas and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, v. 498, pp. 313-317, 2013] via a guided-to-leaky mode transition in birefringent LiNbO3 [D. V. Petrov and J. Ctyroky, “Acousto-optic conversion of a guided mode into a leaky wave in a Ti:LiNbO3 waveguide,” Pis'ma v Zhurnal Tekhnicheskoi Fiziki, vol. 9, pp. 1120-1124, September 1983; A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 1, pp. 16-28], (2) the use of a Bragg grating to introduce illumination into a waveguide [C. S. Tsai, Guided-Wave Acousto-Optics: Interactions Devices and Applications. Springer-Verlag, 1990], (3) the use of beam strobing in order to “freeze” the acousto-optic pattern and eliminate the need for de-scanning the propagating acoustic wave [W. Akemann, J.-F. Lager, C. Ventalon, B. Mathieu, S. Dieudonné, and L. Bourdieu, “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Optics Express, vol. 23, no. 22, pp. 28191-28205, November 2015], and (4) the use of a volume holographic Bragg reflection grating in order to reflect the leaky diffracted toward a viewer with high efficiency [H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal, 1969; J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys., vol. 36, no. 3, pp. R1-R16, February 2003]. All elements, including the in-coupling grating, anisotropic waveguide, and output volume hologram, can be realized within a single LiNbO3 substrate without the need for any additional supporting optics. The platform therefore provides a path towards a fully-monolithic, integrated-optic platform for transparent holographic video display for near-to-eye display and other see-through display applications.
  • FIGS. 1 and 2 depict the basic structure of an example guided optical wave surface acoustic device according to a preferred embodiment of the invention. For x-cut LiNbO3, the z-axis is the extraordinary axis.
  • FIG. 1 is an x-y cross-section (side view) of a guided optical wave SAW device with integrated Bragg gratings, according to one aspect of the invention. In the device of FIG. 1, the incident light 105 is linearly polarized in the TE orientation and is reflected off surface (TE) Bragg in-coupling reflection grating 110, which couples it into anisotropic (TE) waveguide 115 (ne>ne0) on bulk X-cut lithium niobate (ne0, no0) substrate 120, producing guided-mode light 125. The waveguide 115 has an extraordinary index perturbation of Δne relative to the substrate 120, but no ordinary index change. When excited by an RF signal containing the holographic information, the interdigitated electrodes 130 (pictured in FIG. 2) launch a surface acoustic wave (SAW) 135. The guided-mode light 125 interacts with the SAW 135 and is mode-converted into a diffracted TM mode that exits the waveguide as a leaky mode 140. Upon entering the substrate region 120, the leaky mode 140 is incident upon a reflection mode volume holographic Bragg grating 145 (Δne, Δno) with grating vector nearly parallel to the center wavevector of the incident leaky mode's angular fan. Due to the volume hologram's wide angular acceptance range (see FIG. 3), the leaky mode is reflected 150 to exit substrate 120 through the waveguide 115 towards the viewer 155.
  • FIG. 2 is a z-y cross-section (top view) of the example SAW device of FIG. 1. For x-cut LiNbO3, the z-axis is the extraordinary axis. In FIG. 2, β guided 210 is the propagation constant of the guided-mode TE light 125 (FIG. 1) in the waveguide 115 and {right arrow over (K)}grating 220 is the acoustic grating's wavevector. These quantities obey the conservation relationship depicted in FIG. 4.
  • Established frequency-division mutliplexing schemes for full-color operation [D. E. Smalley, Holovideo on a Stick: Integrated Optics for Holographic Video Displays, Ph. D. Thesis, Massachusetts Institute of Technology, 2013; D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, Jr., J. Barabas and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, v. 498, pp. 313-317, 2013] can similarly be applied to the device. The device can also be operated for use in a scanning retinal display [B. T. Schowengerdt and E. J. Seibel, “Stereoscopic retinal scanning laser display with integrated focus cues for ocular accommodation,” Proceedings of SPIE/IS&T Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, 2004].
  • FIG. 3 depicts the calculated diffraction efficiency for red 310, green 320, and blue 340 wavelengths vs. angular deviation from the Bragg angle for a reflection-mode volume holographic Bragg grating with Λ=1 μm and thickness of 800 μm, as indicated by Kogelnik's coupled-mode theory [H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal, 1969; I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proceedings of SPIE Practical Holography XIX: Materials and Applications, vol. 5742, pp. 183-194, April 2005]. The wide angular acceptance range allows for the total angular extent of a leaky mode to be reflected with high efficiency. Furthermore, wavelength mutliplexing of several Bragg holograms can enable full-color operation [G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods in Holographic Data Storage, Eds: H. Coufal, D. Psaltis, and G. Sincerbox. Springer, N.Y., 2000].
