US20170297694A1 - Rotor speed management - Google Patents

Rotor speed management Download PDF

Info

Publication number
US20170297694A1
US20170297694A1 US15/516,271 US201515516271A US2017297694A1 US 20170297694 A1 US20170297694 A1 US 20170297694A1 US 201515516271 A US201515516271 A US 201515516271A US 2017297694 A1 US2017297694 A1 US 2017297694A1
Authority
US
United States
Prior art keywords
rotor
speed
recited
rotor assembly
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/516,271
Inventor
Matthew T. Luszcz
Steven D. Weiner
Bryan S. Cotton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sikorsky Aircraft Corp
Original Assignee
Sikorsky Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sikorsky Aircraft Corp filed Critical Sikorsky Aircraft Corp
Priority to US15/516,271 priority Critical patent/US20170297694A1/en
Publication of US20170297694A1 publication Critical patent/US20170297694A1/en
Assigned to SIKORSKY AIRCRAFT CORPORATION reassignment SIKORSKY AIRCRAFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COTTON, BRYAN, LUSZCZ, Matthew T., WEINER, STEVEN D., ARIFIAN, KENNETH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64C27/10Helicopters with two or more rotors arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/0009Aerodynamic aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/503Fly-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/006Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/008Rotors tracking or balancing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/16Drive of rotors by means, e.g. propellers, mounted on rotor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/322Blade travel limiting devices, e.g. droop stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/33Rotors having flexing arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/48Root attachment to rotor head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/51Damping of blade movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • B64C27/57Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/78Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement in association with pitch adjustment of blades of anti-torque rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/80Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • B64D35/06Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors the propellers or rotors being counter-rotating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/06Connecting hose to aircraft; Disconnecting hose therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/02Lightning protectors; Static dischargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0077Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements using redundant signals or controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • B64C2027/004Vibration damping devices using actuators, e.g. active systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8209Electrically driven tail rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8227Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising more than one rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8236Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft including pusher propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8263Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8263Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like
    • B64C2027/8272Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like comprising fins, or movable rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8263Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like
    • B64C2027/8281Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like comprising horizontal tail planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/329Application in turbines in gas turbines in helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/021Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/74Features relating to lubrication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • G05D1/0204Control of position or course in two dimensions specially adapted to aircraft to counteract a sudden perturbation, e.g. cross-wind, gust
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present disclosure relates to aircraft control systems, and more particularly to flight control systems such as used in controlling rotors of rotorcraft.
  • a limiting factor on the rotor of rotorcraft is the sound barrier.
  • the effective air speed at any given point on a rotor blade in motion is a function of the rotational speed, the radius to the point of interest from the center of rotation, and the forward flight speed of the rotorcraft. The further away from the center, the greater the effective air speed at that point on the rotor blade.
  • the tip of the advancing rotor blade therefore has the highest effective air speed when the rotor is operating at high rotational speed and high forward flight speed. If the rotational speed is high enough, the tips of the rotor blades will exceed the sound barrier and the air flow at the tips will transition from an incompressible regime to a compressible regime.
  • Typical blades are designed to operate efficiently only in the incompressible regime of fluid dynamics, and do not perform as efficiently in the compressible regime.
  • the blade tips At high rotational and forward flight speeds, as the blade tips exceed Mach 1.0, the advancing blade tips can precipitously lose lift and/or experience increased drag and vibration due to shock formation. This problem is traditionally self-correcting, since the reduced efficiency when blade tips exceed Mach 1.0 tends to offset excess power applied to the rotor, thus keeping the rotor speed in equilibrium. However, that equilibrium speed is not optimal for efficient flight.
  • a flight control system for a rotorcraft includes a controller configured to receive input indicative of ambient conditions, determine a threshold rotor blade tip speed based on the input, and to output rotor control commands to prevent rotor blade tips from exceeding the threshold speed.
  • the threshold speed can be Mach 0.9 at the ambient conditions.
  • the controller can be configured to output rotor control commands for control of coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly with a plurality of blades, wherein the rotor control commands prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed.
  • the controller can be configured to receive input indicative of ambient conditions including ambient air temperature, prevailing wind speed, and/or prevailing wind direction.
  • An aircraft includes an airframe, a main rotor assembly operatively connected to the airframe, and a flight control system as described above.
  • the flight control system is operatively connected to control the main rotor assembly.
  • the main rotor assembly can be a counter rotating coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly having a plurality of blades, wherein the flight control system is operatively connected to control both upper and lower rotor assemblies to prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed.
  • the aircraft can include at least one of an ambient air temperature sensor, a rotor speed sensor, a prevailing wind speed sensor, and/or a prevailing wind direction sensor, operatively connected to provide input to the flight control system.
  • a method of controlling rotor speed on a rotorcraft includes receiving input from sensors indicative conditions ambient to a rotor, determining a threshold rotor blade tip speed based on the input, and controlling rotational speed of the rotor to prevent any blade tips of the rotor from exceeding the threshold speed.
  • FIG. 1 is a side elevation view of an exemplary embodiment of a rotorcraft constructed in accordance with the present disclosure, showing the main rotor assembly with upper and lower coaxial counter rotating rotors, and schematically indicating the flight control system; and
  • FIG. 2 is a schematic view of the flight control system of FIG. 1 .
  • FIG. 1 a partial view of an exemplary embodiment of an aircraft in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100 .
  • FIG. 2 Other embodiments of aircraft in accordance with the disclosure, or aspects thereof, are provided in FIG. 2 , as will be described.
  • the systems and methods described herein can be used to improve blade tip speed management in rotors such as in rotorcraft.
  • Aircraft 100 includes an airframe 102 , a main rotor assembly 104 operatively connected to airframe 102 , and a flight control system 106 .
  • Flight control system 106 is operatively connected to control main rotor assembly 104 , translational thrust rotor assembly 116 , tail fairing assembly 118 , and one or more engines 120 , as well as to receive inputs for flight control, as indicated by the large arrows in FIG. 1 .
  • Main rotor assembly 104 is a counter rotating coaxial main rotor assembly including an upper rotor assembly 108 with a plurality of blades 110 and a lower rotor assembly 112 having a plurality of blades 110 .
  • Flight control system 106 is operatively connected to control both upper and lower rotor assemblies 108 and 112 to prevent any blade tips 114 of the upper and lower rotor assemblies 108 and 112 from exceeding a threshold speed.
  • aircraft 100 includes at least one of an ambient air temperature sensor, a rotor speed sensor, a prevailing wind speed sensor, and/or a prevailing wind direction sensor, operatively connected to provide input to the flight control system 106 , as indicated by the senor inputs 122 in FIG. 2 .
  • Flight control system 106 includes a controller 124 , e.g., a flight control computer, configured to receive input indicative of ambient conditions, e.g., from sensor inputs 122 .
  • Controller 124 also receives flight inputs 126 , which can include any suitable inputs such as control input from a pilot, autopilot, guidance system, or the like. Controller 124 determines a threshold rotor blade tip speed based on the input.
  • Controller 124 outputs rotor control commands to prevent rotor blade tips 114 from exceeding the threshold speed.
  • the threshold speed can be Mach 0.9 at the ambient conditions, or any other suitable Mach number at ambient conditions for a given airfoil, airframe or application.
  • maintaining tip speeds at or below Mach 0.9 mitigates or avoids the compressible flow regime effects, e.g., from exceeding the speed of sound, that might otherwise reduce blade efficiency and increase drag on the blades 110 .
  • this can improve maximum cruise speed, range, and/or endurance compared to conventional systems.
  • improvements in airfoil design can increase this threshold Mach number to a value closer to Mach 1.0, and that the threshold speed can be set at any suitable Mach number for a given application.
  • the threshold speed is based on the speed of sound at a given air temperature, so Mach 0.9 for example, corresponds to a different tip speed depending on ambient air temperature.
  • the tip speed itself varies with rotational speed of the respective blade 110 as well as the aircraft speed and direction as well as any wind speed and direction.
  • Controller 124 uses this information to control the rotational speed of rotors 108 and 112 from ever exceeding a rotational speed that would cause tips 114 from exceeding the speed of sound, given air temperature, aircraft movement, and wind.
  • a tip speed corresponding to Mach 0.9 at ambient conditions suffices as a threshold for preventing tips 114 from exceeding the speed of sound.
  • Controller 124 is configured, e.g., with machine readable instructions stored in memory 128 and/or processed in CPU 130 , to receive input, determine the threshold speed, and output rotor control commands for control of coaxial main rotor assembly 104 e.g., through engine interface 134 and/or rotor interface 132 , to control the rotational speed of rotors 108 and 112 , wherein the rotor control commands prevent any blade tips 114 of the upper and lower rotor assemblies 108 and 112 from exceeding the threshold speed as described above.
  • controller 124 is also connected to control translational thrust rotor assembly 116 and tail fairing assembly 118 , as indicated by translational thrust interface 136 and tail fairing interface 138 .
  • Other embodiments can have other means of separately controlling the translational thrust rotor, such as when said rotor is powered by a separate source/engine.
  • the two-way arrows in FIG. 2 indicate that in addition to issuing commands to the interfaces 132 , 134 , 136 , and 138 , controller 124 can also receive feedback from the respective interfaces and base control commands on said feedback.
  • the controller interface 140 interfaces the input/output of flight control system 106 with the CPU 130 and memory 128 of controller 124 .
  • a method of controlling rotor speed on a rotorcraft includes receiving input from sensors, e.g., from sensor inputs 122 , indicative conditions ambient to a rotor, e.g., rotors 108 and 112 .
  • the method also includes determining a threshold rotor blade tip speed based on the input, and controlling rotational speed of the rotor, e.g., rotors 108 and 112 , to prevent any blade tips, e.g., tips 114 , of the rotor from exceeding the threshold speed.
  • the systems and methods used herein can be used to maintain tip speed above a predetermined minimum speed. It is also contemplated that the systems and methods described herein can be used to maintain blade tip speed between a predetermined maximum and a predetermined minimum speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Toys (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Details Of Aerials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)
  • Tires In General (AREA)
  • Control Of Turbines (AREA)
  • Regulating Braking Force (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Transmission Devices (AREA)
  • Navigation (AREA)
  • Automatic Assembly (AREA)

Abstract

A flight control system for a rotorcraft includes a controller configured to receive input indicative of ambient conditions, determine a threshold rotor blade tip speed based on the input, and to output rotor control commands to prevent rotor blade tips from exceeding the threshold speed. An aircraft includes an airframe, a main rotor assembly operatively connected to the airframe, and a flight control system as described above. The flight control system is operatively connected to control the main rotor assembly. It is contemplated that the main rotor assembly can be a counter rotating coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly having a plurality of blades, wherein the flight control system is operatively connected to control both upper and lower rotor assemblies to prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 62/058,424 filed Oct. 1, 2014, the contents of which are incorporated by reference herein in their entirety.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present disclosure relates to aircraft control systems, and more particularly to flight control systems such as used in controlling rotors of rotorcraft.
  • 2. Description of Related Art
  • A limiting factor on the rotor of rotorcraft is the sound barrier. The effective air speed at any given point on a rotor blade in motion is a function of the rotational speed, the radius to the point of interest from the center of rotation, and the forward flight speed of the rotorcraft. The further away from the center, the greater the effective air speed at that point on the rotor blade. The tip of the advancing rotor blade therefore has the highest effective air speed when the rotor is operating at high rotational speed and high forward flight speed. If the rotational speed is high enough, the tips of the rotor blades will exceed the sound barrier and the air flow at the tips will transition from an incompressible regime to a compressible regime. Typical blades are designed to operate efficiently only in the incompressible regime of fluid dynamics, and do not perform as efficiently in the compressible regime. At high rotational and forward flight speeds, as the blade tips exceed Mach 1.0, the advancing blade tips can precipitously lose lift and/or experience increased drag and vibration due to shock formation. This problem is traditionally self-correcting, since the reduced efficiency when blade tips exceed Mach 1.0 tends to offset excess power applied to the rotor, thus keeping the rotor speed in equilibrium. However, that equilibrium speed is not optimal for efficient flight.
  • Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved rotor speed management. The present disclosure provides a solution for this need.
  • SUMMARY OF THE INVENTION
  • A flight control system for a rotorcraft includes a controller configured to receive input indicative of ambient conditions, determine a threshold rotor blade tip speed based on the input, and to output rotor control commands to prevent rotor blade tips from exceeding the threshold speed. The threshold speed can be Mach 0.9 at the ambient conditions. The controller can be configured to output rotor control commands for control of coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly with a plurality of blades, wherein the rotor control commands prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed. The controller can be configured to receive input indicative of ambient conditions including ambient air temperature, prevailing wind speed, and/or prevailing wind direction.
  • An aircraft includes an airframe, a main rotor assembly operatively connected to the airframe, and a flight control system as described above. The flight control system is operatively connected to control the main rotor assembly. It is contemplated that the main rotor assembly can be a counter rotating coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly having a plurality of blades, wherein the flight control system is operatively connected to control both upper and lower rotor assemblies to prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed. The aircraft can include at least one of an ambient air temperature sensor, a rotor speed sensor, a prevailing wind speed sensor, and/or a prevailing wind direction sensor, operatively connected to provide input to the flight control system.
  • A method of controlling rotor speed on a rotorcraft includes receiving input from sensors indicative conditions ambient to a rotor, determining a threshold rotor blade tip speed based on the input, and controlling rotational speed of the rotor to prevent any blade tips of the rotor from exceeding the threshold speed.
  • These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
  • FIG. 1 is a side elevation view of an exemplary embodiment of a rotorcraft constructed in accordance with the present disclosure, showing the main rotor assembly with upper and lower coaxial counter rotating rotors, and schematically indicating the flight control system; and
  • FIG. 2 is a schematic view of the flight control system of FIG. 1.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of an aircraft in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100. Other embodiments of aircraft in accordance with the disclosure, or aspects thereof, are provided in FIG. 2, as will be described. The systems and methods described herein can be used to improve blade tip speed management in rotors such as in rotorcraft.
  • Aircraft 100 includes an airframe 102, a main rotor assembly 104 operatively connected to airframe 102, and a flight control system 106. Flight control system 106 is operatively connected to control main rotor assembly 104, translational thrust rotor assembly 116, tail fairing assembly 118, and one or more engines 120, as well as to receive inputs for flight control, as indicated by the large arrows in FIG. 1.
  • Main rotor assembly 104 is a counter rotating coaxial main rotor assembly including an upper rotor assembly 108 with a plurality of blades 110 and a lower rotor assembly 112 having a plurality of blades 110. Flight control system 106 is operatively connected to control both upper and lower rotor assemblies 108 and 112 to prevent any blade tips 114 of the upper and lower rotor assemblies 108 and 112 from exceeding a threshold speed.
  • Referring now to FIG. 2, aircraft 100 includes at least one of an ambient air temperature sensor, a rotor speed sensor, a prevailing wind speed sensor, and/or a prevailing wind direction sensor, operatively connected to provide input to the flight control system 106, as indicated by the senor inputs 122 in FIG. 2. Flight control system 106 includes a controller 124, e.g., a flight control computer, configured to receive input indicative of ambient conditions, e.g., from sensor inputs 122. Controller 124 also receives flight inputs 126, which can include any suitable inputs such as control input from a pilot, autopilot, guidance system, or the like. Controller 124 determines a threshold rotor blade tip speed based on the input. Controller 124 outputs rotor control commands to prevent rotor blade tips 114 from exceeding the threshold speed. The threshold speed can be Mach 0.9 at the ambient conditions, or any other suitable Mach number at ambient conditions for a given airfoil, airframe or application. For state of the art airfoils, maintaining tip speeds at or below Mach 0.9 mitigates or avoids the compressible flow regime effects, e.g., from exceeding the speed of sound, that might otherwise reduce blade efficiency and increase drag on the blades 110. For example, this can improve maximum cruise speed, range, and/or endurance compared to conventional systems. Those skilled in the art will readily appreciate that improvements in airfoil design can increase this threshold Mach number to a value closer to Mach 1.0, and that the threshold speed can be set at any suitable Mach number for a given application.
  • The threshold speed is based on the speed of sound at a given air temperature, so Mach 0.9 for example, corresponds to a different tip speed depending on ambient air temperature. The tip speed itself varies with rotational speed of the respective blade 110 as well as the aircraft speed and direction as well as any wind speed and direction. Using prevailing wind speed and direction from aircraft sensors accounts for both wind and aircraft movement, e.g., wind speed and direction, and aircraft speed and direction can all be accounted for as input from a true air speed sensor. Controller 124 uses this information to control the rotational speed of rotors 108 and 112 from ever exceeding a rotational speed that would cause tips 114 from exceeding the speed of sound, given air temperature, aircraft movement, and wind. A tip speed corresponding to Mach 0.9 at ambient conditions suffices as a threshold for preventing tips 114 from exceeding the speed of sound.
  • Controller 124 is configured, e.g., with machine readable instructions stored in memory 128 and/or processed in CPU 130, to receive input, determine the threshold speed, and output rotor control commands for control of coaxial main rotor assembly 104 e.g., through engine interface 134 and/or rotor interface 132, to control the rotational speed of rotors 108 and 112, wherein the rotor control commands prevent any blade tips 114 of the upper and lower rotor assemblies 108 and 112 from exceeding the threshold speed as described above.
  • In this embodiment controller 124 is also connected to control translational thrust rotor assembly 116 and tail fairing assembly 118, as indicated by translational thrust interface 136 and tail fairing interface 138. Other embodiments can have other means of separately controlling the translational thrust rotor, such as when said rotor is powered by a separate source/engine. The two-way arrows in FIG. 2 indicate that in addition to issuing commands to the interfaces 132, 134, 136, and 138, controller 124 can also receive feedback from the respective interfaces and base control commands on said feedback. The controller interface 140 interfaces the input/output of flight control system 106 with the CPU 130 and memory 128 of controller 124.
  • A method of controlling rotor speed on a rotorcraft, e.g., aircraft 100, includes receiving input from sensors, e.g., from sensor inputs 122, indicative conditions ambient to a rotor, e.g., rotors 108 and 112. The method also includes determining a threshold rotor blade tip speed based on the input, and controlling rotational speed of the rotor, e.g., rotors 108 and 112, to prevent any blade tips, e.g., tips 114, of the rotor from exceeding the threshold speed.
  • In addition to limiting maximum tip speed, it is also contemplated that the systems and methods used herein can be used to maintain tip speed above a predetermined minimum speed. It is also contemplated that the systems and methods described herein can be used to maintain blade tip speed between a predetermined maximum and a predetermined minimum speed.
  • The methods and systems of the present disclosure, as described above and shown in the drawings, provide for tip speed management with superior properties including improved efficiency and effectiveness. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.

Claims (15)

1. A flight control system for a rotorcraft comprising:
a controller configured to receive input indicative of ambient conditions, determine a threshold rotor blade tip speed based on the input, and to output rotor control commands to prevent rotor blade tips from exceeding the threshold speed.
2. The system recited in claim 1, wherein the threshold speed is Mach 0.9 at the ambient conditions.
3. The system recited in claim 1, wherein controller is configured to output rotor control commands for control of coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly with a plurality of blades, wherein the rotor control commands prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed.
4. The system as recited in claim 1, wherein the controller is configured to receive input indicative of ambient conditions including ambient air temperature.
5. The system as recited in claim 1, wherein the controller is configured to receive input indicative of ambient conditions including prevailing wind speed.
6. The system as recited in claim 1, wherein the controller is configured to receive input indicative of ambient conditions including prevailing wind direction.
7. An aircraft comprising:
an airframe;
a main rotor assembly operatively connected to the airframe; and
a flight control system as recited in any of the preceding claims, wherein the flight control system is operatively connected to control the main rotor assembly.
8. An aircraft as recited in claim 7, wherein the main rotor assembly is a counter rotating coaxial main rotor assembly including an upper rotor assembly with a plurality of blades and a lower rotor assembly having a plurality of blades, wherein the flight control system is operatively connected to control both upper and lower rotor assemblies to prevent any blade tips of the upper and lower rotor assemblies from exceeding the threshold speed.
9. An aircraft as recited in claim 7, further comprising at least one of an ambient air temperature sensor, a rotor speed sensor, a prevailing wind speed sensor, and/or a prevailing wind direction sensor, operatively connected to provide input to the flight control system.
10. A method of controlling rotor speed on a rotorcraft comprising:
receiving input from sensors indicative conditions ambient to a rotor;
determining a threshold rotor blade tip speed based on the input; and
controlling rotational speed of the rotor to prevent any blade tips of the rotor from exceeding the threshold speed.
11. The method as recited in claim 10, wherein the threshold speed is Mach 0.9 at ambient conditions.
12. The method as recited in claim 10, controlling rotation speed includes controlling both rotors of a coaxial dual rotor main rotor assembly to prevent any blade tips of the two rotors from exceeding the threshold speed.
13. The method as recited in claim 10, wherein receiving input includes receiving air temperature input from an air temperature sensor.
14. The method as recited in claim 10, wherein receiving input includes receiving prevailing wind speed input from a prevailing wind speed sensor.
15. The method as recited in claim 10, wherein receiving input includes receiving wind direction input from a wind direction sensor.
US15/516,271 2014-10-01 2015-09-30 Rotor speed management Abandoned US20170297694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/516,271 US20170297694A1 (en) 2014-10-01 2015-09-30 Rotor speed management

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462058424P 2014-10-01 2014-10-01
US15/516,271 US20170297694A1 (en) 2014-10-01 2015-09-30 Rotor speed management
PCT/US2015/053163 WO2016054171A1 (en) 2014-10-01 2015-09-30 Rotor speed management

Publications (1)

Publication Number Publication Date
US20170297694A1 true US20170297694A1 (en) 2017-10-19

Family

ID=55631217

Family Applications (32)

Application Number Title Priority Date Filing Date
US15/503,633 Abandoned US20170267338A1 (en) 2014-10-01 2015-06-18 Acoustic signature variation of aircraft utilizing a clutch
US15/503,599 Abandoned US20170225797A1 (en) 2014-10-01 2015-07-01 Aircraft design for air to air refueling
US15/513,301 Active 2036-04-09 US10527123B2 (en) 2014-10-01 2015-07-14 Rotorcraft footprint
US15/514,115 Active US10443674B2 (en) 2014-10-01 2015-07-27 Noise modes for rotary wing aircraft
US15/515,040 Active 2036-05-10 US10443675B2 (en) 2014-10-01 2015-08-06 Active vibration control of a rotorcraft
US15/508,321 Abandoned US20170283049A1 (en) 2014-10-01 2015-08-07 Differential pre-cone rotary wing arrangement and aircraft
US15/509,450 Abandoned US20170274990A1 (en) 2014-10-01 2015-09-24 Rotor hover figure of merit for rotary wing aircraft
US15/509,446 Abandoned US20170277201A1 (en) 2014-10-01 2015-09-24 Nose attitude control of a rotary wing aircraft
US15/507,178 Active 2036-10-08 US10676181B2 (en) 2014-10-01 2015-09-25 Gearbox for a dual rotor, rotary wing aircraft
US15/500,388 Abandoned US20170220048A1 (en) 2014-10-01 2015-09-25 Rotary wing aircraft and method of controlling a rotary wing aircraft
US15/508,378 Abandoned US20170305534A1 (en) 2014-10-01 2015-09-28 Rotorcraft systems to reduce pilot workload
US15/509,741 Active 2036-10-29 US10717521B2 (en) 2014-10-01 2015-09-28 Hub separation in dual rotor rotary wing aircraft
US15/515,897 Abandoned US20170297692A1 (en) 2014-10-01 2015-09-28 Rotary wing aircraft
US15/508,991 Abandoned US20170283045A1 (en) 2014-10-01 2015-09-28 Translation thrust system engagement and disengagment for rotary wing aircraft
US15/508,346 Active US10167079B2 (en) 2014-10-01 2015-09-29 Main rotor rotational speed control for rotorcraft
US15/514,881 Abandoned US20170217581A1 (en) 2014-10-01 2015-09-29 Blade indexing of a rotary wing aircraft
US15/501,095 Active 2036-03-27 US10654565B2 (en) 2014-10-01 2015-09-29 Collective to elevator mixing of a rotary wing aircraft
US15/514,595 Active 2036-02-10 US11021241B2 (en) 2014-10-01 2015-09-29 Dual rotor, rotary wing aircraft
US15/515,949 Abandoned US20180231986A1 (en) 2014-10-01 2015-09-29 Aircraft with speed or acceleration command
US15/509,755 Abandoned US20170297696A1 (en) 2014-10-01 2015-09-29 Aircraft main rotor drag to airframe drag
US15/504,227 Active 2037-01-24 US11040770B2 (en) 2014-10-01 2015-09-30 Single collective stick for a rotary wing aircraft
US15/501,376 Abandoned US20170225775A1 (en) 2014-10-01 2015-09-30 Rotorcraft operational altitude and airspeed
US15/504,256 Abandoned US20170308101A1 (en) 2014-10-01 2015-09-30 Aircraft and method of orienting an airframe of an aircraft
US15/503,617 Active US10619698B2 (en) 2014-10-01 2015-09-30 Lift offset control of a rotary wing aircraft
US15/501,100 Active 2036-04-24 US10400851B2 (en) 2014-10-01 2015-09-30 Tip clearance measurement of a rotary wing aircraft
US15/516,271 Abandoned US20170297694A1 (en) 2014-10-01 2015-09-30 Rotor speed management
US15/515,882 Abandoned US20170305544A1 (en) 2014-10-01 2015-09-30 Turn radius and bank angle for rotary wing aircraft
US15/510,131 Abandoned US20170349275A1 (en) 2014-10-01 2015-09-30 Elevator and rudder control of a rotorcraft
US15/504,525 Active 2037-10-20 US11440650B2 (en) 2014-10-01 2015-09-30 Independent control for upper and lower rotor of a rotary wing aircraft
US15/504,250 Active 2036-04-21 US10640203B2 (en) 2014-10-01 2015-10-01 Rotorcraft rotor and propeller speed
US15/516,080 Abandoned US20170305543A1 (en) 2014-10-01 2015-10-01 Sealed hub and shaft fairing for rotary wing aircraft
US16/010,615 Abandoned US20190017569A1 (en) 2014-10-01 2018-06-18 Elevator and rudder control of a rotorcraft

Family Applications Before (25)

Application Number Title Priority Date Filing Date
US15/503,633 Abandoned US20170267338A1 (en) 2014-10-01 2015-06-18 Acoustic signature variation of aircraft utilizing a clutch
US15/503,599 Abandoned US20170225797A1 (en) 2014-10-01 2015-07-01 Aircraft design for air to air refueling
US15/513,301 Active 2036-04-09 US10527123B2 (en) 2014-10-01 2015-07-14 Rotorcraft footprint
US15/514,115 Active US10443674B2 (en) 2014-10-01 2015-07-27 Noise modes for rotary wing aircraft
US15/515,040 Active 2036-05-10 US10443675B2 (en) 2014-10-01 2015-08-06 Active vibration control of a rotorcraft
US15/508,321 Abandoned US20170283049A1 (en) 2014-10-01 2015-08-07 Differential pre-cone rotary wing arrangement and aircraft
US15/509,450 Abandoned US20170274990A1 (en) 2014-10-01 2015-09-24 Rotor hover figure of merit for rotary wing aircraft
US15/509,446 Abandoned US20170277201A1 (en) 2014-10-01 2015-09-24 Nose attitude control of a rotary wing aircraft
US15/507,178 Active 2036-10-08 US10676181B2 (en) 2014-10-01 2015-09-25 Gearbox for a dual rotor, rotary wing aircraft
US15/500,388 Abandoned US20170220048A1 (en) 2014-10-01 2015-09-25 Rotary wing aircraft and method of controlling a rotary wing aircraft
US15/508,378 Abandoned US20170305534A1 (en) 2014-10-01 2015-09-28 Rotorcraft systems to reduce pilot workload
US15/509,741 Active 2036-10-29 US10717521B2 (en) 2014-10-01 2015-09-28 Hub separation in dual rotor rotary wing aircraft
US15/515,897 Abandoned US20170297692A1 (en) 2014-10-01 2015-09-28 Rotary wing aircraft
US15/508,991 Abandoned US20170283045A1 (en) 2014-10-01 2015-09-28 Translation thrust system engagement and disengagment for rotary wing aircraft
US15/508,346 Active US10167079B2 (en) 2014-10-01 2015-09-29 Main rotor rotational speed control for rotorcraft
US15/514,881 Abandoned US20170217581A1 (en) 2014-10-01 2015-09-29 Blade indexing of a rotary wing aircraft
US15/501,095 Active 2036-03-27 US10654565B2 (en) 2014-10-01 2015-09-29 Collective to elevator mixing of a rotary wing aircraft
US15/514,595 Active 2036-02-10 US11021241B2 (en) 2014-10-01 2015-09-29 Dual rotor, rotary wing aircraft
US15/515,949 Abandoned US20180231986A1 (en) 2014-10-01 2015-09-29 Aircraft with speed or acceleration command
US15/509,755 Abandoned US20170297696A1 (en) 2014-10-01 2015-09-29 Aircraft main rotor drag to airframe drag
US15/504,227 Active 2037-01-24 US11040770B2 (en) 2014-10-01 2015-09-30 Single collective stick for a rotary wing aircraft
US15/501,376 Abandoned US20170225775A1 (en) 2014-10-01 2015-09-30 Rotorcraft operational altitude and airspeed
US15/504,256 Abandoned US20170308101A1 (en) 2014-10-01 2015-09-30 Aircraft and method of orienting an airframe of an aircraft
US15/503,617 Active US10619698B2 (en) 2014-10-01 2015-09-30 Lift offset control of a rotary wing aircraft
US15/501,100 Active 2036-04-24 US10400851B2 (en) 2014-10-01 2015-09-30 Tip clearance measurement of a rotary wing aircraft

Family Applications After (6)

Application Number Title Priority Date Filing Date
US15/515,882 Abandoned US20170305544A1 (en) 2014-10-01 2015-09-30 Turn radius and bank angle for rotary wing aircraft
US15/510,131 Abandoned US20170349275A1 (en) 2014-10-01 2015-09-30 Elevator and rudder control of a rotorcraft
US15/504,525 Active 2037-10-20 US11440650B2 (en) 2014-10-01 2015-09-30 Independent control for upper and lower rotor of a rotary wing aircraft
US15/504,250 Active 2036-04-21 US10640203B2 (en) 2014-10-01 2015-10-01 Rotorcraft rotor and propeller speed
US15/516,080 Abandoned US20170305543A1 (en) 2014-10-01 2015-10-01 Sealed hub and shaft fairing for rotary wing aircraft
US16/010,615 Abandoned US20190017569A1 (en) 2014-10-01 2018-06-18 Elevator and rudder control of a rotorcraft

Country Status (3)

Country Link
US (32) US20170267338A1 (en)
EP (9) EP3201083A4 (en)
WO (31) WO2016053408A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167079B2 (en) 2014-10-01 2019-01-01 Sikorsky Aircraft Corporation Main rotor rotational speed control for rotorcraft
EP3617067A1 (en) * 2018-08-27 2020-03-04 Bell Helicopter Textron Inc. High speed rotorcraft propulsion configuration
US10809744B2 (en) * 2016-02-19 2020-10-20 Sikorsky Aircraft Corporation Rotor moment control system for a rotary wing aircraft

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351233B2 (en) 2013-04-22 2019-07-16 Sikorsky Aircraft Corporation Vibration control of a swashplateless coaxial rotor
WO2015102634A1 (en) * 2014-01-02 2015-07-09 Sikorsky Aircraft Corporation Rotor apparatus
WO2016060788A1 (en) * 2014-09-25 2016-04-21 Sikorsky Aircraft Corporation Feed-forward compensation for gyroscopic loads in a coaxial rotor
US10654566B2 (en) * 2014-09-29 2020-05-19 Sikorsky Aircraft Corporation Integrated main rotor hub and shaft
US10822076B2 (en) 2014-10-01 2020-11-03 Sikorsky Aircraft Corporation Dual rotor, rotary wing aircraft
WO2016054398A1 (en) 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Sealed hub and shaft fairing for rotary wing aircraft
US11014658B1 (en) * 2015-01-02 2021-05-25 Delbert Tesar Driveline architecture for rotorcraft featuring active response actuators
KR101715230B1 (en) * 2015-03-16 2017-03-13 주식회사 에이치시티엠 Nondirectional antenna installed in rotor
US9896197B2 (en) * 2015-05-28 2018-02-20 Eugene H Vetter Devices and methods for in flight transition VTOL/fixed wing hybrid aircraft structures and flight modes
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
WO2017065858A2 (en) 2015-09-02 2017-04-20 Jetoptera, Inc. Ejector and airfoil configurations
US11305874B2 (en) 2016-03-23 2022-04-19 Amazon Technologies, Inc. Aerial vehicle adaptable propeller blades
US10399666B2 (en) 2016-03-23 2019-09-03 Amazon Technologies, Inc. Aerial vehicle propulsion mechanism with coaxially aligned and independently rotatable propellers
US10583914B2 (en) 2016-03-23 2020-03-10 Amazon Technologies, Inc. Telescoping propeller blades for aerial vehicles
US10723440B2 (en) 2016-03-23 2020-07-28 Amazon Technologies, Inc. Aerial vehicle with different propeller blade configurations
US10526070B2 (en) 2016-03-23 2020-01-07 Amazon Technologies, Inc. Aerial vehicle propulsion mechanism with coaxially aligned propellers
US10526077B2 (en) * 2016-05-11 2020-01-07 Sikorsky Aircraft Corporation Multi-objective control system with control allocation
CN107148383B (en) * 2016-05-31 2019-03-08 深圳市大疆创新科技有限公司 The rack and unmanned vehicle of unmanned vehicle
IT201600078180A1 (en) * 2016-07-26 2018-01-26 Levi Dancona Pier Lorenzo ELECTRIC REVOLVING DISPLAY ROTARY OPPOSITE DISCS
IL247772B (en) * 2016-09-12 2022-05-01 Israel Aerospace Ind Ltd Modular vehicle system
CN106168530B (en) * 2016-09-30 2018-04-06 中国空气动力研究与发展中心低速空气动力研究所 A kind of wind tunnel test platform dip angle organization
CN106226024B (en) * 2016-09-30 2018-07-31 中国空气动力研究与发展中心低速空气动力研究所 A kind of DCB Specimen wind tunnel test platform
US10843794B2 (en) * 2016-11-07 2020-11-24 Vinh Nguyen Electric motor-driven compound aircraft
KR20180088017A (en) * 2017-01-26 2018-08-03 엘지전자 주식회사 Rotary wing drone using a coaxialcounter-rotating rotor
US10531994B2 (en) 2017-01-30 2020-01-14 SkyRyse, Inc. Safety system for aerial vehicles and method of operation
US9849044B1 (en) 2017-01-30 2017-12-26 SkyRyse, Inc. Vehicle system and method for providing services
US10802482B2 (en) * 2017-02-27 2020-10-13 Textron Innovations Inc. Reverse tactile cue for rotorcraft rotor overspeed protection
CN107070346B (en) * 2017-04-01 2019-04-30 西安交通大学 A kind of decoupling control method of permanent-magnet magnetic resistance type double-rotor machine
CN106953541B (en) * 2017-04-28 2023-08-01 南京航空航天大学 Piezoelectric driving aircraft rotor system and working mode thereof
DE18798130T1 (en) 2017-05-10 2020-08-06 Embry-Riddle Aeronautical University, Inc. Noise reduction systems and methods for hybrid and electric aircraft
AU2018278804A1 (en) 2017-06-01 2020-01-23 Surefly, Inc. Auxiliary power system for rotorcraft with folding propeller arms and crumple zone landing gear
JP7155174B2 (en) 2017-06-27 2022-10-18 ジェトプテラ、インコーポレイテッド Aircraft vertical take-off and landing system configuration
EP3421360A1 (en) * 2017-06-28 2019-01-02 Sikorsky Aircraft Corporation Independent propeller/main rotor speed control for x2 technology
CN107215460A (en) * 2017-07-17 2017-09-29 西南交通大学 A kind of rotor of unmanned vehicle frame and modular many rotor frames
US10543912B2 (en) * 2017-07-19 2020-01-28 Sikorsky Aircraft Corporation Higher harmonic control augmented with active vibration control
US10921826B2 (en) * 2017-07-27 2021-02-16 SkyRyse, Inc. Method for vehicle contingency planning
RU2662621C1 (en) * 2017-08-14 2018-07-26 Борис Яковлевич Поднебеснов Aircraft two coaxial rotors system
FR3074142A1 (en) 2017-11-30 2019-05-31 Airbus Helicopters HYBRID-TYPE GIRAVION COMPRISING HORIZONTAL LOADING AND TWO AGENT DERIVATIVES ON HORIZONTAL LOADING
US11040767B2 (en) 2017-11-30 2021-06-22 General Electric Company Systems and methods for improved propeller design
CN108327899A (en) * 2018-01-29 2018-07-27 陈铭 A kind of coaxial double-oar helicopter rotor method for arranging and coaxial double-oar helicopter up and down
US10994834B2 (en) * 2018-02-22 2021-05-04 Sikorsky Aircraft Corporation Case mounted transmission AVC force generators
US10860038B2 (en) * 2018-02-26 2020-12-08 Textron Innovations Inc. System and method for automatic rotorcraft tail strike protection
CN108313291A (en) * 2018-03-27 2018-07-24 郑州大学 A kind of omnidirectional's aircraft
FR3080605B1 (en) * 2018-04-26 2020-05-29 Airbus Helicopters GIRAVION PROVIDED WITH A TURNING WING AND AT LEAST TWO PROPELLERS AND METHOD APPLIED BY THIS GIRAVION
WO2019241725A1 (en) * 2018-06-15 2019-12-19 The Texas A&M University System Hover-capable aircraft
CN108928475B (en) * 2018-06-28 2022-03-08 中国直升机设计研究所 Degree of freedom locking mechanism for spherical flexible rotor blade
US10569866B2 (en) 2018-07-02 2020-02-25 Bell Helicopter Textron Inc. Method and apparatus for proximity control between rotating and non-rotating aircraft components
US10583916B2 (en) 2018-07-02 2020-03-10 Bell Helicopter Textron Inc. Method and apparatus for proximity control between rotating and non-rotating aircraft components
US11001376B2 (en) * 2018-08-07 2021-05-11 Sikorsky Aircraft Corporation Precision pointing mode of an aircraft
RU185205U1 (en) * 2018-09-12 2018-11-26 Михаил Михайлович Дейкун Unmanned aerial vehicle
CN109018334B (en) * 2018-09-28 2023-10-10 北京清航紫荆装备科技有限公司 Tilt rotor helicopter and transmission device thereof
US11554863B2 (en) 2018-11-06 2023-01-17 Textron Innovations Inc. System and method for frequency domain rotor mode decomposition
RU2699513C1 (en) * 2018-11-07 2019-09-05 Дмитрий Сергеевич Дуров Unmanned jet-helicopter
CN109595331B (en) * 2018-11-15 2021-03-23 中国直升机设计研究所 Device of lubricating oil cooling structure and tail transmission shaft integration
EP3891067B1 (en) * 2018-12-07 2024-01-17 Joby Aero, Inc. Aircraft control system and method
JP7185536B2 (en) 2019-01-09 2022-12-07 株式会社Subaru rotor drive
US10773794B2 (en) * 2019-01-10 2020-09-15 Bell Textron Inc. Dynamic rotor-phasing unit
DE102019102419B4 (en) * 2019-01-31 2021-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for determining a blade tip distance in coaxial rotors
WO2020158136A1 (en) * 2019-02-01 2020-08-06 パナソニックIpマネジメント株式会社 Unmanned aerial vehicle, information processing method, and program
US11655020B2 (en) 2019-02-08 2023-05-23 Lockheed Martin Corporation Non rotationally constrained friction damper for drive shaft
US11592841B2 (en) * 2019-10-09 2023-02-28 Beta Air, Llc In-flight stabilization of an aircraft
WO2020198814A1 (en) * 2019-04-04 2020-10-08 Hyper Q Aerospace Holdings Pty Ltd A coaxial rotorcraft system and a method for controlling the same
CN109866932A (en) * 2019-04-19 2019-06-11 深圳市边锋智驱科技有限公司 Propeller component and aircraft
USD913195S1 (en) * 2019-05-24 2021-03-16 Alakai Technologies Corporation Set of aircraft sliding side doors
US11370532B2 (en) * 2019-06-04 2022-06-28 Lockheed Martin Corporation Low drag sail fairing for coaxial rotor
US11718396B2 (en) * 2019-06-12 2023-08-08 Textron Innovations Inc. Active sail blade
US11347242B2 (en) * 2019-08-05 2022-05-31 The Boeing Company Methods and apparatus for flight control prioritization
US20210380224A1 (en) * 2019-10-09 2021-12-09 Beta Air, Llc In-flight stabilization of an aircraft
US12017784B2 (en) * 2019-10-09 2024-06-25 Beta Air, Llc In-flight stabilization of an aircraft
US11584541B2 (en) * 2019-10-09 2023-02-21 Beta Air, Llc In-flight stabilization of an aircraft
USD908429S1 (en) * 2019-10-24 2021-01-26 Toshikazu Tsukii Double turning trays with rotatable propeller
US11572155B2 (en) * 2019-10-28 2023-02-07 Textron Innovations Inc. Rotorcraft having propeller generated power during autorotations
US11106221B1 (en) 2019-11-25 2021-08-31 Kitty Hawk Corporation Multicopter with self-adjusting rotors
KR102282416B1 (en) * 2019-11-26 2021-07-27 선문대학교 산학협력단 Agricultural drone including a reaction wheel
CN110979660B (en) * 2019-12-26 2024-05-10 湖南韬讯航空科技有限公司 Three steering engine direct-drive coaxial rotor system and control strategy
FR3107252A1 (en) 2020-02-18 2021-08-20 Airbus Helicopters Method of controlling a hybrid helicopter during a power plant failure
US11565788B2 (en) * 2020-03-05 2023-01-31 Lockheed Martin Corporation Pivoting sail fairing system and rotary wing aircraft including the same
US12020583B2 (en) * 2020-03-10 2024-06-25 Honeywell International Inc. Systems and methods providing assist-to-land and emergency land functions
FR3108309B1 (en) 2020-03-18 2022-02-18 Airbus Helicopters Method and system for reducing the in-flight noise of a hybrid helicopter by managing the incidence of its main rotor and the thrust of each propeller
US11702197B2 (en) * 2020-03-19 2023-07-18 Lockheed Martin Corporation Coaxial split torque gearbox with sequential load distribution
US10926654B1 (en) 2020-03-31 2021-02-23 Kitty Hawk Corporation Electric vertical take-off and landing vehicle with wind turbine
CN111591095A (en) * 2020-04-20 2020-08-28 北京交通大学 Multi-rotor flying wall-climbing robot capable of perching
US11181934B1 (en) * 2020-05-20 2021-11-23 Honeywell International Inc. Systems and methods for predicting ground effects along a flight plan
FR3110546B1 (en) * 2020-05-20 2022-04-29 Airbus Helicopters Method and device for determining the state of a rotor of a rotorcraft.
CN111776197B (en) * 2020-06-08 2024-06-14 宁波诺丁汉大学 Unmanned aerial vehicle with stable speed regulation of propeller and control method thereof
CN111959763A (en) * 2020-08-14 2020-11-20 智翔通飞航空科技有限公司 Horizontal rotor damper of helicopter
CN112224446B (en) * 2020-10-16 2022-06-21 中国直升机设计研究所 High-speed coaxial dual-rotor blade tip distance measuring method based on phase distance measuring principle
US11685524B2 (en) * 2020-12-01 2023-06-27 Textron Innovations Inc. Rotorcraft quiet modes
CN112537444B (en) * 2020-12-15 2022-07-29 彩虹无人机科技有限公司 Hovering automatic wind alignment method for composite wing unmanned aerial vehicle
CN112810811B (en) * 2021-01-19 2023-10-03 清华大学 Double-rotor unmanned aerial vehicle
US20220388672A1 (en) * 2021-06-03 2022-12-08 Bell Textron Inc. Propulsion assembly
CN113525712A (en) * 2021-06-23 2021-10-22 中国航空工业集团公司上海航空测控技术研究所 Helicopter rotor balance real-time monitoring and adjusting device
US11745886B2 (en) * 2021-06-29 2023-09-05 Beta Air, Llc Electric aircraft for generating a yaw force
CN113848977B (en) * 2021-10-09 2023-12-22 广东汇天航空航天科技有限公司 Aircraft control method and system and flight controller
US11840329B1 (en) * 2021-11-08 2023-12-12 Sifly Aviation, Inc. Contra-rotating electric helicopter
CN114180051B (en) * 2021-11-22 2023-07-04 天津大学 Early warning system and method for preventing collision between upper blade and lower blade of coaxial double-rotor helicopter
US11482118B1 (en) * 2021-12-29 2022-10-25 Beta Air, Llc System and method for flight selective tracking, categorization, and transmission of flight data of an electric aircraft
US11945585B2 (en) 2022-02-15 2024-04-02 Lockheed Martin Corporation Control surface support for an aircraft
JP2024000086A (en) * 2022-06-20 2024-01-05 国立研究開発法人宇宙航空研究開発機構 compound helicopter
CN115367103A (en) * 2022-09-23 2022-11-22 昂海松 Orthogonal arc rack based rotor vector control mechanism of coaxial double-motor micro unmanned aerial vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269413A1 (en) * 2005-05-31 2006-11-30 Sikorsky Aircraft Corporation Rotor drive and control system for a high speed rotary wing aircraft
US20080237392A1 (en) * 2006-08-16 2008-10-02 Piasecki Aircraft Corporation Compound aircraft control system and method
US20100272576A1 (en) * 2005-08-15 2010-10-28 Abe Karem High performance outboard section for rotor blades
US20120153074A1 (en) * 2009-06-10 2012-06-21 Fabio Nannoni Electronic flight control system for an aircraft capable of hovering
US20150321769A1 (en) * 2010-12-22 2015-11-12 Bell Helicopter Textron Inc. Power Safety Instrument System
US10023306B2 (en) * 2011-07-12 2018-07-17 Airbus Helicopters Method of automatically controlling a rotary wing aircraft having at least one propulsion propeller, an autopilot device, and an aircraft

Family Cites Families (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1344486A (en) 1919-05-12 1920-06-22 George F Coffelt Airship
US2344967A (en) 1937-11-26 1944-03-28 Autogiro Co Of America Helicopter and gyroplane
GB531165A (en) 1939-12-22 1940-12-30 British Gazogenes Ltd Improvements in or relating to gas producers
US2482460A (en) 1941-10-10 1949-09-20 Wright Aeronautical Corp Two-speed propeller drive system
US2350962A (en) 1943-07-12 1944-06-06 Russell R Hays Irrotational rotor
US2557127A (en) 1943-12-30 1951-06-19 Herbert L Magill Variable pitch propeller
US2581320A (en) 1945-07-20 1952-01-01 Douglas Aircraft Co Inc Multiengine contra-rotating propeller drive transmission
US2469144A (en) 1946-11-13 1949-05-03 Ideal Novelty & Toy Co Toy airplane
US2582609A (en) * 1949-03-30 1952-01-15 Curtiss Wright Corp Means for fueling aircraft in flight
US2698147A (en) 1950-09-01 1954-12-28 Paul E Hovgard Aircraft with fixed wings and lifting rotor
US2665859A (en) 1950-12-19 1954-01-12 Gyrodyne Company Of America In Aircraft with rotary and fixed wings
US2684721A (en) 1951-11-02 1954-07-27 Lloyd Patrick David Control for the blades of aircraft rotors
US2959373A (en) * 1954-12-10 1960-11-08 Daniel R Zuck Convertiplane
US2814451A (en) * 1955-11-23 1957-11-26 Bell Aircraft Corp Convertible aircraft
US2980186A (en) 1956-01-10 1961-04-18 Gyrodyne Company Of America In Rotor control system for helicopter
US3002420A (en) 1958-04-23 1961-10-03 Chicago Aerial Ind Inc Parallax interval sensing device
GB850037A (en) 1958-06-05 1960-09-28 Rolls Royce Improvements in or relating to control mechanisms for variable-pitch propellers
US2967684A (en) * 1958-12-31 1961-01-10 Robert S Knecht Combination inflight refueling and dumping for helicopters
US3029048A (en) * 1959-09-28 1962-04-10 Brooks Earnest Helicopter
FR1299050A (en) 1961-06-07 1962-07-20 Aviation Louis Breguet Sa Safety device for airplanes with mechanically coupled propellers
US3217811A (en) 1964-12-16 1965-11-16 United Aircraft Corp Rotor head fairing for high speed vehicle
US3332643A (en) * 1965-10-05 1967-07-25 Piasecki Aircraft Corp Control system for aircraft
US3327969A (en) 1965-10-12 1967-06-27 Hughes Tool Co Convertible aircraft
US3351304A (en) 1965-10-15 1967-11-07 Avco Corp Combined vertical-lift forwardthrust aircraft
US3310120A (en) 1966-02-24 1967-03-21 United Aircraft Corp Rotor head fairing for articulated aircraft rotor
US3591109A (en) 1966-06-29 1971-07-06 Frank W Mclarty Rotary wing aircraft
US3409249A (en) 1966-06-29 1968-11-05 United Aircraft Corp Coaxial rigid rotor helicopter and method of flying same
US3448946A (en) * 1966-09-16 1969-06-10 Kawasaki Kokuki Kogyo Kk Compound helicopter
FR1511006A (en) * 1966-12-13 1968-01-26 Sud Aviation Directional and propulsion device for helicopter
US3331444A (en) 1966-12-28 1967-07-18 Piasecki Aircraft Corp Fairing assembly
US3421717A (en) * 1967-04-03 1969-01-14 United Aircraft Corp In-flight pressure refueling probe and actuation system
US3521971A (en) 1968-07-17 1970-07-28 United Aircraft Corp Method and apparatus for controlling aircraft
GB1241827A (en) * 1968-07-29 1971-08-04 British Aircraft Corp Ltd Retractable in-flight refuelling probe
US3570786A (en) 1969-08-07 1971-03-16 United Aircraft Corp Control apparatus and method for operating an aircraft
US3822105A (en) 1971-09-22 1974-07-02 United Aircraft Corp Helicopter blade
US4020324A (en) 1974-08-26 1977-04-26 Lear Siegler, Inc. Weapon delivery system
US4008979A (en) 1975-11-13 1977-02-22 United Technologies Corporation Control for helicopter having dual rigid rotors
US4114843A (en) 1976-10-04 1978-09-19 Robinson Helicopter Co. Control stick assembly
US4142837A (en) 1977-11-11 1979-03-06 United Technologies Corporation Helicopter blade
US4168045A (en) 1978-02-28 1979-09-18 United Technologies Corporation Speed and collective pitch bias of helicopter longitudinal cyclic pitch
US4248572A (en) 1978-12-11 1981-02-03 United Technologies Corporation Helicopter blade
IT1164936B (en) 1979-02-27 1987-04-15 Giovanni Agusta Costruzioni Ae INTERNAL CONTROL ROTOR SHAFT FOR HELICOPTERS
US4304375A (en) 1979-05-17 1981-12-08 Textron Inc. Electrically controlled elevator
US4332525A (en) 1979-12-03 1982-06-01 United Technologies Corporation Matched stiffness rotor flexbeam and blade system
US4334828A (en) 1980-01-21 1982-06-15 United Technologies Corporation Helicopter blade with a tip having a selected combination of sweep, taper and anhedral to improve hover efficiency
FR2479132A1 (en) 1980-03-25 1981-10-02 Aerospatiale HIGH PERFORMANCE BLADE FOR HELICOPTER ROTOR
US4386848A (en) 1980-08-11 1983-06-07 Martin Marietta Corporation Optical target tracking and designating system
US4531692A (en) 1982-03-15 1985-07-30 Ernesto Mateus Helicopter flight control and transmission system
US4573873A (en) 1983-01-13 1986-03-04 Hughes Helicopters, Inc. Collective and cyclic in-mast pitch control system for a helicopter
US4704070A (en) 1983-04-25 1987-11-03 Iseman Walter J Fuel system bubble dissipation device
US4583626A (en) * 1983-11-21 1986-04-22 The Falk Corporation Centrifugally actuated wet plate clutch
US4540144A (en) * 1984-01-05 1985-09-10 United Technologies Corporation Telescoping fuel probe
US4730795A (en) 1984-03-26 1988-03-15 David Constant V Heliplane
US4657208A (en) 1985-06-10 1987-04-14 The United States Of America As Represented By The Secretary Of The Army Rotating warhead
US4681511A (en) 1985-09-30 1987-07-21 The Boeing Company Low vibration helicopter rotor
US4825375A (en) 1985-12-23 1989-04-25 Boeing Company Apparatus and methods for apportioning commands between aircraft flight control surfaces
US4856483A (en) 1988-01-04 1989-08-15 Brunswick Corporation Vacuum bleed and flow restrictor fitting for fuel injected engines with vapor separator
US4928907A (en) 1988-02-29 1990-05-29 Y & B Investment Corporation Compound helicopter with no tail rotor
US5005439A (en) 1989-07-14 1991-04-09 Barry Wright Corporation Inertia force generating device
US5096383A (en) * 1989-11-02 1992-03-17 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Propeller blades
US5058824A (en) 1989-12-21 1991-10-22 United Technologies Corporation Servo control system for a co-axial rotary winged aircraft
US6086975A (en) 1991-01-16 2000-07-11 The Boeing Company Lighting protection for electrically conductive or insulating skin and core for honeycomb structure
GB9104189D0 (en) 1991-02-28 1991-06-12 Westland Helicopters Active vibration control systems
US5131603A (en) 1991-05-02 1992-07-21 Piasecki Aircraft Corporation Rotary wing aircraft split segmented duct shrouded propeller tail assembly
US5240204A (en) 1991-07-19 1993-08-31 Kunz Bernard P Lift generating method and apparatus for aircraft
US5222691A (en) 1991-08-28 1993-06-29 United Technologies Corporation Automatic turn coordination trim control for rotary wing aircraft
US5213283A (en) 1991-08-28 1993-05-25 United Technologies Corporation Low speed turn coordination for rotary wing aircraft
US5238203A (en) 1991-08-28 1993-08-24 United Technologies Corporation High speed turn coordination for rotary wing aircraft
US5597138A (en) * 1991-09-30 1997-01-28 Arlton; Paul E. Yaw control and stabilization system for helicopters
US5253979A (en) 1992-06-01 1993-10-19 United Technologies Corporation Variable diameter rotor having an offset twist
US5281099A (en) * 1992-06-22 1994-01-25 United Technologies Corporation Integrated spline/cone seat subassembly for a rotor assembly having ducted, coaxial counter-rotating rotors
US5427336A (en) 1993-02-24 1995-06-27 Haggerty; Matthew K. Dual control mechanism for aircraft
US5527004A (en) 1993-02-24 1996-06-18 Helix Air, Inc. Control system for aircraft
US5454530A (en) 1993-05-28 1995-10-03 Mcdonnell Douglas Helicopter Company Canard rotor/wing
US5393015A (en) * 1993-06-01 1995-02-28 Piasecki Aircraft Corporation Rotary wing aircraft in-flight refueling device
US5472156A (en) 1994-03-28 1995-12-05 The United States Of America As Represented By The Secretary Of The Army Air combat collective control head
JP2952397B2 (en) 1994-08-23 1999-09-27 科学技術庁航空宇宙技術研究所長 Active air control aircraft using air speed vector measurement device
US5620305A (en) 1995-03-20 1997-04-15 The Boeing Company Hub for rotary wing aircraft
US5614908A (en) 1995-04-14 1997-03-25 Phelan; Joseph P. Helicopter system with rotor blade antennas for landing assistance and for detection of electro-magnetic anomalies
US5730394A (en) * 1995-12-20 1998-03-24 Sikorsky Aircraft Corporation Vertical performance limit compensator
JPH1022727A (en) 1996-07-02 1998-01-23 Murata Mfg Co Ltd Antenna system
US5845236A (en) 1996-10-16 1998-12-01 Lord Corporation Hybrid active-passive noise and vibration control system for aircraft
CA2195581A1 (en) * 1997-01-21 1998-07-21 Stanley Ronald Meek Gyro stabilized triple mode aircraft
US6641365B2 (en) 1998-02-20 2003-11-04 Abraham E. Karem Optimum speed tilt rotor
JP2968511B2 (en) 1998-03-25 1999-10-25 株式会社コミュータヘリコプタ先進技術研究所 Helicopter low-noise landing gear and low-noise landing system
US6050778A (en) 1998-09-24 2000-04-18 The Boeing Company Semi-articulated rotor system
FR2784351B1 (en) 1998-10-12 2000-12-08 Eurocopter France DEVICE AND METHOD FOR REDUCING VIBRATIONS GENERATED ON THE STRUCTURE OF A ROTATING BLADE AIRCRAFT, IN PARTICULAR A HELICOPTER
DE19910449A1 (en) 1999-03-10 2000-09-14 Zf Luftfahrttechnik Gmbh helicopter
US6270038B1 (en) * 1999-04-22 2001-08-07 Sikorsky Aircraft Corporation Unmanned aerial vehicle with counter-rotating ducted rotors and shrouded pusher-prop
US6098921A (en) 1999-05-06 2000-08-08 Piasecki Aircraft Corp. Rotary wing aircraft supplementary power drive system
US6467726B1 (en) 1999-06-29 2002-10-22 Rokuro Hosoda Aircraft and torque transmission
CA2316418A1 (en) 1999-08-20 2001-02-20 Cartercopters, L.L.C. High speed rotor aircraft
US6448924B1 (en) 1999-10-12 2002-09-10 Smiths Aerospace, Inc. Microwave blade tracker
GB9929656D0 (en) 1999-12-16 2000-02-09 Lucy John C Airborne fire fighting craft
US6322324B1 (en) 2000-03-03 2001-11-27 The Boeing Company Helicopter in-flight rotor tracking system, method, and smart actuator therefor
US6513752B2 (en) * 2000-05-22 2003-02-04 Cartercopters, L.L.C. Hovering gyro aircraft
US20020005455A1 (en) 2000-05-25 2002-01-17 Carter Jay W. Rotor control with negative collective in high speed auto-rotation
US6655631B2 (en) 2000-07-28 2003-12-02 John Frederick Austen-Brown Personal hoverplane with four tiltmotors
US6460802B1 (en) 2000-09-13 2002-10-08 Airscooter Corporation Helicopter propulsion and control system
US6497385B1 (en) 2000-11-08 2002-12-24 Continuum Dynamics, Inc. Rotor blade with optimized twist distribution
US6493689B2 (en) * 2000-12-29 2002-12-10 General Dynamics Advanced Technology Systems, Inc. Neural net controller for noise and vibration reduction
US6886777B2 (en) 2001-02-14 2005-05-03 Airscooter Corporation Coaxial helicopter
US7198223B2 (en) 2001-02-14 2007-04-03 Airscooter Corporation Ultralight coaxial rotor aircraft
US6478262B1 (en) * 2001-07-17 2002-11-12 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the yaw axis
US6431494B1 (en) * 2001-07-17 2002-08-13 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the roll axis
AU2002329966A1 (en) 2001-09-04 2003-03-18 Paul E. Arlton Rotor system for helicopters
US6474603B1 (en) * 2001-09-25 2002-11-05 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the pitch axis
US6592071B2 (en) 2001-09-25 2003-07-15 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the lift axis
FR2830630B1 (en) 2001-10-05 2004-07-30 Eurocopter France AUTOMATIC STEERING DEVICE OF A HELICOPTER AND AUTOMATIC STEERING SYSTEM COMPRISING SUCH A DEVICE
US6561456B1 (en) 2001-12-06 2003-05-13 Michael Thomas Devine Vertical/short take-off and landing aircraft
GB2387157B (en) 2002-02-05 2005-11-30 Nigel Howard Mckrill Swashplateless rotor head
US20040007644A1 (en) 2002-04-25 2004-01-15 Airscooter Corporation Rotor craft
US8746649B2 (en) 2002-05-21 2014-06-10 Textron Innovations Inc. Variable stiffness support
US6598830B1 (en) * 2002-06-12 2003-07-29 Sikorsky Aircraft Corporation Telescoping refueling probe
US7017857B2 (en) 2002-09-16 2006-03-28 Foster-Miller, Inc. Active vibration control system
US6885917B2 (en) 2002-11-07 2005-04-26 The Boeing Company Enhanced flight control systems and methods for a jet powered tri-mode aircraft
US6974105B2 (en) 2003-01-09 2005-12-13 Roger N Pham High performance VTOL convertiplanes
US7137591B2 (en) 2003-02-19 2006-11-21 Cartercopters, L.L.C. Tilting mast in a rotorcraft
JP4133435B2 (en) 2003-02-26 2008-08-13 健蔵 野波 Autonomous control method for small unmanned helicopter
FR2852648B1 (en) 2003-03-20 2006-06-30 Eurocopter France ANTI-VIBRATION DEVICE WITH ROTATING MASSELOTTES
US20040251566A1 (en) 2003-06-13 2004-12-16 Kozyuk Oleg V. Device and method for generating microbubbles in a liquid using hydrodynamic cavitation
US20050151001A1 (en) * 2003-07-02 2005-07-14 Loper Arthur W. Compound helicopter
US7463956B2 (en) 2003-07-03 2008-12-09 The Boeing Company Constant vertical state maintaining cueing system
US6905091B2 (en) 2003-07-14 2005-06-14 Supersonic Aerospace International, Llc System and method for controlling the acoustic signature of a device
US7604198B2 (en) 2003-09-25 2009-10-20 Petersen Bruce L Rotorcraft having coaxial counter-rotating rotors which produce both vertical and horizontal thrust and method of controlled flight in all six degrees of freedom
US9046148B2 (en) 2003-10-14 2015-06-02 Sikorsky Aircraft Corporation Active force generation system for minimizing vibration in a rotating system
US7143973B2 (en) * 2003-11-14 2006-12-05 Kenneth Sye Ballew Avia tilting-rotor convertiplane
ITMI20032565A1 (en) 2003-12-22 2005-06-23 Calzoni Srl OPTICAL DEVICE INDICATOR OF PLANATA ANGLE FOR AIRCRAFT
FR2864025B1 (en) 2003-12-23 2007-01-12 Eurocopter France METHOD AND DEVICE FOR REDUCING VIBRATIONS GENERATED ON THE FUSELAGE OF A HELICOPTER BY ORIENTABLE TENSION
FR2864026B1 (en) 2003-12-23 2007-01-19 Eurocopter France METHOD AND DEVICE FOR REDUCING WITH AN ORIENTABLE DRIVE THE VIBRATIONS GENERATED ON THE FUSELAGE OF A HELICOPTER
GB2409845A (en) 2004-01-08 2005-07-13 Robert Graham Burrage Tilt-rotor aircraft changeable between vertical lift and forward flight modes
US7275711B1 (en) 2004-02-23 2007-10-02 Kenneth Warren Flanigan Gas-powered tip-jet-driven compound VTOL aircraft
US7789341B2 (en) 2004-04-14 2010-09-07 Arlton Paul E Rotary wing aircraft having a non-rotating structural backbone and a rotor blade pitch controller
US9434471B2 (en) * 2005-04-14 2016-09-06 Paul E Arlton Rotary wing vehicle
US7083142B2 (en) 2004-04-21 2006-08-01 Sikorsky Aircraft Corporation Compact co-axial rotor system for a rotary wing aircraft and a control system thereof
US8162606B2 (en) 2004-08-30 2012-04-24 Lord Corporation Helicopter hub mounted vibration control and circular force generation systems for canceling vibrations
US8435002B2 (en) 2004-08-30 2013-05-07 Lord Corporation Helicopter vibration control system and rotating assembly rotary forces generators for canceling vibrations
CN101022994B (en) 2004-08-30 2012-07-04 洛德公司 Helicopter vibration control system and rotary force generator for canceling vibrations
US7546975B2 (en) 2004-09-14 2009-06-16 The Boeing Company Tandem rotor wing rotational position control system
CA2482571A1 (en) * 2004-09-27 2006-03-27 9103-7366 Quebec Inc. Apparatus for treating lignocellulosic material, and method of treating associated thereto
US7946526B2 (en) 2004-11-05 2011-05-24 Nachman Zimet Rotary-wing vehicle system
WO2007018572A2 (en) 2004-11-08 2007-02-15 Bell Helicopter Textron Inc. Flight system with three feedback control loops
US7448571B1 (en) 2004-11-16 2008-11-11 Cartercopters, L.L.C. Rotor collective pitch VS Mu to control flapping and mast/rotor tilt to control rotor RPM
US7267300B2 (en) 2005-02-25 2007-09-11 The Boeing Company Aircraft capable of vertical and short take-off and landing
FR2886176B1 (en) 2005-05-25 2007-07-06 Eurocopter France CENTRIFUGAL EFFECT VIBRATION GENERATOR WITH COAXIAL CONTRAROTATIVE ROTORS.
US7607607B2 (en) 2005-05-26 2009-10-27 Sikorsky Aircraft Corporation De-rotation system suitable for use with a shaft fairing system
US7621480B2 (en) 2005-05-26 2009-11-24 Sikorsky Aircraft Corporation De-rotation system for a counter-rotating, coaxial rotor hub shaft fairing
USD524718S1 (en) 2005-05-31 2006-07-11 Sikorsky Aircraft Corporation Rigid coaxial rotor helicopter with dual auxiliary propulsion
US7252479B2 (en) * 2005-05-31 2007-08-07 Sikorsky Aircraft Corporation Rotor blade for a high speed rotary-wing aircraft
US7600976B2 (en) 2005-05-31 2009-10-13 Sikorsky Aircraft Corporation Rotor blade twist distribution for a high speed rotary-wing aircraft
US7229251B2 (en) * 2005-05-31 2007-06-12 Sikorsky Aircraft Corporation Rotor hub fairing system for a counter-rotating, coaxial rotor system
USD526269S1 (en) 2005-05-31 2006-08-08 Sikorsky Aircraft Corporation High speed attack rotorcraft
US7413142B2 (en) * 2005-05-31 2008-08-19 Sikorsky Aircraft Corporation Split torque gearbox for rotary wing aircraft with translational thrust system
US7296767B2 (en) 2005-05-31 2007-11-20 Sikorsky Aircraft Corporation Variable speed transmission for a rotary wing aircraft
US7823375B2 (en) 2005-08-01 2010-11-02 Sikorsky Aircraft Corporation Infrared suppression system
US8864062B2 (en) 2005-08-15 2014-10-21 Abe Karem Aircraft with integrated lift and propulsion system
US8128034B2 (en) 2005-08-15 2012-03-06 Abe Karem Rotorcraft with opposing roll mast moments, and related methods
US7751976B2 (en) 2005-08-26 2010-07-06 Sikorsky Aircraft Corporation Rotary wing aircraft flight control system with a proximity cueing and avoidance system
US7434763B2 (en) 2005-09-28 2008-10-14 The Boeing Company Rotor/wing dual mode hub fairing system
WO2007055813A2 (en) 2005-09-30 2007-05-18 Brannon William W Iii Aerodynamic shroud having textured surface
US9235217B2 (en) 2005-10-03 2016-01-12 Sikorsky Aircraft Corporation Automatic dual rotor speed control for helicopters
US8303248B2 (en) 2005-10-05 2012-11-06 Sikorsky Aircraft Corporation Swash plate anti-torque mechanism
FR2892091B1 (en) 2005-10-13 2008-01-18 Hispano Suiza Sa METHOD AND DEVICE FOR SYNCHROPHASING PROPELLERS OF A PLANE WITH MULTIPLE PROPELLERS
US7264199B2 (en) 2005-10-18 2007-09-04 The Boeing Company Unloaded lift offset rotor system for a helicopter
US8424798B2 (en) 2005-10-27 2013-04-23 Douglas Challis Aircraft with helicopter rotor, thrust generator and assymetric wing configuration
EP1945501A4 (en) 2005-11-09 2013-04-24 Morgan Aircraft Llc Aircraft attitude control configuration
FR2894040B1 (en) 2005-11-28 2011-10-21 Eurocopter France ASSEMBLY DEVICE FOR UNBALANCED ROTOR VIBRATOR.
US7434764B2 (en) 2005-12-02 2008-10-14 Sikorsky Aircraft Corporation Variable speed gearbox with an independently variable speed tail rotor system for a rotary wing aircraft
US7644893B2 (en) 2006-02-15 2010-01-12 Sikorsky Aircraft Corporation Full authority fly-by-wire pedal system
US7854593B2 (en) 2006-02-16 2010-12-21 Sikorsky Aircraft Corporation Airfoil for a helicopter rotor blade
US7513750B2 (en) 2006-03-08 2009-04-07 Sikorsky Aircraft Corporation Rotor blade tip planform
FR2899562B1 (en) 2006-04-05 2009-01-09 Eurocopter France DEVICE FOR CONTROLLING FLIGHT OF A GIRAVION
US8382028B2 (en) 2006-06-01 2013-02-26 Lord Corporation Rotary wing aircraft rotating machinery vibration control system
US7857598B2 (en) 2006-06-26 2010-12-28 Aerovel Corporation Variable-twist rotor blade controlled by hub pitch angle and rotational speed
EP2046637B1 (en) * 2006-07-27 2014-06-04 Sikorsky Aircraft Corporation Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
US8016566B2 (en) 2006-08-03 2011-09-13 Bell Helicopter Textron Inc. High performance low noise rotorcraft blade aerodynamic design
US7585153B1 (en) * 2006-08-11 2009-09-08 Sikorsky Aircraft Corporation Upper rotor control system for a counter-rotating rotor system
US7648338B1 (en) 2006-09-14 2010-01-19 Sikorsky Aircraft Corporation Dual higher harmonic control (HHC) for a counter-rotating, coaxial rotor system
US7530790B2 (en) 2006-09-20 2009-05-12 Sikorsky Aircraft Corporation Rotor blade folding system
US8019490B2 (en) 2006-09-29 2011-09-13 Applied Minds, Llc Imaging and display system to aid helicopter landings in brownout conditions
US7674091B2 (en) 2006-11-14 2010-03-09 The Boeing Company Rotor blade pitch control
US7841829B2 (en) 2006-11-15 2010-11-30 Sikorsky Aircraft Corporation Rotor system with pitch flap coupling
US7758310B2 (en) 2007-01-15 2010-07-20 Sikorsky Aircraft Corporation Translational thrust system for a rotary wing aircraft
WO2008093447A1 (en) 2007-01-30 2008-08-07 Japan Aerospace Exploration Agency Low noise aircraft
US7644887B2 (en) 2007-02-22 2010-01-12 Johnson Edward D Yaw control system and method
US7930074B2 (en) 2007-03-19 2011-04-19 Sikorsky Aircraft Corporation Vertical speed and flight path command module for displacement collective utilizing tactile cueing and tactile feedback
US8694182B2 (en) 2007-04-03 2014-04-08 Sikorsky Aircraft Corporation Altitude and acceleration command altitude hold algorithm for rotorcraft with large center of gravity range
CN101657354B (en) 2007-04-11 2013-08-07 贝尔直升机泰克斯特龙公司 Method for suppressing vibration in a tiltrotor aircraft
FR2916418B1 (en) 2007-05-22 2009-08-28 Eurocopter France FAST HYBRID HELICOPTER WITH EXTENDABLE HIGH DISTANCE.
FR2916420B1 (en) 2007-05-22 2009-08-28 Eurocopter France HIGH FREQUENCY FAST HYBRID HELICOPTER WITH CONTROL OF LONGITUDINAL PLATE.
FR2916421B1 (en) 2007-05-22 2010-04-23 Eurocopter France SYSTEM FOR CONTROLLING A GIRAVION.
FR2916419B1 (en) 2007-05-22 2010-04-23 Eurocopter France HIGH FREQUENCY FAST HYBRID HELICOPTER WITH OPTIMIZED SUSTENTATION ROTOR.
US7970498B2 (en) * 2007-06-01 2011-06-28 Sikorsky Aircraft Corporation Model based sensor system for loads aware control laws
US8548648B2 (en) 2007-07-02 2013-10-01 Sikorsky Aircraft Corporation Fly-by-wire flight control system with electronic lead/lag damper algorithm
US7823827B2 (en) 2007-07-11 2010-11-02 Piasecki Frederick W Vectored thruster augmented aircraft
USD614559S1 (en) 2007-09-14 2010-04-27 Sikorsky Aircraft Corporation Rotary-wing aircraft with a common dynamic system/backbone structure
US8061119B2 (en) * 2007-11-29 2011-11-22 United Technologies Corporation Actuation mechanism for a convertible gas turbine propulsion system
EP2227641B1 (en) 2007-12-03 2016-07-20 Sikorsky Aircraft Corporation Magnetic de-rotation system for a shaft fairing system
FR2925182B1 (en) * 2007-12-18 2021-07-02 Airbus France METHOD AND DEVICE FOR DETECTION OF OSCILLATORY FAILURES IN A SLAVE CHAIN IN POSITION OF AN AIRCRAFT RUDDER.
US8036821B2 (en) 2007-12-18 2011-10-11 Honeywell International Inc. Methods and systems for diminishing the effects of an acoustic signature of vehicles
US8167233B2 (en) 2007-12-21 2012-05-01 Avx Aircraft Company Coaxial rotor aircraft
US8727722B2 (en) 2007-12-27 2014-05-20 General Electric Company System and methods for adaptive blade control surface adjustment
US8154381B2 (en) 2007-12-31 2012-04-10 Universal Electronics Inc. System and method for interactive appliance control
WO2009088491A2 (en) 2008-01-02 2009-07-16 Sikorsky Aircraft Corporation Planetary de-rotation system for a shaft fairing system
US8403643B2 (en) 2008-03-20 2013-03-26 Sikorsky Aircraft Corporation Dual frequency hub mounted vibration suppressor system
US8271151B2 (en) 2008-03-31 2012-09-18 Sikorsky Aircraft Corporation Flight control system for rotary wing aircraft
US7784448B2 (en) 2008-04-24 2010-08-31 Rolls-Royce Corporation Fuel flow anti-interruption
EP3412577B1 (en) 2008-05-13 2020-03-18 Sikorsky Aircraft Corporation Fuel system
FR2932266B1 (en) 2008-06-05 2010-07-30 Airbus France METHOD FOR PREDICTING THE DYNAMIC BEHAVIOR OF A STRUCTURE OF AN AIRCRAFT
CN101618763A (en) * 2008-07-02 2010-01-06 孙为红 Miniature high-speed vertical-lifting self rotor aircraft
IT1391165B1 (en) 2008-08-04 2011-11-18 Cilli AERODYNAMIC CONTROL SYSTEM FOR HELICOPTER WITH POSITIONS WITH COUNTER-COUNTER-WHEEL LOADS AND WITHOUT CYCLIC VARIATION OF THE STEP
US20100044499A1 (en) 2008-08-22 2010-02-25 Draganfly Innovations Inc. Six rotor helicopter
US8099944B2 (en) 2008-10-08 2012-01-24 The Invention Science Fund I, Llc Hybrid propulsive engine including at least one independently rotatable propeller/fan
US8469306B2 (en) 2009-01-27 2013-06-25 Ira F. Kuhn, Jr. Purebred and hybrid electric VTOL tilt rotor aircraft
CN102369140B (en) 2009-02-27 2014-07-30 贝尔直升机泰克斯特龙公司 System and method for vibration control in a rotorcraft using an adaptive reference model algorithm
EP2241502B1 (en) * 2009-04-13 2017-03-08 Sikorsky Aircraft Corporation Active vibration suppression via power minimization
EP2246255B1 (en) * 2009-04-29 2018-12-26 Sikorsky Aircraft Corporation Combination brake clutch drive system and rotary-wing aircraft using same
US8496434B2 (en) 2009-05-21 2013-07-30 Textron Innovations Inc. Differential pitch-control to optimize co-rotating stacked rotor performance
US8366037B2 (en) 2009-05-22 2013-02-05 Heliplane, Llc Towable aerovehicle system with automated tow line release
EP2432689B1 (en) 2009-05-22 2013-07-17 Bell Helicopter Textron Inc. Co-rotating stacked rotor disks for improved hover performance
IL199009A (en) 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd Air vehicle
FR2946315B1 (en) 2009-06-04 2011-05-20 Eurocopter France METHOD AND SYSTEM FOR CONTROL AND MOTOR CONTROL FOR HYBRID HELICOPTER
US8403255B2 (en) 2009-08-14 2013-03-26 Frederick W. Piasecki Compound aircraft with autorotation
US8376264B1 (en) 2009-08-24 2013-02-19 Jianhui Hong Rotor for a dual mode aircraft
EP2296064B1 (en) 2009-09-10 2019-04-24 Sikorsky Aircraft Corporation Life improving flight control system
US8390516B2 (en) 2009-11-23 2013-03-05 Harris Corporation Planar communications antenna having an epicyclic structure and isotropic radiation, and associated methods
US8858179B2 (en) * 2009-12-18 2014-10-14 Sikorsky Aircraft Corporation Helicopter rotor control system
US8979495B2 (en) 2009-12-21 2015-03-17 Sikorsky Aircraft Corporation Control system and method for rotor assembly
JP5022457B2 (en) 2010-02-17 2012-09-12 三菱重工業株式会社 Vibration reducing apparatus and vibration reducing method
US8801380B2 (en) 2010-03-01 2014-08-12 Sikorsky Aircraft Corporation Concentric rotor control system
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system
FR2959205B1 (en) 2010-04-27 2012-04-13 Eurocopter France METHOD FOR CONTROLLING AND REGULATING THE TURNING ANGLE OF A HYBRID HELICOPTER VEHICLE
GB2479923A (en) 2010-04-29 2011-11-02 Vestas Wind Sys As A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components
WO2011146349A2 (en) 2010-05-17 2011-11-24 Piasecki Aircraft Corp. Modular and morphable air vehicle
US8702377B2 (en) 2010-06-23 2014-04-22 Honeywell International Inc. Gas turbine engine rotor tip clearance and shaft dynamics system and method
US8131402B2 (en) 2010-06-30 2012-03-06 General Electric Company System for detecting proximity between a wind turbine blade and a tower wall
US8960594B2 (en) 2010-11-02 2015-02-24 Groen Brothers Aviation, Inc. Use of auxiliary rudders for yaw control at low speed
US8998127B2 (en) 2010-09-09 2015-04-07 Groen Brothers Aviation, Inc. Pre-landing, rotor-spin-up apparatus and method
US8950699B1 (en) 2010-09-09 2015-02-10 Groen Brothers Aviation, Inc. Heliplane rotor thermal management for maintaining dimensional stability
US8991744B1 (en) * 2011-08-17 2015-03-31 Groen Brothers Aviation, Inc. Rotor-mast-tilting apparatus and method for optimized crossing of natural frequencies
US9079659B2 (en) * 2010-09-09 2015-07-14 General Aeronautics Corporation, Inc. Rotor hub and blade root fairing apparatus and method
FR2964948B1 (en) 2010-09-16 2012-08-31 Eurocopter France ROTARY VESSEL AIRCRAFT WITH A PROPULSIVE MEANS AND METHOD APPLIED THERETO
US8482434B2 (en) 2010-09-17 2013-07-09 United Technologies Corporation Wireless sensor for an aircraft propulsion system
JP5735253B2 (en) * 2010-10-20 2015-06-17 住友精密工業株式会社 Aircraft steering apparatus control method, aircraft steering apparatus, and aircraft equipped with the same
US8393567B2 (en) 2010-11-15 2013-03-12 The Boeing Company Method and apparatus for reducing aircraft noise
FR2969577B1 (en) 2010-12-22 2012-12-21 Eurocopter France AIRCRAFT HAVING BACK-UP ROTOR, AND ASSOCIATED METHOD
US10086932B2 (en) 2011-01-14 2018-10-02 Sikorsky Aircraft Corporation Moment limiting control laws for dual rigid rotor helicopters
PE20141399A1 (en) 2011-01-30 2014-10-24 Elbit Systems Ltd DYNAMIC LIMITATION OF INCLINATION OF MONOBLOC FLIGHT CONTROL SURFACES DURING CONDITIONS OF SUSCEPTIBILITY TO LOST ENTRY
FR2972364B1 (en) 2011-03-08 2014-06-06 Parrot METHOD FOR CONTROLLING FOLLOWING A CURVED TURNING OF A MULTI - ROTOR ROTOR SAILING DRONE.
US9475572B2 (en) 2011-03-31 2016-10-25 Bae Systems Plc Propeller operation
US8960593B2 (en) 2011-05-03 2015-02-24 Raytheon Company Horizon scanning system for a rotary wing aircraft including sensors housed within a tubercle on a rotor blade
US8622334B2 (en) * 2011-05-19 2014-01-07 Aurora Flight Sciences Corporation System and method for reducing the noise of pusher type aircraft propellers
EP2615026B1 (en) 2011-06-10 2018-04-04 Airbus Defence and Space GmbH Method and apparatus for minimizing dynamic structural loads of an aircraft
US8590827B2 (en) 2011-09-07 2013-11-26 Textron Innovations Inc. Rijke tube cancellation device for helicopters
FR2979900B1 (en) 2011-09-12 2013-08-30 Eurocopter France RAPID AIRCRAFT WITH EXTENDABLE HIGH DISTANCE
FR2980454B1 (en) * 2011-09-27 2014-01-31 Eurocopter France METHOD FOR REGULATING THE PROPULSION SPEED OF A HYBRID HELICOPTER
US9102400B2 (en) 2011-10-21 2015-08-11 Sikorsky Aircraft Corporation Methods and systems for providing constant-feel, multi-axis tactile cues
US8931729B2 (en) 2011-10-31 2015-01-13 King Abdullah II Design and Development Bureau Sided performance coaxial vertical takeoff and landing (VTOL) UAV and pitch stability technique using oblique active tilting (OAT)
FR2982964B1 (en) 2011-11-23 2013-11-22 Eurocopter France METHOD FOR ASSISTED STEERING OF A ROTARY TURNING AIRCRAFT COMPRISING AT LEAST ONE PROPELLANT PROPELLER, ASSISTED STEERING DEVICE AND AIRCRAFT
EP2610637B1 (en) 2011-12-28 2015-10-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Proximity warning system for helicopters
USD665720S1 (en) 2012-01-11 2012-08-21 Sikorsky Aircraft Corporation Rotary wing aircraft
US8827204B2 (en) * 2012-01-12 2014-09-09 Hamilton Sundstrand Corporation Clutch system for rotary-wing aircraft with secondary thrust system
US9920880B2 (en) 2012-01-16 2018-03-20 Hamilton Sundstrand Corporation Deaerating assembly
US8812177B2 (en) 2012-02-10 2014-08-19 Bell Helicopter Textron Inc. Integrated aircraft flight control units
FR2987031B1 (en) 2012-02-21 2014-10-24 Eurocopter France A SAILBOAT WITH A REAR ROTOR, AND METHOD FOR OPTIMIZING THE OPERATION OF AN REAR ROTOR
US9169012B2 (en) 2012-02-21 2015-10-27 Textron Innovations Inc. Coaxial counter-rotating rotor system
US8686918B1 (en) 2012-02-29 2014-04-01 General Atomics Multi-function magnetic pseudo-conductor antennas
US9248907B2 (en) 2012-03-06 2016-02-02 Sikorsky Aircraft Corporation Engine starting system for rotorcraft in flight
US20130262025A1 (en) 2012-03-27 2013-10-03 Hamilton Sundstrand Corporation Extended range absolute position sensing
FR2990685B1 (en) 2012-05-21 2014-11-21 Eurocopter France METHOD FOR CONTROLLING WING SHUTTERS AND HORIZONTAL TRUCK OF A HYBRID HELICOPTER
US9061762B2 (en) 2012-06-11 2015-06-23 James W Vetter Multi-orientation, advanced vertical agility, variable-environment vehicle
US9120567B2 (en) 2012-06-11 2015-09-01 Sikorsky Aircraft Corporation High speed compound rotary wing aircraft
US9038801B2 (en) 2012-06-15 2015-05-26 Hamilton Sundstrand Corporation Clutch with pressure sustaining system
KR101896666B1 (en) 2012-07-05 2018-09-07 삼성전자주식회사 Image sensor chip, operation method thereof, and system having the same
US9051657B2 (en) * 2012-07-16 2015-06-09 Wood Stone Corporation Modular electrolysis unit
EP2690011B1 (en) 2012-07-27 2016-09-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Compound helicopter
US9132914B2 (en) * 2012-07-30 2015-09-15 Sikorsky Aircraft Corporation Low drag high restoring moment airfoils
US8788122B1 (en) 2012-08-24 2014-07-22 The Boeing Company Wing load alleviation methods and apparatus
IL222053A (en) 2012-09-23 2016-11-30 Israel Aerospace Ind Ltd System, method and computer program product for maneuvering an air vehicle
EP2719619B1 (en) * 2012-10-10 2020-01-01 Sikorsky Aircraft Corporation Rotary wing aircraft having collocated exhaust duct and propeller shaft
EP2727832B1 (en) 2012-10-31 2016-06-22 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotor head of a rotary wing flying machine and method of manufacturing and assembling such a rotor head
US9033284B2 (en) 2012-11-20 2015-05-19 Sikorsky Aircraft Corporation Integrated seat mounted inceptor
US9758258B2 (en) 2012-11-29 2017-09-12 Sirkorsky Aircraft Corporation Rotary wing aircraft blade tracking
US9528375B2 (en) 2012-11-30 2016-12-27 Sikorsky Aircraft Corporation Non-uniform blade distribution for rotary wing aircraft
AU2013360005B2 (en) 2012-12-13 2015-08-13 Stoprotor Technology Pty Ltd Aircraft and methods for operating an aircraft
US10377473B2 (en) 2013-01-04 2019-08-13 Bell Helicopter Textron Inc. Disconnecting a rotor
US20150370266A1 (en) 2013-03-08 2015-12-24 Lord Corporation Active noise and vibration control systems and
US9505490B2 (en) 2013-03-13 2016-11-29 Bell Helicopter Textron Inc. Composite rotor system using two race track style cantilevered yokes
US9656747B2 (en) 2013-03-14 2017-05-23 Bell Helicopter Textron Inc. Soft in-plane and stiff out-of-plane rotor system
US10011367B2 (en) 2013-03-14 2018-07-03 Bell Helicopter Textron Inc. Measurement of rotor blade flapping
US9180964B2 (en) * 2013-03-15 2015-11-10 Bell Helicopter Textron Inc. Autorotative enhancement system
US9415866B2 (en) 2013-04-03 2016-08-16 Sikorsky Aircraft Corporation Low drag rotor system
US10351233B2 (en) 2013-04-22 2019-07-16 Sikorsky Aircraft Corporation Vibration control of a swashplateless coaxial rotor
US9452831B2 (en) 2013-04-22 2016-09-27 Sikorsky Aircraft Corporation Integration of rotary electrical actuator for swashplateless individual blade control
US20150246725A1 (en) 2013-06-22 2015-09-03 Nolan Joseph Reilly Propulsive tail propeller assembly or tail duct fan assembly with cyclic and collective control and/or a method of thrust vectoring for aircraft maneuvering and for helicoptor single rotor head anti torque
US9248909B2 (en) 2013-07-23 2016-02-02 Sikorsky Aircraft Corporation Swashplateless coaxial rotary wing aircraft
US9233753B2 (en) 2013-07-24 2016-01-12 Sikorsky Aircraft Corporation Helicopter rotor load reduction and tip clearance control
US9096330B2 (en) 2013-08-02 2015-08-04 Honeywell International Inc. System and method for computing MACH number and true airspeed
US9682771B2 (en) 2013-08-14 2017-06-20 Sikorsky Aircraft Corporation Controlling rotor blades of a swashplateless rotor
US9174730B2 (en) 2013-08-21 2015-11-03 Sikorsky Aircraft Corporation Automated rotating tail rotor control
US10315758B2 (en) 2013-08-23 2019-06-11 Martin Leon Adam Omni-directional thrust vectoring propulsor
US9278760B2 (en) 2013-09-04 2016-03-08 Sikorsky Aircraft Corporation Torque split gearbox for rotary wing aircraft
US9026277B2 (en) 2013-09-12 2015-05-05 Sikorsky Aircraft Corporation Rotor track and balance with improved linear optimization
US9835093B2 (en) 2013-09-19 2017-12-05 The Boeing Company Contra-rotating open fan propulsion system
US9604729B2 (en) 2013-10-16 2017-03-28 Hamilton Sundstrand Corporation Aircraft control system and method
US10124888B2 (en) 2013-11-01 2018-11-13 The University Of Queensland Rotorcraft
US9623964B2 (en) 2013-11-05 2017-04-18 Sikorsky Aircraft Corporation Counter-rotating rotor system with stationary standpipe
US9725166B2 (en) 2013-11-15 2017-08-08 Sikorsky Aircraft Corporation Counter-rotating rotor system with static mast
FR3014838B1 (en) 2013-12-17 2015-12-25 Eurocopter France GIRAVION EQUIPPED WITH A REVERSE ROTOR ANTI COUPLE PARTICIPATING SELECTIVELY TO THE SUSTENTATION AND PROPULSION IN TRANSLATION OF THE GIRAVION
US9234743B2 (en) 2014-01-16 2016-01-12 Sikorsky Aircraft Corporation Tip clearance measurement
US10065730B2 (en) 2014-01-22 2018-09-04 Bell Helicopter Textron Inc. Active vibration control system with non-concentric revolving masses
EP2899118B1 (en) 2014-01-27 2019-01-16 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with a fuselage and at least one main rotor
US9317042B2 (en) * 2014-01-28 2016-04-19 Sikorsky Aircraft Corporation Pitch feedback control splitting for helicopters with redundant actuators
US9889927B2 (en) 2014-02-06 2018-02-13 Bell Helicopter Textron Inc. Variable hub-to-hub phasing rotor system
US20150225053A1 (en) 2014-02-12 2015-08-13 Hamilton Sundstrand Corporation Cyclic pitch actuation system for counter-rotating propellers
WO2015138655A1 (en) 2014-03-11 2015-09-17 Carter Aviation Technologies, Llc Mast dampener and collective pitch in a rotorcraft
US9250629B2 (en) 2014-04-02 2016-02-02 Sikorsky Aircraft Corporation Terrain adaptive flight control
WO2015152910A1 (en) 2014-04-02 2015-10-08 Sikorsky Aircraft Corporation Elevator load alleviating control for a rotary wing aircraft
US9199729B1 (en) 2014-05-08 2015-12-01 Hirobo Co., Ltd. Coaxial counter-rotating unmanned helicopter
US9727059B2 (en) 2014-06-23 2017-08-08 Sikorsky Aircraft Corporation Independent speed and attitude control for a rotary wing aircraft
US10710713B2 (en) 2014-07-18 2020-07-14 Pegasus Universal Aerospace (Pty) Ltd. Vertical take-off and landing aircraft
US10822076B2 (en) * 2014-10-01 2020-11-03 Sikorsky Aircraft Corporation Dual rotor, rotary wing aircraft
WO2016054398A1 (en) 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Sealed hub and shaft fairing for rotary wing aircraft
WO2016053408A1 (en) 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Acoustic signature variation of aircraft utilizing a clutch
EP3201086B1 (en) 2014-10-01 2019-07-31 Sikorsky Aircraft Corporation Power management between a propulsor and a coaxial rotor of a helicopter
US9758242B2 (en) 2015-02-04 2017-09-12 Sikorsky Aircraft Corporation Lift offset management and control systems for coaxial rotorcraft
US10752341B2 (en) 2015-02-23 2020-08-25 Sikorsky Aircraft Corporation Tip clearance harmonic estimation
WO2016167865A1 (en) 2015-04-16 2016-10-20 Sikorsky Aircraft Corporation Gust alleviating control for a coaxial rotary wing aircraft
US9616991B2 (en) 2015-05-01 2017-04-11 Peter Daniel WIRASNIK Mechanically self-regulated propeller
US20180148165A1 (en) 2015-05-11 2018-05-31 Sikorsky Aircraft Corporation Rotor state feedback system
US10112697B2 (en) 2015-05-11 2018-10-30 Sikorsky Aircraft Corporation Aircraft with thrust vectoring tail
US10189559B2 (en) 2016-11-22 2019-01-29 Sikorsky Aircraft Corporation Rotor speed control using a feed-forward rotor speed command
US11204612B2 (en) * 2017-01-23 2021-12-21 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft
CN106892124B (en) * 2017-01-23 2018-12-07 北京瑞深航空科技有限公司 Hybrid power unmanned plane
US10040542B1 (en) 2017-02-07 2018-08-07 Bell Helicopter Textron Inc. System and method for stabilizing longitudinal acceleration of a rotorcraft
US10101749B1 (en) 2017-03-21 2018-10-16 Bell Helicopter Textron Inc. Combined airspeed and inertial data for rotorcraft longitudinal control
WO2019043520A1 (en) * 2017-08-29 2019-03-07 Hangzhou Zero Zero Technology Co., Ltd. Autonomous self-stabilizing aerial system and method
WO2019084487A1 (en) 2017-10-27 2019-05-02 Elroy Air, Inc. Compound multi-copter aircraft
US11027836B2 (en) * 2018-07-13 2021-06-08 The Boeing Company Rotorcraft with canted coaxial rotors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269413A1 (en) * 2005-05-31 2006-11-30 Sikorsky Aircraft Corporation Rotor drive and control system for a high speed rotary wing aircraft
US20100272576A1 (en) * 2005-08-15 2010-10-28 Abe Karem High performance outboard section for rotor blades
US20080237392A1 (en) * 2006-08-16 2008-10-02 Piasecki Aircraft Corporation Compound aircraft control system and method
US20120153074A1 (en) * 2009-06-10 2012-06-21 Fabio Nannoni Electronic flight control system for an aircraft capable of hovering
US20150321769A1 (en) * 2010-12-22 2015-11-12 Bell Helicopter Textron Inc. Power Safety Instrument System
US10023306B2 (en) * 2011-07-12 2018-07-17 Airbus Helicopters Method of automatically controlling a rotary wing aircraft having at least one propulsion propeller, an autopilot device, and an aircraft

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167079B2 (en) 2014-10-01 2019-01-01 Sikorsky Aircraft Corporation Main rotor rotational speed control for rotorcraft
US10443674B2 (en) 2014-10-01 2019-10-15 Sikorsky Aircraft Corporation Noise modes for rotary wing aircraft
US10619698B2 (en) 2014-10-01 2020-04-14 Sikorsky Aircraft Corporation Lift offset control of a rotary wing aircraft
US10654565B2 (en) 2014-10-01 2020-05-19 Sikorsky Aircraft Corporation Collective to elevator mixing of a rotary wing aircraft
US11021241B2 (en) 2014-10-01 2021-06-01 Sikorsky Aircraft Corporation Dual rotor, rotary wing aircraft
US11040770B2 (en) 2014-10-01 2021-06-22 Sikorsky Aircraft Corporation Single collective stick for a rotary wing aircraft
US11440650B2 (en) 2014-10-01 2022-09-13 Sikorsky Aircraft Corporation Independent control for upper and lower rotor of a rotary wing aircraft
US10809744B2 (en) * 2016-02-19 2020-10-20 Sikorsky Aircraft Corporation Rotor moment control system for a rotary wing aircraft
EP3617067A1 (en) * 2018-08-27 2020-03-04 Bell Helicopter Textron Inc. High speed rotorcraft propulsion configuration
US11167845B2 (en) 2018-08-27 2021-11-09 Textron Innovations Inc. High speed rotorcraft propulsion configuration
US11577831B2 (en) 2018-08-27 2023-02-14 Textron Innovations Inc. High speed rotorcraft propulsion configuration

Also Published As

Publication number Publication date
US20170225775A1 (en) 2017-08-10
EP3201085B1 (en) 2019-08-28
US20170283045A1 (en) 2017-10-05
EP3201076A1 (en) 2017-08-09
US20170297692A1 (en) 2017-10-19
WO2016053859A3 (en) 2016-05-26
US20170349275A1 (en) 2017-12-07
WO2016053433A1 (en) 2016-04-07
WO2016053740A1 (en) 2016-04-07
WO2016053873A1 (en) 2016-04-07
EP3201079A2 (en) 2017-08-09
US10717521B2 (en) 2020-07-21
WO2016053958A2 (en) 2016-04-07
EP3201079B1 (en) 2020-05-06
EP3201087A2 (en) 2017-08-09
US20170217575A1 (en) 2017-08-03
WO2016053935A1 (en) 2016-04-07
US20170305539A1 (en) 2017-10-26
WO2016053739A2 (en) 2016-04-07
EP3201082A4 (en) 2018-03-28
WO2016054142A1 (en) 2016-04-07
EP3201082A2 (en) 2017-08-09
US10527123B2 (en) 2020-01-07
US20170274990A1 (en) 2017-09-28
EP3201083A4 (en) 2018-05-23
US20170283047A1 (en) 2017-10-05
US20170305534A1 (en) 2017-10-26
US10640203B2 (en) 2020-05-05
WO2016060827A2 (en) 2016-04-21
US20170210463A1 (en) 2017-07-27
EP3201711B1 (en) 2021-03-17
EP3201078A2 (en) 2017-08-09
WO2016053408A1 (en) 2016-04-07
US20170217581A1 (en) 2017-08-03
US20170297696A1 (en) 2017-10-19
WO2016054220A3 (en) 2016-08-18
WO2016054018A3 (en) 2016-05-12
WO2016053442A1 (en) 2016-04-07
WO2016053859A2 (en) 2016-04-07
US20190017569A1 (en) 2019-01-17
WO2016053475A3 (en) 2016-08-25
EP3201085A1 (en) 2017-08-09
US10443674B2 (en) 2019-10-15
US20170274994A1 (en) 2017-09-28
US20170283049A1 (en) 2017-10-05
US20170305544A1 (en) 2017-10-26
US20170277201A1 (en) 2017-09-28
US10443675B2 (en) 2019-10-15
WO2016054223A1 (en) 2016-04-07
US11021241B2 (en) 2021-06-01
WO2016060827A3 (en) 2016-05-26
WO2016054139A2 (en) 2016-04-07
US20170291702A1 (en) 2017-10-12
US20170225797A1 (en) 2017-08-10
US20170305543A1 (en) 2017-10-26
WO2016054136A1 (en) 2016-04-07
WO2016053944A3 (en) 2016-05-26
EP3201083A1 (en) 2017-08-09
EP3201079A4 (en) 2018-05-02
WO2016054125A1 (en) 2016-04-07
WO2016053825A1 (en) 2016-04-07
US10654565B2 (en) 2020-05-19
EP3201084A1 (en) 2017-08-09
EP3201711A4 (en) 2018-06-20
US10400851B2 (en) 2019-09-03
US11040770B2 (en) 2021-06-22
WO2016054139A3 (en) 2016-08-18
US20170308101A1 (en) 2017-10-26
WO2016054220A2 (en) 2016-04-07
WO2016053452A1 (en) 2016-04-07
US20170217582A1 (en) 2017-08-03
WO2016054171A1 (en) 2016-04-07
EP3201087B1 (en) 2020-01-01
US10167079B2 (en) 2019-01-01
WO2016054215A1 (en) 2016-04-07
WO2016054369A1 (en) 2016-04-07
WO2016053996A2 (en) 2016-04-07
WO2016053774A1 (en) 2016-04-07
WO2016053473A1 (en) 2016-04-07
WO2016053777A3 (en) 2016-06-02
US20170305540A1 (en) 2017-10-26
US11440650B2 (en) 2022-09-13
WO2016054137A1 (en) 2016-04-07
EP3201078A4 (en) 2018-03-14
US20170220048A1 (en) 2017-08-03
EP3201087A4 (en) 2018-05-23
US10676181B2 (en) 2020-06-09
EP3201084A4 (en) 2018-06-13
US20170267338A1 (en) 2017-09-21
EP3201085A4 (en) 2018-03-21
EP3201084B1 (en) 2020-06-03
WO2016053944A2 (en) 2016-04-07
EP3201076B1 (en) 2022-03-16
US20170233067A1 (en) 2017-08-17
WO2016053739A3 (en) 2016-06-02
US10619698B2 (en) 2020-04-14
WO2016054018A2 (en) 2016-04-07
US20180231986A1 (en) 2018-08-16
WO2016054331A1 (en) 2016-04-07
WO2016053475A2 (en) 2016-04-07
EP3201711A1 (en) 2017-08-09
US20170274987A1 (en) 2017-09-28
US20170297690A1 (en) 2017-10-19
US20170233068A1 (en) 2017-08-17
WO2016053991A1 (en) 2016-04-07
WO2016053996A3 (en) 2016-05-19
WO2016053777A2 (en) 2016-04-07
US20170275014A1 (en) 2017-09-28
EP3201076A4 (en) 2018-05-23
WO2016053958A3 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
US20170297694A1 (en) Rotor speed management
US10392105B2 (en) System and method for assisting in rotor speed control
CN102267561B (en) Method of operating and controlling the deflection angle of a control surface of a hybrid helicopter
US9714575B2 (en) Differential blade design for propeller noise reduction
US9067676B1 (en) Convertible helicopter ring member
ATE510768T1 (en) FAST WIDE-RANGE HYBRID HELICOPTER WITH LONGITUDINAL ATTITUDE CONTROL
EP2476614A2 (en) Moment limiting control laws for dual rigid rotor helicopters
BR112013021765A2 (en) aircraft control system, aircraft, aircraft control program and method for aircraft control
EP2772817A3 (en) Formation flight control
EP3357812B1 (en) Variable in-flight wing fold system
EP2940547A1 (en) Coaxial rotor low-speed mixing
US20180065738A1 (en) Autorotation initiation system
US20150210382A1 (en) Relative acceleration blade position measurement
EP3168145A3 (en) Reduced power individual blade control system on a rotorcraft
CN103895861A (en) Method of driving a main rotor of a rotorcraft in rotation in compliance with a speed of rotation setpoint of variable value
US20200140077A1 (en) Bidirectional aircraft rotor
EP3326911A1 (en) Rotor speed control using a feed-forward rotor speed command
KR20140089096A (en) System for controlling angle of attack of unmanned air vehicle based on multi-rotor system
US10302064B2 (en) Methods and systems for rotary wing active flow control
US20200122832A1 (en) Multicopter with improved cruising performance
CN101998920A (en) Flow element, and high-lift system comprising such a flow element
EP2927120A1 (en) Compliant wing control for aircraft
EP2940546A2 (en) Acceleration smoothing holding overall kinetic energy control
EP3059167A2 (en) Lift offset management and control systems for coaxial rotorcraft
US11685515B2 (en) Active horizontal stabilizer for high speed rotorcraft

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SIKORSKY AIRCRAFT CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUSZCZ, MATTHEW T.;WEINER, STEVEN D.;ARIFIAN, KENNETH;AND OTHERS;SIGNING DATES FROM 20180811 TO 20180827;REEL/FRAME:046732/0806

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION