US20170183626A1 - Defined media for expansion and maintenance of pluripotent stem cells - Google Patents
Defined media for expansion and maintenance of pluripotent stem cells Download PDFInfo
- Publication number
- US20170183626A1 US20170183626A1 US15/457,952 US201715457952A US2017183626A1 US 20170183626 A1 US20170183626 A1 US 20170183626A1 US 201715457952 A US201715457952 A US 201715457952A US 2017183626 A1 US2017183626 A1 US 2017183626A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell culture
- media
- formulation
- culture formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001778 pluripotent stem cell Anatomy 0.000 title claims abstract description 35
- 238000012423 maintenance Methods 0.000 title claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims abstract description 207
- 239000000203 mixture Substances 0.000 claims abstract description 82
- 238000009472 formulation Methods 0.000 claims abstract description 80
- 238000004113 cell culture Methods 0.000 claims abstract description 46
- 210000000130 stem cell Anatomy 0.000 claims abstract description 13
- 238000012258 culturing Methods 0.000 claims abstract description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 72
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 52
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 38
- 229930195729 fatty acid Natural products 0.000 claims description 38
- 239000000194 fatty acid Substances 0.000 claims description 38
- 150000004665 fatty acids Chemical class 0.000 claims description 38
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 37
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 claims description 37
- 239000011668 ascorbic acid Substances 0.000 claims description 36
- 235000010323 ascorbic acid Nutrition 0.000 claims description 36
- 229960005070 ascorbic acid Drugs 0.000 claims description 36
- 102000004877 Insulin Human genes 0.000 claims description 26
- 108090001061 Insulin Proteins 0.000 claims description 26
- 229940125396 insulin Drugs 0.000 claims description 26
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 26
- 108010088751 Albumins Proteins 0.000 claims description 19
- 102000009027 Albumins Human genes 0.000 claims description 19
- 150000002632 lipids Chemical class 0.000 claims description 19
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 17
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 17
- 239000003446 ligand Substances 0.000 claims description 17
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 17
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 16
- 102000004338 Transferrin Human genes 0.000 claims description 16
- 108090000901 Transferrin Proteins 0.000 claims description 16
- 239000011669 selenium Substances 0.000 claims description 16
- 229910052711 selenium Inorganic materials 0.000 claims description 16
- 239000012581 transferrin Substances 0.000 claims description 16
- 239000011573 trace mineral Substances 0.000 claims description 14
- 235000013619 trace mineral Nutrition 0.000 claims description 14
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 12
- 239000003153 chemical reaction reagent Substances 0.000 claims description 11
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 claims description 10
- 239000007640 basal medium Substances 0.000 claims description 9
- -1 IGF-1 Substances 0.000 claims description 6
- 239000008103 glucose Substances 0.000 claims description 6
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 claims description 5
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 108010016626 Dipeptides Proteins 0.000 claims description 4
- 229960002648 alanylglutamine Drugs 0.000 claims description 4
- 239000003102 growth factor Substances 0.000 claims description 4
- 102100029284 Hepatocyte nuclear factor 3-beta Human genes 0.000 abstract description 22
- 101001062347 Homo sapiens Hepatocyte nuclear factor 3-beta Proteins 0.000 abstract description 22
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 abstract description 21
- 102100024270 Transcription factor SOX-2 Human genes 0.000 abstract description 21
- 230000035755 proliferation Effects 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 48
- 229940098773 bovine serum albumin Drugs 0.000 description 48
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 28
- 210000001671 embryonic stem cell Anatomy 0.000 description 24
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 18
- 230000004069 differentiation Effects 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 101000976622 Homo sapiens Zinc finger protein 42 homolog Proteins 0.000 description 12
- 102100023550 Zinc finger protein 42 homolog Human genes 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 10
- 238000003753 real-time PCR Methods 0.000 description 10
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 9
- 101710123134 Ice-binding protein Proteins 0.000 description 9
- 101710082837 Ice-structuring protein Proteins 0.000 description 9
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 9
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 8
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 8
- 229920000053 polysorbate 80 Polymers 0.000 description 8
- 229940091258 selenium supplement Drugs 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000023895 stem cell maintenance Effects 0.000 description 7
- 239000007995 HEPES buffer Substances 0.000 description 6
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 6
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000003636 conditioned culture medium Substances 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 6
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 6
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 description 5
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 5
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 229960001471 sodium selenite Drugs 0.000 description 5
- 239000011781 sodium selenite Substances 0.000 description 5
- 235000015921 sodium selenite Nutrition 0.000 description 5
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 4
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 4
- 206010063092 Trisomy 12 Diseases 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 108010059616 Activins Proteins 0.000 description 3
- 101001051969 Bos taurus Fibroblast growth factor 2 Proteins 0.000 description 3
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 3
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 3
- 239000011626 DL-alpha-tocopherylacetate Substances 0.000 description 3
- 235000001809 DL-alpha-tocopherylacetate Nutrition 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 3
- 102100024208 Homeobox protein MIXL1 Human genes 0.000 description 3
- 101001052462 Homo sapiens Homeobox protein MIXL1 Proteins 0.000 description 3
- 101000652324 Homo sapiens Transcription factor SOX-17 Proteins 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 238000010222 PCR analysis Methods 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- 235000021319 Palmitoleic acid Nutrition 0.000 description 3
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 102100030243 Transcription factor SOX-17 Human genes 0.000 description 3
- 239000000488 activin Substances 0.000 description 3
- 108010023082 activin A Proteins 0.000 description 3
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 3
- 229940114079 arachidonic acid Drugs 0.000 description 3
- 235000021342 arachidonic acid Nutrition 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 3
- 239000011636 chromium(III) chloride Substances 0.000 description 3
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 210000001654 germ layer Anatomy 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 229960004488 linolenic acid Drugs 0.000 description 3
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 229920001993 poloxamer 188 Polymers 0.000 description 3
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 3
- 229940068968 polysorbate 80 Drugs 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 3
- 229940042585 tocopherol acetate Drugs 0.000 description 3
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- AQGNHMOJWBZFQQ-UHFFFAOYSA-N CT 99021 Chemical compound CC1=CNC(C=2C(=NC(NCCNC=3N=CC(=CC=3)C#N)=NC=2)C=2C(=CC(Cl)=CC=2)Cl)=N1 AQGNHMOJWBZFQQ-UHFFFAOYSA-N 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 108060003393 Granulin Proteins 0.000 description 2
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 2
- 102100026818 Inhibin beta E chain Human genes 0.000 description 2
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000037280 Trisomy Diseases 0.000 description 2
- 229910006251 ZrOCl2.8H2O Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000003981 ectoderm Anatomy 0.000 description 2
- 210000002242 embryoid body Anatomy 0.000 description 2
- 210000002308 embryonic cell Anatomy 0.000 description 2
- 210000001900 endoderm Anatomy 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000003716 mesoderm Anatomy 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- UBWXUGDQUBIEIZ-UHFFFAOYSA-N (13-methyl-3-oxo-2,6,7,8,9,10,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-17-yl) 3-phenylpropanoate Chemical compound CC12CCC(C3CCC(=O)C=C3CC3)C3C1CCC2OC(=O)CCC1=CC=CC=C1 UBWXUGDQUBIEIZ-UHFFFAOYSA-N 0.000 description 1
- LAQPKDLYOBZWBT-NYLDSJSYSA-N (2s,4s,5r,6r)-5-acetamido-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r)-5-acetamido-1,2-dihydroxy-6-oxo-4-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hexan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-[(1r,2r)-1,2,3-trihydrox Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@@H](NC(C)=O)C=O)[C@@H]([C@H](O)CO)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 LAQPKDLYOBZWBT-NYLDSJSYSA-N 0.000 description 1
- 102000005606 Activins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 108010069241 Connexin 43 Proteins 0.000 description 1
- 102000001045 Connexin 43 Human genes 0.000 description 1
- 102100037060 Forkhead box protein D3 Human genes 0.000 description 1
- 238000012357 Gap analysis Methods 0.000 description 1
- 102100039290 Gap junction gamma-1 protein Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001052035 Homo sapiens Fibroblast growth factor 2 Proteins 0.000 description 1
- 101001029308 Homo sapiens Forkhead box protein D3 Proteins 0.000 description 1
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 description 1
- 101000777245 Homo sapiens Undifferentiated embryonic cell transcription factor 1 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 102100020677 Krueppel-like factor 4 Human genes 0.000 description 1
- 108010090306 Member 2 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 1
- 102000013013 Member 2 Subfamily G ATP Binding Cassette Transporter Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100369076 Mus musculus Tdgf1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 101150086694 SLC22A3 gene Proteins 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 1
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 1
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 1
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 1
- 102100031278 Undifferentiated embryonic cell transcription factor 1 Human genes 0.000 description 1
- 229910006213 ZrOCl2 Inorganic materials 0.000 description 1
- 108010023079 activin B Proteins 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 108010015426 connexin 45 Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 210000000646 extraembryonic cell Anatomy 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000920 spermatogeneic effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
- C12N2500/10—Metals; Metal chelators
- C12N2500/20—Transition metals
- C12N2500/24—Iron; Fe chelators; Transferrin
- C12N2500/25—Insulin-transferrin; Insulin-transferrin-selenium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/36—Lipids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/38—Vitamins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/105—Insulin-like growth factors [IGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/15—Transforming growth factor beta (TGF-β)
Definitions
- the present invention is in the field of proliferation and maintenance of pluripotent stem cells under defined media conditions.
- hES cells human embryonic stem cells
- KSR knock-out serum replacer
- the refined mTeSR®1 media consists of DMEM/F12 basal media supplemented with insulin, selenium, transferrin, ascorbic acid, FGF2 (bFGF), and TGF ⁇ or nodal, having the pH adjusted with NaHCO 3 .
- the present invention provides a defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, and ascorbic acid; and wherein culturing stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the stem cells for at least 10 passages.
- the cell culture formulation further comprises insulin growth factor 1 (IGF-1).
- the cell culture formulation comprises DMEM-F12.
- the invention provides a defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, ascorbic acid, TRACE ELEMENTS C (1.20 mg/L AlCl 3 .6H 2 O, 0.17 mg/L AgNO 3 , 2.55 mg/L Ba(C 2 H 3 O 2 ) 2 , 0.12 mg/L KBr, 2.28 mg/L CdCl 2 , 2.38 mg/L CoCl 2 .6H 2 O, 0.32 mg/L CrCl 3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO 2 , 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L ZrOCl 2 .8H 2 O), 4-(2-hydroxyethyl)-1-piperazine-ethanesulf
- the cell culture formulation comprises MCDB-131.
- GIBCO® Insulin-Transferrin-Selenium-X (a basal medium supplement containing insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (“ITS-X”) (Life Technologies Corporation, Carlsbad, Calif.) provides the insulin, transferrin, and selenium for the defined cell culture formulation of the invention.
- the ITS-X is present from about 0.5% to about 2%. In some embodiments of the invention, the ITS-X is present at about 1%.
- the fatty acid free albumin is reagent grade. In some embodiments of the invention, the reagent grade fatty acid-free BSA is present from about 0.2% to about 2.5%. In some embodiments of the invention, the reagent grade fatty acid-free BSA is present at about 2%.
- the TGF- ⁇ ligand in the defined cell culture formulation of the invention is TGF- ⁇ 1.
- the TGF- ⁇ 1 is present from about 0.5 ng/ml to about 10 ng/ml.
- the TGF-B1 is present at about 1 ng/ml.
- the bFGF is present in the cell culture formulation from about 50 ng/ml to about 100 ng/ml. In some embodiments of the invention, the bFGF is present in the defined cell culture formulation at about 50 ng/ml. In some embodiments, the bFGF is present in the defined cell culture formulation at about 100 ng/ml.
- the insulin growth factor 1 is present from about 10 ng/ml to about 50 ng/ml. In some embodiments of the invention, the IGF-1 is present in the defined cell culture formulation at about 20 ng/ml.
- ascorbic acid is present in the defined cell culture formulation from about 0.2 mM to about 0.3 mM. In some aspects of the invention, ascorbic acid is present in the defined cell culture formulation at about 0.25 mM.
- the invention concerns a defined cell culture formulation consisting essentially of DMEM-F12 basal medium, ITS-X (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.) (to provide insulin, transferrin, and selenium), fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, insulin growth factor 1 (IGF-1), and ascorbic acid.
- the invention relates to a defined cell culture formulation consisting essentially of MCDB-131, (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.), fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, ascorbic acid, TRACE ELEMENTS C (1.20 mg/L AlCl 3 .6H 2 O, 0.17 mg/L AgNO 3 , 2.55 mg/L Ba(C 2 H 3 O 2 ) 2 , 0.12 mg/L KBr, 2.28 mg/L CdCl 2 , 2.38 mg/L CoCl 2 .6H 2 O, 0.32 mg/L CrCl 3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO 2 , 0.17 mg/L KI, 1.21 mg/L R
- the invention concerns a method for the expansion of human pluripotent stem cells, where the method comprises culturing the human pluripotent stem cells on a feeder-free matrix in a defined cell culture formulation; where the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, and ascorbic acid; and where culturing the stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the cells for at least 10 passages.
- the defined cell culture formulation further comprises insulin growth factor 1 (IGF-1).
- the cell culture formulation comprises DMEM-F12.
- the invention relates to a method for the expansion of human pluripotent stem cells, where the method comprises culturing the human pluripotent stem cells on a feeder-free matrix in a defined cell culture formulation; where the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF- ⁇ ligand, bFGF, ascorbic acid, IGF-1, TRACE ELEMENTS C (1.20 mg/L AlCl 3 .6H 2 O, 0.17 mg/L AgNO 3 , 2.55 mg/L Ba(C 2 H 3 O 2 ) 2 , 0.12 mg/L KBr, 2.28 mg/L CdCl 2 , 2.38 mg/L CoCl 2 .6H 2 O, 0.32 mg/L CrCl 3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO 2 , 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L Z
- An embodiment of the present invention is an in vitro cell population wherein greater than 50% of the cell population is positive for protein expression of OCT4, SOX2, NANOG, and FOXA2 with negative or low protein expression of SSEA-4 and ZFP42.
- the population is obtained by culturing pluripotent stem cells in a defined cell culture formulation comprising basal media supplemented with IGF-1, insulin, bFGF, TGF-B ligand, and fatty-acid free albumin; and where the defined cell culture formulation does not comprise ascorbic acid.
- the defined cell culture formulation comprises DMEM/F12 basal media.
- the cell culture formulation comprises insulin as ITS-X (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.).
- the ITS-X is present from about 0.5% to about 2%.
- the ITS-X is present at about 1%.
- the fatty acid free albumin is reagent grade.
- the reagent grade fatty acid-free albumin is present from about 0.2% to about 2.5%. In some embodiments of the invention, the reagent grade fatty acid-free albumin is present at about 2%.
- the TGF-B ligand is TGF-B1. In some embodiments of the invention, the TGF-B1 is present from about 0.5 ng/ml to about 10 ng/ml. In some aspects of the invention, the TGF-B1 is present at about 1 ng/ml.
- FIG. 1A to FIG. 1D show phase-contrast images of H1 cells cultured for 3 passages in IH-3 ( FIG. 1A ), IH-1 ( FIG. 1B ), IH-6 ( FIG. 1C ), and mTeSR®1 ( FIG. 1D ).
- FIG. 2A to FIG. 2C show phase-contrast images of H1 cells cultured for 10 passages in IH-3 ( FIG. 2A ), IH-1 ( FIG. 2B ), and mTeSR®1 ( FIG. 2C ) media.
- FIG. 3A to FIG. 3C show phase-contrast images of H1 cells cultured for 18 passages in IH-3 ( FIG. 3A ), IH-1 ( FIG. 3B ), and mTeSR®1 ( FIG. 3C ) media.
- FIG. 4A to FIG. 4F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested at passages 1 to 5 (P1-P5); ZFP42 ( FIG. 4A ), SOX2 ( FIG. 4B ), POU5F1 (OCT4) ( FIG. 4C ), Nanog ( FIG. 4D ), FOXA2 ( FIG. 4E ), and AFP ( FIG. 4F ).
- FIG. 5A to FIG. 5B show data from real-time PCR analyses of the expression of Nanog, POU5F1 (OCT4), SOX2, and ZFP42 ( FIG. 5A ), and of AFP and FOXA2 ( FIG. 5B ) in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested at Passage 10.
- FIG. 6A and FIG. 6B show data from real-time PCR analyses of the expression of ZFP42, SOX2, POU5F1 (OCT4), and Nanog ( FIG. 6A ), and of AFP and FOXA2 ( FIG. 6B ) in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested at Passage 18.
- FIG. 7A to FIG. 7F show FACS histogram expression profiles of the following markers in cells cultured for 18 passages in IH-3 media described in Example 1: Isotype control ( FIG. 7A ); KI-67 ( FIG. 7B ); OCT4 ( FIG. 7C ); SOX17 ( FIG. 7D ); FOXA2 (FIG. 7 E); and SOX2 ( FIG. 7F ). Percentage expression for each marker is shown on each histogram.
- FIG. 8A to FIG. 8F show images of cells cultured for 18 passages in IH-3 media described in Example 1 and immunostained for OCT-4, FOXA2, SOX2, and fluorescent labeling of DNA using DAPI. Images obtained for OCT4 ( FIG. 8A ), FOXA2 ( FIG. 8B ), and DAPI-stained DNA ( FIG. 8C ) were obtained from the same optical field but with different filters. Similarly, images for SOX2 ( FIG. 8D ), FOXA2 ( FIG. 8E ), and DAPI stained DNA ( FIG. 8F ) were obtained from the same optical field but with different filters.
- FIG. 9A to FIG. 9F depict phase-contrast images of H1 cells cultured for five passages in mTeSR®1 media ( FIG. 9A ) and in IH-3 ( FIG. 9B ), IH-3-1 ( FIG. 9C ), IH-3-2 ( FIG. 9D ), IH-3-3 ( FIG. 9E ), and IH-3-4 ( FIG. 9F ) formulations described in Example 2.
- FIG. 10A to FIG. 10E show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured in media described in Example 2 and harvested at Passage 5: ZFP42 ( FIG. 10A ), SOX2 ( FIG. 10B ), FOXA2 ( FIG. 10C ), Nanog ( FIG. 10 D), and POU5F1 (OCT4) ( FIG. 10E ).
- FIG. 11A to FIG. 11D depict phase-contrast images of H1 cells cultured for 20 passages in mTeSR®1 media ( FIG. 1A ), IH-3 ( FIG. 11B ), IH-1 ( FIG. 11C ), and IH-3RT ( FIG. 11D ) media formulations described in Example 3.
- FIG. 12A to FIG. 12F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for 15 passages in media described in Example 3: AFP ( FIG. 12A ), FOXA2 ( FIG. 12B ), SOX2 ( FIG. 12C ), Nanog ( FIG. 12D ), POU5F1 (OCT4) ( FIG. 12E ), and ZFP42 ( FIG. 12F ).
- FIG. 13A to FIG. 13F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for 20 passages in mTeSR®1 media, and IH-1 and IH-3 media described in Example 3: AFP FIG. 13A ), FOXA2 ( FIG. 13B ), Nanog ( FIG. 13C ), POU5F1 (OCT4) ( FIG. 13D ), SOX2 ( FIG. 13E ), and ZFP42 ( FIG. 13F ).
- FIG. 14A and FIG. 14B depict phase-contrast images of H1 cells cultured for 4 days in media formulations described in Example 5 containing Sigma BSA ( FIG. 14A ) or containing fatty acid free BSA ( FIG. 14B ).
- FIG. 15A and FIG. 15B depict phase-contrast images of H1 cells cultured for three passages in media formulations described in Example 5 containing Sigma BSA ( FIG. 15A ) or containing fatty acid free BSA ( FIG. 15B ).
- FIG. 16A to FIG. 16C show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for three passages in media formulations described in Example 5 containing Sigma BSA or fatty acid free BSA: AFP ( FIG. 16A ), MIXL1 ( FIG. 16B ), and T (BRY) ( FIG. 16C ).
- FIG. 17A to FIG. 17D show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for ten passages in media formulations described in Example 6: SOX2 ( FIG. 17A ), POU5F1 ( FIG. 17B ), Nanog ( FIG. 17C ), and FOXA2 ( FIG. 17C ).
- FIG. 18A to FIG. 18E depict phase-contrast images of H1 cells cultured for 10 passages in IH-3 ( FIG. 18A ), IH-3P-2 ( FIG. 18B ), IH-3P-3 ( FIG. 18C ), IH-3P-4 ( FIG. 18D ), and IH-3P-5 ( FIG. 18E ) media formulations described in Example 6.
- Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
- Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extra-embryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self-renewal), blood cell restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g., spermatogenic stem cells).
- HSC hematopoietic stem cells
- Differentiation is the process by which an unspecialized (“uncommitted”) or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell.
- a differentiated or differentiation-induced cell is one that has taken on a more specialized (“committed”) position within the lineage of a cell.
- the term “committed”, when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type.
- De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell.
- the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to.
- the lineage of a cell places the cell within a hereditary scheme of development and differentiation.
- a lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
- Markers are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest.
- differential expression means an increased level for a positive marker and a decreased level for a negative marker.
- the detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
- Basal Medium refers to a solution of salts, nutrients, and vitamins that can support the growth of pluripotent stem cells in culture.
- Basal media may be selected among others from Dulbecco's modified Eagle's media (DMEM), MCDB media, RPMI.
- DMEM may also be DMEM/F12 (also referred to as DM-F12), or DMEM-high glucose (also referred to as DMEM-hg).
- MCDB media may be selected from any of the MCDB media available, and specifically MCDB-131.
- basal media may be selected by mixing the basal media formulations listed above in the appropriate ratio to allow for proliferation and maintenance of pluripotency of embryonic stem cells.
- the basal media in the defined cell culture formulation of the invention is DMEM-F12.
- the basal media in the cell culture formulation of the invention is MCDB-131.
- “Feeder Cells” refers to non-pluripotent stem cells on which pluripotent stem cells are plated.
- the feeder cells provide sufficient soluble and insoluble factors to support for attachment, proliferation, and maintenance of pluripotency markers by pluripotent stem cells.
- Constant Medium refers to a medium that is further supplemented with soluble factors derived from feeder cells.
- Extracellular Matrix or “Defined Matrix” or “Synthetic Matrix” refers to one or more substances that can provide for attachment, proliferation, and maintenance of pluripotency markers by pluripotent stem cells. Used interchangeably herein are “IGF” and “IGF-1” which stand for Insulin-like growth factor 1. In humans, this protein is made by the liver and is responsible for much of what is attributed to the human growth hormone.
- FGF2 and “bFGF” are used interchangeably to identify the human basic fibroblast growth factor.
- TGF beta used interchangeably herein are “TGF beta”, “TGF-B”, and “TGF- ⁇ ”.
- a TGF- ⁇ ligand may be selected from bone morphogenetic proteins (BMPs), growth and differentiation factor (GDFs), activins (Activin A, Activin AB, Activin B, Activin C), nodal and TGF- ⁇ s.
- BMPs bone morphogenetic proteins
- GDFs growth and differentiation factor
- Activins Activin A, Activin AB, Activin B, Activin C
- nodal and TGF- ⁇ s used interchangeably herein are “TGF beta”, “TGF-B”, and “TGF- ⁇ ”.
- a TGF- ⁇ ligand may be selected from bone morphogenetic proteins (BMPs), growth and differentiation factor (GDFs), activins (Activin A, Activin AB, Activin B, Activin C), nodal and TGF- ⁇ s.
- a TGF- ⁇ may be selected
- Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra 1-60, and Tral-81 expression (if present) and increased expression of SSEA-1. Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde, followed by developing with Vector® Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.). Undifferentiated pluripotent stem cells also typically express OCT4 and TERT, as detected by RT-PCR.
- SSEA stage-specific embryonic antigens
- pluripotent stem cells Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues. Pluripotency of stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers. Alternatively, pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
- SCID severe combined immunodeficient
- Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a “normal karyotype,” which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered.
- Pluripotent cells may be readily expanded in culture using various feeder layers or by using matrix protein coated vessels. Alternatively, chemically defined surfaces in combination with defined media such as mTeSR®1 media (StemCell Technologies, Vancouver, Canada) may be used for routine expansion of the cells.
- Pluripotent cells may be readily removed from culture plates using enzymatic, mechanical or use of various calcium chelators such as EDTA (ethylenediaminetetraacetic acid). Alternatively, pluripotent cells may be expanded in suspension in the absence of any matrix proteins or a feeder layer.
- various calcium chelators such as EDTA (ethylenediaminetetraacetic acid).
- pluripotent cells may be expanded in suspension in the absence of any matrix proteins or a feeder layer.
- pluripotent stem cells include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
- pre-embryonic tissue such as, for example, a blastocyst
- embryonic tissue or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
- Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines H1, H7, and H9 (WiCell Research Institute, Madison, Wis.).
- H1, H7, and H9 WiCell Research Institute, Madison, Wis.
- Also contemplated is use of the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues.
- IPS inducible pluripotent cells
- reprogrammed pluripotent cells that can be derived from adult somatic cells using forced expression of a number of pluripotent related transcription factors, such as OCT4, Nanog, Sox2, KLF4, and ZFP42 (Annu Rev Genomics Hum Genet, 2011, 12:165-185).
- Human embryonic stem cells may be prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science, 1998; 282:1145-1147; Curr Top Dev Biol, 1998; 38:133-165; 1995, Proc Natl Acad Sci USA 92:7844-7848).
- pluripotent stem cell markers include, for example, the expression of one or more of the following: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
- Differentiation markers typically present in cultures of embryonic stem cells include for example, AFP, FOXA2, SOX17, T(BRY), and MIXL1.
- human pluripotent stem cells are cultured in a defined media comprising ascorbic acid, IGF, insulin, bFGF, TGF-B ligand, and fatty-acid free albumin to sustain proliferation of the pluripotent stem cells while maintaining pluripotency and karyotypic stability of the expanded cells for at least 10 passages.
- An embodiment of the present invention is an in vitro cell population wherein greater than 50% of the cell population is positive for protein expression of OCT4, SOX2, NANOG, and FOXA2 positive but low protein expression of SSEA-4 and ZFP42.
- Another aspect of the present invention describes an in vitro defined cell culture formulation comprising IGF, insulin, bFGF, TGF-B, fatty-acid free albumin, and no ascorbic acid that results in a cell population wherein greater than 50% of the cell population is positive by protein staining for OCT4, SOX2, NANOG, FOXA2 and low protein expression of SSEA-4 and ZFP42.
- HEPES Catalog No. #15630-056-, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Life Technologies Corporation, Carlsbad, CA
- LiCl Catalog No. L7026, Sigma Aldrich Co LLC, Saint Louis, MO
- D-glucose Catalog No. G8769, Sigma
- ascorbic acid Catalog No. A4403, Sigma Aldrich Co. LLC, Saint Louis, MO
- DEFINED LIPID*** is GIBCO ® CHEMICALLY DEFINED LIPID CONCENTRATE (Catalog No.
- DEFINED LIPID CONCENTRATE (“DEFINED LIPID”) Catalog No. 11905031 contains 100.0 ml/L ethyl alcohol (200 proof) and 2 mg/L Arachidonic Acid, 220 mg/L Cholesterol, 70 mg/L DL-alpha-Tocopherol Acetate, 0 mg/L Ethyl Alcohol 100%, 10 mg/L Linoleic Acid, 10 mg/L Linolenic Acid, 10 mg/L Myristic Acid, 10 mg/L Oleic Acid, 10 mg/L Palmitic Acid, 10 mg/L Palmitoleic Acid, 90000 mg/L Pluronic F-68, 10 mg/L Stearic Acid, and 2200 mg/L Tween ® 80 (polysorbate 80 sold under the trade name TWEEN 80 by ICI Americas, Inc. Bridgewater, NJ).
- IH-4 and IH-5 were discontinued for further evaluation because cells cultured using IH-4 and IH-5 failed to grow past passage 2.
- IH-2 showed significant change in morphology consistent with differentiated cells and loss of packed colonies.
- Media IH-1, IH-3, and IH-6 were selected for further evaluation.
- passage 3-5 cells cultured in IH-6 showed morphological evidence of differentiated cells at the periphery of the ES colonies (compare FIG. 1C with FIG. 1A , FIG. 1B , and FIG. 1D ).
- IH-1 and IH-3 were further compared to the cells cultured in mTeSR®1 media (Catalog No. 05850, Stem-Cell Technologies, Inc., Vancouver BC, Canada).
- samples were collected from IH-1, IH-3, and mTeSR®1 cultures and evaluated by FACS, PCR, karyotype analysis (G-banding or FISH), and immune fluorescence staining.
- the results from FISH analysis are shown in Table II. These results show that H1 cells cultured in IH-1 media or IH-3 media showed normal karyotype, whereas cells cultured in mTeSR®1 media displayed abnormal trisomy 12 at passage 10 and 18.
- H1 cells cultured in IH-3 media maintained strong expression of OCT4 and SOX2 markers at passage 11 (Table IV). This was despite a very low expression level of SSEA-4 for H1 cells cultured in IH-3 media.
- mRNA expression of core pluripotency markers such as Nanog ( FIG. 4D ), OCT4 ( FIG. 4C ), SOX2 ( FIG. 4B ), and ZPF42 ( FIG. 4A ) were maintained through passage 5 for H1 cells cultured in IH-1, and IH-3 media to the same level as H1 cells cultured in mTeSR®1.
- core pluripotency markers such as Nanog ( FIG. 4D ), OCT4 ( FIG. 4C ), SOX2 ( FIG. 4B ), and ZPF42 ( FIG. 4A ) were maintained through passage 5 for H1 cells cultured in IH-1, and IH-3 media to the same level as H1 cells cultured in mTeSR®1.
- ZFP42 ZFP42
- FIG. 7C shows >97% of cells were OCT4+( FIG. 7C ), SOX2+( FIG. 7F ), and KI-67+( FIG. 7B ).
- Approximately 1% of the cells were SOX17+( FIG. 7D ) and ⁇ 85% of the cells were FOXA2+( FIG. 7E ).
- FIG. 8A to FIG. 8F show images of immunofluorescence staining of H1 cells cultured in IH-3 media for 18 passages. These images illustrate that a significant number of OCT4 and SOX2 positive cells were also FOXA2+.
- H1 cells cultured in IH3 media had acquired a phenotype where at least 70% of the cells were OCT4+NANOG+SOX2+KI-67+ZFP42- and FOXA2+. This represents a population of cells not yet described in the art.
- H1 cells cultured for 14 passages in IH-3 were subsequently cultured in the above media formulations and compared to cells cultured in IH-3 media.
- H1 cells cultured using various media formulations were assayed for pluripotency markers.
- Table VI following five additional passages, H1 cells cultured in IH-3-2 (IH-3 supplemented with ascorbic acid) media recovered a small percentage of their SSEA-4 expression as compared to cells cultured in the other tested media.
- H1 cells cultured in IH-3-2 media retained typical embryonic stem cell morphology similar to cells cultured in mTeSR®1 ( FIG. 9A ) media.
- H1 cells cultured in IH-3, IH-3-1, IH-3-3, and IH-3-4 showed loose colony morphology (See FIG. 9B , FIG. 9C , and FIG. 9F ).
- PCR analysis of cells cultured in the above media formulations further confirmed that H1 cells cultured in IH-3-2 media regained some of the expression of ZFP42 and down regulated expression of FOXA2 (see FIG. 10A to FIG. 10E ).
- H1 cells cultured for 20 passages in IH-1, IH-3-2, and IH-3RT retained typical ES morphology.
- the results of PCR analysis of H1 cells cultured for 15 passages in IH-1, IH-3-2, and IH-3RT are shown in FIG. 12A to FIG. 12F .
- the results of PCR analysis of H1 cells cultured for 20 passages in IH-1, IH-3-2, and IH-3RT are shown in FIG. 13A to FIG. 13F .
- H1 cells cultured continuously in IH-1, IH-3-2, and IH-3RT showed normal karyotype as measured by G-banding and FISH analysis.
- H1 cells cultured for 10 to 20 passages in mTeSR®1 showed abnormal chromosomal counts (See Table IX).
- H1 cells cultured in and mTeSR®1 media were released by using TrypLE (Invitrogen) and seeded at a density of 5 ⁇ 10 5 cells per 10 cm MATRIGELTM-coated dishes.
- released cells were pretreated with 10 ⁇ M Rock inhibitor (Sigma). Media was changed daily until three days post-seeding. On day 3, cells were released as single cells and counted using a hemocytometer. As shown in Table X, cells cultured in all three media formulations showed equivalent doubling times.
- FIG. 14B depict phase-contrast images of H1 cells cultured for 4 days in media formulations containing Sigma BSA ( FIG. 14A ) or fatty acid free BSA ( FIG. 14B ).
- FIG. 15A and FIG. 15B depict phase-contrast images of H1 cells cultured for three passages in media formulations containing Sigma BSA ( FIG. 15A ) or fatty acid free BSA ( FIG. 15B ).
- FIG. 14A As seen in FIG. 14A , as early as day 4 following seeding, there was morphological evidence of differentiated cells in cultures using Sigma BSA. However, there was no gross differentiated cell morphology evident in cultures treated with fatty acid-free BSA (see FIG. 14B )).
- FIGS. 16A, 16B, and 16C Data from real-time PCR analyses of the expression of AFP ( FIG. 16A ), MIXL1 ( FIG. 16B ), and T (BRY) ( FIG. 16C ) in cells of the human embryonic stem cell line H1 cultured for three passages in media formulations containing Sigma BSA or fatty acid free BSA are shown in FIGS. 16A, 16B, and 16C .
- PCR data at passage 3 clearly showed significant upregulation of markers associated with a differentiated cell for cells cultured in media comprising Sigma BSA. This data clearly demonstrates that use of fatty-acid-free BSA is critical in the maintenance of pluripotency, colony morphology, and proliferation of cells.
- Pluripotent Stem Cells can be Propagated and Maintain Pluripotency in 111-3 Media Using a Wide Range of Fatty Acid Free BSA and bFGF Concentrations
- FIG. 17A to FIG. 17D show data from real-time PCR analyses of the expression of SOX2 ( FIG. 17A ), POU5F1 ( FIG. 17B ), NANOG ( FIG. 17C ), and FOXA2 ( FIG. 17C ) in cells of the human embryonic stem cell line H1 cultured for ten passages in media formulations listed in Table XI. As shown in these figures, all of the above formulations retained strong expression of pluripotency markers relative to cells grown in mTeSR®1 media.
- FIG. 18A to FIG. 18E depict phase-contrast images of H1 cells cultured for 10 passages in IH-3-2 ( FIG. 18A ), IH-3P-2 ( FIG. 18B ), IH-3P-3 ( FIG. 18C ), IH-3P-4 ( FIG. 18D ), and IH-3P-5 ( FIG. 18E ) media formulations listed in Table XI. As indicated in these figures, all formulations tested in this example allowed for formation of ES colonies with minimal evidence of gross differentiated morphology.
- H1 cells cultured for ten passages in media formulations listed in Table XI retained normal counts for chromosome 12 and 17 as measured by FISH analysis.
- defined media consisting of DMEM/F12 basal media supplemented with ITS-X, reagent-grade fatty acid-free BSA, TGF-B1, IGF-1, and ascorbic acid allows for expansion of pluripotent cells while maintaining pluripotency of the cells when using a wide range of concentrations of fatty acid—free BSA and bFGF.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Gynecology & Obstetrics (AREA)
- Biotechnology (AREA)
- Reproductive Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Developmental Biology & Embryology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention provides methods to promote the proliferation of undifferentiated pluripotent stem cells in defined media. Specifically, the invention provides a defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein culturing stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the cells for at least 10 passages. Further disclosed is a cell population, grown under defined media conditions, that expresses OCT4, SOX2, NANOG, and FOXA2.
Description
- This application is a divisional application of U.S. patent application Ser. No. 15/150,349, filed May 9, 2016 (now allowed), which is a divisional application of U.S. patent application Ser. No. 13/787,173, filed Mar. 6, 2013 (now U.S. Pat. No. 9,434,920, issued Sep. 6, 2016), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/607,706, filed Mar. 7, 2012, which are incorporated herein by reference in their entirety for all purpose.
- The present invention is in the field of proliferation and maintenance of pluripotent stem cells under defined media conditions.
- Expansion of undifferentiated pluripotent stem cells has been traditionally employed “feeder” cells which provide sufficient factors to support attachment, proliferation and maintenance of pluripotency markers. Early methods for the generation and culture of human embryonic stem cells required the use of mouse embryonic fibroblast (MEF) feeder cells. Subsequent techniques included use of “conditioned media” and an extracellular matrix coating to replace feeder cells. Conditioned media is media that has been modified by feeder cells, such as MEFs. However, both methods suffer from inconsistencies in batches of conditioned media or feeder cells to continually support expansion of pluripotent stem cells. Furthermore, both systems provide undefined factors that may work differently on different pluripotent stem cells. Accordingly, establishing a defined, cheap, reproducible culture media that supports continual expansion of pluripotent stem cells is of great interest in the regenerative medicine field.
- A defining feature of human embryonic stem cells (hES cells) is that the cells have a tendency to differentiate into various lineages. This unwanted differentiation can hamper uniform and directed differentiation required to subsequently generate desired specific cell types. In fact, both feeder cells and conditioned media culture conditions typically result in some level of unwanted differentiation, particularly around the edges of the growing ES cell colony or in the center of the colony.
- Recent efforts have resulted in replacement of feeder cells or conditioned media with a host of replacement culture conditions, such as knock-out serum replacer (KSR) in the media (Chen et al., 2005, Nature Methods, 2:185-189). KSR contains a crude undefined fraction of bovine serum albumin (BSA). Others have shown long-term maintenance of pluripotency in a chemically defined media with FGF2, activin A, and insulin (Vallier et al., 2005, J Cell Sci, 118:4495-4509) Commercially available media formulations including mTeSR®1 media (StemCell Technologies, Vancouver, Canada) and StemPro™ (Invitrogen, CA) have also been previously used to maintain and proliferate human pluripotent stem cells. Additional prior art focusing on development of defined media include U.S. Pat. No. 7,449,334, U.S. Pat. No. 7,442,548, U.S. Pat. No. 7,005,252, US2008/0268534, U.S. Pat. No. 7,410,798, U.S. Pat. No. 7,297,539, and U.S. Pat. No. 6,800,480. Furthermore, a recent publication further refined the mTeSR®1 media to eight components (Nature Methods, 2011, 8:424-429) highlighting that even in defined media there exists unnecessary agent(s) that may actually slow the proliferation of ES cells or reduce their pluripotency state. The refined mTeSR®1 media consists of DMEM/F12 basal media supplemented with insulin, selenium, transferrin, ascorbic acid, FGF2 (bFGF), and TGFβ or nodal, having the pH adjusted with NaHCO3.
- It is therefore clear that there is still a need for fully defined media conditions that provide consistency regarding expansion of pluripotent cells while having minimal number of added components.
- The present invention provides a defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, and ascorbic acid; and wherein culturing stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the stem cells for at least 10 passages. In some embodiments of the invention, the cell culture formulation further comprises insulin growth factor 1 (IGF-1). In some embodiments of the invention, the cell culture formulation comprises DMEM-F12.
- The invention provides a defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, ascorbic acid, TRACE ELEMENTS C (1.20 mg/L AlCl3.6H2O, 0.17 mg/L AgNO3, 2.55 mg/L Ba(C2H3O2)2, 0.12 mg/L KBr, 2.28 mg/L CdCl2, 2.38 mg/L CoCl2.6H2O, 0.32 mg/L CrCl3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO2, 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L ZrOCl2.8H2O), 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid, lithium chloride, glucose, GIBCO® CHEMICALLY DEFINED LIPID CONCENTRATE (“DEFINED LIPIDS”) (Life Technology Corporation) (100.0 ml/L ethyl alcohol (200 proof) and 2 mg/L Arachidonic Acid, 220 mg/L Cholesterol, 70 mg/L DL-alpha-Tocopherol Acetate, 0 mg/
L Ethyl Alcohol 100%, 10 mg/L Linoleic Acid, 10 mg/L Linolenic Acid, 10 mg/L Myristic Acid, 10 mg/L Oleic Acid, 10 mg/L Palmitic Acid, 10 mg/L Palmitoleic Acid, 90000 mg/L Pluronic F-68, 10 mg/L Stearic Acid, and 2200 mg/L Tween 80® (polysorbate 80 sold under the trade name TWEEN 80 by ICI Americas, Inc. Bridgewater, N.J.)), and L-alanyl-L-glutamine dipeptide; and wherein culturing stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the stem cells for at least 10 passages. In some embodiments of the invention, the cell culture formulation comprises MCDB-131. - In some embodiments of the invention, GIBCO® Insulin-Transferrin-Selenium-X (a basal medium supplement containing insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (“ITS-X”) (Life Technologies Corporation, Carlsbad, Calif.) provides the insulin, transferrin, and selenium for the defined cell culture formulation of the invention. In some embodiments of the invention, the ITS-X is present from about 0.5% to about 2%. In some embodiments of the invention, the ITS-X is present at about 1%. In some embodiments of the invention, the fatty acid free albumin is reagent grade. In some embodiments of the invention, the reagent grade fatty acid-free BSA is present from about 0.2% to about 2.5%. In some embodiments of the invention, the reagent grade fatty acid-free BSA is present at about 2%.
- In some embodiments, the TGF-β ligand in the defined cell culture formulation of the invention is TGF-β1. In some embodiments of the invention, the TGF-β1 is present from about 0.5 ng/ml to about 10 ng/ml. In some embodiments of the invention, the TGF-B1 is present at about 1 ng/ml.
- In some embodiments of the invention, the bFGF is present in the cell culture formulation from about 50 ng/ml to about 100 ng/ml. In some embodiments of the invention, the bFGF is present in the defined cell culture formulation at about 50 ng/ml. In some embodiments, the bFGF is present in the defined cell culture formulation at about 100 ng/ml.
- In some embodiments of the invention, the insulin growth factor 1 (IGF-1) is present from about 10 ng/ml to about 50 ng/ml. In some embodiments of the invention, the IGF-1 is present in the defined cell culture formulation at about 20 ng/ml.
- In some aspects of the invention, ascorbic acid is present in the defined cell culture formulation from about 0.2 mM to about 0.3 mM. In some aspects of the invention, ascorbic acid is present in the defined cell culture formulation at about 0.25 mM.
- In an embodiment, the invention concerns a defined cell culture formulation consisting essentially of DMEM-F12 basal medium, ITS-X (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.) (to provide insulin, transferrin, and selenium), fatty-acid free albumin, a TGF-β ligand, bFGF, insulin growth factor 1 (IGF-1), and ascorbic acid.
- In an embodiment, the invention relates to a defined cell culture formulation consisting essentially of MCDB-131, (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.), fatty-acid free albumin, a TGF-β ligand, bFGF, ascorbic acid, TRACE ELEMENTS C (1.20 mg/L AlCl3.6H2O, 0.17 mg/L AgNO3, 2.55 mg/L Ba(C2H3O2)2, 0.12 mg/L KBr, 2.28 mg/L CdCl2, 2.38 mg/L CoCl2.6H2O, 0.32 mg/L CrCl3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO2, 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L ZrOCl2.8H2O), 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid, lithium chloride, glucose, GIBCO® CHEMICALLY DEFINED LIPID CONCENTRATE (Life Technology Corporation) (100.0 ml/L ethyl alcohol (200 proof) and 2 mg/L Arachidonic Acid, 220 mg/L Cholesterol, 70 mg/L DL-alpha-Tocopherol Acetate, 0 mg/
L Ethyl Alcohol 100%, 10 mg/L Linoleic Acid, 10 mg/L Linolenic Acid, 10 mg/L Myristic Acid, 10 mg/L Oleic Acid, 10 mg/L Palmitic Acid, 10 mg/L Palmitoleic Acid, 90000 mg/L Pluronic F-68, 10 mg/L Stearic Acid, and 2200 mg/L Tween 80® (polysorbate 80 sold under the trade name TWEEN 80 by ICI Americas, Inc. Bridgewater, N.J.)), and L-alanyl-L-glutamine dipeptide. - In an embodiment, the invention concerns a method for the expansion of human pluripotent stem cells, where the method comprises culturing the human pluripotent stem cells on a feeder-free matrix in a defined cell culture formulation; where the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, and ascorbic acid; and where culturing the stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the cells for at least 10 passages. In some embodiments, the defined cell culture formulation further comprises insulin growth factor 1 (IGF-1). In some embodiments, the cell culture formulation comprises DMEM-F12.
- In an embodiment, the invention relates to a method for the expansion of human pluripotent stem cells, where the method comprises culturing the human pluripotent stem cells on a feeder-free matrix in a defined cell culture formulation; where the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, ascorbic acid, IGF-1, TRACE ELEMENTS C (1.20 mg/L AlCl3.6H2O, 0.17 mg/L AgNO3, 2.55 mg/L Ba(C2H3O2)2, 0.12 mg/L KBr, 2.28 mg/L CdCl2, 2.38 mg/L CoCl2.6H2O, 0.32 mg/L CrCl3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO2, 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L ZrOCl2.8H2O), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, lithium chloride, glucose, GIBCO® CHEMICALLY DEFINED LIPID CONCENTRATE (Life Technology Corporation) (100.0 ml/L ethyl alcohol (200 proof) and 2 mg/L Arachidonic Acid, 220 mg/L Cholesterol, 70 mg/L DL-alpha-Tocopherol Acetate, 0 mg/L Ethyl Alcohol 100%, 10 mg/L Linoleic Acid, 10 mg/L Linolenic Acid, 10 mg/L Myristic Acid, 10 mg/L Oleic Acid, 10 mg/L Palmitic Acid, 10 mg/L Palmitoleic Acid, 90000 mg/L Pluronic F-68, 10 mg/L Stearic Acid, and 2200 mg/L Tween 80® (polysorbate 80 sold under the trade name TWEEN 80 by ICI Americas, Inc. Bridgewater, N.J.)), and L-alanyl-L-glutamine dipeptide. In some embodiments, the cell culture formulation used in the method for the expansion of human pluripotent stem cells, comprises MCDB-131.
- An embodiment of the present invention is an in vitro cell population wherein greater than 50% of the cell population is positive for protein expression of OCT4, SOX2, NANOG, and FOXA2 with negative or low protein expression of SSEA-4 and ZFP42. The population is obtained by culturing pluripotent stem cells in a defined cell culture formulation comprising basal media supplemented with IGF-1, insulin, bFGF, TGF-B ligand, and fatty-acid free albumin; and where the defined cell culture formulation does not comprise ascorbic acid.
- In some embodiments of the invention, the defined cell culture formulation comprises DMEM/F12 basal media. In some embodiments of the invention the cell culture formulation comprises insulin as ITS-X (insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L)) (Life Technologies Corporation, Carlsbad, Calif.). In some embodiments of the invention, the ITS-X is present from about 0.5% to about 2%. In some aspects of the invention, the ITS-X is present at about 1%. In some embodiments of the invention, the fatty acid free albumin is reagent grade. In some aspects of the invention, the reagent grade fatty acid-free albumin is present from about 0.2% to about 2.5%. In some embodiments of the invention, the reagent grade fatty acid-free albumin is present at about 2%. In some aspects of the invention, the TGF-B ligand is TGF-B1. In some embodiments of the invention, the TGF-B1 is present from about 0.5 ng/ml to about 10 ng/ml. In some aspects of the invention, the TGF-B1 is present at about 1 ng/ml.
-
FIG. 1A toFIG. 1D show phase-contrast images of H1 cells cultured for 3 passages in IH-3 (FIG. 1A ), IH-1 (FIG. 1B ), IH-6 (FIG. 1C ), and mTeSR®1 (FIG. 1D ). -
FIG. 2A toFIG. 2C show phase-contrast images of H1 cells cultured for 10 passages in IH-3 (FIG. 2A ), IH-1 (FIG. 2B ), and mTeSR®1 (FIG. 2C ) media. -
FIG. 3A toFIG. 3C show phase-contrast images of H1 cells cultured for 18 passages in IH-3 (FIG. 3A ), IH-1 (FIG. 3B ), and mTeSR®1 (FIG. 3C ) media. -
FIG. 4A toFIG. 4F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested atpassages 1 to 5 (P1-P5); ZFP42 (FIG. 4A ), SOX2 (FIG. 4B ), POU5F1 (OCT4) (FIG. 4C ), Nanog (FIG. 4D ), FOXA2 (FIG. 4E ), and AFP (FIG. 4F ). -
FIG. 5A toFIG. 5B show data from real-time PCR analyses of the expression of Nanog, POU5F1 (OCT4), SOX2, and ZFP42 (FIG. 5A ), and of AFP and FOXA2 (FIG. 5B ) in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested atPassage 10. -
FIG. 6A andFIG. 6B show data from real-time PCR analyses of the expression of ZFP42, SOX2, POU5F1 (OCT4), and Nanog (FIG. 6A ), and of AFP and FOXA2 (FIG. 6B ) in cells of the human embryonic stem cell line H1 cultured in media described in Example 1 and harvested atPassage 18. -
FIG. 7A toFIG. 7F show FACS histogram expression profiles of the following markers in cells cultured for 18 passages in IH-3 media described in Example 1: Isotype control (FIG. 7A ); KI-67 (FIG. 7B ); OCT4 (FIG. 7C ); SOX17 (FIG. 7D ); FOXA2 (FIG. 7E); and SOX2 (FIG. 7F ). Percentage expression for each marker is shown on each histogram. -
FIG. 8A toFIG. 8F show images of cells cultured for 18 passages in IH-3 media described in Example 1 and immunostained for OCT-4, FOXA2, SOX2, and fluorescent labeling of DNA using DAPI. Images obtained for OCT4 (FIG. 8A ), FOXA2 (FIG. 8B ), and DAPI-stained DNA (FIG. 8C ) were obtained from the same optical field but with different filters. Similarly, images for SOX2 (FIG. 8D ), FOXA2 (FIG. 8E ), and DAPI stained DNA (FIG. 8F ) were obtained from the same optical field but with different filters -
FIG. 9A toFIG. 9F depict phase-contrast images of H1 cells cultured for five passages inmTeSR® 1 media (FIG. 9A ) and in IH-3 (FIG. 9B ), IH-3-1 (FIG. 9C ), IH-3-2 (FIG. 9D ), IH-3-3 (FIG. 9E ), and IH-3-4 (FIG. 9F ) formulations described in Example 2. -
FIG. 10A toFIG. 10E show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured in media described in Example 2 and harvested at Passage 5: ZFP42 (FIG. 10A ), SOX2 (FIG. 10B ), FOXA2 (FIG. 10C ), Nanog (FIG. 10 D), and POU5F1 (OCT4) (FIG. 10E ). -
FIG. 11A toFIG. 11D depict phase-contrast images of H1 cells cultured for 20 passages inmTeSR® 1 media (FIG. 1A ), IH-3 (FIG. 11B ), IH-1 (FIG. 11C ), and IH-3RT (FIG. 11D ) media formulations described in Example 3. -
FIG. 12A toFIG. 12F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for 15 passages in media described in Example 3: AFP (FIG. 12A ), FOXA2 (FIG. 12B ), SOX2 (FIG. 12C ), Nanog (FIG. 12D ), POU5F1 (OCT4) (FIG. 12E ), and ZFP42 (FIG. 12F ). -
FIG. 13A toFIG. 13F show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for 20 passages inmTeSR® 1 media, and IH-1 and IH-3 media described in Example 3: AFPFIG. 13A ), FOXA2 (FIG. 13B ), Nanog (FIG. 13C ), POU5F1 (OCT4) (FIG. 13D ), SOX2 (FIG. 13E ), and ZFP42 (FIG. 13F ). -
FIG. 14A andFIG. 14B depict phase-contrast images of H1 cells cultured for 4 days in media formulations described in Example 5 containing Sigma BSA (FIG. 14A ) or containing fatty acid free BSA (FIG. 14B ). -
FIG. 15A andFIG. 15B depict phase-contrast images of H1 cells cultured for three passages in media formulations described in Example 5 containing Sigma BSA (FIG. 15A ) or containing fatty acid free BSA (FIG. 15B ). -
FIG. 16A toFIG. 16C show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for three passages in media formulations described in Example 5 containing Sigma BSA or fatty acid free BSA: AFP (FIG. 16A ), MIXL1 (FIG. 16B ), and T (BRY) (FIG. 16C ). -
FIG. 17A toFIG. 17D show data from real-time PCR analyses of the expression of the following genes in cells of the human embryonic stem cell line H1 cultured for ten passages in media formulations described in Example 6: SOX2 (FIG. 17A ), POU5F1 (FIG. 17B ), Nanog (FIG. 17C ), and FOXA2 (FIG. 17C ). -
FIG. 18A toFIG. 18E depict phase-contrast images of H1 cells cultured for 10 passages in IH-3 (FIG. 18A ), IH-3P-2 (FIG. 18B ), IH-3P-3 (FIG. 18C ), IH-3P-4 (FIG. 18D ), and IH-3P-5 (FIG. 18E ) media formulations described in Example 6. - For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the following subsections that describe or illustrate certain features, embodiments or applications of the present invention.
- Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
- Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extra-embryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self-renewal), blood cell restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g., spermatogenic stem cells).
- Differentiation is the process by which an unspecialized (“uncommitted”) or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell. A differentiated or differentiation-induced cell is one that has taken on a more specialized (“committed”) position within the lineage of a cell. The term “committed”, when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type. De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell. As used herein, the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to. The lineage of a cell places the cell within a hereditary scheme of development and differentiation. A lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
- “Markers,” as used herein, are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest. In this context, differential expression means an increased level for a positive marker and a decreased level for a negative marker. The detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
- “Basal Medium” refers to a solution of salts, nutrients, and vitamins that can support the growth of pluripotent stem cells in culture. Basal media may be selected among others from Dulbecco's modified Eagle's media (DMEM), MCDB media, RPMI. DMEM may also be DMEM/F12 (also referred to as DM-F12), or DMEM-high glucose (also referred to as DMEM-hg). MCDB media may be selected from any of the MCDB media available, and specifically MCDB-131. Alternatively, basal media may be selected by mixing the basal media formulations listed above in the appropriate ratio to allow for proliferation and maintenance of pluripotency of embryonic stem cells. In some embodiments, the basal media in the defined cell culture formulation of the invention is DMEM-F12. In some embodiments, the basal media in the cell culture formulation of the invention is MCDB-131.
- “Feeder Cells” refers to non-pluripotent stem cells on which pluripotent stem cells are plated. The feeder cells provide sufficient soluble and insoluble factors to support for attachment, proliferation, and maintenance of pluripotency markers by pluripotent stem cells.
- “Conditioned Medium” refers to a medium that is further supplemented with soluble factors derived from feeder cells.
- “Extracellular Matrix” or “Defined Matrix” or “Synthetic Matrix” refers to one or more substances that can provide for attachment, proliferation, and maintenance of pluripotency markers by pluripotent stem cells. Used interchangeably herein are “IGF” and “IGF-1” which stand for Insulin-
like growth factor 1. In humans, this protein is made by the liver and is responsible for much of what is attributed to the human growth hormone. - As used herein, “FGF2” and “bFGF” are used interchangeably to identify the human basic fibroblast growth factor.
- Used interchangeably herein are “TGF beta”, “TGF-B”, and “TGF-β”. A TGF-β ligand may be selected from bone morphogenetic proteins (BMPs), growth and differentiation factor (GDFs), activins (Activin A, Activin AB, Activin B, Activin C), nodal and TGF-βs. A TGF-β may be selected from TGF-β1, TGF-β2, activin A, and TGF-β3.
- Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra 1-60, and Tral-81 expression (if present) and increased expression of SSEA-1. Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde, followed by developing with Vector® Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.). Undifferentiated pluripotent stem cells also typically express OCT4 and TERT, as detected by RT-PCR.
- Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues. Pluripotency of stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers. Alternatively, pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
- Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a “normal karyotype,” which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered. Pluripotent cells may be readily expanded in culture using various feeder layers or by using matrix protein coated vessels. Alternatively, chemically defined surfaces in combination with defined media such as
mTeSR® 1 media (StemCell Technologies, Vancouver, Canada) may be used for routine expansion of the cells. Pluripotent cells may be readily removed from culture plates using enzymatic, mechanical or use of various calcium chelators such as EDTA (ethylenediaminetetraacetic acid). Alternatively, pluripotent cells may be expanded in suspension in the absence of any matrix proteins or a feeder layer. - The types of pluripotent stem cells that may be used include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation. Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines H1, H7, and H9 (WiCell Research Institute, Madison, Wis.). Also contemplated is use of the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues. Also suitable are cells taken from a pluripotent stem cell population already cultured in the absence of feeder cells. Also suitable are inducible pluripotent cells (IPS) or reprogrammed pluripotent cells that can be derived from adult somatic cells using forced expression of a number of pluripotent related transcription factors, such as OCT4, Nanog, Sox2, KLF4, and ZFP42 (Annu Rev Genomics Hum Genet, 2011, 12:165-185).
- Human embryonic stem cells may be prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science, 1998; 282:1145-1147; Curr Top Dev Biol, 1998; 38:133-165; 1995, Proc Natl Acad Sci USA 92:7844-7848).
- Characteristics of pluripotent stem cells are well known to those skilled in the art, and additional characteristics of pluripotent stem cells continue to be identified. Pluripotent stem cell markers include, for example, the expression of one or more of the following: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
- Differentiation markers typically present in cultures of embryonic stem cells include for example, AFP, FOXA2, SOX17, T(BRY), and MIXL1.
- In an embodiment of the present invention, human pluripotent stem cells are cultured in a defined media comprising ascorbic acid, IGF, insulin, bFGF, TGF-B ligand, and fatty-acid free albumin to sustain proliferation of the pluripotent stem cells while maintaining pluripotency and karyotypic stability of the expanded cells for at least 10 passages.
- An embodiment of the present invention is an in vitro cell population wherein greater than 50% of the cell population is positive for protein expression of OCT4, SOX2, NANOG, and FOXA2 positive but low protein expression of SSEA-4 and ZFP42.
- Another aspect of the present invention describes an in vitro defined cell culture formulation comprising IGF, insulin, bFGF, TGF-B, fatty-acid free albumin, and no ascorbic acid that results in a cell population wherein greater than 50% of the cell population is positive by protein staining for OCT4, SOX2, NANOG, FOXA2 and low protein expression of SSEA-4 and ZFP42.
- The present invention is further illustrated, but not limited, by the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Publications cited throughout this document are hereby incorporated by reference in their entirety.