  • FIG. 4 depicts conservation of momentum (phase-matching condition) in a nearly collinear acousto-optic guided-to-leaky mode transition. βguided is the propagation vector of the TE-polarized guided mode light (i.e., the component of the guided mode wavevector along the propagation direction), βleaky is the component of the TM-polarized leaky mode light along the waveguide axis, {right arrow over (K)}grating is the acoustic grating wavevector, and {right arrow over (K)}leaky is the total wavevector of the leaky mode light.
  • The device pictured in FIGS. 1 and 2 represents a single acousto-optic element capable of modulating only some portion of a holographic image (i.e., in an elemental hologram sense). This is due to the fact that the surface acoustic wave has only a limited interaction length with the guided-mode light before the efficiency of the interaction approaches zero. Therefore, placement of several acousto-optic transducers on the same waveguide is necessary in order to obtain a longer holographic line.
  • Structurally, a multi-element device is comprised of multiple elements of the type depicted in FIG. 1. Guided-mode light that is undiffracted by a surface acoustic wave continues to propagate in the waveguide and is available for diffraction for subsequent surface acoustic waves. Multiple SAW transducers are positioned along the waveguide axis and interact progressively with guided-wave light in a resonant fashion. Volume holographic Bragg gratings are positioned for reflection of every leaky mode exiting the waveguide. This type of scheme is depicted in FIGS. 5 (side view) and 6 (top view).
  • FIG. 5 is an x-y cross-section (side view) of an example multi-element SAW device, according to one aspect of the invention. As shown in FIG. 5, incident TE light 505 is reflected off surface (TE) Bragg in-coupling reflection grating 510 (Δne), which couples it into anisotropic (TE) waveguide 515 (ne>ne0) on bulk X-cut lithium niobate (ne0, no0) substrate 520, producing guided-mode light 525. When excited by an RF signal containing the holographic information, the interdigitated electrodes 530, 531, 532 (pictured in FIG. 6) launch surface acoustic waves 535, 536, 537. The guided-mode light 525 interacts with the SAWs 535, 536, 537 and is mode-converted into diffracted TM modes that exits the waveguide as leaky modes 540 541, 542. Light 525 that is undiffracted by the first transducer 530 is available for diffraction by subsequent transducer 531, and so on. Upon entering the substrate region 520, leaky modes 540, 541, 542 are incident upon respective reflection mode volume holographic Bragg gratings 545, 546, 547e, Δno) with grating vectors nearly parallel to the center wavevector of the incident leaky mode's angular fan. The leaky modes are reflected 550, 551, 552 by respective reflection mode volume holographic Bragg gratings 545, 546, 547 to exit the substrate 520 through the waveguide 515 towards the viewer.
  • FIG. 6 is a z-y cross-section (top view) of the multi-element SAW Device of FIG. 5, according to one aspect of the invention. In FIG. 6, β guided 610 is the propagation constant of the guided-mode TE light 525 (FIG. 5) in waveguide 515 and {right arrow over (K)}grating 620 is the acoustic grating's wavevector.
  • Systems Engineering. Strobed (pulsed laser illumination) operation has been presented as a solution to overcoming non-stationarity in acousto-optic modulators when used for beam shaping applications [W. Akemann, J.-F. Lager, C. Ventalon, B. Mathieu, S. Dieudonné, and L. Bourdieu, “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Optics Express, vol. 23, no. 22, pp. 28191-28205, November 2015]. Such a scheme can be used in place of polygonal mirror scanning techniques that have been applied previously for scanned-aperture holographic video displays based around acousto-optic modulators [D. E. Smalley, Holovideo on a Stick: Integrated Optics for Holographic Video Displays, Ph. D. Thesis, Massachusetts Institute of Technology, 2013; D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, Jr., J. Barabas and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, v. 498, pp. 313-317, 2013; P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” Journal of the Optical Society of America A, vol. 9, no. 11, pp. 1969-1977, 1992; P. St. Hilaire, Scalable Optical Architectures for Electronic Holography, Ph. D. Thesis, Massachusetts Institute of Technology, 1994].
  • An example timing diagram for strobed operation of a device according to the invention is depicted in FIG. 7. In FIG. 7, τ fill 710 is the time duration over which the aperture is filled by the acoustic pixel stream and τ pixel 720 is the time duration over which a single pixel is acoustically drawn. The duty cycle is then D=τpixelfill. τfill can be found as τfill=l/v, where l is the interaction length and v is the velocity of the propagating surface acoustic wave. For x-cut LiNbO3, v=3909 m/s; assuming an interaction length l=1 cm, τfill=2.558 μs. For a 400 Mpixel/s pixel clock from a modern graphics processing unit, τpixel= 1/400 Hz=2.5 ns. Each illumination pulse is tied to the length of time taken for the graphics processing unit to output one filled aperture's worth of pixels; this can readily be set to be one horizontal line on the GPU framebuffer and hence the pulses can be triggered on the GPU's hsync pulses (depicted in FIG. 8).
  • Where the GPU or other video generation circuitry does not support a sufficiently long line length for the necessary diffraction pattern, the aperture may be spread across multiple framebuffer lines and the illumination triggered by a counter driven by hsync pulses. FIG. 8 is an example timing diagram for hsync pulses, with τ fill 810 being the time duration over which the aperture is filled by the acoustic pixel stream.
  • Each waveguide, being driven with either a single or multiple SAW transducers, is responsible for delivering a single horizontal parallax-only holographic line to the viewer. In order to deliver imagery with greater vertical resolution, multiple such holographic lines are required in the output. Scanned-aperture displays based around bulk-wave acousto-optic modulators [P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” Journal of the Optical Society of America A, vol. 9, no. 11, pp. 1969-1977, 1992; P. St. Hilaire, Scalable Optical Architectures for Electronic Holography, Ph. D. Thesis, Massachusetts Institute of Technology, 1994] or guided-wave acousto-optic devices [D. E. Smalley, Holovideo on a Stick: Integrated Optics for Holographic Video Displays, Ph. D. Thesis, Massachusetts Institute of Technology, 2013; D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, Jr., J. Barabas and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, v. 498, pp. 313-317, 2013] employ scanning galvanometers to optically scan multiple holographic lines within the persistence time of the human eye. However, a flat-panel holographic video display requires that no supporting optics be used. Therefore, increased vertical resolution can only be achieved via the use of additional waveguide channels [D. E. Smalley, Holovideo on a Stick: Integrated Optics for Holographic Video Displays, Ph. D. Thesis, Massachusetts Institute of Technology, 2013].
  • Such a scheme is depicted in FIG. 9, which depicts a z-y cross-section (top view) of an example multi-element, multi-channel SAW device, according to this aspect of the invention. In this scheme, light is coupled into all waveguides simultaneously via in- coupling Bragg gratings 910, 911, 912 that are positioned on top of each waveguide 915, 916, 917 on substrate 920. As in the example device shown in FIGS. 5 and 6, multiple SAW transducers 930, 931, 932, 933, 934, 935, 936, 937, 938 and reflection Bragg gratings 910, 911, 912 are positioned along the length of each waveguide 915, 916, 917.
  • In order to electrically drive the entire example multi-element, multi-channel device depicted in FIG. 9 with holographic information with the limited temporal bandwidth available from modern GPUs, each column of SAW elements spanning multiple waveguides may be driven by a single analog output channel of a graphics processing unit in a time-sequential fashion. This allows for the possibility of coherence amongst surface acoustic waves generated by multiple SAW transducer elements on a single waveguide, so that all of the holographic information spanning multiple SAW transducers on a single holographic line is drawn at the same time, as well as reduces the number of analog GPU channels needed.
  • Such a scheme can be implemented via the use of an analog RF demultiplexer, as shown in FIG. 10. FIG. 10 depicts an example embodiment of an electrical path for GPU signal output, RF up-conversion and amplification, and switching amongst holographic lines for driving multiple holographic lines in sequence, according to one aspect of the invention. In FIG. 10, the output analog video signal 1005 from graphics card (GPU) 1010 (containing holographic information) is appropriately up-converted via RF mixer 1015 with local oscillator 1020 to the RF frequency operating band of SAW transducers 1025, 1026, 1027, 1028, 1030 and amplified by RF amplifier 1035. This up-converted, amplified signal 1040 is input to 1-to-2N RF de-multiplexer 1045, which acts to switch input signal 1040 to one of 2N outputs 1050, 1051, 1052, 1053, 1055 depending on control input 1060. Because input signal 1040 should be switched based on the index of the current holographic line being written, control input 1060 is the output of counter 1065 that accumulates the number of hsync pulses output 1070 from the GPU 1010. This control scheme necessitates that the holographic information driving a single transducer is contained on a single framebuffer line in the GPU's memory. During the duration between hsync pulses, the holographic information for the ith holographic line is drawn. After drawing is completed, the GPU 1010 fires an hsync pulse 1070, incrementing the pulse counter 1065, and thereby switching the output to a transducer on the next holographic line. After all lines have been switched to and drawn, counter 1065 is reset 1075 upon receiving a vsync pulse 1080 from GPU 1010 and de-multiplexer 1045 is thereby reset to output 1050 to the first holographic line's transducer 1025.
  • All independent sequential transducers per holographic line may be addressed by independent GPU channels and de-multiplexing hardware. In this way, multiple transducers per holographic line are addressed in a parallel fashion, while separate holographic lines are addressed in a serial fashion. Other variations on this addressing scheme, as would be known to those skilled in the art, may be used as appropriate for the number of lines, transducers, and simultaneous video signals available.
  • Fabrication via Femtosecond Laser Micromachining. Femtosecond laser micromachining has emerged in the last several decades as a versatile tool for the fabrication of microdevices in transparent materials [R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, vol. 2, no. 4, pp. 219-225, April 2008]. The use of femtosecond laser micromachining has been explored for the generation of waveguides [M. Dubov, S. Boscolo, and D. J. Webb, “Microstructured waveguides in z-cut LiNbO3 by high-repetition rate direct femtosecond laser inscription,” Optical Materials Express, vol. 4, no. 8, pp. 1708-1716, August 2014; R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. V. de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Optical Materials Express, vol. 3, no. 9, pp. 1378-1384, September 2013; J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Applied Physics A, vol. 86, no. 2, pp. 165-170, 2007; J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Applied Physics A, vol. 89, no. 1, pp. 127-132, 2007], surface gratings [D. Grando, J. Yu, D. Ballarini, and P. Galinetto, “Femtosecond Laser Writing of Surface Microstructures in Lithium Niobate,” Nonlinear Guided Waves and Their Applications (2005), paper WD33, p. WD33, September 2005], Bragg volume gratings [V. Mizeikis, V. Purlys, D. Paipulas, and R. Buividas, “Direct Laser Writing: Versatile Tool for Microfabrication of Lithium Niobate,” Journal of Laser Micro/Nanomachining, 2012; D. Paipulas, V. Kudria{hacek over (s)}ov, M. Malinauskas, V. Smilgevi{hacek over (c)}ius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Applied Physics A, vol. 104, no. 3, pp. 769-773, 2011], and complex integrated optic devices [J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Physica Status Solidi (a), vol. 208, no. 2, pp. 276-283, February 2011] in lithium niobate. Recently, the use of femtosecond laser micromachining has been proposed as an alternative to proton exchange for the creation of anisotropic waveguides in LiNbO3 for spatial light modulators for holographic video devices [N. Savidis, S. Jolly, B. Datta, T. Karydis, and V. Michael Bove, Jr., “Fabrication of waveguide spatial light modulators via femtosecond laser micromachining,” Proc. SPIE Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759, 2016].
  • While many fabrication methods for devices according to the invention are known in the art and would be suitable, in a preferred embodiment, a device according to the invention can be fabricated entirely via a femtosecond laser micromachining process. The anisotropic waveguide can be fabricated by an index change Δne, which has been shown to be possible via short duration pulse widths [J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Applied Physics A, vol. 86, no. 2, pp. 165-170, 2007], relative to the substrate. The Bragg in-coupling grating can be fabricated via surface ablation [D. Grando, J. Yu, D. Ballarini, and P. Galinetto, “Femtosecond Laser Writing of Surface Microstructures in Lithium Niobate,” Nonlinear Guided Waves and Their Applications (2005), paper WD33, p. WD33, September 2005] or via refractive index modulation Δne [D. Paipulas, V. Kudria{hacek over (s)}ov, M. Malinauskas, V. Smilgevi{hacek over (c)}ius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Applied Physics A, vol. 104, no. 3, pp. 769-773, 2011]. The out-coupling grating can be fabricated via isotropic refractive index modulation in the bulk of the substrate. Metal SAW transducers may also be fabricated [T. Gertus, P. Ka{hacek over (z)}dailis, R. Rimeika, D. Ciplys, and V. Smilgevi{hacek over (c)}ius, “Surface acoustic wave transducers fabricated by femtosecond laser ablation”, Electronics Letters, vol. 46, no. 17, 19 August 2010].
  • FIG. 11 depicts an example focused laser spot in femtosecond laser micromachining. Material perturbation or ablation only occurs within a small region around the focus. Shown in FIG. 11 are glass material 1120, absorption spot 1130, and caustic 1140.
  • FIGS. 12A-C depict example index ellipsoids for uniaxial lithium niobate, wherein FIG. 12A depicts unperturbed LiNbO3, FIG. 12B depicts proton-exchanged LiNbO3, and FIG. 12C depicts femtosecond laser photo-perturbed LiNbO3.
  • While the proton exchange process in LiNbO3 increases the extraordinary index while decreasing the ordinary index (Δn˜10−2), femtosecond laser micromachining can induce an increase in extraordinary index only (Δne˜10−3) (see FIG. 12) when creating so-called Type I waveguides [J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Applied Physics A, vol. 86, no. 2, pp. 165-170, 2007; J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Applied Physics A, vol. 89, no. 1, pp. 127-132, 2007]. The effect of the waveguide's index profile on the guided-to-leaky mode conversion process is to be determined via simulation (i.e., coupled-mode theories dictating propagation in anisotropic waveguides [D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” The Bell System Technical Journal, vol. 54, no. 6, pp. 985-995, 1975] and interaction of guided-mode light with surface acoustic waves [A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 1, pp. 16-28]).
  • Other recent advances in fabrication using femtosecond laser micromachining may be suitable, such as femtosecond laser-based direct-write approaches for the fabrication of waveguide in-coupling gratings and volume Bragg reflection gratings via permanent refractive index changes within the lithium niobate substrate [Nickolaos Savidis, Sundeep Jolly, Bianca Datta, Michael Moebius, Thrasyvoulos Karydis, Eric Mazur, Neil Gershenfeld, and V. Michael Bove, Jr., “Progress in fabrication of waveguide spatial light modulators via femtosecond laser micromachining”, Proc. SPIE Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X, 10115, 2017]. In combination with metal surface-acoustic-wave transducers, these direct-write approaches allow for complete fabrication of a functional spatial light modulator via femtosecond laser direct writing.
  • Additionally, or alternatively, laser induced forward transfer (LIFT) [Bianca C. Datta, Nickolaos Savidis, Michael Moebius, Sundeep Jolly, Eric Mazur, and V. Michael Bove, Jr., “Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate”, Proc. SPIE Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X, 10115, 2017] may be employed for fabricating devices according to the invention. In this process, metal is placed on an optically transparent substrate, which is then placed against the target substrate. Specific patterns are written using a high-precision three axis stage to move the substrates. During LIFT, the laser is used to ablatively transfer material from a thin film on a support substrate to a target substrate by pulsed laser through a photothermal deposition process via vapor-driven propulsion of metal from the film onto the second (target) substrate. As the substrate material primarily experiences multi-photon effects (which are minimal here), absorption of laser energy occurs primarily at the metal-substrate interface since the majority of energy is absorbed by the metal, with laser light attenuation toward the surface of the metal film.
  • In addition to the foregoing, at least the following implementations, modifications, and applications of the described technology are contemplated by the inventors and are considered to be within the scope of the invention: pulsed illumination to create a stationary display output in conjunction with the use of traveling acoustic waves for index modulation, use of integrated volume reflection gratings to direct diffracted leaky-mode light towards a viewer, and use of an RF switching scheme in conjunction with an analog GPU output to allow for time-multiplexed,“rastered” operation.
  • While preferred embodiments of the invention are disclosed herein, many other implementations will occur to one of ordinary skill in the art and are all within the scope of the invention. Each of the various embodiments described above may be combined with other described embodiments in order to provide multiple features. Furthermore, while the foregoing describes a number of separate embodiments of the apparatus and method of the present invention, what has been described herein is merely illustrative of the application of the principles of the present invention. Other arrangements, methods, modifications, and substitutions by one of ordinary skill in the art are therefore also considered to be within the scope of the present invention.

Claims (20)

What is claimed is:
1. A holographic video display comprising:
a plurality of space-multiplexed elemental modulators, wherein each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display, each elemental modulator comprising:
an anisotropic waveguide;
at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide;
at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, each surface acoustic wave transducer configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light; and
at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer.
2. The holographic video display of claim 1, further comprising an electrical control layer, the electrical control layer comprising a graphics processing unit, circuitry for RF up-conversion and amplification, and a multiplexor for switching amongst holographic lines to drive multiple holographic lines in sequence.
3. The holographic video display of claim 1, further comprising a substrate on which the plurality of elemental modulators are disposed.
4. The holographic video display of claim 3, wherein the substrate is lithium niobate.
5. The holographic video display of claim 1, wherein each anisotropic waveguide is divided into segments, each provided with separate illumination.
6. The holographic video display of claim 1, wherein the display is transparent and all reflection volume gratings operate in the Bragg regime.
7. The holographic video display of claim 1, wherein each anisotropic waveguide is associated with multiple one-to-one associated acoustic transducers and volume reflection gratings, arranged along the anisotropic waveguide to produce multiple output lines.
8. The holographic video display of claim 7, further comprising a substrate on which the plurality of elemental modulators are disposed.
9. The holographic video display of claim 1, wherein there are multiple acoustic transducers disposed along the anisotropic waveguide in order to provide a desired length of optical line.
10. A holographic video image produced using the display of claim 1.
11. A method for generating a holographic image, comprising:
providing one or more wavelengths of light to a holographic video display, the display comprising a plurality of space-multiplexed elemental modulators, wherein each elemental modulator is configured to employ leaky-mode diffraction of guided-mode light to produce a line of a holographic display, each elemental modulator comprising:
an anisotropic waveguide;
at least one in-coupling reflection grating positioned on the anisotropic waveguide at a location suitable for coupling incident light into the waveguide to produce guided-mode light travelling in the waveguide;
at least one surface acoustic wave transducer disposed along the top of the anisotropic waveguide, each surface acoustic wave transducer configured to diffract the guided-mode light travelling in the waveguide into leaky-mode light; and
at least one volume reflection grating positioned on the anisotropic waveguide, each volume reflection grating being positioned at a location suitable for steering the leaky-mode light towards a viewer;
providing holographic information to the video display;
coupling the light received at the holographic video display into the elemental modulators for diffraction according to the holographic information; and
scanning the steered light to form the holographic image.
12. The method of claim 11, wherein the holographic video display further comprises an electrical control layer, the electrical control layer comprising a graphics processing unit, circuitry for RF up-conversion and amplification, and a multiplexor for switching amongst holographic lines to drive multiple holographic lines in sequence.
13. The method of claim 11, wherein the holographic video display further comprises a substrate on which the plurality of elemental modulators are disposed.
14. The method of claim 13, wherein the substrate is lithium niobate.
15. The method of claim 11, wherein each anisotropic waveguide is divided into segments, each provided with separate illumination.
16. The method of claim 11, wherein the display is transparent and all reflection volume gratings operate in the Bragg regime.
17. The method of claim 11, wherein each anisotropic waveguide is associated with multiple one-to-one associated acoustic transducers and volume reflection gratings, arranged along the anisotropic waveguide to produce multiple output lines.
18. The method of claim 17, wherein the holographic video display further comprises a substrate on which the plurality of elemental modulators are disposed.
19. The method of claim 11, wherein there are multiple acoustic transducers disposed along the anisotropic waveguide in order to provide a desired length of optical line.
20. A holographic video display that employs the method of claim 11.
US15/658,388 2016-07-22 2017-07-24 Near-to-Eye and See-Through Holographic Displays Abandoned US20180074457A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/658,388 US20180074457A1 (en) 2016-07-22 2017-07-24 Near-to-Eye and See-Through Holographic Displays
US16/945,788 US11693363B2 (en) 2016-07-22 2020-07-31 Near-to-eye and see-through holographic displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662365973P 2016-07-22 2016-07-22
US15/658,388 US20180074457A1 (en) 2016-07-22 2017-07-24 Near-to-Eye and See-Through Holographic Displays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/945,788 Continuation US11693363B2 (en) 2016-07-22 2020-07-31 Near-to-eye and see-through holographic displays

Publications (1)

Publication Number Publication Date
US20180074457A1 true US20180074457A1 (en) 2018-03-15

Family

ID=61559831

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/658,388 Abandoned US20180074457A1 (en) 2016-07-22 2017-07-24 Near-to-Eye and See-Through Holographic Displays
US16/945,788 Active 2038-01-23 US11693363B2 (en) 2016-07-22 2020-07-31 Near-to-eye and see-through holographic displays

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/945,788 Active 2038-01-23 US11693363B2 (en) 2016-07-22 2020-07-31 Near-to-eye and see-through holographic displays

Country Status (1)

Country Link
US (2) US20180074457A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180217473A1 (en) * 2017-01-30 2018-08-02 The Charles Stark Draper Laboratory, Inc. SAW Modulators and Light Steering Methods
US20180284466A1 (en) * 2017-03-28 2018-10-04 The Charles Stark Draper Laboratory, Inc. Light field generator devices with series output couplers
CN109031678A (en) * 2018-08-20 2018-12-18 京东方科技集团股份有限公司 Display device and method for controlling the display device
CN109188688A (en) * 2018-11-14 2019-01-11 上海交通大学 Nearly eye display device based on diffractive optical element
US10473939B1 (en) * 2018-01-08 2019-11-12 Facebook Technologies, Llc Waveguide display with holographic Bragg grating
WO2020211541A1 (en) * 2019-04-16 2020-10-22 京东方科技集团股份有限公司 Transparent display panel, and method for manufacturing same
CN112400141A (en) * 2018-07-13 2021-02-23 卡尔蔡司耶拿有限责任公司 Lighting device for vehicle
CN112462521A (en) * 2020-12-08 2021-03-09 谷东科技有限公司 Real-time dynamic three-dimensional display augmented reality near-to-eye display device
CN112505925A (en) * 2020-12-08 2021-03-16 谷东科技有限公司 Compact augmented reality near-to-eye device
WO2021055343A1 (en) * 2019-09-19 2021-03-25 Akalana Management Llc Optical systems with flare-mitigating angular filters
CN112601587A (en) * 2018-08-28 2021-04-02 奇跃公司 Dynamic incoupling grating in imaging system
US10977815B1 (en) * 2018-07-02 2021-04-13 Facebook Technologies, Llc Structured light eye-tracking
US11054566B2 (en) * 2019-10-25 2021-07-06 Facebook Technologies, Llc Display waveguide with a high-index layer
US11119383B2 (en) 2017-07-21 2021-09-14 The Charles Stark Draper Laboratory, Inc. Telescope arrays and superimposed volume gratings for light field generation
US11243450B2 (en) * 2017-01-30 2022-02-08 The Charles Stark Draper Laboratory, Inc. Saw modulator having optical power component for extended angular redirection of light
JP2022514402A (en) * 2018-12-21 2022-02-10 マジック リープ, インコーポレイテッド Air pocket structure to facilitate all internal reflections in the waveguide
US20220128817A1 (en) * 2019-03-12 2022-04-28 Magic Leap, Inc. Waveguides with high index materials and methods of fabrication thereof
US11339943B2 (en) 2018-06-28 2022-05-24 Carl Zeiss Jena Gmbh Lighting device for vehicles having a primary and secondary hologram
US11391435B2 (en) 2017-10-18 2022-07-19 Carl Zeiss Jena Gmbh Illumination device for vehicles
US11500206B2 (en) * 2018-04-02 2022-11-15 Magic Leap, Inc. Waveguides with integrated optical elements and methods of making the same
US11709363B1 (en) * 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
US11860366B2 (en) 2020-09-29 2024-01-02 Avegant Corp. Architecture to illuminate a display panel
US20240094611A1 (en) * 2022-09-20 2024-03-21 Meta Platforms Technologies, Llc Optical modulator and image projector based on leaky-mode waveguide with temporal multiplexing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220399628A1 (en) * 2021-06-14 2022-12-15 Texas Instruments Incorporated Acoustic waveguide with diffraction grating
CN114265138A (en) * 2021-12-16 2022-04-01 江西凤凰光学科技有限公司 Diffraction light waveguide device capable of eliminating rainbow effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300695A1 (en) * 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US20170094265A1 (en) * 2015-09-30 2017-03-30 Brian Mullins Bidirectional holographic lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874782A (en) * 1973-10-01 1975-04-01 Bell Telephone Labor Inc Light-guiding switch, modulator and deflector employing antisotropic substrate
US5106181A (en) * 1989-04-12 1992-04-21 Rockwell Iii Marshall A Optical waveguide display system
US20020141039A1 (en) * 2001-04-02 2002-10-03 Michael Mermelstein Spatial light modulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300695A1 (en) * 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US20170094265A1 (en) * 2015-09-30 2017-03-30 Brian Mullins Bidirectional holographic lens

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243450B2 (en) * 2017-01-30 2022-02-08 The Charles Stark Draper Laboratory, Inc. Saw modulator having optical power component for extended angular redirection of light
US20180217473A1 (en) * 2017-01-30 2018-08-02 The Charles Stark Draper Laboratory, Inc. SAW Modulators and Light Steering Methods
US11340513B2 (en) 2017-01-30 2022-05-24 The Charles Stark Draper Laboratory, Inc. SAW modulators and light steering methods
US10795235B2 (en) * 2017-01-30 2020-10-06 The Charles Stark Draper Laboratory, Inc. SAW modulators and light steering methods
US20180284466A1 (en) * 2017-03-28 2018-10-04 The Charles Stark Draper Laboratory, Inc. Light field generator devices with series output couplers
US10416468B2 (en) * 2017-03-28 2019-09-17 The Charles Stark Draper Laboratory, Inc. Light field generator devices with series output couplers
US11119383B2 (en) 2017-07-21 2021-09-14 The Charles Stark Draper Laboratory, Inc. Telescope arrays and superimposed volume gratings for light field generation
US11391435B2 (en) 2017-10-18 2022-07-19 Carl Zeiss Jena Gmbh Illumination device for vehicles
US10473939B1 (en) * 2018-01-08 2019-11-12 Facebook Technologies, Llc Waveguide display with holographic Bragg grating
US10877280B1 (en) * 2018-01-08 2020-12-29 Facebook Technologies, Llc Waveguide display with holographic Bragg grating
US11500206B2 (en) * 2018-04-02 2022-11-15 Magic Leap, Inc. Waveguides with integrated optical elements and methods of making the same
US11947121B2 (en) 2018-04-02 2024-04-02 Magic Leap, Inc. Waveguides with integrated optical elements and methods of making the same
US11339943B2 (en) 2018-06-28 2022-05-24 Carl Zeiss Jena Gmbh Lighting device for vehicles having a primary and secondary hologram
US10977815B1 (en) * 2018-07-02 2021-04-13 Facebook Technologies, Llc Structured light eye-tracking
CN112400141A (en) * 2018-07-13 2021-02-23 卡尔蔡司耶拿有限责任公司 Lighting device for vehicle
US11841683B2 (en) 2018-07-13 2023-12-12 Carl Zeiss Jena Gmbh Illumination device for vehicles
US11740535B2 (en) 2018-08-20 2023-08-29 Boe Technology Group Co., Ltd. Display apparatus and controlling method thereof
WO2020037941A1 (en) * 2018-08-20 2020-02-27 Boe Technology Group Co., Ltd. Display apparatus and controlling method thereof
CN109031678A (en) * 2018-08-20 2018-12-18 京东方科技集团股份有限公司 Display device and method for controlling the display device
EP3843866A4 (en) * 2018-08-28 2021-09-29 Magic Leap, Inc. Dynamic incoupling gratings in imaging systems
CN112601587A (en) * 2018-08-28 2021-04-02 奇跃公司 Dynamic incoupling grating in imaging system
JP7466524B2 (en) 2018-08-28 2024-04-12 マジック リープ, インコーポレイテッド Dynamic internal coupling gratings in imaging systems.
CN109188688A (en) * 2018-11-14 2019-01-11 上海交通大学 Nearly eye display device based on diffractive optical element
JP2022514402A (en) * 2018-12-21 2022-02-10 マジック リープ, インコーポレイテッド Air pocket structure to facilitate all internal reflections in the waveguide
US20220128817A1 (en) * 2019-03-12 2022-04-28 Magic Leap, Inc. Waveguides with high index materials and methods of fabrication thereof
WO2020211541A1 (en) * 2019-04-16 2020-10-22 京东方科技集团股份有限公司 Transparent display panel, and method for manufacturing same
CN114026486A (en) * 2019-09-19 2022-02-08 苹果公司 Optical system with glare suppressing angular filter
WO2021055343A1 (en) * 2019-09-19 2021-03-25 Akalana Management Llc Optical systems with flare-mitigating angular filters
CN114127596A (en) * 2019-10-25 2022-03-01 脸谱科技有限责任公司 Display waveguide with high index portion
US11054566B2 (en) * 2019-10-25 2021-07-06 Facebook Technologies, Llc Display waveguide with a high-index layer
US11460701B2 (en) 2019-10-25 2022-10-04 Meta Platforms Technologies LLC Display waveguide with a high-index portion
US11709363B1 (en) * 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
US11860366B2 (en) 2020-09-29 2024-01-02 Avegant Corp. Architecture to illuminate a display panel
CN112462521A (en) * 2020-12-08 2021-03-09 谷东科技有限公司 Real-time dynamic three-dimensional display augmented reality near-to-eye display device
CN112505925A (en) * 2020-12-08 2021-03-16 谷东科技有限公司 Compact augmented reality near-to-eye device
US20240094611A1 (en) * 2022-09-20 2024-03-21 Meta Platforms Technologies, Llc Optical modulator and image projector based on leaky-mode waveguide with temporal multiplexing

Also Published As

Publication number Publication date
US11693363B2 (en) 2023-07-04
US20210080906A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US11693363B2 (en) Near-to-eye and see-through holographic displays
US10303039B2 (en) SAW optical modulators with sense transducers
US10452026B2 (en) Transparent flat-panel holographic display
US10795235B2 (en) SAW modulators and light steering methods
US5172251A (en) Three dimensional display system
US10416468B2 (en) Light field generator devices with series output couplers
US9983547B2 (en) Holographic video display system
JP4930071B2 (en) Display device
KR100297424B1 (en) Color image generation system and its application
Jolly et al. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality
JP2008180758A (en) Display device
US20190025666A1 (en) Systems and Methods for Light Field Generation
CN113454386A (en) Waveguide with coherent interference mitigation
US11226591B2 (en) Transparent flat-panel holographic display
Smalley Holovideo on a stick: integrated optics for holographic video displays
US11119383B2 (en) Telescope arrays and superimposed volume gratings for light field generation
JP2023008330A (en) Holography reproduction illumination light irradiation device and holographic display
KR101855258B1 (en) Dynamic Thin Flat Type Light-Beam Deflector
JP6143601B2 (en) Image display device
WO2020256770A1 (en) Head mounted display with multifocal module
Jolly Holographic augmented reality: towards near-to-eye electroholography via guided wave acousto-optics
US20220004148A1 (en) Apparatus and method of reproduction of a diffractive pattern
McLaughlin From Holographic Video Monitors to Optogenetic Probes: How Advancements to Leaky-Mode Modulator Technology Are Saving the World
Jolly et al. See-Through Light Modulators for Holographic Video Displays
Thie et al. Optically addressed SLM-based holographic display

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOLLY, SUNDEEP;SAVIDIS, NICKOLAOS;BOVE, V. MICHAEL, JR;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:063719/0970

Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRIGHAM YOUNG UNIVERSITY;REEL/FRAME:063720/0127

Effective date: 20170303