US20170187165A1 - Diode control device - Google Patents

Diode control device Download PDF

Info

Publication number
US20170187165A1
US20170187165A1 US15/083,921 US201615083921A US2017187165A1 US 20170187165 A1 US20170187165 A1 US 20170187165A1 US 201615083921 A US201615083921 A US 201615083921A US 2017187165 A1 US2017187165 A1 US 2017187165A1
Authority
US
United States
Prior art keywords
voltage
diode
circuit
terminal
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/083,921
Other versions
US9698565B1 (en
Inventor
Patrik Arno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMICROELECTRONICS INTERNATIONAL NV
Original Assignee
STMicroelectronics Alps SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Alps SAS filed Critical STMicroelectronics Alps SAS
Assigned to STMicroelectronics (Alps) SAS reassignment STMicroelectronics (Alps) SAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARNO, PATRIK
Publication of US20170187165A1 publication Critical patent/US20170187165A1/en
Application granted granted Critical
Publication of US9698565B1 publication Critical patent/US9698565B1/en
Assigned to STMICROELECTRONICS INTERNATIONAL N.V. reassignment STMICROELECTRONICS INTERNATIONAL N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STMicroelectronics (Alps) SAS
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06223Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes using delayed or positive feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • H05B33/0809
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06812Stabilisation of laser output parameters by monitoring or fixing the threshold current or other specific points of the L-I or V-I characteristics

Definitions

  • the present disclosure generally relates to electronic circuits and more particularly to devices for controlling the light intensity of laser or light-emitting diodes.
  • Devices for controlling the light intensity of laser or light-emitting diodes generally comprise a current source which imposes the intensity of the current flowing through the diode according to the required light intensity.
  • Certain systems further comprise a regulation of the voltage applied across the diode to minimize the voltage drop across the current source.
  • a regulation of the voltage applied across the diode to minimize the voltage drop across the current source.
  • an embodiment provides improving the electric power consumption of devices for controlling the light intensity of laser or light-emitting diodes.
  • an embodiment provides a diode control device comprising: a first terminal of application of a first power supply voltage; a second terminal of application of a second power supply voltage; a circuit of application of a voltage onto a third terminal intended to be connected to an anode of the diode, said third terminal being connected to a first input terminal of said circuit; a second input terminal of said circuit; and a resistor coupled between said second terminal and a fourth terminal intended to be connected to a cathode of said diode, said fourth terminal being coupled to a third input terminal of the circuit.
  • the voltage provided by said circuit on the third terminal is a function of signals present on the first, second, and third input terminals of said circuit.
  • said circuit comprises: a circuit for generating said voltage on said third terminal, comprising a first input terminal intended to receive a signal and a second input terminal connected to said first input terminal of said circuit; a comparator having a first input connected to said third input terminal and having a second input connected to said second input terminal; and an adder having a first input connected to the output of said comparator and having a second input connected to a terminal of application of a voltage, the output of the adder being connected to said first input terminal of the circuit for generating said voltage.
  • the voltage generation circuit applies onto the anode of the diode a second voltage having a value equal to the voltage applied to said second input terminal of the adder; and if said first voltage has a positive value, the voltage generation circuit applies onto the anode of the diode a voltage having a value equal to the sum of the values of the output voltage of said comparator and of said second voltage.
  • the voltage applied onto the second input terminal of the comparator has a positive value smaller than the conduction threshold of the diode.
  • An embodiment provides a system comprising: a diode control device; and a diode.
  • the diode is a laser diode.
  • the diode is a light-emitting diode.
  • An embodiment provides a diode control method comprising the steps of: a) applying a first voltage onto an anode of said diode according to the value of a control voltage; and b) applying onto a cathode of said diode a second voltage having as a value the product of the value of the current flowing through the diode and of the value of a resistor coupled between said cathode of the diode and the ground.
  • the setting of the value of said first voltage comprises the steps of: c) initializing a third voltage to a positive value smaller than or equal to a conduction threshold of said diode; d) estimating the value of said control voltage; e) setting the value of a fourth voltage to the zero value if the value of said control voltage is smaller than or equal to zero; f) setting the value of said fourth voltage to a positive value if the value of the control voltage is positive; g) setting the value of a fifth voltage to the sum of the values of the fourth and third voltages; and h) setting the value of the first voltage to a multiple of the value of said fifth voltage.
  • a circuit for controlling a diode having an anode terminal and a cathode terminal comprises: a DC-DC converter circuit configured to generate an anode voltage for direct application to the anode terminal in response to a control voltage, said anode voltage being regulated by the DC-DC converter circuit to substantially equal the control voltage; a comparison circuit configured to determine a difference between a cathode voltage at the cathode terminal and a first reference voltage and generate an error voltage; and an adder configured to add a second reference voltage to the error voltage to generate the control voltage.
  • FIG. 1 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode
  • FIG. 2 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode
  • FIG. 3 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode
  • FIG. 4 is a circuit of the control device of FIG. 3 ;
  • FIG. 5 illustrates a method of controlling the light intensity of a laser diode or of a light-emitting diode.
  • FIG. 1 shows a device for controlling the light intensity of a diode.
  • the device comprises a buck-boost DC/DC converter 101 , a diode 102 , an NMOS transistor 103 , and a resistor 104 , connected in series between a first terminal 106 of application of a power supply voltage VCC and a ground connection terminal 108 .
  • the gate of transistor 103 is coupled to the output of a differential amplifier 105 operating as a comparator, having its inverting input coupled to the source of transistor 103 and to the terminal of resistor 104 which is not grounded.
  • the non-inverting input of comparator 105 is connected to a terminal 107 of application of a control voltage VCOM′.
  • Transistor 103 operates as a voltage-controlled current source by application of the output voltage of comparator 105 on its gate. The current which flows through the transistor is converted into a voltage at the level of its source due to resistor 104 . This voltage is then compared with control voltage VCOM′. The output voltage of comparator 105 is adjusted according to the result of the comparison.
  • converter 101 imposes a voltage on its anode, so that the voltage across the diode is greater than the conduction threshold of the diode.
  • the function of converter 101 is to maintain (regulate) the voltage independent of possible fluctuations of the power supply voltage.
  • a disadvantage of this device is the electric power consumption.
  • a first cause of electric power consumption is that the target voltage applied by converter 101 onto the anode of diode 102 is decorrelated from the current regulation.
  • This target voltage regulated by converter 101 is defined according to the type of diode used.
  • a second cause of electric power consumption is the presence of the current source (transistor 103 ) in series with diode 102 .
  • FIG. 2 shows a device for controlling the light intensity of a diode.
  • the device of FIG. 2 comprises a current driver circuit 203 for controlling the current in the diode which replaces the assembly formed of differential amplifier 105 , of transistor 103 , and of resistor 104 of FIG. 1 .
  • the current driver circuit 203 is on the one hand coupled between the cathode of diode 102 and the terminal of application of ground 108 , and on the other hand connected to buck-boost DC/DC converter 101 .
  • the current driver circuit 203 further comprises a terminal 207 of application of a control voltage VCOM′.
  • Circuit 203 imposes a current in diode 102 via an internal current source 203 ′ according to control voltage VCOM′.
  • the difference with the device of FIG. 1 is that a feedback loop which exists between circuit 203 and converter 101 enables to ensure the application of a minimum voltage across diode 102 to keep it conductive independently from manufacturing tolerances and from the operating conditions. Such a device thus enables to do away with the necessary margin provided in the case of the device of FIG. 1 . This results in an improvement of the electric power consumption due to converter 101 .
  • current source 203 ′ present in control circuit 203 in series with diode 102 , remains a significant source of energy loss.
  • FIG. 3 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode.
  • the device comprises a diode 102 and a resistor 104 connected in series between an output terminal 306 of a circuit 301 of application of a voltage VANODE on the anode of the diode, and a ground connection terminal 108 .
  • Circuit 301 further comprises an input terminal 310 coupled to the cathode of diode 102 , an input terminal 308 coupled to the anode of diode 102 , an input terminal 307 having a control voltage VCOM applied thereto, and a terminal 106 for application of a power supply voltage VCC.
  • Circuit 301 itself comprises a DC/DC converter which is not detailed herein.
  • Circuit 301 imposes voltage VANODE on the anode of diode 102 to control the current flowing therethrough according to set point VCOM. This voltage applied onto the anode of the diode is regulated by two feedback loops.
  • circuit 301 provides across the diode a positive voltage VPRESET smaller than or equal to the conduction threshold of the diode.
  • circuit 301 compares the voltage applied across resistor 104 with the control set point and accordingly adjusts the voltage applied on the anode of the diode to a value greater than voltage VPRESET.
  • the value of the voltage applied across resistor 104 is obtained by the product of value R of resistor 104 and of the value of current I flowing through the diode, to within the error of the current sampled by input terminal 310 .
  • the error may be zero according to the nature of the input stage connected to terminal 310 .
  • This second loop thus controls the current flowing through diode 102 according to a voltage VCOM.
  • a device for controlling the light intensity of a laser or light-emitting diode which uses no current source in series with the diode has thus been formed, which enables to improve power consumption.
  • FIG. 4 shows the circuit 301 of application of voltage VANODE of FIG. 3 .
  • Circuit 301 comprises a buck boost DC-DC converter circuit 421 for generating voltage VANODE at the anode of diode 102 comprising an input terminal 401 receiving a signal VCTRL and another input terminal 308 configured to be connected to the anode of the diode.
  • Circuit 301 further comprises, between terminal 310 (connected with terminal 311 ) configured to be connected to the cathode of diode 102 and input terminal 401 of circuit 421 , a comparator 422 .
  • An input terminal 405 of comparator 422 is connected to terminal 310 for application of a voltage VSENSE from the cathode of the diode.
  • Another input terminal 404 of the comparator is connected to terminal 307 for application of control voltage VCOM.
  • Circuit 301 further comprises an adder 423 , having an input terminal 403 connected to the output of comparator 422 (to receive the voltage VERROR), and having another input terminal 402 connected to a terminal for application of a second control voltage VPRESET.
  • the output of adder 423 is connected to input terminal 401 of circuit 421 .
  • the forming of the DC/DC converter comprised in circuit 421 is not detailed, such circuits being well known to those skilled in the art.
  • FIG. 5 shows steps of a method describing the operation of the device of FIG. 4 .
  • step S 1 voltage VPRESET applied to input terminal 402 of adder 423 is initialized to a positive value smaller than or equal to the conduction threshold (VTHRESHOLD) of diode 102 .
  • step S 2 the voltage VCOM applied to terminal 307 (input terminal 404 of comparator 422 ) is compared to a threshold. If the voltage value is smaller than or equal to zero (output Y of block S 2 ), the voltage VERROR of comparator 422 takes the value zero at step S 3 .
  • the output voltage VERROR of comparator 422 takes as a value, at step S 4 , greater than zero and equal to the product of the voltage gain value of comparator 422 by the value of the difference between voltage VCOM and voltage VSENSE. In an embodiment comprising a positive power supply terminal VCC and a ground terminal, voltage VERROR will be positive.
  • output voltage VCTRL of adder 423 takes as a value the sum of voltages VPRESET and VERROR.
  • circuit 421 applies onto the anode of the diode the voltage VANODE according to the value of voltage VCTRL.
  • step S 7 in the application of voltage VANODE on the anode of the diode and, at step S 8 , in the application of voltage VSENSE on the cathode of the diode having a value equal to the product of value R of resistor 104 and of current I flowing through the diode. It is then returned to step S 2 for the processing of a new voltage value VCOM.
  • a device and a method for controlling the light intensity of a laser or light-emitting diode which uses no current source in series with the diode have thus been formed, which enables to gain power consumption. It should be noted that the method of FIG. 5 also applies to the operation of the device described in FIG. 3 .
  • VPRESET voltage VPRESET
  • the value of voltage VPRESET will be for example determined according to the constraints of activation or deactivation of the diode or to any other constraint associated with the system.
  • those skilled in the art will select the structure of the DC/DC converter according, for example, to the type of diode, to the power supply type, or to any other constraint associated with the needs of the targeted application.
  • the embodiments have been described by referring to a positive power supply voltage and to ground. They easily transpose to other choices of pairs of power supply voltages, including negative.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electronic Switches (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A diode control device include a first terminal for receiving a first power supply voltage and a second terminal for receiving a second power supply voltage. A circuit of the diode control device applies a regulated voltage on the anode of the diode in response to a control voltage. The control voltage is equal to a preset voltage when a reference voltage is less than or equal to zero. Conversely, when the reference voltage is greater than zero, the control voltage is equal to the sum of the present voltage and a difference between cathode voltage of the diode and the reference voltage.

Description

    PRIORITY CLAIM
  • This application claims the priority benefit of French Application for Patent No. 1563353, filed on Dec. 24, 2015, the contents of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present disclosure generally relates to electronic circuits and more particularly to devices for controlling the light intensity of laser or light-emitting diodes.
  • BACKGROUND
  • Devices for controlling the light intensity of laser or light-emitting diodes generally comprise a current source which imposes the intensity of the current flowing through the diode according to the required light intensity.
  • Certain systems further comprise a regulation of the voltage applied across the diode to minimize the voltage drop across the current source. However, there remains a significant energy loss due to the current source which is in series with the diode.
  • It is thus needed to improve the energy performance of diode control devices.
  • SUMMARY
  • Thus, an embodiment provides improving the electric power consumption of devices for controlling the light intensity of laser or light-emitting diodes.
  • More particularly, an embodiment provides a diode control device comprising: a first terminal of application of a first power supply voltage; a second terminal of application of a second power supply voltage; a circuit of application of a voltage onto a third terminal intended to be connected to an anode of the diode, said third terminal being connected to a first input terminal of said circuit; a second input terminal of said circuit; and a resistor coupled between said second terminal and a fourth terminal intended to be connected to a cathode of said diode, said fourth terminal being coupled to a third input terminal of the circuit.
  • According to an embodiment, the voltage provided by said circuit on the third terminal is a function of signals present on the first, second, and third input terminals of said circuit.
  • According to an embodiment, said circuit comprises: a circuit for generating said voltage on said third terminal, comprising a first input terminal intended to receive a signal and a second input terminal connected to said first input terminal of said circuit; a comparator having a first input connected to said third input terminal and having a second input connected to said second input terminal; and an adder having a first input connected to the output of said comparator and having a second input connected to a terminal of application of a voltage, the output of the adder being connected to said first input terminal of the circuit for generating said voltage.
  • According to an embodiment: if a first voltage applied to the second input of the comparator has a value smaller than or equal to zero, the voltage generation circuit applies onto the anode of the diode a second voltage having a value equal to the voltage applied to said second input terminal of the adder; and if said first voltage has a positive value, the voltage generation circuit applies onto the anode of the diode a voltage having a value equal to the sum of the values of the output voltage of said comparator and of said second voltage.
  • According to an embodiment, the voltage applied onto the second input terminal of the comparator has a positive value smaller than the conduction threshold of the diode.
  • An embodiment provides a system comprising: a diode control device; and a diode.
  • According to an embodiment, the diode is a laser diode.
  • According to an embodiment, the diode is a light-emitting diode.
  • An embodiment provides a diode control method comprising the steps of: a) applying a first voltage onto an anode of said diode according to the value of a control voltage; and b) applying onto a cathode of said diode a second voltage having as a value the product of the value of the current flowing through the diode and of the value of a resistor coupled between said cathode of the diode and the ground.
  • According to an embodiment, the setting of the value of said first voltage comprises the steps of: c) initializing a third voltage to a positive value smaller than or equal to a conduction threshold of said diode; d) estimating the value of said control voltage; e) setting the value of a fourth voltage to the zero value if the value of said control voltage is smaller than or equal to zero; f) setting the value of said fourth voltage to a positive value if the value of the control voltage is positive; g) setting the value of a fifth voltage to the sum of the values of the fourth and third voltages; and h) setting the value of the first voltage to a multiple of the value of said fifth voltage.
  • In an embodiment, a circuit for controlling a diode having an anode terminal and a cathode terminal comprises: a DC-DC converter circuit configured to generate an anode voltage for direct application to the anode terminal in response to a control voltage, said anode voltage being regulated by the DC-DC converter circuit to substantially equal the control voltage; a comparison circuit configured to determine a difference between a cathode voltage at the cathode terminal and a first reference voltage and generate an error voltage; and an adder configured to add a second reference voltage to the error voltage to generate the control voltage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings, wherein:
  • FIG. 1 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode;
  • FIG. 2 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode; FIG. 3 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode;
  • FIG. 4 is a circuit of the control device of FIG. 3; and
  • FIG. 5 illustrates a method of controlling the light intensity of a laser diode or of a light-emitting diode.
  • DETAILED DESCRIPTION
  • The same elements have been designated with the same reference numerals in the different drawings. For clarity, only those elements which are useful to the understanding of the described embodiments have been shown and are detailed. In particular, the functions of the boost DC/DC converters have not been detailed, the described embodiments being compatible with usual converters.
  • Unless otherwise specified, expressions “approximately”, “substantially”, and “in the order of” mean to within 10%, preferably to within 5%.
  • FIG. 1 shows a device for controlling the light intensity of a diode. The device comprises a buck-boost DC/DC converter 101, a diode 102, an NMOS transistor 103, and a resistor 104, connected in series between a first terminal 106 of application of a power supply voltage VCC and a ground connection terminal 108. The gate of transistor 103 is coupled to the output of a differential amplifier 105 operating as a comparator, having its inverting input coupled to the source of transistor 103 and to the terminal of resistor 104 which is not grounded. The non-inverting input of comparator 105 is connected to a terminal 107 of application of a control voltage VCOM′.
  • Transistor 103 operates as a voltage-controlled current source by application of the output voltage of comparator 105 on its gate. The current which flows through the transistor is converted into a voltage at the level of its source due to resistor 104. This voltage is then compared with control voltage VCOM′. The output voltage of comparator 105 is adjusted according to the result of the comparison.
  • Further, to keep diode 102 conductive, converter 101 imposes a voltage on its anode, so that the voltage across the diode is greater than the conduction threshold of the diode. The function of converter 101 is to maintain (regulate) the voltage independent of possible fluctuations of the power supply voltage.
  • A disadvantage of this device is the electric power consumption.
  • A first cause of electric power consumption is that the target voltage applied by converter 101 onto the anode of diode 102 is decorrelated from the current regulation. This target voltage regulated by converter 101 is defined according to the type of diode used. However, it is necessary to provide a margin to make sure that the voltage applied across diode 102 is sufficient to keep it conductive independently from manufacturing tolerances and from the operating conditions of the device, for example, temperature variations. This margin results in an additional power consumption at the level of DC/DC converter 101.
  • A second cause of electric power consumption is the presence of the current source (transistor 103) in series with diode 102.
  • FIG. 2 shows a device for controlling the light intensity of a diode.
  • As compared with the device of FIG. 1, the device of FIG. 2 comprises a current driver circuit 203 for controlling the current in the diode which replaces the assembly formed of differential amplifier 105, of transistor 103, and of resistor 104 of FIG. 1. The current driver circuit 203 is on the one hand coupled between the cathode of diode 102 and the terminal of application of ground 108, and on the other hand connected to buck-boost DC/DC converter 101. The current driver circuit 203 further comprises a terminal 207 of application of a control voltage VCOM′.
  • Circuit 203 imposes a current in diode 102 via an internal current source 203′ according to control voltage VCOM′. The difference with the device of FIG. 1 is that a feedback loop which exists between circuit 203 and converter 101 enables to ensure the application of a minimum voltage across diode 102 to keep it conductive independently from manufacturing tolerances and from the operating conditions. Such a device thus enables to do away with the necessary margin provided in the case of the device of FIG. 1. This results in an improvement of the electric power consumption due to converter 101. However, current source 203′, present in control circuit 203 in series with diode 102, remains a significant source of energy loss.
  • According to the embodiments described hereafter, it is provided to do away with the current source in series with the diode.
  • FIG. 3 shows a device for controlling the light intensity of a laser diode or of a light-emitting diode.
  • The device comprises a diode 102 and a resistor 104 connected in series between an output terminal 306 of a circuit 301 of application of a voltage VANODE on the anode of the diode, and a ground connection terminal 108. Circuit 301 further comprises an input terminal 310 coupled to the cathode of diode 102, an input terminal 308 coupled to the anode of diode 102, an input terminal 307 having a control voltage VCOM applied thereto, and a terminal 106 for application of a power supply voltage VCC. Circuit 301 itself comprises a DC/DC converter which is not detailed herein.
  • Circuit 301 imposes voltage VANODE on the anode of diode 102 to control the current flowing therethrough according to set point VCOM. This voltage applied onto the anode of the diode is regulated by two feedback loops.
  • Where set point VCOM has a value smaller than or equal to zero, in a first loop which couples the anode of diode 102 to terminal 308 of circuit 301, circuit 301 provides across the diode a positive voltage VPRESET smaller than or equal to the conduction threshold of the diode.
  • When set point VCOM has a positive value, in a second loop which couples the cathode of diode 102 to terminal 310 of circuit 301, circuit 301 compares the voltage applied across resistor 104 with the control set point and accordingly adjusts the voltage applied on the anode of the diode to a value greater than voltage VPRESET. The value of the voltage applied across resistor 104 is obtained by the product of value R of resistor 104 and of the value of current I flowing through the diode, to within the error of the current sampled by input terminal 310. The error may be zero according to the nature of the input stage connected to terminal 310. This second loop thus controls the current flowing through diode 102 according to a voltage VCOM.
  • A device for controlling the light intensity of a laser or light-emitting diode which uses no current source in series with the diode has thus been formed, which enables to improve power consumption.
  • FIG. 4 shows the circuit 301 of application of voltage VANODE of FIG. 3.
  • Circuit 301 comprises a buck boost DC-DC converter circuit 421 for generating voltage VANODE at the anode of diode 102 comprising an input terminal 401 receiving a signal VCTRL and another input terminal 308 configured to be connected to the anode of the diode. Circuit 301 further comprises, between terminal 310 (connected with terminal 311) configured to be connected to the cathode of diode 102 and input terminal 401 of circuit 421, a comparator 422. An input terminal 405 of comparator 422 is connected to terminal 310 for application of a voltage VSENSE from the cathode of the diode. Another input terminal 404 of the comparator is connected to terminal 307 for application of control voltage VCOM. Circuit 301 further comprises an adder 423, having an input terminal 403 connected to the output of comparator 422 (to receive the voltage VERROR), and having another input terminal 402 connected to a terminal for application of a second control voltage VPRESET. The output of adder 423 is connected to input terminal 401 of circuit 421. Further, as in the case of FIG. 3, the forming of the DC/DC converter comprised in circuit 421 is not detailed, such circuits being well known to those skilled in the art.
  • FIG. 5 shows steps of a method describing the operation of the device of FIG. 4.
  • At step S1, voltage VPRESET applied to input terminal 402 of adder 423 is initialized to a positive value smaller than or equal to the conduction threshold (VTHRESHOLD) of diode 102. At step S2, the voltage VCOM applied to terminal 307 (input terminal 404 of comparator 422) is compared to a threshold. If the voltage value is smaller than or equal to zero (output Y of block S2), the voltage VERROR of comparator 422 takes the value zero at step S3. If not (output N of block S2), the output voltage VERROR of comparator 422 takes as a value, at step S4, greater than zero and equal to the product of the voltage gain value of comparator 422 by the value of the difference between voltage VCOM and voltage VSENSE. In an embodiment comprising a positive power supply terminal VCC and a ground terminal, voltage VERROR will be positive. At step S5, output voltage VCTRL of adder 423 takes as a value the sum of voltages VPRESET and VERROR. At step S6, circuit 421 applies onto the anode of the diode the voltage VANODE according to the value of voltage VCTRL. This function is the product by gain Gv between output terminal 306 of circuit 421 and input terminal VCTRL. Thus, VANODE=Gv×VCTRL. Gain Gv is greater than or equal to 1 according to the needs of the application. This results, at step S7, in the application of voltage VANODE on the anode of the diode and, at step S8, in the application of voltage VSENSE on the cathode of the diode having a value equal to the product of value R of resistor 104 and of current I flowing through the diode. It is then returned to step S2 for the processing of a new voltage value VCOM.
  • A device and a method for controlling the light intensity of a laser or light-emitting diode which uses no current source in series with the diode have thus been formed, which enables to gain power consumption. It should be noted that the method of FIG. 5 also applies to the operation of the device described in FIG. 3.
  • Specific embodiments have been described. Various alterations, modifications, and improvements will occur to those skilled in the art. In particular, the value of voltage VPRESET will be for example determined according to the constraints of activation or deactivation of the diode or to any other constraint associated with the system. Further, those skilled in the art will select the structure of the DC/DC converter according, for example, to the type of diode, to the power supply type, or to any other constraint associated with the needs of the targeted application. The embodiments have been described by referring to a positive power supply voltage and to ground. They easily transpose to other choices of pairs of power supply voltages, including negative.
  • Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.

Claims (21)

1. A device for controlling a diode, comprising:
a first terminal configured to receive a first power supply voltage;
a second terminal configured to receive a second power supply voltage;
a circuit configured to apply a voltage onto a third terminal configured to be connected to an anode of the diode, said third terminal being connected to a first input terminal of said circuit;
a second input terminal of said circuit; and
a resistor coupled between said second terminal and a fourth terminal configured to be coupled to the cathode of said diode, said fourth terminal being coupled to a third input terminal of the circuit;
wherein the circuit comprises:
a converter circuit configured to generate said voltage applied to the third terminal as a function the signal at the first input terminal and a control signal;
a comparator configured to compare the signal at the second input terminal to the signal at the third input terminal to generate an error signal; and
an adder configured to selectively add the error signal to a preset voltage to generate said control signal for application to the converter circuit.
2. (canceled)
3. (canceled)
4. The device of claim 1, wherein:
if a first voltage of the signal at the second input of the comparator has a value smaller than or equal to zero, the circuit applies onto the anode of the diode a second voltage having a value equal to the preset voltage; and
if said first voltage of the signal at the second input of the comparator has a positive value, the circuit applies onto the anode of the diode a voltage having a value equal to the sum of the error signal and said preset voltage.
5. The device of claim 4, wherein the preset voltage has a positive value smaller than a conduction threshold of the diode.
6. The device of claim 1, wherein the diode is a laser diode.
7. The device of claim 6, wherein the diode is a light-emitting diode.
8-9. (canceled)
10. A circuit for controlling a diode having an anode terminal and a cathode terminal, comprising:
a DC-DC converter circuit configured to generate an anode voltage for direct application to the anode terminal in response to a control voltage, said anode voltage being regulated by the DC-DC converter circuit to a voltage as a function of the control voltage;
a comparison circuit configured to determine a difference between a cathode voltage at the cathode terminal and a first reference voltage and generate an error voltage; and
an adder configured to add a second reference voltage to the error voltage to generate the control voltage.
11. The circuit of claim 10, wherein said comparison circuit is further configured, if the first reference voltage is less than or equal to a threshold voltage, to generate the error voltage equal to zero so that the control voltage is equal to the second reference voltage.
12. The circuit of claim 11, wherein the second reference voltage is less than a conduction threshold of the diode.
13. The circuit of claim 12, wherein said comparison circuit is further configured, if the first reference voltage is greater than the threshold voltage, to generate the error voltage equal to the difference between the cathode voltage at the cathode terminal and the first reference voltage.
14. The circuit of claim 10, further comprising a resistor connected between the cathode terminal and a supply node.
15. The circuit of claim 10, wherein the diode is a laser diode.
16. The circuit of claim 15, wherein the diode is a light-emitting diode.
17. The circuit of claim 10, wherein the anode voltage is equal to the control voltage multiplied by a gain value.
18. A circuit for controlling a diode, comprising:
a voltage generator circuit configured to output an anode voltage to said diode, said voltage generator circuit including:
a first loop coupled to the diode, said first loop operating to control the anode voltage to provide a positive voltage across said diode that is smaller than or equal to a conduction threshold of the diode; and
a second loop coupled to the diode, said second loop operating to control the anode voltage to provide a positive voltage across said diode that is greater than the conduction threshold of the diode; and
a control input configured to receive a control voltage having a first level for enabling the first loop and a second level for enabling the second loop.
19. The device of claim 18, wherein the first control loop controls the anode voltage according to a preset voltage.
20. The device of claim 18, further comprising a resistor connected in series with the diode and configured to generate a sense voltage in response to a current through the diode.
21. The device of claim 20 wherein:
the first level of the control voltage is less than or equal to the sense voltage; and
the second level of the control voltage is greater than the sense voltage.
22. The device of claim 20, wherein the second loop controls the current through the diode according to a difference between the control voltage and the sense voltage.
US15/083,921 2015-12-24 2016-03-29 Diode control device Active US9698565B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563353 2015-12-24
FR1563353A FR3046329B1 (en) 2015-12-24 2015-12-24 DEVICE FOR CONTROLLING A DIODE

Publications (2)

Publication Number Publication Date
US20170187165A1 true US20170187165A1 (en) 2017-06-29
US9698565B1 US9698565B1 (en) 2017-07-04

Family

ID=55300711

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/083,921 Active US9698565B1 (en) 2015-12-24 2016-03-29 Diode control device

Country Status (4)

Country Link
US (1) US9698565B1 (en)
EP (1) EP3185650B1 (en)
CN (3) CN205726532U (en)
FR (1) FR3046329B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112642A1 (en) * 2019-09-26 2021-04-15 Pacific Insight Electronics Corp. High current rgb interface and method for use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046329B1 (en) * 2015-12-24 2019-12-13 STMicroelectronics (Alps) SAS DEVICE FOR CONTROLLING A DIODE

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310901B1 (en) * 1998-06-03 2001-10-30 Jds Uniphase Corporation Automated AC filament universal laser power controller in a gas ion laser system and method
JP4052998B2 (en) * 2003-11-25 2008-02-27 シャープ株式会社 Power supply circuit and electronic device using the same
US7317302B1 (en) * 2005-03-04 2008-01-08 National Semiconductor Corporation Converter with feedback voltage referenced to output voltage
KR100771780B1 (en) * 2006-04-24 2007-10-30 삼성전기주식회사 Led driving apparatus having fuction of over-voltage protection and duty control
KR100867551B1 (en) * 2007-05-18 2008-11-10 삼성전기주식회사 Led array driving apparatus
EP2178198B1 (en) * 2008-10-14 2014-12-31 ST-Ericsson SA (ST-Ericsson Ltd) Digital PWM control circuit with fast recovery
JP5577961B2 (en) * 2010-08-30 2014-08-27 富士通株式会社 Switching element compensation circuit
JP5666268B2 (en) * 2010-11-26 2015-02-12 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit and operation method thereof
CN203722871U (en) * 2013-12-26 2014-07-16 成都芯源系统有限公司 LED drive circuit system and LED drive control circuit
US11005365B2 (en) * 2014-06-25 2021-05-11 Semiconductor Components Industries, Llc Power converter using hysteretic boost architecture and method therefor
CN104270861B (en) * 2014-09-30 2017-01-18 成都芯源系统有限公司 LED driver, control circuit and LED driving method
FR3046329B1 (en) * 2015-12-24 2019-12-13 STMicroelectronics (Alps) SAS DEVICE FOR CONTROLLING A DIODE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112642A1 (en) * 2019-09-26 2021-04-15 Pacific Insight Electronics Corp. High current rgb interface and method for use

Also Published As

Publication number Publication date
EP3185650B1 (en) 2019-01-02
CN205726532U (en) 2016-11-23
CN110267387A (en) 2019-09-20
FR3046329B1 (en) 2019-12-13
CN106922048A (en) 2017-07-04
EP3185650A1 (en) 2017-06-28
CN106922048B (en) 2019-06-14
US9698565B1 (en) 2017-07-04
FR3046329A1 (en) 2017-06-30

Similar Documents

Publication Publication Date Title
US10666272B2 (en) COT control circuit and associated DC-DC converter
US20210288576A1 (en) Multiple-stage power conversion
US9154037B2 (en) Current-mode buck converter and electronic system using the same
US10432087B2 (en) Circuit for a switched mode power supply
US9054580B2 (en) Reference voltage regulating method and circuit for constant current driver
WO2006018923A1 (en) Power supply apparatus
US7733030B2 (en) Switching power converter with controlled startup mechanism
US20130043849A1 (en) Voltage Converter Including Variable Mode Switching Regulator And Related Method
EP3413448A1 (en) Power supply control and use of generated ramp signal
JP6334612B2 (en) Electronic equipment
US9525337B2 (en) Charge-recycling circuits
US20090184699A1 (en) Power supply apparatus and power supply method
US20170288539A1 (en) Dc-dc converter with transient control and the method thereof
US10104725B2 (en) Method and apparatus for multi channel current driving
US11588403B2 (en) Buck-boost converting circuit
CN102751864B (en) Cuk based current source
US7560916B2 (en) Voltage-locked loop
US9698565B1 (en) Diode control device
US9335773B2 (en) Voltage regulator
US11404961B2 (en) On-time compensation in a power converter
US8619401B2 (en) Current source regulator
CN211239684U (en) Apparatus for conditioning a pulse width modulated signal
US10930959B2 (en) Fuel cell system
US10462860B2 (en) Controller for switching regulator, switching regulator and LED lighting system
CN110035572B (en) Controller for switching regulator, switching regulator and LED lighting system

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS (ALPS) SAS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARNO, PATRIK;REEL/FRAME:038125/0709

Effective date: 20160325

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: STMICROELECTRONICS INTERNATIONAL N.V., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STMICROELECTRONICS (ALPS) SAS;REEL/FRAME:063281/0871

Effective date: 20230120