- Cells of the human embryonic stem cell line H1 (at passage 35 to passage 40), cultured on MATRIGEL™ (Catalog No. 354230, 1:30 dilution; Corning Incorporated, Corning, N.Y.) coated dishes in
mTeSR® 1 media (Catalog No. 05850, Stem-Cell Technologies, Inc., Vancouver BC, Canada) and passaged using ethylenediaminetetraacetic acid (“EDTA”), were used as the starting population to test various media compositions. Cells were passaged as small colonies using 5-10 min EDTA (Catalog No. #170711E, Lonza Walkersville, Inc., Walkersville, Md.) treatment at room temperature. Cultures were routinely split in a ratio of 1:6 to 1:10 at each passage. Table I lists the initial media formulations tested for their ability to proliferate H1 cells while maintaining their undifferentiated morphology and pluripotency markers. -
TABLE I Media Formulations Evaluated Media Number Basal Media Added Components* IH-1 MCDB-131 1 X Trace Elements C**, (Catalog No. 0.25 mM ascorbic acid, 10372-019, 10 mM HEPES, Life Technologies 1 mM lithium chloride, Corporation, Carlsbad, 10 mM D-Glucose, CA) 1:500 X DEFINED LIPID***, 1 X ITS-X, 2% reagent grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 1X GlutaMAX ™ IH-2 MCDB-131 1X Trace Elements C**, 0.25 mM ascorbic acid, 10 mM HEPES, 1 mM lithium chloride, 10 mM D-Glucose, 1:500 X DEFINED LIPID***, 1 X ITS-X, 2% lipid rich BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 1X GlutaMAX ™ IH-3 DMEM-F12 1 X ITS-X, (Catalog No. 2% reagent-grade fatty acid free BSA, 11330-032, 1 ng/ml TGF-B1, Life Technologies 100 ng/ml bFGF, Corporation, Carlsbad, 20 ng/ml IGF-1 CA) IH-4 DMEM-F12 1 X Trace Elements C**, 0.25 mM ascorbic acid, 10 mM HEPES, 1 mM lithium chloride, 10 mM D-Glucose, 1:500 X DEFINED LIPID***, 1 X ITS-X, 2% BSA (New Zealand origin), 1 ng/ml TGF-B1, 100 ng/ml bFGF, 1X GlutaMAX ™ IH-5 DMEM-F12 1 X Trace Elements C**, 0.25 mM ascorbic acid, 10 mM HEPES, 1 mM Lithium chloride, 10 mM D-Glucose, 1:500 X DEFINED LIPID***, 1 X ITS-X, 2% standard grade BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 1X GlutaMAX ™ IH-6 DMEM-F12 1 X Non-essential amino acids, 1 X ITS-X, 20 ng/ml bFGF, 0.1 mM β-mercaptoethanol, 0.95 μM CHIR99021, 0.4 μM PD0325901, and 10 μM Y-27632 *TRACE ELEMENTS C** (Catalog No. #25-023-C1, Corning Incorporated, Corning NY); HEPES (Catalog No. #15630-056-, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Life Technologies Corporation, Carlsbad, CA); LiCl (Catalog No. L7026, Sigma Aldrich Co LLC, Saint Louis, MO); D-glucose (Catalog No. G8769, Sigma); ascorbic acid (Catalog No. A4403, Sigma Aldrich Co. LLC, Saint Louis, MO); DEFINED LIPID*** is GIBCO ® CHEMICALLY DEFINED LIPID CONCENTRATE (Catalog No. 11905-031, Life Technologies Corporation, Carlsbad, CA); reagent-grade fatty acid free BSA (Catalog No. 7500804-, LAMPIRE Biological Laboratories, Inc., Pipersville, PA); TGF-β1 (Catalog No. 240-B-002, R & D Systems, Inc., Minneapolis, MN); bFGF (Catalog No. 233-FB-025, R & D Systems, Inc., Minneapolis, MN); IGF-1 (Catalog No. 291-G1-200, R & D Systems, Inc., Minneapolis, MN), GlutaMAX ™ (Catalog No. 35050-079-, 200 mM L-alanyl-L-glutamine dipeptide in 0.85% NaCl; Life Technologies Corporation, Carlsbad, CA); Lipid rich BSA-AlbuMAX ® (Catalog No. 11021-037, Life Technologies Corporation, Carlsbad, CA); Insulin-Transferrin-Selenium-X (“ITS-X”) (Catalog No. 51500-056, insulin (1.00 g/L), transferrin (0.55 g/L), selenium (sodium selenite 0.00067 g/L) and ethanolamine (0.20 g/L), Life Technologies Corporation, Carlsbad, CA); standard grade New Zealand BSA (Catalog No. 8631200, LAMPIRE Biological Laboratories, Inc., Pipersville, PA); standard grade BSA (Catalog No. 7500802, LAMPIRE Biological Laboratories, Inc., Pipersville, PA); NEAA (Catalog No. 11140-050-, Life Technologies Corporation, Carlsbad, CA); mercaptoethanol (Catalog No. 31350-010, Life Technologies Corporation, Carlsbad, CA); CHIR99021 (Catalog No. 04-0004, Stemgent, Inc., Cambridge, MA), PD0325901 (Catalog No. PZ0162, Sigma Aldrich Co LLC), Y27632 (Catalog No. Y0503, Sigma Aldrich Co LLC). **Mediatech TRACE ELEMENTS C (previously sold by Mediatech, Inc. under Catalog No. 99-176) 1000× liquid contains: 1.20 mg/L AlCl3•6H2O, 0.17 mg/L AgNO3, 2.55 mg/L Ba(C2H3O2)2, 0.12 mg/L KBr, 2.28 mg/L CdCl2, 2.38 mg/L CoCl2•6H2O, 0.32 mg/L CrCl3 (anhydrous), 4.20 mg/L NaF, 0.53 mg/L GeO2, 0.17 mg/L KI, 1.21 mg/L RbCl, and 3.22 mg/L ZrOCl2•8H2O. ***GIBCO ® CHEMICALLY DEFINED LIPID CONCENTRATE (“DEFINED LIPID”) Catalog No. 11905031 contains 100.0 ml/L ethyl alcohol (200 proof) and 2 mg/L Arachidonic Acid, 220 mg/L Cholesterol, 70 mg/L DL-alpha-Tocopherol Acetate, 0 mg/ L Ethyl Alcohol 100%, 10 mg/L Linoleic Acid, 10 mg/L Linolenic Acid, 10 mg/L Myristic Acid, 10 mg/L Oleic Acid, 10 mg/L Palmitic Acid, 10 mg/L Palmitoleic Acid, 90000 mg/L Pluronic F-68, 10 mg/L Stearic Acid, and 2200 mg/L Tween ® 80 (polysorbate 80 sold under the trade name TWEEN 80 by ICI Americas, Inc. Bridgewater, NJ). - Use of IH-4 and IH-5 were discontinued for further evaluation because cells cultured using IH-4 and IH-5 failed to grow
past passage 2. Atpassage 2, cells grown in IH-2 showed significant change in morphology consistent with differentiated cells and loss of packed colonies. Media IH-1, IH-3, and IH-6 were selected for further evaluation. At passage 3-5, cells cultured in IH-6 showed morphological evidence of differentiated cells at the periphery of the ES colonies (compareFIG. 1C withFIG. 1A ,FIG. 1B , andFIG. 1D ). - After
passage 5, only IH-1 and IH-3 were further compared to the cells cultured inmTeSR® 1 media (Catalog No. 05850, Stem-Cell Technologies, Inc., Vancouver BC, Canada). Atpassages 5 to 18 samples were collected from IH-1, IH-3, andmTeSR® 1 cultures and evaluated by FACS, PCR, karyotype analysis (G-banding or FISH), and immune fluorescence staining. The results from FISH analysis are shown in Table II. These results show that H1 cells cultured in IH-1 media or IH-3 media showed normal karyotype, whereas cells cultured inmTeSR® 1 media displayed abnormal trisomy 12 atpassage -
TABLE II Results of FISH Analysis of Chromosome 12 and Chromosome 17 by CellLine Genetics (Madison, WI) Media P5 P10 P18 IH-1 Normal Normal Normal IH-3 Normal Normal Normal mTeSR ® 1 Normal 14% Trisomy 12, 14% Trisomy 12, normal 17 normal 17 - Furthermore, similar to cells grown in
mTeSR® 1 media, cells passaged continuously in IH-1 media maintained characteristic ES colony morphology with very few differentiated cells surrounding the colonies. However, cells grown in IH-3 media started to lose the characteristic ES colony morphology beyond passage 10 (SeeFIG. 1A ,FIG. 2A , andFIG. 3A ). - Evaluation of surface and internal markers attributed to pluripotency was used to assess the impact of the tested formulations on maintenance of pluripotency. As shown in Table III, at
passage 5, cells cultured in IH-1 and IH-3 showed similar profile of surface markers as cultures expanded inmTeSR® 1 media. However, bypassage 10, H1 cells cultured in IH-3 media showed a significant drop in expression of SSEA-4 and a modest drop in expression of TRA1-60 and 1-81. H1 cells cultured in IH-1 media for 10 passages maintained similar expression pattern to those cultured inmTeSR® 1 media. -
TABLE III FACS Results at Passage 5 andPassage 10 for Surface MarkersRelated to the Pluripotency State of the Cells % CD9 % SSEA-4 % TRA 1-60 % TRA 1-81 P5 IH-1 80 98 50 54 IH-3 83 87 39 50 mTeSR ® 160 99 56 63 P10 IH-1 83 95 55 44 IH-3 93 15.7 42 31 mTeSR ® 158 97 55 62 - Surprisingly, similar to H1 cells cultured in
mTeSR® 1 and IH-1 media, H1 cells cultured in IH-3 media maintained strong expression of OCT4 and SOX2 markers at passage 11 (Table IV). This was despite a very low expression level of SSEA-4 for H1 cells cultured in IH-3 media. -
TABLE IV Internal and surface markers of cells cultured for 11 passages in IH-1, IH-3 and mTeSR ® 1 media% Sox2 % SSEA-4 % Oct3/4 IH-1 97 97 92 IH-3 98 4.2 96 mTeSR ® 198 98 92 - As shown in
FIG. 4 , mRNA expression of core pluripotency markers, such as Nanog (FIG. 4D ), OCT4 (FIG. 4C ), SOX2 (FIG. 4B ), and ZPF42 (FIG. 4A ) were maintained throughpassage 5 for H1 cells cultured in IH-1, and IH-3 media to the same level as H1 cells cultured inmTeSR® 1. However, bypassages 10 to 18 there was a significant decrease in expression of ZFP42 while expression of OCT4, Nanog, and SOX2 were not significantly changed for cells grown in IH-3 media as compared to H1 cells cultured in IH-1 ormTeSR® 1 media (SeeFIG. 5A andFIG. 6A ). Furthermore, FACS analysis of H1 cells cultured in IH-3 media for 18 passages showed >97% of cells were OCT4+(FIG. 7C ), SOX2+(FIG. 7F ), and KI-67+(FIG. 7B ). Approximately 1% of the cells were SOX17+(FIG. 7D ) and −85% of the cells were FOXA2+(FIG. 7E ).FIG. 8A toFIG. 8F show images of immunofluorescence staining of H1 cells cultured in IH-3 media for 18 passages. These images illustrate that a significant number of OCT4 and SOX2 positive cells were also FOXA2+. H1 cells cultured in IH3 media had acquired a phenotype where at least 70% of the cells were OCT4+NANOG+SOX2+KI-67+ZFP42- and FOXA2+. This represents a population of cells not yet described in the art. - In order to identify the cause for the drop in SSEA-4 and ZPF42 for H1 cells cultured in IH-3 vs. those cultured in IH-1 and
mTeSR® 1 media, a gap analysis was conducted to identify the major reagents present inmTeSR® 1 and IH-1 but absent in IH-3 media. IH-3 media was supplemented with TRACE ELEMENTS C Mediatech, Manassas, Va.), ascorbic acid, lithium chloride, or DEFINED LIPID (Invitrogen) as indicated in Table V. -
TABLE V Modifications to IH-3 Media Media Additions to IH-3 Media IH-3-1 1x TRACE ELEMENTS C IH-3-2 0.25 mM ascorbic acid IH-3-3 1 mM lithium chloride IH-3-4 1:500 X DEFINED LIPID - H1 cells cultured for 14 passages in IH-3 were subsequently cultured in the above media formulations and compared to cells cultured in IH-3 media. At various passages, H1 cells cultured using various media formulations were assayed for pluripotency markers. As shown Table VI, following five additional passages, H1 cells cultured in IH-3-2 (IH-3 supplemented with ascorbic acid) media recovered a small percentage of their SSEA-4 expression as compared to cells cultured in the other tested media.
-
TABLE VI FACS Results at Five Passages Beyond Passage 15 for Surface Markers Related tothe Pluripotency State of the H1 Cells. CD9 SSEA-4 mTeSR ® 126 96.9 IH-1 82.9 96.9 IH-3 89.7 0.8 IH-3-1 90.4 0.9 IH-3-2 91.6 4.2 IH-3-3 87.6 0.7 IH-3-4 88.8 0.6 - As shown in
FIG. 9D , H1 cells cultured in IH-3-2 media retained typical embryonic stem cell morphology similar to cells cultured in mTeSR®1 (FIG. 9A ) media. However, H1 cells cultured in IH-3, IH-3-1, IH-3-3, and IH-3-4 showed loose colony morphology (SeeFIG. 9B ,FIG. 9C , andFIG. 9F ). PCR analysis of cells cultured in the above media formulations further confirmed that H1 cells cultured in IH-3-2 media regained some of the expression of ZFP42 and down regulated expression of FOXA2 (seeFIG. 10A toFIG. 10E ). The above data shows that presence of ascorbic acid is required to maintain pluripotency of ES cells along with their characteristic colony/cell morphology and low expression of differentiation markers. Based on this data, subsequent cultures of H1 cells in IH-3 media were further supplemented with 0.25 mM ascorbic acid. - Cells cultured in IH-3-2 recovered some of the characteristic colony morphology of ES cells whereas cells cultured in other IH media formulations displayed a looser morphology.
- Cells of the human embryonic stem cells line H1 (passage 35 to passage 40), cultured on MATRIGEL™ (1:30 dilution) coated dishes in
mTeSR® 1 media and passaged using EDTA, as described in Example 1, were used as the starting population to evaluate long-term cultures using IH-1, IH-3-2, IH-3RT andmTeSR® 1 media. Cells were passaged as small colonies using 5-10 minute EDTA treatment at room temperature. The components of the tested media are listed in Table VII. -
TABLE VII Ingredients used in IH-1, IH-3-2, and IH-3RT media formulations. Media number Basal Media Added components* IH-1 MCDB-131 1X TRACE ELEMENTS C, 0.25 mM ascorbic acid, 10 mM HEPES, 1 mM lithium chloride, 10 mM D-Glucose, 1:500 X DEFINED LIPID, 1 X ITS-X, 2% reagent grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 1X GlutaMAX ™ IH-3-2 DMEM-F12 1 X ITS-X, 2% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid IH-3RT DMEM- F12 2% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid, 5.5 μg/ml Recombinant Human Transferrin (Catalog No. 9701-10, EMD Millipore Corporation, Billerica, MA), 10 μg/ml insulin (Life Technologies Corporation, Carlsbad, CA), 0.0067 μg/ml sodium selenite (Life Technologies Corporation, Carlsbad, CA) - As seen in
FIG. 11A toFIG. 11D , H1 cells cultured for 20 passages in IH-1, IH-3-2, and IH-3RT retained typical ES morphology. The results of PCR analysis of H1 cells cultured for 15 passages in IH-1, IH-3-2, and IH-3RT are shown inFIG. 12A toFIG. 12F . The results of PCR analysis of H1 cells cultured for 20 passages in IH-1, IH-3-2, and IH-3RT are shown inFIG. 13A toFIG. 13F . These analyses confirmed that, similar to H1 cells cultured inmTeSR® 1 media, cells cultured for 15 or 20 passages in IH-1, IH-3-2, and IH-3RT (recombinant human transferrin) media retained all core pluripotency markers while showing very low expression of FOXA2 and AFP. FACS analysis atPassage 15 andPassage 20 also confirmed expression of surface markers related to pluripotent cells to the same levels as H1 cells cultured inmTeSR® 1 media (See Table VIII). -
TABLE VIII FACS Results for Cells Tested at Passage 15 and Passage20 forSurface Markers Related to the Pluripotency State of the Cells % CD9 % SSEA-4 % TRA 1-60 % TRA 1-81 P15 IH-1 93 99 59 59 IH-3-2 72 99 55 52 IH-3RT 65 99 50 48 mTeSR ® 163 99 49 49 P20 IH-1 91 96 52 54 IH-3-2 91 99 49 53 mTeSR ® 166 97 57 63 - H1 cells cultured continuously in IH-1, IH-3-2, and IH-3RT showed normal karyotype as measured by G-banding and FISH analysis. However, H1 cells cultured for 10 to 20 passages in
mTeSR® 1 showed abnormal chromosomal counts (See Table IX). -
TABLE IX FISH and G-banding Analysis of H1 Cells Cultured in IH-1, IH-3, IH-3RT, and mTeSR ® 1.Media P10 (G-banding and FISH) P15 (FISH) P20 (FISH) IH-1 46 XY, Normal 12 and 17 Normal Normal chromosomes IH-3-2 46 XY, Normal 12 and 17 Normal Normal chromosomes IH-3RT 46 XY, Normal 12 and 17 Normal ND chromosomes mTeSR ® 1 48, XY, +12, +14[2], /46 11 % Trisomy 20% Trisomy XY[18]- 20% trisomy 12 12, normal 17 12, normal 17 by FISH - In order to compare the proliferation rate of cells cultured in previously tested media, H1 cells cultured in and
mTeSR® 1 media were released by using TrypLE (Invitrogen) and seeded at a density of 5×105 cells per 10 cm MATRIGEL™-coated dishes. In order to reduce apoptosis of single cells and enhance attachment, released cells were pretreated with 10 μM Rock inhibitor (Sigma). Media was changed daily until three days post-seeding. Onday 3, cells were released as single cells and counted using a hemocytometer. As shown in Table X, cells cultured in all three media formulations showed equivalent doubling times. -
TABLE X Doubling Times of H1 Cells Cultured in mTeSR ® 1, IH-1,and IH-3-2 Media Formulations. mTeSR ® 1IH-1 IH-3-2 0 h 0.5 × 106 cells 0.5 × 106 cells 0.5 × 106 cells 72 h 6.7 × 106 cells 4.2 × 106 cells 6.8 × 106 cells Cell Doubling Time 19.23 h 23.45 h 19.12 h - Cells of the human embryonic stem cells line H1 (passage 35 to passage 40), cultured on MATRIGEL™ (1:30 dilution) coated dishes in
mTeSR® 1 media and passaged using EDTA, were used as the starting population to evaluate short-term cultures using media supplemented with either 2% Sigma BSA (catalog No. A2153; Lot: 061M1804V, Sigma Aldrich Co LLC, Saint Louis, Mo.) or fatty-acid free BSA (Catalog No. 7500804; Lot: 11G54001, LAMPIRE Biological Laboratories, Inc., Pipersville, Pa.). Cells were passaged as small colonies using 5-10 minute EDTA treatment at room temperature.FIG. 14A andFIG. 14B depict phase-contrast images of H1 cells cultured for 4 days in media formulations containing Sigma BSA (FIG. 14A ) or fatty acid free BSA (FIG. 14B ).FIG. 15A andFIG. 15B depict phase-contrast images of H1 cells cultured for three passages in media formulations containing Sigma BSA (FIG. 15A ) or fatty acid free BSA (FIG. 15B ). As seen inFIG. 14A , as early asday 4 following seeding, there was morphological evidence of differentiated cells in cultures using Sigma BSA. However, there was no gross differentiated cell morphology evident in cultures treated with fatty acid-free BSA (seeFIG. 14B )). The same trend was noted atpassage 3, there was morphological evidence of differentiated cells in cultures using Sigma BSA (seeFIG. 15A ), while there was no gross differentiated cell morphology evident in cells cultured in media comprising fatty acid-free BSA (seeFIG. 15B ). Furthermore, there was a significant drop in confluency of cells cultured in media comprising Sigma BSA as compared to cells cultured in media comprising reagent grade fatty-acid BSA (compareFIG. 15A andFIG. 15B ). - Data from real-time PCR analyses of the expression of AFP (
FIG. 16A ), MIXL1 (FIG. 16B ), and T (BRY) (FIG. 16C ) in cells of the human embryonic stem cell line H1 cultured for three passages in media formulations containing Sigma BSA or fatty acid free BSA are shown inFIGS. 16A, 16B, and 16C . PCR data atpassage 3 clearly showed significant upregulation of markers associated with a differentiated cell for cells cultured in media comprising Sigma BSA. This data clearly demonstrates that use of fatty-acid-free BSA is critical in the maintenance of pluripotency, colony morphology, and proliferation of cells. - Cells of the human embryonic stem cells line H1 (passage 35 to passage 40), cultured on MATRIGEL™ (1:30 dilution) coated dishes in
mTeSR® 1 media and passaged using EDTA, were used as the starting population to evaluate short and long-term cultures using IH-3 media supplemented as indicated in Table XI. -
TABLE XI Ingredients used in IH-3 media supplemented with varying doses of BSA and bFGF Media number Basal Media Added components* IH-3-2 DMEM-F12 1X ITS-X, 2% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid IH-3P-2 DMEM-F12 1X ITS-X, 2% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 50 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid IH-3P-3 DMEM-F12 1X ITS-X, 1% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid IH-3P-4 DMEM-F12 1X ITS-X, 0.5% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid IH-3P-5 DMEM-F12 1X ITS-X, 0% reagent-grade fatty acid free BSA, 1 ng/ml TGF-B1, 100 ng/ml bFGF, 20 ng/ml IGF-1, 0.25 mM ascorbic acid - At
passage 10, cells were evaluated morphologically by PCR for pluripotency and differentiation-associated genes. Furthermore, cells were evaluated for karyotypic stability using FISH analysis for chromosomes 12 and 17.FIG. 17A toFIG. 17D show data from real-time PCR analyses of the expression of SOX2 (FIG. 17A ), POU5F1 (FIG. 17B ), NANOG (FIG. 17C ), and FOXA2 (FIG. 17C ) in cells of the human embryonic stem cell line H1 cultured for ten passages in media formulations listed in Table XI. As shown in these figures, all of the above formulations retained strong expression of pluripotency markers relative to cells grown inmTeSR® 1 media. However, cells grown in 0-0.5% BSA showed higher expression of FOXA2 indicating a higher level of spontaneous differentiation in these cultures as compared to the other tested formulations.FIG. 18A toFIG. 18E depict phase-contrast images of H1 cells cultured for 10 passages in IH-3-2 (FIG. 18A ), IH-3P-2 (FIG. 18B ), IH-3P-3 (FIG. 18C ), IH-3P-4 (FIG. 18D ), and IH-3P-5 (FIG. 18E ) media formulations listed in Table XI. As indicated in these figures, all formulations tested in this example allowed for formation of ES colonies with minimal evidence of gross differentiated morphology. -
TABLE XII FISH analysis of chromosome 12 and 17 analyzed by Cell Line Genetics Media P10 IH-3-2 Normal IH-3P-2 Normal IH-3P-3 Normal IH-3P-4 Normal IH-3P-5 Normal - As seen in Table XII, H1 cells cultured for ten passages in media formulations listed in Table XI retained normal counts for chromosome 12 and 17 as measured by FISH analysis. The above data indicates that defined media consisting of DMEM/F12 basal media supplemented with ITS-X, reagent-grade fatty acid-free BSA, TGF-B1, IGF-1, and ascorbic acid allows for expansion of pluripotent cells while maintaining pluripotency of the cells when using a wide range of concentrations of fatty acid—free BSA and bFGF.
Claims (16)
1. A defined cell culture formulation for the culture, maintenance, and expansion of pluripotent stem cells, wherein the defined cell culture formulation comprises basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, and ascorbic acid; and wherein culturing stem cells in the defined cell culture formulation maintains the pluripotency and karyotypic stability of the cells for at least 10 passages.
2. The defined cell culture formulation of claim 1 , wherein the cell culture formulation comprises DMEM-F12.
3. The defined cell culture formulation of claim 1 , wherein the cell culture formulation further comprises insulin growth factor 1 (IGF-1).
4. The defined culture formulation of claim 3 , wherein the cell culture formulation comprises DMEM-F12.
5. The defined cell culture formulation of claim 1 , wherein the cell culture formulation further comprises Trace Elements C, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, lithium chloride, glucose, Defined Lipids, and L-alanyl-L-glutamine dipeptide.
6. The defined cell culture formulation of claim 1 , wherein the cell culture formulation comprises MCDB-131.
7. The defined cell culture formulation of claim 1 , wherein ITS-X provides the insulin, transferrin, and selenium.
8. The defined cell culture formulation of claim 1 , wherein the fatty acid free albumin is reagent grade.
9. The defined cell culture formulation of claim 1 , wherein the TGF-β ligand is TGF-β1.
10. A defined cell culture formulation consisting essentially of DMEM-F12 basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, and IGF-1.
11. The defined cell culture formulation of claim 10 , wherein the formulation consists of DMEM-F12 basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, and IGF-1.
12. The defined culture formulation of claim 11 , wherein the formulation is further supplemented with ascorbic acid.
13. A defined cell culture formulation consisting essentially of DMEM-F12 basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, IGF-1, and ascorbic acid.
14. The defined cell culture formulation of claim 12 , wherein the formulation consists of DMEM-F12 basal medium, insulin, transferrin, selenium, fatty-acid free albumin, a TGF-β ligand, bFGF, IGF-1, and ascorbic acid.
15. A defined cell culture formulation consisting essentially of MCDB-131, Trace Elements C, ascorbic acid, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, lithium chloride, glucose, defined lipids, insulin, transferrin, selenium, fatty acid free albumin, a TGF-β ligand, bFGF, and L-alanyl-L-glutamine dipeptide.
16. The defined cell culture formulation of claim 15 , wherein the formulation consists of MCDB-131, Trace Elements C, ascorbic acid, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, lithium chloride, glucose, defined lipids, insulin, transferrin, selenium, fatty acid free albumin, a TGF-β ligand, bFGF, and L-alanyl-L-glutamine dipeptide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/457,952 US20170183626A1 (en) | 2012-03-07 | 2017-03-13 | Defined media for expansion and maintenance of pluripotent stem cells |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261607706P | 2012-03-07 | 2012-03-07 | |
US13/787,173 US9434920B2 (en) | 2012-03-07 | 2013-03-06 | Defined media for expansion and maintenance of pluripotent stem cells |
US15/150,349 US9593307B2 (en) | 2012-03-07 | 2016-05-09 | Defined media for expansion and maintenance of pluripotent stem cells |
US15/457,952 US20170183626A1 (en) | 2012-03-07 | 2017-03-13 | Defined media for expansion and maintenance of pluripotent stem cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/150,349 Division US9593307B2 (en) | 2012-03-07 | 2016-05-09 | Defined media for expansion and maintenance of pluripotent stem cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170183626A1 true US20170183626A1 (en) | 2017-06-29 |
Family
ID=49114468
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/787,173 Expired - Fee Related US9434920B2 (en) | 2012-03-07 | 2013-03-06 | Defined media for expansion and maintenance of pluripotent stem cells |
US15/150,349 Active US9593307B2 (en) | 2012-03-07 | 2016-05-09 | Defined media for expansion and maintenance of pluripotent stem cells |
US15/457,952 Abandoned US20170183626A1 (en) | 2012-03-07 | 2017-03-13 | Defined media for expansion and maintenance of pluripotent stem cells |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/787,173 Expired - Fee Related US9434920B2 (en) | 2012-03-07 | 2013-03-06 | Defined media for expansion and maintenance of pluripotent stem cells |
US15/150,349 Active US9593307B2 (en) | 2012-03-07 | 2016-05-09 | Defined media for expansion and maintenance of pluripotent stem cells |
Country Status (16)
Country | Link |
---|---|
US (3) | US9434920B2 (en) |
EP (1) | EP2823037A4 (en) |
JP (1) | JP6383292B2 (en) |
KR (1) | KR20140131999A (en) |
CN (1) | CN104160018A (en) |
AR (1) | AR090276A1 (en) |
AU (2) | AU2013230020B2 (en) |
CA (1) | CA2866590A1 (en) |
HK (1) | HK1206058A1 (en) |
IN (1) | IN2014DN07036A (en) |
MX (1) | MX354775B (en) |
PH (1) | PH12014501898A1 (en) |
RU (2) | RU2664467C2 (en) |
SG (1) | SG11201405052RA (en) |
WO (1) | WO2013134378A1 (en) |
ZA (1) | ZA201407241B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103088065B (en) * | 2013-01-25 | 2014-12-10 | 北京银杏德济生物技术有限公司 | Method capable of forming hematopoietic stem cells by quickly inducing reversal decision of mesenchymal stem cells in large scale with high purity |
CN105283541B (en) | 2013-05-30 | 2019-02-19 | 味之素株式会社 | Culture medium is used in stem cell culture |
WO2015066631A2 (en) * | 2013-11-01 | 2015-05-07 | University Of Notre Dame Du Lac | Cell culture medium and bioprocess optimization |
CA2945027C (en) * | 2014-04-07 | 2023-10-31 | Memorial Sloan Kettering Cancer Center | Modulating cell proliferation and pluripotency |
CA2957532A1 (en) * | 2014-08-07 | 2016-02-11 | Duke University | Compositions and methods for the reprogramming of cells into cardiomyocytes |
WO2016107387A1 (en) * | 2014-12-31 | 2016-07-07 | 北京大学口腔医学院 | Device and application thereof in cell in-vitro experiment |
RU2756561C2 (en) * | 2016-03-16 | 2021-10-01 | Сината Терапьютикс Лимитед | Colony formation medium and its application |
KR102015815B1 (en) * | 2016-08-10 | 2019-08-29 | 가톨릭대학교 산학협력단 | Method for Culturing Cornea Epithealial Cell by Inducing Differentiation of Induced Pluripotent Stem Cell and System for the Same |
JP2020502203A (en) * | 2016-12-21 | 2020-01-23 | プロメティック・ファーマ・エスエムティ・リミテッドPrometic Pharma Smt Limited | Methods and compositions for preventing or minimizing epithelial-mesenchymal transition |
US10767164B2 (en) | 2017-03-30 | 2020-09-08 | The Research Foundation For The State University Of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
DK3436568T3 (en) * | 2017-05-31 | 2023-09-18 | Promocell Gmbh | CULTURE MEDIUM FOR PLURIPOTENT STEM CELLS |
CA3074470C (en) * | 2017-09-15 | 2024-01-16 | Cynata Therapeutics Limited | Method for treating allergic airways disease (aad)/ asthma |
CN112368368B (en) * | 2018-06-15 | 2024-01-30 | 扶桑药品工业株式会社 | Culture medium for assisted reproduction medical treatment |
EP3975925A1 (en) | 2019-05-31 | 2022-04-06 | W.L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243663A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243666A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
EP3976237A1 (en) | 2019-05-31 | 2022-04-06 | W.L. Gore & Associates Inc. | Cell encapsulation devices with controlled oxygen diffusion distances |
CN112516291B (en) * | 2019-09-17 | 2023-07-14 | 通化安睿特生物制药股份有限公司 | Preparation containing human albumin and preparation method thereof |
US11001810B1 (en) * | 2019-11-11 | 2021-05-11 | Lancell AB | Serum-free human pluripotent stem cell culture medium |
Family Cites Families (235)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209652A (en) | 1961-03-30 | 1965-10-05 | Burgsmueller Karl | Thread whirling method |
AT326803B (en) | 1968-08-26 | 1975-12-29 | Binder Fa G | MESHWARE AND METHOD OF MANUFACTURING THE SAME |
US3935067A (en) | 1974-11-22 | 1976-01-27 | Wyo-Ben Products, Inc. | Inorganic support for culture media |
CA1201400A (en) | 1982-04-16 | 1986-03-04 | Joel L. Williams | Chemically specific surfaces for influencing cell activity during culture |
US4499802A (en) | 1982-09-29 | 1985-02-19 | Container Graphics Corporation | Rotary cutting die with scrap ejection |
US4537773A (en) | 1983-12-05 | 1985-08-27 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid derivatives |
US4557264A (en) | 1984-04-09 | 1985-12-10 | Ethicon Inc. | Surgical filament from polypropylene blended with polyethylene |
US5215893A (en) | 1985-10-03 | 1993-06-01 | Genentech, Inc. | Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US5089396A (en) | 1985-10-03 | 1992-02-18 | Genentech, Inc. | Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US4737578A (en) | 1986-02-10 | 1988-04-12 | The Salk Institute For Biological Studies | Human inhibin |
US5863531A (en) | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
US5567612A (en) | 1986-11-20 | 1996-10-22 | Massachusetts Institute Of Technology | Genitourinary cell-matrix structure for implantation into a human and a method of making |
CA1340581C (en) | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices |
NZ229354A (en) | 1988-07-01 | 1990-09-26 | Becton Dickinson Co | Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface |
EP0363125A3 (en) | 1988-10-03 | 1990-08-16 | Hana Biologics Inc. | Proliferated pancreatic endocrine cell product and process |
US5837539A (en) | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
US5449383A (en) | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
GB9206861D0 (en) | 1992-03-28 | 1992-05-13 | Univ Manchester | Wound healing and treatment of fibrotic disorders |
CA2114282A1 (en) | 1993-01-28 | 1994-07-29 | Lothar Schilder | Multi-layered implant |
JP3525221B2 (en) | 1993-02-17 | 2004-05-10 | 味の素株式会社 | Immunosuppressants |
JP2813467B2 (en) | 1993-04-08 | 1998-10-22 | ヒューマン・セル・カルチャーズ・インコーポレーテッド | Cell culture methods and media |
US5523226A (en) | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
GB9310557D0 (en) | 1993-05-21 | 1993-07-07 | Smithkline Beecham Plc | Novel process and apparatus |
TW257671B (en) | 1993-11-19 | 1995-09-21 | Ciba Geigy | |
US6703017B1 (en) | 1994-04-28 | 2004-03-09 | Ixion Biotechnology, Inc. | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US5834308A (en) | 1994-04-28 | 1998-11-10 | University Of Florida Research Foundation, Inc. | In vitro growth of functional islets of Langerhans |
US6001647A (en) | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US6083903A (en) | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
JP4079461B2 (en) | 1994-12-29 | 2008-04-23 | 中外製薬株式会社 | Action enhancer for antitumor agent comprising IL-6 antagonist |
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US5718922A (en) | 1995-05-31 | 1998-02-17 | Schepens Eye Research Institute, Inc. | Intravitreal microsphere drug delivery and method of preparation |
US5908782A (en) | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
CN1211381C (en) | 1997-04-24 | 2005-07-20 | 奥索·麦克尼尔药品公司 | Substituted imidazoles useful in treatment of inflammatory diseases |
PT1028737E (en) | 1997-07-03 | 2007-07-11 | Osiris Therapeutics Inc | Human mesenchymal stem cells from peripheral blood |
US6521427B1 (en) | 1997-09-16 | 2003-02-18 | Egea Biosciences, Inc. | Method for the complete chemical synthesis and assembly of genes and genomes |
US6670127B2 (en) | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
WO1999020740A2 (en) | 1997-10-23 | 1999-04-29 | Geron Corporation | Methods and materials for the growth of primate-derived primordial stem cells |
CO4980885A1 (en) | 1997-12-29 | 2000-11-27 | Ortho Mcneil Pharm Inc | TRIPHENYL PROPANAMIDE COMPOUNDS USEFUL IN THE TREATMENT OF INFLAMMATIONS AND METHODS FOR PREPARING SUCH A COMPOUND |
PT1066052E (en) | 1998-03-18 | 2006-06-30 | Osiris Therapeutics Inc | MESENCHIMATE STEM CELLS FOR PREVENTION AND TREATMENT |
MY132496A (en) | 1998-05-11 | 2007-10-31 | Vertex Pharma | Inhibitors of p38 |
US6413773B1 (en) | 1998-06-01 | 2002-07-02 | The Regents Of The University Of California | Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation |
US7410798B2 (en) | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
US6610540B1 (en) | 1998-11-18 | 2003-08-26 | California Institute Of Technology | Low oxygen culturing of central nervous system progenitor cells |
US6413556B1 (en) | 1999-01-08 | 2002-07-02 | Sky High, Llc | Aqueous anti-apoptotic compositions |
AU2515600A (en) | 1999-01-21 | 2000-08-07 | Vitro Diagnostics, Inc. | Immortalized cell lines and methods of making the same |
US6815203B1 (en) | 1999-06-23 | 2004-11-09 | Joslin Diabetes Center, Inc. | Methods of making pancreatic islet cells |
US6333029B1 (en) | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
WO2001023528A1 (en) | 1999-09-27 | 2001-04-05 | University Of Florida Research Foundation | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US6685936B2 (en) | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20030082155A1 (en) | 1999-12-06 | 2003-05-01 | Habener Joel F. | Stem cells of the islets of langerhans and their use in treating diabetes mellitus |
WO2001042789A1 (en) | 1999-12-13 | 2001-06-14 | The Scripps Research Institute | MARKERS FOR IDENTIFICATION AND ISOLATION OF PANCREATIC ISLET α AND β CELL PROGENITORS |
US7439064B2 (en) | 2000-03-09 | 2008-10-21 | Wicell Research Institute, Inc. | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
US7005252B1 (en) | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US6436704B1 (en) | 2000-04-10 | 2002-08-20 | Raven Biotechnologies, Inc. | Human pancreatic epithelial progenitor cells and methods of isolation and use thereof |
US6458589B1 (en) | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
KR100947577B1 (en) | 2000-06-26 | 2010-03-15 | 엔씨 메디컬 리서치 가부시키가이샤 | Cell fraction containing cells capable of differentiating into nervous system cells |
JP4524072B2 (en) | 2000-10-23 | 2010-08-11 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | New compounds |
PT1362047E (en) | 2000-12-08 | 2006-09-29 | Ortho Mcneil Pharm Inc | SUBSTITUTED PYRROLINE COMPOUNDS WITH INDAZOLYL AS KINASE INHIBITORS |
ES2245994T3 (en) | 2000-12-08 | 2006-02-01 | Ortho-Mcneil Pharmaceutical, Inc. | MACRO-HETEROCICLIC COMPOUNDS USED AS QUINASE INHIBITORS. |
US6599323B2 (en) | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
US20040121460A1 (en) | 2001-01-24 | 2004-06-24 | Lumelsky Nadya L | Differentiation of stem cells to pancreatic endocrine cells |
EP2251344B2 (en) | 2001-01-25 | 2024-04-24 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Formulation of boronic acid compounds |
US6656488B2 (en) | 2001-04-11 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering |
JP2004527249A (en) | 2001-04-19 | 2004-09-09 | デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング | Method of differentiating stem cells into insulin producing cells |
EP1391505B1 (en) | 2001-04-24 | 2009-01-28 | Ajinomoto Co., Inc. | Stem cells and method of separating the same |
CA2447015A1 (en) | 2001-05-15 | 2002-11-21 | Rappaport Family Institute For Research In The Medical Sciences | Insulin producing cells derived from human embryonic stem cells |
US6626950B2 (en) | 2001-06-28 | 2003-09-30 | Ethicon, Inc. | Composite scaffold with post anchor for the repair and regeneration of tissue |
KR100418195B1 (en) | 2001-07-05 | 2004-02-11 | 주식회사 우리기술 | Apparatus and method for multi-testing insulation of power cables |
GB0117583D0 (en) | 2001-07-19 | 2001-09-12 | Astrazeneca Ab | Novel compounds |
US7432104B2 (en) | 2001-08-06 | 2008-10-07 | Bresgen Inc. | Methods for the culture of human embryonic stem cells on human feeder cells |
US6617152B2 (en) | 2001-09-04 | 2003-09-09 | Corning Inc | Method for creating a cell growth surface on a polymeric substrate |
EP1298201A1 (en) | 2001-09-27 | 2003-04-02 | Cardion AG | Process for the production of cells exhibiting an islet-beta-cell-like state |
WO2003033697A1 (en) | 2001-10-18 | 2003-04-24 | Ixion Biotechnology, Inc. | Conversion of liver stem and progenitor cells to pancreatic functional cells |
EP1442115B9 (en) | 2001-11-15 | 2009-12-16 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
AU2002357135C1 (en) | 2001-12-07 | 2009-01-22 | Macropore Biosurgery, Inc. | Systems and methods for treating patients with processed lipoaspirate cells |
WO2003050249A2 (en) | 2001-12-07 | 2003-06-19 | Geron Corporation | Islet cells from human embryonic stem cells |
AU2002218893A1 (en) | 2001-12-21 | 2003-07-09 | Thromb-X Nv | Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability |
EP1461421A2 (en) | 2001-12-28 | 2004-09-29 | Cellartis AB | A method for the establishment of a pluripotent human blastocyst-derived stem cell line |
US20030162290A1 (en) | 2002-01-25 | 2003-08-28 | Kazutomo Inoue | Method for inducing differentiation of embryonic stem cells into functioning cells |
JPWO2003087349A1 (en) | 2002-04-17 | 2005-08-18 | 大塚製薬株式会社 | Method of forming pancreatic β cells from mesenchymal cells |
US20040161419A1 (en) | 2002-04-19 | 2004-08-19 | Strom Stephen C. | Placental stem cells and uses thereof |
ATE387444T1 (en) | 2002-05-08 | 2008-03-15 | Janssen Pharmaceutica Nv | SUBSTITUTED PYRROLINES AS KINASE INHIBITORS |
GB0210539D0 (en) * | 2002-05-08 | 2002-06-19 | Univ Edinburgh | Control of es cell self renewal and lineage specification, and medium therefor |
US20060003446A1 (en) | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
CN1819838A (en) | 2002-05-28 | 2006-08-16 | 贝克顿·迪金森公司 | Methods for in vitro expansion and transdifferentiation of human pancreatic acinar cells into insulin-producing cells |
KR20050008787A (en) | 2002-06-05 | 2005-01-21 | 얀센 파마슈티카 엔.브이. | Bisindolyl-maleimid derivatives as kinase inhibitors |
GB0212976D0 (en) | 2002-06-06 | 2002-07-17 | Tonejet Corp Pty Ltd | Ejection method and apparatus |
CN1171991C (en) | 2002-07-08 | 2004-10-20 | 徐如祥 | Culture process of human nerve stem cell |
US6877147B2 (en) | 2002-07-22 | 2005-04-05 | Broadcom Corporation | Technique to assess timing delay by use of layout quality analyzer comparison |
US7838290B2 (en) | 2002-07-25 | 2010-11-23 | The Scripps Research Institute | Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith |
EP1539930A4 (en) | 2002-07-29 | 2006-08-09 | Es Cell Int Pte Ltd | Multi-step method for the differentiation of insulin positive, glucose |
US20040063204A1 (en) | 2002-08-14 | 2004-04-01 | Lijun Yang | Bone marrow cell differentiation |
EP1539928A4 (en) | 2002-09-06 | 2006-09-06 | Amcyte Inc | Cd56 positive human adult pancreatic endocrine progenitor cells |
US9969977B2 (en) | 2002-09-20 | 2018-05-15 | Garnet Biotherapeutics | Cell populations which co-express CD49c and CD90 |
US20040062753A1 (en) | 2002-09-27 | 2004-04-01 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
US20060252150A1 (en) | 2002-11-08 | 2006-11-09 | Linzhao Cheng | Human embryonic stem cell cultures, and compositions and methods for growing same |
US7144999B2 (en) | 2002-11-23 | 2006-12-05 | Isis Pharmaceuticals, Inc. | Modulation of hypoxia-inducible factor 1 alpha expression |
EP1567639A4 (en) | 2002-12-05 | 2005-12-21 | Technion Res & Dev Foundation | Cultured human pancreatic islets, and uses thereof |
PT2457999T (en) | 2002-12-16 | 2019-01-28 | Technion Res & Dev Foundation | Culture medium for pluripotent stem cells |
PL377403A1 (en) | 2003-01-29 | 2006-02-06 | Takeda Pharmaceutical Company Limited | Process for producing coated preparation |
RU2359671C2 (en) | 2003-01-29 | 2009-06-27 | Такеда Фармасьютикал Компани Лимитед | Method of obtaining of preparation with covering |
WO2004073633A2 (en) | 2003-02-14 | 2004-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for modulating the development of stem cells |
WO2005045001A2 (en) | 2003-02-14 | 2005-05-19 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
US20070020242A1 (en) | 2003-03-27 | 2007-01-25 | Ixion Biotechnology, Inc. | Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway |
WO2004090110A2 (en) | 2003-03-31 | 2004-10-21 | Bresagen Inc. | Compositions and methods for the control, differentiation and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway |
US20090203141A1 (en) | 2003-05-15 | 2009-08-13 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents |
EP2336298B1 (en) | 2003-06-27 | 2016-02-17 | DePuy Synthes Products, Inc. | Postpartum cells derived from placental tissue and methods of making and using the same |
IL161903A0 (en) | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
ITRM20030395A1 (en) | 2003-08-12 | 2005-02-13 | Istituto Naz Per Le Malattie Infettive Lazz | CULTURE GROUND FOR MAINTENANCE, PROLIFERATION AND DIFFERENTIATION OF MAMMALIAN CELLS. |
US20050042595A1 (en) | 2003-08-14 | 2005-02-24 | Martin Haas | Banking of multipotent amniotic fetal stem cells |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
CA2536067A1 (en) | 2003-08-27 | 2005-03-10 | Stemcells California, Inc. | Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations |
JP2007515433A (en) | 2003-12-17 | 2007-06-14 | アラーガン インコーポレイテッド | Methods of treating retinoid responsive disorders using selective inhibitors of CYP26A and CYP26B |
US20060030042A1 (en) | 2003-12-19 | 2006-02-09 | Ali Brivanlou | Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
EP2722387B1 (en) | 2003-12-23 | 2019-12-11 | Viacyte, Inc. | Definitive endoderm |
US20050266554A1 (en) | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
CN109628371B (en) | 2003-12-23 | 2021-02-19 | 维亚希特公司 | Definitive endoderm |
TWI334443B (en) | 2003-12-31 | 2010-12-11 | Ind Tech Res Inst | Method of single cell culture of undifferentiated human embryonic stem cells |
WO2005065354A2 (en) * | 2003-12-31 | 2005-07-21 | The Burnham Institute | Defined media for pluripotent stem cell culture |
WO2005071066A1 (en) | 2004-01-23 | 2005-08-04 | Board Of Regents, The University Of Texas System | Methods and compositions for preparing pancreatic insulin secreting cells |
US7794704B2 (en) | 2004-01-23 | 2010-09-14 | Advanced Cell Technology, Inc. | Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration |
GB2441530B (en) | 2004-02-12 | 2009-09-23 | Univ Newcastle | Stem Cells |
WO2005080598A1 (en) | 2004-02-19 | 2005-09-01 | Dainippon Sumitomo Pharma Co., Ltd. | Method of screening somatic cell nucleus initializer |
EP1737944A4 (en) | 2004-03-09 | 2010-03-24 | Lifescan Inc | Methods for generating insulin-producing cells |
CA2558486A1 (en) | 2004-03-10 | 2005-09-22 | Alberto Hayek | Compositions and methods for growth of embryonic stem cells |
WO2005097980A2 (en) | 2004-03-26 | 2005-10-20 | Geron Corporation | New protocols for making hepatocytes from embryonic stem cells |
EP1730268A2 (en) | 2004-04-01 | 2006-12-13 | Wisconsin Alumni Research Foundation | Differentiation of stem cells to endoderm and pancreatic lineage |
EP1740612B1 (en) | 2004-04-27 | 2019-08-07 | Viacyte, Inc. | Pdx1 expressing endoderm |
EP1786896B1 (en) | 2004-07-09 | 2018-01-10 | Viacyte, Inc. | Methods for identifying factors for differentiating definitive endoderm |
WO2006020919A2 (en) | 2004-08-13 | 2006-02-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
US20080268533A1 (en) | 2004-08-25 | 2008-10-30 | University Of Georgia Research Foundation, Inc. | Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells |
DE102004043256B4 (en) | 2004-09-07 | 2013-09-19 | Rheinische Friedrich-Wilhelms-Universität Bonn | Scalable process for culturing undifferentiated stem cells in suspension |
DK3196296T3 (en) | 2004-09-08 | 2019-02-04 | Wisconsin Alumini Res Foundation | Cultivation of human embryonic stem cells |
EP1791948B1 (en) * | 2004-09-08 | 2012-03-14 | Wisconsin Alumni Research Foundation | Medium and culture of embryonic stem cells |
US20060194321A1 (en) | 2005-01-31 | 2006-08-31 | Alan Colman | Directed differentiation of embryonic stem cells and uses thereof |
WO2006088867A2 (en) * | 2005-02-15 | 2006-08-24 | Medistem Laboratories, Incorporated | Method for expansion of stem cells |
AU2006218359A1 (en) | 2005-03-04 | 2006-09-08 | John O'neil | Adult pancreatic derived stromal cells |
GB0505970D0 (en) | 2005-03-23 | 2005-04-27 | Univ Edinburgh | Culture medium containing kinase inhibitor, and uses thereof |
EP1876893B1 (en) | 2005-04-15 | 2012-04-11 | Geron Corporation | Cancer treatment by combined inhibition of proteasome and telomerase activities |
CN100425694C (en) | 2005-04-15 | 2008-10-15 | 北京大学 | Method of inducing embryo stem cell to differentiate toward pancreatic cell |
WO2006114098A2 (en) | 2005-04-26 | 2006-11-02 | Aarhus Universitet | Biocompatible material for surgical implants and cell guiding tissue culture surfaces |
RU2007147917A (en) | 2005-06-10 | 2009-07-20 | Айрм Ллк (Bm) | COMPOUNDS SUPPORTING PLURIPOTENTITY OF EMBRYONIC STEM CELLS |
WO2006138433A2 (en) | 2005-06-14 | 2006-12-28 | The Regents Of The University Of California | Induction of cell differentiation by class i bhlh polypeptides |
WO2006137787A1 (en) | 2005-06-21 | 2006-12-28 | Ge Healthcare Bio-Sciences Ab | Method for cell culture |
US9074181B2 (en) | 2005-06-22 | 2015-07-07 | Asterias Biotherapeutics, Inc. | Suspension culture of human embryonic stem cells |
UA92608C2 (en) | 2005-06-30 | 2010-11-25 | Янссен Фармацевтика Н.В. | Cyclic anilino - pyridinotriazines as gsk-3 inhibitors |
WO2007016485A2 (en) | 2005-07-29 | 2007-02-08 | Athersys, Inc. | Use of a gsk-3 inhibitor to maintain potency of cultured cells |
AU2006274438A1 (en) | 2005-07-29 | 2007-02-01 | Australian Stem Cell Centre Limited | Compositions and methods for growth of pluripotent cells |
US9101590B2 (en) * | 2005-07-29 | 2015-08-11 | Yale University | Defined culture conditions of human embryonic stem cells |
WO2007025234A2 (en) | 2005-08-26 | 2007-03-01 | The Trustees Of Columbia University In The City Of New York | Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes |
JP2009506769A (en) | 2005-09-02 | 2009-02-19 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Mesenchymal stem cell induction method |
SG151259A1 (en) | 2005-09-12 | 2009-04-30 | Es Cell Int Pte Ltd | Cardiomyocyte production |
WO2008048671A1 (en) | 2006-10-18 | 2008-04-24 | University Of Illinois | Embryonic-like stem cells derived from adult human peripheral blood and methods of use |
SG169324A1 (en) | 2005-10-14 | 2011-03-30 | Univ Minnesota | Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype |
ES2743202T3 (en) | 2005-10-27 | 2020-02-18 | Viacyte Inc | Endoderm of the dorsal and ventral proximal intestine expressing PDX1 |
EP2208786B1 (en) | 2005-12-13 | 2018-08-01 | Kyoto University | Nuclear reprogramming factor |
WO2007082963A1 (en) | 2006-01-18 | 2007-07-26 | Fundación Instituto Valenciano De Infertilidad | Human embryo stem-cell lines and methods for using same |
CA2643478C (en) | 2006-02-23 | 2019-06-18 | Novocell, Inc. | Compositions and methods useful for culturing differentiable cells |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
WO2007103282A2 (en) | 2006-03-02 | 2007-09-13 | Cythera, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
AU2007244675A1 (en) | 2006-04-28 | 2007-11-08 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8685730B2 (en) | 2006-05-02 | 2014-04-01 | Wisconsin Alumni Research Foundation | Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage |
JP5288209B6 (en) | 2006-05-02 | 2018-06-27 | ウイスコンシン アラムニ リサーチ ファンデーション | Methods for differentiating stem cells into endoderm cells and pancreatic lineage cells |
US7964402B2 (en) | 2006-05-25 | 2011-06-21 | Sanford-Burnham Medical Research Institute | Methods for culture and production of single cell populations of human embryonic stem cells |
CN101541953A (en) | 2006-06-02 | 2009-09-23 | 佐治亚大学研究基金会 | Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems |
WO2007143193A1 (en) | 2006-06-02 | 2007-12-13 | University Of Georgia Research Foundation, Inc. | Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems |
WO2007149182A2 (en) | 2006-06-19 | 2007-12-27 | Geron Corporation | Differentiation and enrichment of islet-like cells from human pluripotent stem cells |
CN100494359C (en) | 2006-06-23 | 2009-06-03 | 中日友好医院 | Method for in vitro amplifying and in 3D solid culturing for nerve stem cell |
PL2046946T3 (en) * | 2006-06-26 | 2017-04-28 | Lifescan, Inc. | Pluripotent stem cell culture |
US20080003676A1 (en) | 2006-06-26 | 2008-01-03 | Millipore Corporation | Growth of embryonic stem cells |
GB2454386B (en) | 2006-07-06 | 2011-07-06 | Es Cell Int Pte Ltd | Method for embryonic stem cell culture on a positively charged support surface |
WO2008013664A2 (en) | 2006-07-26 | 2008-01-31 | Cythera, Inc. | Methods of producing pancreatic hormones |
KR101331510B1 (en) | 2006-08-30 | 2013-11-20 | 재단법인서울대학교산학협력재단 | Media compostions containing low concentrations of glucose useful for human embryonic stem cells, differentiation method of human embryonic stem cells into insulin-producing cells or cell clusters using thereof, and insulin-producing cells or cell clusters differentiated thereby |
JP2008099662A (en) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | Method for culturing stem cell |
WO2008039521A2 (en) | 2006-09-26 | 2008-04-03 | Nmt Medical, Inc. | Method for modifying a medical implant surface for promoting tissue growth |
WO2008048647A1 (en) | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
MX2009004096A (en) | 2006-10-17 | 2009-06-16 | Stiefel Laboratories | Talarazole metabolites. |
WO2008056779A1 (en) | 2006-11-09 | 2008-05-15 | Japan As Represented By The President Of International Medical Center Of Japan | Method for culture and passage of primate embryonic stem cell, and method for induction of differentiation of the embryonic stem cell |
WO2008086005A1 (en) | 2007-01-09 | 2008-07-17 | University Of South Florida | Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof |
CA2676044C (en) | 2007-01-30 | 2019-10-22 | University Of Georgia Research Foundation, Inc. | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc) |
GB0703188D0 (en) | 2007-02-19 | 2007-03-28 | Roger Land Building | Large scale production of stem cells |
US20090053182A1 (en) | 2007-05-25 | 2009-02-26 | Medistem Laboratories, Inc. | Endometrial stem cells and methods of making and using same |
US20100255580A1 (en) | 2007-07-18 | 2010-10-07 | Lifesccan, Inc. | Differentiation of Human Embryonic Stem Cells |
US9096832B2 (en) | 2007-07-31 | 2015-08-04 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
PL2185691T3 (en) | 2007-07-31 | 2018-08-31 | Lifescan, Inc. | Pluripotent stem cell differentiation by using human feeder cells |
KR101544498B1 (en) | 2007-08-24 | 2015-08-17 | 스티칭 허트 네덜란드 칸커 인스티튜트 | Compositions for the treatment of neoplastic diseases |
US20110151447A1 (en) | 2007-11-06 | 2011-06-23 | Children's Medical Center Corporation | Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells |
MX2010005805A (en) | 2007-11-27 | 2010-06-09 | Lifescan Inc | Differentiation of human embryonic stem cells. |
SG154367A1 (en) | 2008-01-31 | 2009-08-28 | Es Cell Int Pte Ltd | Method of differentiating stem cells |
WO2009096049A1 (en) | 2008-02-01 | 2009-08-06 | Kyoto University | Differentiated cells originating in artificial pluripotent stem cells |
EP2250252A2 (en) | 2008-02-11 | 2010-11-17 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
JP5733986B2 (en) | 2008-02-21 | 2015-06-10 | ヤンセン バイオテツク,インコーポレーテツド | Methods, surface modified plates, and compositions for cell attachment, culture and detachment |
JPWO2009110215A1 (en) | 2008-03-03 | 2011-07-14 | 独立行政法人科学技術振興機構 | Ciliary cell differentiation induction method |
SG188918A1 (en) | 2008-03-17 | 2013-04-30 | Agency Science Tech & Res | |
EP2283117B1 (en) | 2008-04-21 | 2013-10-23 | Viacyte, Inc. | Methods for purifying pancreatic endoderm cells derived from human embryonic stem cells |
US8338170B2 (en) | 2008-04-21 | 2012-12-25 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
US8728812B2 (en) | 2008-04-22 | 2014-05-20 | President And Fellows Of Harvard College | Compositions and methods for promoting the generation of PDX1+ pancreatic cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US20090298178A1 (en) | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
WO2009154606A1 (en) | 2008-06-03 | 2009-12-23 | Cythera, Inc. | Growth factors for production of definitive endoderm |
DE102008032236A1 (en) | 2008-06-30 | 2010-04-01 | Eberhard-Karls-Universität Tübingen | Isolation and / or identification of stem cells with adipocytic, chondrocytic and pancreatic differentiation potential |
KR101829310B1 (en) | 2008-06-30 | 2018-02-14 | 얀센 바이오테크 인코포레이티드 | Differentiation of pluripotent stem cells |
US20100028307A1 (en) | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
RU2528861C2 (en) | 2008-10-31 | 2014-09-20 | Сентокор Орто Байотек Инк. | Differentiation of human embryonic stem cell into pancreatic endocrine cell line |
CN107904201B (en) | 2008-10-31 | 2021-11-16 | 詹森生物科技公司 | Differentiation of human embryonic stem cells into the pancreatic endocrine lineage |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
NZ592622A (en) | 2008-11-04 | 2012-10-26 | Viacyte Inc | Stem cell aggregate suspension compositions and methods for differentiation thereof |
ES2932850T3 (en) | 2008-11-14 | 2023-01-27 | Viacyte Inc | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
WO2010059775A1 (en) | 2008-11-20 | 2010-05-27 | Centocor Ortho Biotech Inc. | Pluripotent stem cell culture on micro-carriers |
WO2010063848A1 (en) | 2008-12-05 | 2010-06-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and medium for neural differentiation of pluripotent cells |
CN102482643B (en) | 2009-07-20 | 2016-06-29 | 詹森生物科技公司 | The differentiation of human embryo stem cell |
RU2540016C2 (en) | 2009-07-20 | 2015-01-27 | Янссен Байотек, Инк. | Differentiating human embryonic stem cells |
FI20096288A0 (en) | 2009-12-04 | 2009-12-04 | Kristiina Rajala | Formulations and Methods for Culturing Stem Cells |
DK2516625T3 (en) | 2009-12-23 | 2024-09-09 | Janssen Biotech Inc | DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS |
WO2011096223A1 (en) * | 2010-02-03 | 2011-08-11 | 独立行政法人国立がん研究センター | Induced hepatic stem cell and process for production thereof, and applications of the cell |
CA2791846A1 (en) | 2010-03-02 | 2011-09-09 | National University Of Singapore | Culture additives to boost stem cell proliferation and differentiation response |
JP2011177140A (en) * | 2010-03-03 | 2011-09-15 | Nippon Dental Univ | Serum-free medium for stem cell culture |
AU2011235212B2 (en) | 2010-03-31 | 2014-07-31 | The Scripps Research Institute | Reprogramming cells |
US9234170B2 (en) | 2010-04-25 | 2016-01-12 | Mount Sinai School Of Medicine | Generation of anterior foregut endoderm from pluripotent cells |
CN102884176B (en) | 2010-05-12 | 2017-09-05 | 詹森生物科技公司 | The differentiation of human embryo stem cell |
CN103180434A (en) | 2010-08-05 | 2013-06-26 | 威斯康星校友研究基金会 | Simplified basic media for human pluripotent cell culture |
RU2599420C2 (en) | 2010-08-31 | 2016-10-10 | Янссен Байотек, Инк. | Differentiation of pluripotent stem cells |
MY177150A (en) | 2011-02-28 | 2020-09-08 | Stempeutics Res Malaysia Sdn Bhd | Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof |
US9133266B2 (en) * | 2011-05-06 | 2015-09-15 | Wisconsin Alumni Research Foundation | Vitronectin-derived cell culture substrate and uses thereof |
US20130274184A1 (en) | 2011-10-11 | 2013-10-17 | The Trustees Of Columbia University In The City Of New York | Er stress relievers in beta cell protection |
KR102203056B1 (en) | 2011-12-22 | 2021-01-14 | 얀센 바이오테크 인코포레이티드 | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US10519422B2 (en) | 2012-02-29 | 2019-12-31 | Riken | Method of producing human retinal pigment epithelial cells |
SG10201610313WA (en) | 2012-06-08 | 2017-02-27 | Janssen Biotech Inc | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
TW201522637A (en) | 2013-03-15 | 2015-06-16 | Jackson Lab | Isolation of non-embryonic stem cells and uses thereof |
-
2013
- 2013-03-06 KR KR1020147027965A patent/KR20140131999A/en not_active Application Discontinuation
- 2013-03-06 RU RU2014140371A patent/RU2664467C2/en not_active IP Right Cessation
- 2013-03-06 WO PCT/US2013/029360 patent/WO2013134378A1/en active Application Filing
- 2013-03-06 US US13/787,173 patent/US9434920B2/en not_active Expired - Fee Related
- 2013-03-06 RU RU2018128383A patent/RU2018128383A/en not_active Application Discontinuation
- 2013-03-06 CA CA2866590A patent/CA2866590A1/en not_active Abandoned
- 2013-03-06 JP JP2014561075A patent/JP6383292B2/en not_active Expired - Fee Related
- 2013-03-06 AU AU2013230020A patent/AU2013230020B2/en not_active Ceased
- 2013-03-06 MX MX2014010782A patent/MX354775B/en active IP Right Grant
- 2013-03-06 EP EP13757652.6A patent/EP2823037A4/en not_active Withdrawn
- 2013-03-06 CN CN201380012670.9A patent/CN104160018A/en active Pending
- 2013-03-06 SG SG11201405052RA patent/SG11201405052RA/en unknown
- 2013-03-07 AR ARP130100747A patent/AR090276A1/en unknown
-
2014
- 2014-08-21 IN IN7036DEN2014 patent/IN2014DN07036A/en unknown
- 2014-08-22 PH PH12014501898A patent/PH12014501898A1/en unknown
- 2014-10-06 ZA ZA2014/07241A patent/ZA201407241B/en unknown
-
2015
- 2015-07-09 HK HK15106542.3A patent/HK1206058A1/en unknown
-
2016
- 2016-05-09 US US15/150,349 patent/US9593307B2/en active Active
-
2017
- 2017-03-13 US US15/457,952 patent/US20170183626A1/en not_active Abandoned
-
2018
- 2018-11-06 AU AU2018260810A patent/AU2018260810A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
Ludwig et al., Nature Methods, 3(8):637-646 (2006) * |
Also Published As
Publication number | Publication date |
---|---|
RU2018128383A3 (en) | 2019-04-15 |
RU2664467C2 (en) | 2018-08-17 |
JP2015509381A (en) | 2015-03-30 |
PH12014501898A1 (en) | 2014-11-24 |
AU2018260810A1 (en) | 2018-11-22 |
AU2013230020B2 (en) | 2018-08-09 |
US9434920B2 (en) | 2016-09-06 |
MX354775B (en) | 2018-03-20 |
EP2823037A1 (en) | 2015-01-14 |
AR090276A1 (en) | 2014-10-29 |
KR20140131999A (en) | 2014-11-14 |
US9593307B2 (en) | 2017-03-14 |
US20160251615A1 (en) | 2016-09-01 |
US20130236973A1 (en) | 2013-09-12 |
WO2013134378A1 (en) | 2013-09-12 |
ZA201407241B (en) | 2016-05-25 |
CA2866590A1 (en) | 2013-09-12 |
EP2823037A4 (en) | 2015-09-16 |
CN104160018A (en) | 2014-11-19 |
RU2014140371A (en) | 2016-04-27 |
SG11201405052RA (en) | 2014-10-30 |
RU2018128383A (en) | 2019-03-14 |
AU2013230020A1 (en) | 2014-09-04 |
HK1206058A1 (en) | 2015-12-31 |
JP6383292B2 (en) | 2018-08-29 |
MX2014010782A (en) | 2014-10-14 |
IN2014DN07036A (en) | 2015-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9593307B2 (en) | Defined media for expansion and maintenance of pluripotent stem cells | |
US20230151326A1 (en) | Simplified Compositions and Methods for Generating Neural Stem Cells from Human Pluripotent Stem Cells | |
JP5420837B2 (en) | Embryonic stem cell culture and culture | |
ES2610812T3 (en) | Culture of pluripotent stem cells | |
Karlsson et al. | Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine | |
US8597947B2 (en) | Undifferentiated stem cell culture systems | |
JP2022097516A (en) | Cell culture platform for single cell sorting and enhanced reprogramming of ipsc | |
JP2018148921A (en) | Production of erythrocytes | |
US20100081200A1 (en) | Formulations and methods for culturing stem cells | |
KR20130009943A (en) | Formulations and methods for culturing stem cells | |
US20160102289A1 (en) | Generation of keratinocytes from pluripotent stem cells and maintenance of keratinocyte cultures | |
Chaddah et al. | Clonal neural stem cells from human embryonic stem cell colonies | |
US20150037883A1 (en) | Method for derivation and long-term establishment of ground state pluripotent embryonic stem cells | |
JP2007228815A (en) | Method for maintaining embryonic stem cell | |
WO2013054112A1 (en) | Culture media for pluripotent stem cells | |
US20090075374A1 (en) | Methods of generating epithelial lineage cells from embryoid bodies and pluripotent cells | |
US20230407249A1 (en) | Media and methods for establishing and maintaining early embryo-like cells | |
Wu et al. | Derivation and characterization of human embryonic stem cell lines from the Chinese population | |
US11001810B1 (en) | Serum-free human pluripotent stem cell culture medium | |
Rostovskaya | Capacitation of human naïve pluripotent stem cells | |
US20140220680A1 (en) | Xeno-free and a feeder free self-renewal extracellular matrix for long-term maintenance of undifferentiated human pluripotent stem cells and method of synthesizing the same | |
Hosain et al. | Validation of Pluripotency of Human Induced Pluripotent Stem Cells | |
OJALA | Establishing and optimizing feeder cell-free culture methods for human embryonic stem cells | |
KR20240131080A (en) | Medium composition for culture of extraembryonic endoderm stem cells | |
Young et al. | Feeder-free Culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JANSSEN BIOTECH, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REZANIA, ALIREZA;REEL/FRAME:047935/0485 Effective date: 20120315 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |