US20170183985A1 - Valve timing adjustment apparatus for internal combustion engine - Google Patents
Valve timing adjustment apparatus for internal combustion engine Download PDFInfo
- Publication number
- US20170183985A1 US20170183985A1 US15/382,925 US201615382925A US2017183985A1 US 20170183985 A1 US20170183985 A1 US 20170183985A1 US 201615382925 A US201615382925 A US 201615382925A US 2017183985 A1 US2017183985 A1 US 2017183985A1
- Authority
- US
- United States
- Prior art keywords
- valve timing
- timing adjustment
- pin
- adjustment apparatus
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 11
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 11
- 230000008859 change Effects 0.000 claims abstract description 6
- 239000012530 fluid Substances 0.000 claims description 22
- 238000007789 sealing Methods 0.000 claims description 8
- 241000356860 Pterygotrigla polyommata Species 0.000 claims 1
- 230000004044 response Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
- F02D13/0219—Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34426—Oil control valves
- F01L2001/3443—Solenoid driven oil control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34453—Locking means between driving and driven members
- F01L2001/34459—Locking in multiple positions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34453—Locking means between driving and driven members
- F01L2001/34463—Locking position intermediate between most retarded and most advanced positions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34453—Locking means between driving and driven members
- F01L2001/34469—Lock movement parallel to camshaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34479—Sealing of phaser devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2250/00—Camshaft drives characterised by their transmission means
- F01L2250/02—Camshaft drives characterised by their transmission means the camshaft being driven by chains
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2250/00—Camshaft drives characterised by their transmission means
- F01L2250/04—Camshaft drives characterised by their transmission means the camshaft being driven by belts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/02—Formulas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to a valve timing adjustment apparatus for an internal combustion engine.
- an internal combustion engine (hereafter, referred to as an “engine”) is equipped with a valve timing adjustment apparatus that can change timing of intake valves and exhaust valves, depending on the operation state of the engine.
- a valve timing adjustment apparatus adjusts the timing of intake valves or exhaust valves by changing a phase angle according to the displacement or rotation of a camshaft connected to a crankshaft usually through a timing belt or a chain, and various types of valve timing adjustment apparatuses have been proposed.
- a vane type valve timing adjustment apparatus that includes a rotor having a plurality of vanes freely rotated by working fluid in a housing is generally used.
- the vane type valve timing adjustment apparatus adjusts valve timing using a difference in rotational phase generated due to relative rotation in an advance direction or a retard direction of a rotor that is rotated through vanes operated by the pressure of working fluid to an advance chamber or a retard chamber between a full advance phase angle and a full retard phase angle.
- a positive torque is generated by friction due to rotation of a cam in opposite direction to the rotational direction of the cam.
- a negative torque is generated by restoring force of a valve spring in the same direction as the rotational direction of the cam when a valve starts closing, and the negative force is smaller than the positive torque.
- the present disclosure provides a valve timing adjustment apparatus for an internal combustion engine, whereby the apparatus can improve the performance of an engine and contribute to reducing the size of an engine by enlarging the variable adjustment range of a phase angle of a rotor through several steps of locking that uses negative torque.
- the present disclosure provides a valve timing adjustment apparatus for an internal combustion engine.
- the apparatus is coupled to a camshaft operating with a crankshaft to adjust valve timing of at least one of an intake valve and an exhaust valve using torque from the camshaft and the pressure of working fluid.
- the valve timing adjustment apparatus includes: a housing defining a space with a ratchet plate operatively associated with the crankshaft; a rotor having a plurality of vanes configured to rotate relative to the housing within a predetermined angle range by the pressure of the working fluid, the rotor disposed in the housing to operate with the camshaft; and an anti-rotation mechanism inhibiting or preventing a positional change between the rotor and the housing by inhibiting or preventing relative rotation of the rotor to the housing.
- the anti-rotation mechanism includes: a plurality of locking grooves formed on the ratchet plate with different depths and connected to each other; and a locking pin member which has: an hollow outer pin elastically disposed in a fitting hole formed in at least one vane of the plurality of vanes, and an inner pin elastically disposed inside the outer pin.
- the inner pin is configured to lock the rotor to the housing the outer pin and the inner pin are sequentially fitted in the plurality of locking grooves.
- the plurality of locking grooves may include a large groove having a large diameter and a small groove having a small diameter so as to form a stepped portion having predetermined depths.
- the width of the stepped portion may be double a thickness of the outer pin, and an inner diameter of the small groove may be the same as an outer diameter of the outer pin.
- the locking pin member may further have an upper cap having a first recession therein and is configured to close a first end of the fitting hole.
- a second recession may be formed at a first end of the outer pin, and an outer spring applying elasticity to the locking groove may be disposed between the second recession and a first end of the upper cap.
- a third recession may be formed at a first end of the inner pin, and an inner spring applying elasticity to the plurality of locking grooves may be disposed between the third recession and a first recession of the upper cap.
- the rotor in the housing may have four vanes.
- a sealing groove may be formed in a longitudinal direction of the camshaft at ends of the plurality of vanes that face an inner side of the housing, and a seal is disposed in the sealing groove.
- the locking pin member may further have a lower cap being positioned at a second end of the fitting hole, and the lower cap is configured to support an outer side of the outer pin.
- An exhaust hole is additionally formed in the rotor and configured to discharge the working fluid in the plurality of locking grooves when the locking pin member is locked.
- a valve timing adjustment apparatus for an internal combustion engine.
- the apparatus is coupled to a camshaft operating with a crankshaft to adjust valve timing of at least one of an intake valve and an exhaust valve using torque from the camshaft and pressure of working fluid.
- the apparatus may include: a housing defining a space with a ratchet plate operatively associated with the crankshaft; a rotor having a plurality of vanes that is rotated relative to the housing within a predetermined angle range by the pressure of the working fluid, and disposed in a housing to operate with the camshaft; and an anti-rotation mechanism inhibiting or preventing a positional change between the rotor and the housing by inhibiting or preventing relative rotation of the rotor to the housing.
- the anti-rotation mechanism includes: a plurality of locking grooves formed in at least one vane of the plurality of vanes of the rotor, the plurality of locking grooves having different depths and connected to each other; and locking pin member having a hollow outer pin elastically disposed in a fitting hole formed in at least one of the ratchet plate, and an inner pin elastically disposed inside the outer pin and configured to lock the rotor to the housing when the outer pin and the inner pin are sequentially fitted in the plurality of locking grooves.
- a valve timing adjustment apparatus for an internal combustion engine, the apparatus including: a body having a plurality of oil ports on an outer side thereof and configured to operate with a camshaft; a solenoid valve including a spool, which has a plurality of oil grooves 6 a around an outer side and is elastically supported by a spring, and disposed in the body to control flow of working fluid by selectively communicating with the oil ports of the body in response to a control signal; a controller configured to transmit the control signal to the solenoid valve, and further including the anti-rotation mechanism for inhibiting or preventing a position change between a rotor and a housing by inhibiting or preventing relative rotation of the rotor to the housing in response to the control signal from the controller.
- the locking pin member having the outer pin and the inner pin is sequentially inserted into the locking grooves by the torque from a camshaft, so that the adjustment range of a phase angle can be enlarged. Therefore, it is possible to reduce the size of the valve timing adjustment apparatus, and improve the performance of an engine by improving fuel efficiency and output of the engine.
- FIG. 1 is a cross-sectional assembly view of a valve timing adjustment apparatus
- FIG. 2 is a front view taken along line II-II of FIG. 1 ;
- FIG. 3 is a sectional view taken along line III-III of FIG. 2 ;
- FIGS. 4A to 4F are cross-sectional views sequentially showing that a locking pin member on a vane is fitted into a locking groove by negative torque at a full retard phase angle position;
- FIGS. 5A to 5C are cross-sectional views sequentially showing that a locking pin member on a vane is fitted into a locking groove by positive torque at a full advance phase angle position.
- valve timing adjustment apparatus for an internal combustion engine in one form of the present disclosure is described hereafter in detail with reference to the accompanying drawings.
- FIG. 1 is a cross-sectional assembly view of a valve timing adjustment apparatus 100 in one form of the present disclosure.
- the valve timing adjustment apparatus 100 has a body 2 that is coupled to a camshaft 1 in an internal combustion engine, in which a sprocket 4 that is coupled to a crankshaft 3 through a chain or a timing belt (not shown) is rotatably disposed on the body 2 , and a disc-shaped ratchet plate 5 is integrally formed inside of the sprocket 4 .
- a spool 6 disposed in the body 2 and having a plurality of oil grooves 6 a around the outer side and a spring 7 elastically supporting the spool 6 form a solenoid valve.
- the solenoid valve controls the flow of working fluid by selectively communicating with a plurality of oil ports 2 a formed around the body 2 in response to a control signal from a controller (not shown).
- a cylindrical housing 10 a rotor 20 operating with the camshaft 1 and selectively rotating in the housing 10 , and an anti-rotation mechanism 30 making the rotor 20 rotate with the housing 10 by inhibiting or preventing relative rotation of the rotor 20 to the housing 10 .
- a plurality of projections 12 is formed with predetermined intervals around the inner side 11 of the housing 10 .
- a sealing groove 13 is formed at the free end of each of the projections 12 in the longitudinal direction of the housing 10 and a seal 14 is inserted in the sealing grooves 13 , thereby forming spaces 15 between adjacent projections 12 .
- a plurality of vanes 22 is formed on a boss 21 coupled to the body 2 and protrudes toward the inner side 11 of the housing 10 .
- a sealing groove 23 is formed at the free end of each of the vanes 22 in the longitudinal direction of the rotor 20 and a seal 24 is inserted in the sealing grooves 23 , thereby forming spaces 15 between adjacent projections 12 of the housing 10 .
- the spaces 15 are, as shown in FIG. 2 , divided into advance chambers 15 a and retard chambers 15 b.
- the advance chambers 15 a are in the direction of an arrow B (that is, an advance direction) that is the rotational direction of the camshaft 1
- the retard chambers 15 b are in the direction of an arrow A (that is, a retard direction) with the vanes 12 therebetween.
- working fluid is selectively supplied into the advance chambers 15 a and the retard chambers 15 b, and the rotor 20 is rotated in the direction of the arrow B (advance direction) with respect to the housing by torque acting in the vanes 12 , thereby adjusting the advance phase.
- the rotor 20 may be rotated in the direction of the arrow A (retard direction), thereby adjusting the retard phase.
- the anti-rotation mechanism 30 is provided for emergency operation to selectively inhibit or prevent relative rotation between the rotor 20 and the housing 10 and thus to rotate them together due to external factors. Meanwhile, the anti-rotation mechanism 30 may allow the rotor 20 to freely rotate relative to the housing 10 .
- the anti-rotation mechanism 30 may be disposed on one of the vanes 22 , as shown in FIG. 2 .
- the vane 22 having the anti-rotation mechanism 30 is indicated by reference numeral 22 A to be distinguished from other vanes 22 .
- the anti-rotation mechanism 30 includes a locking pin member 40 inserted in a fitting hole 25 formed through the vane 22 A, and a plurality of locking grooves 50 formed in the ratchet plate 5 to be locked to or unlocked from the locking pin member 40 .
- the locking pin member 40 has an upper cap 41 closing a first end (the upper end in FIG. 3 ) of the fitting hole 25 of the vane 22 A, a hollow cylinder-shaped outer pin 43 elastically disposed under the upper cap 41 by an outer spring 42 , and an inner pin 45 slidably disposed in the inside 43 a of the outer pin 43 and elastically seated in a first recession 41 a of the upper cap 41 by an inner spring 44 .
- the locking pin member 40 may further have a ring-shaped lower cap 46 positioned at a second end (the lower end in FIG. 3 ) of the fitting hole 25 and supporting the outer side of the outer pin 43 .
- the outer spring 42 has a first end supported on a step-shaped second recession 43 b at the upper portion of the outer pin 43 , and a second end supported on a projection 41 b extending from the first recession 41 a of the upper cap 41 .
- the inner spring 44 has a first end supported on the bottom of a third recession 45 a formed in the upper portion of the inner pin 45 , and a second end supported on the bottom of the first recession 41 a of the upper cap 41 .
- the locking grooves 50 formed on the ratchet plate 5 in the anti-rotation mechanism 30 are connected and have different diameters and depths, facing the fitting hole 25 of the vane 22 A.
- the locking grooves 50 are a large groove 51 having a large diameter and a small groove 52 having a small diameter, in which the large and small grooves are connected to form a stepped portion 53 having a stepped cross-section.
- the large groove 51 is formed with a predetermined depth and has left and right inner sides 51 a and 51 b
- the small groove 52 is formed with a predetermined depth and has left and right inner sides 52 a and 52 b, in which the right inner side 51 b of the large groove 51 may be connected to the right inner side 52 b of the small groove 52 in the same plane.
- An oil channel 22 b for supplying working fluid into the space 26 formed around the outer pin 43 or discharging working fluid from the space 26 through the fitting hole 25 is formed at an angle in the vane 22 A and communicates with the solenoid valve.
- valve timing adjustment apparatus in one form of the present disclosure is described hereafter.
- the valve timing adjustment apparatus of the present disclosure may be an intermediate phase type of valve timing adjustment apparatus in which the vane 22 A is locked almost at the intermediate position between a full retard phase angle position and a full advance phase angle position in the space 15 .
- the vane 22 A of the rotor 20 makes a retard chamber 15 b and an advance chamber 15 a at the left and right sides in the space 15 between adjacent projections 12 and is freely controlled in the advance direction (direction B) or the retard direction (direction A) with respect to the housing 10 by torque from the camshaft 1 , whereby the valve timing of an intake valve or an exhaust valve can be adjusted through the camshaft 1 .
- the locking member 40 When the valve timing adjustment apparatus is operated under specific control and a start ability of an engine is correspondingly improved, or when an uncontrollable emergency occurs while an engine is operated, the locking member 40 needs to be naturally locked under specific control, thereby inhibiting or preventing relative rotation of the rotor 20 to the housing 10 .
- the locking operation of the locking member 40 is described with reference to FIG. 4A to 4F .
- the locking operation may be performed when the vane 22 A is in a retard position in the space 15 , i.e., a biased position toward the retard chamber 15 b of the space 15 .
- FIG. 4A shows a state when working fluid has been supplied in the space 26 through the oil channel 22 b formed in the vane 22 A.
- the outer pin 43 and the inner pin 45 have compressed the springs 42 and 44 and have been maximally lifted to the upper cap 41 due to the pressure of the working fluid. Further, the lower end of the inner pin 45 is lifted from the surface of the ratchet plate 5 by the outer pin 43 .
- FIG. 4B the working oil has been discharged through the oil channel 22 b from the state shown in FIG. 4A .
- the outer pin 43 and the inner pin 45 have been moved down by the elasticity of the springs 42 and 44 . Further, the lower ends of the outer pin 43 and the inner pin 45 are in close contact with the surface of the ratchet plate 5 .
- a bias spring (not shown) may be connected to one side of the rotor 20 in the direction of the camshaft 1 , and the bias spring may assist the negative torque through the camshaft 1 .
- the state shown in FIG. 4D is performed. More specifically, the outer pin 43 is moved down and inserted into the large hole 51 by the elasticity of the outer spring 42 from the state shown in FIG. 4C . The lower end of the outer pin 43 is locked on the left inner side 51 a of the large hole 51 and both of the lower ends of the outer pin 43 and the inner pin 45 are in close contact with the stepped portion 53 . In this state, the vane 22 A still cannot move in the retard direction, so the ratchet operation is maintained.
- FIG. 4E negative torque has been additionally applied to the vane 22 A from the state shown in FIG. 4D . That is, the inner pin 45 is moved down and inserted into the small groove 52 by the elasticity of the inner spring 44 , and the lower end of the inner pin 45 is locked on the left inner side 52 a of the small groove 52 such that the lower end of the inner pin 45 is in close contact with the bottom of the small groove 52 . Further, the lower end of the outer pin 43 is still in close contact with the surface of the ratchet plate 5 . Accordingly, ratchet operation that inhibits or prevents the vane 22 A from moving in the retard direction is maintained.
- the locking pin member 40 is sequentially locked in the locking groove 50 of the ratchet plate 5 by relatively small negative torque when the vane 22 A is at a retard position.
- the position of starting an engine can be moved in the retard direction, the size of the valve timing adjustment apparatus can be reduced, and the efficiency and performance of the engine can be improved by improving the operation of opening and closing an intake valve or an exhaust valve.
- the vane 22 A is biased to an advance position, that is, in the advance chamber 15 a of the space 15 .
- FIG. 5A shows a state when working fluid has been supplied in the space 26 through the oil channel 22 b formed in the vane 22 A.
- the outer pin 43 has been maximally lifted to the upper cap 41 , compressing the outer spring 42 due to the pressure of the working fluid. Further, the lower end of the inner pin 45 is lifted from the surface of the ratchet plate 5 by the outer pin 43 .
- the state shown in FIG. 5B is created by discharging the working fluid through the oil channel 22 b from the state shown in FIG. 5A . That is, since the pressure of the working fluid applied to the outer pin 43 is removed, the outer pin 43 is moved down by the elasticity of the outer spring 42 . Accordingly, the lower ends of the outer pin 43 and the inner pin 45 are brought in close contact with the surface of the ratchet plate 5 by the elasticity of the springs 42 and 44 .
- the outer pin 43 and the inner pin 45 in the state shown in FIG. 5B are inserted through one step into the small groove 52 through the large groove 51 of the locking grooves 50 by the elasticity of the springs 42 and 44 . Accordingly, as illustrated in FIG. 5C , the lower end of the outer pin 43 is locked on the right inner side 51 b of the large groove 51 , and on the right inner side 52 b and the left inner side 52 a of the small groove 52 .
- the vane 22 A is in a locking state in which it cannot move in both the retard direction and the advance direction.
- the locking pin member 40 is locked in the locking groove 50 of the ratchet plate 5 , so the rotor 20 rotates together with the housing 10 , without rotating relative to the housing 10 .
- the rotor 20 has four vanes 22 in the form of the present disclosure, three or other numbers of vanes 22 may be provided, depending on the type or the operational characteristics of an engine.
- one vane 22 A has the locking pin member 40 in the form of the present disclosure
- two vanes 22 A of the rotor 20 each may have the locking pin member 40 .
- exhaust holes 22 c and 4 a may be formed in the vane 22 A and the ratchet 5 , respectively, to communicate with the locking groove 50 so that the working fluid in the locking groove 50 can be discharged when the outer pin 43 or the inner pin 45 is moved down into the locking groove 50 .
- the locking pin member 40 is formed on the rotor 20 and the locking groove 50 is formed in the ratchet plate 5 in the form of the present disclosure, a locking groove may be formed in the rotor 20 and the ratchet plate 5 may have the locking pin member 40 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Description
- The present application claims priority to and the benefit of Korean Patent Application No. 10-2015-0185229, filed Dec. 23, 2015, the entire contents of which is incorporated herein by reference in its entirety.
- The present disclosure relates to a valve timing adjustment apparatus for an internal combustion engine.
- The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
- In general, an internal combustion engine (hereafter, referred to as an “engine”) is equipped with a valve timing adjustment apparatus that can change timing of intake valves and exhaust valves, depending on the operation state of the engine. Such a valve timing adjustment apparatus adjusts the timing of intake valves or exhaust valves by changing a phase angle according to the displacement or rotation of a camshaft connected to a crankshaft usually through a timing belt or a chain, and various types of valve timing adjustment apparatuses have been proposed.
- In general, a vane type valve timing adjustment apparatus that includes a rotor having a plurality of vanes freely rotated by working fluid in a housing is generally used.
- The vane type valve timing adjustment apparatus adjusts valve timing using a difference in rotational phase generated due to relative rotation in an advance direction or a retard direction of a rotor that is rotated through vanes operated by the pressure of working fluid to an advance chamber or a retard chamber between a full advance phase angle and a full retard phase angle.
- We have discovered that a positive torque is generated by friction due to rotation of a cam in opposite direction to the rotational direction of the cam. Meanwhile, a negative torque is generated by restoring force of a valve spring in the same direction as the rotational direction of the cam when a valve starts closing, and the negative force is smaller than the positive torque.
- The present disclosure provides a valve timing adjustment apparatus for an internal combustion engine, whereby the apparatus can improve the performance of an engine and contribute to reducing the size of an engine by enlarging the variable adjustment range of a phase angle of a rotor through several steps of locking that uses negative torque.
- In one form, the present disclosure provides a valve timing adjustment apparatus for an internal combustion engine. The apparatus is coupled to a camshaft operating with a crankshaft to adjust valve timing of at least one of an intake valve and an exhaust valve using torque from the camshaft and the pressure of working fluid. The valve timing adjustment apparatus includes: a housing defining a space with a ratchet plate operatively associated with the crankshaft; a rotor having a plurality of vanes configured to rotate relative to the housing within a predetermined angle range by the pressure of the working fluid, the rotor disposed in the housing to operate with the camshaft; and an anti-rotation mechanism inhibiting or preventing a positional change between the rotor and the housing by inhibiting or preventing relative rotation of the rotor to the housing.
- In particular, the anti-rotation mechanism includes: a plurality of locking grooves formed on the ratchet plate with different depths and connected to each other; and a locking pin member which has: an hollow outer pin elastically disposed in a fitting hole formed in at least one vane of the plurality of vanes, and an inner pin elastically disposed inside the outer pin. The inner pin is configured to lock the rotor to the housing the outer pin and the inner pin are sequentially fitted in the plurality of locking grooves.
- The plurality of locking grooves may include a large groove having a large diameter and a small groove having a small diameter so as to form a stepped portion having predetermined depths.
- The width of the stepped portion may be double a thickness of the outer pin, and an inner diameter of the small groove may be the same as an outer diameter of the outer pin.
- The locking pin member may further have an upper cap having a first recession therein and is configured to close a first end of the fitting hole.
- A second recession may be formed at a first end of the outer pin, and an outer spring applying elasticity to the locking groove may be disposed between the second recession and a first end of the upper cap.
- A third recession may be formed at a first end of the inner pin, and an inner spring applying elasticity to the plurality of locking grooves may be disposed between the third recession and a first recession of the upper cap.
- The rotor in the housing may have four vanes.
- A sealing groove may be formed in a longitudinal direction of the camshaft at ends of the plurality of vanes that face an inner side of the housing, and a seal is disposed in the sealing groove.
- The locking pin member may further have a lower cap being positioned at a second end of the fitting hole, and the lower cap is configured to support an outer side of the outer pin.
- An exhaust hole is additionally formed in the rotor and configured to discharge the working fluid in the plurality of locking grooves when the locking pin member is locked.
- In one aspect of the present disclosure, there is provided a valve timing adjustment apparatus for an internal combustion engine. The apparatus is coupled to a camshaft operating with a crankshaft to adjust valve timing of at least one of an intake valve and an exhaust valve using torque from the camshaft and pressure of working fluid. The apparatus may include: a housing defining a space with a ratchet plate operatively associated with the crankshaft; a rotor having a plurality of vanes that is rotated relative to the housing within a predetermined angle range by the pressure of the working fluid, and disposed in a housing to operate with the camshaft; and an anti-rotation mechanism inhibiting or preventing a positional change between the rotor and the housing by inhibiting or preventing relative rotation of the rotor to the housing. In particular, the anti-rotation mechanism includes: a plurality of locking grooves formed in at least one vane of the plurality of vanes of the rotor, the plurality of locking grooves having different depths and connected to each other; and locking pin member having a hollow outer pin elastically disposed in a fitting hole formed in at least one of the ratchet plate, and an inner pin elastically disposed inside the outer pin and configured to lock the rotor to the housing when the outer pin and the inner pin are sequentially fitted in the plurality of locking grooves.
- In one aspect of the present disclosure, there is provided a valve timing adjustment apparatus for an internal combustion engine, the apparatus including: a body having a plurality of oil ports on an outer side thereof and configured to operate with a camshaft; a solenoid valve including a spool, which has a plurality of
oil grooves 6 a around an outer side and is elastically supported by a spring, and disposed in the body to control flow of working fluid by selectively communicating with the oil ports of the body in response to a control signal; a controller configured to transmit the control signal to the solenoid valve, and further including the anti-rotation mechanism for inhibiting or preventing a position change between a rotor and a housing by inhibiting or preventing relative rotation of the rotor to the housing in response to the control signal from the controller. - In one form, the locking pin member having the outer pin and the inner pin is sequentially inserted into the locking grooves by the torque from a camshaft, so that the adjustment range of a phase angle can be enlarged. Therefore, it is possible to reduce the size of the valve timing adjustment apparatus, and improve the performance of an engine by improving fuel efficiency and output of the engine.
- Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
- In order that the disclosure may be well understood, there will now be described various forms thereof, given by way of example, reference being made to the accompanying drawings, in which:
-
FIG. 1 is a cross-sectional assembly view of a valve timing adjustment apparatus; -
FIG. 2 is a front view taken along line II-II ofFIG. 1 ; -
FIG. 3 is a sectional view taken along line III-III ofFIG. 2 ; -
FIGS. 4A to 4F are cross-sectional views sequentially showing that a locking pin member on a vane is fitted into a locking groove by negative torque at a full retard phase angle position; and -
FIGS. 5A to 5C are cross-sectional views sequentially showing that a locking pin member on a vane is fitted into a locking groove by positive torque at a full advance phase angle position. - The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
- The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
- A valve timing adjustment apparatus for an internal combustion engine in one form of the present disclosure is described hereafter in detail with reference to the accompanying drawings.
-
FIG. 1 is a cross-sectional assembly view of a valvetiming adjustment apparatus 100 in one form of the present disclosure. - Referring to
FIGS. 1 to 3 , the valvetiming adjustment apparatus 100 has abody 2 that is coupled to a camshaft 1 in an internal combustion engine, in which asprocket 4 that is coupled to acrankshaft 3 through a chain or a timing belt (not shown) is rotatably disposed on thebody 2, and a disc-shaped ratchet plate 5 is integrally formed inside of thesprocket 4. - A
spool 6 disposed in thebody 2 and having a plurality ofoil grooves 6 a around the outer side and a spring 7 elastically supporting thespool 6 form a solenoid valve. The solenoid valve controls the flow of working fluid by selectively communicating with a plurality ofoil ports 2 a formed around thebody 2 in response to a control signal from a controller (not shown). - Meanwhile, a
cylindrical housing 10, arotor 20 operating with the camshaft 1 and selectively rotating in thehousing 10, and ananti-rotation mechanism 30 making therotor 20 rotate with thehousing 10 by inhibiting or preventing relative rotation of therotor 20 to thehousing 10. - A plurality of
projections 12 is formed with predetermined intervals around theinner side 11 of thehousing 10. Asealing groove 13 is formed at the free end of each of theprojections 12 in the longitudinal direction of thehousing 10 and aseal 14 is inserted in thesealing grooves 13, thereby formingspaces 15 betweenadjacent projections 12. - Meanwhile, a plurality of
vanes 22 is formed on aboss 21 coupled to thebody 2 and protrudes toward theinner side 11 of thehousing 10. Asealing groove 23 is formed at the free end of each of thevanes 22 in the longitudinal direction of therotor 20 and aseal 24 is inserted in thesealing grooves 23, thereby formingspaces 15 betweenadjacent projections 12 of thehousing 10. - The
spaces 15 are, as shown inFIG. 2 , divided intoadvance chambers 15 a andretard chambers 15 b. Theadvance chambers 15 a are in the direction of an arrow B (that is, an advance direction) that is the rotational direction of the camshaft 1, and theretard chambers 15 b are in the direction of an arrow A (that is, a retard direction) with thevanes 12 therebetween. - Accordingly, working fluid is selectively supplied into the
advance chambers 15 a and theretard chambers 15 b, and therotor 20 is rotated in the direction of the arrow B (advance direction) with respect to the housing by torque acting in thevanes 12, thereby adjusting the advance phase. Therotor 20 may be rotated in the direction of the arrow A (retard direction), thereby adjusting the retard phase. With this arrangement, the valve timing of an intake valve or an exhaust valve is adjusted. - The
anti-rotation mechanism 30 is provided for emergency operation to selectively inhibit or prevent relative rotation between therotor 20 and thehousing 10 and thus to rotate them together due to external factors. Meanwhile, theanti-rotation mechanism 30 may allow therotor 20 to freely rotate relative to thehousing 10. - In particular, the
anti-rotation mechanism 30 may be disposed on one of thevanes 22, as shown inFIG. 2 . For the convenience of description, thevane 22 having theanti-rotation mechanism 30 is indicated byreference numeral 22A to be distinguished fromother vanes 22. - The
anti-rotation mechanism 30, as shown inFIG. 1 or 3 , includes alocking pin member 40 inserted in afitting hole 25 formed through thevane 22A, and a plurality of lockinggrooves 50 formed in theratchet plate 5 to be locked to or unlocked from the lockingpin member 40. - The locking
pin member 40, as shown inFIG. 3 , has anupper cap 41 closing a first end (the upper end inFIG. 3 ) of thefitting hole 25 of thevane 22A, a hollow cylinder-shapedouter pin 43 elastically disposed under theupper cap 41 by anouter spring 42, and aninner pin 45 slidably disposed in the inside 43 a of theouter pin 43 and elastically seated in afirst recession 41 a of theupper cap 41 by aninner spring 44. - The locking
pin member 40 may further have a ring-shapedlower cap 46 positioned at a second end (the lower end inFIG. 3 ) of thefitting hole 25 and supporting the outer side of theouter pin 43. - The
outer spring 42 has a first end supported on a step-shapedsecond recession 43 b at the upper portion of theouter pin 43, and a second end supported on aprojection 41 b extending from thefirst recession 41 a of theupper cap 41. - Further, the
inner spring 44 has a first end supported on the bottom of athird recession 45 a formed in the upper portion of theinner pin 45, and a second end supported on the bottom of thefirst recession 41 a of theupper cap 41. - The locking
grooves 50 formed on theratchet plate 5 in theanti-rotation mechanism 30, as shown in detail inFIG. 3 , are connected and have different diameters and depths, facing thefitting hole 25 of thevane 22A. - That is, the locking
grooves 50 are alarge groove 51 having a large diameter and asmall groove 52 having a small diameter, in which the large and small grooves are connected to form a steppedportion 53 having a stepped cross-section. As shown inFIG. 3 , thelarge groove 51 is formed with a predetermined depth and has left and rightinner sides small groove 52 is formed with a predetermined depth and has left and rightinner sides inner side 51 b of thelarge groove 51 may be connected to the rightinner side 52 b of thesmall groove 52 in the same plane. - In one form of the present disclosure, as shown in
FIG. 3 , when the thickness of theouter pin 43 is “A”, the inner diameter of theinner pin 45 is “B”, the width of the steppedportion 53 is “C”, and the inner diameter of thesmall groove 52 is “D”, the relationships between A, B, C and D can be represented by: C=2A, D=B+C. That is, the inner diameter of thesmall groove 52 may be the same as the outer diameter of theouter pin 43. - An
oil channel 22 b for supplying working fluid into thespace 26 formed around theouter pin 43 or discharging working fluid from thespace 26 through thefitting hole 25 is formed at an angle in thevane 22A and communicates with the solenoid valve. - The operation of the valve timing adjustment apparatus in one form of the present disclosure is described hereafter.
- The valve timing adjustment apparatus of the present disclosure may be an intermediate phase type of valve timing adjustment apparatus in which the
vane 22A is locked almost at the intermediate position between a full retard phase angle position and a full advance phase angle position in thespace 15. - When an engine is normally operated, as shown in
FIG. 2 , thevane 22A of therotor 20 makes aretard chamber 15 b and anadvance chamber 15 a at the left and right sides in thespace 15 betweenadjacent projections 12 and is freely controlled in the advance direction (direction B) or the retard direction (direction A) with respect to thehousing 10 by torque from the camshaft 1, whereby the valve timing of an intake valve or an exhaust valve can be adjusted through the camshaft 1. - When the valve timing adjustment apparatus is operated under specific control and a start ability of an engine is correspondingly improved, or when an uncontrollable emergency occurs while an engine is operated, the locking
member 40 needs to be naturally locked under specific control, thereby inhibiting or preventing relative rotation of therotor 20 to thehousing 10. - First, the locking operation of the locking
member 40 is described with reference toFIG. 4A to 4F . In one form, the locking operation may be performed when thevane 22A is in a retard position in thespace 15, i.e., a biased position toward theretard chamber 15 b of thespace 15. -
FIG. 4A shows a state when working fluid has been supplied in thespace 26 through theoil channel 22 b formed in thevane 22A. In this state, theouter pin 43 and theinner pin 45 have compressed thesprings upper cap 41 due to the pressure of the working fluid. Further, the lower end of theinner pin 45 is lifted from the surface of theratchet plate 5 by theouter pin 43. - In
FIG. 4B , the working oil has been discharged through theoil channel 22 b from the state shown inFIG. 4A . In this state, since the pressure of the working fluid has been removed, theouter pin 43 and theinner pin 45 have been moved down by the elasticity of thesprings outer pin 43 and theinner pin 45 are in close contact with the surface of theratchet plate 5. - In the state shown in
FIG. 4B , negative torque from the camshaft 1 is transmitted to thevane 22A through therotor 20, and thevane 22 is rotated at a predetermined angle in the advance direction (the direction B), thereby making the state shown inFIG. 4C . That is, theinner pin 45 is moved down and inserted into thelarge groove 51 by the elasticity of theinner spring 44, and the lower end of theinner pin 45 is locked on the leftinner side 51 a of thelarge groove 51 so that the lower end is in close contact with the steppedportion 53. Further, the lower end of theouter pint 43 is still in close contact with the surface of theratchet plate 5. Accordingly, ratchet operation that inhibits or prevents thevane 22A from moving in the retard direction is performed. - For reference, a bias spring (not shown) may be connected to one side of the
rotor 20 in the direction of the camshaft 1, and the bias spring may assist the negative torque through the camshaft 1. - Next, when negative torque is additionally applied from the camshaft 1 to the
vane 22A through therotor 20, the state shown inFIG. 4D is performed. More specifically, theouter pin 43 is moved down and inserted into thelarge hole 51 by the elasticity of theouter spring 42 from the state shown inFIG. 4C . The lower end of theouter pin 43 is locked on the leftinner side 51 a of thelarge hole 51 and both of the lower ends of theouter pin 43 and theinner pin 45 are in close contact with the steppedportion 53. In this state, thevane 22A still cannot move in the retard direction, so the ratchet operation is maintained. - In
FIG. 4E , negative torque has been additionally applied to thevane 22A from the state shown inFIG. 4D . That is, theinner pin 45 is moved down and inserted into thesmall groove 52 by the elasticity of theinner spring 44, and the lower end of theinner pin 45 is locked on the leftinner side 52 a of thesmall groove 52 such that the lower end of theinner pin 45 is in close contact with the bottom of thesmall groove 52. Further, the lower end of theouter pin 43 is still in close contact with the surface of theratchet plate 5. Accordingly, ratchet operation that inhibits or prevents thevane 22A from moving in the retard direction is maintained. - When negative torque is additionally applied to the
vane 22A in the state shown inFIG. 4E , the lower ends of theouter pin 43 and theinner pin 45 are all brought in close contact with the bottom of thesmall groove 52 by the elasticity of theouter spring 42 and theinner spring 44, as shown inFIG. 4F . In this state, the lower end of theouter pin 43 is locked on the rightinner side 51 b of thelarge groove 51 and on the left and rightinner sides small groove 52, and thevane 22A is locked without moving in both of the retard direction and the advance direction. Accordingly, the lockingpin member 40 is firmly fitted in the lockinggroove 50 of theratchet plate 5, so that therotor 20 rotates together with thehousing 10, without rotating relative to thehousing 10. - As described above, the locking
pin member 40 is sequentially locked in the lockinggroove 50 of theratchet plate 5 by relatively small negative torque when thevane 22A is at a retard position. In one form of the present disclosure, since locking is sequentially performed through five steps, the position of starting an engine can be moved in the retard direction, the size of the valve timing adjustment apparatus can be reduced, and the efficiency and performance of the engine can be improved by improving the operation of opening and closing an intake valve or an exhaust valve. - Next, locking operation by using positive torque from the camshaft is described with reference to
FIG. 5A to 5C . In particular, thevane 22A is biased to an advance position, that is, in theadvance chamber 15 a of thespace 15. -
FIG. 5A shows a state when working fluid has been supplied in thespace 26 through theoil channel 22 b formed in thevane 22A. Theouter pin 43 has been maximally lifted to theupper cap 41, compressing theouter spring 42 due to the pressure of the working fluid. Further, the lower end of theinner pin 45 is lifted from the surface of theratchet plate 5 by theouter pin 43. - Next, the state shown in
FIG. 5B is created by discharging the working fluid through theoil channel 22 b from the state shown inFIG. 5A . That is, since the pressure of the working fluid applied to theouter pin 43 is removed, theouter pin 43 is moved down by the elasticity of theouter spring 42. Accordingly, the lower ends of theouter pin 43 and theinner pin 45 are brought in close contact with the surface of theratchet plate 5 by the elasticity of thesprings - In the state shown in
FIG. 5B , negative torque from the camshaft 1 is transmitted to thevane 22A through therotor 20, and thevane 22 is rotated at a predetermined angle in the retard direction (the direction A), thereby making the state shown inFIG. 5C . In general, positive torque is larger than negative torque, so locking is achieved through one step in one form of the present disclosure. - In particular, the
outer pin 43 and theinner pin 45 in the state shown inFIG. 5B are inserted through one step into thesmall groove 52 through thelarge groove 51 of the lockinggrooves 50 by the elasticity of thesprings FIG. 5C , the lower end of theouter pin 43 is locked on the rightinner side 51 b of thelarge groove 51, and on the rightinner side 52 b and the leftinner side 52 a of thesmall groove 52. - Therefore, the
vane 22A is in a locking state in which it cannot move in both the retard direction and the advance direction. As a result, the lockingpin member 40 is locked in the lockinggroove 50 of theratchet plate 5, so therotor 20 rotates together with thehousing 10, without rotating relative to thehousing 10. - The above description is just an exemplary form of the present disclosure and the present disclosure is not limited thereto. It should be understood by those skilled in the art that the present disclosure may be changed and modified in various ways within the scope of the present disclosure.
- For example, although the
rotor 20 has fourvanes 22 in the form of the present disclosure, three or other numbers ofvanes 22 may be provided, depending on the type or the operational characteristics of an engine. - Further, although one
vane 22A has thelocking pin member 40 in the form of the present disclosure, twovanes 22A of therotor 20 each may have thelocking pin member 40. - Further, exhaust holes 22 c and 4 a may be formed in the
vane 22A and theratchet 5, respectively, to communicate with the lockinggroove 50 so that the working fluid in the lockinggroove 50 can be discharged when theouter pin 43 or theinner pin 45 is moved down into the lockinggroove 50. - Further, although, in the
anti-rotation mechanism 30, the lockingpin member 40 is formed on therotor 20 and the lockinggroove 50 is formed in theratchet plate 5 in the form of the present disclosure, a locking groove may be formed in therotor 20 and theratchet plate 5 may have thelocking pin member 40. - Although exemplary forms of the present disclosure has been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the present disclosure.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150185229A KR101679016B1 (en) | 2015-12-23 | 2015-12-23 | Apparatus of adjusting valve timing for internal combustion engine |
KR10-2015-0185229 | 2015-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170183985A1 true US20170183985A1 (en) | 2017-06-29 |
US10718239B2 US10718239B2 (en) | 2020-07-21 |
Family
ID=57810341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/382,925 Active 2039-05-22 US10718239B2 (en) | 2015-12-23 | 2016-12-19 | Valve timing adjustment apparatus for internal combustion engine |
Country Status (4)
Country | Link |
---|---|
US (1) | US10718239B2 (en) |
KR (1) | KR101679016B1 (en) |
CN (1) | CN106907205B (en) |
DE (1) | DE102016225110B8 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020209838A1 (en) * | 2019-04-09 | 2020-10-15 | Cummins Inc. | Pass through timing pin system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561243B1 (en) * | 2018-04-26 | 2021-01-13 | Volvo Car Corporation | Camshaft arrangement |
KR102096710B1 (en) * | 2018-06-27 | 2020-04-02 | 델파이파워트레인 유한회사 | Apparatus of adjusting valve timing for internal combustion engine |
KR102096714B1 (en) * | 2018-08-31 | 2020-04-02 | 델파이파워트레인 유한회사 | Apparatus of adjusting valve timing for internal combustion engine |
JP2020204282A (en) * | 2019-06-17 | 2020-12-24 | 株式会社デンソー | Valve timing adjusting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5924395A (en) * | 1997-02-14 | 1999-07-20 | Toyota Jidosha Kabushiki Kaisha | System for regulating valve timing of internal combustion engine |
US20120055429A1 (en) * | 2010-09-02 | 2012-03-08 | Denso Corporation | Variable valve timing control apparatus |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3033582B2 (en) | 1995-06-14 | 2000-04-17 | 株式会社デンソー | Valve timing adjustment device for internal combustion engines. |
JP3211713B2 (en) | 1996-04-04 | 2001-09-25 | トヨタ自動車株式会社 | Variable valve timing mechanism for internal combustion engine |
JP3385929B2 (en) | 1997-08-22 | 2003-03-10 | トヨタ自動車株式会社 | Valve timing control device for internal combustion engine |
JP2000179310A (en) | 1998-12-11 | 2000-06-27 | Toyota Motor Corp | Valve timing control device for internal combustion engine |
JP4161356B2 (en) | 1999-08-06 | 2008-10-08 | 株式会社デンソー | Valve timing adjustment device |
JP2001098908A (en) | 1999-09-29 | 2001-04-10 | Mitsubishi Electric Corp | Valve timing adjusting device |
JP4411814B2 (en) | 2001-03-30 | 2010-02-10 | 株式会社デンソー | Valve timing adjustment device |
JP3476786B2 (en) | 2001-04-20 | 2003-12-10 | 株式会社日立ユニシアオートモティブ | Valve timing control device for internal combustion engine |
WO2010116532A1 (en) * | 2009-04-10 | 2010-10-14 | トヨタ自動車 株式会社 | Variable valve timing mechanism with intermediate locking mechanism and fabrication method thereof |
JP4784844B2 (en) | 2009-04-22 | 2011-10-05 | アイシン精機株式会社 | Valve timing control device |
JP4752953B2 (en) * | 2009-06-10 | 2011-08-17 | 株式会社デンソー | Valve timing adjustment device |
US8360022B2 (en) | 2009-07-01 | 2013-01-29 | Aisin Seiki Kabushiki Kaisha | Valve timing control apparatus |
DE102009031701A1 (en) | 2009-07-04 | 2011-01-05 | Schaeffler Technologies Gmbh & Co. Kg | Central valve of a camshaft adjuster of an internal combustion engine |
JP2011094533A (en) * | 2009-10-29 | 2011-05-12 | Toyota Motor Corp | Valve timing variable device |
JP2011163270A (en) * | 2010-02-12 | 2011-08-25 | Toyota Motor Corp | Variable valve gear for internal combustion engine |
JP4985822B2 (en) | 2010-05-31 | 2012-07-25 | 株式会社デンソー | Valve timing adjustment device |
JP2012057487A (en) * | 2010-09-06 | 2012-03-22 | Toyota Motor Corp | Variable valve train with double pin lock mechanism |
JP2012097594A (en) * | 2010-10-29 | 2012-05-24 | Hitachi Automotive Systems Ltd | Valve timing control device of internal combustion engine |
JP5739305B2 (en) | 2011-10-26 | 2015-06-24 | 日立オートモティブシステムズ株式会社 | Valve timing control device for internal combustion engine |
JP5873339B2 (en) | 2012-01-17 | 2016-03-01 | 日立オートモティブシステムズ株式会社 | Valve timing control device for internal combustion engine |
JP5834958B2 (en) | 2012-01-26 | 2015-12-24 | トヨタ自動車株式会社 | Lock mechanism of variable valve timing mechanism |
JP5850002B2 (en) * | 2012-10-10 | 2016-02-03 | 株式会社日本自動車部品総合研究所 | Valve timing adjustment device |
DE102013219075B4 (en) | 2013-09-23 | 2020-11-26 | Schaeffler Technologies AG & Co. KG | Multi-locking of a camshaft adjuster |
JP2015098850A (en) | 2013-11-20 | 2015-05-28 | 株式会社デンソー | Valve timing adjustment device |
CN105934565B (en) | 2014-03-19 | 2018-09-11 | 日立汽车系统株式会社 | The control valve of valve arrangement for controlling timing and the valve arrangement for controlling timing of internal combustion engine |
US9587526B2 (en) | 2014-07-25 | 2017-03-07 | Delphi Technologies, Inc. | Camshaft phaser |
US10082054B2 (en) | 2015-11-10 | 2018-09-25 | Delphi Technologies Ip Limited | Camshaft phaser |
-
2015
- 2015-12-23 KR KR1020150185229A patent/KR101679016B1/en active IP Right Grant
-
2016
- 2016-12-15 DE DE102016225110.4A patent/DE102016225110B8/en active Active
- 2016-12-19 US US15/382,925 patent/US10718239B2/en active Active
- 2016-12-20 CN CN201611186371.9A patent/CN106907205B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5924395A (en) * | 1997-02-14 | 1999-07-20 | Toyota Jidosha Kabushiki Kaisha | System for regulating valve timing of internal combustion engine |
US20120055429A1 (en) * | 2010-09-02 | 2012-03-08 | Denso Corporation | Variable valve timing control apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020209838A1 (en) * | 2019-04-09 | 2020-10-15 | Cummins Inc. | Pass through timing pin system |
US11415026B2 (en) | 2019-04-09 | 2022-08-16 | Cummins Inc. | Pass through timing pin system |
Also Published As
Publication number | Publication date |
---|---|
DE102016225110B8 (en) | 2024-07-18 |
CN106907205A (en) | 2017-06-30 |
US10718239B2 (en) | 2020-07-21 |
DE102016225110B4 (en) | 2024-05-23 |
KR101679016B1 (en) | 2017-01-02 |
CN106907205B (en) | 2020-08-25 |
DE102016225110A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10738663B2 (en) | Locking structure of valve timing adjustment apparatus for internal combustion engine | |
US10718239B2 (en) | Valve timing adjustment apparatus for internal combustion engine | |
US8534246B2 (en) | Camshaft phaser with independent phasing and lock pin control | |
EP2500531B1 (en) | Camshaft phaser with coaxial control valves | |
JP6015605B2 (en) | Valve timing adjustment device | |
JP5182326B2 (en) | Flow control valve | |
JP2018145906A (en) | Hydraulic oil control valve and valve timing adjustment device using the same | |
US9366160B2 (en) | Centering slot for internal combustion engine | |
US9982576B2 (en) | Hydraulic camshaft phaser and valve for operation thereof | |
US9046013B2 (en) | Camshaft phase | |
JP6578896B2 (en) | Valve timing control device | |
US20180112563A1 (en) | Valve timing regulation device | |
US10138765B2 (en) | Control valve for valve timing adjusting device of internal combustion engine | |
JP2018159346A (en) | Valve opening/closing timing control device | |
JP5279749B2 (en) | Valve timing control device for internal combustion engine | |
US10174647B2 (en) | Oil drain structure of valve timing adjusting device for internal combustion engine | |
JP5034869B2 (en) | Variable valve timing device | |
KR102096714B1 (en) | Apparatus of adjusting valve timing for internal combustion engine | |
US10247058B2 (en) | Apparatus and method of adjusting valve timing for internal combustion engine | |
WO2017119234A1 (en) | Internal-combustion engine valve timing control device | |
JP3999415B2 (en) | Valve timing changing device for internal combustion engine | |
US11053820B2 (en) | Hydraulic camshaft adjuster | |
CN109312639B (en) | Variable cam timing phaser using hydraulic logic element | |
JP2000170508A (en) | Valve timing controller for internal combustion engine | |
JP2006063920A (en) | Valve timing control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DELPHI POWERTRAIN SYSTEMS KOREA LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, KOUN YOUNG;KIM, SUNG DAE;LEE, SANG HO;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:040673/0362 Owner name: PINE ENGINEERING LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, KOUN YOUNG;KIM, SUNG DAE;LEE, SANG HO;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:040673/0362 Owner name: DELPHI POWERTRAIN SYSTEMS KOREA LTD., KOREA, REPUB Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, KOUN YOUNG;KIM, SUNG DAE;LEE, SANG HO;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:040673/0362 Owner name: KIA MOTORS CORPORATION, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, KOUN YOUNG;KIM, SUNG DAE;LEE, SANG HO;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:040673/0362 Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, KOUN YOUNG;KIM, SUNG DAE;LEE, SANG HO;AND OTHERS;SIGNING DATES FROM 20161208 TO 20161212;REEL/FRAME:040673/0362 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: DELPHI POWERTRAIN SYSTEMS KOREA LLC, KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:DELPHI POWERTRAIN SYSTEMS KOREA LTD.;REEL/FRAME:064659/0208 Effective date: 20190702 Owner name: BURADAWARNER LLC, KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:DELPHI POWERTRAIN SYSTEMS KOREA LLC;REEL/FRAME:064659/0203 Effective date: 20230222 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |