US20170211892A1 - Tube for heat exchanger - Google Patents
Tube for heat exchanger Download PDFInfo
- Publication number
- US20170211892A1 US20170211892A1 US15/414,899 US201715414899A US2017211892A1 US 20170211892 A1 US20170211892 A1 US 20170211892A1 US 201715414899 A US201715414899 A US 201715414899A US 2017211892 A1 US2017211892 A1 US 2017211892A1
- Authority
- US
- United States
- Prior art keywords
- tube
- thickness
- width direction
- reinforcing portion
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0041—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/04—Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
- F28F2225/04—Reinforcing means for conduits
Definitions
- the following disclosure relates to a tube for a heat exchanger, and more particularly, to a tube for a heat exchanger forming a channel of a heat exchange medium and including a plurality of inner holes having inner spaces separated in a width direction by a plurality of inner walls extending in a longitudinal direction, in which a thickness of outer walls of certain regions at both ends in the width direction of the tube is formed to be thicker than that of the remaining regions, thereby improving heat exchange performance and preventing corrosion.
- An in-vehicle heat exchanger transfers heat from a high-temperature fluid to a low-temperature fluid to heat or cool the fluid.
- the heat transfer is made by conduction and convection phenomena.
- the heat transfer by the conduction is a phenomenon that heat is transferred when a plurality of objects having different temperatures come into contact with each other, which appears in proportion to a temperature difference between the objects.
- the heat transfer phenomenon the convection is generated through a gaseous or liquefied fluid, and the fluid continuously contacts a heat transfer surface to exchange heat. Therefore, since a heat transfer amount is getting more increased as a fluid movement is active, efficiency of the heat transfer may be increased by forming a vortex in a flow path of the fluid.
- the heat exchanger generally includes a pair of header tanks through which heat exchange medium is introduced and discharged and a tube connecting the header tanks to allow the heat exchange medium to exchange heat while the heat exchange medium flows therein.
- FIG. 1 illustrates a typical fin-tube type heat exchanger.
- the heat exchanger 10 includes: a plurality of tubes 40 having a heat exchange medium flowing therein and parallely arranged in a row at regular intervals in parallel with an air blowing direction; an inlet header tank 20 distributing the heat exchange medium introduced through an inlet to the plurality of tubes 40 ; a radiating fin 50 interposed between the tubes 40 and increasing a heat transfer area with air flowing between the tubes 40 ; and a discharge header tank 30 haying the heat exchange medium, which flows in the tube 40 , collected therein and discharging the collected heat exchange medium through an outlet.
- heat exchangers such as a plate type and a pin-tube type.
- the fin-tube type heat exchanger as described above is the most commonly used.
- the heat transfer process of the fin-tube heat exchanger is as follows.
- a working fluid flows into one of the tanks 20 and into the header 30 and passes through a multi-stage tube 40 .
- the multi-stage tube 40 which receives heat from the working fluid conducts heat to fins 50 provided between the tubes 40 .
- the heat transfer by the convection phenomenon is made between the fins 50 and the introduced air.
- the tube generally has a flat shape, and an outer side thereof is brazed to a fin by a brazing scheme.
- an inner channel shape of the tube is formed in a squared or circular shape depending on performance requirements of the heat exchanger and an operation pressure of the system.
- the tube needs to be developed on the basis of a multilateral analysis.
- An embodiment of the present invention is directed to providing a tube for a heat exchanger forming a heat exchange medium and including a plurality of inner holes having inner spaces separated in a width direction by a plurality of inner walls and extending in a longitudinal direction, in which a thickness of outer walls of certain regions at both ends in the width direction of the tube is formed to be thicker than that of the remaining regions, thereby improving heat exchange performance and preventing corrosion.
- a tube 100 for a heat exchanger provided in plural and forming a channel a a heat exchange medium that is circulated in the heat exchanger, and including a plurality of inner holes 120 having inner spaces separated in a width direction by a plurality of inner walls 110 and extending in a longitudinal direction, in which a thickness of outer walls located at both ends in a width direction may be differently formed from that of the remaining regions.
- the tube 100 may include first reinforcing portion 132 in which a thickness of outer walls of regions located on both surfaces in a thickness direction among regions located at both ends in the width direction is formed to be thicker than that of the remaining regions.
- a thickness of the first reinforcing portion 132 may range from 0.2 to 0.25 mm and the thickness of the remaining regions may range from 0.18 to 0.23 mm.
- the first reinforcing portion 132 may be formed at both ends, respectively, as much as a length of 10 to 25% of an entire length in the width direction of the tube 100 .
- the number H num of inner holes 120 may be 1.5N ⁇ H num ⁇ 3N.
- a thickness of the inner wall 110 may range from 0.1 to 0.15 mm and a width of the inner hole 120 may range from 0.25 to 0.5 mm.
- One side or both sides of the tube 100 may contact the fin 200 interposed between adjacent tubes 100 in the thickness direction and may be formed flat in the width direction of the contact surface.
- the tube 100 and the fin 200 may be formed so that lengths of the contacting surfaces are equal to each other.
- a thickness T 1 of surfaces located at both ends in the width direction may be thicker than a thickness T 2 of surfaces located at both sides in the thickness direction.
- the tube 100 may include a second reinforcing portion 140 in which the inner surfaces of surfaces located at both ends in a width direction is protrudedly formed inwardly.
- a protruding al of the second reinforcing portion 140 may be equal to or greater than distances a 1 and a 3 from each edge to both ends in the width direction of the second reinforcing portion 140 .
- the tube 100 may be an extruding tube.
- a hydraulic diameter may range from 0.40 to 0.65 mm.
- a cross sectional ratio (cross sectional area of inner hole/entire tube area) of a passage may range from 42 to 55%.
- the tube 100 may have a protrusion 150 inwardly protruding on inner surfaces of both sides in the thickness direction.
- the protrusion 150 may be further formed on the inner wall 110 .
- FIG. 1 is a perspective view illustrating a typical heat exchanger.
- FIG. 2 is a front view illustrating a tube for a heat exchanger according to an exemplary embodiment of the present invention.
- FIG. 3 is a front view illustrating a tube for a heat exchanger according to another exemplary embodiment of the present invention.
- FIGS. 4 and 5 are front views illustrating a tube for a heat exchanger according to still another exemplary embodiment of the present invention.
- FIG. 6 is a front view illustrating a state in which a fin is interposed between the tubes for a heat exchanger of FIG. 3 .
- FIG. 7 is a front view illustrating a state in which a fin is interposed between the tubes for a heat exchanger of FIG. 2 .
- FIGS. 8 and 9 are enlarged front views of a region in which a second reinforcing portion is formed, in the tube for a heat exchanger.
- FIGS. 2 to 5 are front views illustrating a tube for a heat exchanger according to various exemplary embodiments of the present invention
- FIG. 6 is a front view illustrating a state in which a fin is interposed between the tubes for a heat exchanger of FIG. 3
- FIG. 7 is a front view illustrating a state in which a fin is interposed between the tubes for a heat exchanger of FIG. 2
- FIGS. 8 and 9 are enlarged front views of a region in which a second reinforcing portion is formed, in the tube for a heat exchanger.
- a tube 100 for a heat exchanger is manufactured by extrusion molding and is provided in plural to form a channel of a heat exchange medium circulated in the heat exchanger and includes a plurality of inner holes 120 having inner spaces separated in a width direction by a plurality of inner walls 110 and extending in a longitudinal direction, and in particular, a thickness of outer walls of certain regions at both ends of the tube in the width direction of the tube is differently formed from that of the remaining regions.
- the tube 100 includes a first reinforcing portion 132 in which a thickness of outer walls of certain regions at both ends in the width direction is formed to be thicker than that of the remaining regions.
- the tube 100 includes a first reinforcing portion 132 in which a thickness of outer walls located at both sides in a thickness direction is formed to be thicker than a thickness of an outer wall 131 of a region located at a central part in certain region at both ends in the width direction.
- the region in which the first reinforcing portion 132 is located is a region that most comes in contact with running wind, and actually is a region that is vulnerable to corrosion due to corrosive substances penetrated in an air flow direction.
- the outer wall has been formed to be thicker over the entire region to prevent a water leakage due to such corrosion.
- a total weight of the tube increases and a cross sectional area of the tube in which a refrigerant may flow is decreased as the thickness of the outer wall is thick, thereby causing the problem in which the heat exchange performance deteriorates.
- the outer wall 131 located in the region most vulnerable to the corrosion is formed to be thick, and the first reinforcing portion 132 is formed at both ends in width direction for easiness of assembly at the time of manufacturing.
- the first reinforcing portion 132 for preventing the corrosion is formed, and the remaining regions are formed to have a minimum thickness of outer wall 131 to secure the heat exchange performance.
- values of each part of the tube 100 were optimized as described below.
- the tube 100 according to the exemplary embodiment of the present invention is designed so that a thickness Tr of the first reinforcing portion 132 ranges from 0.2 to 0.25 mm and a thickness To of the remaining regions ranges from 0.18 to 0.23 mm, and is based on the condition in which a thickness Tr of the first reinforcing portion 132 is formed to be thicker than the thickness To of the remaining regions.
- the first reinforcing portion 132 is formed up to a region in which about three inner holes 120 are located at both ends in the width direction of the tube 100 , but the number of inner holes 120 is not limited thereto and therefore may also be two or four.
- the tube 100 in order for the tube 100 to secure the cross sectional area over which the refrigerant may flow as well as to secure the water leakage preventing effect due to the corrosion to a certain level or more, it is preferable to maintain a length including a width W hole of the inner hole 120 and a thickness T in the inner wall 110 corresponding to region in which the first reinforcing portion 132 is formed and thicknesses of both ends in the width direction of the tube at a certain level.
- Table 1 shows the detailed example in which when the width of the tube is 12 T, the thicknesses of both ends in the width direction, the thickness T in of the inner wall 110 , a width W hole of the inner hole 120 , and the number A (descending) of inner holes depending thereon are calculated.
- Table 2 shows an example of a length Lr of the first reinforcing portion 132 and a ratio of the fir at reinforcing portion 132 to an entire width depending on the number of inner holes, when the width of the tube is 12 T.
- the length Lr of the first reinforcing portion 132 is preferably set at both ends, respectively, as much as a length of 10 to 25% of the entire length in the width direction of the tube 100 .
- the width of the tube 100 is generally designed to be about 8 to 20 mm.
- the entire size of the tube is maintained while the width of the tube 100 is maintained, but the number of inner holes 120 is increased and the thickness T in of the inner wall 110 is decreased, such that the pressure resistance performance over a certain level may be satisfied.
- the number H num of the inner holes 120 may be 1.5N ⁇ H num ⁇ 3N.
- the thickness T in of the inner wall 110 may be formed to be thin as 0.1 to 0.15 mm and the width of the inner hole 120 may range from 0.25 to 0.5 mm.
- Table 3 shows an example of the number of inner holes 120 depending on the width of the tube 100 in the tube 100 having the above-mentioned characteristics, in which the number of inner holes 120 is not necessarily limited as shown in the following Table and therefore may be changed within the range of 1.5N ⁇ H num ⁇ 3N without any limitation.
- a hydraulic diameter of the tube 100 is equal to or less than 0.65 mm and a cross sectional area (cross sectional area of inner hole/entire tube area) ratio of a passage is equal to or more than 42%.
- the hydraulic diameter and the passage cross sectional area ratio are areas that have a difficulty in being achieved by the existing folded and extruded tubes, and when the tube 100 according to the exemplary embodiment of the present invention is manufactured as a high-performance extrusion tube having the hydraulic diameter and the passage cross sectional area and thus applied to a condenser, the heat exchange performance of the condenser and a coefficient of performance (COP) of a refrigeration cycle may be improved.
- COP coefficient of performance
- the first reinforcing portion 132 may be approximately formed from both ends to a region where about three inner holes 120 and three inner walls 110 are located and when the width of the tube 100 is changed, the region where the first reinforcing portion 132 is formed may be appropriately adjusted to meet the conditions as described above.
- the tube 100 has a predetermined number or more of inner holes 120 and minimizes the thickness of the inner wall 110 and the outer wall 131 of the central part to sufficiently secure the cross sectional area over which the refrigerant may flow, thereby improving the pressure resistance performance while maintaining the heat exchange performance at a certain level or higher and at the same time.
- the tube 100 may include protrusions 150 protruding inwardly on inner surfaces of both sides in the thickness direction.
- the protrusion 150 increases a contact area between the refrigerant and the tube 100 , thereby increasing the hydraulic diameter and improving the heat exchange efficiency.
- the protrusion 150 may be protrudedly formed on the inner surfaces of both sides in the thickness direction as illustrated in FIG. 5 , may protrude from the inner wall 110 , or may be formed thereon in plural.
- the fin 200 of the heat exchanger is interposed between the tubes 100 and thus the exchange between the heat exchange medium and air is made in the region contacting the tube 100 .
- the heat transfer area increases as the contact area between the fin 200 and the tube 100 increases, and as a result the larger the contact area between the fin 200 and the tube 100 , the better the heat exchange performance.
- the tube 100 for a heat exchanger may be formed flat in the width direction of the surface contacting the fin 200 .
- the tube 100 for a heat exchanger has a substantially rectangular cross section, in which it is preferable that each edge is minimally rounded to coincide with a contact area with tips of the fins 200 .
- the tube 100 has more increased heat transfer area and heat exchange performance, compared to the existing tube 100 having an outer round.
- the tube 100 for a heat exchanger of the present invention may be formed in a shape having circular rounds at both end but is not necessarily limited to a squared or circular shape.
- a thickness T 1 of surfaces located at both sides in the width direction may be equal to a thickness T 2 of surfaces located at both sides in the thickness direction or as illustrated in FIG. 8 , the thickness T 1 of the surfaces located at both sides in the thickness direction may be formed to be thicker than the thickness T 2 of surfaces located at both sides in the thickness direction.
- the tube 100 for a heat exchanger since the tube 100 for a heat exchanger according to the present invention includes the first reinforcing portion 132 whose thickness of the outer walls at both ends in the width direction is formed to thicker than that of the remaining regions, even if the thickness T 1 of the surfaces located at both sides in the width direction is equal to the thickness T 2 of the surfaces located at both sides in the thickness direction, the tube 100 is thicker than the existing tube 100 , thereby having a certain level of corrosion prevention function.
- the thickness T 1 of the surfaces located at both sides in the width direction is formed to be smaller than distances a 1 and a 3 from each of the outer edges to each of the inner edges.
- FIG. 8 illustrates the example in which the thickness of the surfaces located at both sides in the width direction is formed to be thick constantly and
- FIG. 9 illustrates the tube 100 including a second reinforcing portion 140 having inner surfaces of the surfaces located at both sides in the width direction protrudedly formed inwardly.
- a protruding height a 2 of the second reinforcing portion 140 is equal to or greater than the distances a 1 and a 3 reaching both ends of the second reinforcing portion 140 an the thickness direction from each edge of the tube 100 and is formed to be at least 0.4 mm or more.
- the thickness of the outer walls of certain regions at both ends in the width direction of the tube 100 may be formed to be thicker than the remaining region, thereby improving the durability of the portion where the water leakage is liable to occur due to the damage by corrosive substances or foreign matters and the remaining region may be formed to be thin to secure the area of the region through which the refrigerant passes, thereby maintaining the heat exchange performance at the predetermined level or more.
- the thickness of the inner wall 110 and the number of inner holes 120 formed by the inner wall 110 may be optimized to satisfy the extrudability, the manufacturing performance, and the pressure resistance performance.
- the thickness of the outer walls of certain regions at both ends in the width direction of the tube may be formed to be thicker than that of the remaining regions, thereby improving the durability of the portion where the water leakage is liable to occur due to the damage by corrosive substances or foreign matters and the remaining regions may be formed to be thin to secure the area of the region through which the refrigerant passes, thereby maintaining the heat exchange performance at the predetermined level or more.
- the thickness of the inner wall and the number of inner holes formed by the inner wall may be optimized to satisfy the extrudability, manufacturing performance, and the pressure resistance performance.
- one side or both sides of the tube comes into contact with the fin in the thickness direction and the surface from one end portion to the other end portion of the tube may be formed flat in the width direction of the contacting surface to more increase the heat transfer area than that of the existing tube having the outer round, thereby improving the heat exchange performance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0008669 | 2016-01-25 | ||
KR20160008669 | 2016-01-25 | ||
KR1020160175285A KR101982748B1 (ko) | 2016-01-25 | 2016-12-21 | 열교환기용 튜브 |
KR10-2016-0175285 | 2016-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170211892A1 true US20170211892A1 (en) | 2017-07-27 |
Family
ID=59295942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/414,899 Abandoned US20170211892A1 (en) | 2016-01-25 | 2017-01-25 | Tube for heat exchanger |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170211892A1 (zh) |
CN (1) | CN106996711A (zh) |
DE (1) | DE102017201081A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190285363A1 (en) * | 2018-03-16 | 2019-09-19 | Hamilton Sundstrand Corporation | Integral heat exchanger core reinforcement |
US10473401B2 (en) * | 2015-07-28 | 2019-11-12 | Sanden Holdings Corporation | Heat exchanger |
US11226161B2 (en) * | 2017-12-21 | 2022-01-18 | Hanon Systems | Heat exchanger |
US11365942B2 (en) | 2018-03-16 | 2022-06-21 | Hamilton Sundstrand Corporation | Integral heat exchanger mounts |
EP3978857A4 (en) * | 2019-05-31 | 2023-06-07 | Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Ltd | FLAT TUBE, MULTI-CHANNEL HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATION SYSTEM |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190072413A (ko) * | 2017-12-15 | 2019-06-25 | 한온시스템 주식회사 | 열교환기 |
EP3587977A1 (en) * | 2018-06-26 | 2020-01-01 | Valeo Vyminiky Tepla, s.r.o. | Tube of a heat exchanger and heat exchanger comprising such a tube |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332293A (en) * | 1980-04-30 | 1982-06-01 | Nippondenso Co., Ltd. | Corrugated fin type heat exchanger |
US4570700A (en) * | 1983-01-10 | 1986-02-18 | Nippondenso Co., Ltd. | Flat, multi-luminal tube for cross-flow-type indirect heat exchanger, having greater outer wall thickness towards side externally subject to corrosive inlet gas such as wet, salty air |
US5505257A (en) * | 1993-06-18 | 1996-04-09 | Goetz, Jr.; Edward E. | Fin strip and heat exchanger construction |
WO2001014817A1 (fr) * | 1999-08-20 | 2001-03-01 | Bosch Automotive Systems Corporation | Tube a echange thermique |
US6209628B1 (en) * | 1997-03-17 | 2001-04-03 | Denso Corporation | Heat exchanger having several heat exchanging portions |
US20020189799A1 (en) * | 2001-06-13 | 2002-12-19 | Tatsuo Ozaki | Heat exchanger |
US20040069477A1 (en) * | 2000-11-24 | 2004-04-15 | Naoki Nishikawa | Heat exchanger tube and heat exchanger |
US6854512B2 (en) * | 2002-01-31 | 2005-02-15 | Halla Climate Control Corporation | Heat exchanger tube and heat exchanger using the same |
US6880627B2 (en) * | 1999-12-09 | 2005-04-19 | Denso Corporation | Refrigerant condenser used for automotive air conditioner |
US20060037740A1 (en) * | 2002-07-05 | 2006-02-23 | Gottfried Durr | Heat exchanger in particular an evaporator for a vehicle air-conditioning unit |
US20060076125A1 (en) * | 2002-05-07 | 2006-04-13 | Valeo, Inc | Heat exchanger |
DE102005016540A1 (de) * | 2005-04-08 | 2006-10-12 | Behr Gmbh & Co. Kg | Mehrkanalflachrohr |
US20070071920A1 (en) * | 2005-09-29 | 2007-03-29 | Denso Corporation | Heat exchanger tube and heat exchanger |
JP2010038477A (ja) * | 2008-08-07 | 2010-02-18 | Tokyo Radiator Mfg Co Ltd | 熱交換用多穴チューブ |
JP2010065989A (ja) * | 2008-09-13 | 2010-03-25 | Calsonic Kansei Corp | 熱交換器用チューブ及び熱交換器 |
US20100206531A1 (en) * | 2007-05-22 | 2010-08-19 | Institut Fuer Luft und Kaeltetechnik Gemeinneetzige GmbH | Rear Wall Condenser For Domestic Refrigerators and Freezers |
US7836944B2 (en) * | 2005-10-27 | 2010-11-23 | Visteon Global Technologies, Inc. | Multichannel flat tube for heat exchanger |
US8938988B2 (en) * | 2008-08-28 | 2015-01-27 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1144498A (ja) * | 1997-05-30 | 1999-02-16 | Showa Alum Corp | 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器 |
KR20130016982A (ko) | 2011-08-09 | 2013-02-19 | 한국에너지기술연구원 | 이동식 원적외선 난방장치 |
CN102269536A (zh) * | 2011-08-17 | 2011-12-07 | 三花丹佛斯(杭州)微通道换热器有限公司 | 用于换热器的扁管以及具有该扁管的换热器 |
CN204329673U (zh) * | 2014-11-07 | 2015-05-13 | 浙江时代汽车零部件有限公司 | 纯电动客车用耐震散热器芯体 |
CN104668921A (zh) * | 2014-12-15 | 2015-06-03 | 上海德尔福汽车空调系统有限公司 | 可随炉钎焊的折叠式散热管及其生产方法 |
CN104848725A (zh) * | 2015-05-07 | 2015-08-19 | 江苏嘉德宏益环保节能科技有限公司 | 新型换热管基管 |
-
2017
- 2017-01-24 DE DE102017201081.9A patent/DE102017201081A1/de not_active Ceased
- 2017-01-25 US US15/414,899 patent/US20170211892A1/en not_active Abandoned
- 2017-01-25 CN CN201710056435.1A patent/CN106996711A/zh active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332293A (en) * | 1980-04-30 | 1982-06-01 | Nippondenso Co., Ltd. | Corrugated fin type heat exchanger |
US4570700A (en) * | 1983-01-10 | 1986-02-18 | Nippondenso Co., Ltd. | Flat, multi-luminal tube for cross-flow-type indirect heat exchanger, having greater outer wall thickness towards side externally subject to corrosive inlet gas such as wet, salty air |
US5505257A (en) * | 1993-06-18 | 1996-04-09 | Goetz, Jr.; Edward E. | Fin strip and heat exchanger construction |
US6209628B1 (en) * | 1997-03-17 | 2001-04-03 | Denso Corporation | Heat exchanger having several heat exchanging portions |
WO2001014817A1 (fr) * | 1999-08-20 | 2001-03-01 | Bosch Automotive Systems Corporation | Tube a echange thermique |
US6880627B2 (en) * | 1999-12-09 | 2005-04-19 | Denso Corporation | Refrigerant condenser used for automotive air conditioner |
US20040069477A1 (en) * | 2000-11-24 | 2004-04-15 | Naoki Nishikawa | Heat exchanger tube and heat exchanger |
US20020189799A1 (en) * | 2001-06-13 | 2002-12-19 | Tatsuo Ozaki | Heat exchanger |
US6854512B2 (en) * | 2002-01-31 | 2005-02-15 | Halla Climate Control Corporation | Heat exchanger tube and heat exchanger using the same |
US20060076125A1 (en) * | 2002-05-07 | 2006-04-13 | Valeo, Inc | Heat exchanger |
US20060037740A1 (en) * | 2002-07-05 | 2006-02-23 | Gottfried Durr | Heat exchanger in particular an evaporator for a vehicle air-conditioning unit |
DE102005016540A1 (de) * | 2005-04-08 | 2006-10-12 | Behr Gmbh & Co. Kg | Mehrkanalflachrohr |
US20070071920A1 (en) * | 2005-09-29 | 2007-03-29 | Denso Corporation | Heat exchanger tube and heat exchanger |
US7836944B2 (en) * | 2005-10-27 | 2010-11-23 | Visteon Global Technologies, Inc. | Multichannel flat tube for heat exchanger |
US20100206531A1 (en) * | 2007-05-22 | 2010-08-19 | Institut Fuer Luft und Kaeltetechnik Gemeinneetzige GmbH | Rear Wall Condenser For Domestic Refrigerators and Freezers |
JP2010038477A (ja) * | 2008-08-07 | 2010-02-18 | Tokyo Radiator Mfg Co Ltd | 熱交換用多穴チューブ |
US8938988B2 (en) * | 2008-08-28 | 2015-01-27 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
JP2010065989A (ja) * | 2008-09-13 | 2010-03-25 | Calsonic Kansei Corp | 熱交換器用チューブ及び熱交換器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10473401B2 (en) * | 2015-07-28 | 2019-11-12 | Sanden Holdings Corporation | Heat exchanger |
US11226161B2 (en) * | 2017-12-21 | 2022-01-18 | Hanon Systems | Heat exchanger |
US20190285363A1 (en) * | 2018-03-16 | 2019-09-19 | Hamilton Sundstrand Corporation | Integral heat exchanger core reinforcement |
US11365942B2 (en) | 2018-03-16 | 2022-06-21 | Hamilton Sundstrand Corporation | Integral heat exchanger mounts |
US11740036B2 (en) | 2018-03-16 | 2023-08-29 | Hamilton Sundstrand Corporation | Integral heat exchanger mounts |
EP3978857A4 (en) * | 2019-05-31 | 2023-06-07 | Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Ltd | FLAT TUBE, MULTI-CHANNEL HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATION SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
DE102017201081A1 (de) | 2017-07-27 |
CN106996711A (zh) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170211892A1 (en) | Tube for heat exchanger | |
US11815318B2 (en) | Flattened tube finned heat exchanger and fabrication method | |
US7913750B2 (en) | Louvered air center with vortex generating extensions for compact heat exchanger | |
US7073570B2 (en) | Automotive heat exchanger | |
US7992401B2 (en) | Evaporator | |
US20080028788A1 (en) | Heat Exchanger | |
US20130240186A1 (en) | Multiple Tube Bank Flattened Tube Finned Heat Exchanger | |
US20070209386A1 (en) | Heat exchanger | |
JP4946348B2 (ja) | 空気熱交換器 | |
US20090065183A1 (en) | Flat heat transfer tube | |
US20070204983A1 (en) | Heat Exchanger | |
US20210254907A1 (en) | Heat exchanger | |
US20080000627A1 (en) | Heat exchanger | |
US20160054075A1 (en) | Folded tube multiple bank heat exchange unit | |
JP2006170600A (ja) | 熱交換器 | |
US20090159253A1 (en) | Heat exchanger tubes and combo-coolers including the same | |
JP2006194576A (ja) | エバポレータ | |
US11874034B2 (en) | Heat exchanger | |
KR101982748B1 (ko) | 열교환기용 튜브 | |
JP4617148B2 (ja) | 熱交換器 | |
JP2018087646A5 (zh) | ||
JP2009113625A (ja) | エバポレータ | |
JP4536459B2 (ja) | 熱交換器用チューブおよび熱交換器 | |
KR100606332B1 (ko) | 공조기기의 열교환기용 납작튜브 | |
US20240060722A1 (en) | Heat exchanger and refrigeration cycle apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HANON SYSTEMS, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIM, HONG-YOUNG;SONG, JUN YOUNG;SIM, HO CHANG;AND OTHERS;SIGNING DATES FROM 20170213 TO 20170220;REEL/FRAME:042345/0415 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |