JP2001077496A - Substrate for printed circuit and its manufacture - Google Patents

Substrate for printed circuit and its manufacture

Info

Publication number
JP2001077496A
JP2001077496A JP25217699A JP25217699A JP2001077496A JP 2001077496 A JP2001077496 A JP 2001077496A JP 25217699 A JP25217699 A JP 25217699A JP 25217699 A JP25217699 A JP 25217699A JP 2001077496 A JP2001077496 A JP 2001077496A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate
metal
wires
printed
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25217699A
Other languages
Japanese (ja)
Inventor
Tomio Suzuki
富雄 鈴木
Original Assignee
Ngk Insulators Ltd
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a substrate for printed circuit and its manufacturing method by which the pitch of vias can be adjusted in fine increments, even if errors in dimensions arise when metal wires are arranged at manufacture of the substrate. SOLUTION: This substrate for printed circuit is formed by arranging conductive metal wires 12 with a prescribed pitch on a plate of complex material 11 formed of plastic and ceramic. The metal wires 12 are arranged slanted between one surface and the other surface of the substrate 10 and are brought into electrical continuity, and the pitch of vias on the surface of the substrate 10 are adjusted in fine increments by the angle of the slant of the metal wires 12.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】 本発明は、プリント回路基板を構成する中間材料たるプリント回路用の基板材及びその製造方法に関するものである。 The present invention relates to relates to a substrate material and a manufacturing method thereof for intermediate material the form of a printed-circuit constituting the printed circuit board.

【0002】 [0002]

【従来の技術】 プリント回路基板は、一面側に集積回路のためのスロットや各種電子部品のための接続端子群が形成されており、他面側には部品をつなぐ導電路が印刷されたもので、従来から電子機器の要素部材として大量に利用されている。 BACKGROUND OF THE INVENTION printed circuit board, connection terminals are formed for slots and various electronic parts for integrated circuits on one surface side, which is conductive path that connects the parts on the other side is printed in, and in large quantities conventionally employed as a component member of the electronic device. 図2はプリント回路基板の一例を示す斜視図で、エポキシ樹脂、ガラスなどの絶縁材料からなる板状体に、その表面間を導通するように導電性金属2がメッキなどで設置されてなる基板材1の両面に、 Figure 2 is a perspective view showing an example of a printed circuit board, an epoxy resin, a plate-like member made of an insulating material such as glass, a conductive metal 2 so as to conduct between its surface is installed like in the plating group on both sides of the plate 1,
所定の回路が形成されたフォトプロセス層3が積層され、さらに該フォトプロセス層3の外側に、接続端子群や導電路4が印刷などで形成されて、プリント回路基板が構成されている。 Photo process layer 3 in which a predetermined circuit is formed is laminated further outside of the photo process layer 3, connecting terminal groups and conductive path 4 is formed by a printing, the printed circuit board is formed.

【0003】 このようなプリント回路基板に用いる基板材1は、例えば、エポキシ樹脂、ガラスなどの絶縁材料からなる板状体を作製した後、ドリル加工によって所定位置に導通用スルーホールを穿設し、次いでそのスルーホールに銅などの導電性金属をメッキ等の手段で被覆し、さらに封止材によって当該スルーホールを密封して作製されていた。 [0003] substrate material 1 used in such a printed circuit board, for example, epoxy resin, after producing the plate-like body made of an insulating material such as glass, drilled through holes for conducting a predetermined position by drilling , then its through-hole is coated with a conductive metal such as copper by a means such as plating, it has been prepared by further sealing the through hole with a sealing material.

【0004】 しかしながら、板状体にドリル加工すると、加工に伴って加工屑が発生し、製品不良が生じるおそれがあるほか、メッキは基板材の縁端部でクラックが生じるおそれが高く、電気的導通不良を引き起こすという問題があった。 However, when drilling in a plate-like body, the processing refuse along with the processing occurs, in addition there is a risk of product failure occurs, the plating has a high risk of cracks at the edge of the substrate material, electrical there is a problem that causes a conduction failure. また、ドリル加工では、加工できるスルーホールの長さ(基板の厚さ)/孔径の比は5程度が限度であり、例えば、厚さ1mmの基板の場合、直径0.2mm程度が下限となる。 Also, the drilling, the length (the thickness of substrate) / hole diameter ratio of the through hole can be processed is about 5 is limited, for example, in the case of a substrate having a thickness of 1 mm, a diameter of about 0.2mm is the lower limit . しかし、プリント回路基板の高密度化のためには、より小さい孔径とすることが好ましく、ドリル加工ではそれが困難であった。 However, because of the higher density of the printed circuit board is preferably in a smaller pore size, it was difficult in the drilling.

【0005】 また、枠体内に、Ni、Coなどの電気線を挿入し、エポキシ樹脂などの絶縁材料を溶融して流し込み、硬化後金属線に垂直な面で切断して、両面間を電気的に接続した回路板が提案されている(特開昭49 Further, inside the frame, Ni, insert the electric wire, such as Co, pouring melting the insulating material such as epoxy resin, is cut at a plane perpendicular to cure after the metal wire, electrically between both surfaces circuit board connected has been proposed (JP 49
−8759号公報参照)。 See JP -8759). しかしながら、この回路板ではエポキシ樹脂などを用いているため、樹脂が硬化するときに体積収縮が2〜3%程度起こり、スルーホールのピッチなどの寸法精度を損なうという問題があった。 However, in this circuit board due to the use of an epoxy resin, it occurs volume shrinkage of about 2-3% when the resin is cured, there is a problem that impair the dimensional accuracy such as the pitch of the through holes. 高密度化されたプリント回路基板においては、寸法精度が極めて重要であり、このことは大きな欠点であった。 In the printed circuit board which is densified, is very important dimensional accuracy, this was a major drawback. さらに、この回路板では、両面に積層されるフォトプロセス層との熱膨張差を何ら考慮していないため、使用に際しての衝撃や温度差などにより、基板材とフォトプロセス層とが剥離するおそれがある。 Furthermore, in this circuit board, since the difference in thermal expansion between the photo process layer which is laminated on both sides is not any consideration, by shock or temperature difference during use, possibly the substrate material and the photo process layer is peeled off is there. さらに、絶縁材料と金属線との間においても剥離するおそれがあった。 Furthermore, there is a possibility that even peeling between the insulating material and the metal wire.

【0006】 そこで、本発明者らは、上記した従来の回路板の欠点を解消した熱膨張性を制御することができるプリント回路用の基板材を提案した(特願平10−1 [0006] Therefore, the present inventors have proposed a substrate material for printed circuit capable of controlling the thermal expansion properties which overcomes the disadvantages of the conventional circuit board mentioned above (Japanese Patent Application No. 10-1
23289号)。 No. 98/23289). この基板材によれば、熱膨張性が低く、硬化時の体積収縮が小さくなることから、プリント回路用の基板材として極めて好適であるものの、製造時におけるばらつき(体積収縮率によるばらつき)により金属線の配設に多少の寸法誤差が発生したり、また、近年になってより狭ピッチの(高密度化された)プリント回路板の要請が強くなってくるのに伴って、寸法精度に対する規格が高くなり、寸法ばらつきに対する要求精度がの発生が頻発するおそれが多くなってきた。 According to this substrate material, a metal thermal expansion is low, since the volume shrinkage during curing is reduced, although it is very suitable as a substrate material for printed circuit, due to variations in manufacturing (variations due to volume shrinkage) some dimensional errors at the arrangement may occur in the line, also (densified) in a narrower pitch in recent years along with the request of the printed circuit board becomes stronger, specifications for dimensional accuracy becomes high, the generation of the required accuracy for the dimensional variations may have been often frequent.

【0007】 [0007]

【発明が解決しようとする課題】 従って、本発明は、 The object of the invention is to solve] Accordingly, the present invention is,
上記した問題に鑑みてなされたものであり、その主な目的は、基板材の製造時に金属線の配設に寸法誤差が発生しても、ビアピッチを微調整することができるプリント回路用の基板材とその製造方法を提供することにある。 Has been made in view of the problems described above, its main purpose is also disposed in the dimensional error of the metal wire occurs during manufacture of the substrate material, groups of printed circuit which can be finely adjusted via pitch to provide a plate and a manufacturing method thereof.
また、本発明の他の目的は、良好な電気的導通を確保し、使用に際して基板材とフォトプロセス層、および絶縁材料と金属線とが剥離しないように縦・横両方向の熱膨張性を制御することができるプリント回路用基板材を提供することにある。 Another object of the present invention is to ensure good electrical conduction, a substrate material and a photo process layer in use, and control the vertical and horizontal directions of the heat-expandable as insulating material and the metal wire is not peeled to provide a printed circuit board material which can be.

【0008】 [0008]

【課題を解決するための手段】 すなわち、本発明によれば、プラスチックとセラミックから構成され、板状に形成された複合材料に、導電性を有する金属線が所定ピッチで配設されてなるプリント回路用の基板材であって、該基板材の一表面と他表面との間で該金属線が傾斜して配設されて電気的に導通されているとともに、該金属線の傾斜角度により該基板材の表面におけるビア間のピッチが微調整されていることを特徴とするプリント回路用基板材が提供される。 That SUMMARY OF THE INVENTION According to the present invention, is composed of plastic and ceramic, a composite material formed in a plate shape, a metal wire having conductivity is disposed at a predetermined pitch printing a substrate material for circuit, the metal lines are arranged inclined with being electrically connected between the one surface and the other surface of the substrate sheet, said the inclination angle of the metal wire printed circuit board material, wherein the pitch between the vias on the surface of the substrate material is finely adjusted is provided.

【0009】 また、本発明によれば、金型内に、所定ピッチで導電性を有する金属線を張設した後、この金型内に、プラスチックとセラミックからなる複合材料を流し込み、該複合材料を硬化させた後、張設した金属線に傾斜してスライスすることにより、得られる基板材の表面におけるビア間のピッチを微調整することを特徴とするプリント回路用基板材の製造方法が提供される。 Further, according to the present invention, in a mold, after stretched metal wire having conductivity at a predetermined pitch, in the mold, pouring a composite material made of plastic and ceramic, the composite material after curing the, by slicing inclined stretched metal wire, a manufacturing method of a printed circuit board material, characterized in that fine adjustment of the pitch between the vias on the surface of the resulting substrate material provided It is.

【0010】 本発明においては、複合材料におけるセラミックの含有量が40体積%以上、90体積%以下であることが、硬化時の体積収縮をより少なくすることができるため、好ましい。 In the present invention, the content of the ceramic is 40% or more by volume in the composite material, it is 90 vol% or less, since it is possible to reduce the volume shrinkage during curing, preferred. 又、金属線と複合材料とがカップリング剤により接合していることが、金属線と複合材料との剥離防止の観点から好ましい。 Furthermore, the metal wire and the composite material are joined by a coupling agent is preferred from the viewpoint of preventing peeling between the metal wires and the composite material. また、複合材料は、低熱膨張材料であるシリカとエポキシ樹脂とから構成されていると、基板材の熱膨張係数が約20−10p Further, the composite material, the is composed of silica and epoxy resin is a low thermal expansion material, the thermal expansion coefficient of the substrate material is about 20-10p
pm/℃と低く、かつ異方性がなく、しかも所定の強度を付与できることから望ましい。 pm / ° C. and lower, and no anisotropy, moreover desirable to be able to impart a predetermined strength.

【0011】 [0011]

【発明の実施の形態】 本発明に係るプリント回路用基板材は、プラスチックとセラミックから構成され、板状に形成された複合材料に、導電性を有する金属線が所定ピッチで配設されてなるプリント回路用の基板材であり、この基板材の一表面と他表面との間で、金属線が傾斜して配設されて電気的に導通されている。 Printed circuit board material according to the embodiment of the present invention is composed of plastic and ceramic, a composite material formed in a plate shape, a metal wire having conductivity is disposed at a predetermined pitch a substrate material for printed circuit, between the one surface and the other surface of the substrate material, is disposed to be inclined metal wire is electrically conductive. そして、本発明に係る基板材の特徴は、金属線を傾斜して配設することにより、基板材の表面におけるビア間のピッチが微調整されていることである。 The characteristic of the substrate material of the present invention, by arranging inclined metal wire, is that the pitch between the vias on the surface of the substrate material is finely adjusted. このようなプリント回路用基板材は、所定ピッチで導電性を有する金属線が張設された金型内に、プラスチックとセラミックからなる複合材料を流し込み、この複合材料を硬化させた後、張設した金属線に傾斜してスライスすることで、得られる基板材の表面におけるビア間のピッチを微調整することにより製造される。 Such printed circuit board material, metal wire having conductivity in stretched gold mold at a predetermined pitch, casting a composite material made of plastic and a ceramic, curing the composite material, stretched by slicing inclined metal wires, it is prepared by finely adjusting the pitch between the vias on the surface of the resulting substrate material.

【0012】 本発明によれば、製造時に金属線のピッチに寸法誤差が発生しても、所定のピッチとなるように金属線に傾斜してスライスすることにより、ビア間のピッチが微調整された基板材を得ることができる。 According to the present invention, even if dimensional errors in the pitch of the metal lines are generated at the time of manufacture, by slicing inclined metal wire so as to have a predetermined pitch, the pitch between the vias is finely adjusted substrate material can be obtained. また、 Also,
これによって得られる基板材は、プリント回路の標準基板として使用できるため、多様な回路、用途に適用することができ、極めて好ましい。 Board material obtained by this, because it can be used as a standard substrate for printed circuit, can be applied to various circuits, application, highly preferred. また、プラスチックとセラミックから構成される複合材料を用いたので、成形性が良好な上、絶縁性、低熱膨張性、耐磨耗性に優れるという特性を有し、しかも、プラスチックとセラミックの種類、配合比を変えることで、熱膨張性を制御でき、両面に配置するフォトプロセス層との熱膨張をマッチングさせることができ、剥離などの恐れが極めて少ない。 Further, since a composite material consisting of plastic and ceramic, on moldability is good, insulation, low thermal expansion, has a characteristic of excellent abrasion resistance, moreover, plastic and ceramic type, by changing the mixing ratio, can control the thermal expansion, it is possible to match the thermal expansion of the photo process layer on both surfaces, is extremely small risk of peeling. さらに、より高密度化されたプリント回路基板においては、寸法誤差のほとんどない基板材を作製することは困難であること、また、少しピッチの異なる種々の基板材が要求される場合があることから、金属線が所定ピッチに配設された基本となる基板材を作製しておき、これを金属線に対する傾斜角度を微調整してスライスすることによって、ピッチの異なる種々の基板材を精度良く作製することができる。 Further, in a more densified printed circuit board, it can be manufactured with little substrate material dimensional error is difficult, also, since there are cases where various substrate materials having different bit pitches are required , metal wire advance to produce a substrate material underlying disposed at a predetermined pitch, by which the slicing and fine adjustment of the inclination angle with respect to the metal wire, accurately produce various substrate materials having different pitches can do. またX、Y方向をそれぞれ傾斜させることにより、それぞれのピッチを独立に調整することもできる。 The X, by inclining the Y-direction, respectively, it is also possible to adjust their pitch independently.

【0013】 図1は、本発明に係るプリント回路用基板材の一例を示す断面図で、基板材10は、プラスチックとセラミックから構成され、平板状に形成された複合材料11に、金属線12が所定ピッチで配設されている。 [0013] Figure 1 is a sectional view showing an example of a printed circuit board material according to the present invention, the substrate material 10 is composed of a plastic and a ceramic, the composite material 11 formed in a plate shape, the metal wire 12 There are disposed at a predetermined pitch. ここで、基板材10の一表面と他表面との間で、金属線12が傾斜して配設されて電気的に導通されている。 Here, between the one surface and the other surface of the substrate material 10, the metal wire 12 is disposed to be inclined is electrically conductive. このように構成される基板材10は、例えば、図2 Thus constituted substrate material 10, for example, FIG. 2
に示すように、その両面を、所定の回路が形成されたフォトプロセス層3、接続端子群4が配設されて、プリント回路基板を構成する。 As shown in the both sides, a photo process layer 3 in which a predetermined circuit is formed, the connection terminal group 4 is arranged to form a printed circuit board.

【0014】 本発明の基板材を構成する複合材料は、 [0014] composite material constituting the substrate material of the present invention,
プラスチックとセラミックからなるもので、プラスチックからなるマトリックスにセラミック粒子等を分散させて構成される。 Made of plastic and ceramic, and by dispersing the ceramic particles and the like in a matrix made of plastic. 両者の配合量は、絶縁性、低熱膨張性、 The amount of both, insulation, low thermal expansion,
耐磨耗性などの特性や目的に応じて適宜選定されるが、 It is suitably selected depending on the characteristics and purposes such as abrasion resistance,
セラミック粒子等を40体積%以上、90体積%以下含有することが、低熱膨張性及び硬化時の体積収縮が小さくなることに鑑みて、好ましい。 The ceramic particles such as 40% or more by volume, to contain 90% by volume or less, in view of the volume shrinkage at the time of low thermal expansion, and the curing is reduced, preferably. 本発明の複合材料においては、硬化時の体積収縮は1%以下、さらに0.5% In the composite material of the present invention, the volume shrinkage during curing than 1%, further 0.5%
以下とすることができ、基板材における金属線の寸法精度向上に極めて有利である。 It can be less, it is very advantageous to dimension accuracy of the metal wire in the board material.

【0015】 このような配合量とすることにより、複合材料に、低熱膨張性、耐磨耗性などを効果的に付与することができる。 [0015] With such a blending amount, the composite material can be provided a low thermal expansion property, and abrasion resistance effectively. なお、セラミック粒子やセラミックファイバー等の含有量が90体積%を超えると、プラスチックの含有量が少なくなり過ぎ、成形時の流動性が失なわれる可能性がある。 Incidentally, when the content of such ceramic particles or ceramic fibers exceeds 90 volume%, too small content of plastic, fluidity during molding is likely to be lost. セラミックとしては、アルミナ、 As the ceramic, alumina,
ジルコニア、窒化珪素などのほか、シリカガラス等のガラスを含む。 Zirconia, in addition to such a silicon nitride, including glass silica glass. セラミックは、粒子やファイバー状として配合される。 Ceramic is formulated as particles or fibrous. 特に、低熱膨張特性を得るためにはセラミックスとしてシリカを用いることが望ましい。 In particular, in order to obtain a low thermal expansion characteristics, it is desirable to use silica as the ceramic. また、プラスチックとしては、熱可塑性樹脂、熱硬化性樹脂のいずれも用いることができる。 As the plastic can be a thermoplastic resin, any of thermosetting resins used. 熱可塑性樹脂としては、例えば、塩化ビニル、ポリエチレン、ポリプロピレン等、 As the thermoplastic resin, for example, vinyl chloride, polyethylene, polypropylene,
各種の樹脂を用いることができ、これらの樹脂を2種以上組み合わせて用いても良い。 Can be used various resins may be used in combination of resins of two or more. 一方、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、尿素樹脂等を用いることができ、又、これらの樹脂を2種以上組み合わせて用いても良い。 Meanwhile, as the thermosetting resin, phenol resin, epoxy resin, it may be used urea resin, or may be used in combination of these resins of two or more.

【0016】 本発明の複合材料においては、セラミックとしてガラスファイバーを所定長さに切断したチップ、あるいはガラスビーズをエポキシ樹脂などのプラスチックに混合したものが、熱膨張について異方性がなく、絶縁性、低熱膨張性、耐磨耗性、強度などの特性に優れるため、好ましい。 In [0016] the composite material of the present invention, a mixture of chips obtained by cutting glass fibers as a ceramic to a predetermined length, or glass beads to plastic such as epoxy resin, no anisotropy for thermal expansion, the insulating , low thermal expansion, abrasion resistance, because of its excellent properties such as strength, preferred.

【0017】 複合材料中に所定パターンで配設される金属線としては、導電性を有する金属であれば、特にその種類を問わないが、通常、銅、銅合金、アルミニウム、及びアルミニウム合金のいずれか1種の金属からなることが好ましい。 [0017] As the metal lines arranged in a predetermined pattern in the composite material, if a conductive metal, although not of any type, usually, copper, any of copper alloys, aluminum, and aluminum alloy or preferably consists of one metal.

【0018】 次に、本発明に係るプリント回路用基板材の製造方法の一例について説明する。 [0018] Next, an example of a method of manufacturing a printed circuit board material according to the present invention. 図3に示すように、所定の容積を有する金型20に、多数の金属線21 As shown in FIG. 3, the mold 20 having a predetermined volume, a number of metal wire 21
を所定間隔で張設する。 The Zhang set at a predetermined interval. 次いで、この金型20内に、プラスチックとセラミックからなる複合材料22を流し込む。 Then, the mold 20, pouring the composite material 22 made of plastic and ceramic. この場合、金型20内を真空としてガスが残存しないような、真空注型とすることが好ましい。 In this case, as the gas to the mold 20 as a vacuum does not remain, it is preferable that the vacuum casting. 次に、複合材料22を硬化させて、図4に示すような、金属線が所定ピッチで配設された複合ブロック体30を作製する。 Next, curing the composite material 22, as shown in FIG. 4, the metal wire to produce a composite block body 30 disposed at a predetermined pitch.
図4において、複合ブロック体30は、プラスチックとセラミックからなる複合材料22に、導電性を有する金属線21が所定ピッチで配設されて構成されている。 4, the composite block body 30, the composite material 22 made of plastic and ceramic, metal wire 21 having conductivity is formed is disposed at a predetermined pitch. 金属線21は、複合ブロック体30の一表面31から当該一表面に対向する他表面32まで直線的に延びた状態で配設されており、一表面31及び他表面32において金属線21が突出している状態で形成されている。 Metal wire 21 from one surface 31 of the composite block body 30 to another surface 32 opposed to the one surface is disposed in a state of linearly extending, metal wire 21 projects in one surface 31 and other surface 32 It is formed in it and state.

【0019】 以上のような複合ブロック体30を作製した後、この複合ブロック体30の表面における金属線21のピッチ、即ち、ビア間のピッチの精度を測定し、 [0019] After producing the composite block body 30 as described above, the pitch of the metal wire 21 on the surface of the composite block body 30, i.e., to measure the accuracy of the pitch between the vias,
所望のものが得られているかを確認する。 To check whether the desired thing is obtained. 次いで、目的とするビア間のピッチとするための金属線21に対する傾斜角度を決定した後、当該傾斜角度となるように複合ブロック体30を所定の面A1、A2、A2、・・で、 Then, after determining the angle of inclination with respect to the metal wire 21 to the pitch between the vias of interest, the inclined angle and so as to the composite block body 30 a predetermined surface A1, A2, A2, in ...,
バンドソー、ワイヤーソー等により所定の厚さに切断することにより、本発明における基板材を製造することができる。 Band saw, by cutting to a predetermined thickness by a wire saw or the like, it is possible to produce a substrate material in the present invention. ここで、図5に示すように、複合ブロック体3 Here, as shown in FIG. 5, the composite block body 3
0における金属線のピッチをP、所望のピッチをP 0 P the pitch of the metal lines in 0, the desired pitch P 0,
傾斜角度をθとすると、θ=cos -1 (P/P 0 )となる。 When the inclination angle and theta, a θ = cos -1 (P / P 0).

【0020】 上記の方法によれば、製造時に金属線の配設ピッチに寸法誤差が発生しても、ビア間のピッチが微調整された基板材を得ることができる。 [0020] According to the above method, even if dimensional errors in the arrangement pitch of the metal lines are generated at the time of manufacture, it is possible to obtain a substrate material which pitch is finely adjusted between vias. また、基本となる基板材を作製後、金属線に対する傾斜角度を適当に変えることにより、ピッチの異なる種々の基板材を精度良く、しかも作業効率良く作製することができる。 Furthermore, after preparing a substrate material underlying, by changing the inclination angle with respect to the metal wires suitably, accurately various substrate materials of different pitches, yet can be manufactured with high working efficiency.

【0021】 [0021]

【実施例】 以下、本発明を具体的な実施例により説明する。 BRIEF DESCRIPTION the specific examples of the present invention. (実施例1)ピッチの設計値が1.270mmのプリント回路基板を製造するため、図3に示す金型に、 (Example 1) for the design value of the pitch to produce a printed circuit board of 1.270 mm, the mold shown in FIG. 3,
0.1mmφの黄銅ワイヤを1.272mmのピッチで整列させた。 Brass wire 0.1mmφ aligned at a pitch of 1.272mm. 整列させたワイヤの本数は300行200 The number of aligned wire was 300 rows 200
列で、計6万本である。 In the column, a total of 60,000. ここに、シリカ55vol%を含むエポキシ樹脂との複合材料を90℃で流し込み(注型)、硬化させた後、得られた複合ブロック体の上端を研磨し、ワイヤのピッチを測定したところ、X方向が1.269mmとなっていた。 Here, a composite material of an epoxy resin containing silica 55 vol% was poured at 90 ° C. (casting), after curing where, polishing the upper end of the resulting composite block body was measured pitch of the wire, X direction has been a 1.269mm. そこで、X方向を2.3 Thus, the X direction 2.3
°傾けてワイヤーソーで切断したところ、1.270m ° tilt was cut with a wire saw and, 1.270m
mピッチとなった。 m became a pitch. なお、プリント回路基板の厚みは1.0mmとした。 The thickness of the printed circuit board was 1.0 mm.

【0022】(実施例2)設計ピッチが0.500mm [0022] (Example 2) design pitch is 0.500mm
のプリント回路基板を製造するため、上記と同様の金型に、0.1mmφの銅ワイヤを0.501mmピッチで300行300列、計9万本を整列させた。 For the manufacture of a printed circuit board, the same mold as described above, 300 rows 300 columns of copper wire 0.1mmφ at 0.501mm pitch, aligning the total 90,000. 次いで、実施例1と同様の複合材料を注型し、硬化後、得られた複合ブロック体の上端を研磨し、ワイヤのピッチを測定したところ、Y方向が0.499mmであった。 Then, the same composite material as in Example 1 was cast, cured, polished upper end of the resulting composite block body was measured pitch of the wire, Y direction was 0.499Mm. そこで、 there,
複合ブロック体をY方向を3.6°傾斜させて切断したところ、ピッチは0.500mmとなった。 When the composite block body taken in the Y direction is 3.6 ° tilt, pitch became 0.500 mm.

【0023】 [0023]

【発明の効果】 以上説明したように、本発明によれば、製造時に金属線の配設ピッチに寸法誤差が発生しても、ビア間のピッチが微調整された基板材を得ることができる。 As described in the foregoing, according to the present invention, a dimensional error at the arrangement pitch of the metal lines even if generated, it is possible to obtain a substrate material which pitch is finely adjusted between vias during manufacture .

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明に係るプリント回路用基板材の一例を示す断面図である。 1 is a sectional view showing an example of a printed circuit board material according to the present invention.

【図2】 プリント回路基板の一例を示す斜視図である。 2 is a perspective view showing an example of a printed circuit board.

【図3】 本発明に係るプリント回路用基板材の製造方法の一例を示す斜視図である。 3 is a perspective view showing an example of a method of manufacturing a printed circuit board material according to the present invention.

【図4】 本発明で製造されされさ複合ブロック体の一例を示す一部斜視図である。 4 is a partial perspective view showing an example of a prepared in the present invention are of the composite block body.

【図5】 傾斜角度と金属線ピッチの関係を示す説明図である。 5 is an explanatory diagram showing a relationship between the inclination angle and the metal line pitch.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…基板材、2…導電性金属、3…フォトプロセス層、 1 ... substrate material, 2 ... conductive metal, 3 ... photo process layer,
4…接続端子群、10…基板材、11…複合材料、12 4 ... connection terminal group, 10 ... substrate material, 11 ... composite material, 12
…金属線、20…金型、21…金属線、22…複合材料、30…複合ブロック体、31…複合ブロック体の一表面、32…一表面に対向する他表面。 ... metal wire, 20 ... mold, 21 ... metal wire, 22 ... composite material, 30 ... composite block body 31 ... one surface of the composite block body 32 ... other surface opposite the one surface.

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 プラスチックとセラミックから構成され、板状に形成された複合材料に、導電性を有する金属線が所定ピッチで配設されてなるプリント回路用の基板材であって、 該基板材の一表面と他表面との間で該金属線が傾斜して配設されて電気的に導通されているとともに、該金属線の傾斜角度により該基板材の表面におけるビア間のピッチが微調整されていることを特徴とするプリント回路用基板材。 1. A composed of plastic and ceramic, a composite material formed in a plate shape, a metal wire having conductivity is a substrate material for printed circuit comprising disposed at a predetermined pitch, the base plate one surface and with the other surface together with the metal wire is has been electrically conducted disposed inclined, fine adjustment pitch between the vias on the surface of the base plate by the inclination angle of the metal wire printed circuit board material, characterized in that it is.
  2. 【請求項2】 板状複合材料におけるセラミックの含有量が40体積%以上、90体積%以下である請求項1記載のプリント回路用基板材。 Wherein the content of the ceramic in the composite sheet material is 40 vol% or more, according to claim 1 printed circuit board material as claimed 90% by volume or less.
  3. 【請求項3】 板状複合材料が、シリカとエポキシ樹脂とから構成されている請求項1又は2記載のプリント回路用基板材。 3. A composite sheet material according to claim 1 or 2 printed circuit board material according is composed of silica and epoxy resin.
  4. 【請求項4】 金型内に、所定ピッチで導電性を有する金属線を張設した後、この金型内に、プラスチックとセラミックからなる複合材料を流し込み、該複合材料を硬化させた後、張設した金属線に傾斜してスライスすることにより、得られる基板材の表面におけるビア間のピッチを微調整することを特徴とするプリント回路用基板材の製造方法。 4. A in a mold, after stretched metal wire having conductivity at a predetermined pitch, in the mold, pouring a composite material made of plastic and ceramic, after curing the composite material, by slicing inclined stretched metal wire, a manufacturing method of a printed circuit board material, characterized in that fine adjustment of the pitch between the vias on the surface of the resulting substrate material.
JP25217699A 1999-09-06 1999-09-06 Substrate for printed circuit and its manufacture Pending JP2001077496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25217699A JP2001077496A (en) 1999-09-06 1999-09-06 Substrate for printed circuit and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25217699A JP2001077496A (en) 1999-09-06 1999-09-06 Substrate for printed circuit and its manufacture

Publications (1)

Publication Number Publication Date
JP2001077496A true true JP2001077496A (en) 2001-03-23

Family

ID=17233561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25217699A Pending JP2001077496A (en) 1999-09-06 1999-09-06 Substrate for printed circuit and its manufacture

Country Status (1)

Country Link
JP (1) JP2001077496A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083425B2 (en) 2004-08-27 2006-08-01 Micron Technology, Inc. Slanted vias for electrical circuits on circuit boards and other substrates
US7115961B2 (en) 2004-08-24 2006-10-03 Micron Technology, Inc. Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices
US7189954B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
US7199439B2 (en) 2004-06-14 2007-04-03 Micron Technology, Inc. Microelectronic imagers and methods of packaging microelectronic imagers
US7223626B2 (en) 2004-08-19 2007-05-29 Micron Technology, Inc. Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers
US7253390B2 (en) 2004-06-14 2007-08-07 Micron Technology, Inc. Methods for packaging microelectronic imagers
US7253397B2 (en) 2004-02-23 2007-08-07 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7253957B2 (en) 2004-05-13 2007-08-07 Micron Technology, Inc. Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers
US7271482B2 (en) 2004-12-30 2007-09-18 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7276393B2 (en) 2004-08-26 2007-10-02 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7294897B2 (en) 2004-06-29 2007-11-13 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US7303931B2 (en) 2005-02-10 2007-12-04 Micron Technology, Inc. Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces
US7321455B2 (en) 2003-09-18 2008-01-22 Micron Technology, Inc. Microelectronic devices and methods for packaging microelectronic devices
US7397066B2 (en) 2004-08-19 2008-07-08 Micron Technology, Inc. Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers
US7402453B2 (en) 2004-07-28 2008-07-22 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7416913B2 (en) 2004-07-16 2008-08-26 Micron Technology, Inc. Methods of manufacturing microelectronic imaging units with discrete standoffs
US7429494B2 (en) 2004-08-24 2008-09-30 Micron Technology, Inc. Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers
US7498647B2 (en) 2004-06-10 2009-03-03 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7511262B2 (en) 2004-08-30 2009-03-31 Micron Technology, Inc. Optical device and assembly for use with imaging dies, and wafer-label imager assembly
US7547877B2 (en) 2004-08-30 2009-06-16 Micron Technology, Inc. Microelectronic imagers with integrated optical devices and methods for manufacturing such microelectronic imagers
US7583862B2 (en) 2003-11-26 2009-09-01 Aptina Imaging Corporation Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7646075B2 (en) 2004-08-31 2010-01-12 Micron Technology, Inc. Microelectronic imagers having front side contacts
US7663096B2 (en) 2005-09-01 2010-02-16 Aptina Imaging Corporation Microelectronic imaging devices and associated methods for attaching transmissive elements
US7696588B2 (en) 2005-02-18 2010-04-13 Aptina Imaging Corporation Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers
US7749899B2 (en) 2006-06-01 2010-07-06 Micron Technology, Inc. Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces
US7759800B2 (en) 2003-11-13 2010-07-20 Micron Technology, Inc. Microelectronics devices, having vias, and packaged microelectronic devices having vias
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7830018B2 (en) 2007-08-31 2010-11-09 Micron Technology, Inc. Partitioned through-layer via and associated systems and methods
US7829976B2 (en) 2004-06-29 2010-11-09 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
US7863187B2 (en) 2005-09-01 2011-01-04 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7884015B2 (en) 2007-12-06 2011-02-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7902643B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US7973411B2 (en) 2006-08-28 2011-07-05 Micron Technology, Inc. Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
US8084866B2 (en) 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US8092734B2 (en) 2004-05-13 2012-01-10 Aptina Imaging Corporation Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers
US8536485B2 (en) 2004-05-05 2013-09-17 Micron Technology, Inc. Systems and methods for forming apertures in microfeature workpieces
US8816463B2 (en) 2004-06-09 2014-08-26 Round Rock Research, Llc Wafer-level packaged microelectronic imagers having interconnects formed through terminals

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321455B2 (en) 2003-09-18 2008-01-22 Micron Technology, Inc. Microelectronic devices and methods for packaging microelectronic devices
US9653420B2 (en) 2003-11-13 2017-05-16 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US7759800B2 (en) 2003-11-13 2010-07-20 Micron Technology, Inc. Microelectronics devices, having vias, and packaged microelectronic devices having vias
US7583862B2 (en) 2003-11-26 2009-09-01 Aptina Imaging Corporation Packaged microelectronic imagers and methods of packaging microelectronic imagers
US8748311B2 (en) 2003-12-10 2014-06-10 Micron Technology, Inc. Microelectronic devices and methods for filing vias in microelectronic devices
US8084866B2 (en) 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US7253397B2 (en) 2004-02-23 2007-08-07 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US8664562B2 (en) 2004-05-05 2014-03-04 Micron Technology, Inc. Systems and methods for forming apertures in microfeature workpieces
US8686313B2 (en) 2004-05-05 2014-04-01 Micron Technology, Inc. System and methods for forming apertures in microfeature workpieces
US8536485B2 (en) 2004-05-05 2013-09-17 Micron Technology, Inc. Systems and methods for forming apertures in microfeature workpieces
US9452492B2 (en) 2004-05-05 2016-09-27 Micron Technology, Inc. Systems and methods for forming apertures in microfeature workpieces
US8092734B2 (en) 2004-05-13 2012-01-10 Aptina Imaging Corporation Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers
US7253957B2 (en) 2004-05-13 2007-08-07 Micron Technology, Inc. Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers
US8816463B2 (en) 2004-06-09 2014-08-26 Round Rock Research, Llc Wafer-level packaged microelectronic imagers having interconnects formed through terminals
US8035179B2 (en) 2004-06-10 2011-10-11 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7498647B2 (en) 2004-06-10 2009-03-03 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US8703518B2 (en) 2004-06-10 2014-04-22 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7419841B2 (en) 2004-06-14 2008-09-02 Micron Technology, Inc. Microelectronic imagers and methods of packaging microelectronic imagers
US7253390B2 (en) 2004-06-14 2007-08-07 Micron Technology, Inc. Methods for packaging microelectronic imagers
US7262405B2 (en) 2004-06-14 2007-08-28 Micron Technology, Inc. Prefabricated housings for microelectronic imagers
US7199439B2 (en) 2004-06-14 2007-04-03 Micron Technology, Inc. Microelectronic imagers and methods of packaging microelectronic imagers
US8053857B2 (en) 2004-06-29 2011-11-08 Round Rock Research, Llc Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7829976B2 (en) 2004-06-29 2010-11-09 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
US7294897B2 (en) 2004-06-29 2007-11-13 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7858429B2 (en) 2004-06-29 2010-12-28 Round Rock Research, Llc Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7416913B2 (en) 2004-07-16 2008-08-26 Micron Technology, Inc. Methods of manufacturing microelectronic imaging units with discrete standoffs
US7265330B2 (en) 2004-07-19 2007-09-04 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
US7189954B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
US7858420B2 (en) 2004-07-28 2010-12-28 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7439598B2 (en) 2004-07-28 2008-10-21 Micron Technology, Inc. Microelectronic imaging units
US7655507B2 (en) 2004-07-28 2010-02-02 Micron Technology Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7402453B2 (en) 2004-07-28 2008-07-22 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7223626B2 (en) 2004-08-19 2007-05-29 Micron Technology, Inc. Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers
US7723741B2 (en) 2004-08-19 2010-05-25 Aptina Imaging Corporation Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers
US7397066B2 (en) 2004-08-19 2008-07-08 Micron Technology, Inc. Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers
US7115961B2 (en) 2004-08-24 2006-10-03 Micron Technology, Inc. Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices
US7993944B2 (en) 2004-08-24 2011-08-09 Micron Technology, Inc. Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers
US7429494B2 (en) 2004-08-24 2008-09-30 Micron Technology, Inc. Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers
US7341881B2 (en) 2004-08-24 2008-03-11 Micron Technology, Inc. Methods of packaging and testing microelectronic imaging devices
US7691660B2 (en) 2004-08-26 2010-04-06 Aptina Imaging Corporation Methods of manufacturing microelectronic imaging units on a microfeature workpiece
US7276393B2 (en) 2004-08-26 2007-10-02 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7786574B2 (en) 2004-08-26 2010-08-31 Aptina Imaging Corp. Microelectronic imaging units
US7511374B2 (en) 2004-08-26 2009-03-31 Aptina Imaging Corporation Microelectronic imaging units having covered image sensors
US7083425B2 (en) 2004-08-27 2006-08-01 Micron Technology, Inc. Slanted vias for electrical circuits on circuit boards and other substrates
US8322031B2 (en) 2004-08-27 2012-12-04 Micron Technology, Inc. Method of manufacturing an interposer
US7511262B2 (en) 2004-08-30 2009-03-31 Micron Technology, Inc. Optical device and assembly for use with imaging dies, and wafer-label imager assembly
US7547877B2 (en) 2004-08-30 2009-06-16 Micron Technology, Inc. Microelectronic imagers with integrated optical devices and methods for manufacturing such microelectronic imagers
US7646075B2 (en) 2004-08-31 2010-01-12 Micron Technology, Inc. Microelectronic imagers having front side contacts
US7683458B2 (en) 2004-09-02 2010-03-23 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US7956443B2 (en) * 2004-09-02 2011-06-07 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US8669179B2 (en) 2004-09-02 2014-03-11 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US8502353B2 (en) 2004-09-02 2013-08-06 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US9214391B2 (en) 2004-12-30 2015-12-15 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7271482B2 (en) 2004-12-30 2007-09-18 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7795649B2 (en) 2005-02-10 2010-09-14 Aptina Imaging Corporation Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces
US7303931B2 (en) 2005-02-10 2007-12-04 Micron Technology, Inc. Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces
US7696588B2 (en) 2005-02-18 2010-04-13 Aptina Imaging Corporation Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers
US9293367B2 (en) 2005-06-28 2016-03-22 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US8008192B2 (en) 2005-06-28 2011-08-30 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7663096B2 (en) 2005-09-01 2010-02-16 Aptina Imaging Corporation Microelectronic imaging devices and associated methods for attaching transmissive elements
US7863187B2 (en) 2005-09-01 2011-01-04 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7749899B2 (en) 2006-06-01 2010-07-06 Micron Technology, Inc. Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces
US7973411B2 (en) 2006-08-28 2011-07-05 Micron Technology, Inc. Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
US8610279B2 (en) 2006-08-28 2013-12-17 Micron Technologies, Inc. Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
US9570350B2 (en) 2006-08-31 2017-02-14 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US7902643B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US9099539B2 (en) 2006-08-31 2015-08-04 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US8367538B2 (en) 2007-08-31 2013-02-05 Micron Technology, Inc. Partitioned through-layer via and associated systems and methods
US8536046B2 (en) 2007-08-31 2013-09-17 Micron Technology Partitioned through-layer via and associated systems and methods
US7830018B2 (en) 2007-08-31 2010-11-09 Micron Technology, Inc. Partitioned through-layer via and associated systems and methods
US8247907B2 (en) 2007-12-06 2012-08-21 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US9281241B2 (en) 2007-12-06 2016-03-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7884015B2 (en) 2007-12-06 2011-02-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods

Similar Documents

Publication Publication Date Title
US6274803B1 (en) Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
US4620264A (en) Multi-layer ceramic wiring circuit board and process for producing the same
US5515604A (en) Methods for making high-density/long-via laminated connectors
US5636104A (en) Printed circuit board having solder ball mounting groove pads and a ball grid array package using such a board
US20030127737A1 (en) Semiconductor device
US7394663B2 (en) Electronic component built-in module and method of manufacturing the same
US4336551A (en) Thick-film printed circuit board and method for producing the same
US6822170B2 (en) Embedding resin and wiring substrate using the same
US20030178726A1 (en) Semiconductor device built-in multilayer wiring board and method of manufacturing same
US20020058356A1 (en) Semiconductor package and mount board, and mounting method using the same
US3766440A (en) Ceramic integrated circuit convector assembly
US4792646A (en) Ceramic wiring board and its production
US6132543A (en) Method of manufacturing a packaging substrate
US5260170A (en) Dielectric layered sequentially processed circuit board
US5375042A (en) Semiconductor package employing substrate assembly having a pair of thin film circuits disposed one on each of oppositely facing surfaces of a thick film circuit
US5440805A (en) Method of manufacturing a multilayer circuit
US6093476A (en) Wiring substrate having vias
JP2004335641A (en) Method of manufacturing substrate having built-in semiconductor element
US7312103B1 (en) Method for making an integrated circuit substrate having laser-embedded conductive patterns
US6797367B2 (en) Multilayer wiring board, semiconductor device mounting board using same, and method of manufacturing multilayer wiring board
JP2005327780A (en) Wiring board and semiconductor package using same
US6519161B1 (en) Molded electronic package, method of preparation and method of shielding-II
US5184399A (en) Method of manufacturing circuit board
US20080073784A1 (en) Circuit substrate for preventing warpage and package using the same
US20030085058A1 (en) Insulation sheet and multi-layer wiring substrate and production processes thereof