US20170323828A1 - Microfeature workpieces and methods for forming interconnects in microfeature workpieces - Google Patents
Microfeature workpieces and methods for forming interconnects in microfeature workpieces Download PDFInfo
- Publication number
- US20170323828A1 US20170323828A1 US15/662,204 US201715662204A US2017323828A1 US 20170323828 A1 US20170323828 A1 US 20170323828A1 US 201715662204 A US201715662204 A US 201715662204A US 2017323828 A1 US2017323828 A1 US 2017323828A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- conductive
- interconnect
- microfeature workpiece
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13025—Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
Definitions
- the present invention relates to methods for forming interconnects in microfeature workpieces and microfeature workpieces formed using such methods.
- Microelectronic devices, micromechanical devices, and other devices with microfeatures are typically formed by constructing several layers of components on a workpiece.
- a plurality of dies are fabricated on a single workpiece, and each die generally includes an integrated circuit and a plurality of bond-pads coupled to the integrated circuit.
- the dies are separated from each other and packaged to form individual microelectronic devices that can be attached to modules or installed in other products.
- interconnects that electrically couple conductive components located in different layers.
- Such interconnects electrically couple bond-pads or other conductive elements proximate to one side of the dies to conductive elements proximate to the other side of the dies.
- Through-wafer interconnects are constructed by forming deep vias on the front side and/or backside of the workpiece and in alignment with corresponding bond-pads at the front side of the workpiece.
- the vias are often blind vias in that they are closed at one end.
- the blind vias are then filled with a conductive fill material.
- solder balls or other external electrical contacts are subsequently attached to the through-wafer interconnects at the backside and/or the front side of the workpiece.
- the solder balls or external contacts can be attached either before or after singulating the dies from the workpiece.
- Conventional processes for forming external contacts on through-wafer interconnects include (a) depositing a dielectric layer on the backside of the workpiece, (b) forming a photoresist on the dielectric layer, (c) patterning and developing the photoresist, (d) etching the dielectric layer to form holes aligned with corresponding interconnects, (e) removing the photoresist from the workpiece, and (f) forming conductive external contacts in the holes in the dielectric layer.
- One concern with forming external contacts on the backside of a workpiece is that conventional processes are relatively expensive because patterning the photoresist requires a mask. Masks are expensive and time-consuming to construct because they require very expensive photolithography equipment to achieve the tolerances required in semiconductor devices. Accordingly, there is a need to reduce the cost of forming external contacts on workpieces with through-wafer interconnects.
- FIGS. 1A-1I illustrate stages of a method for forming interconnects in a microfeature workpiece in accordance with one embodiment of the invention.
- FIG. 1A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming a plurality of interconnects.
- FIG. 1B is a schematic side cross-sectional view of the area 1 B shown in FIG. 1A with the workpiece flipped over.
- FIG. 1C is a schematic side cross-sectional view of the portion of the workpiece after thinning the substrate from the second side.
- FIG. 1D is a schematic side cross-sectional view of the portion of the workpiece after selectively removing additional material from the second side of the substrate so that the interconnect projects from the substrate.
- FIG. 1E is a schematic side cross-sectional view of the area 1 E shown in FIG. 1D after forming a recess in the second end portion of the interconnect.
- FIG. 1F is a schematic side cross-sectional view of the portion of the workpiece after forming a dielectric structure across the second side of the substrate and the second end portion of the interconnect.
- FIG. 1G is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure.
- FIG. 1H is a schematic side cross-sectional view of the portion of the workpiece after removing the section of the first dielectric layer from the recess in the interconnect.
- FIG. 1I is a schematic side cross-sectional view of the portion of the workpiece after forming a conductive member at the second end portion of the interconnect.
- FIGS. 2A-2C illustrate stages in a method for forming interconnects in a microfeature workpiece in accordance with another embodiment of the invention.
- FIG. 2A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming an interconnect.
- FIG. 2B is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure.
- FIG. 2C is a schematic side cross-sectional view of the portion of the workpiece after forming the conductive member on the exposed surface of the interconnect.
- FIGS. 3A-3C illustrate stages in a method for forming interconnects in a microfeature workpiece in accordance with another embodiment of the invention.
- FIG. 3A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming an interconnect.
- FIG. 3B is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure.
- FIG. 3C is a schematic side cross-sectional view of the workpiece after forming a conductive member on the exposed surface of the interconnect.
- One aspect of the invention is directed to methods of forming an interconnect in a microfeature workpiece having a terminal and a substrate with a first side carrying the terminal and a second side opposite the first side.
- An embodiment of one such method includes (a) constructing an electrically conductive interconnect extending from the terminal to at least an intermediate depth in the substrate, and (b) removing material from the second side of the substrate so that a portion of the interconnect projects from the substrate. The material can be removed from the second side of the substrate by thinning the substrate so that a surface of the interconnect is exposed and selectively etching the substrate so that the portion of the interconnect projects from the substrate.
- a method in another embodiment, includes providing a microfeature workpiece having (a) a substrate with a first side and a second side opposite the first side, (b) a terminal carried by the first side of the substrate, and (c) an electrically conductive interconnect extending from the terminal through the substrate and projecting from the second side of the substrate.
- the method further includes applying a dielectric layer to the second side of the substrate and the portion of the interconnect projecting from the second side of the substrate, and removing a section of the dielectric layer to expose a surface of the interconnect with the interconnect intersecting a plane defined by the remaining section of the dielectric layer.
- a method in another embodiment, includes forming an electrically conductive interconnect having a first portion at the terminal and a second portion at an intermediate depth in the substrate.
- the electrically conductive interconnect is electrically connected to the terminal.
- the method further includes thinning the substrate from the second side to at least the second portion of the interconnect, applying a dielectric layer to the second side of the substrate and the second portion of the interconnect, and exposing a surface of the second portion of the interconnect without photolithography.
- a microfeature workpiece includes a substrate and a microelectronic die formed in and/or on the substrate.
- the substrate has a first side and a second side opposite the first side.
- the die includes a terminal at the first side of the substrate and an integrated circuit operably coupled to the terminal.
- the workpiece further includes an electrically conductive interconnect extending from the terminal through the substrate such that a portion of the interconnect projects from the second side of the substrate. The interconnect is electrically coupled to the terminal.
- a microfeature workpiece in another embodiment, includes a substrate and a microelectronic die formed in and/or on the substrate.
- the substrate has a first side and a second side opposite the first side.
- the die includes a terminal at the first side of the substrate and an integrated circuit operably coupled to the terminal.
- the workpiece further includes (a) a hole extending through the terminal and the substrate, (b) a dielectric layer on the second side of the substrate defining a plane, and (c) an electrically conductive interconnect.
- the interconnect includes a conductive fill material in the hole and a conductive layer in the hole between the conductive fill material and the substrate. Both the conductive fill material and the conductive layer are electrically coupled to the terminal and extend from the terminal through the substrate. Moreover, both the conductive fill material and the conductive layer project from the substrate such that the conductive fill material and the conductive layer intersect the plane.
- microfeature workpiece is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, optics, and other features are fabricated.
- microfeature workpieces can be semiconductor wafers, glass substrates, dielectric substrates, or many other types of substrates.
- Many features on such microfeature workpieces have critical dimensions less than or equal to 1 ⁇ m, and in many applications the critical dimensions of the smaller features are less than 0.25 ⁇ m or even less than 0.1 ⁇ m. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.
- FIGS. 1A -II illustrate stages of a method for forming interconnects in a microfeature workpiece 100 in accordance with one embodiment of the invention.
- FIG. 1A is a schematic side cross-sectional view of a portion of the workpiece 100 at an intermediate stage after partially forming a plurality of interconnects 140 .
- the workpiece 100 can include a substrate 110 and a plurality of microelectronic dies 120 formed in and/or on the substrate 110 .
- the substrate 110 has a first side 112 and a second side 114 opposite the first side 112 .
- the substrate 110 is generally a semiconductor wafer, and the dies 120 are arranged in a die pattern on the wafer.
- the individual dies 120 include integrated circuitry 122 (shown schematically) and a plurality of terminals 124 (e.g., bond-pads) electrically coupled to the integrated circuitry 122 .
- the terminals 124 shown in FIG. 1A are external features at the first side 112 of the substrate 110 . In other embodiments, however, the terminals 124 can be internal features that are embedded at an intermediate depth within the substrate 110 .
- the dies 120 can have different features to perform different functions.
- the individual dies may further include an image sensor (e.g., CMOS image sensor or CCD image sensor) for capturing pictures or other images in the visible spectrum, or detecting radiation in other spectrums (e.g., IR or UV ranges).
- an image sensor e.g., CMOS image sensor or CCD image sensor
- the first dielectric layer 130 was applied to the first side 112 of the substrate 110 , and the interconnects 140 were partially formed in the workpiece 100 .
- the first dielectric layer 130 can be a polyimide material or other suitable nonconductive materials.
- the first dielectric layer 130 can be parylene, a low temperature chemical vapor deposition (low temperature CVD) material such as silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), and/or other suitable materials.
- low temperature CVD low temperature chemical vapor deposition
- the conductive interconnects 140 extend from the first dielectric layer 130 to an intermediate depth in the substrate 110 . As described in greater detail below with regard to FIG.
- the conductive interconnects 140 can include several layers of conductive material that are electrically coupled to corresponding terminals 124 . Suitable methods for forming the portion of the interconnects 140 illustrated in FIG. 1A are disclosed in U.S. patent application Ser. Nos. 10/713,878; 10/867,352; 10/879,398; 11/027,443; 11/056,211; 11/169,546; 11/217,877; and Ser. No. 11/218,243, which are incorporated herein by reference.
- the workpiece 100 can optionally be attached to a support member 190 with an adhesive 192 to provide rigidity to the workpiece 100 during subsequent processing steps.
- FIG. 1B is a schematic side cross-sectional view of the area 1 B shown in FIG. 1A with the workpiece 100 flipped over.
- the workpiece 100 includes an interconnect hole 180 extending from the terminal 114 to an intermediate depth in the substrate 110 , a second dielectric layer 132 in the interconnect hole 180 , and a vent hole 182 extending from the interconnect hole 180 to the second side 114 of the substrate 110 .
- the second dielectric layer 132 electrically insulates components in the substrate 110 from the interconnect 140 .
- the second dielectric layer 132 can be an ALD (atomic layer deposition) aluminum oxide material applied using a suitable deposition process or another suitable low temperature CVD oxide.
- the second dielectric layer 132 can include a silane-based and/or an aluminum-based oxide material.
- the second dielectric layer 132 can include other suitable dielectric materials.
- the illustrated interconnect 140 is formed in the interconnect hole 180 and has a first end portion 142 at the first dielectric layer 130 and a second end portion 144 at an intermediate depth in the substrate 110 .
- the illustrated interconnect 140 includes a diffusion barrier layer 150 deposited over the second dielectric layer 132 in the hole 180 , a seed layer 152 formed over the barrier layer 150 in the hole 180 , a conductive layer 154 deposited over the seed layer 152 in the hole 180 , and a conductive fill material 152 formed over the conductive layer 154 in the hole 180 .
- the diffusion barrier layer 150 can be a layer of tantalum that is deposited onto the workpiece 100 using physical vapor deposition (PVD) and has a thickness of approximately 150 Angstroms.
- the barrier layer 150 may be deposited onto the workpiece 100 using other vapor deposition processes, such as CVD, and/or may have a different thickness. In either case, the barrier layer 150 is not limited to tantalum, but rather may be composed of tungsten or other suitable materials that help contain the conductive fill material 156 in the interconnect hole 180 .
- the seed layer 152 can be deposited using vapor deposition techniques, such as PVD, CVD, atomic layer deposition, and/or plating.
- the seed layer 152 can be composed of Cu or other suitable materials.
- the thickness of the seed layer 152 may be about 2000 Angstroms, but could be more or less depending on the depth and aspect ratio of the hole 180 .
- the conductive layer 154 can be Cu that is deposited onto the seed layer 152 in an electroless plating operation, electroplating operation, or another suitable method.
- the thickness of the conductive layer 154 can be about 1 micron, however, in other embodiments the conductive layer 154 can have a different thickness and/or include other suitable materials.
- the workpiece 100 may include a second conductive layer (not shown) that is deposited over the conductive layer 154 in the hole 180 .
- the second conductive layer can be Ni or other suitable materials that function as a wetting agent for facilitating deposition of subsequent materials into the hole 180 .
- the conductive fill material 156 can include Cu, Ni, Co, Ag, Au, SnAgCu solder, AuSn solder, a solder having a different composition, or other suitable materials or alloys of materials having the desired conductivity.
- the conductive fill material 156 may be deposited into the hole 180 using plating processes, solder wave processes, screen printing processes, reflow processes, vapor deposition processes, or other suitable techniques.
- the interconnects may have a different structure.
- the interconnects may have additional layers in lieu of or in addition to the layers described above.
- FIG. 1C is a schematic side cross-sectional view of the portion of the workpiece 100 after thinning the substrate 110 from the second side 114 .
- the substrate 110 can be thinned by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes.
- the thinning process may also remove a section of the second end portion 114 of the interconnect 140 .
- the initial thickness of the substrate 110 is approximately 750 microns and the interconnect 140 extends to an intermediate depth of approximately 150 microns in the substrate 110
- the post-thinning thickness T of the substrate 110 is approximately 140 microns. These thicknesses can be different in other embodiments.
- the illustrated interconnect 140 includes an exposed surface 146 at the second end portion 144 .
- FIG. 1D is a schematic side cross-sectional view of the portion of the workpiece 100 after selectively removing additional material from the second side 114 of the substrate 110 so that the interconnect 140 projects from the substrate 110 .
- the additional material can be removed via a plasma etch with SF 6 or another suitable etchant that is selective to silicon. Alternatively, the additional material can be removed with other processes.
- the second end portion 144 of the interconnect 140 projects a first distance D 1 from the second side of the substrate 110 .
- the first distance D 1 is between approximately 5 and 10 microns, although the first distance D 1 can be less than 5 microns or more than 10 microns in other embodiments.
- the first distance D 1 is selected based on the subsequent processing and application requirements.
- FIG. 1E is a schematic side cross-sectional view of the area 1 E shown in FIG. 1D after forming a recess 158 in the second end portion 144 of the interconnect 140 .
- the recess 158 is formed by removing a portion of the conductive fill material 156 from the interconnect 140 .
- the conductive fill material 156 can be removed by a wet etch process with an etchant that is selective to the conductive fill material 156 and, consequently, removes the conductive fill material 156 at a faster rate than the seed and/or conductive layers 152 and/or 154 .
- the illustrated recess 158 extends from the surface 146 of the interconnect 140 to a surface 157 of the conductive fill material 156 , and has a depth D 2 less than the first distance D 1 .
- the depth D 2 of the recess 158 is selected based on the subsequent processing and application requirements. In other embodiments, such as the embodiments described below with reference to FIGS. 2A-3C , the interconnects may not include a recess in the second end portion 144 .
- FIG. 1F is a schematic side cross-sectional view of the portion of the workpiece 100 after forming a dielectric structure 170 across the second side 114 of the substrate 110 and the second end portion 144 of the interconnect 140 .
- the illustrated dielectric structure 170 includes a first dielectric layer 172 and a second dielectric layer 174 deposited on the first dielectric layer 172 .
- the first dielectric layer 172 can be parylene HT and have a thickness of approximately 0.5 micron. In other embodiments, other dielectric materials can be used and/or have different thicknesses.
- the second dielectric layer 174 can be an oxide such as silicon oxide (SiO 2 ) and/or other suitable materials that are deposited by chemical vapor deposition and/or other suitable processes. In additional embodiments, the dielectric structure 170 can include a different number of layers.
- FIG. 1G is a schematic side cross-sectional view of the portion of the workpiece 100 after removing sections of the interconnect 140 and the dielectric structure 170 .
- the sections of the interconnect 140 and the dielectric structure 170 can be removed by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes.
- the workpiece 100 is polished to remove portions of the second dielectric layer 132 , the barrier layer 150 , the seed layer 152 , the conductive layer 154 , the first dielectric layer 172 , and the second dielectric layer 174 .
- the volume of material removed is selected so that (a) the recess 158 in the interconnect 140 has a desired depth D 3 , and (b) the interconnect 140 projects a desired distance D 4 from an exterior surface 175 of the dielectric structure 170 .
- the interconnect may not project from the exterior surface 175 of the dielectric structure 170 . In either case, the interconnect 140 intersects a plane defined by the dielectric structure 170 .
- FIG. 1H is a schematic side cross-sectional view of the portion of the workpiece 100 after removing the section of the first dielectric layer 172 from the recess 158 in the interconnect 140 .
- the section of the first dielectric layer 172 can be removed from the recess 158 by a plasma etching process (e.g., O 2 plasma) or another suitable method that selectively removes the first dielectric layer 172 without significantly effecting the dielectric structure 170 formed on the substrate 110 .
- a plasma etching process e.g., O 2 plasma
- FIG. 1I is a schematic side cross-sectional view of the portion of the workpiece 100 after forming a conductive member 160 on the second end portion 144 of the interconnect 140 .
- the illustrated conductive member 160 is a cap disposed in the recess 158 and extending over the barrier layer 150 , the seed layer 152 , and the conductive layer 154 .
- the cap projects a desired distance D 5 from the substrate 110 and forms an external contact for connection to an external device.
- the conductive member 160 can be electrolessly plated onto the second end portion 144 of the interconnect 140 or formed using other suitable processes.
- the conductive member 160 can include Ni or other suitable conductive materials.
- the interconnect 140 may not include the conductive member 160 .
- the second end portion 144 of the interconnects 140 can be attached directly to an external device, or a conductive coupler (e.g., a solder ball) can be attached directly to the second end portion 144 .
- a conductive coupler e.g.,
- the interconnect 140 projects from the substrate 110 .
- the section of the dielectric structure 170 covering the interconnect 140 can be removed by a simple polishing process without exposing the backside of the substrate 110 .
- the resulting exposed surface 146 on the interconnect 140 may form an external contact to which an external device can be attached.
- the conductive member 160 can be disposed on the exposed surface 146 and form the external contact.
- an advantage of this feature is that the illustrated method does not require expensive and time-consuming photolithography processes to form external contacts on the backside of the workpiece 100 .
- the interconnect 140 can be sized to project a desired distance from the external surface 175 of the dielectric structure 170 .
- the distance can be selected based on the application requirements for the die 110 . For example, in applications in which the die 110 is stacked on another die, the distance may be selected to provide a desired gap between the two dies.
- FIGS. 2A-2C illustrate stages in a method for forming interconnects in a microfeature workpiece 200 in accordance with another embodiment of the invention.
- FIG. 2A is a schematic side cross-sectional view of a portion of the workpiece 200 at an intermediate stage after partially forming an interconnect 240 .
- the illustrated workpiece 200 is generally similar to the workpiece 100 described above with reference to FIGS. 1A -IF.
- the illustrated workpiece 200 includes a substrate 110 , an interconnect 240 extending through and projecting from the substrate 110 , and a dielectric structure 270 formed over the substrate 110 and the interconnect 240 .
- the illustrated interconnect 240 does not include a recess at the second end portion 244 .
- FIG. 2B is a schematic side cross-sectional view of the portion of the workpiece 200 after removing sections of the interconnect 240 and the dielectric structure 270 .
- the sections of the interconnect 240 and the dielectric structure 170 can be removed by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes.
- the volume of the material removed is selected so that the interconnect 240 projects a desired distance D 6 from an exterior surface 275 of the dielectric structure 270 .
- the illustrated interconnect 240 includes a generally planar exposed surface 246 extending across the barrier layer 150 , the seed layer 152 , the conductive layer 154 , and the conductive fill material 156 .
- FIG. 2C is a schematic side cross-sectional view of the portion of the workpiece 200 after forming a conductive member 260 on the generally planar exposed surface 246 of the interconnect 240 .
- the conductive member 260 forms part of the electrically conductive interconnect 240 and, accordingly, is electrically coupled to the terminal 114 ( FIG. 1B ).
- FIGS. 3A-3C illustrate stages in a method for forming interconnects in a microfeature workpiece 300 in accordance with another embodiment of the invention.
- FIG. 3A is a schematic side cross-sectional view of a portion of the workpiece 300 at an intermediate stage after partially forming an interconnect 340 .
- the illustrated workpiece 300 is generally similar to the workpiece 200 described above with reference to FIG. 2A .
- the illustrated workpiece 300 includes a substrate 110 , an interconnect 340 extending through and projecting from the substrate 110 , and a dielectric structure 370 formed over the substrate 110 and the interconnect 340 .
- FIG. 3B is a schematic side cross-sectional view of the portion of the workpiece 300 after removing sections of the interconnect 340 and the dielectric structure 370 .
- the sections of the interconnect 340 and the dielectric structure 370 are removed to form a generally planar surface across the workpiece 300 such that an exposed surface 346 of the interconnect 340 is generally coplanar with an exterior surface 375 of the dielectric structure 370 .
- FIG. 3C is a schematic side cross-sectional view of the workpiece 300 after forming a conductive member 360 on the exposed surface 346 of the interconnect 340 .
- the conductive member 360 forms part of the electrically conductive interconnect 340 and, accordingly, is electrically coupled to the terminal 114 ( FIG. 1B ).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- This application is a divisional of U.S. application Ser. No. 12/965,301 filed Dec. 10, 2010, which is a divisional of U.S. application Ser. No. 11/217,169 filed Sep. 1, 2005, now U.S. Pat. No. 7,863,187, each of which is incorporated herein by reference in its entirety.
- The present invention relates to methods for forming interconnects in microfeature workpieces and microfeature workpieces formed using such methods.
- Microelectronic devices, micromechanical devices, and other devices with microfeatures are typically formed by constructing several layers of components on a workpiece. In the case of microelectronic devices, a plurality of dies are fabricated on a single workpiece, and each die generally includes an integrated circuit and a plurality of bond-pads coupled to the integrated circuit. The dies are separated from each other and packaged to form individual microelectronic devices that can be attached to modules or installed in other products.
- One aspect of fabricating and packaging such dies is forming interconnects that electrically couple conductive components located in different layers. In some applications, it may be desirable to form interconnects that extend completely through the dies or through a significant portion of the dies. Such interconnects electrically couple bond-pads or other conductive elements proximate to one side of the dies to conductive elements proximate to the other side of the dies. Through-wafer interconnects, for example, are constructed by forming deep vias on the front side and/or backside of the workpiece and in alignment with corresponding bond-pads at the front side of the workpiece. The vias are often blind vias in that they are closed at one end. The blind vias are then filled with a conductive fill material. After further processing, the workpiece is thinned to reduce the thickness of the final dies. Solder balls or other external electrical contacts are subsequently attached to the through-wafer interconnects at the backside and/or the front side of the workpiece. The solder balls or external contacts can be attached either before or after singulating the dies from the workpiece.
- Conventional processes for forming external contacts on through-wafer interconnects include (a) depositing a dielectric layer on the backside of the workpiece, (b) forming a photoresist on the dielectric layer, (c) patterning and developing the photoresist, (d) etching the dielectric layer to form holes aligned with corresponding interconnects, (e) removing the photoresist from the workpiece, and (f) forming conductive external contacts in the holes in the dielectric layer. One concern with forming external contacts on the backside of a workpiece is that conventional processes are relatively expensive because patterning the photoresist requires a mask. Masks are expensive and time-consuming to construct because they require very expensive photolithography equipment to achieve the tolerances required in semiconductor devices. Accordingly, there is a need to reduce the cost of forming external contacts on workpieces with through-wafer interconnects.
-
FIGS. 1A-1I illustrate stages of a method for forming interconnects in a microfeature workpiece in accordance with one embodiment of the invention. -
FIG. 1A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming a plurality of interconnects. -
FIG. 1B is a schematic side cross-sectional view of the area 1B shown inFIG. 1A with the workpiece flipped over. -
FIG. 1C is a schematic side cross-sectional view of the portion of the workpiece after thinning the substrate from the second side. -
FIG. 1D is a schematic side cross-sectional view of the portion of the workpiece after selectively removing additional material from the second side of the substrate so that the interconnect projects from the substrate. -
FIG. 1E is a schematic side cross-sectional view of the area 1E shown inFIG. 1D after forming a recess in the second end portion of the interconnect. -
FIG. 1F is a schematic side cross-sectional view of the portion of the workpiece after forming a dielectric structure across the second side of the substrate and the second end portion of the interconnect. -
FIG. 1G is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure. -
FIG. 1H is a schematic side cross-sectional view of the portion of the workpiece after removing the section of the first dielectric layer from the recess in the interconnect. -
FIG. 1I is a schematic side cross-sectional view of the portion of the workpiece after forming a conductive member at the second end portion of the interconnect. -
FIGS. 2A-2C illustrate stages in a method for forming interconnects in a microfeature workpiece in accordance with another embodiment of the invention. -
FIG. 2A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming an interconnect. -
FIG. 2B is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure. -
FIG. 2C is a schematic side cross-sectional view of the portion of the workpiece after forming the conductive member on the exposed surface of the interconnect. -
FIGS. 3A-3C illustrate stages in a method for forming interconnects in a microfeature workpiece in accordance with another embodiment of the invention. -
FIG. 3A is a schematic side cross-sectional view of a portion of the workpiece at an intermediate stage after partially forming an interconnect. -
FIG. 3B is a schematic side cross-sectional view of the portion of the workpiece after removing sections of the interconnect and the dielectric structure. -
FIG. 3C is a schematic side cross-sectional view of the workpiece after forming a conductive member on the exposed surface of the interconnect. - The following disclosure describes several embodiments of methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects. One aspect of the invention is directed to methods of forming an interconnect in a microfeature workpiece having a terminal and a substrate with a first side carrying the terminal and a second side opposite the first side. An embodiment of one such method includes (a) constructing an electrically conductive interconnect extending from the terminal to at least an intermediate depth in the substrate, and (b) removing material from the second side of the substrate so that a portion of the interconnect projects from the substrate. The material can be removed from the second side of the substrate by thinning the substrate so that a surface of the interconnect is exposed and selectively etching the substrate so that the portion of the interconnect projects from the substrate.
- In another embodiment, a method includes providing a microfeature workpiece having (a) a substrate with a first side and a second side opposite the first side, (b) a terminal carried by the first side of the substrate, and (c) an electrically conductive interconnect extending from the terminal through the substrate and projecting from the second side of the substrate. The method further includes applying a dielectric layer to the second side of the substrate and the portion of the interconnect projecting from the second side of the substrate, and removing a section of the dielectric layer to expose a surface of the interconnect with the interconnect intersecting a plane defined by the remaining section of the dielectric layer.
- In another embodiment, a method includes forming an electrically conductive interconnect having a first portion at the terminal and a second portion at an intermediate depth in the substrate. The electrically conductive interconnect is electrically connected to the terminal. The method further includes thinning the substrate from the second side to at least the second portion of the interconnect, applying a dielectric layer to the second side of the substrate and the second portion of the interconnect, and exposing a surface of the second portion of the interconnect without photolithography.
- Another aspect of the invention is directed to microfeature workpieces. In one embodiment, a microfeature workpiece includes a substrate and a microelectronic die formed in and/or on the substrate. The substrate has a first side and a second side opposite the first side. The die includes a terminal at the first side of the substrate and an integrated circuit operably coupled to the terminal. The workpiece further includes an electrically conductive interconnect extending from the terminal through the substrate such that a portion of the interconnect projects from the second side of the substrate. The interconnect is electrically coupled to the terminal.
- In another embodiment, a microfeature workpiece includes a substrate and a microelectronic die formed in and/or on the substrate. The substrate has a first side and a second side opposite the first side. The die includes a terminal at the first side of the substrate and an integrated circuit operably coupled to the terminal. The workpiece further includes (a) a hole extending through the terminal and the substrate, (b) a dielectric layer on the second side of the substrate defining a plane, and (c) an electrically conductive interconnect. The interconnect includes a conductive fill material in the hole and a conductive layer in the hole between the conductive fill material and the substrate. Both the conductive fill material and the conductive layer are electrically coupled to the terminal and extend from the terminal through the substrate. Moreover, both the conductive fill material and the conductive layer project from the substrate such that the conductive fill material and the conductive layer intersect the plane.
- Specific details of several embodiments of the invention are described below with reference to interconnects extending from a terminal proximate to the front side of a workpiece, but the methods and interconnects described below can be used for other types of interconnects within microelectronic workpieces. Several details describing well-known structures or processes often associated with fabricating microelectronic devices are not set forth in the following description for purposes of clarity. Also, several other embodiments of the invention can have different configurations, components, or procedures than those described in this section. A person of ordinary skill in the art, therefore, will accordingly understand that the invention may have other embodiments with additional elements, or the invention may have other embodiments without several of the elements shown and described below with reference to
FIGS. 1A-3C . - The term “microfeature workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, optics, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers, glass substrates, dielectric substrates, or many other types of substrates. Many features on such microfeature workpieces have critical dimensions less than or equal to 1 μm, and in many applications the critical dimensions of the smaller features are less than 0.25 μm or even less than 0.1 μm. Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from other items in reference to a list of at least two items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same features and/or types of other features and components are not precluded.
-
FIGS. 1A -II illustrate stages of a method for forming interconnects in amicrofeature workpiece 100 in accordance with one embodiment of the invention.FIG. 1A , for example, is a schematic side cross-sectional view of a portion of theworkpiece 100 at an intermediate stage after partially forming a plurality ofinterconnects 140. Theworkpiece 100 can include asubstrate 110 and a plurality of microelectronic dies 120 formed in and/or on thesubstrate 110. Thesubstrate 110 has afirst side 112 and asecond side 114 opposite thefirst side 112. Thesubstrate 110 is generally a semiconductor wafer, and the dies 120 are arranged in a die pattern on the wafer. The individual dies 120 include integrated circuitry 122 (shown schematically) and a plurality of terminals 124 (e.g., bond-pads) electrically coupled to theintegrated circuitry 122. Theterminals 124 shown inFIG. 1A are external features at thefirst side 112 of thesubstrate 110. In other embodiments, however, theterminals 124 can be internal features that are embedded at an intermediate depth within thesubstrate 110. Moreover, in additional embodiments, the dies 120 can have different features to perform different functions. For example, the individual dies may further include an image sensor (e.g., CMOS image sensor or CCD image sensor) for capturing pictures or other images in the visible spectrum, or detecting radiation in other spectrums (e.g., IR or UV ranges). - In previous processing steps, a first
dielectric layer 130 was applied to thefirst side 112 of thesubstrate 110, and theinterconnects 140 were partially formed in theworkpiece 100. Thefirst dielectric layer 130 can be a polyimide material or other suitable nonconductive materials. For example, thefirst dielectric layer 130 can be parylene, a low temperature chemical vapor deposition (low temperature CVD) material such as silicon nitride (Si3N4), silicon oxide (SiO2), and/or other suitable materials. The foregoing list of dielectric materials is not exhaustive. Theconductive interconnects 140 extend from thefirst dielectric layer 130 to an intermediate depth in thesubstrate 110. As described in greater detail below with regard toFIG. 1B , theconductive interconnects 140 can include several layers of conductive material that are electrically coupled tocorresponding terminals 124. Suitable methods for forming the portion of theinterconnects 140 illustrated inFIG. 1A are disclosed in U.S. patent application Ser. Nos. 10/713,878; 10/867,352; 10/879,398; 11/027,443; 11/056,211; 11/169,546; 11/217,877; and Ser. No. 11/218,243, which are incorporated herein by reference. After partially forming theinterconnects 140, theworkpiece 100 can optionally be attached to asupport member 190 with an adhesive 192 to provide rigidity to theworkpiece 100 during subsequent processing steps. -
FIG. 1B is a schematic side cross-sectional view of the area 1B shown inFIG. 1A with theworkpiece 100 flipped over. Theworkpiece 100 includes aninterconnect hole 180 extending from the terminal 114 to an intermediate depth in thesubstrate 110, asecond dielectric layer 132 in theinterconnect hole 180, and avent hole 182 extending from theinterconnect hole 180 to thesecond side 114 of thesubstrate 110. Thesecond dielectric layer 132 electrically insulates components in thesubstrate 110 from theinterconnect 140. Thesecond dielectric layer 132 can be an ALD (atomic layer deposition) aluminum oxide material applied using a suitable deposition process or another suitable low temperature CVD oxide. In another embodiment, thesecond dielectric layer 132 can include a silane-based and/or an aluminum-based oxide material. In still further embodiments, thesecond dielectric layer 132 can include other suitable dielectric materials. - The illustrated
interconnect 140 is formed in theinterconnect hole 180 and has afirst end portion 142 at thefirst dielectric layer 130 and asecond end portion 144 at an intermediate depth in thesubstrate 110. The illustratedinterconnect 140 includes adiffusion barrier layer 150 deposited over thesecond dielectric layer 132 in thehole 180, aseed layer 152 formed over thebarrier layer 150 in thehole 180, aconductive layer 154 deposited over theseed layer 152 in thehole 180, and aconductive fill material 152 formed over theconductive layer 154 in thehole 180. Thediffusion barrier layer 150 can be a layer of tantalum that is deposited onto theworkpiece 100 using physical vapor deposition (PVD) and has a thickness of approximately 150 Angstroms. In other embodiments, thebarrier layer 150 may be deposited onto theworkpiece 100 using other vapor deposition processes, such as CVD, and/or may have a different thickness. In either case, thebarrier layer 150 is not limited to tantalum, but rather may be composed of tungsten or other suitable materials that help contain theconductive fill material 156 in theinterconnect hole 180. - The
seed layer 152 can be deposited using vapor deposition techniques, such as PVD, CVD, atomic layer deposition, and/or plating. Theseed layer 152 can be composed of Cu or other suitable materials. The thickness of theseed layer 152 may be about 2000 Angstroms, but could be more or less depending on the depth and aspect ratio of thehole 180. Theconductive layer 154 can be Cu that is deposited onto theseed layer 152 in an electroless plating operation, electroplating operation, or another suitable method. The thickness of theconductive layer 154 can be about 1 micron, however, in other embodiments theconductive layer 154 can have a different thickness and/or include other suitable materials. In additional embodiments, theworkpiece 100 may include a second conductive layer (not shown) that is deposited over theconductive layer 154 in thehole 180. The second conductive layer can be Ni or other suitable materials that function as a wetting agent for facilitating deposition of subsequent materials into thehole 180. - The
conductive fill material 156 can include Cu, Ni, Co, Ag, Au, SnAgCu solder, AuSn solder, a solder having a different composition, or other suitable materials or alloys of materials having the desired conductivity. Theconductive fill material 156 may be deposited into thehole 180 using plating processes, solder wave processes, screen printing processes, reflow processes, vapor deposition processes, or other suitable techniques. In other embodiments, the interconnects may have a different structure. For example, the interconnects may have additional layers in lieu of or in addition to the layers described above. -
FIG. 1C is a schematic side cross-sectional view of the portion of theworkpiece 100 after thinning thesubstrate 110 from thesecond side 114. Thesubstrate 110 can be thinned by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes. The thinning process may also remove a section of thesecond end portion 114 of theinterconnect 140. For example, in one embodiment, the initial thickness of thesubstrate 110 is approximately 750 microns and theinterconnect 140 extends to an intermediate depth of approximately 150 microns in thesubstrate 110, and the post-thinning thickness T of thesubstrate 110 is approximately 140 microns. These thicknesses can be different in other embodiments. After thinning theworkpiece 100, the illustratedinterconnect 140 includes an exposedsurface 146 at thesecond end portion 144. -
FIG. 1D is a schematic side cross-sectional view of the portion of theworkpiece 100 after selectively removing additional material from thesecond side 114 of thesubstrate 110 so that theinterconnect 140 projects from thesubstrate 110. The additional material can be removed via a plasma etch with SF6 or another suitable etchant that is selective to silicon. Alternatively, the additional material can be removed with other processes. In either case, after thinning thesubstrate 110, thesecond end portion 144 of theinterconnect 140 projects a first distance D1 from the second side of thesubstrate 110. In several embodiments, the first distance D1 is between approximately 5 and 10 microns, although the first distance D1 can be less than 5 microns or more than 10 microns in other embodiments. The first distance D1 is selected based on the subsequent processing and application requirements. -
FIG. 1E is a schematic side cross-sectional view of the area 1E shown inFIG. 1D after forming arecess 158 in thesecond end portion 144 of theinterconnect 140. In the illustrated embodiment, therecess 158 is formed by removing a portion of theconductive fill material 156 from theinterconnect 140. Theconductive fill material 156 can be removed by a wet etch process with an etchant that is selective to theconductive fill material 156 and, consequently, removes theconductive fill material 156 at a faster rate than the seed and/orconductive layers 152 and/or 154. The illustratedrecess 158 extends from thesurface 146 of theinterconnect 140 to asurface 157 of theconductive fill material 156, and has a depth D2 less than the first distance D1. The depth D2 of therecess 158 is selected based on the subsequent processing and application requirements. In other embodiments, such as the embodiments described below with reference toFIGS. 2A-3C , the interconnects may not include a recess in thesecond end portion 144. -
FIG. 1F is a schematic side cross-sectional view of the portion of theworkpiece 100 after forming adielectric structure 170 across thesecond side 114 of thesubstrate 110 and thesecond end portion 144 of theinterconnect 140. The illustrateddielectric structure 170 includes a firstdielectric layer 172 and asecond dielectric layer 174 deposited on thefirst dielectric layer 172. Thefirst dielectric layer 172 can be parylene HT and have a thickness of approximately 0.5 micron. In other embodiments, other dielectric materials can be used and/or have different thicknesses. Thesecond dielectric layer 174 can be an oxide such as silicon oxide (SiO2) and/or other suitable materials that are deposited by chemical vapor deposition and/or other suitable processes. In additional embodiments, thedielectric structure 170 can include a different number of layers. -
FIG. 1G is a schematic side cross-sectional view of the portion of theworkpiece 100 after removing sections of theinterconnect 140 and thedielectric structure 170. The sections of theinterconnect 140 and thedielectric structure 170 can be removed by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes. In the illustrated embodiment, theworkpiece 100 is polished to remove portions of thesecond dielectric layer 132, thebarrier layer 150, theseed layer 152, theconductive layer 154, thefirst dielectric layer 172, and thesecond dielectric layer 174. The volume of material removed is selected so that (a) therecess 158 in theinterconnect 140 has a desired depth D3, and (b) theinterconnect 140 projects a desired distance D4 from anexterior surface 175 of thedielectric structure 170. In other embodiments, such as the embodiment described below with reference toFIGS. 3A-3C , the interconnect may not project from theexterior surface 175 of thedielectric structure 170. In either case, theinterconnect 140 intersects a plane defined by thedielectric structure 170. -
FIG. 1H is a schematic side cross-sectional view of the portion of theworkpiece 100 after removing the section of thefirst dielectric layer 172 from therecess 158 in theinterconnect 140. The section of thefirst dielectric layer 172 can be removed from therecess 158 by a plasma etching process (e.g., O2 plasma) or another suitable method that selectively removes thefirst dielectric layer 172 without significantly effecting thedielectric structure 170 formed on thesubstrate 110. -
FIG. 1I is a schematic side cross-sectional view of the portion of theworkpiece 100 after forming aconductive member 160 on thesecond end portion 144 of theinterconnect 140. The illustratedconductive member 160 is a cap disposed in therecess 158 and extending over thebarrier layer 150, theseed layer 152, and theconductive layer 154. The cap projects a desired distance D5 from thesubstrate 110 and forms an external contact for connection to an external device. Theconductive member 160 can be electrolessly plated onto thesecond end portion 144 of theinterconnect 140 or formed using other suitable processes. Theconductive member 160 can include Ni or other suitable conductive materials. In other embodiments, theinterconnect 140 may not include theconductive member 160. For example, thesecond end portion 144 of theinterconnects 140 can be attached directly to an external device, or a conductive coupler (e.g., a solder ball) can be attached directly to thesecond end portion 144. - One feature of the method illustrated in
FIGS. 1A -II is that theinterconnect 140 projects from thesubstrate 110. As a result, the section of thedielectric structure 170 covering theinterconnect 140 can be removed by a simple polishing process without exposing the backside of thesubstrate 110. The resulting exposedsurface 146 on theinterconnect 140 may form an external contact to which an external device can be attached. Alternatively, theconductive member 160 can be disposed on the exposedsurface 146 and form the external contact. In either case, an advantage of this feature is that the illustrated method does not require expensive and time-consuming photolithography processes to form external contacts on the backside of theworkpiece 100. - Another advantage of the method illustrated in
FIGS. 1A -II is that theinterconnect 140 can be sized to project a desired distance from theexternal surface 175 of thedielectric structure 170. The distance can be selected based on the application requirements for thedie 110. For example, in applications in which thedie 110 is stacked on another die, the distance may be selected to provide a desired gap between the two dies. -
FIGS. 2A-2C illustrate stages in a method for forming interconnects in amicrofeature workpiece 200 in accordance with another embodiment of the invention.FIG. 2A , for example, is a schematic side cross-sectional view of a portion of theworkpiece 200 at an intermediate stage after partially forming aninterconnect 240. The illustratedworkpiece 200 is generally similar to theworkpiece 100 described above with reference toFIGS. 1A -IF. For example, the illustratedworkpiece 200 includes asubstrate 110, aninterconnect 240 extending through and projecting from thesubstrate 110, and adielectric structure 270 formed over thesubstrate 110 and theinterconnect 240. The illustratedinterconnect 240, however, does not include a recess at thesecond end portion 244. -
FIG. 2B is a schematic side cross-sectional view of the portion of theworkpiece 200 after removing sections of theinterconnect 240 and thedielectric structure 270. The sections of theinterconnect 240 and thedielectric structure 170 can be removed by grinding, dry etching, chemical etching, chemical polishing, chemical-mechanical polishing, or other suitable processes. The volume of the material removed is selected so that theinterconnect 240 projects a desired distance D6 from an exterior surface 275 of thedielectric structure 270. The illustratedinterconnect 240 includes a generally planar exposedsurface 246 extending across thebarrier layer 150, theseed layer 152, theconductive layer 154, and theconductive fill material 156. -
FIG. 2C is a schematic side cross-sectional view of the portion of theworkpiece 200 after forming aconductive member 260 on the generally planar exposedsurface 246 of theinterconnect 240. Theconductive member 260 forms part of the electricallyconductive interconnect 240 and, accordingly, is electrically coupled to the terminal 114 (FIG. 1B ). -
FIGS. 3A-3C illustrate stages in a method for forming interconnects in amicrofeature workpiece 300 in accordance with another embodiment of the invention.FIG. 3A , for example, is a schematic side cross-sectional view of a portion of theworkpiece 300 at an intermediate stage after partially forming aninterconnect 340. The illustratedworkpiece 300 is generally similar to theworkpiece 200 described above with reference toFIG. 2A . For example, the illustratedworkpiece 300 includes asubstrate 110, aninterconnect 340 extending through and projecting from thesubstrate 110, and adielectric structure 370 formed over thesubstrate 110 and theinterconnect 340. -
FIG. 3B is a schematic side cross-sectional view of the portion of theworkpiece 300 after removing sections of theinterconnect 340 and thedielectric structure 370. The sections of theinterconnect 340 and thedielectric structure 370 are removed to form a generally planar surface across theworkpiece 300 such that an exposedsurface 346 of theinterconnect 340 is generally coplanar with anexterior surface 375 of thedielectric structure 370. -
FIG. 3C is a schematic side cross-sectional view of theworkpiece 300 after forming aconductive member 360 on the exposedsurface 346 of theinterconnect 340. Theconductive member 360 forms part of the electricallyconductive interconnect 340 and, accordingly, is electrically coupled to the terminal 114 (FIG. 1B ). - From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, many of the elements of one embodiment can be combined with other embodiments in addition to or in lieu of the elements of the other embodiments. Accordingly, the invention is not limited except as by the appended claims.
Claims (24)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/662,204 US20170323828A1 (en) | 2005-09-01 | 2017-07-27 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US16/991,965 US11476160B2 (en) | 2005-09-01 | 2020-08-12 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/047,049 US12014958B2 (en) | 2005-09-01 | 2022-10-17 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/744,493 US20240339360A1 (en) | 2005-09-01 | 2024-06-14 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/217,169 US7863187B2 (en) | 2005-09-01 | 2005-09-01 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US12/965,301 US20110079900A1 (en) | 2005-09-01 | 2010-12-10 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US15/662,204 US20170323828A1 (en) | 2005-09-01 | 2017-07-27 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/965,301 Division US20110079900A1 (en) | 2005-09-01 | 2010-12-10 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/991,965 Continuation US11476160B2 (en) | 2005-09-01 | 2020-08-12 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170323828A1 true US20170323828A1 (en) | 2017-11-09 |
Family
ID=37804834
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/217,169 Active 2027-05-25 US7863187B2 (en) | 2005-09-01 | 2005-09-01 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US12/965,301 Abandoned US20110079900A1 (en) | 2005-09-01 | 2010-12-10 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US15/662,204 Abandoned US20170323828A1 (en) | 2005-09-01 | 2017-07-27 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US16/991,965 Active 2026-02-08 US11476160B2 (en) | 2005-09-01 | 2020-08-12 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/047,049 Active US12014958B2 (en) | 2005-09-01 | 2022-10-17 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/744,493 Pending US20240339360A1 (en) | 2005-09-01 | 2024-06-14 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/217,169 Active 2027-05-25 US7863187B2 (en) | 2005-09-01 | 2005-09-01 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US12/965,301 Abandoned US20110079900A1 (en) | 2005-09-01 | 2010-12-10 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/991,965 Active 2026-02-08 US11476160B2 (en) | 2005-09-01 | 2020-08-12 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/047,049 Active US12014958B2 (en) | 2005-09-01 | 2022-10-17 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US18/744,493 Pending US20240339360A1 (en) | 2005-09-01 | 2024-06-14 | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
Country Status (2)
Country | Link |
---|---|
US (6) | US7863187B2 (en) |
WO (1) | WO2007027969A2 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8084866B2 (en) | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US7091124B2 (en) * | 2003-11-13 | 2006-08-15 | Micron Technology, Inc. | Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices |
US20050247894A1 (en) | 2004-05-05 | 2005-11-10 | Watkins Charles M | Systems and methods for forming apertures in microfeature workpieces |
US7232754B2 (en) * | 2004-06-29 | 2007-06-19 | Micron Technology, Inc. | Microelectronic devices and methods for forming interconnects in microelectronic devices |
US7189954B2 (en) * | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
SG120200A1 (en) | 2004-08-27 | 2006-03-28 | Micron Technology Inc | Slanted vias for electrical circuits on circuit boards and other substrates |
US7300857B2 (en) | 2004-09-02 | 2007-11-27 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US7271482B2 (en) * | 2004-12-30 | 2007-09-18 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
KR100661169B1 (en) * | 2005-06-03 | 2006-12-26 | 삼성전자주식회사 | Packaging chip and packaging method thereof |
US7795134B2 (en) | 2005-06-28 | 2010-09-14 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7863187B2 (en) | 2005-09-01 | 2011-01-04 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7262134B2 (en) | 2005-09-01 | 2007-08-28 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
KR100694424B1 (en) * | 2006-02-17 | 2007-03-12 | 주식회사 하이닉스반도체 | Multi chip package device and method for manufacturing the same |
US7749899B2 (en) | 2006-06-01 | 2010-07-06 | Micron Technology, Inc. | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
US7629249B2 (en) * | 2006-08-28 | 2009-12-08 | Micron Technology, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US7902643B2 (en) | 2006-08-31 | 2011-03-08 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
DE102007039754A1 (en) * | 2007-06-22 | 2008-12-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for the production of substrates |
SG149710A1 (en) | 2007-07-12 | 2009-02-27 | Micron Technology Inc | Interconnects for packaged semiconductor devices and methods for manufacturing such devices |
SG150410A1 (en) | 2007-08-31 | 2009-03-30 | Micron Technology Inc | Partitioned through-layer via and associated systems and methods |
US7884015B2 (en) | 2007-12-06 | 2011-02-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US8084854B2 (en) | 2007-12-28 | 2011-12-27 | Micron Technology, Inc. | Pass-through 3D interconnect for microelectronic dies and associated systems and methods |
US8253230B2 (en) | 2008-05-15 | 2012-08-28 | Micron Technology, Inc. | Disabling electrical connections using pass-through 3D interconnects and associated systems and methods |
KR20100020718A (en) * | 2008-08-13 | 2010-02-23 | 삼성전자주식회사 | Semiconductor chip, stack structure, and methods of fabricating the semiconductor chip and the stack structure |
US8513119B2 (en) | 2008-12-10 | 2013-08-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming bump structure having tapered sidewalls for stacked dies |
US20100171197A1 (en) * | 2009-01-05 | 2010-07-08 | Hung-Pin Chang | Isolation Structure for Stacked Dies |
US7998860B2 (en) * | 2009-03-12 | 2011-08-16 | Micron Technology, Inc. | Method for fabricating semiconductor components using maskless back side alignment to conductive vias |
US9406561B2 (en) * | 2009-04-20 | 2016-08-02 | International Business Machines Corporation | Three dimensional integrated circuit integration using dielectric bonding first and through via formation last |
US8791549B2 (en) | 2009-09-22 | 2014-07-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer backside interconnect structure connected to TSVs |
US8466059B2 (en) | 2010-03-30 | 2013-06-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer interconnect structure for stacked dies |
US8900994B2 (en) | 2011-06-09 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for producing a protective structure |
US8816505B2 (en) * | 2011-07-29 | 2014-08-26 | Tessera, Inc. | Low stress vias |
US8563403B1 (en) | 2012-06-27 | 2013-10-22 | International Business Machines Corporation | Three dimensional integrated circuit integration using alignment via/dielectric bonding first and through via formation last |
FR3009128A1 (en) * | 2013-07-25 | 2015-01-30 | Commissariat Energie Atomique | METHOD FOR PRODUCING A CONDUCTIVE PLATE ON A CONDUCTIVE ELEMENT |
US9484325B2 (en) * | 2013-10-09 | 2016-11-01 | Invensas Corporation | Interconnections for a substrate associated with a backside reveal |
US9443758B2 (en) | 2013-12-11 | 2016-09-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Connecting techniques for stacked CMOS devices |
US9653381B2 (en) | 2014-06-17 | 2017-05-16 | Micron Technology, Inc. | Semiconductor structures and die assemblies including conductive vias and thermally conductive elements and methods of forming such structures |
CN104409364B (en) * | 2014-11-19 | 2017-12-01 | 清华大学 | Pinboard and preparation method thereof, encapsulating structure and the bonding method for pinboard |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5618752A (en) * | 1995-06-05 | 1997-04-08 | Harris Corporation | Method of fabrication of surface mountable integrated circuits |
US6007719A (en) * | 1995-02-17 | 1999-12-28 | Seuk Won Yoo | Process for high concentrated waste water treatment using membrane separation |
US6087719A (en) * | 1997-04-25 | 2000-07-11 | Kabushiki Kaisha Toshiba | Chip for multi-chip semiconductor device and method of manufacturing the same |
US6498381B2 (en) * | 2001-02-22 | 2002-12-24 | Tru-Si Technologies, Inc. | Semiconductor structures having multiple conductive layers in an opening, and methods for fabricating same |
US20030173678A1 (en) * | 2002-03-18 | 2003-09-18 | Fujitsu Limited | Semiconductor device and method for fabricating the same |
US6734084B1 (en) * | 2003-02-04 | 2004-05-11 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor device with recesses using anodic oxide |
US20040245623A1 (en) * | 2003-03-28 | 2004-12-09 | Kazumi Hara | Semiconductor device, circuit substrate and electronic instrument |
US6864172B2 (en) * | 2002-06-18 | 2005-03-08 | Sanyo Electric Co., Ltd. | Manufacturing method of semiconductor device |
US6867073B1 (en) * | 2003-10-21 | 2005-03-15 | Ziptronix, Inc. | Single mask via method and device |
US6916725B2 (en) * | 2003-01-24 | 2005-07-12 | Seiko Epson Corporation | Method for manufacturing semiconductor device, and method for manufacturing semiconductor module |
US20050179120A1 (en) * | 2003-12-16 | 2005-08-18 | Koji Yamaguchi | Process for producing semiconductor device, semiconductor device, circuit board and electronic equipment |
US20050218497A1 (en) * | 2004-03-30 | 2005-10-06 | Nec Electronics Corporation | Through electrode, spacer provided with the through electrode, and method of manufacturing the same |
US20050230805A1 (en) * | 2004-04-16 | 2005-10-20 | Ikuya Miyazawa | Semiconductor device, method for producing the same, circuit board, and electronic apparatus |
US6982141B2 (en) * | 2002-08-01 | 2006-01-03 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and manufacturing method thereof |
US7029937B2 (en) * | 2002-03-19 | 2006-04-18 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument |
US20060084258A1 (en) * | 2002-11-29 | 2006-04-20 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
US7034401B2 (en) * | 2003-12-17 | 2006-04-25 | Tru-Si Technologies, Inc. | Packaging substrates for integrated circuits and soldering methods |
US7039401B2 (en) * | 2000-11-24 | 2006-05-02 | Telecom Italia | Physical private mobile telecommunications network |
US7049170B2 (en) * | 2003-12-17 | 2006-05-23 | Tru-Si Technologies, Inc. | Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities |
US7071031B2 (en) * | 2002-11-14 | 2006-07-04 | International Business Machines Corporation | Three-dimensional integrated CMOS-MEMS device and process for making the same |
US7129112B2 (en) * | 2003-03-25 | 2006-10-31 | Seiko Epson Corporation | Manufacturing method for semiconductor device, semiconductor device, and electronic apparatus |
US7138710B2 (en) * | 2003-06-19 | 2006-11-21 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument |
US20070048994A1 (en) * | 2005-09-01 | 2007-03-01 | Tuttle Mark E | Methods for forming through-wafer interconnects and structures resulting therefrom |
US7193308B2 (en) * | 2003-09-26 | 2007-03-20 | Seiko Epson Corporation | Intermediate chip module, semiconductor device, circuit board, and electronic device |
US7214615B2 (en) * | 2003-03-17 | 2007-05-08 | Seiko Epson Corporation | Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus |
US7279776B2 (en) * | 2004-05-25 | 2007-10-09 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor device and semiconductor device |
US7282444B2 (en) * | 2003-12-04 | 2007-10-16 | Rohm Co., Ltd. | Semiconductor chip and manufacturing method for the same, and semiconductor device |
US7446404B2 (en) * | 2006-01-25 | 2008-11-04 | Advanced Semiconductor Engineering, Inc. | Three-dimensional package and method of making the same |
US20100038800A1 (en) * | 2008-08-18 | 2010-02-18 | Samsung Electronics Co., Ltd. | Through-silicon via structures including conductive protective layers and methods of forming the same |
US20100038778A1 (en) * | 2008-08-13 | 2010-02-18 | Samsung Electronics Co., Ltd. | Integrated circuit structures and fabricating methods that use voids in through holes as joining interfaces |
US20100090317A1 (en) * | 2008-10-15 | 2010-04-15 | Bernd Zimmermann | Interconnect Structures and Methods |
US7777323B2 (en) * | 2006-05-22 | 2010-08-17 | Samsung Electronics Co., Ltd. | Semiconductor structure and method for forming the same |
US7833895B2 (en) * | 2008-05-12 | 2010-11-16 | Texas Instruments Incorporated | TSVS having chemically exposed TSV tips for integrated circuit devices |
US7858429B2 (en) * | 2004-06-29 | 2010-12-28 | Round Rock Research, Llc | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US20110042819A1 (en) * | 2009-08-20 | 2011-02-24 | Ying-Nan Wen | Chip package and method for forming the same |
US20110056740A1 (en) * | 2009-09-09 | 2011-03-10 | Dai Nippon Printing Co., Ltd. | Through-hole electrode substrate and manufacturing method thereof |
US20110156268A1 (en) * | 2009-12-29 | 2011-06-30 | Bin-Hong Cheng | Semiconductor Process, Semiconductor Element and Package Having Semiconductor Element |
US20110291268A1 (en) * | 2010-06-01 | 2011-12-01 | David Wei Wang | Semiconductor wafer structure and multi-chip stack structure |
US8084866B2 (en) * | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US8114772B2 (en) * | 2009-10-26 | 2012-02-14 | Samsung Electronics Co., Ltd. | Method of manufacturing the semiconductor device |
US8159071B2 (en) * | 2008-10-21 | 2012-04-17 | Samsung Electro-Mechanics Co., Ltd. | Semiconductor package with a metal post |
US8227839B2 (en) * | 2010-03-17 | 2012-07-24 | Texas Instruments Incorporated | Integrated circuit having TSVS including hillock suppression |
US8350361B2 (en) * | 2009-09-23 | 2013-01-08 | Advanced Semiconductor Engineering, Inc. | Semiconductor element having a conductive via and method for making the same and package having a semiconductor element with a conductive via |
US8378496B2 (en) * | 2007-07-24 | 2013-02-19 | Austriamicrosystems Ag | Semiconductor substrate with interlayer connection and method for production of a semiconductor substrate with interlayer connection |
US8399987B2 (en) * | 2009-12-04 | 2013-03-19 | Samsung Electronics Co., Ltd. | Microelectronic devices including conductive vias, conductive caps and variable thickness insulating layers |
US8501587B2 (en) * | 2009-01-13 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacked integrated chips and methods of fabrication thereof |
US20140048937A1 (en) * | 2012-08-16 | 2014-02-20 | SK Hynix Inc. | Semiconductor device and method for manufacturing the same |
US8691691B2 (en) * | 2011-07-29 | 2014-04-08 | International Business Machines Corporation | TSV pillar as an interconnecting structure |
US8710670B2 (en) * | 2011-12-14 | 2014-04-29 | Stats Chippac Ltd. | Integrated circuit packaging system with coupling features and method of manufacture thereof |
US8963336B2 (en) * | 2012-08-03 | 2015-02-24 | Samsung Electronics Co., Ltd. | Semiconductor packages, methods of manufacturing the same, and semiconductor package structures including the same |
US9076655B2 (en) * | 2013-01-16 | 2015-07-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming through-silicon-via with sacrificial layer |
Family Cites Families (474)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2821959A (en) | 1956-03-29 | 1958-02-04 | Bell Telephone Labor Inc | Mass soldering of electrical assemblies |
US3006318A (en) | 1958-03-26 | 1961-10-31 | Western Electric Co | Apparatus for applying solder coatings to surfaces |
DE1160831B (en) | 1962-04-21 | 1964-01-09 | Knapsack Ag | Method and device for the production of titanium nitride |
US3865298A (en) | 1973-08-14 | 1975-02-11 | Atomic Energy Commission | Solder leveling |
US3902036A (en) | 1974-05-02 | 1975-08-26 | Western Electric Co | Control system using multiplexed laser beams |
US4040168A (en) | 1975-11-24 | 1977-08-09 | Rca Corporation | Fabrication method for a dual gate field-effect transistor |
US4368106A (en) | 1980-10-27 | 1983-01-11 | General Electric Company | Implantation of electrical feed-through conductors |
US5027184A (en) | 1981-03-02 | 1991-06-25 | Rockwell International Corporation | NPN type lateral transistor with minimal substrate operation interference |
US4756765A (en) | 1982-01-26 | 1988-07-12 | Avco Research Laboratory, Inc. | Laser removal of poor thermally-conductive materials |
US4534100A (en) | 1982-06-28 | 1985-08-13 | The United States Of America As Represented By The Secretary Of The Air Force | Electrical method of making conductive paths in silicon |
GB8312850D0 (en) | 1983-05-10 | 1983-06-15 | British Telecomm | Semiconductor wafer fabrication |
JPS60220940A (en) | 1983-05-20 | 1985-11-05 | Hitachi Ltd | Automatic examining unit for foreign object |
FR2547519B1 (en) | 1983-06-15 | 1987-07-03 | Snecma | LASER DRILLING METHOD AND DEVICE |
US4581301A (en) | 1984-04-10 | 1986-04-08 | Michaelson Henry W | Additive adhesive based process for the manufacture of printed circuit boards |
US4984597B1 (en) | 1984-05-21 | 1999-10-26 | Cfmt Inc | Apparatus for rinsing and drying surfaces |
US4660063A (en) | 1985-03-18 | 1987-04-21 | General Electric Company | Immersion type ISFET |
US4627971A (en) | 1985-04-22 | 1986-12-09 | Alza Corporation | Osmotic device with self-sealing passageway |
US5026964A (en) | 1986-02-28 | 1991-06-25 | General Electric Company | Optical breakthrough sensor for laser drill |
JPS6352432A (en) | 1986-08-22 | 1988-03-05 | Hitachi Vlsi Eng Corp | Semiconductor device |
JPH07112041B2 (en) | 1986-12-03 | 1995-11-29 | シャープ株式会社 | Method for manufacturing semiconductor device |
US5144412A (en) | 1987-02-19 | 1992-09-01 | Olin Corporation | Process for manufacturing plastic pin grid arrays and the product produced thereby |
US4768291A (en) | 1987-03-12 | 1988-09-06 | Monarch Technologies Corporation | Apparatus for dry processing a semiconductor wafer |
US4907127A (en) | 1988-03-21 | 1990-03-06 | Lee John K C | Printed circuit board construction and method for producing printed circuit end products |
JPH01252308A (en) | 1988-03-31 | 1989-10-09 | Toppan Printing Co Ltd | Hole formation method for multilayer circuit wiring board |
US5219344A (en) | 1988-06-09 | 1993-06-15 | Visx, Incorporated | Methods and apparatus for laser sculpture of the cornea |
DE3831141A1 (en) | 1988-09-13 | 1990-03-22 | Zeiss Carl Fa | METHOD AND DEVICE FOR MICROSURGERY ON EYE BY LASER RADIATION |
FR2637151A1 (en) | 1988-09-29 | 1990-03-30 | Commissariat Energie Atomique | METHOD OF MAKING ELECTRICAL CONNECTIONS THROUGH A SUBSTRATE |
US4959705A (en) | 1988-10-17 | 1990-09-25 | Ford Microelectronics, Inc. | Three metal personalization of application specific monolithic microwave integrated circuit |
US5024966A (en) | 1988-12-21 | 1991-06-18 | At&T Bell Laboratories | Method of forming a silicon-based semiconductor optical device mount |
JPH02235589A (en) | 1989-03-09 | 1990-09-18 | Fuji Electric Co Ltd | Laser beam machining method |
JPH02257643A (en) | 1989-03-29 | 1990-10-18 | Mitsubishi Electric Corp | Semiconductor device and its manufacture |
US5098864A (en) | 1989-11-29 | 1992-03-24 | Olin Corporation | Process for manufacturing a metal pin grid array package |
US5347149A (en) | 1989-11-29 | 1994-09-13 | Texas Instruments Incorporated | Integrated circuit and method |
US5006922A (en) | 1990-02-14 | 1991-04-09 | Motorola, Inc. | Packaged semiconductor device having a low cost ceramic PGA package |
KR100199261B1 (en) | 1990-04-27 | 1999-06-15 | 가나이 쓰도무 | Semiconductor device, its fabrication method and molding apparatus used therefor |
US5145099A (en) | 1990-07-13 | 1992-09-08 | Micron Technology, Inc. | Method for combining die attach and lead bond in the assembly of a semiconductor package |
US6545563B1 (en) | 1990-07-16 | 2003-04-08 | Raytheon Company | Digitally controlled monolithic microwave integrated circuits |
FR2665574B1 (en) | 1990-08-03 | 1997-05-30 | Thomson Composants Microondes | METHOD FOR INTERCONNECTING BETWEEN AN INTEGRATED CIRCUIT AND A SUPPORT CIRCUIT, AND INTEGRATED CIRCUIT SUITABLE FOR THIS METHOD. |
JP2797684B2 (en) | 1990-10-04 | 1998-09-17 | ブラザー工業株式会社 | Nozzle manufacturing method and manufacturing apparatus |
US5294568A (en) | 1990-10-12 | 1994-03-15 | Genus, Inc. | Method of selective etching native oxide |
US5102829A (en) | 1991-07-22 | 1992-04-07 | At&T Bell Laboratories | Plastic pin grid array package |
US5292686A (en) | 1991-08-21 | 1994-03-08 | Triquint Semiconductor, Inc. | Method of forming substrate vias in a GaAs wafer |
JPH05104316A (en) | 1991-10-15 | 1993-04-27 | Nec Corp | Counter boring device |
JPH05183019A (en) | 1991-12-27 | 1993-07-23 | Hitachi Ltd | Semiconductor device and manufacture thereof |
US5289631A (en) | 1992-03-04 | 1994-03-01 | Mcnc | Method for testing, burn-in, and/or programming of integrated circuit chips |
JPH05251717A (en) | 1992-03-04 | 1993-09-28 | Hitachi Ltd | Semiconductor package and semiconductor module |
US5233448A (en) | 1992-05-04 | 1993-08-03 | Industrial Technology Research Institute | Method of manufacturing a liquid crystal display panel including photoconductive electrostatic protection |
US5389738A (en) | 1992-05-04 | 1995-02-14 | Motorola, Inc. | Tamperproof arrangement for an integrated circuit device |
US5304743A (en) | 1992-05-12 | 1994-04-19 | Lsi Logic Corporation | Multilayer IC semiconductor package |
US5384717A (en) | 1992-11-23 | 1995-01-24 | Ford Motor Company | Non-contact method of obtaining dimensional information about an object |
US5464960A (en) | 1993-01-12 | 1995-11-07 | Iatrotech, Inc. | Laser calibration device |
WO1994018697A1 (en) | 1993-02-04 | 1994-08-18 | Cornell Research Foundation, Inc. | Microstructures and single mask, single-crystal process for fabrication thereof |
JPH06310547A (en) | 1993-02-25 | 1994-11-04 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
US5291062A (en) | 1993-03-01 | 1994-03-01 | Motorola, Inc. | Area array semiconductor device having a lid with functional contacts |
JP2842132B2 (en) | 1993-03-05 | 1998-12-24 | 松下電器産業株式会社 | Optical device |
US5447871A (en) * | 1993-03-05 | 1995-09-05 | Goldstein; Edward F. | Electrically conductive interconnection through a body of semiconductor material |
JPH06268020A (en) | 1993-03-10 | 1994-09-22 | Sumitomo Electric Ind Ltd | Semiconductor device |
CO4230054A1 (en) | 1993-05-07 | 1995-10-19 | Visx Inc | METHOD AND SYSTEMS FOR LASER TREATMENT OF REFRACTIVE ERRORS USING TRAVELING IMAGES FORMATION |
NL9300971A (en) | 1993-06-04 | 1995-01-02 | Framatome Connectors Belgium | Circuit board connector assembly. |
US5518956A (en) | 1993-09-02 | 1996-05-21 | General Electric Company | Method of isolating vertical shorts in an electronic array using laser ablation |
US5378312A (en) | 1993-12-07 | 1995-01-03 | International Business Machines Corporation | Process for fabricating a semiconductor structure having sidewalls |
SE9304145D0 (en) | 1993-12-10 | 1993-12-10 | Pharmacia Lkb Biotech | Ways to manufacture cavity structures |
US5378313A (en) | 1993-12-22 | 1995-01-03 | Pace; Benedict G. | Hybrid circuits and a method of manufacture |
US5585308A (en) | 1993-12-23 | 1996-12-17 | Sgs-Thomson Microelectronics, Inc. | Method for improved pre-metal planarization |
JP3531199B2 (en) | 1994-02-22 | 2004-05-24 | 三菱電機株式会社 | Optical transmission equipment |
US5380681A (en) | 1994-03-21 | 1995-01-10 | United Microelectronics Corporation | Three-dimensional multichip package and methods of fabricating |
US5734555A (en) | 1994-03-30 | 1998-03-31 | Intel Corporation | Shared socket multi-chip module and/or piggyback pin grid array package |
US6008914A (en) | 1994-04-28 | 1999-12-28 | Mitsubishi Denki Kabushiki Kaisha | Laser transfer machining apparatus |
US5627106A (en) * | 1994-05-06 | 1997-05-06 | United Microelectronics Corporation | Trench method for three dimensional chip connecting during IC fabrication |
US5585675A (en) | 1994-05-11 | 1996-12-17 | Harris Corporation | Semiconductor die packaging tub having angularly offset pad-to-pad via structure configured to allow three-dimensional stacking and electrical interconnections among multiple identical tubs |
US5550403A (en) | 1994-06-02 | 1996-08-27 | Lsi Logic Corporation | Improved laminate package for an integrated circuit and integrated circuit having such a package |
JPH07335783A (en) | 1994-06-13 | 1995-12-22 | Fujitsu Ltd | Semiconductor device and semiconductor device unit |
JPH0897375A (en) | 1994-07-26 | 1996-04-12 | Toshiba Corp | Microwave integrated circuit device and manufacture thereof |
US5515167A (en) | 1994-09-13 | 1996-05-07 | Hughes Aircraft Company | Transparent optical chuck incorporating optical monitoring |
US5521434A (en) | 1994-10-17 | 1996-05-28 | International Business Machines Corporation | Semiconductor chip and electronic module with integrated surface interconnects/components |
JPH08167630A (en) | 1994-12-15 | 1996-06-25 | Hitachi Ltd | Chip connection structure |
US5904499A (en) | 1994-12-22 | 1999-05-18 | Pace; Benedict G | Package for power semiconductor chips |
US5624437A (en) | 1995-03-28 | 1997-04-29 | Freeman; Jerre M. | High resolution, high speed, programmable laser beam modulating apparatus for microsurgery |
US5718791A (en) | 1995-06-05 | 1998-02-17 | R + S Stanztechnik Gmbh | Method of laminating a trim panel and folding a cover sheet edge around the panel rim |
US5646067A (en) * | 1995-06-05 | 1997-07-08 | Harris Corporation | Method of bonding wafers having vias including conductive material |
US6195883B1 (en) | 1998-03-25 | 2001-03-06 | International Business Machines Corporation | Full additive process with filled plated through holes |
US5861654A (en) | 1995-11-28 | 1999-01-19 | Eastman Kodak Company | Image sensor assembly |
US5874780A (en) | 1995-07-27 | 1999-02-23 | Nec Corporation | Method of mounting a semiconductor device to a substrate and a mounted structure |
US5673846A (en) | 1995-08-24 | 1997-10-07 | International Business Machines Corporation | Solder anchor decal and method |
JP3263705B2 (en) | 1995-09-21 | 2002-03-11 | 三菱電機株式会社 | Printed wiring board and flat panel display driving circuit printed wiring board and flat panel display device |
JP2905736B2 (en) | 1995-12-18 | 1999-06-14 | 株式会社エイ・ティ・アール光電波通信研究所 | Semiconductor device |
US5851845A (en) | 1995-12-18 | 1998-12-22 | Micron Technology, Inc. | Process for packaging a semiconductor die using dicing and testing |
US5776824A (en) | 1995-12-22 | 1998-07-07 | Micron Technology, Inc. | Method for producing laminated film/metal structures for known good die ("KG") applications |
US5773359A (en) | 1995-12-26 | 1998-06-30 | Motorola, Inc. | Interconnect system and method of fabrication |
US5673730A (en) | 1996-01-24 | 1997-10-07 | Micron Technology, Inc. | Form tooling and method of forming semiconductor package leads |
US6072236A (en) | 1996-03-07 | 2000-06-06 | Micron Technology, Inc. | Micromachined chip scale package |
US5893828A (en) | 1996-05-02 | 1999-04-13 | Uram; Martin | Contact laser surgical endoscope and associated myringotomy procedure |
US5857963A (en) | 1996-07-17 | 1999-01-12 | Welch Allyn, Inc. | Tab imager assembly for use in an endoscope |
US5801442A (en) | 1996-07-22 | 1998-09-01 | Northrop Grumman Corporation | Microchannel cooling of high power semiconductor devices |
US5843625A (en) | 1996-07-23 | 1998-12-01 | Advanced Micro Devices, Inc. | Method of reducing via and contact dimensions beyond photolithography equipment limits |
US6882030B2 (en) * | 1996-10-29 | 2005-04-19 | Tru-Si Technologies, Inc. | Integrated circuit structures with a conductor formed in a through hole in a semiconductor substrate and protruding from a surface of the substrate |
EP2270845A3 (en) * | 1996-10-29 | 2013-04-03 | Invensas Corporation | Integrated circuits and methods for their fabrication |
US5870823A (en) | 1996-11-27 | 1999-02-16 | International Business Machines Corporation | Method of forming a multilayer electronic packaging substrate with integral cooling channels |
US6809421B1 (en) * | 1996-12-02 | 2004-10-26 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
KR100222299B1 (en) | 1996-12-16 | 1999-10-01 | 윤종용 | Wafer level chip scale package and method of manufacturing the same |
US5907769A (en) | 1996-12-30 | 1999-05-25 | Micron Technology, Inc. | Leads under chip in conventional IC package |
US6103547A (en) | 1997-01-17 | 2000-08-15 | Micron Technology, Inc. | High speed IC package configuration |
US5844318A (en) | 1997-02-18 | 1998-12-01 | Micron Technology, Inc. | Aluminum film for semiconductive devices |
US5929521A (en) | 1997-03-26 | 1999-07-27 | Micron Technology, Inc. | Projected contact structure for bumped semiconductor device and resulting articles and assemblies |
US6008996A (en) | 1997-04-07 | 1999-12-28 | Micron Technology, Inc. | Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die |
US6271582B1 (en) | 1997-04-07 | 2001-08-07 | Micron Technology, Inc. | Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die |
JP3724110B2 (en) | 1997-04-24 | 2005-12-07 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
US5969422A (en) | 1997-05-15 | 1999-10-19 | Advanced Micro Devices, Inc. | Plated copper interconnect structure |
US5821532A (en) | 1997-06-16 | 1998-10-13 | Eastman Kodak Company | Imager package substrate |
KR100230428B1 (en) | 1997-06-24 | 1999-11-15 | 윤종용 | Semiconductor device comprising a multi-conductive pad and method for manufacturing the same |
US6159764A (en) | 1997-07-02 | 2000-12-12 | Micron Technology, Inc. | Varied-thickness heat sink for integrated circuit (IC) packages and method of fabricating IC packages |
US6437441B1 (en) | 1997-07-10 | 2002-08-20 | Kawasaki Microelectronics, Inc. | Wiring structure of a semiconductor integrated circuit and a method of forming the wiring structure |
US5811799A (en) | 1997-07-31 | 1998-09-22 | Wu; Liang-Chung | Image sensor package having a wall with a sealed cover |
US5962810A (en) | 1997-09-09 | 1999-10-05 | Amkor Technology, Inc. | Integrated circuit package employing a transparent encapsulant |
KR100280398B1 (en) | 1997-09-12 | 2001-02-01 | 김영환 | Manufacturing method of stacked semiconductor package module |
US6048744A (en) | 1997-09-15 | 2000-04-11 | Micron Technology, Inc. | Integrated circuit package alignment feature |
US5807439A (en) | 1997-09-29 | 1998-09-15 | Siemens Aktiengesellschaft | Apparatus and method for improved washing and drying of semiconductor wafers |
US6441487B2 (en) | 1997-10-20 | 2002-08-27 | Flip Chip Technologies, L.L.C. | Chip scale package using large ductile solder balls |
US6097087A (en) | 1997-10-31 | 2000-08-01 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US6222136B1 (en) | 1997-11-12 | 2001-04-24 | International Business Machines Corporation | Printed circuit board with continuous connective bumps |
US5998292A (en) | 1997-11-12 | 1999-12-07 | International Business Machines Corporation | Method for making three dimensional circuit integration |
EP0926723B1 (en) | 1997-11-26 | 2007-01-17 | STMicroelectronics S.r.l. | Process for forming front-back through contacts in micro-integrated electronic devices |
FI982568A (en) | 1997-12-02 | 1999-06-03 | Samsung Electro Mech | A method for manufacturing a multilayer printed circuit board |
TW436357B (en) | 1997-12-12 | 2001-05-28 | Matsushita Electric Ind Co Ltd | Laser drilling equipment and control method |
US6833613B1 (en) | 1997-12-18 | 2004-12-21 | Micron Technology, Inc. | Stacked semiconductor package having laser machined contacts |
US6114240A (en) | 1997-12-18 | 2000-09-05 | Micron Technology, Inc. | Method for fabricating semiconductor components using focused laser beam |
US6620731B1 (en) | 1997-12-18 | 2003-09-16 | Micron Technology, Inc. | Method for fabricating semiconductor components and interconnects with contacts on opposing sides |
US6107109A (en) | 1997-12-18 | 2000-08-22 | Micron Technology, Inc. | Method for fabricating a semiconductor interconnect with laser machined electrical paths through substrate |
JP3638771B2 (en) | 1997-12-22 | 2005-04-13 | 沖電気工業株式会社 | Semiconductor device |
US6107180A (en) | 1998-01-30 | 2000-08-22 | Motorola, Inc. | Method for forming interconnect bumps on a semiconductor die |
US6197181B1 (en) | 1998-03-20 | 2001-03-06 | Semitool, Inc. | Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece |
US6335534B1 (en) | 1998-04-17 | 2002-01-01 | Kabushiki Kaisha Toshiba | Ion implantation apparatus, ion generating apparatus and semiconductor manufacturing method with ion implantation processes |
US6191487B1 (en) | 1998-04-23 | 2001-02-20 | Minco Technology Labs, Inc. | Semiconductor and flip chip packages and method having a back-side connection |
US6177728B1 (en) | 1998-04-28 | 2001-01-23 | International Business Machines Corporation | Integrated circuit chip device having balanced thermal expansion |
US6008070A (en) | 1998-05-21 | 1999-12-28 | Micron Technology, Inc. | Wafer level fabrication and assembly of chip scale packages |
EP0962978A1 (en) | 1998-06-04 | 1999-12-08 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of manufacturing same |
US6140604A (en) | 1998-06-18 | 2000-10-31 | General Electric Company | Laser drilling breakthrough detector |
US6080291A (en) | 1998-07-10 | 2000-06-27 | Semitool, Inc. | Apparatus for electrochemically processing a workpiece including an electrical contact assembly having a seal member |
FR2781707B1 (en) | 1998-07-30 | 2000-09-08 | Snecma | METHOD FOR MACHINING BY EXCIMER LASER OF HOLES OR SHAPES WITH VARIABLE PROFILE |
US6324253B1 (en) | 1998-08-26 | 2001-11-27 | Yuyama Mfg. Co., Ltd. | Tablet inspection apparatus |
KR100269540B1 (en) | 1998-08-28 | 2000-10-16 | 윤종용 | Method for manufacturing chip scale packages at wafer level |
US6291894B1 (en) | 1998-08-31 | 2001-09-18 | Micron Technology, Inc. | Method and apparatus for a semiconductor package for vertical surface mounting |
US6268114B1 (en) | 1998-09-18 | 2001-07-31 | Taiwan Semiconductor Manufacturing Company, Ltd | Method for forming fine-pitched solder bumps |
US7045015B2 (en) | 1998-09-30 | 2006-05-16 | Optomec Design Company | Apparatuses and method for maskless mesoscale material deposition |
US6130141A (en) | 1998-10-14 | 2000-10-10 | Lucent Technologies Inc. | Flip chip metallization |
US7449098B1 (en) | 1999-10-05 | 2008-11-11 | Novellus Systems, Inc. | Method for planar electroplating |
US6184465B1 (en) | 1998-11-12 | 2001-02-06 | Micron Technology, Inc. | Semiconductor package |
US6239485B1 (en) | 1998-11-13 | 2001-05-29 | Fujitsu Limited | Reduced cross-talk noise high density signal interposer with power and ground wrap |
US6359328B1 (en) | 1998-12-31 | 2002-03-19 | Intel Corporation | Methods for making interconnects and diffusion barriers in integrated circuits |
TW442873B (en) | 1999-01-14 | 2001-06-23 | United Microelectronics Corp | Three-dimension stack-type chip structure and its manufacturing method |
US6107186A (en) | 1999-01-27 | 2000-08-22 | Advanced Micro Devices, Inc. | High planarity high-density in-laid metallization patterns by damascene-CMP processing |
US6221769B1 (en) | 1999-03-05 | 2001-04-24 | International Business Machines Corporation | Method for integrated circuit power and electrical connections via through-wafer interconnects |
US6297155B1 (en) | 1999-05-03 | 2001-10-02 | Motorola Inc. | Method for forming a copper layer over a semiconductor wafer |
US6277757B1 (en) | 1999-06-01 | 2001-08-21 | Winbond Electronics Corp. | Methods to modify wet by dry etched via profile |
US6406636B1 (en) | 1999-06-02 | 2002-06-18 | Megasense, Inc. | Methods for wafer to wafer bonding using microstructures |
US6388208B1 (en) | 1999-06-11 | 2002-05-14 | Teradyne, Inc. | Multi-connection via with electrically isolated segments |
JP3562389B2 (en) | 1999-06-25 | 2004-09-08 | 三菱電機株式会社 | Laser heat treatment equipment |
US6228687B1 (en) | 1999-06-28 | 2001-05-08 | Micron Technology, Inc. | Wafer-level package and methods of fabricating |
KR100298827B1 (en) | 1999-07-09 | 2001-11-01 | 윤종용 | Method For Manufacturing Wafer Level Chip Scale Packages Using Redistribution Substrate |
US6326689B1 (en) | 1999-07-26 | 2001-12-04 | Stmicroelectronics, Inc. | Backside contact for touchchip |
US6457515B1 (en) | 1999-08-06 | 2002-10-01 | The Ohio State University | Two-layered micro channel heat sink, devices and systems incorporating same |
KR100565961B1 (en) | 1999-08-21 | 2006-03-30 | 삼성전자주식회사 | Manufacturing method for three demensional stack chip package |
KR100699649B1 (en) | 1999-08-23 | 2007-03-23 | 로무 가부시키가이샤 | Semiconductor device and method of manufacture thereof |
JP2001077496A (en) | 1999-09-06 | 2001-03-23 | Ngk Insulators Ltd | Substrate for printed circuit and its manufacture |
JP2001082931A (en) | 1999-09-09 | 2001-03-30 | Toshiba Corp | Method and apparatus for measuring depth of hole |
US6534192B1 (en) | 1999-09-24 | 2003-03-18 | Lucent Technologies Inc. | Multi-purpose finish for printed wiring boards and method of manufacture of such boards |
US6359254B1 (en) | 1999-09-30 | 2002-03-19 | United Technologies Corporation | Method for producing shaped hole in a structure |
US6886284B2 (en) | 1999-10-08 | 2005-05-03 | Identification Dynamics, Llc | Firearm microstamping and micromarking insert for stamping a firearm identification code and serial number into cartridge shell casings and projectiles |
US6180518B1 (en) | 1999-10-29 | 2001-01-30 | Lucent Technologies Inc. | Method for forming vias in a low dielectric constant material |
US6448106B1 (en) | 1999-11-09 | 2002-09-10 | Fujitsu Limited | Modules with pins and methods for making modules with pins |
CA2328743C (en) | 1999-12-22 | 2006-08-22 | Honda Giken Kogyo Kabushiki Kaisha | Perforating machining method with laser beam |
JP4774146B2 (en) | 1999-12-23 | 2011-09-14 | パナソニック株式会社 | Method and apparatus for drilling holes with a pitch smaller than the wavelength using a laser |
US6229202B1 (en) | 2000-01-10 | 2001-05-08 | Micron Technology, Inc. | Semiconductor package having downset leadframe for reducing package bow |
US6572606B2 (en) | 2000-01-12 | 2003-06-03 | Lasersight Technologies, Inc. | Laser fluence compensation of a curved surface |
US6455425B1 (en) | 2000-01-18 | 2002-09-24 | Advanced Micro Devices, Inc. | Selective deposition process for passivating top interface of damascene-type Cu interconnect lines |
JP3736607B2 (en) | 2000-01-21 | 2006-01-18 | セイコーエプソン株式会社 | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus |
JP3819660B2 (en) | 2000-02-15 | 2006-09-13 | 株式会社日立国際電気 | Semiconductor device manufacturing method and semiconductor manufacturing apparatus |
US6341009B1 (en) | 2000-02-24 | 2002-01-22 | Quantronix Corporation | Laser delivery system and method for photolithographic mask repair |
JP3677429B2 (en) | 2000-03-09 | 2005-08-03 | Necエレクトロニクス株式会社 | Method of manufacturing flip chip type semiconductor device |
US6433303B1 (en) | 2000-03-31 | 2002-08-13 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus using laser pulses to make an array of microcavity holes |
JP2001298147A (en) | 2000-04-18 | 2001-10-26 | Kawasaki Steel Corp | Semiconductor device and its manufacturing method |
JP3879816B2 (en) * | 2000-06-02 | 2007-02-14 | セイコーエプソン株式会社 | SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, LAMINATED SEMICONDUCTOR DEVICE, CIRCUIT BOARD AND ELECTRONIC DEVICE |
JP4979154B2 (en) | 2000-06-07 | 2012-07-18 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US6444576B1 (en) | 2000-06-16 | 2002-09-03 | Chartered Semiconductor Manufacturing, Ltd. | Three dimensional IC package module |
US6459039B1 (en) | 2000-06-19 | 2002-10-01 | International Business Machines Corporation | Method and apparatus to manufacture an electronic package with direct wiring pattern |
JP2002094082A (en) * | 2000-07-11 | 2002-03-29 | Seiko Epson Corp | Optical element and its manufacturing method and electronic equipment |
JP4439090B2 (en) | 2000-07-26 | 2010-03-24 | 日本テキサス・インスツルメンツ株式会社 | Semiconductor device and manufacturing method thereof |
JP2002057460A (en) | 2000-07-27 | 2002-02-22 | Kermel | Method for manufacturing multilayer circuit consisting of conductive path and micro-via |
US6468889B1 (en) | 2000-08-08 | 2002-10-22 | Advanced Micro Devices, Inc. | Backside contact for integrated circuit and method of forming same |
US20020020898A1 (en) | 2000-08-16 | 2002-02-21 | Vu Quat T. | Microelectronic substrates with integrated devices |
US6459150B1 (en) | 2000-08-17 | 2002-10-01 | Industrial Technology Research Institute | Electronic substrate having an aperture position through a substrate, conductive pads, and an insulating layer |
DE10042235A1 (en) | 2000-08-28 | 2002-04-18 | Infineon Technologies Ag | Process for producing an electrically conductive connection |
TW449813B (en) | 2000-10-13 | 2001-08-11 | Advanced Semiconductor Eng | Semiconductor device with bump electrode |
US6498091B1 (en) | 2000-11-01 | 2002-12-24 | Applied Materials, Inc. | Method of using a barrier sputter reactor to remove an underlying barrier layer |
US7304684B2 (en) | 2000-11-14 | 2007-12-04 | Kabushiki Kaisha Toshiba | Image pickup apparatus, method of making, and electric apparatus having image pickup apparatus |
JP3798620B2 (en) | 2000-12-04 | 2006-07-19 | 富士通株式会社 | Manufacturing method of semiconductor device |
US6777244B2 (en) | 2000-12-06 | 2004-08-17 | Hrl Laboratories, Llc | Compact sensor using microcavity structures |
US6432821B1 (en) | 2000-12-18 | 2002-08-13 | Intel Corporation | Method of copper electroplating |
US6582987B2 (en) | 2000-12-30 | 2003-06-24 | Electronics And Telecommunications Research Institute | Method of fabricating microchannel array structure embedded in silicon substrate |
DE10101875B4 (en) | 2001-01-16 | 2006-05-04 | Infineon Technologies Ag | Electronic component with stacked semiconductor chips and method for its production |
KR20020061812A (en) | 2001-01-18 | 2002-07-25 | 삼성전자 주식회사 | Ball grid array type multi chip package and stack package |
US20020096729A1 (en) | 2001-01-24 | 2002-07-25 | Tu Hsiu Wen | Stacked package structure of image sensor |
DE10150334A1 (en) | 2001-02-03 | 2003-04-24 | Hassia Verpackung Ag | Process and packaging machine for converting a wide, multi-layer, aseptically processed packaging material web into several, equally wide, further processable single webs |
US6534863B2 (en) | 2001-02-09 | 2003-03-18 | International Business Machines Corporation | Common ball-limiting metallurgy for I/O sites |
JP2002261189A (en) | 2001-03-05 | 2002-09-13 | Murata Mfg Co Ltd | Circuit chip for high frequency and method for manufacturing the same |
TW475250B (en) | 2001-03-14 | 2002-02-01 | Taiwan Semiconductor Mfg | ESD protection circuit to be used in high-frequency input/output port with low capacitance load |
US6910268B2 (en) | 2001-03-27 | 2005-06-28 | Formfactor, Inc. | Method for fabricating an IC interconnect system including an in-street integrated circuit wafer via |
US6620031B2 (en) | 2001-04-04 | 2003-09-16 | Lam Research Corporation | Method for optimizing the planarizing length of a polishing pad |
US6593644B2 (en) | 2001-04-19 | 2003-07-15 | International Business Machines Corporation | System of a package fabricated on a semiconductor or dielectric wafer with wiring on one face, vias extending through the wafer, and external connections on the opposing face |
US6867390B2 (en) | 2001-04-30 | 2005-03-15 | Lsp Technologies, Inc | Automated positioning of mobile laser peening head |
JP4053257B2 (en) | 2001-06-14 | 2008-02-27 | 新光電気工業株式会社 | Manufacturing method of semiconductor device |
JP2002373957A (en) | 2001-06-14 | 2002-12-26 | Shinko Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
GB2377664A (en) | 2001-06-22 | 2003-01-22 | Nippei Toyama Corp | Laser beam machining apparatus and laser beam machining method |
JP4408006B2 (en) | 2001-06-28 | 2010-02-03 | 富士通マイクロエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US6521516B2 (en) | 2001-06-29 | 2003-02-18 | Intel Corporation | Process for local on-chip cooling of semiconductor devices using buried microchannels |
US6825127B2 (en) | 2001-07-24 | 2004-11-30 | Zarlink Semiconductor Inc. | Micro-fluidic devices |
SG118084A1 (en) | 2001-08-24 | 2006-01-27 | Micron Technology Inc | Method and apparatus for cutting semiconductor wafers |
KR100431260B1 (en) | 2001-08-29 | 2004-05-12 | 삼성전기주식회사 | Image module |
US6580174B2 (en) | 2001-09-28 | 2003-06-17 | Intel Corporation | Vented vias for via in pad technology yield improvements |
US6774486B2 (en) | 2001-10-10 | 2004-08-10 | Micron Technology, Inc. | Circuit boards containing vias and methods for producing same |
US6818464B2 (en) | 2001-10-17 | 2004-11-16 | Hymite A/S | Double-sided etching technique for providing a semiconductor structure with through-holes, and a feed-through metalization process for sealing the through-holes |
US6486549B1 (en) | 2001-11-10 | 2002-11-26 | Bridge Semiconductor Corporation | Semiconductor module with encapsulant base |
US6611052B2 (en) | 2001-11-16 | 2003-08-26 | Micron Technology, Inc. | Wafer level stackable semiconductor package |
US7126214B2 (en) | 2001-12-05 | 2006-10-24 | Arbor Company Llp | Reconfigurable processor module comprising hybrid stacked integrated circuit die elements |
US6599436B1 (en) | 2001-12-06 | 2003-07-29 | Sandia Corporation | Formation of interconnections to microfluidic devices |
US7332819B2 (en) | 2002-01-09 | 2008-02-19 | Micron Technology, Inc. | Stacked die in die BGA package |
US6828223B2 (en) | 2001-12-14 | 2004-12-07 | Taiwan Semiconductor Manufacturing Co. | Localized slots for stress relieve in copper |
US20030119308A1 (en) | 2001-12-20 | 2003-06-26 | Geefay Frank S. | Sloped via contacts |
US6724798B2 (en) | 2001-12-31 | 2004-04-20 | Honeywell International Inc. | Optoelectronic devices and method of production |
US6756564B2 (en) | 2001-12-31 | 2004-06-29 | Andrx Pharmaceuticals Llc | System and method for removing particulate created from a drilled or cut surface |
JP2003289073A (en) | 2002-01-22 | 2003-10-10 | Canon Inc | Semiconductor device and method of manufacturing semiconductor device |
DE10205026C1 (en) | 2002-02-07 | 2003-05-28 | Bosch Gmbh Robert | Semiconductor substrate used for vertical integration of integrated circuits comprises a first conductor strip on its front side, and a region formed by insulating trenches and electrically insulated from the substrate |
US6606251B1 (en) | 2002-02-07 | 2003-08-12 | Cooligy Inc. | Power conditioning module |
US6750144B2 (en) | 2002-02-15 | 2004-06-15 | Faraday Technology Marketing Group, Llc | Method for electrochemical metallization and planarization of semiconductor substrates having features of different sizes |
US6762076B2 (en) | 2002-02-20 | 2004-07-13 | Intel Corporation | Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices |
US6645832B2 (en) | 2002-02-20 | 2003-11-11 | Intel Corporation | Etch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack |
US6864457B1 (en) | 2002-02-25 | 2005-03-08 | The Board Of Regents Of The University Of Nebraska | Laser machining of materials |
US6515325B1 (en) | 2002-03-06 | 2003-02-04 | Micron Technology, Inc. | Nanotube semiconductor devices and methods for making the same |
JP4129643B2 (en) * | 2002-03-19 | 2008-08-06 | セイコーエプソン株式会社 | Manufacturing method of semiconductor device |
US6653236B2 (en) | 2002-03-29 | 2003-11-25 | Micron Technology, Inc. | Methods of forming metal-containing films over surfaces of semiconductor substrates; and semiconductor constructions |
EP1351288B1 (en) | 2002-04-05 | 2015-10-28 | STMicroelectronics Srl | Process for manufacturing an insulated interconnection through a body of semiconductor material and corresponding semiconductor device |
US6943056B2 (en) | 2002-04-16 | 2005-09-13 | Renesas Technology Corp. | Semiconductor device manufacturing method and electronic equipment using same |
JP2003318178A (en) | 2002-04-24 | 2003-11-07 | Seiko Epson Corp | Semiconductor device, its manufacturing method, circuit board, and electronic apparatus |
US6951627B2 (en) | 2002-04-26 | 2005-10-04 | Matsushita Electric Industrial Co., Ltd. | Method of drilling holes with precision laser micromachining |
US6682955B2 (en) | 2002-05-08 | 2004-01-27 | Micron Technology, Inc. | Stacked die module and techniques for forming a stacked die module |
US6596619B1 (en) | 2002-05-17 | 2003-07-22 | Taiwan Semiconductor Manufacturing Company | Method for fabricating an under bump metallization structure |
US7166247B2 (en) | 2002-06-24 | 2007-01-23 | Micron Technology, Inc. | Foamed mechanical planarization pads made with supercritical fluid |
US7260890B2 (en) | 2002-06-26 | 2007-08-28 | Georgia Tech Research Corporation | Methods for fabricating three-dimensional all organic interconnect structures |
JP4363823B2 (en) | 2002-07-04 | 2009-11-11 | 富士通マイクロエレクトロニクス株式会社 | Semiconductor device mounting system |
US6621045B1 (en) | 2002-07-25 | 2003-09-16 | Matsushita Electric Industrial Co., Ltd. | Workpiece stabilization with gas flow |
US6716737B2 (en) | 2002-07-29 | 2004-04-06 | Hewlett-Packard Development Company, L.P. | Method of forming a through-substrate interconnect |
US6902872B2 (en) * | 2002-07-29 | 2005-06-07 | Hewlett-Packard Development Company, L.P. | Method of forming a through-substrate interconnect |
US6800930B2 (en) | 2002-07-31 | 2004-10-05 | Micron Technology, Inc. | Semiconductor dice having back side redistribution layer accessed using through-silicon vias, and assemblies |
US6821811B2 (en) | 2002-08-02 | 2004-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor |
US6593221B1 (en) | 2002-08-13 | 2003-07-15 | Micron Technology, Inc. | Selective passivation of exposed silicon |
US6815308B2 (en) | 2002-08-15 | 2004-11-09 | Micron Technology, Inc. | Use of a dual-tone resist to form photomasks including alignment mark protection, intermediate semiconductor device structures and bulk semiconductor device substrates |
KR20040017037A (en) | 2002-08-20 | 2004-02-26 | 삼성전자주식회사 | Semiconductor contact structure and method of forming the same |
US20040036170A1 (en) | 2002-08-20 | 2004-02-26 | Lee Teck Kheng | Double bumping of flexible substrate for first and second level interconnects |
US7030010B2 (en) | 2002-08-29 | 2006-04-18 | Micron Technology, Inc. | Methods for creating electrophoretically insulated vias in semiconductive substrates and resulting structures |
US6903442B2 (en) | 2002-08-29 | 2005-06-07 | Micron Technology, Inc. | Semiconductor component having backside pin contacts |
US6885107B2 (en) | 2002-08-29 | 2005-04-26 | Micron Technology, Inc. | Flip-chip image sensor packages and methods of fabrication |
JP2004095849A (en) | 2002-08-30 | 2004-03-25 | Fujikura Ltd | Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode |
US20040073607A1 (en) | 2002-09-25 | 2004-04-15 | Su Chi Chung | Multimedia messaging system and method |
KR20040026530A (en) | 2002-09-25 | 2004-03-31 | 삼성전자주식회사 | Semiconductor package and stack package using the same |
US6569777B1 (en) | 2002-10-02 | 2003-05-27 | Taiwan Semiconductor Manufacturing Co., Ltd | Plasma etching method to form dual damascene with improved via profile |
US6936536B2 (en) | 2002-10-09 | 2005-08-30 | Micron Technology, Inc. | Methods of forming conductive through-wafer vias |
US6660630B1 (en) | 2002-10-10 | 2003-12-09 | Taiwan Semiconductor Manufacturing Co. Ltd. | Method for forming a tapered dual damascene via portion with improved performance |
TWI227050B (en) | 2002-10-11 | 2005-01-21 | Sanyo Electric Co | Semiconductor device and method for manufacturing the same |
SG111972A1 (en) | 2002-10-17 | 2005-06-29 | Agency Science Tech & Res | Wafer-level package for micro-electro-mechanical systems |
US7566681B2 (en) | 2002-10-29 | 2009-07-28 | National Research Council Of Canada | Platinum based nano-size catalysts |
US20050236421A9 (en) | 2003-01-23 | 2005-10-27 | Vasilios Vasiadis | Device for handling and orienting pills or tablets in a precise manner |
US6790775B2 (en) | 2002-10-31 | 2004-09-14 | Hewlett-Packard Development Company, L.P. | Method of forming a through-substrate interconnect |
KR100444588B1 (en) | 2002-11-12 | 2004-08-16 | 삼성전자주식회사 | Fabrication of via hole for glass wafer |
US20040094389A1 (en) | 2002-11-19 | 2004-05-20 | Boyce Keith W. | Conveyor having carriers with movable jaws |
JP4209178B2 (en) | 2002-11-26 | 2009-01-14 | 新光電気工業株式会社 | Electronic component mounting structure and manufacturing method thereof |
US7164565B2 (en) | 2002-11-29 | 2007-01-16 | Sigmatel, Inc. | ESD protection circuit |
US6746971B1 (en) | 2002-12-05 | 2004-06-08 | Advanced Micro Devices, Inc. | Method of forming copper sulfide for memory cell |
KR100482180B1 (en) | 2002-12-16 | 2005-04-14 | 동부아남반도체 주식회사 | Fabricating method of semiconductor device |
US6825557B2 (en) | 2002-12-17 | 2004-11-30 | Intel Corporation | Localized backside chip cooling with integrated smart valves |
JP4071615B2 (en) | 2002-12-20 | 2008-04-02 | 株式会社フジクラ | Method for forming through electrode and substrate with through electrode |
JP2006526035A (en) | 2002-12-30 | 2006-11-16 | ハネウエル・インターナシヨナル・インコーポレーテツド | Organic composition |
KR100621991B1 (en) | 2003-01-03 | 2006-09-13 | 삼성전자주식회사 | Chip scale stack package |
US20040219342A1 (en) | 2003-01-07 | 2004-11-04 | Boggs David W. | Electronic substrate with direct inner layer component interconnection |
JP2004221348A (en) * | 2003-01-15 | 2004-08-05 | Seiko Epson Corp | Semiconductor device, its manufacturing method, circuit board and electronic apparatus |
JP4322508B2 (en) | 2003-01-15 | 2009-09-02 | 新光電気工業株式会社 | Manufacturing method of semiconductor device |
US7023090B2 (en) | 2003-01-29 | 2006-04-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding pad and via structure design |
US7195700B2 (en) | 2003-01-30 | 2007-03-27 | Novellus Systems, Inc. | Method of electroplating copper layers with flat topography |
JP2004247530A (en) | 2003-02-14 | 2004-09-02 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP4118168B2 (en) | 2003-02-28 | 2008-07-16 | 株式会社ニデック | Ophthalmic laser surgery device |
US7176122B2 (en) | 2003-03-04 | 2007-02-13 | Intel Corporation | Dielectric with sidewall passivating layer |
SG137651A1 (en) | 2003-03-14 | 2007-12-28 | Micron Technology Inc | Microelectronic devices and methods for packaging microelectronic devices |
DE10312588B4 (en) | 2003-03-21 | 2013-09-19 | Robert Bosch Gmbh | Procedure for tank leak diagnosis |
US20040198066A1 (en) | 2003-03-21 | 2004-10-07 | Applied Materials, Inc. | Using supercritical fluids and/or dense fluids in semiconductor applications |
KR100497111B1 (en) | 2003-03-25 | 2005-06-28 | 삼성전자주식회사 | WL CSP, stack package stacking the same and manufacturing method thereof |
DE10314502B4 (en) | 2003-03-31 | 2008-06-12 | Advanced Micro Devices, Inc., Sunnyvale | Process for the electrolytic coating of a semiconductor structure |
US6841883B1 (en) | 2003-03-31 | 2005-01-11 | Micron Technology, Inc. | Multi-dice chip scale semiconductor components and wafer level methods of fabrication |
JP3800335B2 (en) | 2003-04-16 | 2006-07-26 | セイコーエプソン株式会社 | Optical device, optical module, semiconductor device, and electronic apparatus |
TWI229890B (en) | 2003-04-24 | 2005-03-21 | Sanyo Electric Co | Semiconductor device and method of manufacturing same |
US20040222082A1 (en) | 2003-05-05 | 2004-11-11 | Applied Materials, Inc. | Oblique ion milling of via metallization |
WO2004109770A2 (en) | 2003-06-05 | 2004-12-16 | Oticon A/S | Through wafer via process and amplifier with through wafer via |
US7007258B2 (en) | 2003-06-13 | 2006-02-28 | Sun Microsystems, Inc. | Method, apparatus, and computer program product for generation of a via array within a fill area of a design layout |
JP3646720B2 (en) * | 2003-06-19 | 2005-05-11 | セイコーエプソン株式会社 | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus |
US7041598B2 (en) | 2003-06-25 | 2006-05-09 | Hewlett-Packard Development Company, L.P. | Directional ion etching process for patterning self-aligned via contacts |
JP4175197B2 (en) | 2003-06-27 | 2008-11-05 | 株式会社デンソー | Flip chip mounting structure |
US6913952B2 (en) | 2003-07-03 | 2005-07-05 | Micron Technology, Inc. | Methods of forming circuit traces and contact pads for interposers utilized in semiconductor packages |
US7111149B2 (en) | 2003-07-07 | 2006-09-19 | Intel Corporation | Method and apparatus for generating a device ID for stacked devices |
JP2005051150A (en) * | 2003-07-31 | 2005-02-24 | Seiko Epson Corp | Semiconductor device, its manufacturing method, circuit board, and electronic apparatus |
JP3690407B2 (en) | 2003-07-31 | 2005-08-31 | セイコーエプソン株式会社 | Manufacturing method of semiconductor device |
US7192891B2 (en) | 2003-08-01 | 2007-03-20 | Samsung Electronics, Co., Ltd. | Method for forming a silicon oxide layer using spin-on glass |
US7060624B2 (en) | 2003-08-13 | 2006-06-13 | International Business Machines Corporation | Deep filled vias |
KR100537892B1 (en) | 2003-08-26 | 2005-12-21 | 삼성전자주식회사 | Chip stack package and manufacturing method thereof |
US7173325B2 (en) | 2003-08-29 | 2007-02-06 | C-Core Technologies, Inc. | Expansion constrained die stack |
JP2005093980A (en) | 2003-09-16 | 2005-04-07 | Irvine Sensors Corp | Stackable layer, mini stack, and laminated electronic module |
US7345350B2 (en) | 2003-09-23 | 2008-03-18 | Micron Technology, Inc. | Process and integration scheme for fabricating conductive components, through-vias and semiconductor components including conductive through-wafer vias |
US7118833B2 (en) | 2003-09-26 | 2006-10-10 | Flipchip International, Llc | Forming partial-depth features in polymer film |
US6821826B1 (en) | 2003-09-30 | 2004-11-23 | International Business Machines Corporation | Three dimensional CMOS integrated circuits having device layers built on different crystal oriented wafers |
US7402758B2 (en) | 2003-10-09 | 2008-07-22 | Qualcomm Incorporated | Telescoping blind via in three-layer core |
US7449067B2 (en) | 2003-11-03 | 2008-11-11 | International Business Machines Corporation | Method and apparatus for filling vias |
TWI228295B (en) | 2003-11-10 | 2005-02-21 | Shih-Hsien Tseng | IC structure and a manufacturing method |
US7091124B2 (en) | 2003-11-13 | 2006-08-15 | Micron Technology, Inc. | Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices |
US6949802B2 (en) | 2003-11-20 | 2005-09-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection structure |
US7583862B2 (en) | 2003-11-26 | 2009-09-01 | Aptina Imaging Corporation | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7183653B2 (en) | 2003-12-17 | 2007-02-27 | Intel Corporation | Via including multiple electrical paths |
US7211289B2 (en) | 2003-12-18 | 2007-05-01 | Endicott Interconnect Technologies, Inc. | Method of making multilayered printed circuit board with filled conductive holes |
KR20050065038A (en) | 2003-12-24 | 2005-06-29 | 삼성전기주식회사 | Printed circuit board and package having oblique via |
US7098544B2 (en) | 2004-01-06 | 2006-08-29 | International Business Machines Corporation | Edge seal for integrated circuit chips |
US7316063B2 (en) | 2004-01-12 | 2008-01-08 | Micron Technology, Inc. | Methods of fabricating substrates including at least one conductive via |
JP4408713B2 (en) * | 2004-02-03 | 2010-02-03 | Necエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
TWI233170B (en) | 2004-02-05 | 2005-05-21 | United Microelectronics Corp | Ultra-thin wafer level stack packaging method and structure using thereof |
JP4850392B2 (en) | 2004-02-17 | 2012-01-11 | 三洋電機株式会社 | Manufacturing method of semiconductor device |
US7253397B2 (en) | 2004-02-23 | 2007-08-07 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US6967282B2 (en) | 2004-03-05 | 2005-11-22 | Raytheon Company | Flip chip MMIC on board performance using periodic electromagnetic bandgap structures |
US7354863B2 (en) | 2004-03-19 | 2008-04-08 | Micron Technology, Inc. | Methods of selectively removing silicon |
US20050227382A1 (en) | 2004-04-02 | 2005-10-13 | Hui Angela T | In-situ surface treatment for memory cell formation |
US7245021B2 (en) | 2004-04-13 | 2007-07-17 | Vertical Circuits, Inc. | Micropede stacked die component assembly |
JP4492196B2 (en) | 2004-04-16 | 2010-06-30 | セイコーエプソン株式会社 | Semiconductor device manufacturing method, circuit board, and electronic apparatus |
US7632713B2 (en) | 2004-04-27 | 2009-12-15 | Aptina Imaging Corporation | Methods of packaging microelectronic imaging devices |
US20050247894A1 (en) | 2004-05-05 | 2005-11-10 | Watkins Charles M | Systems and methods for forming apertures in microfeature workpieces |
US8092734B2 (en) | 2004-05-13 | 2012-01-10 | Aptina Imaging Corporation | Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers |
US7253957B2 (en) | 2004-05-13 | 2007-08-07 | Micron Technology, Inc. | Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers |
US7235489B2 (en) | 2004-05-21 | 2007-06-26 | Agere Systems Inc. | Device and method to eliminate shorting induced by via to metal misalignment |
US7192845B2 (en) | 2004-06-08 | 2007-03-20 | Macronix International Co., Ltd. | Method of reducing alignment measurement errors between device layers |
US20050275750A1 (en) | 2004-06-09 | 2005-12-15 | Salman Akram | Wafer-level packaged microelectronic imagers and processes for wafer-level packaging |
US7498647B2 (en) | 2004-06-10 | 2009-03-03 | Micron Technology, Inc. | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US7199439B2 (en) | 2004-06-14 | 2007-04-03 | Micron Technology, Inc. | Microelectronic imagers and methods of packaging microelectronic imagers |
US7262405B2 (en) | 2004-06-14 | 2007-08-28 | Micron Technology, Inc. | Prefabricated housings for microelectronic imagers |
KR100618543B1 (en) | 2004-06-15 | 2006-08-31 | 삼성전자주식회사 | Method for manufacturing CSP for wafer level stack package |
US7709958B2 (en) | 2004-06-18 | 2010-05-04 | Uri Cohen | Methods and structures for interconnect passivation |
KR100570514B1 (en) | 2004-06-18 | 2006-04-13 | 삼성전자주식회사 | Manufacturing method for wafer level chip stack package |
KR100618837B1 (en) | 2004-06-22 | 2006-09-01 | 삼성전자주식회사 | Method for forming thin wafer stack for wafer level package |
US7033927B2 (en) | 2004-06-22 | 2006-04-25 | International Business Machines Corporation | Apparatus and method for thermal isolation, circuit cooling and electromagnetic shielding of a wafer |
US7232754B2 (en) | 2004-06-29 | 2007-06-19 | Micron Technology, Inc. | Microelectronic devices and methods for forming interconnects in microelectronic devices |
US20060003566A1 (en) | 2004-06-30 | 2006-01-05 | Ismail Emesh | Methods and apparatuses for semiconductor fabrication utilizing through-wafer interconnects |
US7416913B2 (en) | 2004-07-16 | 2008-08-26 | Micron Technology, Inc. | Methods of manufacturing microelectronic imaging units with discrete standoffs |
US7189954B2 (en) | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers |
US7402453B2 (en) | 2004-07-28 | 2008-07-22 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7186650B1 (en) | 2004-08-02 | 2007-03-06 | Advanced Micro Devices, Inc. | Control of bottom dimension of tapered contact via variation(s) of etch process |
US20060023107A1 (en) | 2004-08-02 | 2006-02-02 | Bolken Todd O | Microelectronic imagers with optics supports having threadless interfaces and methods for manufacturing such microelectronic imagers |
US7364934B2 (en) | 2004-08-10 | 2008-04-29 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7645635B2 (en) | 2004-08-16 | 2010-01-12 | Micron Technology, Inc. | Frame structure and semiconductor attach process for use therewith for fabrication of image sensor packages and the like, and resulting packages |
US20060038272A1 (en) | 2004-08-17 | 2006-02-23 | Texas Instruments Incorporated | Stacked wafer scale package |
US7223626B2 (en) | 2004-08-19 | 2007-05-29 | Micron Technology, Inc. | Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers |
US7632747B2 (en) | 2004-08-19 | 2009-12-15 | Micron Technology, Inc. | Conductive structures for microfeature devices and methods for fabricating microfeature devices |
US7397066B2 (en) | 2004-08-19 | 2008-07-08 | Micron Technology, Inc. | Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers |
US7092284B2 (en) | 2004-08-20 | 2006-08-15 | Infineon Technologies Ag | MRAM with magnetic via for storage of information and field sensor |
US7429494B2 (en) | 2004-08-24 | 2008-09-30 | Micron Technology, Inc. | Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers |
US7115961B2 (en) | 2004-08-24 | 2006-10-03 | Micron Technology, Inc. | Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices |
US7425499B2 (en) | 2004-08-24 | 2008-09-16 | Micron Technology, Inc. | Methods for forming interconnects in vias and microelectronic workpieces including such interconnects |
US7199050B2 (en) | 2004-08-24 | 2007-04-03 | Micron Technology, Inc. | Pass through via technology for use during the manufacture of a semiconductor device |
US7183176B2 (en) | 2004-08-25 | 2007-02-27 | Agency For Science, Technology And Research | Method of forming through-wafer interconnects for vertical wafer level packaging |
US7276393B2 (en) | 2004-08-26 | 2007-10-02 | Micron Technology, Inc. | Microelectronic imaging units and methods of manufacturing microelectronic imaging units |
US7419852B2 (en) | 2004-08-27 | 2008-09-02 | Micron Technology, Inc. | Low temperature methods of forming back side redistribution layers in association with through wafer interconnects, semiconductor devices including same, and assemblies |
SG120200A1 (en) | 2004-08-27 | 2006-03-28 | Micron Technology Inc | Slanted vias for electrical circuits on circuit boards and other substrates |
US7378342B2 (en) | 2004-08-27 | 2008-05-27 | Micron Technology, Inc. | Methods for forming vias varying lateral dimensions |
US7511262B2 (en) | 2004-08-30 | 2009-03-31 | Micron Technology, Inc. | Optical device and assembly for use with imaging dies, and wafer-label imager assembly |
US7646075B2 (en) | 2004-08-31 | 2010-01-12 | Micron Technology, Inc. | Microelectronic imagers having front side contacts |
US7491582B2 (en) * | 2004-08-31 | 2009-02-17 | Seiko Epson Corporation | Method for manufacturing semiconductor device and semiconductor device |
US7109068B2 (en) | 2004-08-31 | 2006-09-19 | Micron Technology, Inc. | Through-substrate interconnect fabrication methods |
US7244663B2 (en) | 2004-08-31 | 2007-07-17 | Micron Technology, Inc. | Wafer reinforcement structure and methods of fabrication |
US7129567B2 (en) | 2004-08-31 | 2006-10-31 | Micron Technology, Inc. | Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements |
US7300857B2 (en) | 2004-09-02 | 2007-11-27 | Micron Technology, Inc. | Through-wafer interconnects for photoimager and memory wafers |
US8288828B2 (en) | 2004-09-09 | 2012-10-16 | International Business Machines Corporation | Via contact structure having dual silicide layers |
TWI254387B (en) | 2004-09-10 | 2006-05-01 | Advanced Semiconductor Eng | Wafer stacking package method |
US7326629B2 (en) | 2004-09-10 | 2008-02-05 | Agency For Science, Technology And Research | Method of stacking thin substrates by transfer bonding |
JP4246132B2 (en) | 2004-10-04 | 2009-04-02 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
US7262495B2 (en) | 2004-10-07 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | 3D interconnect with protruding contacts |
WO2006053036A2 (en) | 2004-11-10 | 2006-05-18 | Unitive International Limited | Non-circular via holes for bumping pads and related structures |
US7396732B2 (en) | 2004-12-17 | 2008-07-08 | Interuniversitair Microelektronica Centrum Vzw (Imec) | Formation of deep trench airgaps and related applications |
US7271482B2 (en) | 2004-12-30 | 2007-09-18 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US7387855B2 (en) | 2005-01-10 | 2008-06-17 | Taiwan Semiconductor Manufacturing Co., Ltd | Anti-ESD photomask blank |
US7282433B2 (en) | 2005-01-10 | 2007-10-16 | Micron Technology, Inc. | Interconnect structures with bond-pads and methods of forming bump sites on bond-pads |
US20060160367A1 (en) | 2005-01-19 | 2006-07-20 | Micron Technology, Inc. And Idaho Research Foundation | Methods of treating semiconductor substrates |
US20060177999A1 (en) | 2005-02-10 | 2006-08-10 | Micron Technology, Inc. | Microelectronic workpieces and methods for forming interconnects in microelectronic workpieces |
US7303931B2 (en) | 2005-02-10 | 2007-12-04 | Micron Technology, Inc. | Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces |
US7190039B2 (en) | 2005-02-18 | 2007-03-13 | Micron Technology, Inc. | Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers |
US8241708B2 (en) | 2005-03-09 | 2012-08-14 | Micron Technology, Inc. | Formation of insulator oxide films with acid or base catalyzed hydrolysis of alkoxides in supercritical carbon dioxide |
US7323784B2 (en) | 2005-03-17 | 2008-01-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Top via pattern for bond pad structure |
US7371676B2 (en) | 2005-04-08 | 2008-05-13 | Micron Technology, Inc. | Method for fabricating semiconductor components with through wire interconnects |
US20060252262A1 (en) | 2005-05-03 | 2006-11-09 | Rockwell Scientific Licensing, Llc | Semiconductor structures having via structures between planar frontside and backside surfaces and methods of fabricating the same |
US20060252254A1 (en) | 2005-05-06 | 2006-11-09 | Basol Bulent M | Filling deep and wide openings with defect-free conductor |
KR100611204B1 (en) | 2005-05-10 | 2006-08-10 | 삼성전자주식회사 | Multi stack packaging chip and method thereof |
US7897503B2 (en) | 2005-05-12 | 2011-03-01 | The Board Of Trustees Of The University Of Arkansas | Infinitely stackable interconnect device and method |
US7170183B1 (en) | 2005-05-13 | 2007-01-30 | Amkor Technology, Inc. | Wafer level stacked package |
US7919844B2 (en) | 2005-05-26 | 2011-04-05 | Aprolase Development Co., Llc | Tier structure with tier frame having a feedthrough structure |
US7317256B2 (en) | 2005-06-01 | 2008-01-08 | Intel Corporation | Electronic packaging including die with through silicon via |
US20060278979A1 (en) | 2005-06-09 | 2006-12-14 | Intel Corporation | Die stacking recessed pad wafer design |
US7521806B2 (en) * | 2005-06-14 | 2009-04-21 | John Trezza | Chip spanning connection |
US7215032B2 (en) | 2005-06-14 | 2007-05-08 | Cubic Wafer, Inc. | Triaxial through-chip connection |
US8154131B2 (en) | 2005-06-14 | 2012-04-10 | Cufer Asset Ltd. L.L.C. | Profiled contact |
US7534722B2 (en) | 2005-06-14 | 2009-05-19 | John Trezza | Back-to-front via process |
US7510907B2 (en) | 2005-06-22 | 2009-03-31 | Intel Corporation | Through-wafer vias and surface metallization for coupling thereto |
US20060290001A1 (en) | 2005-06-28 | 2006-12-28 | Micron Technology, Inc. | Interconnect vias and associated methods of formation |
US7795134B2 (en) | 2005-06-28 | 2010-09-14 | Micron Technology, Inc. | Conductive interconnect structures and formation methods using supercritical fluids |
US7425507B2 (en) | 2005-06-28 | 2008-09-16 | Micron Technology, Inc. | Semiconductor substrates including vias of nonuniform cross section, methods of forming and associated structures |
US20070004079A1 (en) | 2005-06-30 | 2007-01-04 | Geefay Frank S | Method for making contact through via contact to an offset contactor inside a cap for the wafer level packaging of FBAR chips |
KR100629498B1 (en) | 2005-07-15 | 2006-09-28 | 삼성전자주식회사 | The micro package, multi-stack micro package and the method of manufacturing thereof |
US7598181B2 (en) | 2005-07-19 | 2009-10-06 | Micron Technology, Inc. | Process for enhancing solubility and reaction rates in supercritical fluids |
US7622313B2 (en) | 2005-07-29 | 2009-11-24 | Freescale Semiconductor, Inc. | Fabrication of three dimensional integrated circuit employing multiple die panels |
US7429529B2 (en) | 2005-08-05 | 2008-09-30 | Farnworth Warren M | Methods of forming through-wafer interconnects and structures resulting therefrom |
US7485968B2 (en) | 2005-08-11 | 2009-02-03 | Ziptronix, Inc. | 3D IC method and device |
US7488680B2 (en) | 2005-08-30 | 2009-02-10 | International Business Machines Corporation | Conductive through via process for electronic device carriers |
US7845540B2 (en) | 2005-08-30 | 2010-12-07 | Micron Technology, Inc. | Systems and methods for depositing conductive material into openings in microfeature workpieces |
US8308053B2 (en) | 2005-08-31 | 2012-11-13 | Micron Technology, Inc. | Microfeature workpieces having alloyed conductive structures, and associated methods |
US20070045812A1 (en) | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Microfeature assemblies including interconnect structures and methods for forming such interconnect structures |
US7326591B2 (en) | 2005-08-31 | 2008-02-05 | Micron Technology, Inc. | Interconnecting substrates for microelectronic dies, methods for forming vias in such substrates, and methods for packaging microelectronic devices |
DE102005042074A1 (en) | 2005-08-31 | 2007-03-08 | Forschungsverbund Berlin E.V. | Method for producing plated-through holes in semiconductor wafers |
US7863187B2 (en) | 2005-09-01 | 2011-01-04 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7262134B2 (en) | 2005-09-01 | 2007-08-28 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
US7288757B2 (en) | 2005-09-01 | 2007-10-30 | Micron Technology, Inc. | Microelectronic imaging devices and associated methods for attaching transmissive elements |
US7452743B2 (en) | 2005-09-01 | 2008-11-18 | Aptina Imaging Corporation | Microelectronic imaging units and methods of manufacturing microelectronic imaging units at the wafer level |
US7772115B2 (en) | 2005-09-01 | 2010-08-10 | Micron Technology, Inc. | Methods for forming through-wafer interconnects, intermediate structures so formed, and devices and systems having at least one solder dam structure |
US7622377B2 (en) | 2005-09-01 | 2009-11-24 | Micron Technology, Inc. | Microfeature workpiece substrates having through-substrate vias, and associated methods of formation |
US20070045120A1 (en) | 2005-09-01 | 2007-03-01 | Micron Technology, Inc. | Methods and apparatus for filling features in microfeature workpieces |
US7582561B2 (en) | 2005-09-01 | 2009-09-01 | Micron Technology, Inc. | Method of selectively depositing materials on a substrate using a supercritical fluid |
US7852101B2 (en) | 2005-09-07 | 2010-12-14 | Nec Corporation | Semiconductor device testing apparatus and power supply unit for semiconductor device testing apparatus |
JP2009512213A (en) | 2005-10-11 | 2009-03-19 | ボク,タエソック | Simoth image sensor wafer level package using silicon via contact and method of manufacturing the same |
JP2007109758A (en) | 2005-10-12 | 2007-04-26 | Mitsubishi Electric Corp | Method of manufacturing compound semiconductor element |
US7393758B2 (en) | 2005-11-03 | 2008-07-01 | Maxim Integrated Products, Inc. | Wafer level packaging process |
US7528494B2 (en) | 2005-11-03 | 2009-05-05 | International Business Machines Corporation | Accessible chip stack and process of manufacturing thereof |
US7344917B2 (en) | 2005-11-30 | 2008-03-18 | Freescale Semiconductor, Inc. | Method for packaging a semiconductor device |
US7378726B2 (en) | 2005-12-28 | 2008-05-27 | Intel Corporation | Stacked packages with interconnecting pins |
US7417321B2 (en) | 2005-12-30 | 2008-08-26 | Taiwan Semiconductor Manufacturing Co., Ltd | Via structure and process for forming the same |
US7626257B2 (en) | 2006-01-18 | 2009-12-01 | Infineon Technologies Ag | Semiconductor devices and methods of manufacture thereof |
US7671460B2 (en) | 2006-01-25 | 2010-03-02 | Teledyne Licensing, Llc | Buried via technology for three dimensional integrated circuits |
KR100753415B1 (en) | 2006-03-17 | 2007-08-30 | 주식회사 하이닉스반도체 | Stack package |
US7453154B2 (en) | 2006-03-29 | 2008-11-18 | Delphi Technologies, Inc. | Carbon nanotube via interconnect |
US7625814B2 (en) | 2006-03-29 | 2009-12-01 | Asm Nutool, Inc. | Filling deep features with conductors in semiconductor manufacturing |
US7749899B2 (en) | 2006-06-01 | 2010-07-06 | Micron Technology, Inc. | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
US20080006850A1 (en) | 2006-07-10 | 2008-01-10 | Innovative Micro Technology | System and method for forming through wafer vias using reverse pulse plating |
US7629249B2 (en) | 2006-08-28 | 2009-12-08 | Micron Technology, Inc. | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
US7648856B2 (en) | 2006-08-28 | 2010-01-19 | Micron Technology, Inc. | Methods for attaching microfeature dies to external devices |
US8021981B2 (en) | 2006-08-30 | 2011-09-20 | Micron Technology, Inc. | Redistribution layers for microfeature workpieces, and associated systems and methods |
US7902643B2 (en) | 2006-08-31 | 2011-03-08 | Micron Technology, Inc. | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
US7666768B2 (en) | 2006-09-29 | 2010-02-23 | Intel Corporation | Through-die metal vias with a dispersed phase of graphitic structures of carbon for reduced thermal expansion and increased electrical conductance |
KR100800161B1 (en) | 2006-09-30 | 2008-02-01 | 주식회사 하이닉스반도체 | Method for forming through silicon via |
KR100831405B1 (en) | 2006-10-02 | 2008-05-21 | (주) 파이오닉스 | Wafer bonding packaging method |
US7704874B1 (en) * | 2006-10-02 | 2010-04-27 | Newport Fab, Llc | Method for fabricating a frontside through-wafer via in a processed wafer and related structure |
US7675162B2 (en) | 2006-10-03 | 2010-03-09 | Innovative Micro Technology | Interconnect structure using through wafer vias and method of fabrication |
US7932175B2 (en) | 2007-05-29 | 2011-04-26 | Freescale Semiconductor, Inc. | Method to form a via |
US8003517B2 (en) | 2007-05-29 | 2011-08-23 | Freescale Semiconductor, Inc. | Method for forming interconnects for 3-D applications |
KR100895813B1 (en) | 2007-06-20 | 2009-05-06 | 주식회사 하이닉스반도체 | Method for fabricating of semiconductor package |
US8221557B2 (en) | 2007-07-06 | 2012-07-17 | Micron Technology, Inc. | Systems and methods for exposing semiconductor workpieces to vapors for through-hole cleaning and/or other processes |
SG149710A1 (en) | 2007-07-12 | 2009-02-27 | Micron Technology Inc | Interconnects for packaged semiconductor devices and methods for manufacturing such devices |
SG150410A1 (en) | 2007-08-31 | 2009-03-30 | Micron Technology Inc | Partitioned through-layer via and associated systems and methods |
KR101448150B1 (en) | 2007-10-04 | 2014-10-08 | 삼성전자주식회사 | Multi-chip package memory stacked memory chips, method for stacking memory and method for controlling operation of multi-chip package memory |
KR101176187B1 (en) | 2007-11-21 | 2012-08-22 | 삼성전자주식회사 | Stacked semiconductor device and method for thereof serial path build up |
US7884015B2 (en) | 2007-12-06 | 2011-02-08 | Micron Technology, Inc. | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
US8084854B2 (en) | 2007-12-28 | 2011-12-27 | Micron Technology, Inc. | Pass-through 3D interconnect for microelectronic dies and associated systems and methods |
KR101420817B1 (en) | 2008-01-15 | 2014-07-21 | 삼성전자주식회사 | Semiconductor Integrated Circuit Device Electrically Connecting Integrated Circuit Modules Stacked Sequentially With 3-Dimensional Serial And Parallel Circuits And Method Of Forming The Same |
US8486823B2 (en) | 2008-03-07 | 2013-07-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods of forming through via |
US8253230B2 (en) | 2008-05-15 | 2012-08-28 | Micron Technology, Inc. | Disabling electrical connections using pass-through 3D interconnects and associated systems and methods |
US7968460B2 (en) | 2008-06-19 | 2011-06-28 | Micron Technology, Inc. | Semiconductor with through-substrate interconnect |
US7800238B2 (en) | 2008-06-27 | 2010-09-21 | Micron Technology, Inc. | Surface depressions for die-to-die interconnects and associated systems and methods |
US8809191B2 (en) * | 2011-12-13 | 2014-08-19 | Stats Chippac, Ltd. | Semiconductor device and method of forming UBM structure on back surface of TSV semiconductor wafer |
-
2005
- 2005-09-01 US US11/217,169 patent/US7863187B2/en active Active
-
2006
- 2006-09-01 WO PCT/US2006/034146 patent/WO2007027969A2/en not_active Application Discontinuation
-
2010
- 2010-12-10 US US12/965,301 patent/US20110079900A1/en not_active Abandoned
-
2017
- 2017-07-27 US US15/662,204 patent/US20170323828A1/en not_active Abandoned
-
2020
- 2020-08-12 US US16/991,965 patent/US11476160B2/en active Active
-
2022
- 2022-10-17 US US18/047,049 patent/US12014958B2/en active Active
-
2024
- 2024-06-14 US US18/744,493 patent/US20240339360A1/en active Pending
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6007719A (en) * | 1995-02-17 | 1999-12-28 | Seuk Won Yoo | Process for high concentrated waste water treatment using membrane separation |
US5618752A (en) * | 1995-06-05 | 1997-04-08 | Harris Corporation | Method of fabrication of surface mountable integrated circuits |
US6087719A (en) * | 1997-04-25 | 2000-07-11 | Kabushiki Kaisha Toshiba | Chip for multi-chip semiconductor device and method of manufacturing the same |
US7039401B2 (en) * | 2000-11-24 | 2006-05-02 | Telecom Italia | Physical private mobile telecommunications network |
US6498381B2 (en) * | 2001-02-22 | 2002-12-24 | Tru-Si Technologies, Inc. | Semiconductor structures having multiple conductive layers in an opening, and methods for fabricating same |
US20030173678A1 (en) * | 2002-03-18 | 2003-09-18 | Fujitsu Limited | Semiconductor device and method for fabricating the same |
US7029937B2 (en) * | 2002-03-19 | 2006-04-18 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument |
US6864172B2 (en) * | 2002-06-18 | 2005-03-08 | Sanyo Electric Co., Ltd. | Manufacturing method of semiconductor device |
US6982141B2 (en) * | 2002-08-01 | 2006-01-03 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and manufacturing method thereof |
US7071031B2 (en) * | 2002-11-14 | 2006-07-04 | International Business Machines Corporation | Three-dimensional integrated CMOS-MEMS device and process for making the same |
US20060084258A1 (en) * | 2002-11-29 | 2006-04-20 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
US6916725B2 (en) * | 2003-01-24 | 2005-07-12 | Seiko Epson Corporation | Method for manufacturing semiconductor device, and method for manufacturing semiconductor module |
US6734084B1 (en) * | 2003-02-04 | 2004-05-11 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor device with recesses using anodic oxide |
US7214615B2 (en) * | 2003-03-17 | 2007-05-08 | Seiko Epson Corporation | Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus |
US7129112B2 (en) * | 2003-03-25 | 2006-10-31 | Seiko Epson Corporation | Manufacturing method for semiconductor device, semiconductor device, and electronic apparatus |
US20040245623A1 (en) * | 2003-03-28 | 2004-12-09 | Kazumi Hara | Semiconductor device, circuit substrate and electronic instrument |
US7138710B2 (en) * | 2003-06-19 | 2006-11-21 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument |
US7193308B2 (en) * | 2003-09-26 | 2007-03-20 | Seiko Epson Corporation | Intermediate chip module, semiconductor device, circuit board, and electronic device |
US6867073B1 (en) * | 2003-10-21 | 2005-03-15 | Ziptronix, Inc. | Single mask via method and device |
US7282444B2 (en) * | 2003-12-04 | 2007-10-16 | Rohm Co., Ltd. | Semiconductor chip and manufacturing method for the same, and semiconductor device |
US8084866B2 (en) * | 2003-12-10 | 2011-12-27 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
US20050179120A1 (en) * | 2003-12-16 | 2005-08-18 | Koji Yamaguchi | Process for producing semiconductor device, semiconductor device, circuit board and electronic equipment |
US7049170B2 (en) * | 2003-12-17 | 2006-05-23 | Tru-Si Technologies, Inc. | Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities |
US7034401B2 (en) * | 2003-12-17 | 2006-04-25 | Tru-Si Technologies, Inc. | Packaging substrates for integrated circuits and soldering methods |
US7994048B2 (en) * | 2004-03-30 | 2011-08-09 | Renesas Electronics Corporation | Method of manufacturing a through electrode |
US20050218497A1 (en) * | 2004-03-30 | 2005-10-06 | Nec Electronics Corporation | Through electrode, spacer provided with the through electrode, and method of manufacturing the same |
US20050230805A1 (en) * | 2004-04-16 | 2005-10-20 | Ikuya Miyazawa | Semiconductor device, method for producing the same, circuit board, and electronic apparatus |
US7279776B2 (en) * | 2004-05-25 | 2007-10-09 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor device and semiconductor device |
US7858429B2 (en) * | 2004-06-29 | 2010-12-28 | Round Rock Research, Llc | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
US20070048994A1 (en) * | 2005-09-01 | 2007-03-01 | Tuttle Mark E | Methods for forming through-wafer interconnects and structures resulting therefrom |
US7446404B2 (en) * | 2006-01-25 | 2008-11-04 | Advanced Semiconductor Engineering, Inc. | Three-dimensional package and method of making the same |
US7777323B2 (en) * | 2006-05-22 | 2010-08-17 | Samsung Electronics Co., Ltd. | Semiconductor structure and method for forming the same |
US8378496B2 (en) * | 2007-07-24 | 2013-02-19 | Austriamicrosystems Ag | Semiconductor substrate with interlayer connection and method for production of a semiconductor substrate with interlayer connection |
US7833895B2 (en) * | 2008-05-12 | 2010-11-16 | Texas Instruments Incorporated | TSVS having chemically exposed TSV tips for integrated circuit devices |
US20100038778A1 (en) * | 2008-08-13 | 2010-02-18 | Samsung Electronics Co., Ltd. | Integrated circuit structures and fabricating methods that use voids in through holes as joining interfaces |
US20100038800A1 (en) * | 2008-08-18 | 2010-02-18 | Samsung Electronics Co., Ltd. | Through-silicon via structures including conductive protective layers and methods of forming the same |
US8026592B2 (en) * | 2008-08-18 | 2011-09-27 | Samsung Electronics Co., Ltd. | Through-silicon via structures including conductive protective layers |
US20100090317A1 (en) * | 2008-10-15 | 2010-04-15 | Bernd Zimmermann | Interconnect Structures and Methods |
US8159071B2 (en) * | 2008-10-21 | 2012-04-17 | Samsung Electro-Mechanics Co., Ltd. | Semiconductor package with a metal post |
US8501587B2 (en) * | 2009-01-13 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacked integrated chips and methods of fabrication thereof |
US20110042819A1 (en) * | 2009-08-20 | 2011-02-24 | Ying-Nan Wen | Chip package and method for forming the same |
US20110056740A1 (en) * | 2009-09-09 | 2011-03-10 | Dai Nippon Printing Co., Ltd. | Through-hole electrode substrate and manufacturing method thereof |
US8350361B2 (en) * | 2009-09-23 | 2013-01-08 | Advanced Semiconductor Engineering, Inc. | Semiconductor element having a conductive via and method for making the same and package having a semiconductor element with a conductive via |
US8114772B2 (en) * | 2009-10-26 | 2012-02-14 | Samsung Electronics Co., Ltd. | Method of manufacturing the semiconductor device |
US8399987B2 (en) * | 2009-12-04 | 2013-03-19 | Samsung Electronics Co., Ltd. | Microelectronic devices including conductive vias, conductive caps and variable thickness insulating layers |
US20110156268A1 (en) * | 2009-12-29 | 2011-06-30 | Bin-Hong Cheng | Semiconductor Process, Semiconductor Element and Package Having Semiconductor Element |
US8227839B2 (en) * | 2010-03-17 | 2012-07-24 | Texas Instruments Incorporated | Integrated circuit having TSVS including hillock suppression |
US20110291268A1 (en) * | 2010-06-01 | 2011-12-01 | David Wei Wang | Semiconductor wafer structure and multi-chip stack structure |
US8691691B2 (en) * | 2011-07-29 | 2014-04-08 | International Business Machines Corporation | TSV pillar as an interconnecting structure |
US8710670B2 (en) * | 2011-12-14 | 2014-04-29 | Stats Chippac Ltd. | Integrated circuit packaging system with coupling features and method of manufacture thereof |
US8963336B2 (en) * | 2012-08-03 | 2015-02-24 | Samsung Electronics Co., Ltd. | Semiconductor packages, methods of manufacturing the same, and semiconductor package structures including the same |
US20140048937A1 (en) * | 2012-08-16 | 2014-02-20 | SK Hynix Inc. | Semiconductor device and method for manufacturing the same |
US9076655B2 (en) * | 2013-01-16 | 2015-07-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming through-silicon-via with sacrificial layer |
Also Published As
Publication number | Publication date |
---|---|
US20240339360A1 (en) | 2024-10-10 |
US12014958B2 (en) | 2024-06-18 |
WO2007027969A2 (en) | 2007-03-08 |
US20070049016A1 (en) | 2007-03-01 |
US20210005514A1 (en) | 2021-01-07 |
US7863187B2 (en) | 2011-01-04 |
US20230106554A1 (en) | 2023-04-06 |
US11476160B2 (en) | 2022-10-18 |
US20110079900A1 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11476160B2 (en) | Microfeature workpieces and methods for forming interconnects in microfeature workpieces | |
US9281241B2 (en) | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods | |
US8476769B2 (en) | Through-silicon vias and methods for forming the same | |
US7262134B2 (en) | Microfeature workpieces and methods for forming interconnects in microfeature workpieces | |
US8405191B2 (en) | Semiconductor device structures | |
US20060177999A1 (en) | Microelectronic workpieces and methods for forming interconnects in microelectronic workpieces | |
EP1920460B1 (en) | Methods of forming through-wafer interconnects and structures resulting therefrom | |
US7932608B2 (en) | Through-silicon via formed with a post passivation interconnect structure | |
US20200294854A1 (en) | Vias and conductive routing layers in semiconductor substrates | |
US20090212438A1 (en) | Integrated circuit device comprising conductive vias and method of making the same | |
TW201027698A (en) | Semiconductor device and method for forming the same | |
US10910345B2 (en) | Semiconductor device with stacked die device | |
US20080048282A1 (en) | Semiconductor Device and Fabricating Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: SUPPLEMENT NO. 9 TO PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:047282/0463 Effective date: 20180731 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: SUPPLEMENT NO. 9 TO PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:047282/0463 Effective date: 20180731 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050713/0001 Effective date: 20190731 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |