US20170216312A1 - Sterodial compositions - Google Patents

Sterodial compositions Download PDF

Info

Publication number
US20170216312A1
US20170216312A1 US15/493,033 US201715493033A US2017216312A1 US 20170216312 A1 US20170216312 A1 US 20170216312A1 US 201715493033 A US201715493033 A US 201715493033A US 2017216312 A1 US2017216312 A1 US 2017216312A1
Authority
US
United States
Prior art keywords
testosterone
pharmaceutical composition
less
peg
dosage form
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/493,033
Inventor
Chandrashekar Giliyar
Nachiappan Chidambaram
Mahesh V. Patel
Srinivasan Venkateshwaran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lipocine Inc
Original Assignee
Lipocine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42312101&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170216312(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lipocine Inc filed Critical Lipocine Inc
Priority to US15/493,033 priority Critical patent/US20170216312A1/en
Priority to US15/597,104 priority patent/US20170252357A1/en
Priority to US15/597,093 priority patent/US20170354663A1/en
Publication of US20170216312A1 publication Critical patent/US20170216312A1/en
Assigned to LIPOCINE INC. reassignment LIPOCINE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIDAMBARAM, NACHIAPPAN, GILIYAR, CHANDRASHEKAR, PATEL, MAHESH V., VENKATESHWARAN, SRINIVASAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • A61K31/569Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone substituted in position 17 alpha, e.g. ethisterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4875Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens

Definitions

  • Testosterone is an androgenic compound crucial for human health. Certain embodiments of the invention described herein generally relate to compositions for the administration of testosterone, testosterone analogs, other steroids and related compounds.
  • a delayed release oral dosage form comprising a therapeutically effective amount of one or more testosterone alkyl ester and at least one pharmaceutically acceptable carrier, wherein a single dose of the delayed release oral dosage form provides a mean plasma C max of testosterone that is at least 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form wherein a single dose of the delayed release oral dosage form provides a mean plasma C max of testosterone alkyl ester that is at least 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a single dose of the delayed release oral dosage form described herein provides a mean plasma C max of that is at least 5% lower than the mean plasma C max of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a mean plasma C max at steady state of testosterone alkyl ester that is at least 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a fluctuation index of testosterone at steady state that is at least 5%, or at least 10% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a fluctuation index of testosterone alkyl ester at steady state that is at least 5%, or at least 10% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a single dose of the delayed release oral dosage form provides a mean plasma concentration of testosterone provided 1 hour after oral administration of the delayed release oral dosage form that is at least 20% lower than a mean plasma concentration of testosterone provided 1 hour after oral administration of a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a pharmaceutical composition comprising a therapeutically effective amount of one or more testosterone alkyl ester and at least one pharmaceutically acceptable carrier.
  • a single dose of a pharmaceutical composition described herein provides a mean plasma C max of testosterone that is about 15 ng/mL or less; or about 19 ng/mL or less upon oral administration.
  • a single dose of a pharmaceutical composition described herein provides a mean plasma C max of dihydrotestosterone that is about 4.5 ng/mL, or about 3.6 ng/mL or less upon oral administration.
  • a pharmaceutical composition described herein provides a testosterone mean plasma C max at steady state of about 1300 ng/dL or less.
  • a pharmaceutical composition described herein provides a testosterone mean plasma C min at steady state of about 200 ng/dL or more.
  • a pharmaceutical composition provides with administration to an individual a ratio of the testosterone equivalent dose from the alkyl ester, to a mean steady state testosterone C max , the ratio being about 500 ⁇ 10 6 mL or less.
  • the difference between the mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state provided by a pharmaceutical composition described herein is about 11 ng/mL or less, or about 16 ng/mL or less.
  • the difference between the mean plasma C max at steady state and mean plasma C min at steady state of testosterone alkyl ester provided by a pharmaceutical composition described herein is about 275 ng/ml, or less; or about 200 ng/mL or less.
  • a single dose of a pharmaceutical composition described herein provides a mean plasma concentration of testosterone after 1 hour that is about 150 ng/dL or less upon oral administration.
  • a single dose of a pharmaceutical composition described herein provides a mean plasma concentration of testosterone after 2 hours that is about 500 ng/dL or less upon oral administration.
  • a pharmaceutical composition described herein releases about 50% or less of the testosterone alkyl ester after 1 hour and/or about 80% or less of the testosterone alkyl ester after about 30 minutes in an aqueous medium. In some embodiments, a pharmaceutical composition described herein releases about 20% or less of the testosterone alkyl ester after 30 minutes in an aqueous medium. In certain embodiments, a pharmaceutical composition described herein releases less than 95% of the testosterone alkyl ester after 3 hours in an aqueous medium. In some embodiments, a pharmaceutical composition described herein releases more than 80% of the testosterone alkyl ester within 12 hours in an aqueous medium.
  • the aqueous medium is present in a USP Type-II (paddle) apparatus with conditions at 37 ⁇ 0.5° C. and at 100 rpm. In more specific instances, the aqueous medium is about 1 L of DI water having 8% w/v of Triton X-100.
  • a delayed release oral dosage form comprising a testosterone alkyl ester (e.g., testosterone alkyl ester formulated in solid PEG).
  • a pharmaceutical composition described herein is a delayed release oral dosage form.
  • the delayed release oral dosage form is formulated in any suitable manner.
  • a single dose of a delayed release oral dosage form described herein provides a mean plasma C max of testosterone that is at least about 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a single dose of a delayed release oral dosage form described herein provides a mean plasma C max of the testosterone alkyl ester that is at least about 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a single dose of a delayed release oral dosage form described herein provides a mean plasma C max of that is at least 5% lower than the mean plasma C max of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a mean plasma C max at steady state of testosterone alkyl ester that is at least about 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a fluctuation index of testosterone at steady state that is at least 10% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a delayed release oral dosage form described herein provides a fluctuation index of testosterone alkyl ester at steady state that is at least 10% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • a single dose of a delayed release oral dosage form described herein provides a mean plasma concentration of testosterone provided 1 hour after oral administration of the delayed release oral dosage form that is at least 20% lower than a mean plasma concentration of testosterone provided 1 hour after oral administration of a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • the one or more testosterone alkyl ester provided in any pharmaceutical composition or oral dosage form described herein is or comprises testosterone undecanoate.
  • any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 400 mg, or about 10 mg to about 1000 mg of testosterone alkyl ester.
  • any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 300 mg of testosterone alkyl ester.
  • any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 240 mg of testosterone alkyl ester.
  • any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 150 mg of testosterone alkyl ester.
  • any pharmaceutical composition or oral dosage form described herein comprises about 120 mg of testosterone alkyl ester.
  • the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one hydrophilic carrier. In some embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one lipophilic carrier. In certain embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one viscosity enhancer or solidifying agent. In some embodiments, the at least one hydrophilic carrier comprises a hydrophilic triglyceride. In specific embodiments, the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil.
  • a method of treating androgen deficiency in an individual in need thereof by administering to the individual any oral dosage form or pharmaceutical composition described herein.
  • a pharmaceutical composition or oral dosage form described herein is administered b.i.d.
  • a pharmaceutical composition or oral dosage form described herein is administered with a meal.
  • an oral testosterone undecanoate therapy that provides to a human in need of androgen therapy by orally delivering to the human a composition comprising a therapeutically effective amount of testosterone undecanoate.
  • the oral testosterone undecanoate therapy provides in a human (e.g., a male human) a mean C max of testosterone that is less than about 15 ng/mL; or less than about 19 ng/mL after a single administration of the composition.
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a mean plasma C max of dihydrotestosterone that is about 3.6 ng/mL or less; or about 4.5 ng/mL or less after a single administration of the composition.
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a testosterone mean plasma C max at steady state of about 1300 ng/dL or less.
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a testosterone mean plasma C min at steady state of about 200 ng/dL or more.
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a mean C max of testosterone at steady state to dose ratio of about 15 or less. In specific embodiments, the ratio is 15 or less, or 13 or less.
  • a pharmaceutical composition that provides with administration to an individual a ratio of a testosterone C 2 -C 13 alkyl ester dose, in mg, to a mean steady state testosterone C max , in mg/mL, the ratio of testosterone equivalent dose from the testosterone alkyl ester to a mean steady state testosterone C max , the ratio being about 500 ⁇ 10 6 mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual).
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a difference between a mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state of about 11 ng/mL or less, or about 16 ng/mL or less.
  • the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a difference between a mean plasma C max at steady state and mean plasma C min at steady state of testosterone alkyl ester of about 200 ng/mL or less; or about 275 ng/mL or less.
  • a mean plasma concentration when a mean plasma concentration is utilized, the value is obtained from a statistically significant population of individuals.
  • a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone C 2 -C 13 alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 80% or less of the testosterone C 2 -C 13 alkyl ester after 30 minutes in an aqueous medium.
  • the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C.
  • Triton X-100 e.g., octylphenol ethylene oxide condensate; octoxynol-9; t-octylphenoxypolyethoxyethanol; t-oct-C 6 H 4 —
  • the testosterone C 2 -C 13 alkyl ester is testosterone undecanoate.
  • the pharmaceutical composition comprises about 10 mg to about 1000 mg of testosterone C 2 -C 13 alkyl ester.
  • a single dose of any pharmaceutical composition provided herein provides a mean plasma C max of testosterone that is about 15 ng/mL or less; or about 19 ng/mL or less upon oral administration (e.g., to a testosterone deficient individual).
  • a single dose of any pharmaceutical composition provided herein provides a mean plasma C max of dihydrotestosterone that is about 4.5 ng/mL or less; or about 3.6 ng/mL or less upon oral administration (e.g., to a testosterone deficient individual).
  • any pharmaceutical composition provided herein provides a testosterone mean plasma C max at steady state of about 1300 ng/dL or less with oral administration (e.g., with b.i.d. or q.d.
  • any pharmaceutical composition provided herein provides a testosterone mean plasma C min at steady state of about 200 ng/dL or more with oral administration (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual).
  • any pharmaceutical composition provided herein provides with administration to an individual (e.g., oral administration) a ratio of testosterone equivalent dose from the testosterone alkyl ester to a mean a mean steady state testosterone C max , the ratio being about 500 ⁇ 10 6 mL, or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual).
  • the difference between the mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state is about 11 ng/mL or less, or about 16 ng/mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In some embodiments, the difference between the mean plasma C max at steady state and mean plasma C min at steady state of testosterone C 2 -C 13 alkyl ester is about 200 ng/mL or less; or about 275 ng/mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual).
  • a single dose of any pharmaceutical composition provided herein provides a mean plasma concentration of testosterone after 1 hour that is about 150 ng/dL or less upon oral administration. In certain embodiments, a single dose of any pharmaceutical composition provided herein provides a mean plasma concentration of testosterone after 2 hours that is about 500 ng/dL or less upon oral administration.
  • the at least one pharmaceutically acceptable carrier of any pharmaceutical composition provided herein comprises at least one hydrophilic carrier.
  • the hydrophilic carrier is a hydrophilic triglyceride.
  • the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil.
  • any pharmaceutical composition provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers.
  • any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w or less than 5% w/w of a hydrophilic carrier.
  • a delayed release oral dosage form comprising (i) a therapeutically effective amount of one or more testosterone C 2 -C 13 alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; wherein a single dose of the delayed release oral dosage form provides a mean plasma C max of testosterone that is at least 5% lower; or at least 10% lower than the mean plasma C max of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C 2 -C 13 alkyl ester.
  • the testosterone C 2 -C 13 alkyl ester is testosterone undecanoate.
  • the pharmaceutical composition comprises about 10 mg to about 1000 mg of testosterone C 2 -C 13 alkyl ester.
  • a single dose of any delayed release oral dosage form provided herein provides a mean plasma C max of the that is at least 5%, at least 10% or at least 15% lower than the mean plasma C max of testosterone C 2 -C 13 alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C 2 -C 13 alkyl ester.
  • a single administration to a human of a dose of the delayed release oral dosage form provides a ratio of testosterone equivalent dose from the C 2 -C 13 alkyl ester present in the dose of the delayed release oral dosage form to mean plasma testosterone C max provided by the single administration of the dose of the delayed oral release dosage form, the ratio being about 500 ⁇ 10 6 mL or less.
  • a single dose of any delayed release oral dosage form provided herein provides a mean plasma C max of that is at least 5% lower than the mean plasma C max of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C 2 -C 13 alkyl ester.
  • a single administration to a human a dose of the delayed release oral dosage form provides a ratio of testosterone equivalent dose from the C 2 -C 13 alkyl ester to mean plasma dihydroxytestosterone C max provided by the single administration of the dose of the delayed oral release dosage form, the ratio being about 350 ⁇ 10 6 mL or less.
  • any delayed release oral dosage form provided herein provides a mean plasma C max at steady state of testosterone C 2 -C 13 alkyl ester that is at least 5% lower, or at least 10% lower than the mean plasma C max of testosterone C 2 -C 13 alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone C 2 -C 13 alkyl ester (e.g., when orally administered to a testosterone deficient individual b.i.d. or q.d.).
  • any delayed release oral dosage form provided herein comprises at least one pharmaceutically acceptable carrier that comprises at least one hydrophilic carrier.
  • the hydrophilic carrier is a hydrophilic triglyceride.
  • the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil.
  • any delayed release oral dosage form provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers.
  • a lipophilic carrier selected from the group consisting of a monoglyceride, a diglyceride, a Vitamin E compound, a trigliceride, a fatty acid, polyoxylated fatty acid, polyoxylated triglyceride, polyoxylated vegetable oil, and a combination thereof.
  • any delayed release oral dosage form provided herein comprises a lipophilic carrier and less than 10% w/w or less than 5% w/w of a hydrophilic carrier.
  • a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 60% to about 90%, about 60% to about 85%, or about 60% to about 80% of the testosterone alkyl ester after 1 hour in an aqueous medium.
  • the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C.
  • a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 50% or less, about 45% or less, or about 40% or less of the testosterone alkyl ester after 6 hour in an aqueous medium.
  • the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C.
  • a method of treating androgen deficiency in an individual in need thereof by administering to the individual any pharmaceutical composition or dosage form described herein is provided herein.
  • the pharmaceutical composition releases about 80% or less; or 90% or less of the testosterone C 2 -C 13 alkyl ester after 30 minutes in an aqueous medium.
  • the pharmaceutical composition releases about 50% or less of the testosterone C 2 -C 13 alkyl ester after 1 hour in an aqueous medium.
  • the pharmaceutical composition is administered with a meal.
  • the pharmaceutical composition is administered b.i.d. or q.d.
  • a method provided herein has a release or pharmacokinetic profile as described herein.
  • an oral testosterone undecanoate therapy described herein provides to a human a ratio of a testosterone equivalent dose from the testosterone C 2 -C 13 alkyl ester to mean steady state testosterone C max , the ratio being about 500 ⁇ 10 6 mL or less.
  • an oral testosterone undecanoate therapy that provides to a human in need of androgen therapy by orally delivering to the human a composition comprising a therapeutically effective amount of testosterone undecanoate.
  • the therapy provides to the human a mean C max of testosterone that is less than about 15 ng/mL, or less than about 19 ng/mL after a single administration of the composition.
  • the oral testosterone undecanoate therapy provides to the human a mean plasma C max of dihydrotestosterone that is about 3.6 ng/mL, or less; or about 4.5 ng/mL, or less after a single administration of the composition.
  • the oral testosterone undecanoate therapy provides to the human a testosterone mean plasma C max at steady state of about 1300 ng/dL or less after a single administration of the composition. In certain embodiments, the oral testosterone undecanoate therapy provides to the human a testosterone mean plasma C min at steady state of about 200 ng/dL or more after a single administration of the composition. In some embodiments, the oral testosterone undecanoate therapy provides to the human a ratio of a testosterone equivalent dose to a mean stead state testosterone C max of about 500 ⁇ 10 6 mL or less after a single administration of the composition.
  • the oral testosterone undecanoate therapy provides to the human a difference between a mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state of about 11 ng/mL or less; or about 16 ng/mL or less. In some embodiments, the oral testosterone undecanoate therapy provides to the human a difference between a mean plasma C max at steady state and mean plasma C min at steady state of testosterone alkyl ester of about 200 ng/mL or less.
  • a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) a single (e.g., one and only one) lipid component solubilizing the testosterone alkyl ester.
  • a pharmaceutical composition comprising a therapeutically effective amount of testosterone undecanoate; the pharmaceutical composition providing an increase in testosterone alkyl ester in plasma compared to an otherwise identical pharmaceutical composition comprising a testosterone alkyl ester other than testosterone undecanoate.
  • a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition providing, when administered as a single dose to an individual, a dose of testosterone equivalent from the testosterone alkyl ester, to mean steady state AUC 0- ⁇ ratio of about 500 ⁇ 10 3 mL/h or less.
  • FIG. 1 illustrates the release profiles of Capsules 1-4 subjected to USP Apparatus 2 at 37° C. and 100 rpm.
  • FIG. 2 illustrates the mean plasma testosterone concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • FIG. 3 illustrates the mean plasma testosterone undecanote concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • FIG. 4 illustrates the mean plasma dihydrotestosterone concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • a pharmaceutical composition described herein comprises a steroidal compound and at least one pharmaceutically acceptable carrier.
  • a pharmaceutical composition described herein is an oral dosage form comprising a steroidal compound and at least one pharmaceutically acceptable carrier.
  • the steroidal compound is a steroidal androgen (e.g., testosterone, dihydrotestosterone, analogs, or prodrugs thereof).
  • analogs or prodrugs of testosterone include, e.g., esters of testosterone.
  • the esters of testosterone include, e.g., alkyl (e.g., straight chain, branched, cyclic, unsaturated, partially saturated, fully saturated and the like) esters of testosterone.
  • alkyl esters of testosterone include, by way of non-limiting example, lower alkyl esters (e.g., testosterone C 2 -C 13 alkyl esters such as testosterone propionate, testosterone enthanate, or testosterone undecanoate), or higher alkyl esters (e.g., testosterone C 14+ alkyl esters such as testosterone palmitate).
  • the alkyl esters of testosterone include, by way of non-limiting example, cycloalkylalkyl esters (e.g., testosterone cypionate), cycloalkyl esters, and alkylcycloalkyl esters.
  • the testosterone alkyl ester is testosterone undecanoate.
  • alkyl groups of the alkyl esters and/or other positions of the steroidal compound (e.g., testosterone alkyl ester, such as testosterone undecanoate) described herein are optionally substituted, e.g., with one or more halogen, hydroxy group, amino group, or the like, or combinations thereof.
  • the pharmaceutical compositions are formulated for androgen (e.g., testosterone) therapy.
  • the androgen therapy is an androgen (e.g., testosterone) replacement therapy.
  • the androgen replacement therapy is utilized to treat individuals suffering from androgen deficiency (e.g., postmenopausal women, menopausal women, sexually dysfunctional women, andropausal men, hypogonadal men, and the like) or treat individuals in need of increased androgen levels.
  • the androgen (e.g., testosterone) replacement therapy is utilized for the treatment of individuals diagnosed with or exhibiting symptoms of androgen (e.g., testosterone) deficiency including, e.g., in aging men.
  • compositions that provide a plasma C max of testosterone that is less than 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • a pharmaceutical composition described herein provides a plasma C max of testosterone that is less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the oral dosage forms provide a plasma C max of testosterone that is less than 2500 ng/dL in all individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the individuals are adult humans.
  • the adult humans are adult hypogonadal or otherwise androdeficient male humans.
  • normal human male testes produce four to eight milligrams of testosterone daily and human females produce less.
  • physiological “normal” range of total testosterone in men is about 250 to about 1,100 nanograms per deciliter (ng/dL) and in healthy women is about 11 ng/dL to about 78 ng/dL. Journal of Clinical Endocrinology & Metabolism, 85(7):2395-401.
  • compositions that provide a C min that is about 10 ng/dL or greater and a C max that is about 100 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state).
  • adult female humans e.g., postmenopausal or otherwise androdeficient female humans
  • compositions that provide a C min that is about 12 ng/dL or greater and a C max that is about 82 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state).
  • adult female humans e.g., postmenopausal or otherwise androdeficient female humans
  • the pharmaceutical composition provided herein is a delayed release oral dosage form comprising a steroidal compound and at least one pharmaceutically acceptable carrier.
  • the delayed release oral dosage forms release the active in an aqueous medium (e.g., water, gastric fluid, or an aqueous solution with a pH of about 5.8) at a rate slower than an immediate or fast release oral dosage form (e.g., as measured by the amount of active found in the aqueous medium).
  • delayed release oral dosage forms comprise a steroidal compound, at least one hydrophilic carrier.
  • delayed release oral dosage forms comprise a steroidal compound, at least one hydrophilic carrier, and at least one lipidic and/or lipophilic carrier.
  • the delayed release oral dosage form comprises at least one steroidal compound, at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent. In still further embodiments, the delayed release oral dosage form comprises at least one steroidal compound and at least one viscosity enhancer or solidifying agent. In some embodiments, a pharmaceutical composition provided herein is formulated, e.g., with the viscosity enhancing agent or solidifying agent, to provide a solid, a semi-solid, a gel, a jelly, a paste, or the like.
  • the delayed release oral dosage form is a capsule (e.g., a hard- or soft-gel capsule, a tablet or other solid dosage form).
  • the delayed release dosage form provided herein comprises the active (e.g., one or more testosterone alkyl ester such as testosterone undecanoate) in different release fractions (e.g., an immediate release portion and a delayed release portion).
  • pharmaceutical compositions or dosage forms provided herein comprise one or more of an immediate release portions or fractions, fast release portions or fractions, or combinations thereof and an enteric-release portion or fraction, sustained-release portion or fraction, controlled-release portion or fraction, extended-release portion or fraction, pulsatile-release portion or fraction, timed-release portion or fraction, or combinations thereof.
  • a pharmaceutical composition comprising at least one steroidal compound (e.g., testosterone, dihydrotestosterone, estradiol, or analogs or prodrugs thereof) and at least one pharmaceutically acceptable carrier.
  • the steroidal compound is a steroidal androgen (e.g., testosterone, dihydrotestosterone, or prodrugs thereof).
  • the steroidal compound is an alkylated, hydroxy-alkylated and/or hydroxy-alkoxylated natural steroid (e.g., testosterone alkyl ester, dihydrotestosterone alkyl ester, estradiol alkyl ester, or the like).
  • analogs or prodrugs of testosterone include, e.g., esters of testosterone.
  • the esters of testosterone include, e.g., alkyl (e.g., straight chain, branched, cyclic, unsaturated, partially saturated, fully saturated and the like) esters of testosterone.
  • alkyl esters of testosterone include, by way of non-limiting example, lower alkyl esters (e.g., testosterone C 2 -C 13 alkyl esters such as testosterone propionate, testosterone enthanate, or testosterone undecanoate), or higher alkyl esters (e.g., testosterone C 14+ alkyl esters such as testosterone palmitate).
  • the alkyl esters of testosterone include, by way of non-limiting example, cycloalkylalkyl esters (e.g., testosterone cypionate), cycloalkyl esters, and alkylcycloalkyl esters.
  • the testosterone alkyl ester is testosterone undecanoate.
  • the at least one steroidal compound comprises (1) a testosterone lower alkyl ester (e.g., testosterone propionate, testosterone enthanate, or testosterone undecanoate); and (2) a testosterone higher alkyl ester (e.g., testosterone palmitate).
  • a pharmaceutical composition comprising a steroidal compound includes the disclosure of a pharmaceutical composition comprising one or more steroidal compounds.
  • any pharmaceutical composition described herein comprises a therapeutically effective amount of at least one steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a therapeutically effective amount of a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the one or more of the oral dosage forms described herein collectively comprise a therapeutically effective amount of a testosterone alkyl ester (e.g., testosterone undecanoate).
  • the therapeutically effective amount of a steroidal compound within a pharmaceutical composition described herein may vary when the pharmaceutical composition is administered in combination with another therapy.
  • therapeutically effective amounts of a formulation may depend on the specific formulation within which the at least one steroidal compound is found. For example, in some embodiments, more than one steroidal compound is present in a pharmaceutical composition described herein.
  • a pharmaceutical composition described herein further comprises an adjuvant, which, in certain instances, allows for a lower amount of a steroidal compound to be utilized as a therapeutically effective amount.
  • a pharmaceutical composition described herein comprises about 1 mg to about 1.5 g, about 10 mg to about 1000 mg, or about 10 mg to about 200 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a pharmaceutical composition described herein comprises about 10 mg to about 50 mg, about 15 mg to about 40 mg, about 20 mg, to about 30 mg, or about 25 mg of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a pharmaceutical composition described herein comprises about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, or about 120 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a pharmaceutical composition described herein comprises about 0.1 mg to about 5 mg of a steroidal compound (e.g., a testosterone alkyl ester such as testosterone undecanoate) per kg of an individual to whom the oral dosage form is to be administered.
  • a pharmaceutical composition described herein comprises an amount of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) sufficient to provide about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) to an individual upon once a day, twice a day, three times a day, or four times a day oral administration.
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the at least one pharmaceutically acceptable carrier is any carrier suitable for delivering an efficacious amount of a steroidal compound, e.g., a testosterone alkyl ester, to an individual.
  • the at least one pharmaceutically acceptable carrier is or comprises a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive).
  • the at least one pharmaceutically acceptable carrier is a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive).
  • the at least one pharmaceutically acceptable carrier is a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive) and a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive).
  • the hydrophilic carrier is a hydrophilic triglyceride.
  • the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil.
  • any pharmaceutical composition provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers.
  • any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w, less than 5% w/w or is substantially free of a hydrophilic carrier. In certain embodiments, any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w, less than 5% w/w or is substantially free of a hydrophilic carrier. In some embodiments, the pharmaceutical composition comprising a carrier (e.g., a hydrophilic carrier and/or a lipophilic carrier), the pharmaceutical composition is a solid, a semi-solid, a gel, a jelly, a paste, or the like.
  • a carrier e.g., a hydrophilic carrier and/or a lipophilic carrier
  • a viscosity enhancing agent or a solidifying agent is utilized to afford a pharmaceutical composition that is a solid, a semi-solid, a gel, a jelly, a paste, or the like.
  • the at least one pharmaceutically acceptable carrier is a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive) and a viscosity enhancing or solidifying agent.
  • the at least one pharmaceutically acceptable carrier is a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive) and a viscosity enhancing or solidifying agent.
  • the at least one pharmaceutically acceptable carrier is or comprises a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive), a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive), and a viscosity enhancing or solidifying agent.
  • the at least one pharmaceutically acceptable carrier is or comprises an amphiphilic or zwitterionic carrier (e.g., an amphiphilic surfactant or amphiphilic additive).
  • the pharmaceutically acceptable carrier is any carrier suitable for achieving one or more of the pharmacokinetic and/or pharmacodynamic profiles set forth herein.
  • Additives useful herein include chemical substances that are generally pharmacologically inactive. Further, the additive may be solid, liquid or semi-solid in nature at about ambient room temperature. Furthermore, the additive may be hydrophilic or lipophilic. In certain instances, a “hydrophilic additive” is a substance that has at least one polar side group in its chemical structure which will attract water; whereas a “lipophilic additive” exhibits a tendency to repel water.
  • the hydrophilic or lipophilic additive is contained within the components forming a composition and/or pharmaceutical dosage form thereof.
  • the hydrophilic or lipophilic additive is in an encapsulation coat in compositions.
  • the additives can be comprised in the pharmaceutical composition but not as part of the composition itself. Specific, non-limiting examples of additives are described below.
  • Suitable additives include any additive that can facilitate the processes involving the preparation of a pharmaceutical composition and/or dosage form described herein.
  • such additives include those commonly utilized to facilitate the processes involving the preparation of a composition and/or a pharmaceutical dosage form described herein. These processes include agglomeration, air suspension chilling, air suspension drying, balling, coacervation, comminution, compression, pelletization, cryopelletization, encapsulation, extrusion, granulation, homogenization, inclusion complexation, lyophilization, nanoencapsulation, melting, mixing, molding, pan coating, solvent dehydration, sonication, spheronization, spray chilling, spray congealing, spray drying, or other processes known in the art.
  • the additive is optionally pre-coated or encapsulated. Suitable additives are optionally utilized to influence the drug release from the composition and/or pharmaceutical dosage form.
  • Suitable additives utilized in various embodiments described herein include, by way of non-limiting example, adsorbing agents, anti-adherents, anticoagulants, antifoaming agents, antioxidants, anti-caking agents, anti-static agents, binders, bile acids, bufferants, bulking agents, chelating agents, coagulants, colorants, co-solvent, opaquants, congealing agents, coolants, cryoprotectants, diluents, dehumidifying agents, desiccants, desensitizers, disintegrants, dispersing agents, enzyme inhibitors, glidants, fillers, hydrating agent, super disintegrants, gums, mucilages, hydrogen bonding agents, enzymes, flavorants, humectants, humidifying agents, lubricant oils, ion-exchange resins, lubricants, plasticizers, pH modifying agents, preservatives, solidifying agent, solvents, solubilizers, spreading agent sweet
  • hydrophilic or lipophilic additives suitable for the current invention are as follows:
  • Alcohols and/or Polyols e.g. ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, glycerol, sorbitol, mannitol, dimethyl isosorbide, polyethylene glycol, fatty acid alcohol, vinyl alcohol polypropylene glycol, polyvinylalcohol, tocopherols, cellulose cyclodextrins, other derivatives, forms, mixtures thereof, or the like); ethers of polyethylene glycols having an average molecular weight of about 200 to about 20,000 (e.g. tetrahydrofurfuryl alcohol PEG ether, methoxy PEG, or the like); Amides (e.g.
  • esters e.g.
  • P-aminobenzamidine, sodium glycocholate) mesylate Amino acids and modified amino acids (e.g. aminoboronic acid derivatives and n-acetylcysteine; Peptides and modified peptides (e.g. bacitracin, phosphinic acid dipeptide derivatives, pepstatin, antipain, leupeptin, chymostatin, elastin, bestatin, phoshporamindon, puromycin, cytochalasin potatocarboxy peptidase inhibitor, amastatin, or the like); Polypeptide protease inhibitors; Mucoadhesive polymers (e.g. polyacrylate derivatives, chitosan, cellulosics, chitosan-EDTA, chitosan-EDTA-antipain, polyacrylic acid, carboxymethyl cellulose etc.); or the like; or combinations thereof.
  • Amino acids and modified amino acids e.g. aminobor
  • suitable additives for compositions and/or dosage forms described herein include, by way of non-limiting example, talc, magnesium stearate, silica (e.g. fumed silica, micronized silica, magnesium aluminum silicate etc.) and/or derivatives, polyethylene glycols, surfactants, waxes, oils, cetyl acohol, polyvinyl alcohol, stearic acid, stearic acid salts, stearic acid derivatives, starch, hydrogenated vegetable oils, hydrogenatied castor oils, sodium benzoate, sodium acetate, leucine, PEG, alkyl sulfate salts; acetylated monoglycerides; long-chain alcohols; silicone derivatives; butylated hydroxy toluene (BHT), butylated hydroxyl anisole (BHA), gallic acid, propyl gallate, ascorbic acid, ascorbyl palmitate, 4-hydroxymethyl-2,6-di-tert-butyl
  • maltose sucrose, glucose, sorbitol, glycerin and dextrins, aspartame, saccharine, saccharine salts, glycyrrhizin), viscosity modifiers, sugars, polyvinylpyrrolidone, cellulosics, polymers, gums and/or alginates.
  • Additives can also be materials such as proteins (e.g., collagen, gelatin, Zein, gluten, mussel protein, lipoprotein); carbohydrates (e.g., alginates, carrageenan, cellulose derivatives, pectin, starch, chitosan); gums (e.g., xanthan gum, gum arabic); spermaceti; natural or synthetic waxes; carnuaba wax; fatty acids (e.g., stearic acid, hydroxystearic acid); fatty alcohols; sugars; shellacs, such as those based on sugars (e.g., lactose, sucrose, dextrose) or starches; polysaccharide-based shellacs (e.g., maltodextrin and maltodextrin derivatives, dextrates, cyclodextrin and cyclodextrin derivatives); cellulosic-based polymers (e.g., ethyl cellulose,
  • hydrophilic or lipophilic additives should be taken as merely exemplary, and not limiting, of the types of additives that can be included in compositions of the present invention.
  • the amounts of such additives are optionally adjusted and/or determined by one skilled in the art, according to the particular properties desired.
  • the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier (e.g., hydrophilic surfactant).
  • the hydrophilic carrier is a polyoxylated glyceride (e.g., mono-, di-, or tri-glyceride), a polyoxylated vegetable oil, a polyoxylated hydrogenated vegetable oil, a polyoxylated fatty acid (mono-, or di-substituted), combinations thereof, or the like.
  • the at least one pharmaceutically acceptable carrier comprises or further comprises a lipophilic carrier.
  • Lipophilic carriers are selected from, by way of non-limiting example, a lipophilic surfactant, a vegetable oil (e.g., castor oil), a fatty acid, a fatty alcohol, a glyceride (e.g., mono-, di-, or tri-glyceride), a hydrogenated vegetable oil, a Vitamin E compound (e.g., d,l- ⁇ -tocopherol), a trigliceride, a fatty acid, polyoxylated fatty acid, polyoxylated triglyceride, polyoxylated vegetable oil, or combinations thereof.
  • polyoxylated compounds include polyethoxylated compounds.
  • the at least one hydrophilic carriers make up about 1% to about 99% w/w, about 2% to about 80% w/w, about 2% to about 50% w/w, or about 10% to about 40% w/w of any pharmaceutical composition described herein.
  • lipophilic carriers make up about 1% w/w to about 99% w/w, about 2% to about 80% w/w, about 10% w/w to about 80% w/w, about 30% w/w, to about 80% w/w, or about 40% to about 80% w/w of any pharmaceutical composition described herein.
  • a pharmaceutical composition comprising a hydrophilic carrier.
  • the hydrophilic carrier is or comprises a polyoxylated vegetable oil (e.g., a polyoxylated, hydrogenated vegetable oil).
  • a polyoxylated vegetable oil is a polyoxylated castor oil (e.g., a polyoxylated, hydrogenated castor oil).
  • the lipidic and/or lipophilic carrier is not a C 6 -C 18 fatty acid. In some embodiments, the lipophilic carrier is a C 20+ fatty acid.
  • the lipidic and/or lipophilic carrier is not a fatty acid or an un-modified (e.g., non-polyoxylated) vegetable oil. In more specific embodiments, the lipidic and/or lipophilic carrier is not oleic acid or castor oil.
  • a pharmaceutical composition e.g., a delayed release dosage form
  • the ampiphilic carrier is or comprises a zwitterionic choline (e.g., phosphatidylcholine).
  • a pharmaceutical composition e.g., a delayed release dosage form
  • the lipophilic carrier is or comprises, by way of non-limiting example, a mono-, di- or triglyceride (e.g., glycerol monolinoleate).
  • the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, and at least one lipidic and/or lipophilic carrier.
  • the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent.
  • the solidifying agent is a polyethylene glycol (e.g., a high molecular weight polyethylene glycol, such as PEG 8000).
  • a pharmaceutical composition described herein comprises, along with a steroidal agent (e.g., a testosterone alkyl ester), a hydrogenated and polyoxylated castor oil and a polyethylene glycol.
  • the pharmaceutical composition comprising a hydrogenated and polyoxylated castor oil and a polyethylene glycol further comprises an additional lipidic and/or lipophilic carrier.
  • the additional lipidic and/or lipophilic carrier is a monoglyceride, a diglyceride, a Vitamin E compound, or a combination thereof.
  • compositions described herein include oral dosage forms or delayed release oral dosage forms of any of Tables A to Q.
  • Tables A to Q approximate weight percentages of the compositions formulated into the capsules are provided.
  • the steroidal compound of any of Capsules A1 to Q2 comprises an alkyl ester testosterone (e.g., testosterone undecanoate).
  • provided in the tables are non-limiting grades and/or sources of components utilized. Disclosure provided in Tables A to Q is not limited to the grades and/or sources described.
  • Capsule A1 Capsule A2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 1-50 10-30 Hydrophilic Carrier 1-90 10-30 Lipophilic Carrier 1-90 40-70 Solidifying Agent (additive) 1-20 5-10
  • Capsule B1 Capsule B2 Component % w/w % w/w Testosterone undecanoate ( ⁇ 10-1000 mg) 1-50 15 Polyoxyl 40 Hydrogenated Castor Oil, NF 1-50 16 Glycerol Monolinoleate, NF (Maisine 35-1) 30-90 63 Polyethylene Glycol 8000, USP 1-20 6
  • Capsule D1 Capsule D2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 15 10-30 Lauryl macrogol glyceride (Gelucire 44/14) 51 20-90 Stearoyl macrogol glyceride 34 10-90 (Gelucire 50/13)
  • Capsule E1 Capsule E2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 20 10-30 C8-C18 macrogol glyceride 35 10-70 (Gelucire 43/01) Polyglyceryl-3-oleate (Caprol 3GO) 45 5-60
  • Capsule F1 Capsule F2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 15 10-25 Lauryl macrogol glyceride (Gelucire 44/14) 40 5-80 Vitamin E 30 2-60 Hypromellose (Methocel K100 M LV, CR) 15 5-25
  • Capsule G1 Capsule G2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 15 10-30 PEG-40 hydrogenated Castor Oil 60 5-80 (Cremophor ® RH40) Polyethylene glycol 8000 15 5-40 Hypromellose (Methocel K100 M LV, CR) 10 5-25
  • Capsule I1 Capsule I2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 25 10-30 PEG-40 hydrogenated Castor Oil 15 5-80 (Cremophor ® RH40) Vitamin E 20 2-60 Corn Glycerides (Maisine 35-1) 30 5-50 Polyethylene Glycol 8000 10 5-20
  • Capsule K1 Capsule K2 Component % w/w % w/w Steroidal Compound ( ⁇ 10-1000 mg) 50 30-60 Corn Glycerides (Maisine 35-1) 50 30-60
  • Capsule N1 Capsule N2 Component % w/w % w/w Testosterone undecanoate 5-30 10-20 Polyoxyl 40 Hydrogenated Castor Oil, NF 5-30 10-20 Glyceryl Monolinoleate, NF (Maisine 35-1) 50-90 55-70 Polyethylene Glycol 8000, USP 1-15 3-8
  • Capsule Q1 Capsule Q2 Component % w/w % w/w Testosterone undecanoate 10-40 20-25 Vitamin E Polyethylene Glycol 10-40 20-25 Succinate, NF Vitamin E, USP (d,l-tocopherol) 15-60 30-40 Polyethylene Glycol 8000, USP 1-10 2-6 Hypromellose (4,000 cP, K4M) 5-40 15-25
  • any pharmaceutical composition described herein e.g., a pharmaceutical composition of any of Tables A to Q can be prepared by (i) combining and heating all ingredients until a molten mixture is obtained (e.g., 50-70° C.); and (ii) encapsulating an amount of molten mixture comprising a select dose (e.g., a therapeutically effective amount or a partial dose of a therapeutically effective amount) of steroidal compound to obtain an oral dosage form.
  • the molten mixture is spray-congealed to obtain beads.
  • the molten mixture is sprayed onto inert cores (e.g., sugar spheres) to obtain coated cores.
  • such beads, cores, or similar forms are encapsulated or otherwise formulated to provide an oral dosage form.
  • the molten mixture is admixed, uniformly dispersed, or granulated over a carrier and compressed into a tablet dosage form.
  • the molten mixture/carrier composition is further mixed with one or more pharmaceutical aid including, by way of non-limiting example, glidants, lubricants, binders, or the like.
  • the carrier is a therapeutically inert carrier such as, by way of non-limiting example, microcrystalline cellulose, starch, lactose, or the like.
  • compositions described herein are optionally filled into a delayed release capsule or shell, or are otherwise coated or encapsulated with a delayed release coat.
  • androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions and oral dosage forms that provide a plasma C max of testosterone that is less than 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals.
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions or oral dosage forms provide a plasma C max of testosterone that is less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions or oral dosage forms provide a plasma C max of testosterone that is less than 2500 ng/dL in all or substantially all individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions and oral dosage forms provides a plasma C max of testosterone that is less than 1500 ng/dL in at least 85% and less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions and oral dosage forms provides a plasma C max of testosterone that is less than 1500 ng/dL in at least 85%, less than 1800 ng/dL in at least 95%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions and oral dosage forms provides a plasma C max of testosterone that is less than 1500 ng/dL in at least 85%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • the androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions and oral dosage forms provides a plasma C max of testosterone that is less than 1800 ng/dL in at least 95%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males).
  • individuals are adult humans.
  • the adult humans are adult male humans.
  • the individuals are adult hypogonadal adult male humans.
  • Plasma concentrations described herein are optionally obtained by administering a composition described herein to human males, e.g., hypogonadal human males. In other instances, plasma concentration are optionally obtained by administering the composition to testosterone deficient human subjects (e.g., postmenopausal women) who provide a population representative of the effects of testosterone therapy on individuals with low levels of testosterone. Clin. Endocrinology 2007, 66(4):570-85.
  • compositions that provide a C min that is about 10 ng/dL or greater and a C max that is about 100 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state).
  • adult female humans e.g., postmenopausal or otherwise androdeficient female humans
  • compositions that provide a C min that is about 12 ng/dL or greater and a C max that is about 82 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state).
  • the adult female humans are sexually dysfunctional adult female humans.
  • the adult female humans are postmenopausal female humans.
  • compositions and oral dosage forms described herein are formulated, in various embodiments, to achieve the pharmacokinetic and pharmacodynamic profiles herein in any suitable manner.
  • the desired pharmacokinetic and/or pharmacodynamic profile described herein are obtained via the modification of dosage form, the at least one pharmaceutically acceptable carrier, the amount of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) present, combinations thereof, or the like.
  • the population of individuals is one, one or more, two or more, or a statistically significant number of individuals.
  • androgen therapies e.g., testosterone undecanoate therapies
  • pharmaceutical compositions or oral dosage forms described herein that provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1300 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals.
  • compositions or oral dosage forms described herein provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1100 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals.
  • compositions or oral dosage forms described herein provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 300 ng/dL and 1000 ng/dL in at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals.
  • a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of testosterone that is about 19 ng/mL or less, about 18 ng/mL or less, about 17 ng/mL or less, about 16 ng/mL or less, about 15 ng/mL or less, about 14 ng/mL or less, about 5 ng/mL to about 19 ng/mL, about 5 ng/mL to about 18 ng/mL, about 5 ng/mL to about 17 ng/mL, about 5 ng/mL to about 16 ng/mL, about 5 ng/mL to about 15 ng/mL, about 5 ng/mL to about 14 ng/mL, about 7 ng/mL to about 19 ng/mL, about 7 ng/mL to about 18 ng/m
  • an oral dosage form described herein is formulated such that a single administration of the oral dosage form provides a mean plasma C max of testosterone that is about 15 ng/mL or less, about 19 ng/mL or less, about 5 ng/mL to about 19 ng/mL, or about 5 ng/mL to about 15 ng/mL.
  • a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of dihydrotestosterone that is about 4.5 ng/mL or less, about 4.3 ng/mL or less, about 4.2 ng/mL or less, about 4.1 ng/mL or less, about 4 ng/mL or less, about 3.9 ng/mL or less, about 3.8 ng/mL or less, about 3.7 ng/mL or less, about 3.6 ng/mL or less, about 3.5 ng/mL or less, about 1.5 ng/mL to about 4.5 ng/mL, about 1.5 ng/mL to about 3.9 ng/mL, about 1.5 ng/mL to about 3.8 ng/mL, about 1.5 ng/mL to about 3.7 ng/mL, about 1.5 ng/mL to about 3.6 ng/mL, about 1.5 ng/mL to about 3.5 ng/m
  • a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of dihydrotestosterone that is about 3.6 ng/mL or less upon oral administration.
  • a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 400 ng/mL or less, about 380 ng/mL or less, about 360 ng/mL or less, about 340 ng/mL or less, about 320 ng/mL or less, about 300 ng/mL or less, or about 280 ng/mL or less, about 100 ng/mL to about 400 ng/mL, about 100 ng/mL to about 380 ng/mL, about 100 ng/mL to about 360 ng/mL, about 100 ng/mL to about 340 ng/mL, about 100 ng/mL to about 320 ng/mL, about 100 ng/mL to about 300 ng/mL, about 100 ng/mL to about 280 ng/mL, about 150 ng/mL
  • a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of testosterone undecanoate that is about 380 ng/mL or less upon oral administration.
  • a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of testosterone that is about 5 ng/mL to about 15 ng/mL, a mean plasma C max of dihydrotestosterone that is about 1.5 ng/mL to about 3.8 ng/mL, and a mean plasma C max of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 100 ng/mL to about 380 ng/mL.
  • testosterone alkyl ester e.g., testosterone undecanoate
  • a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma C max of testosterone that is about 5 ng/mL to about 19 ng/mL, a mean plasma C max of dihydrotestosterone that is about 1.5 ng/mL to about 4.5 ng/mL, and a mean plasma C max of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 100 ng/mL to about 380 ng/mL.
  • a mean plasma C max of testosterone that is about 5 ng/mL to about 19 ng/mL
  • a mean plasma C max of dihydrotestosterone that is about 1.5 ng/mL to about 4.5 ng/mL
  • a mean plasma C max of testosterone alkyl ester e.g., testosterone undecanoate
  • a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 200 ng/dL or less, about 150 ng/dL or less, about 100 ng/dL or less, or about 75 ng/dL or less, about 5 ng/dL to about 200 ng/dL, about 5 ng/dL to about 150 ng/dL, about 5 ng/dL to about 100 ng/dL, about 5 ng/dL to about 75 ng/dL, about 10 ng/dL to about 200 ng/dL, about 10 ng/dL to about 150 ng/dL, about 10 ng/dL to about 100 ng/dL, about 10 ng/dL to about 75 ng/dL, about 15 ng/dL to about 200 ng/dL, about 15 ng/dL to about 150 ng/dL, about 15 ng/dL to about 100 ng/dL, or about 15 ng//
  • a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 500 ng/dL or less, about 400 ng/dL or less, about 300 ng/dL or less, about 200 ng/dL or less, about 150 ng/dL or less, about 5 ng/dL to about 500 ng/dL, about 5 ng/dL to about 400 ng/dL, about 5 ng/dL to about 300 ng/dL, about 5 ng/dL to about 200 ng/dL, about 5 ng/dL to about 150 ng/dL, about 10 ng/dL to about 500 ng/dL, about 10 ng/dL to about 400 ng/dL, about 10 ng/dL to about 300 ng/dL, about 10 ng/dL to about 200 ng/dL, about 10 ng/dL to about 150 ng/dL, about 15 ng/dL to about 500 ng//dL, about 500 ng
  • a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 5 ng/dL to about 150 ng/dL 1 hour after a single oral administration, and about 10 ng/dL to about 500 ng/dL 2 hours after a single oral administration.
  • compositions described herein comprise or are formulated into one or more oral dosage form described herein. Therefore, in some embodiments, in order to arrive at the targeted plasma concentration (e.g., at a specific concentration at a given time, C max , C min , or the like), a plurality of oral dosage forms described herein are optionally administered.
  • a mean plasma concentration e.g., at a specific concentration at a given time, C max , C min , or the like
  • the individuals are adult humans.
  • the adult humans are adult male humans.
  • the individuals are adult hypogonadal or otherwise androdeficient adult male humans.
  • the individuals are postmenopausal or otherwise androdeficient adult female humans.
  • concentrations of testosterone alkyl ester described herein include the concentration of the one or more testosterone alkyl ester administered.
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 5% to about 90%, about 5% to about 80%, about 5% to about 70%, about 5% to about 60%, about 5% to about 55%, about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, or about 20% to about 35% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, about 2% to about 90%, about 2% to about 80%, about 2% to about 70%, about 2% to about 60%, about 2% to about 50%, about 2% to about 40%, about 2% to about 30%, about 2% to about 20%, about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 10% to about 60%, about 10% to about 50%, about 10% to about 40%, about 10% to about 30%, or about 10% to about 20% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 30 minutes in an aqueous medium (e e.g., in 1 L deionized water comprising 8% w/v Triton X-100).
  • an aqueous medium e.g., in 1 L deionized water comprising 8% w/
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 99% or less, about 98% or less, about 97% or less, about 96% or less, about 95% or less, about 90% or less, about 10% to about 99%, about 10% to about 98%, about 10% to about 97%, about 10% to about 96%, about 10% to about 95%, about 10% to about 90%, about 40% to about 99%, about 40% to about 98%, about 40% to about 97%, about 40% to about 96%, about 40% to about 95%, about 40% to about 90%, about 70% to about 99%, about 70% to about 98%, about 70% to about 97%, about 70% to about 96%, about 70% to about 95%, or about 70% to about 90% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 3 hour in an aqueous medium (e.g., in 11, deionized water comprising 8% w/v Triton X-100).
  • an aqueous medium e.g., in 11, deionized water
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release more than 80% of the testosterone alkyl ester (e.g., testosterone undecanoate) within 12, 10, 8, 6, 5, 4, 3, or 2 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100).
  • the testosterone alkyl ester e.g., testosterone undecanoate
  • an aqueous medium e.g., in 1 L deionized water comprising 8% w/v Triton X-100.
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 20% or less of the testosterone alkyl ester after 30 minutes, 50% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour and about 95% or less of the testosterone alkyl ester after 3 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100).
  • an aqueous medium e.g., in 1 L deionized water comprising 8% w/v Triton X-100.
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 5% to about 60% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour, about 2% to about 40% of the testosterone alkyl ester after 30 minutes, and about 10% to about 95% of the testosterone alkyl ester after 2 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100).
  • testosterone alkyl ester e.g., testosterone undecanoate
  • an aqueous medium e.g., in 1 L deionized water comprising 8% w/v Triton X-100.
  • a pharmaceutical composition or oral dosage form that releases or is formulated to release about 50% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour, and 80% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) within 2-12 hours (or after 12 hours, 10 hours, 8 hours, 6 hours, 5 hours, 4 hours, 3 hours, or 2 hours) in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100).
  • an aqueous medium e.g., in 1 L deionized water comprising 8% w/v Triton X-100.
  • Triton X-100 e.g., octylphenol ethylene oxide condensate; octoxynol-9; t-octyl
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma C max at steady state of about 1550 ng/dL or less, about 1500 ng/dL or less, about 1450 ng/dL or less, about 1400 ng/dL or less, about 1310 ng/dL or less, about 1300 ng/dL or less.
  • a testosterone e.g., in human males, adult human males, pubescent human males, or the like
  • mean plasma C max at steady state of about 1550 ng/dL or less, about 1500 ng/dL or less, about 1450 ng/dL or less, about 1400 ng/dL or less, about 1310 ng/dL or less, about 1300 ng/dL or less.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma C min at steady state of about 100 ng/dL or more, about 150 ng/dL or more, about 200 ng/dL or more, about 250 ng/dL or more, or about 300 ng/dL or more.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma C min at steady state of about 200 ng/dL or more.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma concentration that ranges at steady state from about 100 ng/dL to about 1500 ng/dL, about 150 ng/dL to about 1400 ng/dL, about 200 ng/dL to about 1300 ng/dL or about 250 ng/dL to about 1200 ng/dL.
  • a testosterone e.g., in human males, adult human males, pubescent human males, or the like
  • mean plasma concentration that ranges at steady state from about 100 ng/dL to about 1500 ng/dL, about 150 ng/dL to about 1400 ng/dL, about 200 ng/dL to about 1300 ng/dL or about 250 ng/dL to about 1200 ng/dL.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma concentration that ranges at steady state from about 200 ng/dL to about 1300 ng/dL.
  • a testosterone e.g., in human males, adult human males, pubescent human males, or the like
  • mean plasma concentration that ranges at steady state from about 200 ng/dL to about 1300 ng/dL.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma C max at steady state of about 110 ng/dL or less, 100 ng/dL or less, about 95 ng/dL or less, about 90 ng/dL or less, about 85 ng/dL or less, or about 82 ng/dL or less.
  • a testosterone e.g., in human females, adult human females, post menopausal human females, or the like
  • mean plasma C max at steady state of about 110 ng/dL or less, 100 ng/dL or less, about 95 ng/dL or less, about 90 ng/dL or less, about 85 ng/dL or less, or about 82 ng/dL or less.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma C min at steady state of about 3 ng/dL or more, about 5 ng/dL or more, about 8 ng/dL or more, about 10 ng/dL or more, or about 12 ng/dL or more.
  • a testosterone e.g., in human females, adult human females, post menopausal human females, or the like
  • mean plasma C min at steady state of about 3 ng/dL or more, about 5 ng/dL or more, about 8 ng/dL or more, about 10 ng/dL or more, or about 12 ng/dL or more.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma C min at steady state of about 8 ng/dL or more.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human females, pubescent human fumales, postmenopausal human females, or the like) mean plasma concentration that ranges at steady state from about 5 ng/dL to about 110 ng/dL, about 8 ng/dL to about 100 ng/dL, about 10 ng/dL to about 90 ng/dL or about 12 ng/dL to about 82 ng/dL.
  • a testosterone e.g., in human males, adult human females, pubescent human fumales, postmenopausal human females, or the like
  • mean plasma concentration that ranges at steady state from about 5 ng/dL to about 110 ng/dL, about 8 ng/dL to about 100 ng/dL, about 10 ng/dL to about 90 ng/dL or about 12 ng/dL to about 82 ng/dL.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma concentration that ranges at steady state from about 10 ng/dL to about 90 ng/dL.
  • a testosterone e.g., in human females, adult human females, post menopausal human females, or the like
  • mean plasma concentration that ranges at steady state from about 10 ng/dL to about 90 ng/dL.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide upon oral administration to an individual (e.g., an androgen deficient human male) a testosterone equivalent (e.g., mass of testosterone that can be derived from a testosterone alkyl ester (e.g., C 2 -C 13 )) dose to mean steady state testosterone C max ratio of about 500 ⁇ 10 6 mL or less.
  • a testosterone equivalent e.g., mass of testosterone that can be derived from a testosterone alkyl ester (e.g., C 2 -C 13 )
  • a testosterone equivalent dose to mean steady state testosterone C max ratio is about 500 ⁇ 10 6 mL, or less; about 4 ⁇ 10 5 mL, or more; about 6 ⁇ 10 5 mL, or more; about 8 ⁇ 10 5 mL, or more; about 1 ⁇ 10 6 mL, or more; about 3 ⁇ 10 6 mL, or more; about 4 ⁇ 10 6 mL, or more; about 5 ⁇ 10 6 mL, or more; about 6 ⁇ 10 6 mL, or more; 500 ⁇ 10 6 mL, or less; 400 ⁇ 10 6 mL, or less; 300 ⁇ 10 6 mL, or less; 250 ⁇ 10 6 mL, or less; 200 ⁇ 10 6 mL, or less; 150 ⁇ 10 6 mL, or less; 100 ⁇ 10 6 mL, or less; about 25 ⁇ 10 5 mL, or more; about 100 ⁇ 10 5 mL, or more; about 250 ⁇ 10 5 mL, or more; about 500 ⁇ 10 5 mL, or more; about 4 ⁇
  • a single dose of any oral dosage form or pharmaceutical composition described herein provides, upon oral administration to an individual (e.g., an androgen deficient human male), a ratio testosterone equivalent dose to mean plasma testosterone C max that is about 500 ⁇ 10 6 mL or less.
  • a single administration provides a testosterone equivalent dose to mean testosterone C max ratio that is about 500 ⁇ 10 6 mL, or less; about 4 ⁇ 10 5 mL, or more; 500 ⁇ 10 6 mL, or less; 400 ⁇ 10 6 mL, or less; 300 ⁇ 10 6 mL, or less; 250 ⁇ 10 6 mL, or less; 200 ⁇ 10 6 mL, or less; 150 ⁇ 10 6 mL, or less; 100 ⁇ 10 6 mL, or less; about 25 ⁇ 10 5 mL, or more; about 100 ⁇ 10 5 mL, or more; about 250 ⁇ 10 5 mL, or more; about 500 ⁇ 10 5 mL, or more; about 4 ⁇ 10 5 mL to about 500 ⁇ 10 6 mL; about 4 ⁇ 10 5 mL to about 400 ⁇ 10 6 mL; about 4 ⁇ 10 5 mL to about 300 ⁇ 10 6 mL; about 4 ⁇ 10 5 mL to about 250 ⁇ 10 6 mL; about 4 ⁇ 10 5 mL to about 200
  • a single administration provides a testosterone equivalent dose to mean dihydroxytestosterone C max ratio that is about 350 ⁇ 10 6 mL, or less; about 20 ⁇ 10 5 mL, or more; 500 ⁇ 10 6 mL, or less; 400 ⁇ 10 6 mL, or less; 300 ⁇ 10 6 mL, or less; 250 ⁇ 10 6 mL, or less; 200 ⁇ 10 6 mL, or less; 150 ⁇ 10 6 mL, or less; 100 ⁇ 10 6 mL, or less; about 25 ⁇ 10 5 mL, or more; about 100 ⁇ 10 5 mL, or more; about 250 ⁇ 10 5 mL, or more; about 500 ⁇ 10 5 mL, or more; about 20 ⁇ 10 5 mL to about 500 ⁇ 10 6 mL; about 20 ⁇ 10 5 mL to about 400 ⁇ 10 6 mL; about 20 ⁇ 10 5 mL to about 300 ⁇ 10 6 mL; about 20 ⁇ 10 5 mL to about 250 ⁇ 10 6 mL; about 20 ⁇ 10 5 mL; about
  • a steroid equivalent dose (e.g., testosterone equivalent dose) of a composition or dosage form described herein is the amount of steroid compound (e.g., testosterone) present (e.g., the steroidal portion of a steroidal compound, such as a testosterone alkyl ester) in the composition or dosage form and can be determined by calculating, e.g., (mass testosterone/mass testosterone alkyl ester)*amount of testosterone alkyl ester in the composition or dosage form.
  • a pharmaceutical composition or oral dosage form that provides or is formulated to provide a difference between the mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state that is about 20 ng/mL or less, about 19 ng/mL or less, about 18 ng/mL or less, about 17 ng/mL or less, about 16 ng/mL or less, about 15 ng/mL or less, about 14 ng/mL or less, about 13 ng/mL or less, about 12 ng/mL or less, about 11 ng/mL or less, about 10.8 ng/mL or less, about 2 to about 20 ng/mL, about 2 to about 18 ng/mL, about 2 to about 16 ng/mL, about 2 to about 15 ng/mL, about 2 to about 14 ng/mL, about 2 to about 13 ng/mL, about 2 to about 12 ng/mL, about 11 ng/mL, about 5 to about 15
  • the pharmaceutical composition or oral dosage form provides or is formulated to provide a difference between the mean plasma C max of testosterone at steady state and mean plasma C min of testosterone at steady state that is about 11 ng/mL or less.
  • a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma C max and the mean C min of testosterone alkyl ester (e.g., testosterone undecanoate) is about 275 ng/mL or less, about 260 ng/mL or less, about 250 ng/mL or less, about 240 ng/mL or less, about 230 ng/mL or less, about 225 ng/mL or less, about 220 ng/mL or less, about 210 ng/mL or less, about 200 ng/mL or less, about 190 ng/mL or less, or about 180 ng/mL or less.
  • a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma C max and mean plasma C min of testosterone alkyl ester (e.g., testosterone undecanoate) is about 200 ng/mL or less.
  • a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma C max and mean plasma C min of testosterone alkyl ester (e.g., testosterone undecanoate) is about 275 ng/mL or less.
  • a pharmaceutical composition or oral dosage form that is formulated such that it provides, following a single oral administration, a mean plasma AUC 0- ⁇ concentration of testosterone of about 120 ng ⁇ h/mL or less, about 110 ng ⁇ h/mL or less, about 100 ng ⁇ h/mL or less, about 90 ng ⁇ h/mL or less, about 80 ng ⁇ h/mL or less, about 70 ng ⁇ h/mL or less, about 60 ng ⁇ h/mL or less, about 20 ng ⁇ h/mL to about 110 ng ⁇ h/mL, about 20 ng ⁇ h/mL to about 100 ng ⁇ h/mL, about 20 ng ⁇ h/mL to about 90 ng ⁇ h/mL, about 20 ng ⁇ h/mL to about 80 ng ⁇ h/mL, about 20 ng ⁇ h/mL to about 70 ng ⁇ h/mL, about 20 ng ⁇ h/mL to about 60 ng ⁇ h/mL, about 30 ng ⁇
  • a pharmaceutical composition or oral dosage form that is formulated such that, following a single oral administration, it provides a mean plasma AUC 0- ⁇ concentration of dihydrotestosterone of about 50 ng ⁇ h/mL or less, about 45 ng ⁇ h/mL or less, about 40 ng ⁇ h/mL or less, about 35 ng ⁇ h/mL or less, about 30 ng ⁇ h/mL or less, about 25 ng ⁇ h/mL or less, about 20 ng ⁇ h/mL or less, about 10 ng ⁇ h/mL to about 50 ng ⁇ h/mL, about 10 ng ⁇ h/mL to about 45 ng ⁇ h/mL, about 10 ng ⁇ h/mL to about 40 ng ⁇ h/mL, about 10 ng ⁇ h/mL to about 35 ng ⁇ h/mL, about 10 ng ⁇ h/mL to about 30 ng ⁇ h/mL, about 10 ng ⁇ h/mL to about 25 ng ⁇ h/mL
  • a pharmaceutical composition or oral dosage form that is formulated such that, following a single oral administration, it provides a mean plasma AUC 0- ⁇ concentration of testosterone alkyl ester (e.g., the one or more testosterone alkyl ester compounds, such as testosterone undecanoate, found in the composition or dosage form) of about 1200 ng ⁇ h/mL or less, about 1100 ng ⁇ h/mL or less, about 1000 ng ⁇ h/mL or less, about 900 ng ⁇ h/mL or less, about 850 ng ⁇ h/mL or less, about 800 ng ⁇ h/mL or less, about 750 ng ⁇ h/mL or less, about 100 ng ⁇ h/mL to about 1200 ng ⁇ h/mL, about 100 ng ⁇ h/mL to about 1100 ng ⁇ h/mL, about 100 ng ⁇ h/mL to about 1000 ng ⁇ h/mL, about 100 ng ⁇ h/mL to about 900 ng ⁇ h/m
  • the testosterone equivalent dose to mean AUC 0 is about 20 ⁇ 10 3 mL/h, or more; about 30 ⁇ 10 3 mL/h, or more; about 40 ⁇ 10 3 mL/h, or more; about 50 ⁇ 10 3 mL/h, or more; about 60 ⁇ 10 3 mL/h, or more; about 80 ⁇ 10 3 mL/h, or more; about 100 ⁇ 10 3 mL/h, or more; about 600 ⁇ 10 3 mL/h, or less; about 400 ⁇ 10 3 mL/h, or less; about 350 ⁇ 10 3 mL/h, or less; about 250 ⁇ 10 3 mL/h, or less; about 200 ⁇ 10 3 mL/h, or less; about 150 ⁇ 10 3 mL/
  • a pharmaceutical composition or oral dosage form described herein achieves steady state upon administration in any manner suitable to achieve the steady state, e.g., once a day, twice a day, three times a day, four times a day, or the like.
  • steady state is achieved after a period of time of b.i.d. oral administration (e.g., every 12 hours) of an oral dosage form described herein.
  • steady state is obtained after, e.g., 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 2 weeks or longer, if or as necessary.
  • steady state is obtained after b.i.d. oral administration for 5-7 days.
  • steady state plasma concentrations of testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained, in certain instances, by administration of pharmaceutical compositions comprising about 1 mg to about 1 g, or about 10 mg to about 200 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a pharmaceutical composition e.g., for administration to a human male
  • a pharmaceutical composition (e.g., for administration to a human male) comprises about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, about 80 mg, or about 120 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate.
  • steady state of a testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained by the administration of about 0.1 mg to about 5 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) per kg of an individual to whom the oral dosage form is to be administered.
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained by the oral administration of about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) to an individual upon once a day, twice a day, three times a day, or four times a day.
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the pharmacokinetic and/or pharmacodynamic profiles described herein are obtained as a function of dose of steroidal compound and/or formulation of the pharmaceutical composition.
  • an oral dosage form for administration to an human female comprises about 10% as much of a testosterone alkyl ester as does an oral dosage form for administration to an human male.
  • a pharmaceutical composition for delivery to an adult human female comprises about 5 mg to about 50 mg, about 5 mg to about 30 mg, about 7 mg to about 15 mg, about 8 mg to about 14 mg, about 9 mg to about 14 mg, about 10 mg to about 13 mg, about 11 mg to about 13 mg, about 8 mg, or about 12 mg of a testosterone alkyl ester, such as testosterone undecanoate.
  • any delayed release oral dosage form described herein comprises one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a delayed release dosage form is one that releases about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 5% to about 90%, about 5% to about 80%, about 5% to about 70%, about 5% to about 60%, about 5% to about 55%, about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, or about 20% to about 35% of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) after 1 hour in an aqueous medium; releases about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less
  • an immediate release dosage form (e.g., a fast release dosage form) comprising a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) releases about 90% or more of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) contained therein within about 15 minutes of exposure to an aqueous medium.
  • the aqueous medium is present in a USP Type-II (paddle) apparatus with conditions at 37 ⁇ 0.5° C. and at 100 rpm.
  • the aqueous medium is about 1 L of DI water having 8% w/v of Triton X-100.
  • an immediate release dosage form of steroidal compound is an oral dosage form (e.g., capsule) comprising the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) formulated in a mixture of castor oil and propylene glycol laurate (e.g., a composition comprising testosterone undecanoate, castor oil and propylene glycol laurate, as currently marketed under the tradename Andriol®); or the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) formulated in oleic acid (e.g., a composition comprising testosterone undecanoate and oleic acid, as previously marketed under the tradename Andriol®).
  • a testosterone alkyl ester such as testosterone undecanoate
  • oleic acid e.g., a composition comprising testosterone undecanoate and oleic acid, as previously marketed under the tradename Andriol®.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, at least 5% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 50-90% lower, about 40-80% lower, about 30-80% lower, about 20-80% lower, about 40-60% lower, or about 10-95% lower measured after about 1 hour than is provided by a single dose of an immediate release oral dosage form having the same amount of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 1 hour than is provided by a single dose of an immediate release oral dosage form.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 40-60% lower, about 20-80% lower, about 10-60% lower, or about 10-95% lower measured after about 2 hours than is provided by a single dose of an immediate release oral dosage form.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 2 hours than is provided by a single dose of an immediate release oral dosage form.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 50-80% lower, about 40-80% lower, about 30-60% lower, about 20-50% lower, about 10-50% lower, or about 10-95% lower measured after about 3 hours than is provided by a single dose of an immediate release oral dosage form.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 3 hours than is provided by a single dose of an immediate release oral dosage form.
  • a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma C max of testosterone that is at least 25% lower, at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 25-95% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 25-50% lower, about 20-60% lower, about 1540% lower, about 10-60% lower, about 5-30% lower, or about 5-99% lower than the mean plasma C max of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • the steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • a delayed release oral dosage form that provides or is formulated to provide, following a single oral administration, a mean plasma C max of the testosterone alkyl ester (e.g., testosterone undecanoate) that is at least 25% lower, at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 25-95% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 25-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma C max of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • the testosterone alkyl ester e.g., testosterone undecanoate
  • a delayed release oral dosage form that provides or is formulated to provide, following oral administration, a mean plasma C max of dihydrotestosterone that is at least 10% lower, at least 8% lower, at least 7% lower, at least 6% lower, at least 5% lower, about 10-95% lower, about 8-99% lower, about 7-99% lower, about 6-99% lower, about 5-99% lower, about 5-15% lower, about 10-90% lower, about 8-80% lower, about 7-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma C max of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • the steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • a delayed release oral dosage form that provides or is formulated to provide a mean plasma C max at steady state of testosterone alkyl ester that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma.
  • C max of steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • a testosterone alkyl ester such as testosterone undecanoate
  • a delayed oral dosage form comprising testosterone alkyl ester provided herein provides or is formulated to provide a mean plasma C max at steady state of testosterone that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 10-30% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 10-40% lower than the mean plasma C max of testosterone at steady state provided by an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • the steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the delayed release oral dosage form provides a fluctuation index of testosterone at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • the steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the delayed release oral dosage form provides a fluctuation index of testosterone alkyl ester at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester as is present in the delayed release oral dosage form.
  • a pharmaceutical composition or oral dosage form provided herein that does not comprise oleate provides a fluctuation index of testosterone at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5%, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone at steady state provided by an oleate-containing oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • a pharmaceutical composition or oral dosage form provided herein that does not contain castor oil (unmodified by polyoxylation or hydrogenation) provides a fluctuation index of testosterone alkyl ester at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone alkyl ester at steady state of an castor oil-containing oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate).
  • the fluctuation index is the difference between the mean plasma C max and mean plasma C min values that are achieved after administration of an dosage form.
  • a delayed oral dosage form that is formulated such that it provides, following a single oral administration, a mean plasma AUC 0- ⁇ concentration of testosterone of that is at least 40%, at least 50% or at least 60% of the mean plasma AUC 0- ⁇ concentration of testosterone provided by an immediate release dosage form.
  • provided herein are methods of treating an individual in need of an androgen therapy with any pharmaceutical composition or oral dosage form described herein.
  • methods of treating androdeficiency in an individual in need thereof by administering to the individual any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a steroidal compound e.g., one or more testosterone alkyl ester, such as testosterone undecanoate
  • individuals are androdeficient (e.g., hypogonadal, andropausal, or otherwise androdeficient) adult male humans, young male humans who are suffering from delayed puberty (e.g., as a result of being hypogonadal), androdeficient (e.g., postmenopausal or otherwise androdeficient) adult female humans.
  • androdeficient e.g., hypogonadal, andropausal, or otherwise androdeficient
  • provided herein are methods of treating testosterone deficiency in male humans by administering to the male human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate).
  • the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate).
  • Symptoms of testosterone deficiency may include, by way of non-limiting example, one or more of depression, reduced libido, low energy, anemia, osteoporosis, debilitating muscle weakness, or the like. Therefore, in some embodiments, such symptoms, when caused by or suspected of being caused by andro- or testosterone deficiency, are also treated, either individually or collectively, by administering to a male human in need thereof a pharmaceutical composition or oral dosage form described herein.
  • kits for treating testosterone deficiency in male humans by administering to the male human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate) co-administered with a 5-alpha reductase enzyme inhibitor (e.g dutasteride, finesteride, isotertinoin, gallic acid, L-lysine, epigallocatechin gallate, saw palmetto, phytosterol complex, beta sitosterol, green tea extract, polyphenols etc.).
  • the enzyme inhibitor can be co-administered as a separate composition or be a part of the same testosterone alkyl ester-containing composition.
  • provided herein are methods of treating sexual dysfunction in an individual in need thereof by administering the individual any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a steroidal compound e.g., one or more testosterone alkyl ester, such as testosterone undecanoate.
  • the individual is a male adult human.
  • the individual is a female adult human.
  • provided herein are methods of treating andro-deficiency in female humans (e.g., adult female humans) by administering to the female human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate).
  • the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate).
  • compositions comprising therapeutically effective amounts of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a therapeutically effective amount is between about 1 mg and about 1 g, or about 10 mg to about 200 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a therapeutically effective amount is about 10 mg to about 50 mg, about 15 mg to about 40 mg, about 20 mg, to about 30 mg, or about 25 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate).
  • a therapeutically effective amount is about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, or about 120 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, a therapeutically effective amount is about 0.1 mg to about 5 mg per kg of an individual to whom the oral dosage form is administered.
  • a therapeutically effective amount is about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) per day.
  • a steroidal compound e.g., a testosterone alkyl ester, such as testosterone undecanoate
  • the methods described herein a plasma C max of testosterone that is less than 1500 ng/dL, about 100 ng/dL to about 1500 ng/dL, or about 500 ng/dL to about 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state). In some embodiments the methods described herein provide a plasma C max of testosterone that is less than 1800 ng/dL, about 100 ng/dL to about 1800 ng/dL, or about 500 ng/dL to about 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state). In some embodiments, the methods described herein provide a plasma.
  • the methods described herein provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1300 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals.
  • the methods described herein provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1100 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals. In certain embodiments, the methods described herein provide a plasma concentration of testosterone at steady state that is between about 300 ng/dL and 1000 ng/dL in at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals. Similarly, in various embodiments, the methods described herein provide any of the pharmacokinetic or pharmacodynamic profiles described for the pharmaceutical compositions or dosage forms described herein.
  • the pharmaceutical compositions or dosage forms described herein are administered orally.
  • pharmaceutical compositions described herein comprise or are divided into one or more oral dosage forms described herein.
  • methods described herein comprise and/or pharmacokinetic or pharmacodynamic profiles described herein are achieved by administration of a plurality of oral dosage forms simultaneously, sequentially or in a substantially simultaneous manner.
  • administration of pharmaceutical compositions or oral dosage forms described herein is achieved in any therapeutically effective manner.
  • the pharmaceutical composition or oral dosage form is administered once a day, twice a day, three times a day, four times a day, or the like.
  • a pharmaceutical composition or oral dosage form described herein is administered in the fed state.
  • a pharmaceutical composition or oral dosage form described herein is administered with a meal, within 30 minutes of a meal, within 1 hour of a meal, or within 2 hours of a meal. In more specific embodiments, a pharmaceutical composition or oral dosage form described herein is administered with a meal, within 30 minutes after a meal, within 1 hour after a meal, or within 2 hours after a meal. In some embodiments, provided herein is a reduced food effect pharmaceutical composition or dosage form, the pharmaceutical composition or dosage form comprising the components as set forth in any embodiment described herein.
  • the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (C max ) of testosterone that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (C max ) of testosterone provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • a maximum plasma concentration (C max ) of testosterone that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (C max ) of testosterone provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (C max ) of testosterone alkyl ester that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (C max ) of testosterone alkyl ester provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • a maximum plasma concentration (C max ) of testosterone alkyl ester that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (C max ) of testosterone alkyl ester provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (C max ) of dihydrotestosterone that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (C max ) of dihydrotestosterone provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • C max maximum plasma concentration
  • provided herein is a method of treating androgen deficiency in an individual, or a disorder associated therewith, the method comprising administering to an individual in need thereof a therapeutically effective amount of any composition described herein.
  • a composition adminstered according to a method described herein is formulated so as to provide any pharmacokinetic and/or pharmacodynamic effect described herein.
  • methods provided herein comprise the administration of a sufficient amount of a composition described herein so as to provide any pharmacokinetic or pharmacodynamic effect described herein.
  • any protocol described herein for the administration of compositions is optionally utilized in any methods described herein.
  • compositions comprising a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate) and at least one pharmaceutically acceptable carrier.
  • the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier (e.g., hydrophilic surfactant or additive), at least one lipophilic carrier (e.g., lipophilic surfactant or additive), and/or at least one viscosity enhancer or solidifying agent.
  • the at least one pharmaceutically acceptable carrier is a hydrophilic carrier.
  • the at least one pharmaceutically acceptable carrier comprises or further comprises a lipophilic carrier.
  • the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent.
  • hydrophilic carriers include, by way of non-limiting example, a hydrophilic surfactant.
  • hydrophilic surfactants are used to provide any one or more of several advantageous characteristics to the compositions, including, by way of non-limiting example: increased solubility of the active ingredient in at least one of the fractions of the carrier that is a solid carrier; improved dissolution of the active ingredient; improved dispersion and/or dissolution of the lipidic carrier; improved solubilization of the active ingredient upon dissolution; enhanced absorption and/or bioavailability of the active ingredient, particularly a hydrophilic, hydrophobic, or lipophilic active ingredient; and improved stability, both physical and chemical, of the active ingredient.
  • the hydrophilic surfactant includes either a single hydrophilic surfactant or a mixture of hydrophilic surfactants. Hydrophilic surfactants also include both ionic or non-ionic surfactants.
  • lipophilic carriers include or further include, by way of non-limiting example, one or more lipophilic surfactant, including one or more lipophilic surfactant, one or more mono-, di-, or triglyceride, or mixtures thereof.
  • lipophilic surfactants provide any one or more of the advantageous characteristics listed above for hydrophilic surfactants, and/or enhance the function of other (e.g., hydrophilic) surfactants present in the pharmaceutical composition.
  • hydrophilic and lipophilic are relative terms. Hydrophilicity and/or lipophilicity are determined in any manner suitable. In one instances, an empirical parameter is used to characterize the relative hydrophilicity and lipophilicity of the carriers described herein. For example, in one manner, the hydrophilicity and/or lipophilicity non-ionic amphiphilic compounds is the hydrophilic-lipophilic balance (the “HLB” value). Carriers or surfactants with lower HLB values are more lipophilic, and have greater solubility in oils, whereas surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous mediums.
  • HLB hydrophilic-lipophilic balance
  • surfactants are amphiphilic as they comprise both a polar moiety (e.g., a polar non-charged or charged moiety) and a lipophilic moiety (e.g., an aliphatic group).
  • a polar moiety e.g., a polar non-charged or charged moiety
  • a lipophilic moiety e.g., an aliphatic group
  • hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as non-ionic, anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable.
  • lipophilic surfactants are compounds having an HLB value less than about 10.
  • HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions.
  • HLB values can differ by as much as about 8 HLB units, depending upon the empirical method chosen to determine the HLB value (Schott, J. Pharm. Sciences, 79(1), 87-88 (1990)).
  • polypropylene oxide containing block copolymers polypropylene oxide containing block copolymers, available commercially as PLURONIC® surfactants, BASF Corp.
  • the HLB values are not always authoritative indicators of the true physical chemical nature of the compounds.
  • useful surfactants include any surfactant that is pharmaceutically acceptable and is suitable for use in a pharmaceutical composition.
  • Suitable surfactants include anionic, cationic, zwitterionic and non-ionic surfactants.
  • Provided herein e.g., in the Tables) are several general classes of surfactants.
  • the HLB values given in the Tables below generally represent the HLB value as reported by the manufacturer of the corresponding commercial product. In cases where more than one commercial product is listed, the HLB value in the Tables is the value as reported for one of the commercial products, a rough average of the reported values, or a value that, in the judgment of the present inventors, is more reliable.
  • Surfactants described in the Tables are illustrative and are provided as non-limiting examples. For example, refined, distilled or fractionated surfactants, purified fractions thereof, or re-esterified fractions, are also within the scope of surfactants described herein, although they are not specifically listed in the Tables.
  • surfactants described herein include polyoxylated fatty acids, such as polyethoxylated fatty acids (i.e., PEG-fatty acid esters).
  • polyethoxylated fatty acids i.e., PEG-fatty acid esters.
  • Table 1 Provided in Table 1 is a list of illustrative and non-limiting examples of polyethoxylated fatty acid monoester surfactants.
  • surfactants described herein include, by way of non-limiting example, polyethylene glycol (PEG) fatty acid diesters.
  • PEG polyethylene glycol
  • Illustrative and non-limiting examples of PEG-fatty acid diesters are shown in Table 2.
  • compositions described herein comprise mixtures of surfactants, including, e.g., mixtures of two or more commercial surfactant products.
  • surfactants including, e.g., mixtures of two or more commercial surfactant products.
  • PEG-fatty acid esters are marketed commercially as mixtures or mono- and diesters.
  • Illustrative and non-limiting examples of surfactant mixtures are shown in Table 3.
  • surfactants described herein include, by way of non-limiting example, polyethylene glycol glycerol fatty acid esters (PEG glycerol fatty acid esters). Illustrative and non-limiting examples of PEG glycerol fatty acid esters are shown in Table 4.
  • surfactants of different degrees of lipophilicity or hydrophilicity are prepared by reaction of alcohols or polyalcohols with a variety of natural and/or hydrogenated oils.
  • the oils used are castor oil or hydrogenated castor oil or an edible vegetable oil such as corn oil, olive oil, peanut oil, palm kernel oil, apricot kernel oil, or almond oil.
  • alcohols include glycerol, propylene glycol, ethylene glycol, polyethylene glycol, sorbitol, and pentaerythritol.
  • such surfactants are utilized in the pharmaceutical compositions described herein. Illustrative and non-limiting examples of surfactants of this class suitable for use in the pharmaceutical compositions described herein are shown in Table 5.
  • surfactants utilized in the pharmaceutical compositions described herein include, by way of non-limiting example, polyglycerized fatty acids.
  • polyglycerized fatty acids include, by way of non-limiting example, polyglycerized fatty acids.
  • suitable polyglyceryl esters are shown in Table 6.
  • surfactants utilized in the pharmaceutical compositions described herein include, by way of non-limiting example esters of propylene glycol and fatty acids. Illustrative and non-limiting examples of surfactants of this class are given in Table 7.
  • mixtures of surfactants are also used, in some embodiments, in the pharmaceutical compositions described herein.
  • Mixtures of surfactants include, by way of non-limiting example, mixtures of propylene glycol fatty acid esters and glycerol fatty acid esters are suitable and are commercially available.
  • Illustrative and non-limiting examples of such mixtures of surfactants include, by way of non-limiting example, those shown in Table 8.
  • an important class of surfactants includes the class of mono- and diglycerides. These surfactants are generally lipophilic. Illustrative and non-limiting examples of these surfactants are given in Table 9.
  • surfactants utilized in the pharmaceutical compositions described herein include sterols and derivatives of sterols. In various embodiments, these surfactants are hydrophilic or lipophilic. Illustrative and non-limiting examples of surfactants of this class are shown in Table 10.
  • surfactants useful in the pharmaceutical compositions described herein include a variety of PEG-sorbitan fatty acid esters. In general, these surfactants are hydrophilic, although several lipophilic surfactants of this class can be used. Illustrative and non-limiting examples of these surfactants are shown in Table 11.
  • surfactants utilized herein include ethers of polyethylene glycol and alkyl alcohols. Illustrative and non-limiting examples of these surfactants are shown in Table 12.
  • surfactants utilized in the pharmaceutical compositions described herein include esters of sugars. Illustrative and non-limiting examples of such surfactants are shown in Table 13.
  • surfactants utilized in the pharmaceutical compositions described herein include polyethylene glycol alkyl phenols, e.g., hydrophilic PEG-alkyl phenol surfactants. Illustrative and non-limiting examples of these surfactants are shown in Table 14.
  • surfactants utilized in pharmaceutical compositions described herein include polyoxyethylene-polyoxypropylene block copolymers.
  • POE-POP block copolymers are a unique class of polymeric surfactants. The unique structure of the surfactants, with hydrophilic POE and lipophilic POP moieties in well-defined ratios and positions, provides a wide variety of surfactants suitable for use in the present invention. These surfactants are available under various trade names, including Synperonic PE series (ICI); Pluronic® series (BASF), Emkalyx, Lutrol (BASF), Supronic, Monolan, Pluracare, and Plurodac. The generic term for these polymers is “poloxamer” (CAS 9003-11-6).
  • These polymers have the formula: HO(C 2 H 4 O) a (C 3 H 6 O) b (C 2 H 4 O) a H; wherein the terms “a” and “b” denote the number of polyoxyethylene and polyoxypropylene units, respectively.
  • Suitable surfactants of this class are shown in Table 15. Since the compounds are widely available, commercial sources are not listed in the Table. The compounds are listed by generic name, with the corresponding “a” and “b” values.
  • surfactants utilized in pharmaceutical compositions described herein include sorbitan esters of fatty acids. Illustrative and non-limiting examples of such surfactants are shown in Table 16.
  • surfactants utilized in pharmaceutical compositions described herein include esters of lower alcohols (C 2 to C 4 ) and fatty acids (C 8 to C 18 ). Illustrative and non-limiting examples of these surfactants are shown in Table 17.
  • hydrophilic surfactants utilized in pharmaceutical compositions described herein include ionic surfactants (e.g., cationic, anionic and zwitterionic surfactants).
  • anionic surfactants include fatty acid salts and bile acid salts.
  • cationic surfactants include carnitines.
  • ionic surfactants include, by way of non-limiting example, sodium oleate, sodium lauryl sulfate, sodium lauryl sarcosinate, sodium dioctyl sulfosuccinate, sodium cholate, sodium taurocholate; lauroyl carnitine; palmitoyl carnitine; and myristoyl carnitine.
  • Illustrative and non-limiting examples of such surfactants are shown in Table 18.
  • exemplary counterions are shown in the entries in the Table. In various embodiments, such counterions are optionally substituted with any suitable counterion.
  • fatty acids are shown as sodium salts, other cation counterions are optionally used, such as alkali metal cations or ammonium.
  • these ionic surfactants are generally available as pure compounds, rather than commercial (proprietary) mixtures. Because these compounds are readily available from a variety of commercial suppliers, such as Aldrich, Sigma, and the like, commercial sources are not generally listed in the Table.
  • Acyl lactylates lactylic esters of fatty acids calcium/sodium stearoyl-2-lactylate calcium/sodium stearoyl lactylate Alginate salts Propylene glycol alginate SULFATES AND SULFONATES Ethoxylated alkyl sulfates Alkyl benzene sulfones ⁇ -olefin sulfonates Acyl isethionates Acyl taurates Alkyl glyceryl ether sulfonates Octyl sulfosuccinate disodium Disodium undecylenamideo-MEA-sulfosuccinate CATIONIC Surfactants >10 Lauroyl carnitine Palmitoyl carnitine Myristoyl carnitine Hexadecyl triammonium bromide Decyl trimethyl ammonium bromide Cetyl trimethyl ammonium bromide Dodecyl ammonium bromid
  • surfactants utilized in pharmaceutical compositions described herein include ionizable surfactants.
  • ionizable surfactants when present in their unionized (neutral, non-salt) form, are lipophilic surfactants suitable for use in the compositions of the present invention.
  • Particular examples of such surfactants include free fatty acids, particularly C 6 -C 22 fatty acids, and bile acids.
  • suitable unionized ionizable surfactants include the free fatty acid and bile acid forms of any of the fatty acid salts and bile salts shown in Table 18.
  • derivatives of oil-soluble vitamins such as vitamins A, D, E, K, etc.
  • surfactants for use in the pharmaceutical compositions described herein.
  • An example of such a derivative is tocopheryl PEG-1000 succinate (TPGS, available from Eastman).
  • surfactants or mixtures of surfactants that solidify are utilized in the pharmaceutical compositions described herein.
  • surfactants or mixtures of surfactants utilized in the pharmaceutical compositions described herein solidify (e.g., form a solid, a semi-solid, a gel, a jelly, a paste, or the like) at ambient room temperature when combined with additional agents (e.g., particular lipophilic components, such as triglycerides, vitamins (e.g., Vitamin E), or the like, viscosity modifiers, stabilizers, solidifying agents, binders, thickeners, or the like).
  • additional agents are optionally utilized in the pharmaceutical compositions described herein.
  • pharmaceutical compositions described herein comprise a hydrophilic carrier (e.g., a hydrophilic surfactant), a lipophilic carrier, and/or a viscosity modifier or solidifying agent.
  • non-ionic hydrophilic surfactants include alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyethylene alkyl ethers; polyoxyethylene alkylphenols; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyglycerol fatty acid esters; polyoxyethylene glycerides; polyoxyethylene sterols, derivatives, and analogues thereof; polyoxyethylene vegetable oils; polyoxyethylene hydrogenated vegetable oils; reaction mixtures of polyols with fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols; sugar esters, sugar ethers; sucroglycerides; polyethoxylated fat-soluble vitamins or derivatives; and mixtures thereof.
  • the non-ionic hydrophilic surfactant is selected from, by way of non-limiting example, polyoxyethylene alkylethers; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyglyceryl fatty acid esters; polyoxyethylene glycerides; polyoxyethylene vegetable oils; and polyoxyethylene hydrogenated vegetable oils.
  • the glyceride is a monoglyceride, diglyceride, triglyceride, or a mixture thereof.
  • non-ionic hydrophilic surfactants are the products of reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils or sterols. These reaction mixtures are largely composed of the transesterification products of the reaction, along with often complex mixtures of other reaction products.
  • the polyol is glycerol, ethylene glycol, polyethylene glycol, sorbitol, propylene glycol, pentaerythritol, or a saccharide.
  • the hydrophilic surfactant is or includes an ionic surfactant.
  • ionic surfactants include alkyl ammonium salts; bile acids and salts, analogues, and derivatives thereof; fusidic acid and derivatives thereof; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; acyl lactylates; mono-,diacetylated tartaric acid esters of mono-,diglycerides; succinylated monoglycerides; citric acid esters of mono-,diglycerides; alginate salts; propylene glycol alginate; lecithins and hydrogenated lecithins; lysolecithin and hydrogenated lysolecithins; lysophospholipids and derivatives thereof; phospholipids and derivatives thereof; salts of alkylsulfates; salts of
  • ionic surfactants include bile acids and salts, analogues, and derivatives thereof; lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; salts of alkylsulfates; salts of fatty acids; sodium docusate; acyl lactylates; mono-,diacetylated tartaric acid esters of mono-,diglycerides; succinylated monoglycerides; citric acid esters of mono-diglycerides; carnitines; and mixtures thereof.
  • ionic surfactants include, by way of non-limiting example, lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholate, taurocholate, glycocholate, de
  • ionic surfactants are selected from lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylcholine, PEG-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholate, taurocholate, glycocholate, deoxycholate, taurodeoxycholate, glycodeoxycholate, cholylsarcosine, caproate, caprylate, caprate, laurate, oleate, lauryl sulfate, docusate, and salts and mixtures thereof, with the most preferred ionic surfactants being lec
  • lipophilic surfactants are selected from, by way of non-limiting example, alcohols; polyoxyethylene alkylethers; fatty acids; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polypropylene glycol fatty acid esters; polyoxyethylene glycerides; lactic acid derivatives of mono/diglycerides; propylene glycol diglycerides; sorbitan fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; transesterified vegetable oils; sterols; sterol derivatives; sugar esters; sugar ethers; sucroglycerides; polyoxyethylene vegetable oils; and polyoxyethylene hydrogenated vegetable oils.
  • lipophilic surfactants are optionally the products of reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols.
  • lipophilic surfactants are selected from fatty acids; lower alcohol fatty acid esters; polyethylene glycol glycerol fatty acid esters; polypropylene glycol fatty acid esters; polyoxyethylene glycerides; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lactic acid derivatives of mono/diglycerides; sorbitan fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyoxyethylene vegetable oils; polyoxyethylene hydrogenated vegetable oils; and reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols.
  • lipophilic surfactants are selected from lower alcohol fatty acids esters; polypropylene glycol fatty acid esters; propylene glycol fatty acid esters; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lactic acid derivatives of mono/diglycerides; sorbitan fatty acid esters; polyoxyethylene vegetable oils; and mixtures thereof, with glycerol fatty acid esters and acetylated glycerol fatty acid esters being most preferred.
  • the esters are, e.g., mono- or diglycerides, or mixtures of mono- and diglycerides, where the fatty acid moiety is a C 6 to C 22 fatty acid.
  • lipophilic surfactants are selected from the products of reaction mixture of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols.
  • polyols are polyethylene glycol, sorbitol, propylene glycol, and pentaerythritol.
  • compositions described herein include a lipophilic component or carrier.
  • the lipophilic carrier is selected from lipophilic surfactants, triglycerides, and Vitamin E compounds (e.g., d,l- ⁇ -tocopherol).
  • triglycerides utilized in the pharmaceutical compositions described herein are those that solidify (e.g., form a solid, a semi-solid, a gel, a jelly, a paste, or the like) at ambient room temperature, with or without addition of appropriate additives, or those which in combination with particular surfactants and/or active ingredients solidify at room temperature.
  • triglycerides suitable for use in the pharmaceutical compositions described herein are shown in Table 19. In general, these triglycerides are readily available from commercial sources. For several triglycerides, representative commercial products and/or commercial suppliers are listed.
  • Triglycerides Triglyceride Commercial Source Aceituno oil Almond oil Super Refined Almond Oil (Croda) Araehis oil Babassu oil Beeswax Blackcurrant seed oil Borage oil Buffalo ground oil Candlenut oil Canola oil Lipex 108 (Abitec) Castor oil Chinese vegetable tallow oil Cocoa butter Coconut oil Pureco 76 (Abitec) Coffee seed oil Corn oil Super Refined Corn Oil (Croda) Cottonseed oil Super Refined Cottonseed Oil (Croda) Crambe oil Cuphea species oil Evening primrose oil Grapeseed oil Groundnut oil Hemp seed oil Illipe butter Kapok seed oil Linseed oil Menhaden oil Super Refined Menhaden Oil (Croda) Mowrah butter Mustard seed oil Oiticica oil Olive oil Super Refined Olive Oil (Croda) Palm oil Palm kernel oil Peanut oil Super Refined Peanut Oil (Croda) Poppy seed oil Rapeseed oil Rice bran oil Safflower oil Super Refined
  • the triglycerides utilized in the pharmaceutical compositions described herein include fractionated triglycerides, modified triglycerides, synthetic triglycerides, and mixtures of triglycerides are also within the scope of the invention.
  • triglycerides include, by way of non-limiting example, vegetable oils, fish oils, animal fats, hydrogenated vegetable oils, partially hydrogenated vegetable oils, medium and long-chain triglycerides, and structured triglycerides. It should be appreciated that several commercial surfactant compositions contain small to moderate amounts of triglycerides, typically as a result of incomplete reaction of a triglyceride starting material in, for example, a transesterification reaction.
  • Such commercial surfactant compositions may be suitable to provide all or part of the triglyceride component for the compositions of the present invention.
  • Examples of commercial surfactant compositions containing triglycerides include some members of the surfactant families Gelucires (Gattefosse), Maisines (Gattefosse), and Imwitors (Hüls).
  • compositions are: Gelucire 44114 (saturated polyglycolized glycerides); Gelucire 50/13 (saturated polyglycolized glycerides); Gelucire 53/10 (saturated polyglycolized glycerides); Gelucire 33/01 (semi-synthetic triglycerides of C 8 -C 18 saturated fatty acids); Gelucire 39/01 (semi-synthetic glycerides); other Gelucires, such as 37106, 43/01, 35/10, 37/02, 46/07, 48/09, 50/02, 62/05, or the like; Maisine 35-I (linoleic glycerides); and Imwitor 742 (capiylic/capric glycerides).
  • compositions described herein optionally include one or more additional agents or additives.
  • suitable additives include those that facilitate formulating a pharmaceutical composition described herein as an oral dosage form and include, e.g., coatings and capsule components.
  • Further additives include, by way of non-limiting example, solubilizers, enzyme inhibitors, anti-foaming agents, antioxidants, binders, buffering agents, chelating agents, diluents, disintegrants, flavoring agents, preservatives, sweeteners, thickeners, or the like.
  • compositions provided herein optionally include one or more solubilizers, i.e., additives to increase the solubility of the pharmaceutical active ingredient or other composition components in the solid carrier.
  • solubilizers for use in the compositions of the present invention include: alcohols, polyols, ethers of polyethylene glycols, amides, esters or the like.
  • Alcohols and polyols include, by way of non-limiting example, ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives.
  • Ethers of polyethylene glycols include those having an average molecular weight of about 200 to about 6000, such as, by way of non-limiting example, tetrahydrofurfuryl alcohol PEG ether (glycofurol, available commercially from BASF under the trade name Tetraglycol) and methoxy PEG (Union Carbide).
  • Amides include, by way of non-limiting example, 2-pyrrolidone, 2-piperidone, ⁇ -caprolactam, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam, dimethylacetamide, and polyvinylpyrrolidone.
  • Esters include, by way of non-limiting example, ethyl propionate, tributylcitrate, acetyl triethylcitrate, acetyl tributyl citrate, triethylcitrate, ethyl oleate, ethyl caprylate, ethyl butyrate, triacetin, propylene glycol monoacetate, propylene glycol diacetate, ⁇ -caprolactone and isomers thereof, ⁇ -valerolactone and isomers thereof, ⁇ -butyrolactone and isomers thereof.
  • solubilizers include, by way of non-limiting example, dimethyl acetamide, dimethyl isosorbide (Arlasolve DMI (ICI)), N-methyl pyrrolidones (Pharmasolve (ISP)), monooctanoin, diethylene glycol monoethyl ether (available from Gattefosse under the trade name Transcutol), and water. Mixtures of solubilizers are also within the scope of the present disclosure. Except as indicated, these compounds are readily available from standard commercial sources.
  • solubilizers include, by way of non-limiting example, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cyclodextrins, ethanol, polyethylene glycol 200-600, glycofurol, transcutol, propylene glycol, and dimethyl isosorbide.
  • solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol.
  • the amount of solubilizer included in the pharmaceutical compositions described herein is any suitable amount.
  • Anti-adherents include, by way of non-limiting example, talc, magnesium stearate, fumed silica (Carbosil, Aerosil), micronized silica (Syloid No. FP 244, Grace U.S.A.), polyethylene glycols, surfactants, waxes, stearic acid, stearic acid salts, stearic acid derivatives, starch, hydrogenated vegetable oils, sodium benzoate, sodium acetate, leucine, PEG-4000 and magnesium lauryl sulfate.
  • Antioxidants include, by way of non-limiting example, BHT, BHA, gallic acid, propyl gallate, ascorbic acid, ascorbyl palmitate, 4-hydroxymethyl-2,6-di-tert-butyl phenol, and tocopherol.
  • Binders i.e., agents that impart cohesive properties to powdered materials through particle-particle bonding
  • matrix binders dry starch, dry sugars
  • film binders PVP, starch paste, celluloses, bentonite, sucrose
  • chemical binders polymeric cellulose derivatives, such as carboxy methyl cellulose, HPC and HPMC; sugar syrups; corn syrup; water soluble polysaccharides such as acacia, tragacanth, guar and alginates; gelatin; gelatin hydrolysate; agar; sucrose; dextrose; and non-cellulosic binders, such as PVP, PEG, vinyl pyrrolidone copolymers, pregelatinized starch, sorbitol, and glucose).
  • Buffering agents include an acid and a base, wherein the acid is a pharmaceutically acceptable acid, such as hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluen
  • Chelating agents include, by way of non-limiting example, EDTA and EDTA salts.
  • Colorants or opaquants include, by way of non-limiting example, titanium dioxide, food dyes, lakes, natural vegetable colorants, iron oxides, silicates, sulfates, magnesium hydroxide and aluminum hydroxide.
  • Diluents or fillers include, by way of non-limiting example, lactose, mannitol, talc, magnesium stearate, sodium chloride, potassium chloride, citric acid, spray-dried lactose, hydrolyzed starches, directly compressible starch, microcrystalline cellulose, cellulosics, sorbitol, sucrose, sucrose-based materials, calcium sulfate, dibasic calcium phosphate and dextrose.
  • Disintegrants and super disintegrants include, by way of non-limiting example, croscarmellose sodium, starch, starch derivatives, clays, gums, cellulose, cellulose derivatives, alginates, crosslinked polyvinypyrrolidone, sodium starch glycolate and microcrystalline cellulose.
  • Flavorants or desensitizers include, by way of non-limiting example, spray-dried flavors, essential oils and ethyl vanillin.
  • Plasticizers include, by way of non-limiting example, polyethylene glycol, citrate esters (e.g., triethyl citrate, acetyl triethyl citrate, acetyltributyl citrate), acetylated monoglycerides, glycerin, triacetin, propylene glycol, phthalate esters (e.g., diethyl phthalate, dibutyl phthalate), castor oil, sorbitol and dibutyl seceate.
  • citrate esters e.g., triethyl citrate, acetyl triethyl citrate, acetyltributyl citrate
  • acetylated monoglycerides glycerin
  • triacetin triacetin
  • propylene glycol phthalate esters (e.g., diethyl phthalate, dibutyl phthalate), castor oil, sorbitol and dibuty
  • Preservatives include, by way of non-limiting example, ascorbic acid, boric acid, sorbic acid, benzoic acid, and salts thereof, parabens, phenols, benzyl alcohol, and quaternary ammonium compounds.
  • Solvents include, by way of non-limiting example, alcohols, ketones, esters, chlorinated hydrocarbons and water.
  • Sweeteners include, by way of non-limiting example, natural sweeteners such as maltose, sucrose, glucose, sorbitol, glycerin and dextrins, and artificial sweeteners, such as aspartame, saccharine and saccharine salts.
  • Thickeners include, by way of non-limiting example, sugars, polyvinylpyrrolidone, cellulosics, polymers, high molecular weight polyethylene glycols (e.g., PEG 8000), and alginates.
  • Additives also include, by way of non-limiting example, proteins (e.g., collagen, gelatin, Zein, gluten, mussel protein, lipoprotein); carbohydrates (e.g., alginates, carrageenan, cellulose derivatives, pectin, starch, chitosan); gums (e.g., xanthan gum, gum arabic); spermaceti; natural or synthetic waxes; carnuaba wax; fatty acids (e.g., stearic acid, hydroxystearic acid); fatty alcohols; sugars; shellacs, such as those based on sugars (e.g., lactose, sucrose, dextrose) or starches; polysaccharide-based shellacs (e.g., maltodextrin and maltodextrin derivatives, dextrates, cyclodextrin and cyclodextrin derivatives); cellulosic-based shellacs (e.g., microcrystalline
  • compositions described herein are formulated as oral dosage forms.
  • Oral dosage forms are prepared by any suitable process including one or more steps of; by way of non-limiting example, agglomeration, air suspension chilling, air suspension drying, balling, coacervation, comminution, compression, pelletization, cryopelletization, encapsulation, extrusion, granulation, homogenization, inclusion complexation, lyophilization, nanoencapsulation, melting, mixing, molding, pan coating, solvent dehydration, sonication, spheronization, spray chilling, spray congealing, spray drying, or the like.
  • a pharmaceutical composition described herein is formulated with a substrate to form an oral dosage form.
  • substrates useful for formulating pharmaceutical compositions described herein as oral dosage forms include or comprise, by way of non-limiting example, a powder or a multiparticulate (e.g., one or more granule, one or more pellet, one or more bead, one or more spherule, one or more beadlet, one or more microcapsule, one or more millisphere, one or more mini capsule, one or more microcapsule, one or more nanocapsule, one or more nanosphere, one or more microsphere, one or more minitablet, one or more tablet, one or more capsule, or one or more combinations thereof).
  • a powder or a multiparticulate e.g., one or more granule, one or more pellet, one or more bead, one or more spherule, one or more beadlet, one or more microcapsule, one or more millisphere, one or more mini capsule, one or more
  • a powder constitutes a finely divided (milled, micronized, nanosized, precipitated) form of an active ingredient or additive molecular aggregates or a compound aggregate of multiple components or a physical mixture of aggregates of an active ingredient and/or additives.
  • Substrates are prepared from any suitable material including, by way of non-limiting example, sugars, such as lactose, sucrose or dextrose; polysaccharides, such as maltodextrin or dextrates; starches; cellulosics, such as microcrystalline cellulose or microcrystalline cellulose/sodium carboxymethyl cellulose; inorganics, such as dicalcium phosphate, hydroxyapitite, tricalcium phosphate, talc, or titania; and polyols, such as mannitol, xylitol, sorbitol or cyclodextrin.
  • the substrate is optionally composed of active ingredients, surfactants, triglycerides or additives described herein.
  • the substrate is a solid form of an additive, an active ingredient, a surfactant, or a triglyceride; a complex of an additive, surfactant or triglyceride and an active ingredient; a coprecipitate of an additive, surfactant or triglyceride and an active ingredient, or a mixture thereof.
  • compositions and substrates described herein provide or are formulated to provide an oral dosage from selected from, by way of non-limiting example, a minicapsule, a capsule, a tablet, an implant, a troche, a lozenge (minitablet), a temporary or permanent suspension, a wafer, a chewable tablet, a quick or fast dissolving tablet, an effervescent tablet, a buccal or sublingual solid, a granule, a film, a sprinkle, a pellet, a bead, a pill, a powder, a triturate, a strip or a sachet.
  • the oral dosage form described herein is a capsule. Suitable capsule forms include, by way of non-limiting example, hard or soft gelatin capsules, starch capsules, and cellulosic capsules. In more specific embodiments, oral dosage forms described herein are in the form of hard or soft gelatin capsules. In some embodiments, the oral dosage form is a capsule comprising a jelly, solid, semi-solid, glassy or paste-like composition, wherein the testosterone alkyl ester is formulated into the composition.
  • a pharmaceutical composition described herein is formulated as an oral dosage form by (i) heating a pharmaceutical compositions described herein until pharmaceutical composition has an ability to flow (e.g., it is a homogeneous solution, an emulsion, a slurry or the like); and (ii) depositing the pharmaceutical composition with an ability to flow on a substrate.
  • the pharmaceutical composition that has an ability to flow is a homogeneous solution.
  • the substrate is one or more capsule, one or more microcapsule, or one or more nanocapsule.
  • the substrate is a hard gelatin capsule or a soft gelatin capsule.
  • the substrate is a hard gelatin capsule.
  • oral dosage forms are prepared in the following manner:
  • Step 1 transfer the selected amounts of carriers and additives into a clean container and heat the combination until a molten solution is obtained;
  • Step 2 transfer the selected amount of steroidal compound (e.g., testosterone undecanoate) to the molten solution obtained in Step 1 and homogonize;
  • steroidal compound e.g., testosterone undecanoate
  • Step 3 maintain the mixture of Step 2 at an elevated temperature until used in Step 4;
  • Step 4 encapsulation of the mixture of Step 3 (e.g., in a hard gelatin capsule).
  • Capsules 1-4 are subjected to USP Type-II (paddle) apparatus conditions at 37 ⁇ 0.5° C., at 100 rpm (i.e., deposited in 1 L of DI water having 8% w/v of Triton X-100).
  • FIG. 1 illustrates the release profiles of Capsules 1-4.
  • Mode of administration Orally with 240 mL of water about 30 minutes after starting a standardized, high fat, high calorie breakfast preceded by a 10 hour fast. Duration between treatments: minimum of 7 days between the start of each treatment period.
  • FIG. 2 illustrates the mean plasma testosterone concentrations following administration of Capsules 1-4 and 3 ⁇ a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose).
  • FIG. 3 illustrates the mean plasma testosterone undecanoate concentrations following administration of Capsules 1-4 and 3 ⁇ a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose).
  • FIG. 4 illustrates the mean plasma dihydrotestosterone concentrations following administration of Capsules 1-4 and 3 ⁇ a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose).
  • Tables 24-26 illustrate the concentration levels of single administration and simulated steady state levels of testosterone, testosterone undecanoate, and dihydrotestosterone obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)

Abstract

Provided herein are steroid containing compositions suitable for providing therapeutically effective amounts of at least one steroid to individuals. Also provided herein are compositions comprising testosterone and/or testosterone derivatives suitable for providing therapeutically effective and safe amounts of testosterone over periods of time. Further provided are methods of treating andro- and/or testosterone deficiency in individuals by administering to the individuals compositions described herein.

Description

    BACKGROUND OF THE INVENTION
  • Testosterone is an androgenic compound crucial for human health. Certain embodiments of the invention described herein generally relate to compositions for the administration of testosterone, testosterone analogs, other steroids and related compounds.
  • SUMMARY OF THE INVENTION
  • Provided in certain embodiments herein is a delayed release oral dosage form comprising a therapeutically effective amount of one or more testosterone alkyl ester and at least one pharmaceutically acceptable carrier, wherein a single dose of the delayed release oral dosage form provides a mean plasma Cmax of testosterone that is at least 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, provided herein is a delayed release oral dosage form, wherein a single dose of the delayed release oral dosage form provides a mean plasma Cmax of testosterone alkyl ester that is at least 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In certain embodiments, a single dose of the delayed release oral dosage form described herein provides a mean plasma Cmax of that is at least 5% lower than the mean plasma Cmax of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a delayed release oral dosage form described herein provides a mean plasma Cmax at steady state of testosterone alkyl ester that is at least 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In certain embodiments, a delayed release oral dosage form described herein provides a fluctuation index of testosterone at steady state that is at least 5%, or at least 10% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a delayed release oral dosage form described herein provides a fluctuation index of testosterone alkyl ester at steady state that is at least 5%, or at least 10% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a single dose of the delayed release oral dosage form provides a mean plasma concentration of testosterone provided 1 hour after oral administration of the delayed release oral dosage form that is at least 20% lower than a mean plasma concentration of testosterone provided 1 hour after oral administration of a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • Provided in certain embodiments herein is a pharmaceutical composition comprising a therapeutically effective amount of one or more testosterone alkyl ester and at least one pharmaceutically acceptable carrier. In some embodiments, a single dose of a pharmaceutical composition described herein provides a mean plasma Cmax of testosterone that is about 15 ng/mL or less; or about 19 ng/mL or less upon oral administration. In certain embodiments, a single dose of a pharmaceutical composition described herein provides a mean plasma Cmax of dihydrotestosterone that is about 4.5 ng/mL, or about 3.6 ng/mL or less upon oral administration. In some embodiments, a pharmaceutical composition described herein provides a testosterone mean plasma Cmax at steady state of about 1300 ng/dL or less. In certain embodiments, a pharmaceutical composition described herein provides a testosterone mean plasma Cmin at steady state of about 200 ng/dL or more. In some embodiments a pharmaceutical composition provides with administration to an individual a ratio of the testosterone equivalent dose from the alkyl ester, to a mean steady state testosterone Cmax, the ratio being about 500×106 mL or less. In certain embodiments, the difference between the mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state provided by a pharmaceutical composition described herein is about 11 ng/mL or less, or about 16 ng/mL or less. In some embodiments, the difference between the mean plasma Cmax at steady state and mean plasma Cmin at steady state of testosterone alkyl ester provided by a pharmaceutical composition described herein is about 275 ng/ml, or less; or about 200 ng/mL or less. In certain embodiments, a single dose of a pharmaceutical composition described herein provides a mean plasma concentration of testosterone after 1 hour that is about 150 ng/dL or less upon oral administration. In some embodiments, a single dose of a pharmaceutical composition described herein provides a mean plasma concentration of testosterone after 2 hours that is about 500 ng/dL or less upon oral administration.
  • In certain embodiments, a pharmaceutical composition described herein releases about 50% or less of the testosterone alkyl ester after 1 hour and/or about 80% or less of the testosterone alkyl ester after about 30 minutes in an aqueous medium. In some embodiments, a pharmaceutical composition described herein releases about 20% or less of the testosterone alkyl ester after 30 minutes in an aqueous medium. In certain embodiments, a pharmaceutical composition described herein releases less than 95% of the testosterone alkyl ester after 3 hours in an aqueous medium. In some embodiments, a pharmaceutical composition described herein releases more than 80% of the testosterone alkyl ester within 12 hours in an aqueous medium. In some instances, the aqueous medium is present in a USP Type-II (paddle) apparatus with conditions at 37±0.5° C. and at 100 rpm. In more specific instances, the aqueous medium is about 1 L of DI water having 8% w/v of Triton X-100.
  • In certain embodiments, described herein is a delayed release oral dosage form comprising a testosterone alkyl ester (e.g., testosterone alkyl ester formulated in solid PEG). In some embodiments, a pharmaceutical composition described herein is a delayed release oral dosage form. In certain embodiments, the delayed release oral dosage form is formulated in any suitable manner. In some embodiments, a single dose of a delayed release oral dosage form described herein provides a mean plasma Cmax of testosterone that is at least about 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In certain embodiments, a single dose of a delayed release oral dosage form described herein provides a mean plasma Cmax of the testosterone alkyl ester that is at least about 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a single dose of a delayed release oral dosage form described herein provides a mean plasma Cmax of that is at least 5% lower than the mean plasma Cmax of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In certain embodiments, a delayed release oral dosage form described herein provides a mean plasma Cmax at steady state of testosterone alkyl ester that is at least about 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a delayed release oral dosage form described herein provides a fluctuation index of testosterone at steady state that is at least 10% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In certain embodiments, a delayed release oral dosage form described herein provides a fluctuation index of testosterone alkyl ester at steady state that is at least 10% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester. In some embodiments, a single dose of a delayed release oral dosage form described herein provides a mean plasma concentration of testosterone provided 1 hour after oral administration of the delayed release oral dosage form that is at least 20% lower than a mean plasma concentration of testosterone provided 1 hour after oral administration of a single dose of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester.
  • In some embodiments, the one or more testosterone alkyl ester provided in any pharmaceutical composition or oral dosage form described herein is or comprises testosterone undecanoate. In certain embodiments, any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 400 mg, or about 10 mg to about 1000 mg of testosterone alkyl ester. In some embodiments, any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 300 mg of testosterone alkyl ester. In certain embodiments, any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 240 mg of testosterone alkyl ester. In some embodiments, any pharmaceutical composition or oral dosage form described herein comprises about 10 mg to about 150 mg of testosterone alkyl ester. In some embodiments, any pharmaceutical composition or oral dosage form described herein comprises about 120 mg of testosterone alkyl ester.
  • In certain embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one hydrophilic carrier. In some embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one lipophilic carrier. In certain embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition or oral dosage form described herein comprises at least one viscosity enhancer or solidifying agent. In some embodiments, the at least one hydrophilic carrier comprises a hydrophilic triglyceride. In specific embodiments, the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil.
  • Provided in some embodiments herein is a method of treating androgen deficiency in an individual in need thereof by administering to the individual any oral dosage form or pharmaceutical composition described herein. In some embodiments, a pharmaceutical composition or oral dosage form described herein is administered b.i.d. In certain embodiments, a pharmaceutical composition or oral dosage form described herein is administered with a meal.
  • Provided in certain embodiments herein is an oral testosterone undecanoate therapy that provides to a human in need of androgen therapy by orally delivering to the human a composition comprising a therapeutically effective amount of testosterone undecanoate. In some embodiments, the oral testosterone undecanoate therapy provides in a human (e.g., a male human) a mean Cmax of testosterone that is less than about 15 ng/mL; or less than about 19 ng/mL after a single administration of the composition. In certain embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a mean plasma Cmax of dihydrotestosterone that is about 3.6 ng/mL or less; or about 4.5 ng/mL or less after a single administration of the composition. In some embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a testosterone mean plasma Cmax at steady state of about 1300 ng/dL or less. In certain embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a testosterone mean plasma Cmin at steady state of about 200 ng/dL or more. In some embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a mean Cmax of testosterone at steady state to dose ratio of about 15 or less. In specific embodiments, the ratio is 15 or less, or 13 or less. In some embodiments provided herein is a pharmaceutical composition that provides with administration to an individual a ratio of a testosterone C2-C13 alkyl ester dose, in mg, to a mean steady state testosterone Cmax, in mg/mL, the ratio of testosterone equivalent dose from the testosterone alkyl ester to a mean steady state testosterone Cmax, the ratio being about 500×106 mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In certain embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a difference between a mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state of about 11 ng/mL or less, or about 16 ng/mL or less. In some embodiments, the oral testosterone undecanoate therapy provides to a human (e.g., a male human) a difference between a mean plasma Cmax at steady state and mean plasma Cmin at steady state of testosterone alkyl ester of about 200 ng/mL or less; or about 275 ng/mL or less. In certain instances, when a mean plasma concentration is utilized, the value is obtained from a statistically significant population of individuals.
  • Provided in certain embodiments herein is a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone C2-C13 alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 80% or less of the testosterone C2-C13 alkyl ester after 30 minutes in an aqueous medium. In certain instances, the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C. In some embodiments, any aqueous medium described herein is 1 L deionized water comprising 8% w/v Triton X-100 (e.g., octylphenol ethylene oxide condensate; octoxynol-9; t-octylphenoxypolyethoxyethanol; t-oct-C6H4—(OCH2CH2)xOH, x=9-10; CAS No. 9002-93-1; Triton X-100 was a registered trademark formerly owned by Rohm and Haas Co., but now owned by Union Carbide) at 37±0.5° C. and subjected to a paddle method at 100 rpm and 37±0.5° C. for the designated period of time (USP App 2). In some embodiments, the testosterone C2-C13 alkyl ester is testosterone undecanoate. In certain embodiments, the pharmaceutical composition comprises about 10 mg to about 1000 mg of testosterone C2-C13 alkyl ester.
  • In some embodiments, a single dose of any pharmaceutical composition provided herein provides a mean plasma Cmax of testosterone that is about 15 ng/mL or less; or about 19 ng/mL or less upon oral administration (e.g., to a testosterone deficient individual). In certain embodiments, a single dose of any pharmaceutical composition provided herein provides a mean plasma Cmax of dihydrotestosterone that is about 4.5 ng/mL or less; or about 3.6 ng/mL or less upon oral administration (e.g., to a testosterone deficient individual). In some embodiments, any pharmaceutical composition provided herein provides a testosterone mean plasma Cmax at steady state of about 1300 ng/dL or less with oral administration (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In certain embodiments, any pharmaceutical composition provided herein provides a testosterone mean plasma Cmin at steady state of about 200 ng/dL or more with oral administration (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In some embodiments, any pharmaceutical composition provided herein provides with administration to an individual (e.g., oral administration) a ratio of testosterone equivalent dose from the testosterone alkyl ester to a mean a mean steady state testosterone Cmax, the ratio being about 500×106 mL, or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual).
  • In some embodiments, the difference between the mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state is about 11 ng/mL or less, or about 16 ng/mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In some embodiments, the difference between the mean plasma Cmax at steady state and mean plasma Cmin at steady state of testosterone C2-C13 alkyl ester is about 200 ng/mL or less; or about 275 ng/mL or less (e.g., with b.i.d. or q.d. administration to an otherwise testosterone deficient individual). In some embodiments, a single dose of any pharmaceutical composition provided herein provides a mean plasma concentration of testosterone after 1 hour that is about 150 ng/dL or less upon oral administration. In certain embodiments, a single dose of any pharmaceutical composition provided herein provides a mean plasma concentration of testosterone after 2 hours that is about 500 ng/dL or less upon oral administration.
  • In certain embodiments, the at least one pharmaceutically acceptable carrier of any pharmaceutical composition provided herein comprises at least one hydrophilic carrier. In specific embodiments, the hydrophilic carrier is a hydrophilic triglyceride. In more specific embodiments, the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil. In some embodiments, any pharmaceutical composition provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers. In certain embodiments, any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w or less than 5% w/w of a hydrophilic carrier.
  • Provided in certain embodiments herein is a delayed release oral dosage form comprising (i) a therapeutically effective amount of one or more testosterone C2-C13 alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; wherein a single dose of the delayed release oral dosage form provides a mean plasma Cmax of testosterone that is at least 5% lower; or at least 10% lower than the mean plasma Cmax of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C2-C13 alkyl ester. In some embodiments, the testosterone C2-C13 alkyl ester is testosterone undecanoate. In certain embodiments, the pharmaceutical composition comprises about 10 mg to about 1000 mg of testosterone C2-C13 alkyl ester.
  • In some embodiments, a single dose of any delayed release oral dosage form provided herein provides a mean plasma Cmax of the that is at least 5%, at least 10% or at least 15% lower than the mean plasma Cmax of testosterone C2-C13 alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C2-C13 alkyl ester. In some embodiments, a single administration to a human of a dose of the delayed release oral dosage form provides a ratio of testosterone equivalent dose from the C2-C13 alkyl ester present in the dose of the delayed release oral dosage form to mean plasma testosterone Cmax provided by the single administration of the dose of the delayed oral release dosage form, the ratio being about 500×106 mL or less. In certain embodiments, a single dose of any delayed release oral dosage form provided herein provides a mean plasma Cmax of that is at least 5% lower than the mean plasma Cmax of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the testosterone C2-C13 alkyl ester. In some embodiments, a single administration to a human a dose of the delayed release oral dosage form provides a ratio of testosterone equivalent dose from the C2-C13 alkyl ester to mean plasma dihydroxytestosterone Cmax provided by the single administration of the dose of the delayed oral release dosage form, the ratio being about 350×106 mL or less. In some embodiments, any delayed release oral dosage form provided herein provides a mean plasma Cmax at steady state of testosterone C2-C13 alkyl ester that is at least 5% lower, or at least 10% lower than the mean plasma Cmax of testosterone C2-C13 alkyl ester at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone C2-C13 alkyl ester (e.g., when orally administered to a testosterone deficient individual b.i.d. or q.d.).
  • In certain embodiments, any delayed release oral dosage form provided herein comprises at least one pharmaceutically acceptable carrier that comprises at least one hydrophilic carrier. In specific embodiments, the hydrophilic carrier is a hydrophilic triglyceride. In more specific embodiments, the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil. In some embodiments, any delayed release oral dosage form provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers. In some embodiments, a lipophilic carrier selected from the group consisting of a monoglyceride, a diglyceride, a Vitamin E compound, a trigliceride, a fatty acid, polyoxylated fatty acid, polyoxylated triglyceride, polyoxylated vegetable oil, and a combination thereof. In certain embodiments, any delayed release oral dosage form provided herein comprises a lipophilic carrier and less than 10% w/w or less than 5% w/w of a hydrophilic carrier.
  • Provided in some embodiments herein is a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 60% to about 90%, about 60% to about 85%, or about 60% to about 80% of the testosterone alkyl ester after 1 hour in an aqueous medium. In certain instances, the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C.
  • Provided in certain embodiments herein is a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition releasing about 50% or less, about 45% or less, or about 40% or less of the testosterone alkyl ester after 6 hour in an aqueous medium. In certain instances, the aqueous medium comprises 8% w/v octoxynol-9 in water at about 37° C.
  • Provided in some embodiments herein is a method of treating androgen deficiency in an individual in need thereof by administering to the individual any pharmaceutical composition or dosage form described herein. In a specific embodiment, provided herein is a method of treating androgen deficiency in an individual in need thereof by administering to the individual a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone C2-C13 alkyl ester; and (ii) at least one pharmaceutically acceptable carrier. In specific embodiments, the pharmaceutical composition releases about 80% or less; or 90% or less of the testosterone C2-C13 alkyl ester after 30 minutes in an aqueous medium. In some embodiments, the pharmaceutical composition releases about 50% or less of the testosterone C2-C13 alkyl ester after 1 hour in an aqueous medium. In certain embodiments, the pharmaceutical composition is administered with a meal. In some embodiments, the pharmaceutical composition is administered b.i.d. or q.d. In various embodiments, a method provided herein has a release or pharmacokinetic profile as described herein. In some embodiments, an oral testosterone undecanoate therapy described herein provides to a human a ratio of a testosterone equivalent dose from the testosterone C2-C13 alkyl ester to mean steady state testosterone Cmax, the ratio being about 500×106 mL or less.
  • Also provided in some embodiments herein is an oral testosterone undecanoate therapy that provides to a human in need of androgen therapy by orally delivering to the human a composition comprising a therapeutically effective amount of testosterone undecanoate. In some embodiments, the therapy provides to the human a mean Cmax of testosterone that is less than about 15 ng/mL, or less than about 19 ng/mL after a single administration of the composition. In certain embodiments, the oral testosterone undecanoate therapy provides to the human a mean plasma Cmax of dihydrotestosterone that is about 3.6 ng/mL, or less; or about 4.5 ng/mL, or less after a single administration of the composition. In some embodiments, the oral testosterone undecanoate therapy provides to the human a testosterone mean plasma Cmax at steady state of about 1300 ng/dL or less after a single administration of the composition. In certain embodiments, the oral testosterone undecanoate therapy provides to the human a testosterone mean plasma Cmin at steady state of about 200 ng/dL or more after a single administration of the composition. In some embodiments, the oral testosterone undecanoate therapy provides to the human a ratio of a testosterone equivalent dose to a mean stead state testosterone Cmax of about 500×106 mL or less after a single administration of the composition. In certain embodiments, the oral testosterone undecanoate therapy provides to the human a difference between a mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state of about 11 ng/mL or less; or about 16 ng/mL or less. In some embodiments, the oral testosterone undecanoate therapy provides to the human a difference between a mean plasma Cmax at steady state and mean plasma Cmin at steady state of testosterone alkyl ester of about 200 ng/mL or less.
  • Provided in certain embodiments herein is a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) a single (e.g., one and only one) lipid component solubilizing the testosterone alkyl ester. In some embodiments, provided herein is a pharmaceutical composition comprising a therapeutically effective amount of testosterone undecanoate; the pharmaceutical composition providing an increase in testosterone alkyl ester in plasma compared to an otherwise identical pharmaceutical composition comprising a testosterone alkyl ester other than testosterone undecanoate. In certain embodiments, provided herein is a pharmaceutical composition comprising (i) a therapeutically effective amount of one or more testosterone alkyl ester; and (ii) at least one pharmaceutically acceptable carrier; the pharmaceutical composition providing, when administered as a single dose to an individual, a dose of testosterone equivalent from the testosterone alkyl ester, to mean steady state AUC0-∞ ratio of about 500×103 mL/h or less.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF TAE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention may be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention, in certain embodiments, are utilized, and the accompanying drawings of which:
  • FIG. 1 illustrates the release profiles of Capsules 1-4 subjected to USP Apparatus 2 at 37° C. and 100 rpm.
  • FIG. 2 illustrates the mean plasma testosterone concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • FIG. 3 illustrates the mean plasma testosterone undecanote concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • FIG. 4 illustrates the mean plasma dihydrotestosterone concentrations following administration of several oral dosage forms described herein and an immediate release oral dosage.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Provided herein are pharmaceutical compositions and methods of using the same. In some embodiments, the pharmaceutical compositions are formulated for oral delivery as an oral dosage form. In certain embodiments, a pharmaceutical composition described herein comprises a steroidal compound and at least one pharmaceutically acceptable carrier. In some embodiments, a pharmaceutical composition described herein is an oral dosage form comprising a steroidal compound and at least one pharmaceutically acceptable carrier. In specific embodiments, the steroidal compound is a steroidal androgen (e.g., testosterone, dihydrotestosterone, analogs, or prodrugs thereof). In certain embodiments, analogs or prodrugs of testosterone include, e.g., esters of testosterone. In specific embodiments, the esters of testosterone include, e.g., alkyl (e.g., straight chain, branched, cyclic, unsaturated, partially saturated, fully saturated and the like) esters of testosterone. Specifically, alkyl esters of testosterone include, by way of non-limiting example, lower alkyl esters (e.g., testosterone C2-C13 alkyl esters such as testosterone propionate, testosterone enthanate, or testosterone undecanoate), or higher alkyl esters (e.g., testosterone C14+ alkyl esters such as testosterone palmitate). In further embodiments, the alkyl esters of testosterone include, by way of non-limiting example, cycloalkylalkyl esters (e.g., testosterone cypionate), cycloalkyl esters, and alkylcycloalkyl esters. In more specific embodiments, the testosterone alkyl ester is testosterone undecanoate. In certain embodiments, alkyl groups of the alkyl esters and/or other positions of the steroidal compound (e.g., testosterone alkyl ester, such as testosterone undecanoate) described herein are optionally substituted, e.g., with one or more halogen, hydroxy group, amino group, or the like, or combinations thereof.
  • In various embodiments, the pharmaceutical compositions are formulated for androgen (e.g., testosterone) therapy. In certain instances, the androgen therapy is an androgen (e.g., testosterone) replacement therapy. In some embodiments, the androgen replacement therapy is utilized to treat individuals suffering from androgen deficiency (e.g., postmenopausal women, menopausal women, sexually dysfunctional women, andropausal men, hypogonadal men, and the like) or treat individuals in need of increased androgen levels. In some embodiments, the androgen (e.g., testosterone) replacement therapy is utilized for the treatment of individuals diagnosed with or exhibiting symptoms of androgen (e.g., testosterone) deficiency including, e.g., in aging men.
  • Provided in certain embodiments herein are pharmaceutical compositions that provide a plasma Cmax of testosterone that is less than 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments a pharmaceutical composition described herein provides a plasma Cmax of testosterone that is less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments the oral dosage forms provide a plasma Cmax of testosterone that is less than 2500 ng/dL in all individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments, the individuals are adult humans. In specific embodiments, the adult humans are adult hypogonadal or otherwise androdeficient male humans.
  • In certain instances, normal human male testes produce four to eight milligrams of testosterone daily and human females produce less. Within certain contexts of the invention described herein, it will be generally recognized by those of skill in the art that the physiological “normal” range of total testosterone in men is about 250 to about 1,100 nanograms per deciliter (ng/dL) and in healthy women is about 11 ng/dL to about 78 ng/dL. Journal of Clinical Endocrinology & Metabolism, 85(7):2395-401.
  • Provided in some embodiments herein are pharmaceutical compositions that provide a Cmin that is about 10 ng/dL or greater and a Cmax that is about 100 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state). Provided in some embodiments herein are pharmaceutical compositions that provide a Cmin that is about 12 ng/dL or greater and a Cmax that is about 82 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state).
  • In some embodiments, the pharmaceutical composition provided herein is a delayed release oral dosage form comprising a steroidal compound and at least one pharmaceutically acceptable carrier. In certain instances, the delayed release oral dosage forms release the active in an aqueous medium (e.g., water, gastric fluid, or an aqueous solution with a pH of about 5.8) at a rate slower than an immediate or fast release oral dosage form (e.g., as measured by the amount of active found in the aqueous medium). In some embodiments, delayed release oral dosage forms comprise a steroidal compound, at least one hydrophilic carrier. In further embodiments, delayed release oral dosage forms comprise a steroidal compound, at least one hydrophilic carrier, and at least one lipidic and/or lipophilic carrier. In still further embodiments, the delayed release oral dosage form comprises at least one steroidal compound, at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent. In still further embodiments, the delayed release oral dosage form comprises at least one steroidal compound and at least one viscosity enhancer or solidifying agent. In some embodiments, a pharmaceutical composition provided herein is formulated, e.g., with the viscosity enhancing agent or solidifying agent, to provide a solid, a semi-solid, a gel, a jelly, a paste, or the like. In specific embodiments, the delayed release oral dosage form is a capsule (e.g., a hard- or soft-gel capsule, a tablet or other solid dosage form). In some embodiments, the delayed release dosage form provided herein comprises the active (e.g., one or more testosterone alkyl ester such as testosterone undecanoate) in different release fractions (e.g., an immediate release portion and a delayed release portion). In specific embodiments, pharmaceutical compositions or dosage forms provided herein comprise one or more of an immediate release portions or fractions, fast release portions or fractions, or combinations thereof and an enteric-release portion or fraction, sustained-release portion or fraction, controlled-release portion or fraction, extended-release portion or fraction, pulsatile-release portion or fraction, timed-release portion or fraction, or combinations thereof.
  • Pharmaceutical Compositions
  • In certain embodiments, provided herein is a pharmaceutical composition comprising at least one steroidal compound (e.g., testosterone, dihydrotestosterone, estradiol, or analogs or prodrugs thereof) and at least one pharmaceutically acceptable carrier. In specific embodiments, the steroidal compound is a steroidal androgen (e.g., testosterone, dihydrotestosterone, or prodrugs thereof). In some embodiments, the steroidal compound is an alkylated, hydroxy-alkylated and/or hydroxy-alkoxylated natural steroid (e.g., testosterone alkyl ester, dihydrotestosterone alkyl ester, estradiol alkyl ester, or the like). In certain embodiments, analogs or prodrugs of testosterone include, e.g., esters of testosterone. In specific embodiments, the esters of testosterone include, e.g., alkyl (e.g., straight chain, branched, cyclic, unsaturated, partially saturated, fully saturated and the like) esters of testosterone. Specifically, alkyl esters of testosterone include, by way of non-limiting example, lower alkyl esters (e.g., testosterone C2-C13 alkyl esters such as testosterone propionate, testosterone enthanate, or testosterone undecanoate), or higher alkyl esters (e.g., testosterone C14+ alkyl esters such as testosterone palmitate). In further embodiments, the alkyl esters of testosterone include, by way of non-limiting example, cycloalkylalkyl esters (e.g., testosterone cypionate), cycloalkyl esters, and alkylcycloalkyl esters. In more specific embodiments, the testosterone alkyl ester is testosterone undecanoate. In some embodiments, the at least one steroidal compound comprises (1) a testosterone lower alkyl ester (e.g., testosterone propionate, testosterone enthanate, or testosterone undecanoate); and (2) a testosterone higher alkyl ester (e.g., testosterone palmitate). Generally, as used herein, a pharmaceutical composition comprising a steroidal compound includes the disclosure of a pharmaceutical composition comprising one or more steroidal compounds.
  • In certain embodiments, any pharmaceutical composition described herein comprises a therapeutically effective amount of at least one steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, a therapeutically effective amount of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) is divided into one or more oral dosage form. In some embodiments, the one or more of the oral dosage forms described herein collectively comprise a therapeutically effective amount of a testosterone alkyl ester (e.g., testosterone undecanoate). Thus, in some embodiments, the therapeutically effective amount of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) within a pharmaceutical composition described herein may vary when the pharmaceutical composition is administered in combination with another therapy. Furthermore, therapeutically effective amounts of a formulation may depend on the specific formulation within which the at least one steroidal compound is found. For example, in some embodiments, more than one steroidal compound is present in a pharmaceutical composition described herein. Thus, when there is a combination of steroidal compounds, in certain instances one or both of the steroidal compounds present has a therapeutically effective amount that is lower than is required when the steroidal compounds are administered separately or alone. In some embodiments, a pharmaceutical composition described herein further comprises an adjuvant, which, in certain instances, allows for a lower amount of a steroidal compound to be utilized as a therapeutically effective amount.
  • In certain embodiments, a pharmaceutical composition described herein comprises about 1 mg to about 1.5 g, about 10 mg to about 1000 mg, or about 10 mg to about 200 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In specific embodiments, a pharmaceutical composition described herein comprises about 10 mg to about 50 mg, about 15 mg to about 40 mg, about 20 mg, to about 30 mg, or about 25 mg of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In other embodiments, a pharmaceutical composition described herein comprises about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, or about 120 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, a pharmaceutical composition described herein comprises about 0.1 mg to about 5 mg of a steroidal compound (e.g., a testosterone alkyl ester such as testosterone undecanoate) per kg of an individual to whom the oral dosage form is to be administered. In certain embodiments, a pharmaceutical composition described herein comprises an amount of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) sufficient to provide about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) to an individual upon once a day, twice a day, three times a day, or four times a day oral administration.
  • In some embodiments, the at least one pharmaceutically acceptable carrier is any carrier suitable for delivering an efficacious amount of a steroidal compound, e.g., a testosterone alkyl ester, to an individual. In some embodiments, the at least one pharmaceutically acceptable carrier is or comprises a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive). In certain embodiments, the at least one pharmaceutically acceptable carrier is a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive). In some embodiments, the at least one pharmaceutically acceptable carrier is a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive) and a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive). In certain embodiments, the hydrophilic carrier is a hydrophilic triglyceride. In specific embodiments, the hydrophilic triglyceride is a polyoxylated castor oil, or a polyoxylated hydrogenated castor oil. In some embodiments, any pharmaceutical composition provided herein consists essentially of a lipophilic carrier or combination of lipophilic carriers. In certain embodiments, any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w, less than 5% w/w or is substantially free of a hydrophilic carrier. In certain embodiments, any pharmaceutical composition provided herein comprises a lipophilic carrier and less than 10% w/w, less than 5% w/w or is substantially free of a hydrophilic carrier. In some embodiments, the pharmaceutical composition comprising a carrier (e.g., a hydrophilic carrier and/or a lipophilic carrier), the pharmaceutical composition is a solid, a semi-solid, a gel, a jelly, a paste, or the like. In certain embodiments, e.g., wherein a pharmaceutical composition comprising a hydrophilic carrier and/or a lipophilic carrier, a viscosity enhancing agent or a solidifying agent is utilized to afford a pharmaceutical composition that is a solid, a semi-solid, a gel, a jelly, a paste, or the like. Thus, in certain embodiments, the at least one pharmaceutically acceptable carrier is a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive) and a viscosity enhancing or solidifying agent. In certain embodiments, the at least one pharmaceutically acceptable carrier is a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive) and a viscosity enhancing or solidifying agent. In some embodiments, the at least one pharmaceutically acceptable carrier is or comprises a hydrophilic carrier (e.g., a hydrophilic surfactant or hydrophilic additive), a lipophilic carrier (e.g., a lipophilic surfactant or lipophilic additive), and a viscosity enhancing or solidifying agent. In some embodiments, the at least one pharmaceutically acceptable carrier is or comprises an amphiphilic or zwitterionic carrier (e.g., an amphiphilic surfactant or amphiphilic additive). In certain embodiments, the pharmaceutically acceptable carrier is any carrier suitable for achieving one or more of the pharmacokinetic and/or pharmacodynamic profiles set forth herein.
  • Additives useful herein include chemical substances that are generally pharmacologically inactive. Further, the additive may be solid, liquid or semi-solid in nature at about ambient room temperature. Furthermore, the additive may be hydrophilic or lipophilic. In certain instances, a “hydrophilic additive” is a substance that has at least one polar side group in its chemical structure which will attract water; whereas a “lipophilic additive” exhibits a tendency to repel water.
  • In some embodiments, the hydrophilic or lipophilic additive is contained within the components forming a composition and/or pharmaceutical dosage form thereof. In certain embodiments, the hydrophilic or lipophilic additive is in an encapsulation coat in compositions. Alternatively, the additives can be comprised in the pharmaceutical composition but not as part of the composition itself. Specific, non-limiting examples of additives are described below.
  • Suitable additives include any additive that can facilitate the processes involving the preparation of a pharmaceutical composition and/or dosage form described herein. In some instances, such additives include those commonly utilized to facilitate the processes involving the preparation of a composition and/or a pharmaceutical dosage form described herein. These processes include agglomeration, air suspension chilling, air suspension drying, balling, coacervation, comminution, compression, pelletization, cryopelletization, encapsulation, extrusion, granulation, homogenization, inclusion complexation, lyophilization, nanoencapsulation, melting, mixing, molding, pan coating, solvent dehydration, sonication, spheronization, spray chilling, spray congealing, spray drying, or other processes known in the art. In certain instances, the additive is optionally pre-coated or encapsulated. Suitable additives are optionally utilized to influence the drug release from the composition and/or pharmaceutical dosage form.
  • Suitable additives utilized in various embodiments described herein include, by way of non-limiting example, adsorbing agents, anti-adherents, anticoagulants, antifoaming agents, antioxidants, anti-caking agents, anti-static agents, binders, bile acids, bufferants, bulking agents, chelating agents, coagulants, colorants, co-solvent, opaquants, congealing agents, coolants, cryoprotectants, diluents, dehumidifying agents, desiccants, desensitizers, disintegrants, dispersing agents, enzyme inhibitors, glidants, fillers, hydrating agent, super disintegrants, gums, mucilages, hydrogen bonding agents, enzymes, flavorants, humectants, humidifying agents, lubricant oils, ion-exchange resins, lubricants, plasticizers, pH modifying agents, preservatives, solidifying agent, solvents, solubilizers, spreading agent sweeteners, stabilizers, surface area enhancing agents, suspending agent, thickeners, viscosity increasing agents, waxes and mixtures thereof.
  • Some non-limiting examples of the hydrophilic or lipophilic additives suitable for the current invention are as follows:
  • Alcohols and/or Polyols (e.g. ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, glycerol, sorbitol, mannitol, dimethyl isosorbide, polyethylene glycol, fatty acid alcohol, vinyl alcohol polypropylene glycol, polyvinylalcohol, tocopherols, cellulose cyclodextrins, other derivatives, forms, mixtures thereof, or the like); ethers of polyethylene glycols having an average molecular weight of about 200 to about 20,000 (e.g. tetrahydrofurfuryl alcohol PEG ether, methoxy PEG, or the like); Amides (e.g. 2-pyrrolidone, 2-piperidone, ε-caprolactam, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam, dimethylacetamide, polyvinylpyrrolidone and the like); Esters (e.g. ethyl propionate, tributylcitrate, acetyl triethylcitrate, acetyl tributyl citrate, triethylcitrate, ethyl oleate, ethyl caprylate, ethyl butyrate, triacetin, propylene glycol monoacetate, propylene glycol diacetate, ε-caprolactone and isomers thereof, δ-valerolactone and isomers thereof, β-butyrolactone and isomers thereof; and other additives known in the art, such as dimethyl acetamide, dimethyl isosorbide, N-methyl pyrrolidones, monooctanoin, diethylene glycol monoethyl ether, or the like); Amino acids (e.g. P-aminobenzamidine, sodium glycocholate) mesylate; Amino acids and modified amino acids (e.g. aminoboronic acid derivatives and n-acetylcysteine; Peptides and modified peptides (e.g. bacitracin, phosphinic acid dipeptide derivatives, pepstatin, antipain, leupeptin, chymostatin, elastin, bestatin, phoshporamindon, puromycin, cytochalasin potatocarboxy peptidase inhibitor, amastatin, or the like); Polypeptide protease inhibitors; Mucoadhesive polymers (e.g. polyacrylate derivatives, chitosan, cellulosics, chitosan-EDTA, chitosan-EDTA-antipain, polyacrylic acid, carboxymethyl cellulose etc.); or the like; or combinations thereof.
  • Some more examples of suitable additives for compositions and/or dosage forms described herein include, by way of non-limiting example, talc, magnesium stearate, silica (e.g. fumed silica, micronized silica, magnesium aluminum silicate etc.) and/or derivatives, polyethylene glycols, surfactants, waxes, oils, cetyl acohol, polyvinyl alcohol, stearic acid, stearic acid salts, stearic acid derivatives, starch, hydrogenated vegetable oils, hydrogenatied castor oils, sodium benzoate, sodium acetate, leucine, PEG, alkyl sulfate salts; acetylated monoglycerides; long-chain alcohols; silicone derivatives; butylated hydroxy toluene (BHT), butylated hydroxyl anisole (BHA), gallic acid, propyl gallate, ascorbic acid, ascorbyl palmitate, 4-hydroxymethyl-2,6-di-tert-butyl phenol, dry starch, dry sugars, polyvinyl pyrrolidones, starch paste, methacrylic copolymers, bentonite, sucrose, polymeric cellulose derivatives, shellac, sugar syrup; corn syrup; polysaccharides, acacia, tragacanth, guar gum, xanthan gums; alginates; gelatin; gelatin hydrolysate; agar; sucrose; dextrose; PEG, vinyl pyrrolidone copolymers, poloxamers; pregelatinized starch, sorbitol, glucose); acetic acid, hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid and uric acid, vinegar, pharmaceutically acceptable bases, such as an amino acid, an amino acid ester, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydrotalcite, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, triisopropanolamin; salt of a pharmaceutically acceptable cation and an anion; EDTA and EDTA salts; titanium dioxide, food dyes, lakes, natural vegetable colorants, iron oxides, silicates, sulfates, magnesium hydroxide and aluminum hydroxide; halogenated hydrocarbons, trichloroethane, trichloroethylene, dichloromethane, fluorotrichloromethane, diethylether, trehelose, phosphates, citric acid, tartaric acid, gelatin, dextran and mannitol, lactose, mannitol, sodium chloride, potassium chloride, spray-dried lactose, hydrolyzed starches, directly compressible starch, microcrystalline cellulose, cellulosic derivatives, sorbitol, sucrose, sucrose-based materials, calcium sulfate, dibasic calcium phosphate, dextrose, croscarrnellose sodium, starch, starch derivatives, clays, gums, cellulose, cellulose derivates, alginates, crosslinked polyvinylpyrrolidone, sodium starch glycolate and microcrystalline cellulose, magnesium oxide, magnesium carbonates; desensitizers, spray-dried flavors, essential oils, ethyl vanillin, styrene/divinyl benzene copolymers, quaternary ammonium compounds, polyethylene glycol, citrate esters (such as triethyl citrate, acetyl triethyl citrate, acetyltributyl citrate), acetylated monoglycerides, glycerin, triacetin, propylene glycol, phthalate esters (e.g., diethyl phthalate, dibutyl phthalate), castor oil, sorbitol and dibutyl sebacate, ascorbic acid, boric acid, sorbic acid, benzoic acid, and salts thereof, parabens, phenols, benzyl alcohol, and quaternary ammonium compounds; alcohols, ketones, esters, chlorinated hydrocarbons water; sweeteners, (e.g. maltose, sucrose, glucose, sorbitol, glycerin and dextrins, aspartame, saccharine, saccharine salts, glycyrrhizin), viscosity modifiers, sugars, polyvinylpyrrolidone, cellulosics, polymers, gums and/or alginates.
  • Additives can also be materials such as proteins (e.g., collagen, gelatin, Zein, gluten, mussel protein, lipoprotein); carbohydrates (e.g., alginates, carrageenan, cellulose derivatives, pectin, starch, chitosan); gums (e.g., xanthan gum, gum arabic); spermaceti; natural or synthetic waxes; carnuaba wax; fatty acids (e.g., stearic acid, hydroxystearic acid); fatty alcohols; sugars; shellacs, such as those based on sugars (e.g., lactose, sucrose, dextrose) or starches; polysaccharide-based shellacs (e.g., maltodextrin and maltodextrin derivatives, dextrates, cyclodextrin and cyclodextrin derivatives); cellulosic-based polymers (e.g., ethyl cellulose, methyl cellulose, microcrystalline cellulose, sodium carboxymethyl cellulose, hydroxypropylmethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, HPMC acid succinates, cellulose acetate, cellulose nitrate, cellulose acetate butyrate, cellulose acetate trimellitate, carboxymethylethyl cellulose, hydroxypropylmethyl cellulose phthalate), shellacs; inorganics, such as dicalcium phosphate, hydroxyapitite, tricalcium phosphate, talc and titania; polyols, such as mannitol, xylitol and sorbitol; polyethylene glycol esters; and polymers, such as alginates, poly(lactide coglycolide), gelatin, crosslinked gelatin, and agar-agar.
  • It should be appreciated that there is considerable overlap between the above-listed additives in common usage, since a given hydrophilic or lipophilic additive is often classified differently by different practitioners in the field, or is commonly used for any of several different or overlapping functions. Thus, the above-listed hydrophilic or lipophilic additives should be taken as merely exemplary, and not limiting, of the types of additives that can be included in compositions of the present invention. In certain embodiments, the amounts of such additives are optionally adjusted and/or determined by one skilled in the art, according to the particular properties desired.
  • In certain embodiments, the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier (e.g., hydrophilic surfactant). In some embodiments, the hydrophilic carrier is a polyoxylated glyceride (e.g., mono-, di-, or tri-glyceride), a polyoxylated vegetable oil, a polyoxylated hydrogenated vegetable oil, a polyoxylated fatty acid (mono-, or di-substituted), combinations thereof, or the like. In certain embodiments, the at least one pharmaceutically acceptable carrier comprises or further comprises a lipophilic carrier. Lipophilic carriers are selected from, by way of non-limiting example, a lipophilic surfactant, a vegetable oil (e.g., castor oil), a fatty acid, a fatty alcohol, a glyceride (e.g., mono-, di-, or tri-glyceride), a hydrogenated vegetable oil, a Vitamin E compound (e.g., d,l-α-tocopherol), a trigliceride, a fatty acid, polyoxylated fatty acid, polyoxylated triglyceride, polyoxylated vegetable oil, or combinations thereof. In some embodiments, polyoxylated compounds include polyethoxylated compounds.
  • In certain embodiments, the at least one hydrophilic carriers make up about 1% to about 99% w/w, about 2% to about 80% w/w, about 2% to about 50% w/w, or about 10% to about 40% w/w of any pharmaceutical composition described herein. In some embodiments, lipophilic carriers make up about 1% w/w to about 99% w/w, about 2% to about 80% w/w, about 10% w/w to about 80% w/w, about 30% w/w, to about 80% w/w, or about 40% to about 80% w/w of any pharmaceutical composition described herein.
  • In specific embodiments, provided herein is a pharmaceutical composition (e.g., a delayed release dosage form) comprising a hydrophilic carrier. In more specific embodiments, the hydrophilic carrier is or comprises a polyoxylated vegetable oil (e.g., a polyoxylated, hydrogenated vegetable oil). In still more specific embodiments, a polyoxylated vegetable oil is a polyoxylated castor oil (e.g., a polyoxylated, hydrogenated castor oil). In certain embodiments, the lipidic and/or lipophilic carrier is not a C6-C18 fatty acid. In some embodiments, the lipophilic carrier is a C20+ fatty acid. In some embodiments, the lipidic and/or lipophilic carrier is not a fatty acid or an un-modified (e.g., non-polyoxylated) vegetable oil. In more specific embodiments, the lipidic and/or lipophilic carrier is not oleic acid or castor oil. In certain specific embodiments provided herein is a pharmaceutical composition (e.g., a delayed release dosage form) comprising an ampiphilic carrier. In more specific embodiments, the ampiphilic carrier is or comprises a zwitterionic choline (e.g., phosphatidylcholine). In some specific embodiments, provided herein is a pharmaceutical composition (e.g., a delayed release dosage form) comprising a lipophilic carrier. In more specific embodiments, the lipophilic carrier is or comprises, by way of non-limiting example, a mono-, di- or triglyceride (e.g., glycerol monolinoleate).
  • In some embodiments, the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, and at least one lipidic and/or lipophilic carrier. In further embodiments, the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent. In some embodiments, the solidifying agent is a polyethylene glycol (e.g., a high molecular weight polyethylene glycol, such as PEG 8000). In specific embodiments, a pharmaceutical composition described herein comprises, along with a steroidal agent (e.g., a testosterone alkyl ester), a hydrogenated and polyoxylated castor oil and a polyethylene glycol. In more specific embodiments, the pharmaceutical composition comprising a hydrogenated and polyoxylated castor oil and a polyethylene glycol further comprises an additional lipidic and/or lipophilic carrier. In some embodiments, the additional lipidic and/or lipophilic carrier is a monoglyceride, a diglyceride, a Vitamin E compound, or a combination thereof.
  • In certain embodiments, pharmaceutical compositions described herein include oral dosage forms or delayed release oral dosage forms of any of Tables A to Q. In Tables A to Q, approximate weight percentages of the compositions formulated into the capsules are provided. In specific embodiments, the steroidal compound of any of Capsules A1 to Q2 comprises an alkyl ester testosterone (e.g., testosterone undecanoate). In certain instances, provided in the tables are non-limiting grades and/or sources of components utilized. Disclosure provided in Tables A to Q is not limited to the grades and/or sources described.
  • TABLE A
    Capsule A1 Capsule A2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 1-50 10-30
    Hydrophilic Carrier 1-90 10-30
    Lipophilic Carrier 1-90 40-70
    Solidifying Agent (additive) 1-20  5-10
  • TABLE B
    Capsule B1 Capsule B2
    Component % w/w % w/w
    Testosterone undecanoate (~10-1000 mg) 1-50 15
    Polyoxyl 40 Hydrogenated Castor Oil, NF 1-50 16
    Glycerol Monolinoleate, NF (Maisine 35-1) 30-90  63
    Polyethylene Glycol 8000, USP 1-20 6
  • TABLE C
    Capsule C1
    Component % w/w Capsule C2
    Testosterone undecanoate (~10-1000 mg) 1-50 25
    Polyoxyl 35 Castor Oil, NF 1-50 21
    Vitamin E, USP (d,l-α-tocopherol) 30-90  48
    Polyethylene Glycol 8000, USP 1-20 6
  • TABLE D
    Capsule D1 Capsule D2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 15 10-30
    Lauryl macrogol glyceride (Gelucire 44/14) 51 20-90
    Stearoyl macrogol glyceride 34 10-90
    (Gelucire 50/13)
  • TABLE E
    Capsule E1 Capsule E2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 20 10-30
    C8-C18 macrogol glyceride 35 10-70
    (Gelucire 43/01)
    Polyglyceryl-3-oleate (Caprol 3GO) 45  5-60
  • TABLE F
    Capsule F1 Capsule F2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 15 10-25 
    Lauryl macrogol glyceride (Gelucire 44/14) 40 5-80
    Vitamin E 30 2-60
    Hypromellose (Methocel K100 M LV, CR) 15 5-25
  • TABLE G
    Capsule G1 Capsule G2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 15 10-30 
    PEG-40 hydrogenated Castor Oil 60 5-80
    (Cremophor ® RH40)
    Polyethylene glycol 8000 15 5-40
    Hypromellose (Methocel K100 M LV, CR) 10 5-25
  • TABLE H
    Capsule H1 Capsule H2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 15 10-30 
    Corn Glycerides (Maisine 35-1) 60 5-90
    Polyethylene glycol 8000 20 5-70
  • TABLE I
    Capsule I1 Capsule I2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 25 10-30 
    PEG-40 hydrogenated Castor Oil 15 5-80
    (Cremophor ® RH40)
    Vitamin E 20 2-60
    Corn Glycerides (Maisine 35-1) 30 5-50
    Polyethylene Glycol 8000 10 5-20
  • TABLE J
    Capsule J1 Capsule J2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 15 10-30 
    Hydrogenated vegetable oil 50 2-80
    Polyethylene glycol 8000 35 2-80
  • TABLE K
    Capsule K1 Capsule K2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 50 30-60
    Corn Glycerides (Maisine 35-1) 50 30-60
  • TABLE L
    Capsule L1 Capsule L2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 40 30-60
    Fish Oil 50 30-60
    Vitamin E 10  3-15
  • TABLE M
    Capsule M1 Capsule M2
    Component % w/w % w/w
    Steroidal Compound (~10-1000 mg) 40 30-60
    Omega-3-acid esters 50 30-60
    Polyethylene glycol 8000 5  3-15
  • TABLE N
    Capsule N1 Capsule N2
    Component % w/w % w/w
    Testosterone undecanoate 5-30 10-20
    Polyoxyl 40 Hydrogenated Castor Oil, NF 5-30 10-20
    Glyceryl Monolinoleate, NF (Maisine 35-1) 50-90  55-70
    Polyethylene Glycol 8000, USP 1-15 3-8
  • TABLE O
    Capsule O1 Capsule O2
    Component % w/w % w/w
    Testosterone undecanoate 10-40 20-30
    Polyoxyl 35 Castor Oil, NF 10-30 15-25
    Vitamin E, USP (d,l-α-tocopherol) 30-70 40-55
    Polyethylene Glycol 8000, USP  1-15 3-8
  • TABLE P
    Capsule P1 Capsule P2
    Component % w/w % w/w
    Testosterone undecanoate 10-40 20-25
    Vitamin E Polyethylene Glycol 10-40 20-25
    Succinate, NF
    Vitamin E, USP (d,l-tocopherol) 15-60 30-40
    Polyethylene Glycol 8000, USP  1-10 2-6
    Hypromellose (100 cP, K100 Premium LV)  5-40 15-25
  • TABLE Q
    Capsule Q1 Capsule Q2
    Component % w/w % w/w
    Testosterone undecanoate 10-40 20-25
    Vitamin E Polyethylene Glycol 10-40 20-25
    Succinate, NF
    Vitamin E, USP (d,l-tocopherol) 15-60 30-40
    Polyethylene Glycol 8000, USP  1-10 2-6
    Hypromellose (4,000 cP, K4M)  5-40 15-25
  • In certain embodiments, any pharmaceutical composition described herein, e.g., a pharmaceutical composition of any of Tables A to Q can be prepared by (i) combining and heating all ingredients until a molten mixture is obtained (e.g., 50-70° C.); and (ii) encapsulating an amount of molten mixture comprising a select dose (e.g., a therapeutically effective amount or a partial dose of a therapeutically effective amount) of steroidal compound to obtain an oral dosage form. In certain instances, the molten mixture is spray-congealed to obtain beads. In some instances, the molten mixture is sprayed onto inert cores (e.g., sugar spheres) to obtain coated cores. In certain embodiments, such beads, cores, or similar forms are encapsulated or otherwise formulated to provide an oral dosage form. In some instances, the molten mixture is admixed, uniformly dispersed, or granulated over a carrier and compressed into a tablet dosage form. In certain embodiments, prior to compression, the molten mixture/carrier composition is further mixed with one or more pharmaceutical aid including, by way of non-limiting example, glidants, lubricants, binders, or the like. In some embodiments, the carrier is a therapeutically inert carrier such as, by way of non-limiting example, microcrystalline cellulose, starch, lactose, or the like.
  • In some embodiments, compositions described herein (e.g., compositions set forth in Tables K to M), are optionally filled into a delayed release capsule or shell, or are otherwise coated or encapsulated with a delayed release coat.
  • Pharmacokinetics and Pharmacodynamics
  • Provided in certain embodiments herein are androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions and oral dosage forms that provide a plasma Cmax of testosterone that is less than 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals. In some embodiments the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions or oral dosage forms provide a plasma Cmax of testosterone that is less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions or oral dosage forms provide a plasma Cmax of testosterone that is less than 2500 ng/dL in all or substantially all individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments, the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions and oral dosage forms provides a plasma Cmax of testosterone that is less than 1500 ng/dL in at least 85% and less than 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In certain embodiments, the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions and oral dosage forms provides a plasma Cmax of testosterone that is less than 1500 ng/dL in at least 85%, less than 1800 ng/dL in at least 95%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments, the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions and oral dosage forms provides a plasma Cmax of testosterone that is less than 1500 ng/dL in at least 85%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments, the androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions and oral dosage forms provides a plasma Cmax of testosterone that is less than 1800 ng/dL in at least 95%, and less than 2500 ng/dL in at least 99% of a population of individuals (following administration of a single dose and/or in the steady state) when administered to a population of individuals (e.g., adult and/or pubescent human males). In some embodiments, as used in any description herein, individuals are adult humans. In specific embodiments, the adult humans are adult male humans. In certain embodiments, the individuals are adult hypogonadal adult male humans. Plasma concentrations described herein are optionally obtained by administering a composition described herein to human males, e.g., hypogonadal human males. In other instances, plasma concentration are optionally obtained by administering the composition to testosterone deficient human subjects (e.g., postmenopausal women) who provide a population representative of the effects of testosterone therapy on individuals with low levels of testosterone. Clin. Endocrinology 2007, 66(4):570-85.
  • Provided in some embodiments herein are pharmaceutical compositions that provide a Cmin that is about 10 ng/dL or greater and a Cmax that is about 100 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state). Provided in some embodiments herein are pharmaceutical compositions that provide a Cmin that is about 12 ng/dL or greater and a Cmax that is about 82 ng/dL or less in at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% of adult female humans (e.g., postmenopausal or otherwise androdeficient female humans) when administered to a population of adult female humans (following administration of a single dose and/or in the steady state). In some embodiments, the adult female humans are sexually dysfunctional adult female humans. In certain embodiments, the adult female humans are postmenopausal female humans.
  • Pharmaceutical compositions and oral dosage forms described herein are formulated, in various embodiments, to achieve the pharmacokinetic and pharmacodynamic profiles herein in any suitable manner. In certain instances, the desired pharmacokinetic and/or pharmacodynamic profile described herein are obtained via the modification of dosage form, the at least one pharmaceutically acceptable carrier, the amount of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) present, combinations thereof, or the like. In certain embodiments, the population of individuals is one, one or more, two or more, or a statistically significant number of individuals.
  • Provided in certain embodiments herein are androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions or oral dosage forms described herein that provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1300 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals. In some embodiments androgen therapies (e.g., testosterone undecanoate therapies), pharmaceutical compositions or oral dosage forms described herein provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1100 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals. In certain embodiments pharmaceutical compositions or oral dosage forms described herein provide or are formulated to provide a plasma concentration of testosterone at steady state that is between about 300 ng/dL and 1000 ng/dL in at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals when administered to the population of individuals.
  • In some embodiments, a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of testosterone that is about 19 ng/mL or less, about 18 ng/mL or less, about 17 ng/mL or less, about 16 ng/mL or less, about 15 ng/mL or less, about 14 ng/mL or less, about 5 ng/mL to about 19 ng/mL, about 5 ng/mL to about 18 ng/mL, about 5 ng/mL to about 17 ng/mL, about 5 ng/mL to about 16 ng/mL, about 5 ng/mL to about 15 ng/mL, about 5 ng/mL to about 14 ng/mL, about 7 ng/mL to about 19 ng/mL, about 7 ng/mL to about 18 ng/mL, about 7 ng/mL, to about 17 ng/mL, about 7 ng/mL to about 16 ng/mL, about 7 ng/mL to about 15 ng/mL, about 7 ng/mL to about 14 ng/mL, about 10 ng/mL to about 19 ng/mL, about 10 ng/mL to about 18 ng/mL, about 10 ng/mL to about 17 ng/mL, about 10 ng/mL to about 16 ng/mL, about 10 ng/mL to about 15 ng/mL, or about 10 ng/mL to about 14 ng/mL. In specific embodiments, an oral dosage form described herein is formulated such that a single administration of the oral dosage form provides a mean plasma Cmax of testosterone that is about 15 ng/mL or less, about 19 ng/mL or less, about 5 ng/mL to about 19 ng/mL, or about 5 ng/mL to about 15 ng/mL. In certain embodiments, a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of dihydrotestosterone that is about 4.5 ng/mL or less, about 4.3 ng/mL or less, about 4.2 ng/mL or less, about 4.1 ng/mL or less, about 4 ng/mL or less, about 3.9 ng/mL or less, about 3.8 ng/mL or less, about 3.7 ng/mL or less, about 3.6 ng/mL or less, about 3.5 ng/mL or less, about 1.5 ng/mL to about 4.5 ng/mL, about 1.5 ng/mL to about 3.9 ng/mL, about 1.5 ng/mL to about 3.8 ng/mL, about 1.5 ng/mL to about 3.7 ng/mL, about 1.5 ng/mL to about 3.6 ng/mL, about 1.5 ng/mL to about 3.5 ng/mL, about 2.0 ng/mL to about 4.5 ng/mL, about 2.0 ng/mL to about 3.9 ng/mL, about 2.0 ng/mL to about 3.8 ng/mL, about 2.0 ng/mL to about 3.7 ng/mL, about 2.0 ng/mL to about 3.6 ng/mL, about 2.0 ng/mL to about 3.5 ng/mL, about 2.5 ng/mL to about 3.9 ng/mL, about 2.5 ng/mL to about 3.8 ng/mL, about 2.5 ng/mL to about 3.7 ng/mL, about 2.5 ng/mL to about 3.6 ng/mL, or about 2.5 ng/mL to about 3.5 ng/mL. In specific embodiments, a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of dihydrotestosterone that is about 3.6 ng/mL or less upon oral administration. In certain embodiments, a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 400 ng/mL or less, about 380 ng/mL or less, about 360 ng/mL or less, about 340 ng/mL or less, about 320 ng/mL or less, about 300 ng/mL or less, or about 280 ng/mL or less, about 100 ng/mL to about 400 ng/mL, about 100 ng/mL to about 380 ng/mL, about 100 ng/mL to about 360 ng/mL, about 100 ng/mL to about 340 ng/mL, about 100 ng/mL to about 320 ng/mL, about 100 ng/mL to about 300 ng/mL, about 100 ng/mL to about 280 ng/mL, about 150 ng/mL to about 400 ng/mL, about 150 ng/mL to about 380 ng/mL, about 150 ng/mL to about 360 ng/mL, about 150 ng/mL to about 340 ng/mL, about 150 ng/mL to about 320 ng/mL, about 150 ng/mL to about 300 ng/mL, about 150 ng/mL to about 280 ng/mL, about 200 ng/mL to about 400 ng/mL, about 200 ng/mL to about 380 ng/mL, about 200 ng/mL to about 360 ng/mL, about 200 ng/mL to about 340 ng/mL, about 200 ng/mL to about 320 ng/mL, about 200 ng/mL to about 300 ng/mL, or about 200 ng/mL to about 280 ng/mL. In specific embodiments, a pharmaceutical composition or oral dosage form described herein is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of testosterone undecanoate that is about 380 ng/mL or less upon oral administration. In some embodiments, a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of testosterone that is about 5 ng/mL to about 15 ng/mL, a mean plasma Cmax of dihydrotestosterone that is about 1.5 ng/mL to about 3.8 ng/mL, and a mean plasma Cmax of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 100 ng/mL to about 380 ng/mL. In certain embodiments, a pharmaceutical composition or oral dosage form described herein (e.g., for use in a steroidal, such as testosterone undecanoate, therapy) is formulated such that a single administration of the pharmaceutical composition or oral dosage form provides a mean plasma Cmax of testosterone that is about 5 ng/mL to about 19 ng/mL, a mean plasma Cmax of dihydrotestosterone that is about 1.5 ng/mL to about 4.5 ng/mL, and a mean plasma Cmax of testosterone alkyl ester (e.g., testosterone undecanoate) that is about 100 ng/mL to about 380 ng/mL.
  • In some embodiments, provided herein is a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 200 ng/dL or less, about 150 ng/dL or less, about 100 ng/dL or less, or about 75 ng/dL or less, about 5 ng/dL to about 200 ng/dL, about 5 ng/dL to about 150 ng/dL, about 5 ng/dL to about 100 ng/dL, about 5 ng/dL to about 75 ng/dL, about 10 ng/dL to about 200 ng/dL, about 10 ng/dL to about 150 ng/dL, about 10 ng/dL to about 100 ng/dL, about 10 ng/dL to about 75 ng/dL, about 15 ng/dL to about 200 ng/dL, about 15 ng/dL to about 150 ng/dL, about 15 ng/dL to about 100 ng/dL, or about 15 ng/dL to about 75 ng/dL 1 hour after a single oral administration. In certain embodiments, provided herein is a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 500 ng/dL or less, about 400 ng/dL or less, about 300 ng/dL or less, about 200 ng/dL or less, about 150 ng/dL or less, about 5 ng/dL to about 500 ng/dL, about 5 ng/dL to about 400 ng/dL, about 5 ng/dL to about 300 ng/dL, about 5 ng/dL to about 200 ng/dL, about 5 ng/dL to about 150 ng/dL, about 10 ng/dL to about 500 ng/dL, about 10 ng/dL to about 400 ng/dL, about 10 ng/dL to about 300 ng/dL, about 10 ng/dL to about 200 ng/dL, about 10 ng/dL to about 150 ng/dL, about 15 ng/dL to about 500 ng/dL, about 15 ng/dL to about 400 ng/dL, about 15 ng/dL to about 300 ng/dL, about 15 ng/dL to about 200 ng/dL, about 15 ng/dL to about 150 ng/dL 2 hour after a single oral administration. In some embodiments, provided herein is a pharmaceutical composition or oral dosage form formulated such that it provides a mean plasma concentration of testosterone that is about 5 ng/dL to about 150 ng/dL 1 hour after a single oral administration, and about 10 ng/dL to about 500 ng/dL 2 hours after a single oral administration.
  • In certain embodiments, pharmaceutical compositions described herein comprise or are formulated into one or more oral dosage form described herein. Therefore, in some embodiments, in order to arrive at the targeted plasma concentration (e.g., at a specific concentration at a given time, Cmax, Cmin, or the like), a plurality of oral dosage forms described herein are optionally administered. Furthermore, as used herein, a mean plasma concentration (e.g., at a specific concentration at a given time, Cmax, Cmin, or the like) is the mean of a plurality of concentration values obtained from the plasma of a plurality of individuals following oral administration of an oral dosage form described herein to the plurality of individuals. In some embodiments, the individuals are adult humans. In specific embodiments, the adult humans are adult male humans. In certain embodiments, the individuals are adult hypogonadal or otherwise androdeficient adult male humans. In some embodiments, the individuals are postmenopausal or otherwise androdeficient adult female humans. Furthermore, it is noted that concentrations of testosterone alkyl ester described herein include the concentration of the one or more testosterone alkyl ester administered.
  • In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 5% to about 90%, about 5% to about 80%, about 5% to about 70%, about 5% to about 60%, about 5% to about 55%, about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, or about 20% to about 35% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In certain embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, about 2% to about 90%, about 2% to about 80%, about 2% to about 70%, about 2% to about 60%, about 2% to about 50%, about 2% to about 40%, about 2% to about 30%, about 2% to about 20%, about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 10% to about 60%, about 10% to about 50%, about 10% to about 40%, about 10% to about 30%, or about 10% to about 20% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 30 minutes in an aqueous medium (e e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 99% or less, about 98% or less, about 97% or less, about 96% or less, about 95% or less, about 90% or less, about 10% to about 99%, about 10% to about 98%, about 10% to about 97%, about 10% to about 96%, about 10% to about 95%, about 10% to about 90%, about 40% to about 99%, about 40% to about 98%, about 40% to about 97%, about 40% to about 96%, about 40% to about 95%, about 40% to about 90%, about 70% to about 99%, about 70% to about 98%, about 70% to about 97%, about 70% to about 96%, about 70% to about 95%, or about 70% to about 90% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 3 hour in an aqueous medium (e.g., in 11, deionized water comprising 8% w/v Triton X-100). In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release more than 80% of the testosterone alkyl ester (e.g., testosterone undecanoate) within 12, 10, 8, 6, 5, 4, 3, or 2 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 20% or less of the testosterone alkyl ester after 30 minutes, 50% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour and about 95% or less of the testosterone alkyl ester after 3 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 5% to about 60% of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour, about 2% to about 40% of the testosterone alkyl ester after 30 minutes, and about 10% to about 95% of the testosterone alkyl ester after 2 hours in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In certain specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that releases or is formulated to release about 50% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) after 1 hour, and 80% or less of the testosterone alkyl ester (e.g., testosterone undecanoate) within 2-12 hours (or after 12 hours, 10 hours, 8 hours, 6 hours, 5 hours, 4 hours, 3 hours, or 2 hours) in an aqueous medium (e.g., in 1 L deionized water comprising 8% w/v Triton X-100). In certain instances, the aqueous medium is 1 L deionized water comprising 8% w/v Triton X-100 (e.g., octylphenol ethylene oxide condensate; octoxynol-9; t-octylphenoxypolyethoxyethanol; t-oct-C6H4—(OCH2CH2)xOH, x=9-10; CAS No. 9002-93-1; Triton X-100 was a registered trademark formerly owned by Rohm and Haas Co., but now owned by Union Carbide) at 37±0.5° C. and the pharmaceutical composition or oral dosage form is deposited therein and subjected to a paddle method at 100 rpm and 37±0.5° C. for the designated period of time (USP App 2).
  • In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma Cmax at steady state of about 1550 ng/dL or less, about 1500 ng/dL or less, about 1450 ng/dL or less, about 1400 ng/dL or less, about 1310 ng/dL or less, about 1300 ng/dL or less. In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma Cmin at steady state of about 100 ng/dL or more, about 150 ng/dL or more, about 200 ng/dL or more, about 250 ng/dL or more, or about 300 ng/dL or more. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma Cmin at steady state of about 200 ng/dL or more. In certain embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma concentration that ranges at steady state from about 100 ng/dL to about 1500 ng/dL, about 150 ng/dL to about 1400 ng/dL, about 200 ng/dL to about 1300 ng/dL or about 250 ng/dL to about 1200 ng/dL. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human males, pubescent human males, or the like) mean plasma concentration that ranges at steady state from about 200 ng/dL to about 1300 ng/dL.
  • In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma Cmax at steady state of about 110 ng/dL or less, 100 ng/dL or less, about 95 ng/dL or less, about 90 ng/dL or less, about 85 ng/dL or less, or about 82 ng/dL or less. In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma Cmin at steady state of about 3 ng/dL or more, about 5 ng/dL or more, about 8 ng/dL or more, about 10 ng/dL or more, or about 12 ng/dL or more. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma Cmin at steady state of about 8 ng/dL or more. In certain embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human males, adult human females, pubescent human fumales, postmenopausal human females, or the like) mean plasma concentration that ranges at steady state from about 5 ng/dL to about 110 ng/dL, about 8 ng/dL to about 100 ng/dL, about 10 ng/dL to about 90 ng/dL or about 12 ng/dL to about 82 ng/dL. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a testosterone (e.g., in human females, adult human females, post menopausal human females, or the like) mean plasma concentration that ranges at steady state from about 10 ng/dL to about 90 ng/dL.
  • Provided in certain embodiments herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide upon oral administration to an individual (e.g., an androgen deficient human male) a testosterone equivalent (e.g., mass of testosterone that can be derived from a testosterone alkyl ester (e.g., C2-C13)) dose to mean steady state testosterone Cmax ratio of about 500×106 mL or less. In some embodiments, a testosterone equivalent dose to mean steady state testosterone Cmax ratio is about 500×106 mL, or less; about 4×105 mL, or more; about 6×105 mL, or more; about 8×105 mL, or more; about 1×106 mL, or more; about 3×106 mL, or more; about 4×106 mL, or more; about 5×106 mL, or more; about 6×106 mL, or more; 500×106 mL, or less; 400×106 mL, or less; 300×106 mL, or less; 250×106 mL, or less; 200×106 mL, or less; 150×106 mL, or less; 100×106 mL, or less; about 25×105 mL, or more; about 100×105 mL, or more; about 250×105 mL, or more; about 500×105 mL, or more; about 4×105 mL to about 500×106 mL; about 4×105 mL to about 400×106 mL; about 4×105 mL to about 300×106 mL; about 4×105 mL to about 250×106 mL; about 4×105 mL to about 200×106 mL; about 4×105 mL to about 150×106 mL; about 20×105 mL to about 500×106 mL; about 20×105 mL to about 400×106 mL; about 20×105 mL to about 300×106 mL; about 20×105 mL to about 250×106 mL; about 20×105 mL to about 200×106 mL; about 20×105 mL to about 150×106 mL; about 50×105 mL to about 500×106 mL; about 50×105 mL to about 400×106 mL; about 50×105 mL to about 300×106 mL; about 50×105 mL to about 250×106 mL; about 50×105 mL to about 200×106 mL; about 50×105 mL to about 150×106 mL; about 200×105 mL to about 500×106 mL; about 200×105 mL to about 400×106 mL; about 200×105 mL to about 300×106 mL; about 200×105 mL to about 250×106 mL; about 200×105 mL to about 200×106 mL; about 200×105 mL to about 150×106 mL; or the like. In some embodiments, a single dose of any oral dosage form or pharmaceutical composition described herein provides, upon oral administration to an individual (e.g., an androgen deficient human male), a ratio testosterone equivalent dose to mean plasma testosterone Cmax that is about 500×106 mL or less. In some embodiments, a single administration provides a testosterone equivalent dose to mean testosterone Cmax ratio that is about 500×106 mL, or less; about 4×105 mL, or more; 500×106 mL, or less; 400×106 mL, or less; 300×106 mL, or less; 250×106 mL, or less; 200×106 mL, or less; 150×106 mL, or less; 100×106 mL, or less; about 25×105 mL, or more; about 100×105 mL, or more; about 250×105 mL, or more; about 500×105 mL, or more; about 4×105 mL to about 500×106 mL; about 4×105 mL to about 400×106 mL; about 4×105 mL to about 300×106 mL; about 4×105 mL to about 250×106 mL; about 4×105 mL to about 200×106 mL; about 4×105 mL to about 150×106 mL; about 20×105 mL to about 500×106 mL; about 20×105 mL to about 400×106 mL; about 20×105 mL to about 300×106 mL; about 20×105 mL to about 250×106 mL; about 20×105 mL to about 200×106 mL; about 20×105 mL to about 150×106 mL; about 50×105 mL to about 500×106 mL; about 50×105 mL to about 400×106 mL; about 50×105 mL to about 300×106 mL; about 50×105 mL to about 250×106 mL; about 50×105 mL to about 200×106 mL; about 50×105 mL to about 150×106 mL; about 200×105 mL to about 500×106 mL; about 200×105 mL to about 400×106 mL; about 200×105 mL to about 300×106 mL; about 200×105 mL to about 250×106 mL; about 200×105 mL, to about 200×106 mL; about 200×105 mL to about 150×106 mL; or the like. In some embodiments, a single administration provides a testosterone equivalent dose to mean dihydroxytestosterone Cmax ratio that is about 350×106 mL, or less; about 20×105 mL, or more; 500×106 mL, or less; 400×106 mL, or less; 300×106 mL, or less; 250×106 mL, or less; 200×106 mL, or less; 150×106 mL, or less; 100×106 mL, or less; about 25×105 mL, or more; about 100×105 mL, or more; about 250×105 mL, or more; about 500×105 mL, or more; about 20×105 mL to about 500×106 mL; about 20×105 mL to about 400×106 mL; about 20×105 mL to about 300×106 mL; about 20×105 mL to about 250×106 mL; about 20×105 mL to about 200×106 mL; about 20×105 mL to about 150×106 mL; about 50×105 mL to about 500×106 mL; about 50×105 mL to about 400×106 mL; about 50×105 mL to about 300×106 mL; about 50×105 mL to about 250×106 mL; about 50×105 mL to about 200×106 mL; about 50×105 mL to about 150×106 mL; about 200×105 mL to about 500×106 mL; about 200×105 mL to about 400×106 mL; about 200×105 mL to about 300×106 mL; about 200×105 mL to about 250×106 mL; about 200×105 mL to about 200×106 mL; about 200×105 mL to about 150×106 mL; or the like. In certain instances, a steroid equivalent dose (e.g., testosterone equivalent dose) of a composition or dosage form described herein is the amount of steroid compound (e.g., testosterone) present (e.g., the steroidal portion of a steroidal compound, such as a testosterone alkyl ester) in the composition or dosage form and can be determined by calculating, e.g., (mass testosterone/mass testosterone alkyl ester)*amount of testosterone alkyl ester in the composition or dosage form.
  • Provided in certain embodiments herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a difference between the mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state that is about 20 ng/mL or less, about 19 ng/mL or less, about 18 ng/mL or less, about 17 ng/mL or less, about 16 ng/mL or less, about 15 ng/mL or less, about 14 ng/mL or less, about 13 ng/mL or less, about 12 ng/mL or less, about 11 ng/mL or less, about 10.8 ng/mL or less, about 2 to about 20 ng/mL, about 2 to about 18 ng/mL, about 2 to about 16 ng/mL, about 2 to about 15 ng/mL, about 2 to about 14 ng/mL, about 2 to about 13 ng/mL, about 2 to about 12 ng/mL, about 2 to about 11 ng/mL, about 5 to about 15 ng/mL, about 5 to about 14 ng/mL, about 5 to about 13 ng/mL, about 5 to about 12 ng/mL, or about 5 to about 11 ng/mL. In specific embodiments, the pharmaceutical composition or oral dosage form provides or is formulated to provide a difference between the mean plasma Cmax of testosterone at steady state and mean plasma Cmin of testosterone at steady state that is about 11 ng/mL or less. Furthermore, in some embodiments, provided herein is a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma Cmax and the mean Cmin of testosterone alkyl ester (e.g., testosterone undecanoate) is about 275 ng/mL or less, about 260 ng/mL or less, about 250 ng/mL or less, about 240 ng/mL or less, about 230 ng/mL or less, about 225 ng/mL or less, about 220 ng/mL or less, about 210 ng/mL or less, about 200 ng/mL or less, about 190 ng/mL or less, or about 180 ng/mL or less. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma Cmax and mean plasma Cmin of testosterone alkyl ester (e.g., testosterone undecanoate) is about 200 ng/mL or less. In specific embodiments, provided herein is a pharmaceutical composition or oral dosage form provided herein provides or is formulated to provide a difference between the mean plasma Cmax and mean plasma Cmin of testosterone alkyl ester (e.g., testosterone undecanoate) is about 275 ng/mL or less.
  • In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that is formulated such that it provides, following a single oral administration, a mean plasma AUC0-∞ concentration of testosterone of about 120 ng·h/mL or less, about 110 ng·h/mL or less, about 100 ng·h/mL or less, about 90 ng·h/mL or less, about 80 ng·h/mL or less, about 70 ng·h/mL or less, about 60 ng·h/mL or less, about 20 ng·h/mL to about 110 ng·h/mL, about 20 ng·h/mL to about 100 ng·h/mL, about 20 ng·h/mL to about 90 ng·h/mL, about 20 ng·h/mL to about 80 ng·h/mL, about 20 ng·h/mL to about 70 ng·h/mL, about 20 ng·h/mL to about 60 ng·h/mL, about 30 ng·h/mL to about 110 ng·h/mL, about 30 ng·h/mL to about 100 ng·h/mL, about 30 ng·h/mL to about 90 ng·h/mL, about 30 ng·h/mL to about 80 ng·h/mL, about 30 ng·h/mL to about 70 ng·h/mL, about 30 ng·h/mL to about 60 ng·h/mL, about 40 ng·h/mL to about 110 ng·h/mL, about 40 ng·h/mL to about 100 ng·h/mL, about 40 ng·h/mL to about 90 ng·h/mL, about 40 ng·h/mL to about 80 ng·h/mL, about 40 ng·h/mL to about 70 ng·h/mL, about 40 ng·h/mL to about 60 ng·h/mL, about 50 ng·h/mL to about 110 ng·h/mL, about 50 ng·h/mL to about 100 ng·h/mL, about 50 ng·h/mL to about 90 ng·h/mL, about 50 ng·h/mL to about 80 ng·h/mL, about 50 ng·h/mL to about 70 ng·h/mL, about 60 ng·h/mL to about 110 ng·h/mL, about 60 ng·h/mL to about 100 ng·h/mL, about 60 ng·h/mL to about 90 ng·h/mL, or about 60 ng·h/mL to about 80 ng·h/mL. In certain embodiments, provided herein is a pharmaceutical composition or oral dosage form that is formulated such that, following a single oral administration, it provides a mean plasma AUC0-∞ concentration of dihydrotestosterone of about 50 ng·h/mL or less, about 45 ng·h/mL or less, about 40 ng·h/mL or less, about 35 ng·h/mL or less, about 30 ng·h/mL or less, about 25 ng·h/mL or less, about 20 ng·h/mL or less, about 10 ng·h/mL to about 50 ng·h/mL, about 10 ng·h/mL to about 45 ng·h/mL, about 10 ng·h/mL to about 40 ng·h/mL, about 10 ng·h/mL to about 35 ng·h/mL, about 10 ng·h/mL to about 30 ng·h/mL, about 10 ng·h/mL to about 25 ng·h/mL, about 10 ng·h/mL to about 20 ng·h/mL, about 15 ng·h/mL to about 50 ng·h/mL, about 15 ng·h/mL to about 45 ng·h/mL, about 15 ng·h/mL to about 40 ng·h/mL, about 15 ng·h/mL to about 35 ng·h/mL, about 15 ng·h/mL to about 30 ng·h/mL, about 15 ng·h/mL to about 25 ng·h/mL, about 20 ng·h/mL to about 50 ng·h/mL, about 20 ng·h/mL to about 45 ng·h/mL, about 20 ng·h/mL to about 40 ng·h/mL, about 20 ng·h/mL to about 35 ng·h/mL, or about 20 ng·h/mL, to about 30 ng·h/mL. In some embodiments, provided herein is a pharmaceutical composition or oral dosage form that is formulated such that, following a single oral administration, it provides a mean plasma AUC0-∞ concentration of testosterone alkyl ester (e.g., the one or more testosterone alkyl ester compounds, such as testosterone undecanoate, found in the composition or dosage form) of about 1200 ng·h/mL or less, about 1100 ng·h/mL or less, about 1000 ng·h/mL or less, about 900 ng·h/mL or less, about 850 ng·h/mL or less, about 800 ng·h/mL or less, about 750 ng·h/mL or less, about 100 ng·h/mL to about 1200 ng·h/mL, about 100 ng·h/mL to about 1100 ng·h/mL, about 100 ng·h/mL to about 1000 ng·h/mL, about 100 ng·h/mL to about 900 ng·h/mL, about 100 ng·h/mL to about 850 ng·h/mL, about 100 ng·h/mL to about 800 ng·h/mL, about 100 ng·h/mL to about 750 ng·h/mL, about 150 ng·h/mL to about 1200 ng·h/mL, about 150 ng·h/mL to about 1100 ng·h/mL, about 150 ng·h/mL to about 1000 ng·h/mL, about 150 ng·h/mL to about 900 ng·h/mL, about 150 ng·h/mL to about 850 ng·h/mL, about 150 ng·h/mL to about 800 ng·h/mL, about 150 ng·h/mL to about 750 ng·h/mL, about 200 ng·h/mL to about 1200 ng·h/mL, about 200 ng·h/mL to about 1100 ng·h/mL, about 200 ng·h/mL to about 1000 ng·h/mL, about 200 ng·h/mL to about 900 ng·h/mL, about 200 ng·h/mL to about 850 ng·h/mL, about 200 ng·h/mL to about 800 ng·h/mL, about 200 ng·h/mL to about 750 ng·h/mL, about 250 ng·h/mL to about 1200 ng·h/mL, about 250 ng·h/mL to about 1100 ng·h/mL, about 250 ng·h/mL to about 1000 ng·h/mL, about 250 ng·h/mL to about 900 ng·h/mL, about 250 ng·h/mL to about 850 ng·h/mL, about 250 ng·h/mL to about 800 ng·h/mL, about 250 ng·h/mL to about 750 ng·h/mL, about 300 ng·h/mL to about 1200 ng·h/mL, about 300 ng·h/mL to about 1100 ng·h/mL, about 300 ng·h/mL to about 1000 ng·h/mL, about 300 ng·h/mL to about 900 ng·h/mL, about 300 ng·h/mL to about 850 ng·h/mL, about 300 ng·h/mL to about 800 ng·h/mL, or about 300 ng·h/mL to about 750 ng·h/mL.
  • Provided in certain embodiments herein is any oral dosage form or pharmaceutical composition described herein that when a single dose is administered to an individual provides a testosterone equivalent dose to mean testosterone AUC0, ratio of about 500×103 mL/h or less. In some embodiments, the testosterone equivalent dose to mean AUC0-∞ ratio is about 20×103 mL/h, or more; about 30×103 mL/h, or more; about 40×103 mL/h, or more; about 50×103 mL/h, or more; about 60×103 mL/h, or more; about 80×103 mL/h, or more; about 100×103 mL/h, or more; about 600×103 mL/h, or less; about 400×103 mL/h, or less; about 350×103 mL/h, or less; about 250×103 mL/h, or less; about 200×103 mL/h, or less; about 150×103 mL/h, or less; about 10 to about 600×103 mL/h; about 20 to about 500×103 mL/h; about 30 to about 450×103 mL/h; about 20 to about 400×103 mL/h; about 50 to about 300×103 mL/h; about 50 to about 200×103 mL/h; or the like.
  • In certain embodiments, a pharmaceutical composition or oral dosage form described herein achieves steady state upon administration in any manner suitable to achieve the steady state, e.g., once a day, twice a day, three times a day, four times a day, or the like. In specific embodiments, steady state is achieved after a period of time of b.i.d. oral administration (e.g., every 12 hours) of an oral dosage form described herein. In certain embodiments, steady state is obtained after, e.g., 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 2 weeks or longer, if or as necessary. In specific embodiments, steady state is obtained after b.i.d. oral administration for 5-7 days. Moreover, steady state plasma concentrations of testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained, in certain instances, by administration of pharmaceutical compositions comprising about 1 mg to about 1 g, or about 10 mg to about 200 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In specific embodiments, a pharmaceutical composition (e.g., for administration to a human male) comprises about 10 mg to about 50 mg, about 15 mg to about 40 mg, about 20 mg, to about 30 mg, or about 25 mg of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In other embodiments, a pharmaceutical composition (e.g., for administration to a human male) comprises about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, about 80 mg, or about 120 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, steady state of a testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained by the administration of about 0.1 mg to about 5 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) per kg of an individual to whom the oral dosage form is to be administered. In certain embodiments, testosterone, testosterone alkyl ester (e.g., testosterone undecanoate), and dihydrotestosterone are obtained by the oral administration of about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) to an individual upon once a day, twice a day, three times a day, or four times a day. In certain embodiments, the pharmacokinetic and/or pharmacodynamic profiles described herein are obtained as a function of dose of steroidal compound and/or formulation of the pharmaceutical composition. In certain embodiments, an oral dosage form for administration to an human female comprises about 10% as much of a testosterone alkyl ester as does an oral dosage form for administration to an human male. In some embodiments, a pharmaceutical composition for delivery to an adult human female comprises about 5 mg to about 50 mg, about 5 mg to about 30 mg, about 7 mg to about 15 mg, about 8 mg to about 14 mg, about 9 mg to about 14 mg, about 10 mg to about 13 mg, about 11 mg to about 13 mg, about 8 mg, or about 12 mg of a testosterone alkyl ester, such as testosterone undecanoate.
  • Provided in certain embodiments herein is a pharmaceutical composition or oral dosage form that provides or is formulated to provide a delayed release dosage form. In specific embodiments, any delayed release oral dosage form described herein comprises one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In certain embodiments, a delayed release dosage form is one that releases about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 5% to about 90%, about 5% to about 80%, about 5% to about 70%, about 5% to about 60%, about 5% to about 55%, about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, or about 20% to about 35% of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) after 1 hour in an aqueous medium; releases about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, about 2% to about 90%, about 2% to about 80%, about 2% to about 70%, about 2% to about 60%, about 2% to about 50%, about 2% to about 40%, about 2% to about 30%, about 2% to about 20%, about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 10% to about 60%, about 10% to about 50%, about 10% to about 40%, about 10% to about 30%, or about 10% to about 20% of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) after 30 minutes in an aqueous medium; releases about 99% or less, about 98% or less, about 97% or less, about 96% or less, about 95% or less, about 90% or less, about 10% to about 99%, about 10% to about 98%, about 10% to about 97%, about 10% to about 96%, about 10% to about 95%, about 10% to about 90%, about 40% to about 99%, about 40% to about 98%, about 40% to about 97%, about 40% to about 96%, about 40% to about 95%, about 40% to about 90%, about 70% to about 99%, about 70% to about 98%, about 70% to about 97%, about 70% to about 96%, about 70% to about 95%, or about 70% to about 90% of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) after 3 hour in an aqueous medium; and/or releases more than 80% of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) contained therein within 12, 10, 8, 6, 5, 4, 3, or 2 hours in an aqueous medium. Conversely, in some embodiments an immediate release dosage form (e.g., a fast release dosage form) comprising a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) releases about 90% or more of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) contained therein within about 15 minutes of exposure to an aqueous medium. In some instances, the aqueous medium is present in a USP Type-II (paddle) apparatus with conditions at 37±0.5° C. and at 100 rpm. In more specific instances, the aqueous medium is about 1 L of DI water having 8% w/v of Triton X-100. Furthermore, in some embodiments, an immediate release dosage form of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) is an oral dosage form (e.g., capsule) comprising the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) formulated in a mixture of castor oil and propylene glycol laurate (e.g., a composition comprising testosterone undecanoate, castor oil and propylene glycol laurate, as currently marketed under the tradename Andriol®); or the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) formulated in oleic acid (e.g., a composition comprising testosterone undecanoate and oleic acid, as previously marketed under the tradename Andriol®).
  • Furthermore, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, at least 5% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 50-90% lower, about 40-80% lower, about 30-80% lower, about 20-80% lower, about 40-60% lower, or about 10-95% lower measured after about 1 hour than is provided by a single dose of an immediate release oral dosage form having the same amount of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In specific embodiments, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 1 hour than is provided by a single dose of an immediate release oral dosage form. In some embodiments, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 40-60% lower, about 20-80% lower, about 10-60% lower, or about 10-95% lower measured after about 2 hours than is provided by a single dose of an immediate release oral dosage form. In specific embodiments, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 2 hours than is provided by a single dose of an immediate release oral dosage form. In certain embodiments, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 50% lower, at least 40% lower, at least 30% lower, at least 20% lower, at least 10% lower, about 50-95% lower, about 40-95% lower, about 30-95% lower, about 20-95% lower, about 50-80% lower, about 40-80% lower, about 30-60% lower, about 20-50% lower, about 10-50% lower, or about 10-95% lower measured after about 3 hours than is provided by a single dose of an immediate release oral dosage form. In specific embodiments, provided herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma concentration of testosterone that is at least 20% lower measured after about 3 hours than is provided by a single dose of an immediate release oral dosage form.
  • Provided in some embodiments herein is a delayed release oral dosage form formulated such that it provides, following a single oral administration, a mean plasma Cmax of testosterone that is at least 25% lower, at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 25-95% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 25-50% lower, about 20-60% lower, about 1540% lower, about 10-60% lower, about 5-30% lower, or about 5-99% lower than the mean plasma Cmax of testosterone that is provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form. In certain embodiments, provided herein is a delayed release oral dosage form that provides or is formulated to provide, following a single oral administration, a mean plasma Cmax of the testosterone alkyl ester (e.g., testosterone undecanoate) that is at least 25% lower, at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 25-95% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 25-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma Cmax of testosterone alkyl ester that is provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form. In some embodiments, provided herein is a delayed release oral dosage form that provides or is formulated to provide, following oral administration, a mean plasma Cmax of dihydrotestosterone that is at least 10% lower, at least 8% lower, at least 7% lower, at least 6% lower, at least 5% lower, about 10-95% lower, about 8-99% lower, about 7-99% lower, about 6-99% lower, about 5-99% lower, about 5-15% lower, about 10-90% lower, about 8-80% lower, about 7-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma Cmax of dihydrotestosterone provided by a single dose of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • Provided in certain embodiments herein is a delayed release oral dosage form that provides or is formulated to provide a mean plasma Cmax at steady state of testosterone alkyl ester that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than the mean plasma. Cmax of steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) at steady state provided by an immediate release oral dosage form having an identical amount of the testosterone alkyl ester as is present in the delayed release oral dosage form. In some embodiments, a delayed oral dosage form comprising testosterone alkyl ester provided herein provides or is formulated to provide a mean plasma Cmax at steady state of testosterone that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 10-30% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 10-40% lower than the mean plasma Cmax of testosterone at steady state provided by an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form.
  • In some embodiments, the delayed release oral dosage form provides a fluctuation index of testosterone at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone at steady state of an immediate release oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) as is present in the delayed release oral dosage form. In certain embodiments, the delayed release oral dosage form provides a fluctuation index of testosterone alkyl ester at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone alkyl ester at steady state of an immediate release oral dosage form having an identical amount of the testosterone alkyl ester as is present in the delayed release oral dosage form. In some embodiments, a pharmaceutical composition or oral dosage form provided herein that does not comprise oleate provides a fluctuation index of testosterone at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5%, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone at steady state provided by an oleate-containing oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). In certain embodiments, a pharmaceutical composition or oral dosage form provided herein that does not contain castor oil (unmodified by polyoxylation or hydrogenation) provides a fluctuation index of testosterone alkyl ester at steady state that is at least 20% lower, at least 15% lower, at least 10% lower, at least 5% lower, about 20-95% lower, about 15-99% lower, about 10-99% lower, about 20-99% lower, about 15-99% lower, about 10-99% lower, about 5-99% lower, about 20-90% lower, about 20-80% lower, about 15-60% lower, about 10-60% lower, or about 5-40% lower than a fluctuation index of testosterone alkyl ester at steady state of an castor oil-containing oral dosage form having an identical amount of the steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate). As utilized herein, the fluctuation index is the difference between the mean plasma Cmax and mean plasma Cmin values that are achieved after administration of an dosage form.
  • In some embodiments, provided herein is a delayed oral dosage form that is formulated such that it provides, following a single oral administration, a mean plasma AUC0-∞ concentration of testosterone of that is at least 40%, at least 50% or at least 60% of the mean plasma AUC0-∞ concentration of testosterone provided by an immediate release dosage form.
  • Methods
  • In certain embodiments, provided herein are methods of treating an individual in need of an androgen therapy with any pharmaceutical composition or oral dosage form described herein. In some embodiments, provided are methods of treating androdeficiency in an individual in need thereof by administering to the individual any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, individuals are androdeficient (e.g., hypogonadal, andropausal, or otherwise androdeficient) adult male humans, young male humans who are suffering from delayed puberty (e.g., as a result of being hypogonadal), androdeficient (e.g., postmenopausal or otherwise androdeficient) adult female humans.
  • In specific embodiments, provided herein are methods of treating testosterone deficiency in male humans by administering to the male human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate). In more specific embodiments, provided herein are methods of treating testosterone deficiency in hypogonadal male humans (e.g., adult or prepubescent male humans) by administering to the hypogonadal male human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate). Symptoms of testosterone deficiency may include, by way of non-limiting example, one or more of depression, reduced libido, low energy, anemia, osteoporosis, debilitating muscle weakness, or the like. Therefore, in some embodiments, such symptoms, when caused by or suspected of being caused by andro- or testosterone deficiency, are also treated, either individually or collectively, by administering to a male human in need thereof a pharmaceutical composition or oral dosage form described herein. In some embodiments, provided herein are methods of treating testosterone deficiency in male humans by administering to the male human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate) co-administered with a 5-alpha reductase enzyme inhibitor (e.g dutasteride, finesteride, isotertinoin, gallic acid, L-lysine, epigallocatechin gallate, saw palmetto, phytosterol complex, beta sitosterol, green tea extract, polyphenols etc.). In more specific embodiments, the enzyme inhibitor can be co-administered as a separate composition or be a part of the same testosterone alkyl ester-containing composition.
  • In some embodiments, provided herein are methods of treating sexual dysfunction in an individual in need thereof by administering the individual any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In certain embodiments, the individual is a male adult human. In some embodiments, the individual is a female adult human.
  • In specific embodiments, provided herein are methods of treating andro-deficiency in female humans (e.g., adult female humans) by administering to the female human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate). In some embodiments, provided herein are methods of maintaining muscle and/or bone mass in female humans (e.g., adult female humans) by administering to the female human any pharmaceutical composition or dosage form described herein, wherein the pharmaceutical composition or dosage form described herein comprises a therapeutically effective amount of one or more testosterone alkyl ester (e.g., testosterone undecanoate).
  • Provided in various embodiments of the methods described herein, administered are pharmaceutical compositions comprising therapeutically effective amounts of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, a therapeutically effective amount is between about 1 mg and about 1 g, or about 10 mg to about 200 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In specific embodiments, a therapeutically effective amount is about 10 mg to about 50 mg, about 15 mg to about 40 mg, about 20 mg, to about 30 mg, or about 25 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In other embodiments, a therapeutically effective amount is about 70 mg to about 150 mg, about 80 mg to about 140 mg, about 90 mg to about 140 mg, about 100 mg to about 130 mg, about 110 mg to about 130 mg, or about 120 mg of one or more steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate). In some embodiments, a therapeutically effective amount is about 0.1 mg to about 5 mg per kg of an individual to whom the oral dosage form is administered. In certain embodiments, a therapeutically effective amount is about 1 mg to about 1 g, about 5 mg to about 500 mg, about 10 mg to about 300 mg, or about 20 to about 250 mg of a steroidal compound (e.g., a testosterone alkyl ester, such as testosterone undecanoate) per day.
  • In certain embodiments, the methods described herein a plasma Cmax of testosterone that is less than 1500 ng/dL, about 100 ng/dL to about 1500 ng/dL, or about 500 ng/dL to about 1500 ng/dL in at least 85% of a population of individuals (following administration of a single dose and/or in the steady state). In some embodiments the methods described herein provide a plasma Cmax of testosterone that is less than 1800 ng/dL, about 100 ng/dL to about 1800 ng/dL, or about 500 ng/dL to about 1800 ng/dL in at least 95% of a population of individuals (following administration of a single dose and/or in the steady state). In some embodiments, the methods described herein provide a plasma. Cmax of testosterone that is less than 2500 ng/dL, or about 100 ng/dL to 2500 ng/dL in all individuals (following administration of a single dose and/or in the steady state). In certain embodiments, the methods described herein provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1300 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals. In some embodiments, the methods described herein provide a plasma concentration of testosterone at steady state that is between about 200 ng/dL and 1100 ng/dL in at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals. In certain embodiments, the methods described herein provide a plasma concentration of testosterone at steady state that is between about 300 ng/dL and 1000 ng/dL in at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% of a population of individuals. Similarly, in various embodiments, the methods described herein provide any of the pharmacokinetic or pharmacodynamic profiles described for the pharmaceutical compositions or dosage forms described herein.
  • In various embodiments, the pharmaceutical compositions or dosage forms described herein are administered orally. In some embodiments, pharmaceutical compositions described herein comprise or are divided into one or more oral dosage forms described herein. Thus, in some embodiments, methods described herein comprise and/or pharmacokinetic or pharmacodynamic profiles described herein are achieved by administration of a plurality of oral dosage forms simultaneously, sequentially or in a substantially simultaneous manner. Furthermore, administration of pharmaceutical compositions or oral dosage forms described herein is achieved in any therapeutically effective manner. In some embodiments, the pharmaceutical composition or oral dosage form is administered once a day, twice a day, three times a day, four times a day, or the like. In some embodiments, a pharmaceutical composition or oral dosage form described herein is administered in the fed state. In certain embodiments, a pharmaceutical composition or oral dosage form described herein is administered with a meal, within 30 minutes of a meal, within 1 hour of a meal, or within 2 hours of a meal. In more specific embodiments, a pharmaceutical composition or oral dosage form described herein is administered with a meal, within 30 minutes after a meal, within 1 hour after a meal, or within 2 hours after a meal. In some embodiments, provided herein is a reduced food effect pharmaceutical composition or dosage form, the pharmaceutical composition or dosage form comprising the components as set forth in any embodiment described herein. In some embodiments, the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (Cmax) of testosterone that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (Cmax) of testosterone provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state. In certain embodiments, the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (Cmax) of testosterone alkyl ester that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (Cmax) of testosterone alkyl ester provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state. In some embodiments, the reduced food effect pharmaceutical composition or dosage form provides, when orally administered in the fasted state, a maximum plasma concentration (Cmax) of dihydrotestosterone that is at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 15%, at least 10%, or at least 5% of the maximum plasma concentration (Cmax) of dihydrotestosterone provided when the same or identical pharmaceutical composition or dosage form is administered in the fed state.
  • In certain embodiments, provided herein is a method of treating androgen deficiency in an individual, or a disorder associated therewith, the method comprising administering to an individual in need thereof a therapeutically effective amount of any composition described herein. In some embodiments, a composition adminstered according to a method described herein is formulated so as to provide any pharmacokinetic and/or pharmacodynamic effect described herein. In certain embodiments, methods provided herein comprise the administration of a sufficient amount of a composition described herein so as to provide any pharmacokinetic or pharmacodynamic effect described herein. In various embodiments, any protocol described herein for the administration of compositions is optionally utilized in any methods described herein.
  • Carriers
  • Provided herein are pharmaceutical compositions comprising a steroidal compound (e.g., one or more testosterone alkyl ester, such as testosterone undecanoate) and at least one pharmaceutically acceptable carrier. In certain embodiments, the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier (e.g., hydrophilic surfactant or additive), at least one lipophilic carrier (e.g., lipophilic surfactant or additive), and/or at least one viscosity enhancer or solidifying agent. In specific embodiments, the at least one pharmaceutically acceptable carrier is a hydrophilic carrier. In more specific embodiments, the at least one pharmaceutically acceptable carrier comprises or further comprises a lipophilic carrier. In further embodiments, the at least one pharmaceutically acceptable carrier comprises at least one hydrophilic carrier, at least one lipidic and/or lipophilic carrier, and at least one viscosity enhancer or solidifying agent.
  • In certain embodiments, hydrophilic carriers include, by way of non-limiting example, a hydrophilic surfactant. In various instances, hydrophilic surfactants are used to provide any one or more of several advantageous characteristics to the compositions, including, by way of non-limiting example: increased solubility of the active ingredient in at least one of the fractions of the carrier that is a solid carrier; improved dissolution of the active ingredient; improved dispersion and/or dissolution of the lipidic carrier; improved solubilization of the active ingredient upon dissolution; enhanced absorption and/or bioavailability of the active ingredient, particularly a hydrophilic, hydrophobic, or lipophilic active ingredient; and improved stability, both physical and chemical, of the active ingredient. In various embodiments, the hydrophilic surfactant includes either a single hydrophilic surfactant or a mixture of hydrophilic surfactants. Hydrophilic surfactants also include both ionic or non-ionic surfactants.
  • In some embodiments, lipophilic carriers include or further include, by way of non-limiting example, one or more lipophilic surfactant, including one or more lipophilic surfactant, one or more mono-, di-, or triglyceride, or mixtures thereof. In various instances, lipophilic surfactants provide any one or more of the advantageous characteristics listed above for hydrophilic surfactants, and/or enhance the function of other (e.g., hydrophilic) surfactants present in the pharmaceutical composition.
  • The terms “hydrophilic” and “lipophilic” are relative terms. Hydrophilicity and/or lipophilicity are determined in any manner suitable. In one instances, an empirical parameter is used to characterize the relative hydrophilicity and lipophilicity of the carriers described herein. For example, in one manner, the hydrophilicity and/or lipophilicity non-ionic amphiphilic compounds is the hydrophilic-lipophilic balance (the “HLB” value). Carriers or surfactants with lower HLB values are more lipophilic, and have greater solubility in oils, whereas surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous mediums. This measure is suitable for the surfactants described herein because, generally, surfactants are amphiphilic as they comprise both a polar moiety (e.g., a polar non-charged or charged moiety) and a lipophilic moiety (e.g., an aliphatic group).
  • Using HLB values as a rough guide, hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as non-ionic, anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable. Similarly, lipophilic surfactants are compounds having an HLB value less than about 10.
  • It should be appreciated that the HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions. For many important surfactants, including several polyethoxylated surfactants, it has been reported that HLB values can differ by as much as about 8 HLB units, depending upon the empirical method chosen to determine the HLB value (Schott, J. Pharm. Sciences, 79(1), 87-88 (1990)). Likewise, for certain polypropylene oxide containing block copolymers (poloxamers, available commercially as PLURONIC® surfactants, BASF Corp.), the HLB values are not always authoritative indicators of the true physical chemical nature of the compounds. Finally, commercial surfactant products are generally not pure compounds, but are often complex mixtures of compounds, and the HLB value reported for a particular compound may more accurately be characteristic of the commercial product of which the compound is a major component. Different commercial products having the same primary surfactant component can, and typically do, have different HLB values. In addition, a certain amount of lot-to-lot variability is expected even for a single commercial surfactant product. Thus, keeping these considerations involved, a person of ordinary skill in the art is able to utilize HLB values and the identity of a given product to determine surfactants for suitable lipophilicity and/or hydrophilicity for use in the pharmaceutical compositions described herein.
  • As used herein, useful surfactants include any surfactant that is pharmaceutically acceptable and is suitable for use in a pharmaceutical composition. Suitable surfactants include anionic, cationic, zwitterionic and non-ionic surfactants. Provided herein (e.g., in the Tables) are several general classes of surfactants. The HLB values given in the Tables below generally represent the HLB value as reported by the manufacturer of the corresponding commercial product. In cases where more than one commercial product is listed, the HLB value in the Tables is the value as reported for one of the commercial products, a rough average of the reported values, or a value that, in the judgment of the present inventors, is more reliable.
  • Surfactants described in the Tables are illustrative and are provided as non-limiting examples. For example, refined, distilled or fractionated surfactants, purified fractions thereof, or re-esterified fractions, are also within the scope of surfactants described herein, although they are not specifically listed in the Tables.
  • In some embodiments, surfactants described herein include polyoxylated fatty acids, such as polyethoxylated fatty acids (i.e., PEG-fatty acid esters). Provided in Table 1 is a list of illustrative and non-limiting examples of polyethoxylated fatty acid monoester surfactants.
  • TABLE 1
    PEG-Fatty Acid Monoester Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG 4-100 Crodet L series (Croda) >9
    monolaurate
    PEG 4-100 Crodet O series (Croda) >8
    monooleate
    PEG 4-100 Crodet S series (Croda), >6
    monostearate Myrj Series (Atlas/ICI)
    PEG 400 distearate Cithrol 4DS series (Croda) >10
    PEG 100, 200, 300 Cithrol ML series (Croda) >10
    monolaurate
    PEG
    100, 200, 300 Cithrol MO series (Croda) >10
    monooleate
    PEG 400 dioleate Cithrol 4DO series (Croda) >10
    PEG 400-1000 Cithrol MS series (Croda) >10
    monostearate
    PEG-1 stearate Nikkol MYS-IEX (Nikko), 2
    Coster KI (Condea)
    PEG-2 stearate Nikkol MYS-2 (Nikko) 4
    PEG-2 oleate Nikkol MYO-2 (Nikko) 4.5
    PEG-4 laurate Mapeg ® 200 ML (PPG), 9.3
    Kessco ® PEG 200 ML (Stepan),
    LIPOPEG 2 L (LIPO Chem.)
    PEG-4 oleate Mapeg. ® 200 MO (PPG), 8.3
    Kessco. ® PEG200 MO (Stepan),
    PEG-4 stearate Kessco ® PEG 200 MS (Stepan), 6.5
    Hodag 20 S (Calgene),
    Nikkol MYS-4 (Nikko)
    PEG-5 stearate Nikkol TMGS-5 (Nikko) 9.5
    PEG-5 oleate Nikkol TMGO-5 (Nikko) 9.5
    PEG-6 oleate Algon OL 60 (Auschem SpA), 8.5
    Kessco ® PEG 300 MO (Stepan),
    Nikkol MYO-6 (Nikko),
    Emulgante A6 (Condea)
    PEG-7 oleate Algon OL 70 (Auschem SpA) 10.4
    PEG-6 laurate Kessco ® PEG300 ML (Stepan) 11.4
    PEG-7 laurate Lauridac 7 (Condea) 13
    PEG-6 stearate Kessco ® PEG300 MS (Stepan) 9.7
    PEG-8 laurate Mapeg ® 400 ML (PPG), 13
    LIPOPEG 4DL(Lipo Chem.)
    PEG-8 oleate Mapeg ® 400 MO (PPG), 12
    Emulgante A8 (Condea);
    Kessco PEG 400 MO (Stepan)
    PEG-8 stearate Mapeg ® 400 MS (PPG), 12
    Myrj 45
    PEG-9 oleate Emulgante A9 (Condea) >10
    PEG-9 stearate Cremophor 59 (BASF) >10
    PEG-10 laurate Nikkol MYL-10 (Nikko), 13
    Lauridac 10 (Croda)
    PEG-10 oleate Nikkol MYO-10 (Nikko) 11
    PEG-10 stearate Nikkol MYS-10 (Nikko), 11
    Coster K100 (Condea)
    PEG-12 laurate Kessco ® PEG 600 ML (Stepan) 15
    PEG-12 oleate Kessco ® PEG 600MO (Stepan) 14
    PEG-12 ricinoleate (CAS #9004-97-1) >10
    PEG-12 stearate Mapeg ® 600 MS (PPG), 14
    Kessco ® PEG 600MS (Stepan)
    PEG-15 stearate Nikkol TMGS-15 (Nikko), 14
    Koster K15 (Condea)
    PEG-15 oleate Nikkol TMGO-15 (Nikko) 15
    PEG-20 laurate Kessco ® PEG 1000 ML (Stepan) 17
    PEG-20 oleate Kessco ® PEG 1000 MO (Stepan) 15
    PEG-20 stearate Mapeg ® 1000 MS (PPG), 16
    Kessco ® PEG 1000
    MS (Stepan), Myrj 49
    PEG-25 stearate Nikkol MYS-25 (Nikko) 15
    PEG-32 laurate Kessco ® PEG 1540 ML (Stepan) 16
    PEG-32 oleate Kessco ® PEG 1540 MO (Stepan) 17
    PEG-32 stearate Kessco ® PEG 1540 MS (Stepan) 17
    PEG-30 stearate Myrj 51 >10
    PEG-40 laurate Crodet L40 (Croda) 17.9
    PEG-40 oleate Crodet O40 (Croda) 17.4
    PEG-40 stearate Myrj 52, Emerest ® 2715 (Henkel), >10
    Nikkol MYS-40 (Nikko)
    PEG-45 stearate Nikkol MYS-45 (Nikko) 18
    PEG-50 stearate Myrj 53 >10
    PEG-55 stearate Nikkol MYS-55 (Nikko) 18
    PEG-100 oleate Crodet 0-100 (Croda) 18.8
    PEG-100 stearate Myrj 59, Arlacel 165 (ICI) 19
    PEG-200 oleate Albunol 200 MO (Taiwan Surf.) >10
    PEG-400 oleate LACTOMUL (Henkel), >10
    Albunol 400 MO (Taiwan Surf.)
    PEG-600 oleate Albunol 600 MO (Taiwan Surf) >10
  • Furthermore, in some embodiments, surfactants described herein include, by way of non-limiting example, polyethylene glycol (PEG) fatty acid diesters. Illustrative and non-limiting examples of PEG-fatty acid diesters are shown in Table 2.
  • TABLE 2
    PEG-Fatty Acid Diester Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG-4 dilaurate Mapeg ® 200 DL (PPG), 7
    Kessco ® PEG 200 DL (Stepan), 6
    LIPOPEG 2-DL (Lipo Chem.)
    PEG-4 dioleate Mapeg ® 200 DO (PPG), 6
    PEG-4 distearate Kessco ® 200 DS (Stepan) 5
    PEG-6 dilaurate Kessco ® PEG 300 DL (Stepan) 9.8
    PEG-6 dioleate Kessco ® PEG 300 DO (Stepan) 7.2
    PEG-6 distearate Kessco ® PEG 300 DS (Stepan) 6.5
    PEG-8 dilaurate Mapeg ® 400 DL (PPG), 11
    Kessco ® PEG 400 DL (Stepan),
    LIPOPEG 4 DL (Lipo Chem.)
    PEG-8 dioleate Mapeg ® 400 DO (PPG), 8.8
    Kessco ® PEG 400 DO (Stepan),
    LIPOPEG 4 DO(Lipo Chem.)
    PEG-8 distearate Mapeg ® 400 DS (PPG), 11
    CDS 400 (Nikkol)
    PEG-10 dipalmitate Polyaldo 2PKFG >10
    PEG-12 dilaurate Kessco ® PEG 600 DL (Stepan) 11.7
    PEG-12 distearate Kessco ® PEG 600 DS (Stepan) 10.7
    PEG-12 dioleate Mapeg ® 600 DO (PPG), 10
    Kessco ® 600 DO(Stepan)
    PEG-20 dilaurate Kessco ® PEG 1000 DL (Stepan) 15
    PEG-20 dioleate Kessco ® PEG 1000 DO (Stepan) 13
    PEG-20 distearate Kessco ® PEG 1000 DS (Stepan) 12
    PEG-32 dilaurate Kessco ® PEG 1540 DL (Stepan) 16
    PEG-32 dioleate Kessco ® PEG 1540 DO (Stepan) 15
    PEG-32 distearate Kessco ® PEG 1540 DS (Stepan) 15
    PEG-400 dioleate Cithrol 4DO series (Croda) >10
    PEG-400 distearate Cithrol 4DS series (Croda) >10
  • As discussed above, in some embodiments, pharmaceutical compositions described herein comprise mixtures of surfactants, including, e.g., mixtures of two or more commercial surfactant products. Several PEG-fatty acid esters are marketed commercially as mixtures or mono- and diesters. Illustrative and non-limiting examples of surfactant mixtures are shown in Table 3.
  • TABLE 3
    PEG-Fatty Acid Mono-and Diester Mixtures
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG 4-150 mono, Kessco ® PEG 200-6000 mono,
    dilaurate dilaurate (Stepan)
    PEG 4-150 mono, Kessco ® PEG 200-6000 mono,
    dioleate dioteate (Stepan)
    PEG 4-150 mono, Kessco ® 200-6000 mono,
    distearate distearate (Stepan)
  • In some embodiments, surfactants described herein include, by way of non-limiting example, polyethylene glycol glycerol fatty acid esters (PEG glycerol fatty acid esters). Illustrative and non-limiting examples of PEG glycerol fatty acid esters are shown in Table 4.
  • TABLE 4
    PEG Glycerol Fatty Acid Esters
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG-20 glyceryl Tagat ® L (Goldschmidt) 16
    laurate
    PEG-30 glyceryl Tagat ® L2 (Goldschmidt) 16
    laurate
    PEG-15 glyceryl Glycerox L series (Croda) 15
    laurate
    PEG-40 glyceryl Glycerox L series (Croda) 15
    laurate
    PEG-20 glyceryl Capmul ® EMG (ABITEC), 13
    stearate Aldo ® MS-20 KFG (Lonza)
    PEG-20 glyceryl Tagat ® O (Goldschmidt) >10
    oleate
    PEG-30 glyceryl Tagat ® O2 (Goldschmidt) >10
    oleate
  • In certain embodiments, surfactants of different degrees of lipophilicity or hydrophilicity are prepared by reaction of alcohols or polyalcohols with a variety of natural and/or hydrogenated oils. In some embodiments, the oils used are castor oil or hydrogenated castor oil or an edible vegetable oil such as corn oil, olive oil, peanut oil, palm kernel oil, apricot kernel oil, or almond oil. In specific embodiments, alcohols include glycerol, propylene glycol, ethylene glycol, polyethylene glycol, sorbitol, and pentaerythritol. In certain embodiments, such surfactants are utilized in the pharmaceutical compositions described herein. Illustrative and non-limiting examples of surfactants of this class suitable for use in the pharmaceutical compositions described herein are shown in Table 5.
  • TABLE 5
    Transesterification Products of Oils and Alcohols
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG-3 castor oil Nikkol CO-3 (Nikko) 3
    PEG-5, 9, and 16 ACCONON CA series (ABITEC) 6-7
    castor oil
    PEG-20 castor oil Emalex C-20 (Nihon Emulsion), 11
    Nikkol CO-20 TX (Nikko)
    PEG-23 castor oil Emulgante EL23 >10
    PEG-30 castor oil Emalex C-30 (Nihon Emulsion), 11
    Alkamuls ® EL 620 (Rhone-
    Poulenc), Incrocas 30 (Croda)
    PEG-35 castor oil Cremophor EL and EL-P (BASF),
    Emulphor EL, Incrocas-35 (Croda),
    Emulgin RO 35 (Henkel)
    PEG-38 castor oil Emulgante EL 65 (Condea)
    PEG-40 castor oil Emalex C-40 (Nihon Emulsion), 13
    Alkamuls ® EL 719 (Rhone-
    Poulenc)
    PEG-50 castor oil Emalex C-50 (Nihon Emulsion) 14
    PEG-56 castor oil Eumulgin ® PRT 56 (Pulcra SA) >10
    PEG-60 castor oil Nikkol CO-60TX (Nikko) 14
    PEG-100 castor oil Thornley >10
    PEG-200 castor oil Eumulgin ® PRT 200 (Pulcra SA) >10
    PEG-5 hydrogenated Nikkol HCO-5 (Nikko) 6
    castor oil
    PEG-7 hydrogenated Simusol ® 989 (Seppic), 6
    castor oil Cremophor WO7 (BASF)
    PEG-10 hydrogenated Nikkol HCO-10 (Nikko) 6.5
    castor oil
    PEG-20 hydrogenated Nikkol HCO-20 (Nikko) 11
    castor oil
    PEG-25 hydrogenated Simulsol ® 1292 (Seppic), 11
    castor oil Cerex ELS 250 (Auschem SpA)
    PEG-30 hydrogenated Nikkol HCO-30 (Nikko) 11
    castor oil
    PEG-40 hydrogenated Cremophor RH 40 (BASF), 13
    castor oil Croduret (Croda),
    Emulgin HRE 40 (Henkel)
    PEG-45 hydrogenated Cerex ELS 450 (Auschem Spa) 14
    castor oil
    PEG-50 hydrogenated Emalex HC-50 (Nihon Emulsion) 14
    castor oil
    PEG-60 hydrogenated Nikkol HCO-60 (Nikko); 15
    castor oil Cremophor RH 60 (BASF)
    PEG-80 hydrogenated Nikkol HCO-80 (Nikko) 15
    castor oil
    PEG-100 Nikkol HCO-100 (Nikko) 17
    hydrogenated castor
    oil
    PEG-6 corn oil Labrafil ® M 2125 CS (Gattefosse) 4
    PEG-6 almond oil Labrafil ® M 1966 CS (Gattefosse) 4
    PEG-6 apricot kernel Labrafil ® M 1944 CS (Gattefosse) 4
    oil
    PEG-6 olive oil Labrafil ® M 1980 CS (Gattefosse) 4
    PEG-6 peanut oil Labrafil ® M 1969 CS (Gattefosse) 4
    PEG-6 hydrogenated Labrafil ® M 2130 BS (Gattefosse) 4
    palm kernel oil
    PEG-6 palm kernel oil Labrafil ® M 2130 CS (Gattefosse) 4
    PEG-6 triolein Labrafil ® M 2735 CS (Gattefosse) 4
    PEG-8 corn oil Labrafil ® WL 2609 BS (Gattefosse) 6-7
    PEG-20 corn Crovol M40 (Croda) 10
    glycerides
    PEG-20 almond Crovol A40 (Croda) 10
    glycerides
    PEG-25 trioleate TAGAT ® TO (Goldschmidt) 11
    PEG-40 palm kernel Crovol PK-70 >10
    oil
    PEG-60 corn Crovol M70(Croda) 15
    glycerides
    PEG-60 almond Crovol A70 (Croda) 15
    glycerides
    PEG-4 caprylic/capric Labrafac ® Hydro (Gattefosse), 4-5
    triglyceride
    PEG-8 caprylic/capric Labrasol (Gattefosse), >10
    glycerides Labrafac CM 10 (Gattefosse)
    PEG-6 caprylic/capric SOFTIGEN ® 767 (Hüls), 19
    glycerides Glycerox 767 (Croda)
    Lauroyl macrogol-32 GELUCIRE 44/14 (Gattefosse) 14
    glyceride
    Stearoyl macrogol GELUCIRE 50/13 (Gattefosse) 13
    glyceride
    Mono, di, tri, SorbitoGlyceride (Gattefosse) <10
    tetra esters of
    vegetable oils
    and sorbitol
    Pentaerythrityl Crodamol PTIS (Croda) <10
    tetraisostearate
    Pentaerythrityl Albunol DS (Taiwan Surf.) <10
    distearate
    Pentaerythrityl Liponate PO-4 (Lipo Chem.) <10
    tetraoleate
    Pentaerythrityl Liponate PS-4 (Lipo Chem.) <10
    tetrastearate
    Pentaerythrityl Liponate PE-810 (Lipo Chem.), <10
    tetracaprylate/ Crodamol PTC (Croda)
    tetracaprate
    Pentaerythrityl Nikkol Pentarate 408 (Nikko)
    tetraoctanoate
  • In some embodiments, surfactants utilized in the pharmaceutical compositions described herein include, by way of non-limiting example, polyglycerized fatty acids. Illustrative and non-limiting examples of suitable polyglyceryl esters are shown in Table 6.
  • TABLE 6
    Polyglycerized Fatty Acids
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Polyglyceryl-2 stearate Nikkol DGMS (Nikko) 5-7
    Polyglyceryl-2 oleate Nikkol DGMO (Nikko) 5-7
    Polyglyceryl-2 Nikkol DGMIS (Nikko) 5-7
    isostearate
    Polyglyceryl-3 oleate Caprol ® 3G0 (ABITEC), 6.5
    Drewpol 3-1-O (Stepan)
    Polyglyceryl-4 oleate Nikkol Tetraglyn 1-O (Nikko) 5-7
    Polyglyceryl-4 stearate Nikkol Tetraglyn 1-S (Nikko) 5-6
    Polyglyceryl-6 oleate Drewpol 6-1-O (Stepan), 9
    Nikkol Hexaglyn 1-O (Nikko)
    Polyglyceryl-10 Nikkol Decaglyn 1-L (Nikko) 15
    laurate
    Polyglyceryl-10 oleate Nikkol Decaglyn 1-O (Nikko) 14
    Polyglyceryl-10 Nikkol Decaglyn 1-S (Nikko) 12
    stearate
    Polyglyceryl-6 Nikkol Hexaglyn PR-15 (Nikko)
    ricinoleate
    Polyglyceryl-10 Nikkol Decaglyn I-LN (Nikko) 12
    linoleate
    Polyglyceryl-6 Nikkol Hexaglyn S-O (Nikko) <10
    pentaoleate
    Polyglyceryl-3 Cremophor G032 (BASF) <10
    dioleate
    Polyglyceryl-3 Cremophor GS32 (BASF) <10
    distearate
    Polyglyceryl-4 Nikkol Tetraglyn 5-O (Nikko) <10
    pentaoleate
    Polyglyceryl-6 Caprol ® 6G20 (ABITEC); 8.5
    dioleate Hodag PGO-62 (Calgene),
    PLUROL OLEIQUE CC 497
    (Gattefosse)
    Polyglyceryl-2 Nikkol DGDO (Nikko) 7
    dioleate
    Polyglyceryl-10 Nikkol Decaglyn 3-O (Nikko) 7
    trioleate
    Polyglyceryl-10 Nikkol Decaglyn 5-O (Nikko) 3.5
    pentaoleate
    Polyglyceryl-10 Nikkol Decagtyn 7-O (Nikko) 3
    septaoleate
    Polyglyceryl-10 Caprol ® 10G40 (ABITEC); 6.2
    tetraoleate Hodag PGO-62 (CALGENE),
    Drewpol 10-4-O (Stepan)
    Polyglyceryl-10 Nikkol Decaglyn 10-IS (Nikko) <10
    decaisostearate
    Polyglyceryl-10 Drewpol 10-10-O (Stepan), 3.5
    decaoleate Caprol 10G10O (ABITEC),
    Nikkol Decaglyn 10-O
    Polyglyceryl-10 mono, Caprol ® PGE 860 (ABITEC) 11
    dioleate
    Polyglyceryl Polymuls (Henkel)  3-20
    polyricinoIeate
  • In some embodiments, surfactants utilized in the pharmaceutical compositions described herein include, by way of non-limiting example esters of propylene glycol and fatty acids. Illustrative and non-limiting examples of surfactants of this class are given in Table 7.
  • TABLE 7
    Propylene Glycol Fatty Acid Esters
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Propylene glycol Capryol 90 (Gattefosse), <10
    monocaprylate Nikkol Sefsol 218 (Nikko)
    Propylene glycol Lauroglycol 90 (Gattefosse), <10
    monolaurate Lauroglycol FCC (Gattefosse)
    Propylene glycol Lutrol OP2000 (BASF) <10
    oleate
    Propylene glycol Mirpyl <10
    myristate
    Propylene glycol ADM PGME-03 (ADM), 3-4
    monostearate LIPO PGMS (Lipo Chem.),
    Aldo ® PGHMS (Lonza)
    Propylene glycol <10
    hydroxy stearate
    Propylene glycol PROPYMULS (Henkel) <10
    ricinoleate
    Propylene glycol <10
    isostearate
    Propylene glycol Myverol P-06 (Eastman) <10
    monooleate
    Propylene glycol Captex ® 200 (ABITEC), >6
    dicaprylate/dicaprate Miglyol ® 840 (Huls),
    Neobee ® M-20 (Stepan)
    Propylene glycol Captex ® 800 (ABITEC)
    dioctanoate
    Propylene glycol LABRAFAC >6
    caprylate/caprate PG (Gattefosse)
    Propylene glycol >6
    dilaurate
    Propylene glycol Kessco ® PGDS (Stepan) >6
    distearate
    Propylene glycol Nikkol Sefsol 228 (Nikko) >6
    dicaprylate
    Propylene glycol Nikkol PDD (Nikko) >6
    dicaprate
  • As discussed above, mixtures of surfactants are also used, in some embodiments, in the pharmaceutical compositions described herein. Mixtures of surfactants include, by way of non-limiting example, mixtures of propylene glycol fatty acid esters and glycerol fatty acid esters are suitable and are commercially available. Illustrative and non-limiting examples of such mixtures of surfactants include, by way of non-limiting example, those shown in Table 8.
  • TABLE 8
    Glycerol/Propylene Glycol Fatty Acid Esters
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Oleic ATMOS
    300, ARLACEL 186 (ICI) 3-4
    Stearic ATMOS 150 3-4
  • In certain embodiments, an important class of surfactants includes the class of mono- and diglycerides. These surfactants are generally lipophilic. Illustrative and non-limiting examples of these surfactants are given in Table 9.
  • TABLE 9
    Mono- and Diglyceride Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Monopalmitolein (Larodan) <10
    (C16:1)
    Monoelaidin (Larodan) <10
    (C18:1)
    Monocaproin (Larodan) <10
    (C6)
    Monocaprylin (Larodan) <10
    Monocaprin (Larodan) <10
    Monolaurin (Larodan) <10
    Glyceryl Nikkol MGM (Nikko) 3-4
    monomyristate (C14)
    Glyceryl monooleate PECEOL (Gattefosse), Hodag 3-4
    (C18:1) GMO-D, Nikkol MGO (Nikko)
    Glyceryl monooleate RYLO series (Danisco), 3-4
    DIMODAN series (Danisco),
    EMULDAN (Danisco), ALDO ®
    MO FG (Lonza), Kessco GMO
    (Stepan), MONOMULS ®
    series (Henkel), TEGIN O,
    DREWMULSE GMO (Stepan),
    Atlas G-695 (ICI),
    GMOrphic 80 (Eastman),
    ADM DMG-40, 70, and 100
    (ADM), Myverol (Eastman)
    Glycerol monooleate/ OLICINE (Gattefosse) 3-4
    linoleate
    Glycerol Maisine (Gattefosse), 3-4
    monolinoleate MYVEROL 18-92,
    Myverol 18-06 (Eastman)
    Glyceryl ricinoleate Softigen ® 701 (Huls), 6
    HODAG GMR-D (Calgene),
    ALDO ® MR (Lonza)
    Glyceryl monolaurate ALDO ® MLD (Lonza), 6.8
    Hodag GML (Calgene)
    Glycerol Emalex GMS-P (Nihon) 4
    monopalmitate
    Glycerol monostearate Capmul ® GMS. (ABITEC), 5-9
    Myvaplex (Eastman),
    IMWITOR ® 191 (Hüls),
    CUTINA GMS, Aldo ® MS
    (Lonza), Nikkol MGS series
    (Nikko)
    Glyceryl mono-, Capmul ® GMO-K (ABITEC) <10
    dioleate
    Glyceryl CUTINA MD-A, ESTAGEL-G18 <10
    palmitic/stearic
    Glyceryl acetate Lamegin ® EE (Grünau GmbH) <10
    Glyceryl laurate Inwitor ® 312 (Hüls), 4
    Monomuls ® 90-45 (Grünau
    GmbH), Aldo ® MLD (Lonza)
    Glyceryl citrate/ Imwitor ® 375 (Hüls) <10
    lactate/oleate/
    linoieate
    Glyceryl caprylate Imwitor ® 308 (Hüls), 5-6
    Capmul ® MCMC8 (ABITEC)
    Glyceryl Capmul ® MCM (ABITEC) 5-6
    caprylate/caprate
    Caprylic acid mono, Imwitor ® 988 (Hüls) 5-6
    diglycerides
    Caprylic/capric Imwitor ® 742 (Hüls) <10
    glycerides
    Mono-and diacetylated Myvacet ® 9-45, 3.8-4  
    monoglycerides Myvacet ® 9-40,
    Myvacet ® 9-08 (Eastman),
    Lamegin ® (Grünau)
    Glyceryl Aldo ® MS, Arlacel 129 4.4
    monostearate (ICI), LIPO GMS (Lipo
    Chem.), Imwitor ® 191
    (Hüls), Myvaplex (Eastman)
    Lactic acid esters LAMEGIN GLP (Henkel) <10
    of mono, diglycerides
    Dicaproin (C6) (Larodan) <10
    Dicaprin (C10) (Larodan) <10
    Dioctanoin (C8) (Larodan) <10
    Dimyristin (C14) (Larodan) <10
    Dipalmitin (C16) (Larodan)
    Distearin (Larodan) <10
    Glyceryl dilaurate Capmul ® GDL (ABITEC) 3-4
    (C12)
    Glyceryl dioleate Capmul ® GDO (ABITEC) 3-4
    Glycerol esters of GELUCIRE 39/01 (Gattefosse), 1
    fatty acids GELUCIRE 43/01 (Gattefosse) 6
    GELUCIRE 37/06 (Gattefosse)
    Dipalmitolein (C16:1) (Larodan)
    1,2 and 1,3-diolein (Larodan) <10
    (C18:1)
    Dielaidin (C18:1) (Larodan) <10
    Dilinolein (C18:2) (Larodan) <10
  • In some embodiments, surfactants utilized in the pharmaceutical compositions described herein include sterols and derivatives of sterols. In various embodiments, these surfactants are hydrophilic or lipophilic. Illustrative and non-limiting examples of surfactants of this class are shown in Table 10.
  • TABLE 10
    Sterol and Sterol Derivative Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Cholesterol, sitosterol, <10
    lanosterol
    PEG-24 cholesterol Solulan C-24 (Amerchol) >10
    ether
    PEG-30 cholestanol Nikkol DHC (Nikko) >10
    Phytosterol GENEROL series (Henkel) <10
    PEG-25 phyto sterol Nikkol BPSH-25 (Nikko) >10
    PEG-5 soya sterol Nikkol BPS-S (Nikko) <10
    PEG-10 soya sterol Nikkol BPS-10 (Nikko) <10
    PEG-20 soya sterol Nikkol BPS-20 (Nikko) <10
    PEG-30 soya sterol Nikkol BPS-30 (Nikko) >10
  • In some embodiments, surfactants useful in the pharmaceutical compositions described herein include a variety of PEG-sorbitan fatty acid esters. In general, these surfactants are hydrophilic, although several lipophilic surfactants of this class can be used. Illustrative and non-limiting examples of these surfactants are shown in Table 11.
  • TABLE 11
    PEG-Sorbitan Fatty Acid Esters
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG-10 sorbitan Liposorb L-10 (Lipo Chem.) >10
    laurate
    PEG-20 sorbitan Tween-20 (Atlas/ICI), Crillet 1 17
    monolaurate (Croda), DACOL MLS 20 (Condea)
    PEG-4 sorbitan Tween-21 (Atlas/ICI), Crillet 11 13
    monolaurate (Croda)
    PEG-80 sorbitan Hodag PSML-80 (Calgene); T-Maz 28 >10
    monolaurate
    PEG-6 sorbitan Nikkol GL-1 (Nikko) 16
    monolaurate
    PEG-20 sorbitan Tween-40 (Atlas/ICI), Crillet 2 16
    monopalmitate (Croda)
    PEG-20 sorbitan Tween-60 (Atlas/ICI), Crillet 3 15
    monostearate (Croda)
    PEG-4 sorbitan Tween-61 (Atlas/ICI), Crillet 31 9.6
    monostearate (Croda)
    PEG-8 sorbitan DACOL MSS (Condea) >10
    monostearate
    PBG-6 sorbitan Nikkol TS106 (Nikko) 11
    monostearate
    PEG-20 sorbitan Tween-65 (Atlas/ICI), Crillet 35 11
    tristearate (Croda)
    PEG-6 sorbitan Nikkol GS-6 (Nikko) 3
    tetrastearate
    PEG-60 sorbitan Nikkol GS-460 (Nikko) 13
    tetrastearate
    PEG-5 sorbitan Tween-81 (Atlas/ICI), Crillet 41 10
    monooleate (Croda)
    PEG-6 sorbitan Nikkol TO-106 (Nikko) 10
    monooleate
    PEG-20 sorbitan Tween-80 (Atlas/ICI), Crillet 4 15
    monooleate (Croda)
    PEG-40 sorbitan Emalex ET 8040 (Nihon Emulsion) 18
    oleate
    PEG-20 sorbitan Tween-85 (Atlas/ICI), Crillet 45 11
    trioleate (Croda)
    PEG-6 sorbitan Nikkol GO-4 (Nikko) 8.5
    tetraoleate
    PEG-30 sorbitan Nikkol GO-430 (Nikko) 12
    tetraoleate
    PEG-40 sorbitan Nikkol GO-440 (Nikko) 13
    tetraoleate
    PEG-20 sorbitan Tween-120 (Atlas/ICI), >10
    monoisostearate Crillet 6 (Croda)
    PEG sorbitol Atlas G-1086 (ICI) 10
    hexaoleate
    PEG-6 sorbitol Nikkol GS-6 (Nikko) 3
    hexastearate
  • In some embodiments, surfactants utilized herein include ethers of polyethylene glycol and alkyl alcohols. Illustrative and non-limiting examples of these surfactants are shown in Table 12.
  • TABLE 12
    Polyethylene Glycol Alkyl Ethers
    COMMERCIAL PRODUCT
    COMPOUND (Supplier) HLB
    PEG-2 oleyl ether, oleth-2 Brij 92/93 (Atlas/ICI) 4.9
    PEG-3 oleyl ether, oleth-3 Volpo 3 (Croda) <10
    PEG-5 oleyl ether, oleth-5 Volpo 5 (Croda) <10
    PEG-10 oleyl ether, oleth-10 Volpo 10 (Croda), 12
    Brij 96/97 (Atlas/ICI)
    PEG-20 oleyl ether, oleth-20 Volpo 20 (Croda), 15
    Brij 98/99 (Atlas/ICI)
    PEG-4 lauryl ether, laureth-4 Brij 30 (Atlas/ICI) 9.7
    PEG-9 lauryl ether >10
    PEG-23 lauryl ether, laureth-23 Brij 35 (Atlas/ICI) 17
    PEG-2 cetyl ether Brij 52 (ICI) 5.3
    PEG-10 cetyl ether Brij 56 (ICI) 13
    PEG-20 cetyl ether Brij 58 (ICI) 16
    PEG-2 stearyl ether Brij 72 (ICI) 4.9
    PEG-10 stearyl ether Brij 76 (ICI) 12
    PEG-20 stearyl ether Brij 78 (ICI) 15
    PEG-100 stearyl ether Brij 700 (ICI) >10
  • In certain embodiments, surfactants utilized in the pharmaceutical compositions described herein include esters of sugars. Illustrative and non-limiting examples of such surfactants are shown in Table 13.
  • TABLE 13
    Sugar Ester Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Sucrose distearate SUCRO ESTER 7 (Gattefosse), 3
    Crodesta F-10 (Croda)
    Sucrose distearate/ SUCRO ESTER 11 (Gattefosse), 12
    monostearate Crodesta F-110 (Croda)
    Sucrose dipalmitate 7.4
    Sucrose monostearate Crodesta F-160 (Croda) 15
    Sucrose monopalmitate SUCRO ESTER 15 (Gattefosse) >10
    Sucrose monolaurate Saccharose monolaurate 15
    1695 (Mitsubishi-Kasei)
  • In some embodiments, surfactants utilized in the pharmaceutical compositions described herein include polyethylene glycol alkyl phenols, e.g., hydrophilic PEG-alkyl phenol surfactants. Illustrative and non-limiting examples of these surfactants are shown in Table 14.
  • TABLE 14
    Polyethylene Glycol Alkyl Phenol Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    PEG-10-100 Triton X series (Rohm & Haas), >10
    nonyl phenol Igepal CA series (GAF, USA),
    Antarox CA series (GAF, UK)
    PEG-15-100 Triton N-series (Rohm & Haas), >10
    octyl phenol ether Igepal CO series (GAF, USA),
    Antarox CO series (GAF, UK)
  • In certain embodiments, surfactants utilized in pharmaceutical compositions described herein include polyoxyethylene-polyoxypropylene block copolymers. POE-POP block copolymers are a unique class of polymeric surfactants. The unique structure of the surfactants, with hydrophilic POE and lipophilic POP moieties in well-defined ratios and positions, provides a wide variety of surfactants suitable for use in the present invention. These surfactants are available under various trade names, including Synperonic PE series (ICI); Pluronic® series (BASF), Emkalyx, Lutrol (BASF), Supronic, Monolan, Pluracare, and Plurodac. The generic term for these polymers is “poloxamer” (CAS 9003-11-6). These polymers have the formula: HO(C2H4O)a(C3H6O)b(C2H4O)aH; wherein the terms “a” and “b” denote the number of polyoxyethylene and polyoxypropylene units, respectively.
  • Illustrative and non-limiting examples of suitable surfactants of this class are shown in Table 15. Since the compounds are widely available, commercial sources are not listed in the Table. The compounds are listed by generic name, with the corresponding “a” and “b” values.
  • TABLE 15
    POE-POP Block Copolymers
    a, b values in
    COMPOUND HO(C2H4O)a(C3H6O)b(C2H4O)aH HLB
    Poloxamer 105 a = 11; b = 16 8
    Poloxamer 108 a = 46; b = 16 >10
    Poloxamer 122 a = 5; b = 21 3
    Poloxamer 123 a = 7; b = 21 7
    Poloxamer 124 a = 11; b = 21 >7
    Poloxamer 181 a = 3; b = 30
    Poloxamer 182 a = 8; b = 30 2
    Poloxamer 183 a = 10; b = 30
    Poloxamer 184 a = 13; b = 30
    Poloxamer 185 a = 19; b = 30
    Poloxamer 188 a = 75; b = 30 29
    Poloxamer 212 a = 8; b = 35
    Poloxamer 215 a = 24; b = 35
    Poloxamer 217 a = 52; b = 35
    Poloxamer 231 a = 16; b = 39
    Poloxamer 234 a = 22; b = 39
    Poloxamer 235 a = 27; b = 39
    Poloxamer 237 a = 62; b = 39 24
    Poloxamer 238 a = 97; b = 39
    Poloxamer 282 a = 10; b = 47
    Poloxamer 284 a = 21; b = 47
    Poloxamer 288 a = 122; b = 47 >10
    Poloxamer 331 a = 7; b = 54 0.5
    Poloxamer 333 a = 20; b = 54
    Poloxamer 334 a = 31; b = 54
    Poloxamer 335 a = 38; b = 54
    Poloxamer 338 a = 128; b = 54
    Poloxamer 401 a = 6; b = 67
    Poloxamer 402 a = 13; b = 67
    Poloxamer 403 a = 21; b = 67
    Poloxamer 407 a = 98; b = 67
  • In some embodiments, surfactants utilized in pharmaceutical compositions described herein include sorbitan esters of fatty acids. Illustrative and non-limiting examples of such surfactants are shown in Table 16.
  • TABLE 16
    Sorbitan Fatty Acid Ester Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Sorbitan monolaurate Span-20 (Atlas/ICI), Crill 1 (Croda), 8.6
    Arlacel 20 (ICI)
    Sorbitan monopalmitate Span-40 (Atlas/ICI), Crill 2 (Croda), 6.7
    Nikkol SP-10 (Nikko)
    Sorbitan monooleate Span-80 (Atlas/ICI), Crill 4 (Croda), 4.3
    Crill 50 (Croda)
    Sorbitan monostearate Span-60 (Atlas/ICI), Crill 3 (Croda), 4.7
    Nikkol SS-10 (Nikko)
    Sorbitan trioleate Span-85 (Atlas/ICI), Crill 45 (Croda), 4.3
    Nikkol SO-30 (Nikko)
    Sorbitan sesquioleate Arlacel-C (ICI), Crill 43 (Croda), 3.7
    Nikkol SO-15 (Nikko)
    Sorbitan tristearate Span-65 (Atlas/ICI) Crill 35 (Croda), 2.1
    Nikkol SS-30 (Nikko)
    Sorbitan monoisostearate Crill 6 (Croda), Nikkol SI-10 (Nikko) 4.7
    Sorbitan sesquistearate Nikkol SS-15 (Nikko) 4.2
  • In certain embodiments, surfactants utilized in pharmaceutical compositions described herein include esters of lower alcohols (C2 to C4) and fatty acids (C8 to C18). Illustrative and non-limiting examples of these surfactants are shown in Table 17.
  • TABLE 17
    Lower Alcohol Fatty Acid Ester Surfactants
    COMPOUND COMMERCIAL PRODUCT (Supplier) HLB
    Ethyl oleate Crodamol EO (Croda), <10
    Nikkol EOO (Nikko)
    Isopropyl myristate Crodamol IPM (Croda) <10
    Isopropyl palmitate Crodamol IPP (Croda) <10
    Ethyl linoleate Nikkol VF-E (Nikko) <10
    Isopropyl linoleate Nikkol VF-IP (Nikko) <10
  • In some embodiments, hydrophilic surfactants utilized in pharmaceutical compositions described herein include ionic surfactants (e.g., cationic, anionic and zwitterionic surfactants). In specific embodiments, anionic surfactants include fatty acid salts and bile acid salts. In certain specific embodiments, cationic surfactants include carnitines. In some specific embodiments, ionic surfactants include, by way of non-limiting example, sodium oleate, sodium lauryl sulfate, sodium lauryl sarcosinate, sodium dioctyl sulfosuccinate, sodium cholate, sodium taurocholate; lauroyl carnitine; palmitoyl carnitine; and myristoyl carnitine. Illustrative and non-limiting examples of such surfactants are shown in Table 18. For simplicity, exemplary counterions are shown in the entries in the Table. In various embodiments, such counterions are optionally substituted with any suitable counterion. For example, although the fatty acids are shown as sodium salts, other cation counterions are optionally used, such as alkali metal cations or ammonium. Unlike certain non-ionic surfactants, these ionic surfactants are generally available as pure compounds, rather than commercial (proprietary) mixtures. Because these compounds are readily available from a variety of commercial suppliers, such as Aldrich, Sigma, and the like, commercial sources are not generally listed in the Table.
  • TABLE 18
    Ionic Surfactants
    COMPOUND HLB
    FATTY ACID SALTS >10
    Sodium caproate
    Sodium caprylate
    Sodium caprate
    Sodium laurate
    Sodium myristate
    Sodium myristolate
    Sodium palmitate
    Sodium palmitoleate
    Sodium oleate
    18
    Sodium ricinoleate
    Sodium linoleate
    Sodium linolenate
    Sodium stearate
    Sodium lauryl sulfate (dodecyl) 40
    Sodium tetradecyl sulfate
    Sodium lauryl sarcosinate
    Sodium dioctyl sulfosuccinate [sodium docusate (Cytec)]
    BILE SALTS >10
    Sodium cholate
    Sodium taurocholate
    Sodium glycocholate
    Sodium deoxycholate
    Sodium taurodeoxycholate
    Sodium glycodeoxycholate
    Sodium ursodeoxycholate
    Sodium chenodeoxycholate
    Sodium taurochenodeoxycholate
    Sodium glyco cheno deoxycholate
    Sodium cholylsarcosinate
    Sodium N-methyl taurocholate
    Sodium lithocholate
    PHOSPHOLIPIDS
    Egg/Soy lecithin [Epikuron ™ (Lucas Meyer),
    Ovothin ™ (Lucas Meyer)]
    Lyso egg/soy lecithin
    Hydroxylated lecithin
    Lysophosphatidylcholine
    Cardiolipin
    Sphingomyelin
    Phosphatidylcholine
    Phosphatidyl ethanolamine
    Phosphatidic acid
    Phosphatidyl glycerol
    Phosphatidyl serine
    PHOSPHORIC ACID ESTERS
    Diethanolammonium polyoxyethylene-10 oleyl ether phosphate
    Esterification products of fatty alcohols or fatty alcohol
    ethoxylates with phosphoric acid or anhydride
    CARBOXYLATES
    Ether carboxylates (by oxidation of terminal OH group of fatty
    alcohol ethoxylates)
    Succinylated monoglycerides [LAMEGIN ZE (Henkel)]
    Sodium stearyl fumarate
    Stearoyl propylene glycol hydrogen succinate
    Mono/diacetylated tartaric acid esters of mono- and diglycerides
    Citric acid esters of mono-, diglycerides
    Glyceryl-lacto esters of fatty acids (CFR ref. 172.852)
    Acyl lactylates:
    lactylic esters of fatty acids
    calcium/sodium stearoyl-2-lactylate
    calcium/sodium stearoyl lactylate
    Alginate salts
    Propylene glycol alginate
    SULFATES AND SULFONATES
    Ethoxylated alkyl sulfates
    Alkyl benzene sulfones
    α-olefin sulfonates
    Acyl isethionates
    Acyl taurates
    Alkyl glyceryl ether sulfonates
    Octyl sulfosuccinate disodium
    Disodium undecylenamideo-MEA-sulfosuccinate
    CATIONIC Surfactants >10
    Lauroyl carnitine
    Palmitoyl carnitine
    Myristoyl carnitine
    Hexadecyl triammonium bromide
    Decyl trimethyl ammonium bromide
    Cetyl trimethyl ammonium bromide
    Dodecyl ammonium chloride
    Alkyl benzyldimethylammonium salts
    Diisobutyl phenoxyethoxydimethyl benzylammonium salts
    Alkylpyridinium salts
    Betaines (trialkylglycine):
    Lauryl betaine (N-lauryl,N,N-dimethylglycine)
    Ethoxylated amines:
    Polyoxyethylene-15 coconut amine
  • In some embodiments, surfactants utilized in pharmaceutical compositions described herein include ionizable surfactants. In certain embodiments, ionizable surfactants, when present in their unionized (neutral, non-salt) form, are lipophilic surfactants suitable for use in the compositions of the present invention. Particular examples of such surfactants include free fatty acids, particularly C6-C22 fatty acids, and bile acids. More specifically, suitable unionized ionizable surfactants include the free fatty acid and bile acid forms of any of the fatty acid salts and bile salts shown in Table 18.
  • In some instances, derivatives of oil-soluble vitamins, such as vitamins A, D, E, K, etc., are also useful surfactants for use in the pharmaceutical compositions described herein. An example of such a derivative is tocopheryl PEG-1000 succinate (TPGS, available from Eastman).
  • In specific embodiments, surfactants or mixtures of surfactants that solidify (e.g., form a solid, a semi-solid, a gel, a jelly, a paste, or the like) at ambient room temperature are utilized in the pharmaceutical compositions described herein. In certain specific embodiments, surfactants or mixtures of surfactants utilized in the pharmaceutical compositions described herein solidify (e.g., form a solid, a semi-solid, a gel, a jelly, a paste, or the like) at ambient room temperature when combined with additional agents (e.g., particular lipophilic components, such as triglycerides, vitamins (e.g., Vitamin E), or the like, viscosity modifiers, stabilizers, solidifying agents, binders, thickeners, or the like). Such additional agents are optionally utilized in the pharmaceutical compositions described herein. In certain embodiments, pharmaceutical compositions described herein comprise a hydrophilic carrier (e.g., a hydrophilic surfactant), a lipophilic carrier, and/or a viscosity modifier or solidifying agent.
  • In some specific embodiments, non-ionic hydrophilic surfactants include alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyethylene alkyl ethers; polyoxyethylene alkylphenols; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyglycerol fatty acid esters; polyoxyethylene glycerides; polyoxyethylene sterols, derivatives, and analogues thereof; polyoxyethylene vegetable oils; polyoxyethylene hydrogenated vegetable oils; reaction mixtures of polyols with fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols; sugar esters, sugar ethers; sucroglycerides; polyethoxylated fat-soluble vitamins or derivatives; and mixtures thereof.
  • In certain specific embodiments, the non-ionic hydrophilic surfactant is selected from, by way of non-limiting example, polyoxyethylene alkylethers; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyglyceryl fatty acid esters; polyoxyethylene glycerides; polyoxyethylene vegetable oils; and polyoxyethylene hydrogenated vegetable oils. In various embodiments, the glyceride is a monoglyceride, diglyceride, triglyceride, or a mixture thereof.
  • In some specific embodiments, non-ionic hydrophilic surfactants are the products of reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils or sterols. These reaction mixtures are largely composed of the transesterification products of the reaction, along with often complex mixtures of other reaction products. In more specific embodiments, the polyol is glycerol, ethylene glycol, polyethylene glycol, sorbitol, propylene glycol, pentaerythritol, or a saccharide.
  • In certain specific embodiments, the hydrophilic surfactant is or includes an ionic surfactant. Specific ionic surfactants include alkyl ammonium salts; bile acids and salts, analogues, and derivatives thereof; fusidic acid and derivatives thereof; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; acyl lactylates; mono-,diacetylated tartaric acid esters of mono-,diglycerides; succinylated monoglycerides; citric acid esters of mono-,diglycerides; alginate salts; propylene glycol alginate; lecithins and hydrogenated lecithins; lysolecithin and hydrogenated lysolecithins; lysophospholipids and derivatives thereof; phospholipids and derivatives thereof; salts of alkylsulfates; salts of fatty acids; sodium docusate; carnitines; and mixtures thereof.
  • In some specific embodiments, ionic surfactants include bile acids and salts, analogues, and derivatives thereof; lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; salts of alkylsulfates; salts of fatty acids; sodium docusate; acyl lactylates; mono-,diacetylated tartaric acid esters of mono-,diglycerides; succinylated monoglycerides; citric acid esters of mono-diglycerides; carnitines; and mixtures thereof. In more specific embodiments, ionic surfactants include, by way of non-limiting example, lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholate, taurocholate, glycocholate, deoxycholate, taurodeoxycholate, chenodeoxycholate, glycodeoxycholate, glycochenodeoxycholate, taurochenodeoxycholate, ursodeoxycholate, tauroursodeoxycholate, glycoursodeoxycholate, cholylsarcosine, N-methyl taurocholate, caproate, caprylate, caprate, laurate, myristate, palmitate, oleate, ricinoleate, linoleate, linolenate, stearate, lauryl sulfate, teracecyl sulfate, docusate, lauroyl carnitines, palmitoyl carnitines, myristoyl carnitines, and salts and mixtures thereof. In more specific embodiments, ionic surfactants are selected from lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylcholine, PEG-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholate, taurocholate, glycocholate, deoxycholate, taurodeoxycholate, glycodeoxycholate, cholylsarcosine, caproate, caprylate, caprate, laurate, oleate, lauryl sulfate, docusate, and salts and mixtures thereof, with the most preferred ionic surfactants being lecithin, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, taurocholate, caprylate, caprate, oleate, lauryl sulfate, docusate, and salts and mixtures thereof.
  • In various embodiments, lipophilic surfactants are selected from, by way of non-limiting example, alcohols; polyoxyethylene alkylethers; fatty acids; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; polyethylene glycol fatty acids esters; polyethylene glycol glycerol fatty acid esters; polypropylene glycol fatty acid esters; polyoxyethylene glycerides; lactic acid derivatives of mono/diglycerides; propylene glycol diglycerides; sorbitan fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; transesterified vegetable oils; sterols; sterol derivatives; sugar esters; sugar ethers; sucroglycerides; polyoxyethylene vegetable oils; and polyoxyethylene hydrogenated vegetable oils. As with the hydrophilic surfactants, lipophilic surfactants are optionally the products of reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols. In specific embodiments, lipophilic surfactants are selected from fatty acids; lower alcohol fatty acid esters; polyethylene glycol glycerol fatty acid esters; polypropylene glycol fatty acid esters; polyoxyethylene glycerides; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lactic acid derivatives of mono/diglycerides; sorbitan fatty acid esters; polyoxyethylene sorbitan fatty acid esters; polyoxyethylene-polyoxypropylene block copolymers; polyoxyethylene vegetable oils; polyoxyethylene hydrogenated vegetable oils; and reaction mixtures of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols. In certain specific embodiments, lipophilic surfactants are selected from lower alcohol fatty acids esters; polypropylene glycol fatty acid esters; propylene glycol fatty acid esters; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lactic acid derivatives of mono/diglycerides; sorbitan fatty acid esters; polyoxyethylene vegetable oils; and mixtures thereof, with glycerol fatty acid esters and acetylated glycerol fatty acid esters being most preferred. Among the glycerol fatty acid esters, the esters are, e.g., mono- or diglycerides, or mixtures of mono- and diglycerides, where the fatty acid moiety is a C6 to C22 fatty acid. In some specific embodiments, lipophilic surfactants are selected from the products of reaction mixture of polyols and fatty acids, glycerides, vegetable oils, hydrogenated vegetable oils, and sterols. In more specific embodiments, polyols are polyethylene glycol, sorbitol, propylene glycol, and pentaerythritol.
  • In certain embodiments, pharmaceutical compositions described herein include a lipophilic component or carrier. In some embodiments, the lipophilic carrier is selected from lipophilic surfactants, triglycerides, and Vitamin E compounds (e.g., d,l-α-tocopherol). In specific embodiments, triglycerides utilized in the pharmaceutical compositions described herein are those that solidify (e.g., form a solid, a semi-solid, a gel, a jelly, a paste, or the like) at ambient room temperature, with or without addition of appropriate additives, or those which in combination with particular surfactants and/or active ingredients solidify at room temperature. Illustrative and non-limiting examples of triglycerides suitable for use in the pharmaceutical compositions described herein are shown in Table 19. In general, these triglycerides are readily available from commercial sources. For several triglycerides, representative commercial products and/or commercial suppliers are listed.
  • TABLE 19
    Triglycerides
    Triglyceride Commercial Source
    Aceituno oil
    Almond oil Super Refined Almond Oil (Croda)
    Araehis oil
    Babassu oil
    Beeswax
    Blackcurrant seed oil
    Borage oil
    Buffalo ground oil
    Candlenut oil
    Canola oil Lipex 108 (Abitec)
    Castor oil
    Chinese vegetable tallow oil
    Cocoa butter
    Coconut oil Pureco 76 (Abitec)
    Coffee seed oil
    Corn oil Super Refined Corn Oil (Croda)
    Cottonseed oil Super Refined Cottonseed Oil
    (Croda)
    Crambe oil
    Cuphea species oil
    Evening primrose oil
    Grapeseed oil
    Groundnut oil
    Hemp seed oil
    Illipe butter
    Kapok seed oil
    Linseed oil
    Menhaden oil Super Refined Menhaden Oil
    (Croda)
    Mowrah butter
    Mustard seed oil
    Oiticica oil
    Olive oil Super Refined Olive Oil (Croda)
    Palm oil
    Palm kernel oil
    Peanut oil Super Refined Peanut Oil (Croda)
    Poppy seed oil
    Rapeseed oil
    Rice bran oil
    Safflower oil Super Refined Safflower Oil
    (Croda)
    Sal fat
    Sesame oil Super Refined Sesame Oil (Croda)
    Shark liver oil Super Refined Shark Liver Oil
    (Croda)
    Shea nut oil
    Soybean oil Super Refined Soybean Oil
    (Croda)
    Stillingia oil
    Sunflower oil
    Tall oil
    Tea seed oil
    Tobacco seed oil
    Tung oil (China wood oil)
    Ucuhuba
    Vernonia oil
    Wheat germ oil Super Refined Wheat Germ Oil
    (Croda)
    Hydrogenated castor oil Castorwax
    Hydrogenated coconut oil Pureco 100 (Abitec)
    Hydrogenated cottonseed oil Dritex C (Abitec)
    Hydrogenated palm oil Dritex PST (Abitec); Softisan 154
    (Hüls)
    Hydrogenated soybean oil Sterotex HM NF (Abitec); Dritex S
    (Abitec)
    Hydrogenated vegetable oil Sterotex NF (Abitec);
    Hydrokote M (Abitec)
    Hydrogenated cottonseed and castor Sterotex K (Abitec)
    oil
    Partially hydrogenated soybean oil Hydrokote AP5 (Abitec)
    Partiaily hydrogenated soy and Apex B (Abitec)
    cottonseed oil
    Glyceryl mono-, di-, tri-behenate Compritol 888
    Glycerol tributyrate (Sigma)
    Glyceryl tricaproate (Sigma)
    Glyceryl tricaprylate (Sigma)
    Glyceryl tricaprate Captex 1000 (Abitec)
    Glyceryl triundecanoate Captex 8227 (Abitec)
    Glyceryl trilaurate (Sigma)
    Glyceryl trimyristate Dynasan 114 (Hüls)
    Glyceryl tripalmitate Dynasan 116 (Hüls)
    Glyceryl tristearate Dynasan 118 (Hüls)
    Glyceryl triarchidate (Sigma)
    Glyceryl trimyristoleate (Sigma)
    Glyceryl tripalmitoleate (Sigma)
    Glyceryl trioleate (Sigma)
    Glyceryl trilinoleate (Sigma)
    Glyceryl trilinolenate (Sigma)
    Glyceryl tricaprylate/caprate Captex 300 (Abitec); Captex 355
    (Abitec); Miglyol 810 (Hüls);
    Miglyol 812 (Hüls)
    Glyceryl tricaprylate/caprate/laurate Captex 350 (Abitec)
    Glyceryl tricaprylate/caprate/linoleate Captex 810 (Abitec);
    Miglyol 818 (Hüls)
    Glyceryl tricaprylate/caprate/stearate Softisan 378 (Hüls); (Larodan)
    Glyceryl tricaprylate/laurate/stearate (Larodan)
    Glyceryl 1,2-caprylate-3-linoleate (Larodan)
    Glyceryl 1,2-caprate-3-stearate (Larodan)
    Glyceryl 1,2-laurate-3-myristate (Larodan)
    Glyceryl 1,2-myristate-3-laurate (Larodan)
    Glyceryl 1,3-palmitate-2-butyrate (Larodan)
    Glyceryl 1,3-stearate-2-caprate (Larodan)
    Glyceryl 1,2-linoleate-3-caprylate (Larodan)
  • In certain embodiments, the triglycerides utilized in the pharmaceutical compositions described herein include fractionated triglycerides, modified triglycerides, synthetic triglycerides, and mixtures of triglycerides are also within the scope of the invention. In specific embodiments, triglycerides include, by way of non-limiting example, vegetable oils, fish oils, animal fats, hydrogenated vegetable oils, partially hydrogenated vegetable oils, medium and long-chain triglycerides, and structured triglycerides. It should be appreciated that several commercial surfactant compositions contain small to moderate amounts of triglycerides, typically as a result of incomplete reaction of a triglyceride starting material in, for example, a transesterification reaction. Such commercial surfactant compositions, while nominally referred to as “surfactants”, may be suitable to provide all or part of the triglyceride component for the compositions of the present invention. Examples of commercial surfactant compositions containing triglycerides include some members of the surfactant families Gelucires (Gattefosse), Maisines (Gattefosse), and Imwitors (Hüls). Specific examples of these compositions are: Gelucire 44114 (saturated polyglycolized glycerides); Gelucire 50/13 (saturated polyglycolized glycerides); Gelucire 53/10 (saturated polyglycolized glycerides); Gelucire 33/01 (semi-synthetic triglycerides of C8-C18 saturated fatty acids); Gelucire 39/01 (semi-synthetic glycerides); other Gelucires, such as 37106, 43/01, 35/10, 37/02, 46/07, 48/09, 50/02, 62/05, or the like; Maisine 35-I (linoleic glycerides); and Imwitor 742 (capiylic/capric glycerides).
  • Additional Agents
  • The pharmaceutical compositions described herein optionally include one or more additional agents or additives. In certain instances, suitable additives include those that facilitate formulating a pharmaceutical composition described herein as an oral dosage form and include, e.g., coatings and capsule components. Further additives include, by way of non-limiting example, solubilizers, enzyme inhibitors, anti-foaming agents, antioxidants, binders, buffering agents, chelating agents, diluents, disintegrants, flavoring agents, preservatives, sweeteners, thickeners, or the like.
  • In some embodiments, pharmaceutical compositions provided herein optionally include one or more solubilizers, i.e., additives to increase the solubility of the pharmaceutical active ingredient or other composition components in the solid carrier. Suitable solubilizers for use in the compositions of the present invention include: alcohols, polyols, ethers of polyethylene glycols, amides, esters or the like. Alcohols and polyols include, by way of non-limiting example, ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives. Ethers of polyethylene glycols include those having an average molecular weight of about 200 to about 6000, such as, by way of non-limiting example, tetrahydrofurfuryl alcohol PEG ether (glycofurol, available commercially from BASF under the trade name Tetraglycol) and methoxy PEG (Union Carbide). Amides include, by way of non-limiting example, 2-pyrrolidone, 2-piperidone, ε-caprolactam, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam, dimethylacetamide, and polyvinylpyrrolidone. Esters include, by way of non-limiting example, ethyl propionate, tributylcitrate, acetyl triethylcitrate, acetyl tributyl citrate, triethylcitrate, ethyl oleate, ethyl caprylate, ethyl butyrate, triacetin, propylene glycol monoacetate, propylene glycol diacetate, ε-caprolactone and isomers thereof, δ-valerolactone and isomers thereof, β-butyrolactone and isomers thereof. Other solubilizers include, by way of non-limiting example, dimethyl acetamide, dimethyl isosorbide (Arlasolve DMI (ICI)), N-methyl pyrrolidones (Pharmasolve (ISP)), monooctanoin, diethylene glycol monoethyl ether (available from Gattefosse under the trade name Transcutol), and water. Mixtures of solubilizers are also within the scope of the present disclosure. Except as indicated, these compounds are readily available from standard commercial sources. In specific embodiments, solubilizers include, by way of non-limiting example, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cyclodextrins, ethanol, polyethylene glycol 200-600, glycofurol, transcutol, propylene glycol, and dimethyl isosorbide. In certain specific embodiments, solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol. The amount of solubilizer included in the pharmaceutical compositions described herein is any suitable amount.
  • Anti-adherents (anti-sticking agents, glidants, flow promoters, lubricants) include, by way of non-limiting example, talc, magnesium stearate, fumed silica (Carbosil, Aerosil), micronized silica (Syloid No. FP 244, Grace U.S.A.), polyethylene glycols, surfactants, waxes, stearic acid, stearic acid salts, stearic acid derivatives, starch, hydrogenated vegetable oils, sodium benzoate, sodium acetate, leucine, PEG-4000 and magnesium lauryl sulfate. Antioxidants include, by way of non-limiting example, BHT, BHA, gallic acid, propyl gallate, ascorbic acid, ascorbyl palmitate, 4-hydroxymethyl-2,6-di-tert-butyl phenol, and tocopherol. Binders (adhesives), i.e., agents that impart cohesive properties to powdered materials through particle-particle bonding, include, by way of non-limiting example, matrix binders (dry starch, dry sugars), film binders (PVP, starch paste, celluloses, bentonite, sucrose), and chemical binders (polymeric cellulose derivatives, such as carboxy methyl cellulose, HPC and HPMC; sugar syrups; corn syrup; water soluble polysaccharides such as acacia, tragacanth, guar and alginates; gelatin; gelatin hydrolysate; agar; sucrose; dextrose; and non-cellulosic binders, such as PVP, PEG, vinyl pyrrolidone copolymers, pregelatinized starch, sorbitol, and glucose). Buffering agents, include an acid and a base, wherein the acid is a pharmaceutically acceptable acid, such as hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid and uric acid, and the base is a pharmaceutically acceptable base, such as an amino acid, an amino acid ester, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydrotalcite, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, triisopropanolamine, or a salt of a pharmaceutically acceptable cation and acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, an amino acid, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, a fatty acid, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, and uric acid. Chelating agents include, by way of non-limiting example, EDTA and EDTA salts. Colorants or opaquants include, by way of non-limiting example, titanium dioxide, food dyes, lakes, natural vegetable colorants, iron oxides, silicates, sulfates, magnesium hydroxide and aluminum hydroxide. Diluents or fillers include, by way of non-limiting example, lactose, mannitol, talc, magnesium stearate, sodium chloride, potassium chloride, citric acid, spray-dried lactose, hydrolyzed starches, directly compressible starch, microcrystalline cellulose, cellulosics, sorbitol, sucrose, sucrose-based materials, calcium sulfate, dibasic calcium phosphate and dextrose. Disintegrants and super disintegrants include, by way of non-limiting example, croscarmellose sodium, starch, starch derivatives, clays, gums, cellulose, cellulose derivatives, alginates, crosslinked polyvinypyrrolidone, sodium starch glycolate and microcrystalline cellulose. Flavorants or desensitizers include, by way of non-limiting example, spray-dried flavors, essential oils and ethyl vanillin. Plasticizers include, by way of non-limiting example, polyethylene glycol, citrate esters (e.g., triethyl citrate, acetyl triethyl citrate, acetyltributyl citrate), acetylated monoglycerides, glycerin, triacetin, propylene glycol, phthalate esters (e.g., diethyl phthalate, dibutyl phthalate), castor oil, sorbitol and dibutyl seceate. Preservatives include, by way of non-limiting example, ascorbic acid, boric acid, sorbic acid, benzoic acid, and salts thereof, parabens, phenols, benzyl alcohol, and quaternary ammonium compounds. Solvents include, by way of non-limiting example, alcohols, ketones, esters, chlorinated hydrocarbons and water. Sweeteners include, by way of non-limiting example, natural sweeteners such as maltose, sucrose, glucose, sorbitol, glycerin and dextrins, and artificial sweeteners, such as aspartame, saccharine and saccharine salts. Thickeners (viscosity modifiers, thickening agents) include, by way of non-limiting example, sugars, polyvinylpyrrolidone, cellulosics, polymers, high molecular weight polyethylene glycols (e.g., PEG 8000), and alginates. Additives also include, by way of non-limiting example, proteins (e.g., collagen, gelatin, Zein, gluten, mussel protein, lipoprotein); carbohydrates (e.g., alginates, carrageenan, cellulose derivatives, pectin, starch, chitosan); gums (e.g., xanthan gum, gum arabic); spermaceti; natural or synthetic waxes; carnuaba wax; fatty acids (e.g., stearic acid, hydroxystearic acid); fatty alcohols; sugars; shellacs, such as those based on sugars (e.g., lactose, sucrose, dextrose) or starches; polysaccharide-based shellacs (e.g., maltodextrin and maltodextrin derivatives, dextrates, cyclodextrin and cyclodextrin derivatives); cellulosic-based shellacs (e.g., microcrystalline cellulose, sodium carboxymethyl cellulose, hydroxypropylmethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose nitrate, cellulose acetate butyrate, cellulose acetate trimellitate, carboxymethylethyl cellulose, hydroxypropylmethyl cellulose phthalate); inorganics, such as dicalcium phosphate, hydroxyapitite, tricalcium phosphate, talc and titania; polyols, such as mannitol, xylitol and sorbitol; polyethylene glycol esters; and polymers, such as alginates, poly(lactide coglycolide), gelatin, crosslinked gelatin, and agar-agar.
  • It should be appreciated that there is considerable overlap between the above-listed additives in common usage, since a given additive is often classified differently by different practitioners in the field, or is commonly used for any of several different functions. Thus, the above-listed additives should be taken as merely exemplary, and not limiting, of the types of additives that can be included in compositions of the present invention. The amounts of such additives can be readily determined by one skilled in the art, according to the particular properties desired.
  • Dosage Forms
  • In various embodiments, pharmaceutical compositions described herein are formulated as oral dosage forms. Oral dosage forms are prepared by any suitable process including one or more steps of; by way of non-limiting example, agglomeration, air suspension chilling, air suspension drying, balling, coacervation, comminution, compression, pelletization, cryopelletization, encapsulation, extrusion, granulation, homogenization, inclusion complexation, lyophilization, nanoencapsulation, melting, mixing, molding, pan coating, solvent dehydration, sonication, spheronization, spray chilling, spray congealing, spray drying, or the like.
  • In some embodiments, a pharmaceutical composition described herein is formulated with a substrate to form an oral dosage form. In various embodiments, substrates useful for formulating pharmaceutical compositions described herein as oral dosage forms include or comprise, by way of non-limiting example, a powder or a multiparticulate (e.g., one or more granule, one or more pellet, one or more bead, one or more spherule, one or more beadlet, one or more microcapsule, one or more millisphere, one or more mini capsule, one or more microcapsule, one or more nanocapsule, one or more nanosphere, one or more microsphere, one or more minitablet, one or more tablet, one or more capsule, or one or more combinations thereof). In certain instances, a powder constitutes a finely divided (milled, micronized, nanosized, precipitated) form of an active ingredient or additive molecular aggregates or a compound aggregate of multiple components or a physical mixture of aggregates of an active ingredient and/or additives.
  • Substrates are prepared from any suitable material including, by way of non-limiting example, sugars, such as lactose, sucrose or dextrose; polysaccharides, such as maltodextrin or dextrates; starches; cellulosics, such as microcrystalline cellulose or microcrystalline cellulose/sodium carboxymethyl cellulose; inorganics, such as dicalcium phosphate, hydroxyapitite, tricalcium phosphate, talc, or titania; and polyols, such as mannitol, xylitol, sorbitol or cyclodextrin. Furthermore, the substrate is optionally composed of active ingredients, surfactants, triglycerides or additives described herein. In one particular embodiment, the substrate is a solid form of an additive, an active ingredient, a surfactant, or a triglyceride; a complex of an additive, surfactant or triglyceride and an active ingredient; a coprecipitate of an additive, surfactant or triglyceride and an active ingredient, or a mixture thereof.
  • In various embodiments, pharmaceutical compositions and substrates described herein provide or are formulated to provide an oral dosage from selected from, by way of non-limiting example, a minicapsule, a capsule, a tablet, an implant, a troche, a lozenge (minitablet), a temporary or permanent suspension, a wafer, a chewable tablet, a quick or fast dissolving tablet, an effervescent tablet, a buccal or sublingual solid, a granule, a film, a sprinkle, a pellet, a bead, a pill, a powder, a triturate, a strip or a sachet.
  • In specific embodiments, the oral dosage form described herein is a capsule. Suitable capsule forms include, by way of non-limiting example, hard or soft gelatin capsules, starch capsules, and cellulosic capsules. In more specific embodiments, oral dosage forms described herein are in the form of hard or soft gelatin capsules. In some embodiments, the oral dosage form is a capsule comprising a jelly, solid, semi-solid, glassy or paste-like composition, wherein the testosterone alkyl ester is formulated into the composition.
  • In specific embodiments, a pharmaceutical composition described herein is formulated as an oral dosage form by (i) heating a pharmaceutical compositions described herein until pharmaceutical composition has an ability to flow (e.g., it is a homogeneous solution, an emulsion, a slurry or the like); and (ii) depositing the pharmaceutical composition with an ability to flow on a substrate. In more specific embodiments, the pharmaceutical composition that has an ability to flow is a homogeneous solution. In further or alternative embodiments, the substrate is one or more capsule, one or more microcapsule, or one or more nanocapsule. In more specific embodiments, the substrate is a hard gelatin capsule or a soft gelatin capsule. In still more specific embodiments, the substrate is a hard gelatin capsule.
  • EXAMPLES Example 1
  • In certain instances, oral dosage forms are prepared in the following manner:
  • Step 1: transfer the selected amounts of carriers and additives into a clean container and heat the combination until a molten solution is obtained;
  • Step 2: transfer the selected amount of steroidal compound (e.g., testosterone undecanoate) to the molten solution obtained in Step 1 and homogonize;
  • Step 3: maintain the mixture of Step 2 at an elevated temperature until used in Step 4; and
  • Step 4: encapsulation of the mixture of Step 3 (e.g., in a hard gelatin capsule).
  • Using the preceding process, the following capsules are prepared:
  • TABLE 20
    Capsule 1
    Component % w/w
    Testosterone undecanoate
    15
    Polyoxyl 40 Hydrogenated Castor Oil, NF 16
    Glyceryl Monolinoleate, NF (Maisine 35-1) 63
    Polyethylene Glycol 8000, USP 6
    Total 100
  • TABLE 21
    Capsule 2
    Component % w/w
    Testosterone undecanoate 25
    Polyoxyl 35 Castor Oil, NF 21
    Vitamin E, USP (d,l-α-tocopherol) 48
    Polyethylene Glycol 8000, USP 6
    Total 100
  • TABLE 22
    Capsule 3
    Component % w/w
    Testosterone undecanoate 22
    Vitamin E Polyethylene Glycol Succinate, NF 22
    Vitamin E, USP (d,l-tocopherol) 34
    Polyethylene Glycol 8000, USP 4
    Hypromellose (100 cP, K100 Premium LV) 18
    Total 100
  • TABLE 23
    Capsule 4
    Component % w/w
    Testosterone undecanoate 22
    Vitamin E Polyethylene Glycol Succinate, NF 22
    Vitamin E, USP (d,l-tocopherol) 34
    Polyethylene Glycol 8000, USP 4
    Hypromellose (4,000 cP, K4M) 18
    Total 100
  • Example 2
  • Capsules 1-4 are subjected to USP Type-II (paddle) apparatus conditions at 37±0.5° C., at 100 rpm (i.e., deposited in 1 L of DI water having 8% w/v of Triton X-100). FIG. 1 illustrates the release profiles of Capsules 1-4.
  • Example 3
  • Clinical Trial Protocol
  • Study Population: Healthy volunteers (N=24) with a BMI of 18-30 kg/m2 and having a pre-trial screening total T concentration of less than 1.3 ng/mL (4.5 nmol/L). Healthy volunteers include post-menopausal women aged 45 or greater.
  • Study Design: Phase-I, single center, randomized, open-label, study of Capsules 1-4 and 3× an immediate release oral dosage form comprising 40 mg of testosterone undecanoate (so as to provide the same 120 mg dose as Capsules 1-4) formulated in a mixture of castor oil and propylene glycol laurate available under the tradename Andriol®.
  • Mode of administration: Orally with 240 mL of water about 30 minutes after starting a standardized, high fat, high calorie breakfast preceded by a 10 hour fast. Duration between treatments: minimum of 7 days between the start of each treatment period.
  • FIG. 2 illustrates the mean plasma testosterone concentrations following administration of Capsules 1-4 and 3× a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose). FIG. 3 illustrates the mean plasma testosterone undecanoate concentrations following administration of Capsules 1-4 and 3× a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose). FIG. 4 illustrates the mean plasma dihydrotestosterone concentrations following administration of Capsules 1-4 and 3× a 40 mg immediate release oral dosage form (for a total of a 120 mg immediate release dose).
  • Tables 24-26 illustrate the concentration levels of single administration and simulated steady state levels of testosterone, testosterone undecanoate, and dihydrotestosterone obtained.
  • TABLE 24
    Mean Plasma Testosterone Levels
    Capsule
    Capsule
    1 Capsule 2 Capsule 3 4 IR
    Mean Cmax (ng/mL) 18.2 13.6 7.5 8.8 19.7
    single dose
    Mean Cmax (ng/mL) 17.0 13.1 6.7 8.6 15.7
    steady state
    Mean Cmin (ng/mL) 0.35 2.3 1.0 1.4 3.4
    steady state
  • TABLE 25
    Mean Plasma Testosterone Undecanoate Levels
    Capsule
    Capsule
    1 Capsule 2 Capsule 3 4 IR
    Mean Cmax (ng/mL) 384.8 264.0 126.9 156.1 407.8
    single dose
    Mean Cmax (ng/mL) 260.1 187.1 78.7 111.5 240.8
    steady state
    Mean Cmin (ng/mL) 15.0 8.9 1.1 1.8 9.6
    steady state
  • TABLE 26
    Mean Plasma Dihydrotestosterone Levels
    Capsule
    1 Capsule 2 Capsule 3 Capsule 4 IR
    Mean Cmax (ng/mL) 4.4 3.6 2.3 2.4 3.9
    single dose
    Mean Cmax (ng/mL) 4.6 4.0 2.3 2.3 4.1
    steady state
    Mean Cmin (ng/mL) 2.2 1.6 0.9 1.0 2.2
    steady state

Claims (21)

1-44. (canceled)
45. A pharmaceutical composition comprising:
10-30% w/w of a steroidal compound, wherein the steroidal compound is testosterone undecanoate;
10-30% w/w of a hydrophilic carrier, wherein the hydrophilic carrier is a hydrophilic surfactant which is a polyoxyl hydrogenated vegetable oil;
40-70% w/w of a lipophilic carrier, wherein the lipophilic carrier has a lipophilic surfactant, and wherein the lipophilic surfactant is a monoglyceride; and
1-20% w/w of a solidifying agent, wherein said pharmaceutical composition has from about 70 mg to 150 mg testosterone undecanoate.
46. The pharmaceutical composition of claim 45 wherein said oral pharmaceutical composition is a jelly, solid, semi-solid, glassy or paste-like composition disposed of in a capsule.
47. The pharmaceutical composition of claim 45, wherein said polyoxyl hydrogenated vegetable oil is a polyoxyl hydrogenated castor oil.
48. The pharmaceutical composition of claim 45 having about 15% w/w testosterone undecanoate.
49. The composition of claim 45 wherein said monoglyceride is glyceryl monolinoleate.
50. A pharmaceutical composition comprising:
10-20% w/w testosterone undecanoate;
10-20% w/w of polyoxyl 40 hydrogenated castor oil;
50-70% w/w of a monoglyceride; and
a solidifying agent which is polyethylene glycol (PEG), said composition comprising from about 70 to about 150 mg of testosterone undecanoate.
51. The composition of claim 50 wherein which is a jelly, solid, semi-solid, glassy or paste-like.
52. The composition of claim 51 disposed of in a capsule.
53. The composition of claim 50, wherein the solidifying agent present in an amount of from 5% to 10% w/w.
54. The composition of claim 50, wherein the solidifying agent is a high molecular weight PEG.
55. The composition of claim 50, wherein the solidifying agent is PEG 8000.
56. The composition of claim 50 wherein the monoglyceride is glyceryl monolinoleate.
57. A pharmaceutical composition comprising from about 75 mg to about 150 mg of testosterone undecanoate, 10-20% w/w hydrophilic surfactant, 40-70% w/w of a lipophilic surfactant wherein said lipophilic surfactant is a monoglyceride and 1-20% w/w of a solidifying agent.
58. The pharmaceutical composition of claim 45 having from 100 mg to 130 mg of testosterone undecanoate.
59. The pharmaceutical composition of claim 50 having from 100 mg to 130 mg of testosterone undecanoate.
60. The pharmaceutical composition of claim 57 having from 100 mg to 130 mg of testosterone undecanoate.
61. The pharmaceutical composition of claim 46 wherein said pharmaceutical composition releases about 80% or less of the testosterone undecanoate at 30 min in 1000 mL of 8% w/v Triton X-100 at 37±0.5° C. using a USP type-2 apparatus at 100 rpm.
62. The pharmaceutical composition of claim 52 wherein said pharmaceutical composition releases about 80% or less of the testosterone undecanoate at 30 min in 1000 mL of 8% w/v Triton X-100 at 37±0.5° C. using a USP type-2 apparatus at 100 rpm.
63. The pharmaceutical composition of claim 57 disposed of in a capsule.
64. The pharmaceutical composition of claim 63 wherein said pharmaceutical composition releases about 80% or less of the testosterone undecanoate at 30 min in 1000 mL of 8% w/v Triton X-100 at 37±0.5° C. using a USP type-2 apparatus at 100 rpm.
US15/493,033 2009-01-08 2017-04-20 Sterodial compositions Abandoned US20170216312A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/493,033 US20170216312A1 (en) 2009-01-08 2017-04-20 Sterodial compositions
US15/597,104 US20170252357A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US15/597,093 US20170354663A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/350,930 US11304960B2 (en) 2009-01-08 2009-01-08 Steroidal compositions
US15/493,033 US20170216312A1 (en) 2009-01-08 2017-04-20 Sterodial compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/350,930 Continuation US11304960B2 (en) 2009-01-08 2009-01-08 Steroidal compositions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/597,104 Continuation US20170252357A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US15/597,093 Continuation US20170354663A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions

Publications (1)

Publication Number Publication Date
US20170216312A1 true US20170216312A1 (en) 2017-08-03

Family

ID=42312101

Family Applications (13)

Application Number Title Priority Date Filing Date
US12/350,930 Active US11304960B2 (en) 2009-01-08 2009-01-08 Steroidal compositions
US13/592,258 Active US8778922B2 (en) 2009-01-08 2012-08-22 Steroidal compositions
US14/191,249 Abandoned US20140178466A1 (en) 2009-01-08 2014-02-26 Steroidal Compositions
US14/191,278 Active US8865695B2 (en) 2009-01-08 2014-02-26 Steroidal compositions
US14/659,318 Abandoned US20150190406A1 (en) 2009-01-08 2015-03-16 Steroidal Compositions
US15/493,033 Abandoned US20170216312A1 (en) 2009-01-08 2017-04-20 Sterodial compositions
US15/597,093 Abandoned US20170354663A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US15/597,104 Abandoned US20170252357A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US16/818,779 Abandoned US20200383999A1 (en) 2009-01-08 2020-03-13 Steroidal compositions
US17/072,779 Active US11052096B2 (en) 2009-01-08 2020-10-16 Steroidal compositions
US17/114,665 Abandoned US20210100816A1 (en) 2009-01-08 2020-12-08 Steroidal Compositions
US17/183,506 Abandoned US20210177865A1 (en) 2009-01-08 2021-02-24 Steroidal Compositions
US18/467,366 Pending US20240009206A1 (en) 2009-01-08 2023-09-14 Steroidal Compositions

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US12/350,930 Active US11304960B2 (en) 2009-01-08 2009-01-08 Steroidal compositions
US13/592,258 Active US8778922B2 (en) 2009-01-08 2012-08-22 Steroidal compositions
US14/191,249 Abandoned US20140178466A1 (en) 2009-01-08 2014-02-26 Steroidal Compositions
US14/191,278 Active US8865695B2 (en) 2009-01-08 2014-02-26 Steroidal compositions
US14/659,318 Abandoned US20150190406A1 (en) 2009-01-08 2015-03-16 Steroidal Compositions

Family Applications After (7)

Application Number Title Priority Date Filing Date
US15/597,093 Abandoned US20170354663A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US15/597,104 Abandoned US20170252357A1 (en) 2009-01-08 2017-05-16 Steroidal Compositions
US16/818,779 Abandoned US20200383999A1 (en) 2009-01-08 2020-03-13 Steroidal compositions
US17/072,779 Active US11052096B2 (en) 2009-01-08 2020-10-16 Steroidal compositions
US17/114,665 Abandoned US20210100816A1 (en) 2009-01-08 2020-12-08 Steroidal Compositions
US17/183,506 Abandoned US20210177865A1 (en) 2009-01-08 2021-02-24 Steroidal Compositions
US18/467,366 Pending US20240009206A1 (en) 2009-01-08 2023-09-14 Steroidal Compositions

Country Status (10)

Country Link
US (13) US11304960B2 (en)
EP (2) EP3078368A1 (en)
JP (2) JP5758812B2 (en)
CN (1) CN102271665A (en)
AU (1) AU2010203457C1 (en)
BR (1) BRPI1007025A2 (en)
CA (1) CA2744266C (en)
IL (1) IL212805A0 (en)
MX (1) MX2011007351A (en)
WO (1) WO2010081032A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543219B2 (en) 2010-04-12 2020-01-28 Clarus Therapeutics, Inc. Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
US11179402B2 (en) 2005-04-15 2021-11-23 Clarus Therapeutics, Inc. Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304960B2 (en) 2009-01-08 2022-04-19 Chandrashekar Giliyar Steroidal compositions
ES2710149T3 (en) 2009-12-31 2019-04-23 Marius Pharmaceuticals Llc Modulation of solubility, stability, absorption, metabolism and pharmacokinetic profile of lipophilic drugs by sterols
CN103705462B (en) * 2010-04-12 2016-08-31 克劳拉斯医疗有限公司 Oral testosterone ester formulation and comprise its treatment testosterone deficiency method
JP5992397B2 (en) * 2010-04-12 2016-09-14 クラルス セラピューティクス,インク. Oral testosterone ester combination and method for treating testosterone deficiency containing the same
US20180153904A1 (en) 2010-11-30 2018-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US20120135074A1 (en) * 2010-11-30 2012-05-31 Chandrashekar Giliyar High-Strength Testosterone Undecanoate Compositions
US9358241B2 (en) 2010-11-30 2016-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US20140309202A1 (en) * 2010-11-30 2014-10-16 Lipocine Inc. High-strength testosterone undecanoate compositions
US9034858B2 (en) * 2010-11-30 2015-05-19 Lipocine Inc. High-strength testosterone undecanoate compositions
US20120148675A1 (en) 2010-12-10 2012-06-14 Basawaraj Chickmath Testosterone undecanoate compositions
US9757388B2 (en) 2011-05-13 2017-09-12 Acerus Pharmaceuticals Srl Intranasal methods of treating women for anorgasmia with 0.6% and 0.72% testosterone gels
US20130045958A1 (en) 2011-05-13 2013-02-21 Trimel Pharmaceuticals Corporation Intranasal 0.15% and 0.24% testosterone gel formulations and use thereof for treating anorgasmia or hypoactive sexual desire disorder
AR086400A1 (en) 2011-05-13 2013-12-11 Trimel Pharmaceuticals Corp FORMULATIONS IN INTRANASAL GEL OF TESTOSTERONE IN DOSE OF LOWER POWER AND USE OF THE SAME FOR THE TREATMENT OF ANORGASMIA OR THE DISORDER OF HYPOACTIVE SEXUAL DESIRE
US20140017299A1 (en) * 2011-08-18 2014-01-16 Monosol Rx, Llc Steroid hormone delivery systems and methods of preparing the same
US20130045271A1 (en) * 2011-08-18 2013-02-21 Monosol Rx, Llc Steroid hormone delivery systems and methods of preparing the same
US9622981B2 (en) 2011-11-17 2017-04-18 Mylan Inc. Liquid-filled hard gel capsule pharmaceutical formulations
BR112014027942A2 (en) * 2012-05-09 2017-06-27 Tesorx Pharma Llc pro-liposomal powder dispersion; pharmaceutical composition; oral dosage form; and method for treating an individual in need of testosterone therapy
WO2014076569A2 (en) * 2012-11-14 2014-05-22 Trimel Biopharma Srl Controlled release topical testosterone formulations and methods
CA2931086C (en) 2012-12-20 2020-11-03 Solural Pharma ApS Solid oral dosage form of testosterone derivative
WO2014143127A1 (en) 2013-03-15 2014-09-18 Differential Drug Development Associates Llc Emulsion formulations
US11744838B2 (en) 2013-03-15 2023-09-05 Acerus Biopharma Inc. Methods of treating hypogonadism with transnasal testosterone bio-adhesive gel formulations in male with allergic rhinitis, and methods for preventing an allergic rhinitis event
ES2851332T3 (en) 2014-06-19 2021-09-06 Solural Pharma ApS Solid oral dosage form of lipophilic compounds
AU2015308614B2 (en) * 2014-08-28 2021-02-18 Lipocine Inc. Pharmaceutical composition and methods
ES2877107T3 (en) 2014-08-28 2021-11-16 Univ Texas Testosterone formulations and treatment procedures with them
US9498485B2 (en) * 2014-08-28 2016-11-22 Lipocine Inc. Bioavailable solid state (17-β)-hydroxy-4-androsten-3-one esters
US20170246187A1 (en) 2014-08-28 2017-08-31 Lipocine Inc. (17-ß)-3-OXOANDROST-4-EN-17-YL TRIDECANOATE COMPOSITIONS AND METHODS OF THEIR PREPARATION AND USE
WO2016049382A1 (en) * 2014-09-24 2016-03-31 Lipocine Inc. Compositions and their use in oral dosing regimens
US20160361322A1 (en) * 2015-06-15 2016-12-15 Lipocine Inc. Composition and method for oral delivery of androgen prodrugs
US20170319596A1 (en) * 2015-11-10 2017-11-09 Lipocine Inc. Methods for improving quality of life or sexual domain function and composition useful in the methods
CA3016542A1 (en) * 2016-03-02 2017-09-08 Board Of Regents, The University Of Texas System Formulations of testosterone and methods of treatment therewith
CA3050082A1 (en) 2016-04-04 2017-10-12 Omeza LLC Fish oil topical composition
CN106727409A (en) * 2016-11-28 2017-05-31 浙江仙琚制药股份有限公司 Testosterone undecanoate capsule and preparation method thereof
CA3078723A1 (en) 2016-11-28 2018-05-31 Nachiappan Chidambaram Oral testosterone undecanoate therapy
WO2019087696A1 (en) * 2017-11-01 2019-05-09 富士フイルム株式会社 Oral pharmaceutical composition
US11344497B1 (en) 2017-12-08 2022-05-31 Quicksilver Scientific, Inc. Mitochondrial performance enhancement nanoemulsion
US10722465B1 (en) 2017-12-08 2020-07-28 Quicksilber Scientific, Inc. Transparent colloidal vitamin supplement
JP2021531348A (en) * 2018-07-20 2021-11-18 リポシン,インク. Liver disease
US11291702B1 (en) 2019-04-15 2022-04-05 Quicksilver Scientific, Inc. Liver activation nanoemulsion, solid binding composition, and toxin excretion enhancement method
US20210121480A1 (en) * 2019-10-23 2021-04-29 Slayback Pharma Llc Stable pharmaceutical compositions containing estradiol and progesterone for oral administration
JP6945874B2 (en) * 2019-12-24 2021-10-06 一般財団法人バイオダイナミックス研究所 Pharmaceutical composition for oral administration
US11464735B2 (en) 2020-09-25 2022-10-11 Lipocine Inc. Fixed dose oral testosterone undecanoate compositions and use thereof
US11370811B1 (en) 2020-11-20 2022-06-28 Lipocine Inc. (17-)-3-oxoandrost-4-en-17-yl dodecanoate compositions and methods of preparation and use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645856A (en) * 1994-03-16 1997-07-08 R. P. Scherer Corporation Delivery systems for hydrophobic drugs
US6652880B1 (en) * 1999-04-01 2003-11-25 R.P. Scherer Technologies, Inc. Oral pharmaceutical compositions containing long-chain triglycerides and liphophilic surfactants
US8241664B2 (en) * 2005-04-15 2012-08-14 Clarus Therapeutics, Inc Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same

Family Cites Families (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680749A (en) 1951-12-01 1954-06-08 Eastman Kodak Co Water-soluble tocopherol derivatives
US2742487A (en) 1952-05-02 1956-04-17 Coconut Processes Inc Method of extracting oil from mature, fresh coconut meats
US3097139A (en) 1960-03-10 1963-07-09 Ici Ltd Hypocholesterolaemia compositions
US3097144A (en) 1960-10-14 1963-07-09 Upjohn Co Heat-cured, polymeric, medicinal dosage film coatings containing a polyvinylpyrrolidone copolymer, polyethenoid acid, and polyethylene glycol
CH399447A (en) 1961-04-14 1965-09-30 Ciba Geigy Process for the production of a new steroid hormone ester
US3164520A (en) 1962-10-29 1965-01-05 Olin Mathieson Injectable steroid compositions containing at least 75% benzyl benzoate
US3510561A (en) 1965-05-20 1970-05-05 Canada Packers Ltd Sulfone-enhanced heparin absorption through mucous membranes
FR1578974A (en) 1968-05-16 1969-08-22
US4098802A (en) 1975-02-18 1978-07-04 Akzona Incorporated Oral pharmaceutical preparation having androgenic activity
NL189235C (en) 1974-02-28 1993-02-16 Akzo Nv METHOD FOR THE PREPARATION OF AN ORAL PHARMACEUTICAL PREPARATION WITH ANDROGENIC ACTION
US4147783A (en) * 1974-02-28 1979-04-03 Akzona Incorporated Oral pharmaceutical preparation
FR2374910A1 (en) 1976-10-23 1978-07-21 Choay Sa PREPARATION BASED ON HEPARIN, INCLUDING LIPOSOMES, PROCESS FOR OBTAINING IT AND MEDICINAL PRODUCTS CONTAINING SUCH PREPARATIONS
FR2408345A1 (en) 1976-11-30 1979-06-08 Besins Jean Louis NEW COMPOSITION WITH ANTI-CONCEPTIONAL ACTION
DK25877A (en) 1977-01-21 1978-08-15 Nordisk Insulinlab PROCEDURE FOR EXTRACTING PURE ALBUMIN FROM BLOOD PLASMA
JPS53107408A (en) 1977-02-28 1978-09-19 Yamanouchi Pharmaceut Co Ltd Micellar preparation for rectal infusion
FI65914C (en) 1978-03-07 1984-08-10 Sandoz Ag FRAMEWORK FOR PHARMACEUTICAL COMPOSITION OF CYCLOSPORINE A
NZ196349A (en) 1980-03-07 1984-08-24 Interx Research Corp Enhancement of absorption rate of orally administered polar bioactive agents
FR2494112B1 (en) 1980-11-19 1986-01-10 Laruelle Claude
FR2502951B1 (en) 1981-04-06 1985-12-06 Sandoz Sa TOPICAL PHARMACEUTICAL COMPOSITIONS IN THE FORM OF A MICRO-EMULSION
US4439432A (en) 1982-03-22 1984-03-27 Peat Raymond F Treatment of progesterone deficiency and related conditions with a stable composition of progesterone and tocopherols
US4654327A (en) 1982-04-21 1987-03-31 Research Corp. Quaternary ammonium complexes of heparin
DE3237814A1 (en) 1982-10-12 1984-04-12 Warner-Lambert Co., 07950 Morris Plains, N.J. WATER-FREE EMULSIONS AND USE THEREOF
SE8206744D0 (en) 1982-11-26 1982-11-26 Fluidcarbon International Ab PREPARATION FOR CONTROLLED RELEASE OF SUBSTANCES
IL68769A (en) 1983-05-23 1986-02-28 Hadassah Med Org Pharmaceutical compositions containing insulin for oral administration
US4731384A (en) 1983-07-01 1988-03-15 Troponwerke Gmbh & Co, Kg Etofenamate formulation
US4832952A (en) 1983-07-07 1989-05-23 American Home Products Corporation Pharmaceutical composition containing a liquid lubricant
DE3331009A1 (en) 1983-08-27 1985-03-14 Basf Ag, 6700 Ludwigshafen METHOD FOR INCREASING THE ENTERAL RESORBABILITY OF HEPARIN OR. HEPARINOIDS AND THE SO AVAILABLE HEPARIN OR HEPARINOID PREPARATION
DE3406497A1 (en) 1984-02-23 1985-09-05 Mueller Bernhard Willi Werner HIGHLY DISPERSAL PHARMACEUTICAL MULTI-COMPONENT SYSTEMS AND METHOD FOR THEIR PRODUCTION
US4713246A (en) 1984-03-19 1987-12-15 Bristol-Myers Company Etoposide oral dosage form
US4795327A (en) 1984-03-26 1989-01-03 Forest Laboratories, Inc. Controlled release solid drug dosage forms based on mixtures of water soluble nonionic cellulose ethers and anionic surfactants
US4572915A (en) 1984-05-01 1986-02-25 Bioglan Laboratories Clear micellized solutions of fat soluble essential nutrients
US4703042A (en) 1984-05-21 1987-10-27 Bodor Nicholas S Orally active heparin salts containing multivalent cationic units
GB8414221D0 (en) 1984-06-04 1984-07-11 Sterwin Ag Unit dosage form
DE3421468A1 (en) 1984-06-08 1985-12-19 Dr. Rentschler Arzneimittel Gmbh & Co, 7958 Laupheim LIPID NANOPELLETS AS A CARRIER SYSTEM FOR MEDICINAL PRODUCTS FOR PERORAL USE
GB8903804D0 (en) 1989-02-20 1989-04-05 Sandoz Ltd Improvements in or relating to organic compounds
US5639724A (en) 1984-07-24 1997-06-17 Sandoz Ltd. Cyclosporin galenic forms
JPS6150978A (en) 1984-08-16 1986-03-13 Takeda Chem Ind Ltd Pyridine derivative and preparation thereof
US4897269A (en) 1984-09-24 1990-01-30 Mezei Associates Limited Administration of drugs with multiphase liposomal delivery system
US4867984A (en) 1984-11-06 1989-09-19 Nagin K. Patel Drug in bead form and process for preparing same
CA1282326C (en) 1984-12-14 1991-04-02 Paul J. Jarosz Pharmaceutical composition containing 13-cis vitamin a acid as the active ingredient
DE3500103C2 (en) 1985-01-04 1987-01-22 R.P. Scherer GmbH, 6930 Eberbach Pharmaceutical preparation containing an active ingredient that is poorly soluble in water and digestive juices
US4874795A (en) * 1985-04-02 1989-10-17 Yesair David W Composition for delivery of orally administered drugs and other substances
US4628052A (en) 1985-05-28 1986-12-09 Peat Raymond F Pharmaceutical compositions containing dehydroepiandrosterone and other anesthetic steroids in the treatment of arthritis and other joint disabilities
FR2585246A1 (en) 1985-07-26 1987-01-30 Cortial PROCESS FOR OBTAINING SOLID PHARMACEUTICAL FORMS WITH PROLONGED RELEASE
US4717596A (en) 1985-10-30 1988-01-05 International Business Machines Corporation Method for vacuum vapor deposition with improved mass flow control
US5023108A (en) 1986-01-13 1991-06-11 Research Corporation Aqueous dispersions of waxes and lipids for pharmaceutical coating
CA1327010C (en) 1986-02-13 1994-02-15 Tadashi Makino Stabilized solid pharmaceutical composition containing antiulcer benzimidazole compound and its production
US5433959A (en) 1986-02-13 1995-07-18 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
US4849227A (en) 1986-03-21 1989-07-18 Eurasiam Laboratories, Inc. Pharmaceutical compositions
US5140021A (en) 1986-04-16 1992-08-18 Genesis Systems Corporation Method and dosage form for treatment of premenstrual syndrome
US4963540A (en) 1986-04-16 1990-10-16 Maxson Wayne S Method for treatment of premenstrual syndrome
SE457693B (en) 1986-07-01 1989-01-23 Drilletten Ab COMPOSITION WITH REGULATED RELEASE WAS A BIOLOGICAL MATERIAL LOST OR DISPERSED IN AN L2 PHASE
FR2602423B1 (en) 1986-08-08 1989-05-05 Ethypharm Sa PROCESS FOR THE PREPARATION OF A FENOFIBRATE-BASED MEDICINAL PRODUCT, OBTAINED BY THIS PROCESS
JP2765700B2 (en) 1986-08-11 1998-06-18 イノベータ・バイオメド・リミテツド Pharmaceutical composition containing microcapsules
US5071643A (en) 1986-10-17 1991-12-10 R. P. Scherer Corporation Solvent system enhancing the solubility of pharmaceuticals for encapsulation
GB8630273D0 (en) 1986-12-18 1987-01-28 Til Medical Ltd Pharmaceutical delivery systems
NL194638C (en) 1986-12-19 2002-10-04 Novartis Ag Hydrosol containing solid particles of a pharmaceutically active substance and pharmaceutical preparation containing this hydrosol.
JPH0662402B2 (en) 1987-01-14 1994-08-17 アライアンス ファーマシューチカル コーポレイション Brominated perfluorocarbon emulsion and method for producing the same
US5026560A (en) 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
US4900734A (en) 1987-08-27 1990-02-13 Maxson Wayne S Novel pharmaceutical composition containing estradiol and progesterone for oral administration
US5756450A (en) 1987-09-15 1998-05-26 Novartis Corporation Water soluble monoesters as solubilisers for pharmacologically active compounds and pharmaceutical excipients and novel cyclosporin galenic forms
US5035891A (en) 1987-10-05 1991-07-30 Syntex (U.S.A.) Inc. Controlled release subcutaneous implant
US5244925A (en) 1987-12-18 1993-09-14 Kabi Pharmacia Aktiebolag Emulsion for parenteral administration
FR2627696B1 (en) 1988-02-26 1991-09-13 Fournier Innovation Synergie NEW GALENIC FORM OF FENOFIBRATE
DE3807895A1 (en) 1988-03-10 1989-09-21 Knoll Ag PRODUCTS CONTAINING A CALCIUM ANTAGONIST AND A LIPID DOWNER
JPH0611166Y2 (en) 1988-03-14 1994-03-23 日立エーアイシー株式会社 Vacuum laminating machine seal structure
US5350741A (en) 1988-07-30 1994-09-27 Kanji Takada Enteric formulations of physiologically active peptides and proteins
US5342625A (en) 1988-09-16 1994-08-30 Sandoz Ltd. Pharmaceutical compositions comprising cyclosporins
GB2222770B (en) 1988-09-16 1992-07-29 Sandoz Ltd Pharmaceutical compositions containing cyclosporins
US6007840A (en) 1988-09-16 1999-12-28 Novartis Ag Pharmaceutical compositions comprising cyclosporins
GB8822857D0 (en) 1988-09-29 1988-11-02 Patralan Ltd Pharmaceutical formulations
DE3838094A1 (en) 1988-11-10 1990-05-17 Nordmark Arzneimittel Gmbh SOLID PHARMACEUTICAL RETARD FORM
US4994439A (en) 1989-01-19 1991-02-19 California Biotechnology Inc. Transmembrane formulations for drug administration
US5364632A (en) 1989-04-05 1994-11-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Medicinal emulsions
FR2647346B1 (en) 1989-05-29 1991-09-06 Besins Iscovesco Laboratoires STABILIZED PROGESTERONE COMPOUND, PROCESS FOR PREPARING THE SAME, AND USE OF THE COMPOUND FOR OBTAINING A MEDICAMENT
US5104656A (en) 1989-06-16 1992-04-14 Seth Pyare L Percutaneous treatment with a high potency non-steroidal anti-inflammatory agent
DE3919982A1 (en) 1989-06-19 1990-12-20 Liedtke Pharmed Gmbh ORAL LIPID MEDICINE FORM
US5532002A (en) 1989-08-17 1996-07-02 Cortecs Limited Gelatin pharmaceutical formulations
US5014656A (en) 1990-04-25 1991-05-14 General Motors Corporation Internal combustion engine having a permanent ground electrode and replaceable center electrode element
US5091187A (en) 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
US5091188A (en) 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
US5298497A (en) 1990-05-15 1994-03-29 E. R. Squibb & Sons, Inc. Method for preventing onset of hypertension employing a cholesterol lowering drug
WO1992003121A1 (en) 1990-08-13 1992-03-05 Yesair David W Mixed lipid-bicarbonate colloidal particles for delivering drugs or calories
US5270005A (en) 1990-09-07 1993-12-14 Baxter International Inc. Extracorporeal blood oxygenation system incorporating integrated reservoir-membrane oxygenerator-heat exchanger and pump assembly
US5665379A (en) 1990-09-28 1997-09-09 Pharmacia & Upjohn Aktiebolag Lipid particle forming matrix, preparation and use thereof
DE69124459T3 (en) 1990-11-02 2001-05-31 Novartis Ag, Basel Cyclosporine
US5152997A (en) 1990-12-11 1992-10-06 Theratech, Inc. Method and device for transdermally administering testosterone across nonscrotal skin at therapeutically effective levels
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
IT1245761B (en) 1991-01-30 1994-10-14 Alfa Wassermann Spa PHARMACEUTICAL FORMULATIONS CONTAINING GLYCOSAMINOGLICANS ABSORBABLE ORALLY.
US5300529A (en) 1991-02-12 1994-04-05 Isp Investments Inc. Stable, clear, efficacious aqueous microemulsion compositions containing a high loading of a water-insoluble, agriculturally active chemical
US5403593A (en) 1991-03-04 1995-04-04 Sandoz Ltd. Melt granulated compositions for preparing sustained release dosage forms
TW212139B (en) 1991-04-15 1993-09-01 Yamanouchi Pharma Co Ltd
US5688761A (en) 1991-04-19 1997-11-18 Lds Technologies, Inc. Convertible microemulsion formulations
CA2108266C (en) 1991-04-19 2003-06-03 Albert J. Owen Convertible microemulsion formulations
US5223268A (en) 1991-05-16 1993-06-29 Sterling Drug, Inc. Low solubility drug-coated bead compositions
US5380535A (en) 1991-05-28 1995-01-10 Geyer; Robert P. Chewable drug-delivery compositions and methods for preparing the same
US5698155A (en) 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
PT100726A (en) 1991-07-26 1993-09-30 Smithkline Beecham Corp OIL, SELF-EMULSIFYING, STABLE AND PHARMACEUTICALLY ACCEPTANT OIL WATER MICRO-EMULSES AND THEIR USE
WO1993006921A1 (en) 1991-10-04 1993-04-15 Gs Biochem Ab Particles, method of preparing said particles and uses thereof
JPH0597672A (en) 1991-10-08 1993-04-20 Terumo Corp Amide derivative-containing solid preparation and its production
WO1993009785A1 (en) 1991-11-22 1993-05-27 Procter & Gamble Pharmaceuticals, Inc. Risedronate delayed-release compositions
US5206219A (en) 1991-11-25 1993-04-27 Applied Analytical Industries, Inc. Oral compositions of proteinaceous medicaments
HUT63579A (en) 1991-12-20 1993-09-28 Chinoin Gyogyszer Es Vegyeszet Process for producing double-phase pharmaceutical compositions suitable for treating diseases occurring during neurodegenerative processes
JP3852621B2 (en) 1992-01-21 2006-12-06 あすか製薬株式会社 Vascular endothelial cell function improving agent
GB9201857D0 (en) 1992-01-29 1992-03-18 Smithkline Beecham Plc Novel compound
US5571533A (en) 1992-02-07 1996-11-05 Recordati, S.A., Chemical And Pharmaceutical Company Controlled-release mucoadhesive pharmaceutical composition for the oral administration of furosemide
SE9200951D0 (en) 1992-03-27 1992-03-27 Kabi Pharmacia Ab PHARMACEUTICAL COMPOSITION CONTAINING A DEFINED LIPID SYSTEM
GB9212511D0 (en) 1992-06-12 1992-07-22 Cortecs Ltd Pharmaceutical compositions
IT1255449B (en) 1992-06-30 1995-10-31 Fabio Berlati USE OF NOR- AND HOMO-DERIVATIVES OF BILE ACIDS AS DRUGS ABSORPTION PROMOTERS.
PH30929A (en) 1992-09-03 1997-12-23 Janssen Pharmaceutica Nv Beads having a core coated with an antifungal and a polymer.
WO1994008610A1 (en) 1992-10-16 1994-04-28 Smithkline Beecham Corporation Pharmaceutical emulsion compositions
US5376688A (en) 1992-12-18 1994-12-27 R. P. Scherer Corporation Enhanced solubility pharmaceutical solutions
GB9300875D0 (en) 1993-01-18 1993-03-10 Ucb Sa Nanocapsule containing pharmaceutical compositions
US5686105A (en) 1993-10-19 1997-11-11 The Procter & Gamble Company Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery
DE4312034A1 (en) 1993-04-13 1994-10-20 Hesch Rolf Dieter Prof Dr Med Novel androgens and anabolic steroids
AU686149B2 (en) 1993-04-19 1998-02-05 Institute For Advanced Skin Research Inc. Microemulsion preparation containing difficultly absorbable substance
BE1006990A5 (en) 1993-04-22 1995-02-07 Univ Gent METHOD AND COMPOSITION TO MAKE AN ACTIVE INGREDIENT IN A solid dosage form.
EP0621032B1 (en) 1993-04-23 2000-08-09 Novartis AG Controlled release drug delivery device
NZ247516A (en) 1993-04-28 1995-02-24 Bernard Charles Sherman Water dispersible pharmaceutical compositions comprising drug dissolved in solvent system comprising at least one alcohol and at least one surfactant
SE9302135D0 (en) 1993-06-18 1993-06-18 Kabi Pharmacia Ab NEW PHARMACEUTICAL COMPOSITION
US5639474A (en) 1993-07-01 1997-06-17 Hanmi Pharm. Ind., Ltd. Cyclosporin soft capsule composition
DE4322826A1 (en) 1993-07-08 1995-01-12 Galenik Labor Freiburg Gmbh Pharmaceutical preparation
ES2068762B1 (en) 1993-07-21 1995-12-01 Lipotec Sa A NEW PHARMACEUTICAL PREPARATION TO IMPROVE THE BIOAVAILABILITY OF DRUGS OF DIFFICULT ABSORPTION AND PROCEDURE FOR THEIR OBTAINING.
JPH0741422A (en) 1993-07-30 1995-02-10 Nissui Pharm Co Ltd Method for solubilizing gamma-oryzanol in water
TW359614B (en) 1993-08-31 1999-06-01 Takeda Chemical Industries Ltd Composition containing benzimidazole compounds for rectal administration
US6022852A (en) 1993-10-22 2000-02-08 Hexal Ag Pharmaceutical composition containing cyclosporin A
US5707648A (en) 1993-11-17 1998-01-13 Lds Technologies, Inc. Transparent liquid for encapsulated drug delivery
DE4340781C3 (en) 1993-11-30 2000-01-27 Novartis Ag Liquid preparations containing cyclosporin and process for their preparation
US5374446A (en) 1993-12-10 1994-12-20 Arco Chemical Technology, L.P. Linked esterified alkoxylated polyols useful as reduced calorie fat substitutes
KR0146671B1 (en) 1994-02-25 1998-08-17 김충환 Cyclosporin-containing powder composition
US5811120A (en) 1994-03-02 1998-09-22 Eli Lilly And Company Solid orally administerable raloxifene hydrochloride pharmaceutical formulation
US5731356A (en) 1994-03-22 1998-03-24 Zeneca Limited Pharmaceutical compositions of propofol and edetate
GB9409778D0 (en) 1994-05-16 1994-07-06 Dumex Ltd As Compositions
US6692766B1 (en) 1994-06-15 2004-02-17 Yissum Research Development Company Of The Hebrew University Of Jerusalem Controlled release oral drug delivery system
SE518578C2 (en) 1994-06-15 2002-10-29 Gs Dev Ab Lipid-based composition
US5817320A (en) 1994-06-20 1998-10-06 The United States Of America As Represented By The Secretary Of The Agriculture In ovo immunization of avian embryos with oil-emulsion vaccines
US5616330A (en) 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
FR2722984B1 (en) 1994-07-26 1996-10-18 Effik Lab PROCESS FOR THE PREPARATION OF DRY PHARMACEUTICAL FORMS AND THE PHARMACEUTICAL COMPOSITIONS THUS PRODUCED
GB9417524D0 (en) 1994-08-31 1994-10-19 Cortecs Ltd Pharmaceutical compositions
SE518619C2 (en) 1994-12-09 2002-10-29 Gs Dev Ab Controlled release composition containing monocaproin
US5858398A (en) 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
US5965161A (en) 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
KR0167613B1 (en) 1994-12-28 1999-01-15 한스 루돌프 하우스, 니콜 케르커 Cyclosporin-containing soft capsule compositions
US5545628A (en) 1995-01-10 1996-08-13 Galephar P.R. Inc. Pharmaceutical composition containing fenofibrate
US5629021A (en) 1995-01-31 1997-05-13 Novavax, Inc. Micellar nanoparticles
FR2730231B1 (en) 1995-02-02 1997-04-04 Fournier Sca Lab COMBINATION OF FENOFIBRATE AND VITAMIN E, USE IN THERAPEUTICS
US5560931A (en) 1995-02-14 1996-10-01 Nawosystems L.L.C. Formulations of compounds as nanoparticulate dispersions in digestible oils or fatty acids
US5571536A (en) 1995-02-06 1996-11-05 Nano Systems L.L.C. Formulations of compounds as nanoparticulate dispersions in digestible oils or fatty acids
US5573783A (en) 1995-02-13 1996-11-12 Nano Systems L.L.C. Redispersible nanoparticulate film matrices with protective overcoats
JP2740153B2 (en) 1995-03-07 1998-04-15 エフ・ホフマン−ラ ロシユ アーゲー Mixed micelle
US5653987A (en) 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals
SI9500173B (en) 1995-05-19 2002-02-28 Lek, Three-phase pharmaceutical form with constant and controlled release of amorphous active ingredient for single daily application
US5726181A (en) 1995-06-05 1998-03-10 Bionumerik Pharmaceuticals, Inc. Formulations and compositions of poorly water soluble camptothecin derivatives
FR2737121B1 (en) 1995-07-27 1997-10-03 Cl Pharma NEW GALENIC FORMULATIONS OF FENOFIBRATE AND THEIR APPLICATIONS
DE19527661C2 (en) 1995-07-28 1998-02-19 Optrex Europ Gmbh Carrier comprising electrical conductors with an electronic component and method for contacting conductors of a substrate with contact warts of an electronic component
US5766629A (en) 1995-08-25 1998-06-16 Sangstat Medical Corporation Oral cyclosporin formulations
US6645988B2 (en) 1996-01-04 2003-11-11 Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US5858401A (en) 1996-01-22 1999-01-12 Sidmak Laboratories, Inc. Pharmaceutical composition for cyclosporines
JPH09241152A (en) 1996-03-01 1997-09-16 Sunstar Inc Oil-in-water emulsion
IL117773A (en) 1996-04-02 2000-10-31 Pharmos Ltd Solid lipid compositions of coenzyme Q10 for enhanced oral bioavailability
GB9608719D0 (en) 1996-04-26 1996-07-03 Scherer Ltd R P Pharmaceutical compositions
DE19619045C1 (en) 1996-05-02 1997-11-13 Jenapharm Gmbh Use of combination products for the treatment of hypogonadal men and men with pituitary disorders
US6057339A (en) 1996-05-09 2000-05-02 Bristol-Myers Squibb Company Method of inhibiting or treating phytosterolemia with an MTP inhibitor
WO1997048382A2 (en) 1996-06-18 1997-12-24 Otsuka Pharmaceutical Co., Ltd. Multiple-unit type prolonged action drug preparation
IL127780A0 (en) 1996-06-28 1999-10-28 Schering Corp Oral compositions comprising a triazole antifungal compound
US5846971A (en) 1996-06-28 1998-12-08 Schering Corporation Oral antifungal composition
US5883109A (en) 1996-07-24 1999-03-16 Bristol-Myers Squibb Company Method for lowering serum lipid levels employing an MTP inhibitor in combination with another cholesterol lowering drug
US6239124B1 (en) 1996-07-30 2001-05-29 Novartis Ag Pharmaceutical compositions for the treatment of transplant rejection or autoimmune or inflammatory conditions comprising cyclosporin A and 40-0-(2-hydroxyethyl)-rapamycin
US6465016B2 (en) 1996-08-22 2002-10-15 Research Triangle Pharmaceuticals Cyclosporiine particles
HU226608B1 (en) 1996-08-22 2009-04-28 Rtp Pharma Corp Compositions comprising microparticles of water-insoluble substances and method for preparing same
SE9603077D0 (en) 1996-08-29 1996-08-29 Tetra Laval Holdings & Finance An apparatus for and method of performing an animal-related action regarding at least a portion of the body of an animal
US5891469A (en) 1997-04-02 1999-04-06 Pharmos Corporation Solid Coprecipitates for enhanced bioavailability of lipophilic substances
US5798333A (en) 1996-09-17 1998-08-25 Sherman; Bernard C. Water-soluble concentrates containing cyclosporins
US6361796B1 (en) 1996-10-25 2002-03-26 Shire Laboratories, Inc. Soluble form osmotic dose delivery system
US5985248A (en) 1996-12-31 1999-11-16 Inhale Therapeutic Systems Processes for spray drying solutions of hydrophobic drugs and compositions thereof
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6066653A (en) 1997-01-17 2000-05-23 Bristol-Myers Squibb Co. Method of treating acid lipase deficiency diseases with an MTP inhibitor and cholesterol lowering drugs
GB9700878D0 (en) 1997-01-17 1997-03-05 Scherer Ltd R P Dosage forms and method for ameliorating male erectile dysfunction
FR2758459B1 (en) 1997-01-17 1999-05-07 Pharma Pass FENOFIBRATE PHARMACEUTICAL COMPOSITION HAVING HIGH BIODAVAILABILITY AND PROCESS FOR PREPARING THE SAME
GB2355195B (en) 1997-01-30 2001-09-12 Novartis Ag Oil-free pharmaceutical compositions containing cyclosporin A
ATE554750T1 (en) 1997-03-05 2012-05-15 Sugen Inc PREPARATIONS CONTAINING HYDROPHOBIC PHARMACEUTICAL ACTIVE INGREDIENTS
JP4718653B2 (en) 1997-03-12 2011-07-06 アボツト・ラボラトリーズ Hydrophilic two-component system for administration of cyclosporine
JPH1149664A (en) 1997-04-18 1999-02-23 Taisho Pharmaceut Co Ltd Microemulsion
KR20010006480A (en) 1997-04-18 2001-01-26 우에하라 아끼라 Microemulsion
US6046177A (en) 1997-05-05 2000-04-04 Cydex, Inc. Sulfoalkyl ether cyclodextrin based controlled release solid pharmaceutical formulations
US5874418A (en) 1997-05-05 1999-02-23 Cydex, Inc. Sulfoalkyl ether cyclodextrin based solid pharmaceutical formulations and their use
US5981586A (en) 1997-05-23 1999-11-09 Pershadsingh; Harrihar A. Methods for treating proliferative and inflammatory skin diseases
SK282427B6 (en) 1997-06-11 2002-01-07 Abbott Laboratories Solid pharmaceutical composition with controlled release
PL337723A1 (en) 1997-06-27 2000-08-28 Astra Ab Inhalable tocopherol-stabilised prolyposomic powders
CA2294032A1 (en) 1997-07-29 1999-02-11 Pharmacia & Upjohn Company Self-emulsifying formulation for lipophilic compounds
IT1294760B1 (en) 1997-09-03 1999-04-12 Jagotec Ag PROCEDURE FOR THE PREPARATION OF PHARMACEUTICAL TABLETS ABLE TO RELEASE, ACCORDING TO PREDETERMINABLE SCHEMES, LITTLE ACTIVE INGREDIENTS
KR100222918B1 (en) 1997-09-04 1999-10-01 윤덕용 Absorbent comprising of alkali salt and copper oxide deposited ñ†-alumina
CA2214895C (en) 1997-09-19 1999-04-20 Bernard Charles Sherman Improved pharmaceutical composition comprising fenofibrate
US6296876B1 (en) 1997-10-06 2001-10-02 Isa Odidi Pharmaceutical formulations for acid labile substances
US20020013304A1 (en) 1997-10-28 2002-01-31 Wilson Leland F. As-needed administration of an androgenic agent to enhance female sexual desire and responsiveness
US20050070516A1 (en) 1997-10-28 2005-03-31 Vivus Inc. As-needed administration of an androgenic agent to enhance female desire and responsiveness
US6027747A (en) 1997-11-11 2000-02-22 Terracol; Didier Process for the production of dry pharmaceutical forms and the thus obtained pharmaceutical compositions
US5891845A (en) 1997-11-21 1999-04-06 Fuisz Technologies Ltd. Drug delivery systems utilizing liquid crystal structures
ES2216351T3 (en) 1997-12-08 2004-10-16 Altana Pharma Ag NEW FORM OF ASSUMPTION THAT INCLUDES A LABIL ACTIVE COMPOUND OR ACIDS.
AU1809499A (en) 1997-12-10 1999-06-28 Awadhesh K. Mishra Self-emulsifying fenofibrate formulations
US6013665A (en) 1997-12-16 2000-01-11 Abbott Laboratories Method for enhancing the absorption and transport of lipid soluble compounds using structured glycerides
US6086376A (en) 1998-01-30 2000-07-11 Rtp Pharma Inc. Dry aerosol suspension of phospholipid-stabilized drug microparticles in a hydrofluoroalkane propellant
FR2774591B1 (en) 1998-02-12 2000-05-05 Lipha PHARMACEUTICAL COMPOSITION COMPRISING THE ASSOCIATION OF METFORMIN AND FIBRATE AND THE USE THEREOF FOR THE PREPARATION OF MEDICINES FOR REDUCING HYPERGLYCEMIA
ID25908A (en) 1998-03-06 2000-11-09 Novartis Ag EMULSION PRACTONCENTRATES CONTAINING CYCLOSPORINE OR MACROLIDES
DK173431B1 (en) 1998-03-20 2000-10-23 Gea Farmaceutisk Fabrik As Pharmaceutical formulation comprising a 2 - [[(2-pyridinyl) methyl] sulfinyl] benzimidazole with anti-ulcer activity and progress
CA2268211A1 (en) 1998-04-13 1999-10-13 Medical College Of Hampton Roads Control of selective estrogen receptor modulators
ES2559766T3 (en) 1998-05-18 2016-02-15 Takeda Pharmaceutical Company Limited Disintegrable tablets in the mouth
WO2000003753A2 (en) 1998-07-14 2000-01-27 Em Industries, Inc. Microdisperse drug delivery systems
ES2157731B1 (en) 1998-07-21 2002-05-01 Liconsa Liberacion Controlada ORAL PHARMACEUTICAL PREPARATION OF AN ANTIFUNGIC ACTIVITY COMPOUND AND PROCEDURE FOR PREPARATION.
US6174547B1 (en) 1999-07-14 2001-01-16 Alza Corporation Dosage form comprising liquid formulation
FR2783421B1 (en) 1998-09-17 2000-11-24 Cll Pharma PROCESS FOR THE PREPARATION OF NOVEL GALENIC FORMULATIONS OF FENOFIBRATE, GALENIC FORMULATIONS OBTAINED BY SAID PROCESS AND THEIR APPLICATIONS
US5993880A (en) 1998-10-01 1999-11-30 Kraft Foods Inc. Non-staining, acid-stable, cold-water-soluble, edible green color and compositions for preparing acidic foods and beverages
US6977083B1 (en) 1998-10-02 2005-12-20 Jenapharm Gmbh & Co. Kg Bioadhesive tablet containing testosterone/testosterone ester mixtures and method for producing a predetermined testosterone time-release profile with same
PE20001227A1 (en) 1998-10-30 2000-11-06 Hoffmann La Roche PROCESSES TO PRODUCE AN ISOTRETINOIN COMPOSITION
JP2002532539A (en) 1998-12-18 2002-10-02 アボット・ラボラトリーズ Novel formulations containing lipid modulators
US6180138B1 (en) 1999-01-29 2001-01-30 Abbott Laboratories Process for preparing solid formulations of lipid-regulating agents with enhanced dissolution and absorption
US6383517B1 (en) 1999-01-29 2002-05-07 Abbott Laboratories Process for preparing solid formulations of lipid-regulating agents with enhanced dissolution and absorption
FR2789085B1 (en) * 1999-01-29 2003-06-20 Arkopharma Laboratoires PROCESS FOR OBTAINING AN OIL ENRICHED IN HYDROXYOCTADECADIENOIC FATTY ACIDS (HODE), OR ITS ESTERS FROM AN OIL MIXTURE CONTAINING LINOLEIC ACID, OR ITS ESTERS
US6447806B1 (en) 1999-02-25 2002-09-10 Novartis Ag Pharmaceutical compositions comprised of stabilized peptide particles
US6761903B2 (en) 1999-06-30 2004-07-13 Lipocine, Inc. Clear oil-containing pharmaceutical compositions containing a therapeutic agent
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US20030104048A1 (en) 1999-02-26 2003-06-05 Lipocine, Inc. Pharmaceutical dosage forms for highly hydrophilic materials
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6267985B1 (en) 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
AU4017500A (en) 1999-03-31 2000-10-16 Abbott Laboratories Novel formulations comprising lipid-regulating agents
EP1162954A1 (en) 1999-03-31 2001-12-19 Abbott Laboratories Novel formulations comprising lipid-regulating agents
GB9907715D0 (en) 1999-04-01 1999-05-26 Scherer Corp R P Pharmaceutical compositions
IL145524A0 (en) 1999-04-01 2002-06-30 Akzo Nobel Nv Formulation comprising testosterone undecanoate and castor oil
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
KR20070058028A (en) 1999-05-24 2007-06-07 소너스파머슈티칼즈인코포레이티드 Emulsion vehicle for poorly soluble drugs
GB9912476D0 (en) 1999-05-28 1999-07-28 Novartis Ag Organic compounds
US6465011B2 (en) 1999-05-29 2002-10-15 Abbott Laboratories Formulations comprising lipid-regulating agents
US6372251B2 (en) 1999-06-11 2002-04-16 Abbott Laboratories Formulations comprising lipid-regulating agents
US20030236236A1 (en) 1999-06-30 2003-12-25 Feng-Jing Chen Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
US6982281B1 (en) 2000-11-17 2006-01-03 Lipocine Inc Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
US20030235595A1 (en) 1999-06-30 2003-12-25 Feng-Jing Chen Oil-containing, orally administrable pharmaceutical composition for improved delivery of a therapeutic agent
US6458383B2 (en) 1999-08-17 2002-10-01 Lipocine, Inc. Pharmaceutical dosage form for oral administration of hydrophilic drugs, particularly low molecular weight heparin
US6309663B1 (en) 1999-08-17 2001-10-30 Lipocine Inc. Triglyceride-free compositions and methods for enhanced absorption of hydrophilic therapeutic agents
AR024462A1 (en) 1999-07-01 2002-10-02 Merck & Co Inc PHARMACEUTICAL TABLETS
DE60020382T2 (en) 1999-09-21 2006-01-26 Skyepharma Canada Inc., Verdun SURFACE-MODIFIED PARTICULATE COMPOSITIONS OF BIOLOGICALLY ACTIVE SUBSTANCES
US6228400B1 (en) 1999-09-28 2001-05-08 Carlsbad Technology, Inc. Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same
US6720001B2 (en) 1999-10-18 2004-04-13 Lipocine, Inc. Emulsion compositions for polyfunctional active ingredients
US20030180352A1 (en) 1999-11-23 2003-09-25 Patel Mahesh V. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US20060034937A1 (en) 1999-11-23 2006-02-16 Mahesh Patel Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
EP1108425B1 (en) 1999-12-16 2005-06-08 Laboratorio Medinfar-Produtos Farmaceuticos, S.A. New stable multi-unitary pharmaceutical preparations containing substituted benzimidazoles
EP1239831B1 (en) 1999-12-23 2012-10-31 Mayne Pharma International Pty Ltd. Improved pharmaceutical compositions for poorly soluble drugs
EA006402B1 (en) 1999-12-23 2005-12-29 Пфайзер Продактс Инк. Combination of drug and cellulosic polymer, enhancing concentration, method of drug administering and aqueous solution thereof
US6340471B1 (en) 1999-12-30 2002-01-22 Alvin Kershman Method for preparing solid delivery system for encapsulated and non-encapsulated pharmaceuticals
FR2803203B1 (en) 1999-12-31 2002-05-10 Fournier Ind & Sante NEW GALENIC FORMULATIONS OF FENOFIBRATE
US20020102301A1 (en) 2000-01-13 2002-08-01 Joseph Schwarz Pharmaceutical solid self-emulsifying composition for sustained delivery of biologically active compounds and the process for preparation thereof
US7025979B2 (en) 2000-02-15 2006-04-11 Schering Ag Male contraceptive formulation comprising norethisterone
US6468559B1 (en) 2000-04-28 2002-10-22 Lipocine, Inc. Enteric coated formulation of bishosphonic acid compounds and associated therapeutic methods
US6719992B2 (en) 2000-06-26 2004-04-13 Monsanto Technology Llc Non-aqueous surfactant-containing formulations for extended release of somatotropin
US6503894B1 (en) 2000-08-30 2003-01-07 Unimed Pharmaceuticals, Inc. Pharmaceutical composition and method for treating hypogonadism
JP4637338B2 (en) 2000-09-22 2011-02-23 大塚製薬株式会社 Cilostazol dry coated tablets
US6887493B2 (en) 2000-10-25 2005-05-03 Adi Shefer Multi component controlled release system for oral care, food products, nutraceutical, and beverages
US6589562B1 (en) 2000-10-25 2003-07-08 Salvona L.L.C. Multicomponent biodegradable bioadhesive controlled release system for oral care products
US20020103139A1 (en) 2000-12-01 2002-08-01 M. Weisspapir Solid self-emulsifying controlled release drug delivery system composition for enhanced delivery of water insoluble phytosterols and other hydrophobic natural compounds for body weight and cholestrol level control
US20060142257A1 (en) 2001-01-19 2006-06-29 Eberhard Nieschlag Male contraceptive formulation comprising norethisterone
DE10107663B4 (en) 2001-02-19 2004-09-09 Lts Lohmann Therapie-Systeme Ag Testosterone-containing transdermal therapeutic system, process for its preparation and its use
DE10164844B4 (en) 2001-02-22 2005-05-25 Aquanova German Solubilisate Technologies (Agt) Gmbh Tocopherol concentrate
AUPR573001A0 (en) 2001-06-15 2001-07-12 Glaxo Wellcome Australia Ltd Lymphatic drug delivery system
US20030022875A1 (en) 2001-07-27 2003-01-30 Wilson Leland F. As-needed administration of orally active androgenic agents to enhance female sexual desire and responsiveness
AU2002340120A1 (en) 2001-10-04 2003-04-14 Cellegy Pharmaceuticals, Inc. Semisolid topical hormonal compositions and methods for treatment
US6665880B2 (en) 2001-11-01 2003-12-23 Kimberly-Clark Worldwide, Inc. Protective garments with glove flaps
US6630134B1 (en) 2002-01-08 2003-10-07 Zenitech Llc Guerbet wax esters in personal care applications
JP2005523262A (en) 2002-02-01 2005-08-04 ファイザー・プロダクツ・インク Pharmaceutical compositions of amorphous dispersions of drugs and lipophilic microphase-forming substances
US20040002445A1 (en) 2002-03-28 2004-01-01 Rajneesh Taneja Enhancement of endogenous gonadotropin production
US20030186892A1 (en) 2002-03-28 2003-10-02 Rajneesh Taneja Enhancement of endogenous gonadotropin production
US20050287203A1 (en) 2002-05-08 2005-12-29 Nijs De H Formulation comprising testosteron undecanoate and castor oil
AU2003285189B2 (en) 2002-11-14 2006-07-27 Shear/Kershman Laboratories, Inc. Oral testosterone delivery system with improved sustained release
US20040115287A1 (en) 2002-12-17 2004-06-17 Lipocine, Inc. Hydrophobic active agent compositions and methods
US20050100608A1 (en) 2003-02-21 2005-05-12 Watson Pharmaceuticals, Inc. Testosterone oral dosage formulations and associated methods
US6913244B1 (en) 2003-05-02 2005-07-05 Gordon Edgar Atkinson Urinary slide valve
WO2005016872A1 (en) 2003-06-11 2005-02-24 Novacea, Inc. Treatment of lung cancer with active vitamin d compounds in combination with other treatments
MXPA06001417A (en) 2003-08-04 2006-05-15 Pfizer Prod Inc Pharmaceutical compositions of adsorbates of amorphous drugs and lipophilic microphase-forming materials.
EP1660227B1 (en) 2003-08-04 2012-05-23 Camurus Ab Method for improving the properties of amphiphile particles
US20050080075A1 (en) 2003-08-25 2005-04-14 Nichols M. James Formulations, conjugates, and combinations of drugs for the treatment of neoplasms
US7658944B2 (en) 2003-10-10 2010-02-09 Lifecycle Pharma A/S Solid dosage form comprising a fibrate
US20060003002A1 (en) 2003-11-03 2006-01-05 Lipocine, Inc. Pharmaceutical compositions with synchronized solubilizer release
US20050096365A1 (en) 2003-11-03 2005-05-05 David Fikstad Pharmaceutical compositions with synchronized solubilizer release
US7138389B2 (en) 2004-02-09 2006-11-21 University Of Washington Oral androgen therapy using modulators of testosterone bioavailability
US20050220825A1 (en) 2004-03-10 2005-10-06 Adrian Funke Molecular dispersions of drospirenone
WO2006007354A2 (en) 2004-06-28 2006-01-19 Alza Corporation A drug/polymer complex, preferably ciprofloxacin/hpmc, its method of manufacturing using lyophilization and its use in an osmotic device
WO2006012502A2 (en) 2004-07-23 2006-02-02 Rigel Pharmaceuticals, Inc. Formulation of insoluble small molecule therapeutics in lipid-based carriers
US8541400B2 (en) 2004-08-04 2013-09-24 Camurus Ab Compositions forming non-lamellar dispersions
US20060106004A1 (en) 2004-11-12 2006-05-18 Brody Steven A Unique methods and formulations of bio-identical sex steroids for the treatment of pathophysiologic aberrations of menopause
US20060134210A1 (en) 2004-12-22 2006-06-22 Astrazeneca Ab Solid dosage form comprising proton pump inhibitor and suspension made thereof
WO2006105615A1 (en) 2005-04-08 2006-10-12 Ozpharma Pty Ltd Buccal delivery system
US8492369B2 (en) 2010-04-12 2013-07-23 Clarus Therapeutics Inc Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
CN101217963A (en) 2005-04-15 2008-07-09 克劳拉斯医疗有限公司 Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
US7400031B2 (en) 2005-09-19 2008-07-15 International Business Machines Corporation Asymmetrically stressed CMOS FinFET
JP5194209B2 (en) 2007-10-18 2013-05-08 日本フェンオール株式会社 Semiconductor processing unit and semiconductor manufacturing apparatus
GB0807605D0 (en) 2008-04-28 2008-06-04 Diurnal Ltd Lipid composition
US11304960B2 (en) 2009-01-08 2022-04-19 Chandrashekar Giliyar Steroidal compositions
ES2710149T3 (en) 2009-12-31 2019-04-23 Marius Pharmaceuticals Llc Modulation of solubility, stability, absorption, metabolism and pharmacokinetic profile of lipophilic drugs by sterols
JP5992397B2 (en) 2010-04-12 2016-09-14 クラルス セラピューティクス,インク. Oral testosterone ester combination and method for treating testosterone deficiency containing the same
US20120135074A1 (en) 2010-11-30 2012-05-31 Chandrashekar Giliyar High-Strength Testosterone Undecanoate Compositions
US9034858B2 (en) 2010-11-30 2015-05-19 Lipocine Inc. High-strength testosterone undecanoate compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645856A (en) * 1994-03-16 1997-07-08 R. P. Scherer Corporation Delivery systems for hydrophobic drugs
US6652880B1 (en) * 1999-04-01 2003-11-25 R.P. Scherer Technologies, Inc. Oral pharmaceutical compositions containing long-chain triglycerides and liphophilic surfactants
US8241664B2 (en) * 2005-04-15 2012-08-14 Clarus Therapeutics, Inc Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179402B2 (en) 2005-04-15 2021-11-23 Clarus Therapeutics, Inc. Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
US11331325B2 (en) 2005-04-15 2022-05-17 Clarus Therapeutics, Inc. Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
US10543219B2 (en) 2010-04-12 2020-01-28 Clarus Therapeutics, Inc. Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
US10617696B2 (en) 2010-04-12 2020-04-14 Clarus Therapeutics, Inc. Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
US11179403B2 (en) 2010-04-12 2021-11-23 Clarus Therapeutics, Inc. Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same
US11426416B2 (en) 2010-04-12 2022-08-30 Clarus Therapeutics, Inc. Oral testosterone ester formulations and methods of treating testosterone deficiency comprising same

Also Published As

Publication number Publication date
US8778922B2 (en) 2014-07-15
MX2011007351A (en) 2011-07-21
EP3078368A1 (en) 2016-10-12
US20240009206A1 (en) 2024-01-11
JP5758812B2 (en) 2015-08-05
US11052096B2 (en) 2021-07-06
AU2010203457C1 (en) 2017-03-30
EP2373295A2 (en) 2011-10-12
US20170252357A1 (en) 2017-09-07
US8865695B2 (en) 2014-10-21
WO2010081032A2 (en) 2010-07-15
US20100173882A1 (en) 2010-07-08
US20210100816A1 (en) 2021-04-08
WO2010081032A3 (en) 2010-11-04
US20140178466A1 (en) 2014-06-26
CA2744266C (en) 2015-10-13
CA2744266A1 (en) 2010-07-15
US11304960B2 (en) 2022-04-19
US20150190406A1 (en) 2015-07-09
US20210038615A1 (en) 2021-02-11
BRPI1007025A2 (en) 2016-03-29
IL212805A0 (en) 2011-07-31
JP2015120700A (en) 2015-07-02
US20210177865A1 (en) 2021-06-17
EP2373295A4 (en) 2012-09-26
CN102271665A (en) 2011-12-07
US20140179652A1 (en) 2014-06-26
AU2010203457A1 (en) 2010-07-15
US20200383999A1 (en) 2020-12-10
JP2012514653A (en) 2012-06-28
US20170354663A1 (en) 2017-12-14
US20120322780A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US11052096B2 (en) Steroidal compositions
AU2010203457B2 (en) Steroidal compositions
US20200061191A1 (en) Solid Carriers for Improved Delivery of Active Ingredients in Pharmaceutical Compositions
CA2375083C (en) Clear oil-containing pharmaceutical compositions
US7374779B2 (en) Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US20030104048A1 (en) Pharmaceutical dosage forms for highly hydrophilic materials
US20060034937A1 (en) Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US20100136105A1 (en) Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
US12097207B1 (en) Liver disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIPOCINE INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILIYAR, CHANDRASHEKAR;CHIDAMBARAM, NACHIAPPAN;PATEL, MAHESH V.;AND OTHERS;REEL/FRAME:044081/0286

Effective date: 20090108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION