US20170314163A1 - Method and apparatus for making nonwoven from continuous filaments - Google Patents

Method and apparatus for making nonwoven from continuous filaments Download PDF

Info

Publication number
US20170314163A1
US20170314163A1 US15/493,170 US201715493170A US2017314163A1 US 20170314163 A1 US20170314163 A1 US 20170314163A1 US 201715493170 A US201715493170 A US 201715493170A US 2017314163 A1 US2017314163 A1 US 2017314163A1
Authority
US
United States
Prior art keywords
mesh belt
filaments
belt
plugged
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/493,170
Inventor
Sebastian Sommer
Tobias Wagner
Gerold LINKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reifenhaeuser GmbH and Co KG Maschinenenfabrik filed Critical Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Assigned to REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK reassignment REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINKE, Gerold, SOMMER, SEBASTIAN, WAGNER, TOBIAS
Publication of US20170314163A1 publication Critical patent/US20170314163A1/en
Assigned to THE PROCTER & GAMBLE COMPANY reassignment THE PROCTER & GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK
Priority to US17/213,873 priority Critical patent/US11655563B2/en
Priority to US18/299,909 priority patent/US20230250558A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H17/00Felting apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/02Opening bundles to space the threads or filaments from one another
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting

Definitions

  • the present invention relates to making a nonwoven. More particularly this invention concerns making nonwoven from continuous filaments.
  • An apparatus for making nonwoven from continuous filaments typically has at least one spinning device for spinning the filaments being provided, a device for cooling and stretching the spun filaments, and a device for depositing the drawn filaments to form the nonwoven.
  • Continuous filaments differ because of their quasi-endless length from staple fibers that have much lesser lengths, for instance of 10 mm to 60 mm.
  • An apparatus and method for making nonwoven of the type described above are known in practice in various embodiments. It is often desirable to produce structured nonwoven or spun nonwoven with a “3D structure” with varying local thicknesses or porosities. Various provisions for this purpose are also known in practice. For instance, it is already known to generate a suitable nonwoven structure by embossing or mechanical reshaping of the nonwoven. The deformability of the nonwoven can as a rule be achieved only by preheating the strip of nonwoven to the softening range of the plastic. The deformation then also causes compacting; the overall strip of nonwoven becomes flatter, which impairs the desired soft hand of the strip of nonwoven.
  • Another method is based on the use of a structured and partly air-permeable deposition belt (EP 0 696 333 [U.S. Pat No. 5,575,874]).
  • the deposition belt is equipped with air-permeable plugged openings, and these plugged openings have protrusions that project from the mesh belt surface.
  • the deposited filaments are preconsolidated on the deposition belt with an adhesive, for instance by hot-air consolidation, and then the nonwoven is pulled off.
  • the structure of this nonwoven is equally attained by demolding of the plugged opening protrusions that project from the surface of the deposition belt.
  • an object of the invention is to provide an apparatus of the type defined above with which a nonwoven with a 3D structure can be produced in a simple and efficient way, and this nonwoven is distinguished by an aesthetically perfect, replicable 3D structure and furthermore has a sufficiently soft hand.
  • Yet another object is to provide a suitable method of making the nonwoven, as well as a corresponding nonwoven.
  • An apparatus for making nonwoven has according to the invention a spinning device for spinning continuous filaments and moving the spun filaments in a vertical travel direction along a vertical travel path and a mesh belt below the spinning device, traveling in a horizontal direction, and having a multiplicity of vertically throughgoing openings distributed generally uniformly over its surface and of which a portion are plugged.
  • a cooler and a stretcher are provided along the path downstream of the spinning device and above the belt for cooling and stretching the filaments and depositing the cooled and stretched filaments at a predetermined deposition location on the belt.
  • a blower underneath the belt at the deposition location aspirates air through the openings and thereby holds the deposited filaments down on the belt.
  • the openings are dimensioned and the air is aspirated through the belt such that, if none of the openings were plugged, air would pass through the belt at 350 to 1050 cfm, but actually so many of the openings are plugged that air passes through the belt at 150 to 700 cfm.
  • the air permeability of the unplugged mesh belt amounts to 300 to 1100 cfm, preferably 350 to 1050 cfm, and preferably 400 to 1000 cfm
  • the air permeability of the partly plugged mesh belt amounts to 150 to 700 cfm, preferably 250 to 600 cfm, and preferably 350 to 500 cfm.
  • the air permeability of the partly plugged mesh belt ranges especially preferably from 300 to 500 cfm and very particularly preferably from 350 to 500 cfm.
  • the term “unplugged mesh belt” means a mesh belt, according to the invention with only open or unplugged mesh belt openings, in other words all its openings clear.
  • the unplugged mesh belt serves here merely as a reference, since according to the invention a partly plugged mesh belt or a mesh belt with partly plugged mesh belt openings is used. It is understood that the air permeability of the unplugged mesh belt is greater than the air permeability of the partly plugged mesh belt.
  • the air permeability is indicated here in cfm (cubic feet per minute).
  • the measurement of the air permeability is preferably done on a circular area of 38.3 cm 2 at a pressure difference of 125 Pa.
  • a plurality of individual measurements is made (ten are recommended) and the air permeability is then found by averaging the individual measurements.
  • the air permeability is measured in accordance with ASTM D 737.
  • the mesh belt has a textile of filaments that intersect one another.
  • the filaments of the mesh belt are plastic filaments, in particular monofilaments, and/or metal filaments. Filaments of round or nonround cross section can be used.
  • the textile of the mesh belt can be a single- or multilayer.
  • a multilayer textile is understood here to mean the surface of the uppermost layer of the textile below the mesh belt surface.
  • the mesh belt has only one textile layer.
  • a recommended embodiment of the apparatus of the invention is characterized in that the mesh belt has a textile comprising warp and weft filaments that define the mesh belt openings. It is recommended that the textile of the mesh belt has a web density of 20 to 75 warp filaments per 25 mm and preferably 30 to 55 warp filaments per 25 mm, as well as of 10 to 50 weft filaments per 25 mm, preferably 10 to 40 weft filaments per 25 mm.
  • a plurality of or many open mesh belt openings are distributed over the mesh belt surface, and that in the same way a plurality of or many plugged mesh belt openings are distributed over the mesh belt surface.
  • a plugged mesh belt opening or a plurality of plugged mesh belt openings adjoining one another form a plugged opening of the mesh belt.
  • the diameter d or the minimum diameter d of a plugged opening of the mesh belt amounts to at least 1.5 mm, preferably at least 2 mm, and a maximum of 8 mm, preferably a maximum of 9 mm and in particular a maximum of 10 mm.
  • the ratio of the air permeability of unplugged mesh belt to the air permeability of the partly plugged mesh belt amounts to 1.2 to 4, preferably 1.3 to 3.5, preferably 1.5 to 3, and especially preferably 1.8 to 2.8.
  • the plugged mesh belt openings or the plugged openings dictate that the mesh belt, in contrast to the unplugged mesh belt, no longer has a homogeneous air permeability.
  • the invention is based on the discovery that the plugged openings directly impose a lateral motion on the air above the mesh belt that is flowing to the mesh belt.
  • the filaments to be deposited that are contained in this air stream at least partially follow this lateral displacement of air and as a result are preferably deposited onto the open or unplugged areas of the mesh belt. In this way, a nonwoven with varying local weights per unit of surface area or with a defined 3D structure is created.
  • the plugged mesh belt openings or the plugged openings are distributed in a regular pattern over the mesh belt. It is recommended that the mesh belt openings or the plugged openings have constant spacings from one another in at least one direction in space.
  • the plugged openings are arrayed in punctate fashion. Punctate here means in particular that the diameter of a plugged opening is similar or comparable or essentially the same in all directions in space.
  • a time-tested variant is distinguished by the fact that the punctate plugged openings are distributed at regular spacings over the mesh belt or the mesh belt surface.
  • the minimum diameter d of these punctate plugged openings amounts to at least 2 mm, preferably at least 2.5 mm, and especially preferably at least 3 mm and a maximum of 8 mm, preferably a maximum of 9 mm and highly preferably a maximum of 10 mm.
  • the plugged openings are arrayed in lines. It is within the scope of the invention that the plugged-opening lines are as a rule not embodied exactly rectilinearly or linearly and that as a rule, above all, the edges of the plugged-opening lines are not exactly rectilinear or linear. In a time-tested variant embodiment, the plugged-opening lines have constant or essentially constant spacings from one another. Advantageously, the plugged-opening lines are located parallel or essentially parallel to one another. It is also within the scope of the invention that the plugged-opening lines are each dashed lines, and parts of plugged-opening lines and linear opened mesh belt areas connecting the portions are located on a line.
  • plugged-opening lines intersect, and preferably the plugged-opening lines extending in one direction are parallel to one another, and advantageously the plugged-opening lines extending in a second direction are (likewise) parallel to one another. It is also within the scope of the invention that the plugged-opening lines of a mesh belt, in various areas of the mesh belt or of the mesh belt surface, have different densities and/or different widths (minimum diameters d).
  • the plugged-opening lines can also be curved or arcuate plugged-opening lines.
  • the width (minimum diameter d) of a linear plugged opening preferably amounts to at least 1.5 mm, preferably at least 2 mm, and a recommended maximum is 8 mm and in particular 9 mm.
  • punctate and plugged-opening lines can be combined with one another.
  • various geometrical embodiments for the plugged openings are conceivable, and these various embodiments can also be combined with one another.
  • Opened mesh belt areas can be surrounded by plugged openings or by plugged mesh belt areas, or vice versa.
  • sealing compounds of plastic or polymers are used.
  • molten or liquid plastic is introduced into the textile of the mesh belt or into the mesh belt openings of the mesh belt.
  • the sealing compound in a variant embodiment, can be photosensitive plastic, or a photosensitive multicomponent system, which is first introduced into the textile of the mesh belt and is then hardened, and in particular hardened under the influence of light and preferably under the influence of UV radiation. It is within the scope of the invention that the sealing compound penetrates the mesh belt openings of the mesh belt textile, and that the plugged opening patterns formed depend on the type of web and the web density.
  • the mesh belt textile is formed of monofilaments having a diameter of 0.2 to 0.9 mm, preferably 0.3 to 0.7 mm. It is recommended that a plugged opening is created by the closure of mesh belt openings between at least 2 warp filaments and/or weft filaments, preferably between or via at least 3 warp filaments and/or weft filaments.
  • an especially recommended embodiment of the invention is characterized in that the sealing compound of the plugged openings is located only in and/or below the plane of the mesh belt surface and does not project past the plane of the mesh belt surface.
  • the sealing compound extends over the entire thickness or essentially over the entire thickness of the mesh belt or mesh belt textile.
  • the sealing compound of a plugged opening or of a plugged mesh belt opening extends only through part of the thickness of the mesh belt textile.
  • the sealing compound of a plugged mesh belt opening or the plugged opening of the mesh belt surface extends downward, and then the sealing compound, as described above, can extend either over the entire thickness of the mesh belt or over only a portion of the thickness of the mesh belt.
  • the sealing compound is located over at least 30%, preferably at least 33%, of the thickness of the mesh belt or mesh belt textile, and the sealing compound, as noted above, preferably extends from the mesh belt surface downward.
  • At least 25%, and preferably at least 30%, of the mesh belt openings of the mesh belt used within the scope of the invention are plugged.
  • a maximum of 67%, and preferably a maximum of 60%, of the openings of the mesh belt are plugged.
  • One embodiment of the invention is distinguished in that the sealing compound of the plugged mesh belt openings, or of the plugged openings, projects from the mesh belt surface, and specifically preferably by a maximum of 1.5 mm, advantageously a maximum of 1.0 mm, preferably a maximum of 0.8 mm, and highly preferably a maximum of 0.6 mm.
  • the sealing compound of a plugged mesh belt opening or of a plugged opening projects by a maximum of 0.3 mm to 0.6 mm from the mesh belt surface.
  • An especially recommended embodiment of the invention is characterized in that the sealing compound is located in and/or below the mesh belt surface of the mesh belt and does not project past the mesh belt surface.
  • the plugged openings effect a lateral air motion in the air flowing through the mesh belt, and that, because of this lateral motion, the filaments in the air stream follow the stream and are thus deposited preferably onto the open mesh belt areas.
  • the invention is based on the recognition that this shift in location can be effectively intensified if the sealing compound of the plugged openings projects upward past the mesh belt surface. Because of the crest created as a result, the deposited filaments can slide into the adjacent open mesh belt area, and the differences in the filament density or weight per unit of surface area can as a result be even more markedly pronounced.
  • the invention is further based on the recognition that limits are set on the height of the area projecting from the mesh belt, since an area projecting too high is associated with reduced stability of the filament deposition.
  • the invention is based on the recognition that an area projecting from the mesh belt surface should project from the mesh belt surface preferably by a maximum of 0.6 mm, and highly preferably by a maximum of 0.5 mm.
  • the apparatus of the invention has at least one spinning device or spinneret with which the continuous filaments are spun.
  • spunbond nonwoven is produced with the apparatus of the invention and to that extent the apparatus is designed as a spunbond apparatus.
  • monocomponent and/or multicomponent or bicomponent filaments are created as continuous filaments.
  • the multicomponent or bicomponent filaments can be continuous filaments with a core-and-jacket configuration, or continuous filaments with a tendency to become curly, for instance with a side-to-side configuration.
  • the continuous filaments produced with the apparatus and the method of the invention comprise at least one polyolefin, in particular polypropylene and/or polyethylene.
  • An apparatus according to the invention in the form of a spunbond apparatus has at least one cooler for cooling the filaments and at least one stretcher for stretching the filaments.
  • At least one cooler for cooling the filaments and at least one stretcher for stretching the cooled filaments is provided, and the cooler and the stretcher form a closed subassembly, and except for the supply of cooling air in the cooler, no further supply of air into this closed subassembly takes place.
  • This sealed embodiment of the apparatus of the invention has proved itself especially well in conjunction with the mesh belt used according to the invention.
  • a recommended embodiment of the invention is further characterized in that, between the stretcher and the deposition device, or mesh belt, there is at least one diffuser.
  • the continuous filaments emerging from the stretcher are passed through the diffuser and then deposited on the deposition device or on the screen.
  • a special variant of the invention is distinguished in that between the stretcher and the mesh belt, there are at least two diffusers, preferably two diffusers one after the other in the direction of filament flow.
  • at least one secondary air-inlet gap for the entry of ambient air is provided between the two diffusers.
  • the embodiment having the at least one diffuser or the at least two diffusers and the secondary air inlet gap has proved itself especially well in combination with the mesh belt of the invention.
  • air is aspirated through the mesh belt or aspirated through the mesh belt in the filament-travel direction.
  • at least one aspirating blower is provided below the mesh belt.
  • at least two and preferably at least three and preferably three aspiration areas separate from one another are located one after the other in the travel direction of the belt.
  • a main suction area is preferably provided in which air is aspirated with a higher suction speed than in the at least one further suction area or than in the two further suction areas.
  • the air is aspirated through the mesh belt at a suction speed of 5 to 30 m/s.
  • This is the average suction speed with respect to the mesh belt surface.
  • a proven embodiment of the invention is distinguished in that at least one further suction area is located downstream of the main suction area in the travel direction of the belt, and that the suction speed of the air sucked into this further suction area is less than the suction speed in the main suction area. It is recommended that a first suction area be provided upstream of the main suction area in terms of the travel direction of the belt, and that a second suction area is downstream of the main suction area in terms of the travel direction of the belt.
  • the suction speed in the main suction area or in the deposition area of the nonwoven is set such that it is higher than the suction speeds in the other two suction areas.
  • the suction speeds in the first and/or second suction area are between 2 and 10 m/s, in particular between 2 and 5 m/s.
  • a recommended embodiment of the invention is characterized in that the nonwoven deposited on the mesh belt is preconsolidated, and especially preferably is preconsolidated with the aid of at least one compacting roller as a preconsolidation device.
  • the at least one compacting roller is heated.
  • the preconsolidation of the nonwoven can be done on the mesh belt in the form of hot-air consolidation as well.
  • a final consolidation of the nonwoven produced according to the invention is done.
  • the final consolidation can also be done on the mesh belt.
  • the nonwoven is removed from the mesh belt and then subjected to the final consolidation.
  • the strip of nonwoven deposited on the mesh belt must be separated again or removed from the mesh belt.
  • this separation of the strip of nonwoven from the mesh belt is done after the preconsolidation and preferably before a final consolidation.
  • a very particularly preferred embodiment of the invention is characterized in that for separating the nonwoven from the mesh belt, air (separating air) is blown from below through the mesh belt, that is, against the underside of the nonwoven.
  • a separate blower is provided for this purpose, and it is recommended that the air be blown in downstream, in terms of the travel direction of the belt, from the at least one suction area or downstream of the suction areas and above all downstream of the deposition area of the nonwoven.
  • separating the nonwoven or in other words locating the blower for separating the nonwoven from the mesh belt in the travel direction of the belt downstream of at least one preconsolidation device and in particular downstream of at least one compacting roller has proved itself especially well.
  • the separating air is blown in, in the travel direction of the strip of nonwoven, shortly upstream of the position at which the filament that has been deposited is removed from the mesh belt anyway.
  • air or separating air is blown in at an air speed of between 1 and 40 m/s in order to remove the nonwoven.
  • at least one support face for the nonwoven subjected to the separating air is provided above the mesh belt.
  • this is an air-permeable support face that in one variant embodiment is vacuumed actively.
  • a permeable co-rotating drum whose surface is preferably formed by a metal textile can be used as the support face.
  • an additional mesh belt moving jointly with the mesh belt and located above the mesh belt can be provided as the support face. It is within the scope of the invention that the support face, for instance the support face a drum or as an additional mesh belt, is evacuated and preferably from above, so that the separating air blown in from below is aspirated through the support face.
  • At least one blow-in gap extending transversely to the travel direction of the belt can be located below the mesh belt.
  • the gap width may amount to from 3 to 30 mm. It is within the scope of the invention that the gap width of the blow-in gap is set such that the nonwoven deposited on the mesh belt is merely lifted in order to separate the nonwoven, without thereby being destroyed.
  • the nonwoven preferably after a preconsolidation and preferably after being separated from the mesh belt, is subjected to final consolidation.
  • the final consolidation can in particular be done with at least one calendar or at least heated calendar.
  • the final consolidation can also be done in some other way, for instance as water-jet consolidation, mechanical needling, or hot-air consolidation.
  • One embodiment of the invention is distinguished in that with an apparatus of the invention, a laminate of spunbond nonwoven and a melt-blown nonwoven can be produced. From there, it is within the scope of the invention to use a spunbond/melt-blown/spunbond (SMS) apparatus. In such an apparatus, to spin the individual nonwoven, two spunbond beams and one melt-blown beam are used. For such a combination, the apparatus and the method of the invention have proved themselves especially well.
  • SMS spunbond/melt-blown/spunbond
  • the subject of the invention is also a nonwoven of continuous filaments, in which the continuous filaments preferably or essentially are thermoplastic, and the nonwoven is in particular produced by an apparatus and/or a method of the invention. It is within the scope of the invention that the continuous filaments of this nonwoven have a titer of 0.9 to 10 denier. The filaments can also have a diameter of 0.5 to 5 ⁇ m.
  • the nonwoven can be a spunbond nonwoven or a melt-blown nonwoven. A spunbond nonwoven is especially preferred.
  • the invention is based on the discovery that with the apparatus and the method of the invention, a structured spun-nonwoven with locally varying weights per unit of surface area can be made in a simple and cost-effective way.
  • a structured spun-nonwoven with locally varying weights per unit of surface area can be made in a simple and cost-effective way.
  • it is possible, in a functionally safe and secure and relatively uncomplicated way, to produce nonwoven without having to sacrifice additional favorable properties.
  • 3D-structured nonwoven with a soft hand can be produced in a simple and replicable way.
  • the properties of the nonwoven can be varied to meet requirements in a targeted and problem-free way.
  • the apparatus and the method of the invention are distinguished by low material and labor costs and functional safety and security.
  • FIG. 1 is a vertical section through an apparatus of the invention
  • FIG. 2 is an enlarged view of the detail shown at A in FIG. 1 ;
  • FIG. 3 a is a top view of a first embodiment of a mesh belt used according to the invention.
  • FIGS. 3 b , 3 c , and 3 d are views like FIG. 3 a of second, third, and fourth embodiments of the invention.
  • FIG. 4 is an enlarged detail of FIG. 1 in a first embodiment
  • FIG. 5 is the same detail as FIG. 4 but in a second embodiment.
  • the drawings shows an apparatus according to the invention for making nonwoven 1 from continuous filaments 2 .
  • this is a spunbond apparatus for making spunbond nonwoven 1 or spun nonwoven 1 .
  • the continuous filaments 2 preferably are of thermoplastic or essentially of thermoplastic.
  • the continuous filaments 2 are spun with the aid of a spinning device a spinneret 3 .
  • the continuous filaments 2 are cooled in a cooler 4 .
  • This cooler 4 preferably and in the illustrated embodiment has two compartments 4 a and 4 b , one above the other or one after the other in the filament-travel direction, and that introduce cooling air of a variable temperature into the filament flow chamber.
  • a stretcher 5 Downstream of the cooler 4 in the filament-travel direction is a stretcher 5 that preferably and in the illustrated embodiment has both an intermediate passage 6 that narrows in the flow direction of the continuous filaments 2 and a stretching passage 7 at the downstream end of the intermediate passage.
  • the unit comprising the cooler 4 and the stretcher 5 is a plugged system. In this plugged system, except for the supply of cooling air or processing air, there is no further air supply in the cooler 4 .
  • a diffuser 8 , 9 is connected to the stretcher 5 downstream in the filament-travel direction.
  • two diffusers 8 , 9 are provided, located either one below the other or one after the other. It is recommended that an ambient air inlet gap 10 be provided between the two diffusers 8 , 9 for the entry of ambient air.
  • the continuous filaments 2 , downstream of the diffusers 8 , 9 are deposited on a deposition device in the form of a mesh belt 11 . It is furthermore within the scope of the invention that this is a continuously circulating mesh belt 11 .
  • the mesh belt 11 has a mesh belt surface 12 with many mesh belt openings 13 distributed over the surface 12 .
  • air is aspirated through the mesh belt surface 12 , or in other words through the (open) mesh belt openings 13 .
  • at least one suction blower is located below the mesh belt 11 .
  • in the travel direction of the belt there are three separate suction areas 14 , 15 , 16 one after the other.
  • a main suction area 15 is preferably provided in which air is aspirated through the mesh belt 11 , for instance at a suction speed or a mean suction speed of 5 to 30 m/s.
  • the suction speed in the main suction area 15 is set such that it is higher than the suction speed in the remaining suction areas 14 and 16 .
  • a first suction area 14 is provided upstream of the main suction area 15
  • a second suction area 16 is downstream of the main suction area 15 .
  • a compacting device 18 with two compacting rollers 19 , 20 is provided along the second suction area 16 for compacting or preconsolidating the nonwoven 1 .
  • at least one of the compacting rollers 19 , 20 is a heated compacting roller 19 , 20 .
  • some of the mesh belt openings 13 of the mesh belt 11 are plugged.
  • the result is plugged mesh belt openings 21 or plugged points 22 in the mesh belt that are formed by a single plugged mesh belt opening 21 or a plurality of adjoining plugged mesh belt openings 21 .
  • the air permeability of the unplugged mesh belt 11 is greater than the air permeability of the mesh belt 11 that is provided with plugged mesh belt openings 21 .
  • the air permeability of the unplugged mesh belt amounts to 600 cfm
  • the air permeability of the plugged mesh belt 11 that is, the air permeability of the mesh belt 11 with some plugged mesh belt openings 21 —is only 350 cfm.
  • the ratio of the air permeability of the unplugged mesh belt 11 to the air permeability of the partly plugged mesh belt 11 is preferably 1.2 to 3.
  • the air permeability is measured in particular crosswise to the mesh belt surface 12 in a circular surface of the mesh belt that is 38.3 cm 2 in area, at a pressure difference of 125 Pa.
  • the mesh belt 11 has a textile that comprises warp filaments 23 and weft filaments 24 that define the mesh belt openings 13 .
  • the diameter D or the minimum diameter D of a mesh belt opening 13 may amount to 0.5 mm in the illustrated embodiment.
  • this is the diameter D with respect to filaments or woven filaments located on the surface or in a surface layer of the mesh belt or mesh belt textile.
  • the textile of the mesh belt 11 have a web density of 20 to 75 warp filaments per 25 mm and 10 to 50 weft filaments per 25 mm.
  • the plugged openings 22 in the mesh belt 11 are arrayed in punctate and/or linear form.
  • FIG. 3 a shows the punctate embodiment of plugged openings 22 in the mesh belt 11 .
  • the (least) diameter d of such a punctate plugged opening 22 may amount to 2 mm in the illustrated embodiment.
  • plugged-opening lines 22 are shown.
  • the least width b of the plugged-opening lines 22 may amount to 2 mm as well in the illustrated embodiment.
  • FIG. 3 c shows a further embodiment with interrupted plugged-opening lines 22 .
  • the plugged-opening lines 22 can furthermore, in a manner not shown, also be curved or bowed lines.
  • FIG. 3 a shows the punctate embodiment of plugged openings 22 in the mesh belt 11 .
  • the (least) diameter d of such a punctate plugged opening 22 may amount to 2 mm in the illustrated embodiment.
  • plugged-opening lines 22 are shown.
  • FIGS. 3 a , 3 b and 3 d furthermore show embodiments in which the plugged openings 22 are symmetrical to the longitudinal direction or travel direction of the belt 11 .
  • the travel direction F of the mesh belt 11 is indicated in FIGS. 3 a through 3 d by an arrow.
  • the embodiment of FIG. 3 c is not symmetrical to the longitudinal direction or travel direction F of the mesh belt 11 .
  • the embodiments that are symmetrical with respect to the longitudinal direction or travel direction F are preferred in the context of this invention.
  • FIG. 4 an especially recommended embodiment of the apparatus of the invention is shown.
  • the continuous filaments 2 emerging from the diffuser 9 are deposited on the mesh belt surface 12 in the deposition area 17 of the mesh belt 11 .
  • the main suction area 15 for aspirating the processing air through the mesh belt 11 or through the mesh belt surface 12 is located below the deposition area 17 . Downstream of the main suction area 15 is the second suction area 16 in which processing air is aspirated at what in comparison to the main suction area 15 is a lower air speed.
  • the compacting device 18 with the two compacting rollers 19 , 20 is provided above the second suction area 16 .
  • a separation area 25 is then downstream in the travel direction of the nonwoven 1 .
  • the nonwoven 1 or the preconsolidated nonwoven 1 is released/separated from the mesh belt 11 or in other words from the mesh belt surface 12 .
  • air is blown from below, or in other words against the underside of the nonwoven 1 and up through the mesh belt 11 .
  • the nonwoven 1 subjected to the separating air is braced by an air-permeable drum 27 co-rotating in the travel direction of the belt 11 .
  • the drum can be positioned at a spacing of 0.5 to 5 mm, for instance, above the mesh belt surface 12 .
  • the surface of the drum 27 can be for example a metal textile.
  • an additional mesh belt (not shown) jointly rotating in the travel direction of the belt 11 could also be used.
  • FIG. 5 shows a further embodiment of a drum 27 provided for bracing the nonwoven 1 subjected to the separation air.
  • the drum 27 has a suction area 28 for receiving the separation air, and supporting air is additionally blown in, in the direction of the mesh belt 11 or of the nonwoven 1 , in order to prevent the continuous filaments 2 or nonwoven 1 from sticking to the drum 27 .
  • the supporting air is symbolized in FIG. 5 by an arrow 29

Abstract

An apparatus for making nonwoven has a spinning device for spinning continuous filaments and moving the spun filaments in a vertical travel direction along a vertical travel path and a mesh belt below the spinning device, traveling in a horizontal direction, and having a multiplicity of vertically throughgoing openings distributed generally uniformly over its surface and of which a portion are plugged. A cooler and a stretcher are provided along the path downstream of the spinning device and above the belt for cooling and stretching the filaments and depositing the cooled and stretched filaments at a predetermined deposition location on the belt. A blower underneath the belt at the deposition location aspirates air through the openings and thereby holds the deposited filaments down on the belt.

Description

    FIELD OF THE INVENTION
  • The present invention relates to making a nonwoven. More particularly this invention concerns making nonwoven from continuous filaments.
  • BACKGROUND OF THE INVENTION
  • An apparatus for making nonwoven from continuous filaments, in particular thermoplastic monofilament, typically has at least one spinning device for spinning the filaments being provided, a device for cooling and stretching the spun filaments, and a device for depositing the drawn filaments to form the nonwoven. Continuous filaments differ because of their quasi-endless length from staple fibers that have much lesser lengths, for instance of 10 mm to 60 mm.
  • An apparatus and method for making nonwoven of the type described above are known in practice in various embodiments. It is often desirable to produce structured nonwoven or spun nonwoven with a “3D structure” with varying local thicknesses or porosities. Various provisions for this purpose are also known in practice. For instance, it is already known to generate a suitable nonwoven structure by embossing or mechanical reshaping of the nonwoven. The deformability of the nonwoven can as a rule be achieved only by preheating the strip of nonwoven to the softening range of the plastic. The deformation then also causes compacting; the overall strip of nonwoven becomes flatter, which impairs the desired soft hand of the strip of nonwoven.
  • In particular for short fibers or staple fibers, it is also known to relocate the short-fiber deposit, for instance by compressed air, and then to perform hot-air consolidation. However, this limits the choice of material for the strip of nonwoven, since many kinds of polymer fibers cannot be hot-air-consolidated without problems. In the case of continuous filaments, these provisions have furthermore not proven themselves over time.
  • Another method is based on the use of a structured and partly air-permeable deposition belt (EP 0 696 333 [U.S. Pat No. 5,575,874]). The deposition belt is equipped with air-permeable plugged openings, and these plugged openings have protrusions that project from the mesh belt surface. The deposited filaments are preconsolidated on the deposition belt with an adhesive, for instance by hot-air consolidation, and then the nonwoven is pulled off. The structure of this nonwoven is equally attained by demolding of the plugged opening protrusions that project from the surface of the deposition belt. These provisions are disruptive and likely to produce flaws and have not proven themselves in practice.
  • OBJECTS OF THE INVENTION
  • It is therefore an object of the present invention to provide an improved method and apparatus for making nonwoven from continuous filaments.
  • Another object is the provision of such an improved method and apparatus for making nonwoven from continuous filaments that overcomes the above-given disadvantages
  • In addition, an object of the invention is to provide an apparatus of the type defined above with which a nonwoven with a 3D structure can be produced in a simple and efficient way, and this nonwoven is distinguished by an aesthetically perfect, replicable 3D structure and furthermore has a sufficiently soft hand.
  • Yet another object is to provide a suitable method of making the nonwoven, as well as a corresponding nonwoven.
  • SUMMARY OF THE INVENTION
  • An apparatus for making nonwoven has according to the invention a spinning device for spinning continuous filaments and moving the spun filaments in a vertical travel direction along a vertical travel path and a mesh belt below the spinning device, traveling in a horizontal direction, and having a multiplicity of vertically throughgoing openings distributed generally uniformly over its surface and of which a portion are plugged. A cooler and a stretcher are provided along the path downstream of the spinning device and above the belt for cooling and stretching the filaments and depositing the cooled and stretched filaments at a predetermined deposition location on the belt. A blower underneath the belt at the deposition location aspirates air through the openings and thereby holds the deposited filaments down on the belt. The openings are dimensioned and the air is aspirated through the belt such that, if none of the openings were plugged, air would pass through the belt at 350 to 1050 cfm, but actually so many of the openings are plugged that air passes through the belt at 150 to 700 cfm.
  • It is within the scope of the invention that the air permeability of the unplugged mesh belt amounts to 300 to 1100 cfm, preferably 350 to 1050 cfm, and preferably 400 to 1000 cfm, and the air permeability of the partly plugged mesh belt amounts to 150 to 700 cfm, preferably 250 to 600 cfm, and preferably 350 to 500 cfm. The air permeability of the partly plugged mesh belt ranges especially preferably from 300 to 500 cfm and very particularly preferably from 350 to 500 cfm. In the context of the invention, the term “unplugged mesh belt” means a mesh belt, according to the invention with only open or unplugged mesh belt openings, in other words all its openings clear. In this respect, the unplugged mesh belt serves here merely as a reference, since according to the invention a partly plugged mesh belt or a mesh belt with partly plugged mesh belt openings is used. It is understood that the air permeability of the unplugged mesh belt is greater than the air permeability of the partly plugged mesh belt.
  • The air permeability is indicated here in cfm (cubic feet per minute). The measurement of the air permeability is preferably done on a circular area of 38.3 cm2 at a pressure difference of 125 Pa. Advantageously, a plurality of individual measurements is made (ten are recommended) and the air permeability is then found by averaging the individual measurements. It is within the scope of the invention that the air permeability is measured in accordance with ASTM D 737. It is furthermore within the scope of the invention that the mesh belt has a textile of filaments that intersect one another. Advantageously, the filaments of the mesh belt are plastic filaments, in particular monofilaments, and/or metal filaments. Filaments of round or nonround cross section can be used. The textile of the mesh belt can be a single- or multilayer. A multilayer textile is understood here to mean the surface of the uppermost layer of the textile below the mesh belt surface. In a preferred embodiment, the mesh belt has only one textile layer.
  • A recommended embodiment of the apparatus of the invention is characterized in that the mesh belt has a textile comprising warp and weft filaments that define the mesh belt openings. It is recommended that the textile of the mesh belt has a web density of 20 to 75 warp filaments per 25 mm and preferably 30 to 55 warp filaments per 25 mm, as well as of 10 to 50 weft filaments per 25 mm, preferably 10 to 40 weft filaments per 25 mm.
  • It is within the scope of the invention that a plurality of or many open mesh belt openings are distributed over the mesh belt surface, and that in the same way a plurality of or many plugged mesh belt openings are distributed over the mesh belt surface. A plugged mesh belt opening or a plurality of plugged mesh belt openings adjoining one another form a plugged opening of the mesh belt. It is recommended that the diameter d or the minimum diameter d of a plugged opening of the mesh belt amounts to at least 1.5 mm, preferably at least 2 mm, and a maximum of 8 mm, preferably a maximum of 9 mm and in particular a maximum of 10 mm. Advantageously, the ratio of the air permeability of unplugged mesh belt to the air permeability of the partly plugged mesh belt amounts to 1.2 to 4, preferably 1.3 to 3.5, preferably 1.5 to 3, and especially preferably 1.8 to 2.8.
  • The plugged mesh belt openings or the plugged openings dictate that the mesh belt, in contrast to the unplugged mesh belt, no longer has a homogeneous air permeability. In this respect, the invention is based on the discovery that the plugged openings directly impose a lateral motion on the air above the mesh belt that is flowing to the mesh belt. The filaments to be deposited that are contained in this air stream at least partially follow this lateral displacement of air and as a result are preferably deposited onto the open or unplugged areas of the mesh belt. In this way, a nonwoven with varying local weights per unit of surface area or with a defined 3D structure is created.
  • In an especially recommended embodiment of the invention, the plugged mesh belt openings or the plugged openings are distributed in a regular pattern over the mesh belt. It is recommended that the mesh belt openings or the plugged openings have constant spacings from one another in at least one direction in space. In a preferred embodiment of the invention, the plugged openings are arrayed in punctate fashion. Punctate here means in particular that the diameter of a plugged opening is similar or comparable or essentially the same in all directions in space. A time-tested variant is distinguished by the fact that the punctate plugged openings are distributed at regular spacings over the mesh belt or the mesh belt surface. Advantageously, the minimum diameter d of these punctate plugged openings amounts to at least 2 mm, preferably at least 2.5 mm, and especially preferably at least 3 mm and a maximum of 8 mm, preferably a maximum of 9 mm and highly preferably a maximum of 10 mm.
  • In a further preferred embodiment of the invention, the plugged openings are arrayed in lines. It is within the scope of the invention that the plugged-opening lines are as a rule not embodied exactly rectilinearly or linearly and that as a rule, above all, the edges of the plugged-opening lines are not exactly rectilinear or linear. In a time-tested variant embodiment, the plugged-opening lines have constant or essentially constant spacings from one another. Advantageously, the plugged-opening lines are located parallel or essentially parallel to one another. It is also within the scope of the invention that the plugged-opening lines are each dashed lines, and parts of plugged-opening lines and linear opened mesh belt areas connecting the portions are located on a line. In one embodiment of the invention, plugged-opening lines intersect, and preferably the plugged-opening lines extending in one direction are parallel to one another, and advantageously the plugged-opening lines extending in a second direction are (likewise) parallel to one another. It is also within the scope of the invention that the plugged-opening lines of a mesh belt, in various areas of the mesh belt or of the mesh belt surface, have different densities and/or different widths (minimum diameters d). The plugged-opening lines can also be curved or arcuate plugged-opening lines. The width (minimum diameter d) of a linear plugged opening preferably amounts to at least 1.5 mm, preferably at least 2 mm, and a recommended maximum is 8 mm and in particular 9 mm.
  • In a variant of the invention, punctate and plugged-opening lines can be combined with one another. In principle, various geometrical embodiments for the plugged openings are conceivable, and these various embodiments can also be combined with one another. Opened mesh belt areas can be surrounded by plugged openings or by plugged mesh belt areas, or vice versa.
  • It is within the scope of the invention that to create the plugged mesh belt openings or to create the plugged openings, sealing compounds of plastic or polymers are used. To create the plugged openings, advantageously molten or liquid plastic is introduced into the textile of the mesh belt or into the mesh belt openings of the mesh belt. The sealing compound, in a variant embodiment, can be photosensitive plastic, or a photosensitive multicomponent system, which is first introduced into the textile of the mesh belt and is then hardened, and in particular hardened under the influence of light and preferably under the influence of UV radiation. It is within the scope of the invention that the sealing compound penetrates the mesh belt openings of the mesh belt textile, and that the plugged opening patterns formed depend on the type of web and the web density. Advantageously, the mesh belt textile is formed of monofilaments having a diameter of 0.2 to 0.9 mm, preferably 0.3 to 0.7 mm. It is recommended that a plugged opening is created by the closure of mesh belt openings between at least 2 warp filaments and/or weft filaments, preferably between or via at least 3 warp filaments and/or weft filaments.
  • An especially recommended embodiment of the invention is characterized in that the sealing compound of the plugged openings is located only in and/or below the plane of the mesh belt surface and does not project past the plane of the mesh belt surface. In a variant, the sealing compound extends over the entire thickness or essentially over the entire thickness of the mesh belt or mesh belt textile. In another variant embodiment, the sealing compound of a plugged opening or of a plugged mesh belt opening extends only through part of the thickness of the mesh belt textile. Preferably the sealing compound of a plugged mesh belt opening or the plugged opening of the mesh belt surface extends downward, and then the sealing compound, as described above, can extend either over the entire thickness of the mesh belt or over only a portion of the thickness of the mesh belt. Advantageously, the sealing compound is located over at least 30%, preferably at least 33%, of the thickness of the mesh belt or mesh belt textile, and the sealing compound, as noted above, preferably extends from the mesh belt surface downward.
  • In an especially recommended embodiment of the invention, at least 25%, and preferably at least 30%, of the mesh belt openings of the mesh belt used within the scope of the invention are plugged. Advantageously, a maximum of 67%, and preferably a maximum of 60%, of the openings of the mesh belt are plugged.
  • One embodiment of the invention is distinguished in that the sealing compound of the plugged mesh belt openings, or of the plugged openings, projects from the mesh belt surface, and specifically preferably by a maximum of 1.5 mm, advantageously a maximum of 1.0 mm, preferably a maximum of 0.8 mm, and highly preferably a maximum of 0.6 mm. Especially preferably, the sealing compound of a plugged mesh belt opening or of a plugged opening projects by a maximum of 0.3 mm to 0.6 mm from the mesh belt surface. An especially recommended embodiment of the invention, however, is characterized in that the sealing compound is located in and/or below the mesh belt surface of the mesh belt and does not project past the mesh belt surface.
  • It has been explained above that the plugged openings effect a lateral air motion in the air flowing through the mesh belt, and that, because of this lateral motion, the filaments in the air stream follow the stream and are thus deposited preferably onto the open mesh belt areas. The invention is based on the recognition that this shift in location can be effectively intensified if the sealing compound of the plugged openings projects upward past the mesh belt surface. Because of the crest created as a result, the deposited filaments can slide into the adjacent open mesh belt area, and the differences in the filament density or weight per unit of surface area can as a result be even more markedly pronounced. The invention is further based on the recognition that limits are set on the height of the area projecting from the mesh belt, since an area projecting too high is associated with reduced stability of the filament deposition.
  • Finally, the invention is based on the recognition that an area projecting from the mesh belt surface should project from the mesh belt surface preferably by a maximum of 0.6 mm, and highly preferably by a maximum of 0.5 mm.
  • The apparatus of the invention has at least one spinning device or spinneret with which the continuous filaments are spun. In an especially preferred embodiment of the invention, spunbond nonwoven is produced with the apparatus of the invention and to that extent the apparatus is designed as a spunbond apparatus. In the process, monocomponent and/or multicomponent or bicomponent filaments are created as continuous filaments. The multicomponent or bicomponent filaments can be continuous filaments with a core-and-jacket configuration, or continuous filaments with a tendency to become curly, for instance with a side-to-side configuration. In an especially preferred embodiment of the invention, the continuous filaments produced with the apparatus and the method of the invention comprise at least one polyolefin, in particular polypropylene and/or polyethylene.
  • An apparatus according to the invention in the form of a spunbond apparatus has at least one cooler for cooling the filaments and at least one stretcher for stretching the filaments.
  • In an especially recommended embodiment that has very particular significance in the context of the invention, at least one cooler for cooling the filaments and at least one stretcher for stretching the cooled filaments is provided, and the cooler and the stretcher form a closed subassembly, and except for the supply of cooling air in the cooler, no further supply of air into this closed subassembly takes place. This sealed embodiment of the apparatus of the invention has proved itself especially well in conjunction with the mesh belt used according to the invention.
  • A recommended embodiment of the invention is further characterized in that, between the stretcher and the deposition device, or mesh belt, there is at least one diffuser. The continuous filaments emerging from the stretcher are passed through the diffuser and then deposited on the deposition device or on the screen.
  • A special variant of the invention is distinguished in that between the stretcher and the mesh belt, there are at least two diffusers, preferably two diffusers one after the other in the direction of filament flow. Advantageously, at least one secondary air-inlet gap for the entry of ambient air is provided between the two diffusers. The embodiment having the at least one diffuser or the at least two diffusers and the secondary air inlet gap has proved itself especially well in combination with the mesh belt of the invention.
  • In the apparatus of the invention or in the context of the method of the invention, air is aspirated through the mesh belt or aspirated through the mesh belt in the filament-travel direction. To that end, advantageously at least one aspirating blower is provided below the mesh belt. Advantageously, at least two and preferably at least three and preferably three aspiration areas separate from one another are located one after the other in the travel direction of the belt. In the deposition area of the continuous filaments or of the nonwoven, a main suction area is preferably provided in which air is aspirated with a higher suction speed than in the at least one further suction area or than in the two further suction areas. Advantageously, in the main suction area the air is aspirated through the mesh belt at a suction speed of 5 to 30 m/s. This is the average suction speed with respect to the mesh belt surface. A proven embodiment of the invention is distinguished in that at least one further suction area is located downstream of the main suction area in the travel direction of the belt, and that the suction speed of the air sucked into this further suction area is less than the suction speed in the main suction area. It is recommended that a first suction area be provided upstream of the main suction area in terms of the travel direction of the belt, and that a second suction area is downstream of the main suction area in terms of the travel direction of the belt. Advantageously, the suction speed in the main suction area or in the deposition area of the nonwoven is set such that it is higher than the suction speeds in the other two suction areas. The suction speeds in the first and/or second suction area, in one embodiment of the invention, are between 2 and 10 m/s, in particular between 2 and 5 m/s.
  • A recommended embodiment of the invention is characterized in that the nonwoven deposited on the mesh belt is preconsolidated, and especially preferably is preconsolidated with the aid of at least one compacting roller as a preconsolidation device. Advantageously, the at least one compacting roller is heated. In another variant embodiment of the invention, the preconsolidation of the nonwoven can be done on the mesh belt in the form of hot-air consolidation as well.
  • It is within the scope of the invention that a final consolidation of the nonwoven produced according to the invention is done. In principle, the final consolidation can also be done on the mesh belt. In a preferred embodiment explained hereinafter, however, the nonwoven is removed from the mesh belt and then subjected to the final consolidation.
  • It is understood that the strip of nonwoven deposited on the mesh belt must be separated again or removed from the mesh belt. Advantageously, this separation of the strip of nonwoven from the mesh belt is done after the preconsolidation and preferably before a final consolidation. A very particularly preferred embodiment of the invention is characterized in that for separating the nonwoven from the mesh belt, air (separating air) is blown from below through the mesh belt, that is, against the underside of the nonwoven. Preferably, a separate blower is provided for this purpose, and it is recommended that the air be blown in downstream, in terms of the travel direction of the belt, from the at least one suction area or downstream of the suction areas and above all downstream of the deposition area of the nonwoven. Within the scope of the invention, separating the nonwoven or in other words locating the blower for separating the nonwoven from the mesh belt in the travel direction of the belt downstream of at least one preconsolidation device and in particular downstream of at least one compacting roller has proved itself especially well. Advantageously, the separating air is blown in, in the travel direction of the strip of nonwoven, shortly upstream of the position at which the filament that has been deposited is removed from the mesh belt anyway. In a recommended embodiment of the invention, air or separating air is blown in at an air speed of between 1 and 40 m/s in order to remove the nonwoven. Preferably, in addition, at least one support face for the nonwoven subjected to the separating air is provided above the mesh belt. In one embodiment, this is an air-permeable support face that in one variant embodiment is vacuumed actively. For example, a permeable co-rotating drum whose surface is preferably formed by a metal textile can be used as the support face. In addition or alternatively, an additional mesh belt moving jointly with the mesh belt and located above the mesh belt can be provided as the support face. It is within the scope of the invention that the support face, for instance the support face a drum or as an additional mesh belt, is evacuated and preferably from above, so that the separating air blown in from below is aspirated through the support face.
  • For blowing the separating air in so as to separate the strip of nonwoven from the mesh belt, at least one blow-in gap extending transversely to the travel direction of the belt can be located below the mesh belt. The gap width may amount to from 3 to 30 mm. It is within the scope of the invention that the gap width of the blow-in gap is set such that the nonwoven deposited on the mesh belt is merely lifted in order to separate the nonwoven, without thereby being destroyed.
  • It is within the scope of the invention that the nonwoven, preferably after a preconsolidation and preferably after being separated from the mesh belt, is subjected to final consolidation. The final consolidation can in particular be done with at least one calendar or at least heated calendar. In principle, the final consolidation can also be done in some other way, for instance as water-jet consolidation, mechanical needling, or hot-air consolidation.
  • One embodiment of the invention is distinguished in that with an apparatus of the invention, a laminate of spunbond nonwoven and a melt-blown nonwoven can be produced. From there, it is within the scope of the invention to use a spunbond/melt-blown/spunbond (SMS) apparatus. In such an apparatus, to spin the individual nonwoven, two spunbond beams and one melt-blown beam are used. For such a combination, the apparatus and the method of the invention have proved themselves especially well.
  • The subject of the invention is also a nonwoven of continuous filaments, in which the continuous filaments preferably or essentially are thermoplastic, and the nonwoven is in particular produced by an apparatus and/or a method of the invention. It is within the scope of the invention that the continuous filaments of this nonwoven have a titer of 0.9 to 10 denier. The filaments can also have a diameter of 0.5 to 5 μm. The nonwoven can be a spunbond nonwoven or a melt-blown nonwoven. A spunbond nonwoven is especially preferred.
  • The invention is based on the discovery that with the apparatus and the method of the invention, a structured spun-nonwoven with locally varying weights per unit of surface area can be made in a simple and cost-effective way. Within the scope of the invention it is possible, in a functionally safe and secure and relatively uncomplicated way, to produce nonwoven without having to sacrifice additional favorable properties. In particular, in comparison to the prior art, 3D-structured nonwoven with a soft hand can be produced in a simple and replicable way. The properties of the nonwoven can be varied to meet requirements in a targeted and problem-free way. As a result, the apparatus and the method of the invention are distinguished by low material and labor costs and functional safety and security.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The above and other objects, features, and advantages will become more readily apparent from the following description, reference being made to the accompanying drawing in which:
  • FIG. 1 is a vertical section through an apparatus of the invention;
  • FIG. 2 is an enlarged view of the detail shown at A in FIG. 1;
  • FIG. 3a is a top view of a first embodiment of a mesh belt used according to the invention;
  • FIGS. 3b, 3c, and 3d are views like FIG. 3a of second, third, and fourth embodiments of the invention; and
  • FIG. 4 is an enlarged detail of FIG. 1 in a first embodiment; and
  • FIG. 5 is the same detail as FIG. 4 but in a second embodiment.
  • SPECIFIC DESCRIPTION OF THE INVENTION
  • The drawings shows an apparatus according to the invention for making nonwoven 1 from continuous filaments 2. In a particularly preferred embodiment and in this illustrated embodiment, this is a spunbond apparatus for making spunbond nonwoven 1 or spun nonwoven 1. The continuous filaments 2 preferably are of thermoplastic or essentially of thermoplastic. In the apparatus of the invention, the continuous filaments 2 are spun with the aid of a spinning device a spinneret 3. After that, the continuous filaments 2 are cooled in a cooler 4. This cooler 4 preferably and in the illustrated embodiment has two compartments 4 a and 4 b, one above the other or one after the other in the filament-travel direction, and that introduce cooling air of a variable temperature into the filament flow chamber. Downstream of the cooler 4 in the filament-travel direction is a stretcher 5 that preferably and in the illustrated embodiment has both an intermediate passage 6 that narrows in the flow direction of the continuous filaments 2 and a stretching passage 7 at the downstream end of the intermediate passage. Preferably and in the illustrated embodiment, the unit comprising the cooler 4 and the stretcher 5 is a plugged system. In this plugged system, except for the supply of cooling air or processing air, there is no further air supply in the cooler 4.
  • In a preferred embodiment of the invention and in the illustrated embodiment, a diffuser 8, 9 is connected to the stretcher 5 downstream in the filament-travel direction. Advantageously and in the illustrated embodiment, two diffusers 8, 9 are provided, located either one below the other or one after the other. It is recommended that an ambient air inlet gap 10 be provided between the two diffusers 8, 9 for the entry of ambient air. It is within the scope of the invention that the continuous filaments 2, downstream of the diffusers 8, 9, are deposited on a deposition device in the form of a mesh belt 11. It is furthermore within the scope of the invention that this is a continuously circulating mesh belt 11.
  • The mesh belt 11 has a mesh belt surface 12 with many mesh belt openings 13 distributed over the surface 12. According to the invention, air is aspirated through the mesh belt surface 12, or in other words through the (open) mesh belt openings 13. For that purpose, at least one suction blower, not shown in detail in the drawings, is located below the mesh belt 11. Preferably and in the illustrated embodiment, in the travel direction of the belt there are three separate suction areas 14, 15, 16 one after the other. In the suction area 17 of the continuous filaments 2, a main suction area 15 is preferably provided in which air is aspirated through the mesh belt 11, for instance at a suction speed or a mean suction speed of 5 to 30 m/s. Advantageously, the suction speed in the main suction area 15 is set such that it is higher than the suction speed in the remaining suction areas 14 and 16. A first suction area 14 is provided upstream of the main suction area 15, and a second suction area 16 is downstream of the main suction area 15. Advantageously and in the illustrated embodiment, a compacting device 18 with two compacting rollers 19, 20 is provided along the second suction area 16 for compacting or preconsolidating the nonwoven 1. As recommended and in the illustrated embodiment, at least one of the compacting rollers 19, 20 is a heated compacting roller 19, 20.
  • According to the invention, some of the mesh belt openings 13 of the mesh belt 11 are plugged. To that extent, the result is plugged mesh belt openings 21 or plugged points 22 in the mesh belt that are formed by a single plugged mesh belt opening 21 or a plurality of adjoining plugged mesh belt openings 21. It is understood that the air permeability of the unplugged mesh belt 11 (solely open mesh belt openings 13) is greater than the air permeability of the mesh belt 11 that is provided with plugged mesh belt openings 21. For instance, the air permeability of the unplugged mesh belt amounts to 600 cfm, and the air permeability of the plugged mesh belt 11—that is, the air permeability of the mesh belt 11 with some plugged mesh belt openings 21—is only 350 cfm. The ratio of the air permeability of the unplugged mesh belt 11 to the air permeability of the partly plugged mesh belt 11 is preferably 1.2 to 3. The air permeability is measured in particular crosswise to the mesh belt surface 12 in a circular surface of the mesh belt that is 38.3 cm2 in area, at a pressure difference of 125 Pa.
  • Preferably and in the illustrated embodiment, the mesh belt 11 has a textile that comprises warp filaments 23 and weft filaments 24 that define the mesh belt openings 13. The diameter D or the minimum diameter D of a mesh belt opening 13 may amount to 0.5 mm in the illustrated embodiment. Advantageously, this is the diameter D with respect to filaments or woven filaments located on the surface or in a surface layer of the mesh belt or mesh belt textile. It is recommended that the textile of the mesh belt 11 have a web density of 20 to 75 warp filaments per 25 mm and 10 to 50 weft filaments per 25 mm.
  • In a preferred embodiment of the invention, the plugged openings 22 in the mesh belt 11 are arrayed in punctate and/or linear form. FIG. 3a shows the punctate embodiment of plugged openings 22 in the mesh belt 11. The (least) diameter d of such a punctate plugged opening 22 may amount to 2 mm in the illustrated embodiment. In the illustrated embodiment of FIG. 3b , plugged-opening lines 22 are shown. The least width b of the plugged-opening lines 22 may amount to 2 mm as well in the illustrated embodiment. FIG. 3c shows a further embodiment with interrupted plugged-opening lines 22. The plugged-opening lines 22 can furthermore, in a manner not shown, also be curved or bowed lines. In FIG. 3d , an additional illustrated embodiment is shown with intersecting plugged-opening lines 22. This embodiment, too, has proved itself. FIGS. 3a, 3b and 3d furthermore show embodiments in which the plugged openings 22 are symmetrical to the longitudinal direction or travel direction of the belt 11. The travel direction F of the mesh belt 11 is indicated in FIGS. 3a through 3d by an arrow. Conversely, the embodiment of FIG. 3c is not symmetrical to the longitudinal direction or travel direction F of the mesh belt 11. The embodiments that are symmetrical with respect to the longitudinal direction or travel direction F are preferred in the context of this invention.
  • In FIG. 4, an especially recommended embodiment of the apparatus of the invention is shown. The continuous filaments 2 emerging from the diffuser 9 are deposited on the mesh belt surface 12 in the deposition area 17 of the mesh belt 11. The main suction area 15 for aspirating the processing air through the mesh belt 11 or through the mesh belt surface 12 is located below the deposition area 17. Downstream of the main suction area 15 is the second suction area 16 in which processing air is aspirated at what in comparison to the main suction area 15 is a lower air speed. The compacting device 18 with the two compacting rollers 19, 20 is provided above the second suction area 16. A separation area 25 is then downstream in the travel direction of the nonwoven 1. In this separation area, the nonwoven 1 or the preconsolidated nonwoven 1 is released/separated from the mesh belt 11 or in other words from the mesh belt surface 12. To that end, air is blown from below, or in other words against the underside of the nonwoven 1 and up through the mesh belt 11. This has been indicated in FIGS. 4 and 5 by arrows 26. In a recommended embodiment and in the illustrated embodiment of FIG. 4, the nonwoven 1 subjected to the separating air is braced by an air-permeable drum 27 co-rotating in the travel direction of the belt 11. The drum can be positioned at a spacing of 0.5 to 5 mm, for instance, above the mesh belt surface 12. The surface of the drum 27 can be for example a metal textile. Instead of the drum, an additional mesh belt (not shown) jointly rotating in the travel direction of the belt 11 could also be used.
  • FIG. 5 shows a further embodiment of a drum 27 provided for bracing the nonwoven 1 subjected to the separation air. In this illustrated embodiment, the drum 27 has a suction area 28 for receiving the separation air, and supporting air is additionally blown in, in the direction of the mesh belt 11 or of the nonwoven 1, in order to prevent the continuous filaments 2 or nonwoven 1 from sticking to the drum 27. The supporting air is symbolized in FIG. 5 by an arrow 29

Claims (18)

We claim:
1. An apparatus for making nonwoven, the apparatus comprising:
a spinning device for spinning continuous filaments and moving the spun filaments in a vertical travel direction along a vertical travel path;
a mesh belt below the spinning device, traveling in a horizontal direction, and having a multiplicity of vertically throughgoing openings distributed generally uniformly over its surface and of which a portion are plugged;
a cooler and a stretcher along the path downstream of the spinning device and above the belt for cooling and stretching the filaments and depositing the cooled and stretched filaments at a predetermined deposition location on the belt;
means underneath the belt below the cooling and stretching devices for aspirating air through the openings and thereby holding the deposited filaments down on the belt, the openings being dimensioned and the air being aspirated through the belt such that, if none of the openings were plugged, air would pass through the belt at 300 to 1100 cfm, but actually so many of the openings are plugged that air passes through the belt at 150 to 700 cfm.
2. The apparatus defined in claim 1, wherein the mesh belt is formed by a textile having warp filaments and weft filaments that define the mesh belt openings.
3. The apparatus defined in claim 2, wherein the textile of the mesh belt has a web density of 20 to 75 warp filaments per 25 mm and 10 to 50 weft filaments per 25 mm.
4. The apparatus defined in claim 1, wherein a minimum diameter of a plugged opening of the mesh belt amounts to at least 1.5 mm and a maximum of 8 mm.
5. The apparatus defined in claim 1, wherein a ratio of air permeability of an unplugged mesh belt to an air permeability of the partly plugged mesh belt amounts to 1.2 to 4.
6. The apparatus defined in claim 1, wherein the plugged belt openings are plugged by a sealing compound that is in or below a surface of the mesh belt and does not project past the mesh-belt surface more than a maximum of 1.5 mm.
7. The apparatus defined in claim 1, wherein the plugged openings are arrayed in punctate or linear fashion.
8. The apparatus defined in claim 7, wherein the plugged openings are arrayed uniformly in a regular pattern on the mesh belt.
9. The apparatus defined in claim 1, wherein the cooler and stretcher together form a closed subassembly such that, except for a supply of cooling air in the cooler, no further air enters this closed subassembly.
10. The apparatus defined in claim 1, further comprising, downstream of the stretcher and upstream of the deposition location:
a diffuser through which the filaments can be guided to the deposition location prior to being deposited.
11. The apparatus defined in claim 1, further comprising, downstream in the belt-travel direction from the deposition location:
a compacting roller for preconsolidating the nonwoven deposited on the deposition device or on the mesh belt; and
means for heating the compacting roller.
12. A method of making nonwoven comprising the steps of:
spinning continuous filaments from a spinneret to move along a vertical travel path in a vertical travel direction;
cooling and stretching the filaments downstream from of the spinneret in a cooler and a stretcher;
depositing the cooled and stretched filament at a deposition location on a mesh belt moving horizontally underneath the cooler and stretcher and having an array of openings of which a portion are plugged;
drawing air downward through the unplugged openings in the mesh belt to stabilize the filaments deposited on the mesh belt, the air being aspirated through the mesh belt at the location at a rate forming a ratio to a rate if none of the openings were plugged of 1.2 to 4.
13. The method defined in claim 12, wherein the nonwoven is produced as spunbond nonwoven.
14. The method defined in claim 12, wherein the air is aspirated through deposition location at an aspiration speed of 5 to 25 m/s.
15. The method defined in claim 12, further comprising the step of:
preconsolidating the deposited nonwoven into final form.
16. The method defined in claim 12, further comprising the step, to separate the nonwoven from the mesh belt, of blowing air through the mesh belt from below or against the underside of
Figure US20170314163A1-20171102-P00999
17. A spunbond nonwoven comprising continuous filaments of thermoplastic made by the method of claim 12, the continuous filaments have a titer of 0.9 to 10 denier.
18. A melt-blown nonwoven of continuous thermoplastic filaments made by the method of claim 12. wherein the continuous filaments have a diameter of 0.1 to 10 μm.
US15/493,170 2016-04-29 2017-04-21 Method and apparatus for making nonwoven from continuous filaments Abandoned US20170314163A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/213,873 US11655563B2 (en) 2016-04-29 2021-03-26 Apparatus for making nonwoven from continuous filaments
US18/299,909 US20230250558A1 (en) 2016-04-29 2023-04-13 Methods of making a nonwoven from continuous filaments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16167804.0A EP3239378B1 (en) 2016-04-29 2016-04-29 Device and method for the manufacture of material from continuous filaments
EP16167804.0-1308 2016-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,873 Continuation US11655563B2 (en) 2016-04-29 2021-03-26 Apparatus for making nonwoven from continuous filaments

Publications (1)

Publication Number Publication Date
US20170314163A1 true US20170314163A1 (en) 2017-11-02

Family

ID=55862667

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/493,170 Abandoned US20170314163A1 (en) 2016-04-29 2017-04-21 Method and apparatus for making nonwoven from continuous filaments
US17/213,873 Active 2037-09-07 US11655563B2 (en) 2016-04-29 2021-03-26 Apparatus for making nonwoven from continuous filaments
US18/299,909 Pending US20230250558A1 (en) 2016-04-29 2023-04-13 Methods of making a nonwoven from continuous filaments

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/213,873 Active 2037-09-07 US11655563B2 (en) 2016-04-29 2021-03-26 Apparatus for making nonwoven from continuous filaments
US18/299,909 Pending US20230250558A1 (en) 2016-04-29 2023-04-13 Methods of making a nonwoven from continuous filaments

Country Status (13)

Country Link
US (3) US20170314163A1 (en)
EP (1) EP3239378B1 (en)
JP (2) JP6968570B2 (en)
KR (1) KR102148557B1 (en)
CN (1) CN107326541B (en)
AR (1) AR108335A1 (en)
BR (1) BR102017008542B1 (en)
ES (1) ES2720805T3 (en)
MX (1) MX2017005446A (en)
MY (1) MY174811A (en)
PL (1) PL3239378T3 (en)
RU (1) RU2710674C2 (en)
SI (1) SI3239378T1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112703A1 (en) * 2018-11-30 2020-06-04 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
WO2020107422A1 (en) * 2018-11-30 2020-06-04 The Procter & Gamble Company Methods of creating soft and lofty nonwoven webs
EP3771760A1 (en) * 2019-07-30 2021-02-03 Asahi Kasei Kabushiki Kaisha Method and apparatus for producing a nonwoven fabric made of crimped synthetic fibers
CN113481662A (en) * 2021-07-28 2021-10-08 浙江朝隆纺织机械股份有限公司 Air suction structure of web former
US11401640B2 (en) * 2015-07-31 2022-08-02 The Procter & Gamble Company Forming belt for shaped nonwoven
US11618983B2 (en) * 2019-07-30 2023-04-04 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Making a nonwoven from filaments
WO2023081744A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
WO2023081746A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081747A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081745A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
US11655563B2 (en) 2016-04-29 2023-05-23 The Procter & Gamble Company Apparatus for making nonwoven from continuous filaments
US11826230B2 (en) 2015-07-31 2023-11-28 The Procter & Gamble Company Package of absorbent articles utilizing a shaped nonwoven

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322062B (en) * 2018-10-26 2021-02-02 大连民族大学 3D stacked multilayer electrospun fiber layer-by-layer spraying method
WO2020112705A1 (en) * 2018-11-30 2020-06-04 The Procter & Gamble Company Through-fluid bonded continuous fiber nonwoven webs
ES2907976T3 (en) * 2019-07-30 2022-04-27 Reifenhaeuser Masch Device and method for producing a nonwoven material of crimped fibers
CN112176435A (en) * 2020-10-14 2021-01-05 安徽伯辉智能装备有限公司 Melt cooling device for melt-blown non-woven fabric production
CN112481835B (en) * 2020-11-30 2022-08-23 厦门当盛新材料有限公司 Production method of polyethylene film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US5302220A (en) * 1989-04-06 1994-04-12 Chisso Corporation Method for manufacturing bulky nonwoven fabrics
US5514523A (en) * 1990-06-29 1996-05-07 The Procter & Gamble Company Papermaking belt and method of making the same using differential light transmission techniques
US20080220161A1 (en) * 2007-03-08 2008-09-11 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Method of and apparatus for making a spunbond
US20100062672A1 (en) * 2006-12-15 2010-03-11 Fare' S.P.A. Apparatus and process for the production of a non-woven fabric
US20170029993A1 (en) * 2015-07-31 2017-02-02 The Procter & Gamble Company Forming Belt for Shaped Nonwoven

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827070B1 (en) 1970-07-21 1973-08-18
US4333979A (en) 1980-08-18 1982-06-08 Kimberly-Clark Corporation Soft, bulky, lightweight nonwoven web and method of producing; the web has both fused spot bonds and patterned embossments
US4514345A (en) * 1983-08-23 1985-04-30 The Procter & Gamble Company Method of making a foraminous member
US4970104A (en) 1988-03-18 1990-11-13 Kimberly-Clark Corporation Nonwoven material subjected to hydraulic jet treatment in spots
EP0418493A1 (en) 1989-07-28 1991-03-27 Fiberweb North America, Inc. A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
GB8921962D0 (en) 1989-09-28 1989-11-15 Browning Michael R S Variable suspension system
US5145727A (en) 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5206023A (en) 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
JP3171457B2 (en) * 1991-04-26 2001-05-28 日本フイルコン株式会社 Belt for producing nonwoven fabric provided with projections and method for producing nonwoven fabric having pattern formed
US5399174A (en) 1993-04-06 1995-03-21 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material
US5599420A (en) 1993-04-06 1997-02-04 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
CA2105026C (en) 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
JP2000516304A (en) 1994-11-02 2000-12-05 ザ、プロクター、エンド、ギャンブル、カンパニー Non-woven fabric manufacturing method
US5573719A (en) 1994-11-30 1996-11-12 Kimberly-Clark Corporation Process of making highly absorbent nonwoven fabric
DE19518975C1 (en) 1995-05-23 1996-06-13 Freudenberg Carl Fa Cleaning cloth
US5628097A (en) 1995-09-29 1997-05-13 The Procter & Gamble Company Method for selectively aperturing a nonwoven web
US5995020A (en) 1995-10-17 1999-11-30 Pes, Inc. Downhole power and communication system
US5858515A (en) 1995-12-29 1999-01-12 Kimberly-Clark Worldwide, Inc. Pattern-unbonded nonwoven web and process for making the same
JPH1077566A (en) 1996-07-11 1998-03-24 Uni Charm Corp Nonwoven fabric and its production
WO1998024618A1 (en) 1996-12-06 1998-06-11 Bba Nonwovens Simpsonville, Inc. Nonwoven web laminate having relatively hydrophilic zone and related method for its manufacture
WO1998042289A1 (en) 1997-03-21 1998-10-01 Kimberly-Clark Worldwide, Inc. Dual-zoned absorbent webs
US6383431B1 (en) 1997-04-04 2002-05-07 The Procter & Gamble Company Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article
AU6265099A (en) 1998-10-01 2000-04-26 Kimberly-Clark Worldwide, Inc. Differential basis weight nonwoven webs
US6673418B1 (en) 1998-12-23 2004-01-06 Mcneil-Ppc, Inc. Absorbent product having a non-woven fabric cover with a three-dimensional profile region
US6319455B1 (en) 1999-08-13 2001-11-20 First Quality Nonwovens, Inc. Nonwoven fabric with high CD elongation and method of making same
US6331268B1 (en) 1999-08-13 2001-12-18 First Quality Nonwovens, Inc. Nonwoven fabric with high CD elongation and method of making same
US6331345B1 (en) 1999-08-13 2001-12-18 First Quality Nonwovens, Inc. Nonwoven fabric with high CD elongation and method of making same
DE60032920T2 (en) 1999-10-13 2007-10-31 Baker Hughes Inc., Houston DEVICE FOR TRANSMITTING ELECTRICAL ENERGY BETWEEN ROTATING AND NON-ROTATING PARTS OF DRILLING TOOLS
US6679332B2 (en) 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
DE10003684A1 (en) 2000-01-28 2001-08-02 Voith Paper Patent Gmbh Machine and method for producing a tissue web
US7589249B2 (en) 2000-02-16 2009-09-15 Mcneil-Ppc, Inc. Multiple zone apertured web
JP3701208B2 (en) 2000-03-13 2005-09-28 ユニ・チャーム株式会社 An apertured sheet, an absorbent article using the apertured sheet, and a method for producing the apertured sheet.
US6632504B1 (en) 2000-03-17 2003-10-14 Bba Nonwovens Simpsonville, Inc. Multicomponent apertured nonwoven
US20020119720A1 (en) 2000-10-13 2002-08-29 Arora Kelyn Anne Abrasion resistant, soft nonwoven
JP3877953B2 (en) 2000-10-31 2007-02-07 ユニ・チャーム株式会社 Non-woven surface sheet for disposable wearing articles
US20030203196A1 (en) 2000-11-27 2003-10-30 Trokhan Paul Dennis Flexible structure comprising starch filaments
DE10103627B4 (en) 2001-01-27 2007-11-15 Sandler Ag Nonwoven fabric with structure
DE10109304C5 (en) 2001-02-26 2009-07-16 Sandler Ag Textured, voluminous metblown fleece
US6601706B2 (en) 2001-04-19 2003-08-05 Kimberly-Clark Worldwide, Inc. Package for absorbent articles
US20020193032A1 (en) 2001-06-01 2002-12-19 Bba Nonwovens Simpsonville, Inc. Nonwoven fabric with areas of differing basis weight
KR20040022412A (en) 2001-08-14 2004-03-12 맥네일-피피씨, 인코포레이티드 Multiple zone apertured web
JP4707282B2 (en) 2001-08-21 2011-06-22 旭化成せんい株式会社 Top sheet for sanitary materials
DE60233515D1 (en) 2001-10-29 2009-10-08 Albany Int Corp HIGH SPEED SPIN FLEECE PRODUCTION
US20030093045A1 (en) 2001-11-13 2003-05-15 Erdman Carol L. Absorbing article having zoned areas of hydrophilicity
US6921570B2 (en) 2001-12-21 2005-07-26 Kimberly-Clark Worldwide, Inc. Pattern unbonded nonwoven web and process for making same
JP3611838B2 (en) 2001-12-28 2005-01-19 花王株式会社 Top sheet for absorbent articles
TWI230600B (en) 2002-02-25 2005-04-11 Kao Corp Topsheet for absorbent article
JP3625804B2 (en) 2002-02-25 2005-03-02 花王株式会社 Three-dimensional sheet material
DE50211736D1 (en) 2002-02-28 2008-04-03 Reifenhaeuser Gmbh & Co Kg Plant for the continuous production of a spunbonded web
US20030203691A1 (en) 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Nonwoven materials having surface features
US20030203162A1 (en) 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Methods for making nonwoven materials on a surface having surface features and nonwoven materials having surface features
US20030211802A1 (en) 2002-05-10 2003-11-13 Kimberly-Clark Worldwide, Inc. Three-dimensional coform nonwoven web
US20040005457A1 (en) 2002-07-03 2004-01-08 Kimberly-Clark Worldwide, Inc. Methods of improving the softness of fibers and nonwoven webs and fibers and nonwoven webs having improved softness
US20040059309A1 (en) 2002-09-18 2004-03-25 Nortman Brian Keith Absorbent article with untreated hydrophobic target area
AU2003266572A1 (en) 2002-09-26 2004-04-19 Asahi Kasei Fibers Corporation Spun-bonded nonwoven fabric and sanitary supplies
US7067711B2 (en) 2002-12-05 2006-06-27 Uni-Charm Corporation Elongated absorbent article
US8030535B2 (en) 2002-12-18 2011-10-04 The Procter & Gamble Company Sanitary napkin for clean body benefit
US9844476B2 (en) 2014-03-18 2017-12-19 The Procter & Gamble Company Sanitary napkin for clean body benefit
DE50201372D1 (en) * 2002-12-19 2004-11-25 Reifenhaeuser Masch Device for depositing and conveying a nonwoven web made of plastic threads
US7005044B2 (en) * 2002-12-31 2006-02-28 Albany International Corp. Method of fabricating a belt and a belt used to make bulk tissue and towel, and nonwoven articles and fabrics
US8241543B2 (en) 2003-08-07 2012-08-14 The Procter & Gamble Company Method and apparatus for making an apertured web
SE0303413D0 (en) * 2003-12-18 2003-12-18 Sca Hygiene Prod Ab a composite nonwoven material containing continuous filaments and short fibers
US20100198013A1 (en) 2004-08-17 2010-08-05 Kenneth Binmoeller Sterile endoscopic instrument housing
JP4580736B2 (en) 2004-11-18 2010-11-17 ユニ・チャーム株式会社 Absorbent core molding drum
ES2627417T3 (en) 2004-12-17 2017-07-28 Albany International Corp. Pattern formation on SMS product
US8197455B2 (en) 2004-12-21 2012-06-12 Kimberly-Clark Worldwide, Inc. Absorbent articles and/or packaging components each having different patterns in a single container
JP4870365B2 (en) 2005-02-23 2012-02-08 ユニ・チャーム株式会社 Sanitary napkin
US20070045143A1 (en) 2005-08-26 2007-03-01 Clough Jane L Package of flexible absorbent articles
US20070045144A1 (en) 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Packaging component for personal care articles
CA2624289A1 (en) 2005-10-11 2007-04-19 Johnson & Johnson Inc. Rolled disposable absorbent article
RU2388860C2 (en) 2005-12-07 2010-05-10 Ска Хайджин Продактс Аб Nonwoven material and absorbing item that includes nonwoven material
AU2005338967B2 (en) 2005-12-07 2012-05-17 Essity Hygiene And Health Aktiebolag Nonwoven material and absorbing article comprising nonwoven material
CA2649356C (en) 2006-04-10 2015-01-13 First Quality Nonwovens, Inc. Cotendered nonwoven/pulp composite fabric and method for making the same
US8129298B2 (en) 2006-05-31 2012-03-06 Mitsui Chemicals, Inc. Nonwoven laminates and process for producing the same
JP5123511B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Non-woven
JP5154048B2 (en) 2006-06-23 2013-02-27 ユニ・チャーム株式会社 Non-woven
JP5123505B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Non-woven
JP5123497B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Nonwoven fabric, nonwoven fabric manufacturing method and nonwoven fabric manufacturing apparatus
JP5069890B2 (en) 2006-06-23 2012-11-07 ユニ・チャーム株式会社 Non-woven
JP5328088B2 (en) 2006-06-23 2013-10-30 ユニ・チャーム株式会社 Non-woven
JP5069891B2 (en) 2006-06-23 2012-11-07 ユニ・チャーム株式会社 Non-woven
JP5328089B2 (en) 2006-06-23 2013-10-30 ユニ・チャーム株式会社 Multilayer nonwoven fabric and method for producing multilayer nonwoven fabric
JP5328113B2 (en) 2006-06-23 2013-10-30 ユニ・チャーム株式会社 Absorbent articles
JP5123513B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Absorber
JP5123512B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Non-woven
CN101542032B (en) 2006-06-23 2011-08-24 尤妮佳股份有限公司 Non-woven fabric
JP5054962B2 (en) 2006-11-06 2012-10-24 ユニ・チャーム株式会社 Absorbent articles
ES2352508T3 (en) * 2006-12-06 2011-02-21 REIFENHÄUSER GMBH & CO. KG MASCHINENFABRIK PROCEDURE AND DEVICE FOR THE PRODUCTION OF SPINNING VELO BY ADHESION.
DE102006062237A1 (en) 2006-12-22 2008-06-26 Voith Patent Gmbh Machine for producing a fibrous web
US8273941B2 (en) 2007-04-17 2012-09-25 Uni-Charm Corporation Nonwoven fabric, method for producing nonwoven fabric, and absorbent article
JP5053815B2 (en) 2007-12-03 2012-10-24 花王株式会社 Absorbent articles
JP5197147B2 (en) 2008-05-15 2013-05-15 ユニ・チャーム株式会社 Absorbent articles
JP5269485B2 (en) 2008-05-30 2013-08-21 ユニ・チャーム株式会社 Bulky paper having an uneven pattern and method for producing the same
US8058501B2 (en) 2008-08-08 2011-11-15 The Procter & Gamble Company Regionalized topsheet
EP3321405A1 (en) 2008-09-11 2018-05-16 Albany International Corp. Permeable belt for the manufacture of tissue, towel and nonwovens
US20110250378A1 (en) 2008-12-23 2011-10-13 Eaton Bradley W Patterned spunbond fibrous webs and methods of making and using the same
CA2750821A1 (en) 2009-01-28 2010-08-05 Albany International Corp. Industrial fabric for production of nonwovens, and method of making thereof
US8906275B2 (en) 2012-05-29 2014-12-09 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US20100224356A1 (en) 2009-03-06 2010-09-09 Smith International, Inc. Apparatus for electrical power and/or data transfer between rotating components in a drill string
US8975466B2 (en) 2009-04-29 2015-03-10 Eveready Battery Company, Inc. Absorbent article including a plurality of longitudinally extending channels
JP5421676B2 (en) 2009-07-07 2014-02-19 花王株式会社 Top sheet for absorbent articles
JP5399174B2 (en) 2009-09-08 2014-01-29 株式会社オプトラン Multi-source vapor deposition thin film composition control method and manufacturing apparatus
CA2733472C (en) 2009-09-29 2017-10-31 The Procter & Gamble Company Absorbent products having improved packaging efficiency
US8676549B2 (en) 2009-09-29 2014-03-18 The Procter & Gamble Company Method of maximizing shipping efficiency of absorbent articles
JP5421720B2 (en) 2009-10-09 2014-02-19 ユニ・チャーム株式会社 Non-woven
JP2011131044A (en) 2009-11-24 2011-07-07 Kao Corp Absorbent article
US8668975B2 (en) 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
JP5592937B2 (en) 2010-03-30 2014-09-17 三井化学株式会社 Non-woven
RU2570496C2 (en) 2010-06-10 2015-12-10 Као Корпорейшн Production of absorbing element
BR112013002433A2 (en) 2010-08-20 2016-05-24 First Quality Nonwovens Inc absorbent article and components thereof exhibiting signs of optimized softness, and methods for its manufacture.
US10639212B2 (en) 2010-08-20 2020-05-05 The Procter & Gamble Company Absorbent article and components thereof having improved softness signals, and methods for manufacturing
JP5729948B2 (en) 2010-08-31 2015-06-03 ユニ・チャーム株式会社 Nonwoven sheet, method for producing the same, and absorbent article
JP5780731B2 (en) 2010-09-30 2015-09-16 ユニ・チャーム株式会社 Disposable diapers
JP5773604B2 (en) 2010-09-30 2015-09-02 ユニ・チャーム株式会社 Absorbent articles and disposable diapers
WO2012086730A1 (en) 2010-12-24 2012-06-28 花王株式会社 Non-woven fabric, and absorbent article using same
US20120238982A1 (en) 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
US20120238979A1 (en) 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
US20120316532A1 (en) 2011-06-13 2012-12-13 Mccormick Sarah Ann Disposable Absorbent Article With Topsheet Having A Continuous, Bonded Pattern
JP5709685B2 (en) 2011-07-29 2015-04-30 ユニ・チャーム株式会社 Disposable diapers
JP5717602B2 (en) 2011-09-30 2015-05-13 ユニ・チャーム株式会社 Laminated nonwoven fabric and method for producing the laminated nonwoven fabric
EP2769705B1 (en) 2011-10-19 2020-07-08 Kao Corporation Fiber stacking device
US20130112584A1 (en) 2011-11-08 2013-05-09 Seda Gaspari Compact Tissue Dispenser
JP5743961B2 (en) 2011-12-09 2015-07-01 ユニ・チャーム株式会社 Liquid-permeable nonwoven fabric
JP5858776B2 (en) 2011-12-27 2016-02-10 花王株式会社 Non-woven
CN106906573B (en) 2012-01-04 2019-08-27 宝洁公司 The fibre structure containing active material of multiple regions with different densities
MX368218B (en) 2012-01-04 2019-09-24 Procter & Gamble Active containing fibrous structures with multiple regions.
JP5925015B2 (en) 2012-03-30 2016-05-25 ユニ・チャーム株式会社 Absorbent articles
EP2660377B1 (en) 2012-05-03 2014-04-09 Chen-Cheng Huang Method of making a double-sided embossed non-woven fabric
JP5979983B2 (en) 2012-05-28 2016-08-31 大王製紙株式会社 Absorbent article and manufacturing method thereof
US10695250B2 (en) 2012-07-24 2020-06-30 Maquet (Suzhou) Co., Ltd. Medical supply unit having an elbow joint part
CN110013389B (en) 2012-08-01 2021-10-29 宝洁公司 Diaper construction with enhanced tactile softness attributes
CN108210177A (en) 2012-08-13 2018-06-29 宝洁公司 The non-woven webs and preparation method of multilayer with visually different bonded part
CN104661627B (en) 2012-09-21 2018-11-02 宝洁公司 Product with soft non-woven layer
JP5875157B2 (en) 2012-09-28 2016-03-02 花王株式会社 Fiber sheet
US20140127460A1 (en) 2012-11-06 2014-05-08 The Procter & Gamble Company Article(s) with soft nonwoven web
JP6050659B2 (en) 2012-11-16 2016-12-21 花王株式会社 Absorbent articles
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
HUE044699T2 (en) 2012-12-10 2019-11-28 Procter & Gamble Absorbent article with profiled acquisition-distribution system
US8851161B2 (en) 2013-01-22 2014-10-07 Halliburton Energy Services, Inc. Cross-communication between electronic circuits and electrical devices in well tools
US9994982B2 (en) 2013-03-12 2018-06-12 Fitesa Germany Gmbh Extensible nonwoven fabric
JP6044413B2 (en) 2013-03-26 2016-12-14 王子ホールディングス株式会社 Absorbent article topsheet and absorbent article using the same
US9173782B2 (en) 2013-03-28 2015-11-03 Kimberly-Clark Worldwide, Inc. Coordinated apertured and embossed topsheet layer materials, and absorbent articles containing such
US20140324009A1 (en) 2013-04-29 2014-10-30 Kimberly-Clark Worldwide, Inc. Aperture-Patterned Fibrous Nonwoven Web
JP6290379B2 (en) 2013-05-20 2018-03-07 ザ プロクター アンド ギャンブル カンパニー Nonwoven web having visually different binding sites and method of making
US20140358101A1 (en) 2013-05-30 2014-12-04 The Procter & Gamble Company Nonwoven Web Material Having Enhanced Glide Softness And Good Strength Attributes, And Method For Manufacturing
JP2014234345A (en) 2013-05-30 2014-12-15 スリーエム イノベイティブ プロパティズ カンパニー Skin care sheet and skin care product
WO2015000774A1 (en) 2013-07-02 2015-01-08 Fitesa Germany Gmbh Non-woven fabric and process for forming the same
US10258516B2 (en) 2013-07-31 2019-04-16 Kimberly-Clark Worldwide, Inc. Treated three-dimensional apertured liners
EP2886093B1 (en) 2013-12-19 2016-09-21 The Procter and Gamble Company Absorbent Article comprising one or more colored areas
US9937087B2 (en) 2014-01-24 2018-04-10 The Procter & Gamble Company Disposable absorbent articles comprising skin health composition(s) and related methods
CN203841923U (en) 2014-03-26 2014-09-24 厦门延江工贸有限公司 Three-dimensional non-woven fabric with open pore structures
JP6289224B2 (en) 2014-04-04 2018-03-07 ユニ・チャーム株式会社 Non-woven
US10271997B2 (en) 2014-04-08 2019-04-30 The Procter & Gamble Company Absorbent articles having substrates having zonal treatments
TWI616313B (en) 2014-04-18 2018-03-01 Huang Zhen Zheng Forming system for searching breathable film and finished product thereof
CA2967001A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Patterned apertured webs, laminates, and methods for making the same
US10517775B2 (en) 2014-11-18 2019-12-31 The Procter & Gamble Company Absorbent articles having distribution materials
ES2841343T3 (en) 2015-01-02 2021-07-08 Essity Hygiene & Health Ab Absorbent article
EP3058916B1 (en) 2015-02-17 2018-01-31 The Procter and Gamble Company Package for absorbent articles forming a three-dimensional basin
CA2992031C (en) 2015-07-31 2021-02-16 The Procter & Gamble Company Package of absorbent articles utilizing a shaped nonwoven
WO2017023658A1 (en) * 2015-07-31 2017-02-09 The Procter & Gamble Company Shaped nonwoven
US10858768B2 (en) 2015-07-31 2020-12-08 The Procter & Gamble Company Shaped nonwoven
CN107920938B (en) 2015-08-26 2021-07-30 宝洁公司 Absorbent article with three-dimensional substrate and indicia
US10682265B2 (en) 2015-11-12 2020-06-16 Pfnonwovens Llc Nonwoven with improved abrasion resistance and method of making the same
US10828209B2 (en) 2015-12-16 2020-11-10 Avintiv Specialty Materials Inc. Soft nonwoven fabric and method of manufacturing thereof
BR112018011951B1 (en) 2015-12-17 2022-09-20 The Procter & Gamble Company NON-WOVEN FABRIC
JP6055074B1 (en) 2015-12-25 2016-12-27 ユニ・チャーム株式会社 Absorbent articles
US10195091B2 (en) 2016-03-11 2019-02-05 The Procter & Gamble Company Compositioned, textured nonwoven webs
PL3239378T3 (en) 2016-04-29 2019-07-31 Reifenhäuser GmbH & Co. KG Maschinenfabrik Device and method for the manufacture of material from continuous filaments
US10888471B2 (en) 2016-12-15 2021-01-12 The Procter & Gamble Company Shaped nonwoven
RU2725401C1 (en) 2017-01-31 2020-07-02 Дзе Проктер Энд Гэмбл Компани Molded non-woven material
WO2018144357A1 (en) 2017-01-31 2018-08-09 The Procter & Gamble Company Shaped nonwoven fabrics and articles including the same
US10772768B2 (en) 2017-01-31 2020-09-15 The Procter & Gamble Company Shaped nonwoven
WO2018226497A1 (en) 2017-06-05 2018-12-13 The Procter & Gamble Company Configurable absorbent articles having improved bodily exudate visualization
CN110799161B (en) 2017-06-30 2022-08-26 宝洁公司 Shaped nonwoven fabric
WO2019005910A1 (en) 2017-06-30 2019-01-03 The Procter & Gamble Company Method for making a shaped nonwoven
US20200054501A1 (en) 2017-08-31 2020-02-20 Kao Corporation Nonwoven fabric
US11771797B2 (en) 2018-06-26 2023-10-03 The Procter And Gamble Company Absorbent article with topsheet treated to reduce surfactant migration
EP3829509B1 (en) 2018-08-03 2023-12-13 The Procter & Gamble Company Webs with compositions applied thereto
WO2020226951A1 (en) 2019-05-03 2020-11-12 The Procter & Gamble Company Nonwoven webs with one or more repeat units
CN114746598B (en) 2019-12-10 2024-01-19 宝洁公司 Nonwoven web with visually distinguishable patterns and improved texture perception

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US5302220A (en) * 1989-04-06 1994-04-12 Chisso Corporation Method for manufacturing bulky nonwoven fabrics
US5514523A (en) * 1990-06-29 1996-05-07 The Procter & Gamble Company Papermaking belt and method of making the same using differential light transmission techniques
US20100062672A1 (en) * 2006-12-15 2010-03-11 Fare' S.P.A. Apparatus and process for the production of a non-woven fabric
US20080220161A1 (en) * 2007-03-08 2008-09-11 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Method of and apparatus for making a spunbond
US20170029993A1 (en) * 2015-07-31 2017-02-02 The Procter & Gamble Company Forming Belt for Shaped Nonwoven

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11925541B2 (en) 2015-07-31 2024-03-12 The Procter & Gamble Company Package of absorbent articles utilizing a shaped nonwoven
US11826230B2 (en) 2015-07-31 2023-11-28 The Procter & Gamble Company Package of absorbent articles utilizing a shaped nonwoven
US11401640B2 (en) * 2015-07-31 2022-08-02 The Procter & Gamble Company Forming belt for shaped nonwoven
US11655563B2 (en) 2016-04-29 2023-05-23 The Procter & Gamble Company Apparatus for making nonwoven from continuous filaments
WO2020107422A1 (en) * 2018-11-30 2020-06-04 The Procter & Gamble Company Methods of creating soft and lofty nonwoven webs
CN113166994A (en) * 2018-11-30 2021-07-23 宝洁公司 Method for producing a through-flow bonded nonwoven web
US11767622B2 (en) 2018-11-30 2023-09-26 The Procter & Gamble Company Methods of creating soft and lofty nonwoven webs
US11236448B2 (en) 2018-11-30 2022-02-01 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
EP4074874A1 (en) * 2018-11-30 2022-10-19 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
CN115434077A (en) * 2018-11-30 2022-12-06 宝洁公司 Method for producing a through-flow bonded nonwoven web
WO2020112703A1 (en) * 2018-11-30 2020-06-04 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
US11686026B2 (en) 2018-11-30 2023-06-27 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
US11618983B2 (en) * 2019-07-30 2023-04-04 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Making a nonwoven from filaments
WO2021018525A1 (en) * 2019-07-30 2021-02-04 Asahi Kasei Kabushiki Kaisha Method and apparatus for producing a nonwoven fabric made of crimped synthetic fibers
EP3771760A1 (en) * 2019-07-30 2021-02-03 Asahi Kasei Kabushiki Kaisha Method and apparatus for producing a nonwoven fabric made of crimped synthetic fibers
CN113481662A (en) * 2021-07-28 2021-10-08 浙江朝隆纺织机械股份有限公司 Air suction structure of web former
WO2023081747A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081745A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
WO2023081746A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081744A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method

Also Published As

Publication number Publication date
US20210214858A1 (en) 2021-07-15
RU2710674C2 (en) 2019-12-30
RU2017114956A3 (en) 2019-07-17
MY174811A (en) 2020-05-15
CN107326541A (en) 2017-11-07
SI3239378T1 (en) 2019-06-28
CN107326541B (en) 2024-02-06
RU2017114956A (en) 2018-10-30
AR108335A1 (en) 2018-08-08
BR102017008542B1 (en) 2022-09-06
JP2017206803A (en) 2017-11-24
JP2022009216A (en) 2022-01-14
MX2017005446A (en) 2018-08-20
EP3239378B1 (en) 2019-02-13
PL3239378T3 (en) 2019-07-31
JP6968570B2 (en) 2021-11-17
US11655563B2 (en) 2023-05-23
ES2720805T3 (en) 2019-07-24
EP3239378A1 (en) 2017-11-01
KR20170124095A (en) 2017-11-09
KR102148557B1 (en) 2020-08-26
US20230250558A1 (en) 2023-08-10
BR102017008542A2 (en) 2017-11-07
JP7176076B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
US11655563B2 (en) Apparatus for making nonwoven from continuous filaments
US8246898B2 (en) Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
US7476350B2 (en) Method for manufacturing thermoplastic nonwoven webs and laminates
KR20160127668A (en) Spun method and apparatus for making a spun-bonded fabric from filaments and spunbond made therefrom
KR102110067B1 (en) Method and apparatus for manufacturing spunbond nonwoven fabric from endless filaments
US20230220594A1 (en) Method and apparatus for making a nonwoven from crimped filaments
US11598035B2 (en) Method and apparatus for making a nonwoven from continuous filaments
CN108884618A (en) The manufacturing device of non-woven cloth, the manufacturing method of non-woven cloth and non-woven cloth
US8206640B2 (en) Process for collection of continuous fibers as a uniform batt
RU2732563C1 (en) Method and device for production of nonwoven materials from endless filaments
JP2020073748A (en) Apparatus for manufacturing non-woven fabric and method for manufacturing non-woven fabric
US11618983B2 (en) Making a nonwoven from filaments
GB2247697A (en) Improvements relating to apparatus for use in producing non-woven webs from thermo-plastic

Legal Events

Date Code Title Description
AS Assignment

Owner name: REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK, GERMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOMMER, SEBASTIAN;WAGNER, TOBIAS;LINKE, GEROLD;REEL/FRAME:042537/0190

Effective date: 20170517

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: THE PROCTER & GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK;REEL/FRAME:055240/0384

Effective date: 20210115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION