US20170153055A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
US20170153055A1
US20170153055A1 US15/358,226 US201615358226A US2017153055A1 US 20170153055 A1 US20170153055 A1 US 20170153055A1 US 201615358226 A US201615358226 A US 201615358226A US 2017153055 A1 US2017153055 A1 US 2017153055A1
Authority
US
United States
Prior art keywords
front panel
display
cover
hole
touch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/358,226
Other versions
US10859309B2 (en
Inventor
Jinil Hong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONG, JINIL
Publication of US20170153055A1 publication Critical patent/US20170153055A1/en
Application granted granted Critical
Publication of US10859309B2 publication Critical patent/US10859309B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays
    • F25D2400/361Interactive visual displays

Definitions

  • the present-disclosure relates to a refrigerator.
  • a touch sensor assembly used in home appliances may generate a signal for operations of the home appliance by recognizing a push operation of the user.
  • the touch sensor may include a capacitive sensor and a resistive cell sensor, and may detect a touch operation of the user by the sensor, process signals, and allow an operation of the home appliance to be performed.
  • the home appliances have employed an external member formed of steel or glass or coated with similar materials to improve the external appearances thereof, and the touch sensor assemblies for recognizing touch operations of the external members also have been developed.
  • a refrigerator may be an electric device that stores foods in a storage space shielded by a doer at low temperature. To achieve this, the refrigerator may cool the interior of the storage space by using cooling air generated through heat exchange between the cooling air and a refrigerant that circulates a freezing cycle to preserve the stored foods in an optimum state.
  • the interior of the refrigerator may include a refrigerator compartment and a freezer compartment, and reception members such as shelves, drawers, and baskets, may be provided in the interior of the refrigerator compartment and the freezer compartment. Further, the refrigerator compartment and the freezer compartment may be shielded by doors.
  • the refrigerators are variously classified according to an arrangement and a door form of the refrigerator compartment and the freezer compartment.
  • refrigerators having an improved external appearance and equipped with various convenience units have been released.
  • the refrigerators in which an external member that defines an external appearance of the refrigerator is formed of steel or glass, or coated of similar materials and which employs various structures of displays and manipulation units for facilitating manipulations of the user have been developed.
  • FIG. 1 is a front view of a refrigerator according to an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a refrigerator door according to an embodiment of the present disclosure
  • FIG. 3 illustrates a display window and manipulation part of the refrigerator door
  • FIG. 4 is an exploded perspective view illustrating a mounting structure of a display assembly of the refrigerator door
  • FIG. 5 is an exploded perspective view illustrating that the front panel of the refrigerator door is separated
  • FIG. 6 is an exploded perspective view illustrating a coupling structure of a touch sensor assembly, a cover display, a display assembly, a frame display, and a frame according to an embodiment of the present disclosure
  • FIG. 7 is a sectional view taken along line 7 - 7 ′ of FIG. 4 ;
  • FIG. 8 is a sectional view taken along line 8 - 8 ′ of FIG. 4 ;
  • FIG. 9 is a view schematically illustrating structures of the touch plate, the front panel, the cover display, and the touch sensor assembly before and after assembly thereof according to an embodiment of the present disclosure
  • FIG. 10 is a cutaway perspective view illustrating a coupling structure of the front panel and the cover display in FIG. 8 ;
  • FIG. 11 illustrates a coupling structure of the touch plate and the touch sensor assembly in FIG. 10 ;
  • FIG. 12 is an exploded perspective view illustrating a mounting structure of a display assembly and a touch sensor assembly of the refrigerator door according to another embodiment of the present disclosure
  • FIG. 13 is an exploded perspective view illustrating that the front panel of the refrigerator door according to the embodiment of FIG. 12 is separated;
  • FIG. 14 is a view schematically illustrating structures of the touch plate, the front panel, the cover display, and the touch sensor assembly before and after assembly thereof according to the embodiment of FIG. 12 ;
  • FIG. 15 is an exploded perspective view illustrating a mounting structure of an integrated sensor assembly of the refrigerator door according to another embodiment of the present disclosure.
  • FIG. 16 is an exploded perspective view illustrating that the front panel of the refrigerator door according to the embodiment of FIG. 15 is separated.
  • an external shape of the refrigerator 1 may be defined by a cabinet that defines a storage space and refrigerator doors 10 that are mounted on the cabinet to open and close a storage space.
  • the storage space may be partitioned into left and right parts and/or upper and lower parts, and a plurality of refrigerator doors 10 that open and close the spaces may be provided on the opened front surface of the storage space.
  • the refrigerator doors 10 may open and close the storage space in a sliding or rotating type, and may define an external appearance of the front surface of the refrigerator 1 in a closed state.
  • a display window (or display area) 11 and a manipulation part may be provided on one side of the plurality of refrigerator doors 10 at a height at which the display window 11 and the manipulation part may be easily manipulated and identified by the user.
  • the display window 11 may be adapted to display an operational state of the refrigerator 1 to the outside, and express a symbol or a number while light irradiated from the interior of the refrigerator door 10 passes through the display window 11 to allow the user to verify the symbol or number from the outside.
  • the display window 11 may generally refer to a hole, through which light may pass, or a transparent part.
  • the manipulation part may include a plurality of touch plates 12 that are touched by the user to operate the refrigerator 1 and may be provided on an area of the front surface of the refrigerator door 10 , and a part that may detect a push operation may be defined by various methods including surface processing such as printing or etching or transmission of light.
  • an overall external appearance of the refrigerator door 10 may be defined by a front panel 20 that defines an external appearance of the refrigerator door 10 as a whole, deco members 40 and 43 that are provided at an upper end and a lower end of the front panel 20 respectively, and a door liner 30 that defines a rear external appearance of the refrigerator door 10 .
  • the front panel 20 may define a front external appearance of the refrigerator door 10 , and may be a plate formed of stainless steel. Further, the front panel 20 may define at least portion of an external appearance of the refrigerator door 10 , and may be expressed as an external member in home appliances other than a refrigerator.
  • the front panel 20 may be formed of a metal or a material that has a texture such as a metallic texture other than stainless steel, and may be formed of glass or plastic if necessary.
  • the front panel 20 may define a portion of a side surface of the refrigerator door 10 as well as the front surface of the refrigerator door 10 if necessary, and fingerprint prevention processing or hair line processing may be further provided on a surface of the front panel 20 .
  • the display window 11 may be defined by a plurality of first through-holes 21 that are arranged in an area of the front panel 20 .
  • the display window 11 may include a set of first through-holes 21 by which a number display part (or number display) 11 a that displays numbers and a symbol display part (or symbol display) 11 b that displays a symbol, a letter, or a picture are defined.
  • the number display part 11 a may be formed by arranging a set of first through-holes 21 in a shape of seven segments.
  • the number display part 11 a may be provided in an upper part and a lower part of the display window 11 to independently display temperatures of a refrigerator compartment and a freezer compartment.
  • the number display part 11 a may display other information that may be expressed by numbers, in addition to temperature information, and may selectively display information through manipulation of the manipulation part.
  • the symbol display part 11 b may be formed below the number display part 11 a.
  • the symbol display part 11 b may display an operational state of the refrigerator 1 with a symbol or a picture, and a set of first through-holes 21 may have a corresponding shape such that the user may intuitively recognize the operational state of the refrigerator 1 .
  • the upper symbol display part 11 b may be expressed in a lock shape to display a locking state
  • the middle symbol display part 11 b may be expressed in a filter shape to display an operation of a microorganism removal or deodorization function
  • the lower symbol display part 11 b may be expressed in a rotating fan shape to display a rapid freezing function.
  • the shape of the symbol display part 11 b may be expressed variously, and various numbers of the symbol display parts 11 b may be formed.
  • the display window 11 may correspond to the arrangement of the second through-holes 220 (see FIG. 6 ), which will be described below, such that light irradiated from an LED 320 (see FIG. 6 ) of a display assembly 300 may pass through the display window 11 .
  • the first through-holes 21 may have a minute size through laser processing or etching, and may have a size by which the first through-holes 21 cannot be easily identified from the outside while light does not pass through the first through-holes 21 .
  • FIG. 3 is illustrated such that the number display part 11 a and the symbol display part 11 b are clearly viewed on the drawing to illustrate that the number display part 11 a and the symbol display part 11 b have the plurality of first through-holes 21 , the number display part 11 a and the symbol display part 11 b cannot be easily distinguished visibly if the number display part 11 a and the symbol display part 11 b are spaced apart from the user because the sizes of the first through-holes 21 are actually minute.
  • the number display part 11 a only a part to which light is irradiated may pass through the first through-holes 21 according to an operation of seven segments such that a number may be displayed on the front panel 20 and a part to which light is not irradiated cannot be easily distinguished.
  • the symbol display part 11 b may be identified from the outside because light is irradiated to the symbol display part 11 b when a corresponding LED 320 is turned on when the corresponding function is used, the symbol display part 11 b cannot be easily distinguished while the LED 320 is turned off.
  • the areas of the number display part 11 a and the symbol display part 11 b that define the display window 11 to which light is not radiated may have the first through-holes 21 having a size that is so minute that the user cannot identify the first through-holes 21 from the outside.
  • the front panel 20 may give the user a feeling as though the whole front external appearance of the refrigerator door 10 was formed of a metal plate, thereby showing a simple and luxurious aesthetic feeling.
  • a sealing member (or sealant) 22 may be filled in the interior of the first through-holes 21 .
  • the sealing member 22 may prevent the first through-holes 21 from being blocked by foreign substances.
  • the sealing member 22 may be formed of a material, such as silicon or epoxy, which blocks the first through-holes 21 but transmits light. Further, because the insides of the first through-holes 21 are filled by the sealing member 22 , the machined surfaces of the first through-holes 21 may be prevented from being corroded.
  • the sealing member 22 may fill the insides of the first through-holes 21 through a separate process, and if necessary, in a process of coating a surface of the front panel 20 , the plurality of first through-holes 21 may be blocked by filling the first through-holes 21 with the sealing member 22 or attaching the sealing member 22 in the form of a sheet.
  • a fingerprint, coating liquid and/or a diffusion sheet of the front panel 20 may function as the sealing member 22 .
  • the manipulation part may include a plurality of touch plates 12 , through which the user may perform a touch operation.
  • the touch plates 12 display an area, through which a touch sensor assembly 500 may detect a touch when the user touches the touch plate 12 . Accordingly, when the user touches the touch plate 12 , a sensor 520 (see FIG. 8 ) provided in the touch sensor assembly 500 may be manipulated.
  • the sensor 520 may be a capacitive sensor that detects a change in static electricity. Further the sensor 520 may be connected to the touch plate 12 such that a current by static electricity is delivered from the touch plate 12 to the sensor 520 . Accordingly, when the user touches the touch plate 12 , the sensor 520 may detect a change in static electricity to recognize a touch.
  • the touch plate 12 may be separate from the front panel 20 , and may be formed of the same material as that of the front panel 20 such that the user feels as though the touch plate 12 was integrally formed with the front panel 20 .
  • the touch plate 12 may display a letter or a symbol such that the user intuitively understands and manipulates the corresponding function of the touch plate 12 . Further, because the touch plate 12 is separate from the front panel 20 , a peripheral end of the touch plate 12 may allow the user to distinguish a touchable area. Accordingly, the user may recognize the touch plate 12 effectively.
  • the door liner 30 may be coupled to the front panel 20 , and define a surface that faces an inside of the storage pace.
  • the door liner 30 may be injection-molded of plastic, and may provide a structure in which a gasket is arranged or on which a basket is mounted, along a periphery of the door liner 30 .
  • the door liner 30 may define a space between the door liner 30 and the front panel 20 when being coupled to the front panel 20 , and an expandable liquid that forms an insulating member 24 may be filled in the space.
  • a frame 100 may be attached to a rear surface of the front panel 20 .
  • the frame 100 may provide a separate space that s not filled with the expandable liquid in the interior of the refrigerator door 10 , and may provide a space in which a cover display 200 , a display assembly 300 , a touch sensor assembly 500 , and a frame display 400 are accommodated.
  • the display assembly 300 and the touch sensor assembly 500 may not be provided as separate configurations but may be integrally formed with each other, an embodiment in which the display assembly 300 and the touch sensor assembly 500 are provided as separate configurations will be described below in detail.
  • the deco members 40 and 43 may define upper and lower external appearances of the refrigerator door 10 , and may shield opened upper and lower ends of the refrigerator door 10 , which are formed when the front panel 20 and the door liner 30 are coupled to each other.
  • An insertion hole 41 and an insertion hole cover 42 that opens and closes the insertion hole 41 may be provided in the upper deco member 40 of the refrigerator door 10 .
  • the insertion hole 41 may pass through the deco member 40 , and may be communicated with a space in which the frame 100 is formed. Further, the insertion hole 41 may have a size that is large such that the frame display 400 may be inserted through the insertion hole 41 , and may be situated on a vertically upper side of the cover display 400 .
  • a hinge hole in which a hinge that functions as a rotary shaft of the refrigerator door 10 may be mounted, is formed on one side of the deco member 40 . Further, an electric wire that is guided inside the frame 100 through the hinge hole may enter and exit from the frame 100 and may be connected to a power supply of the cabinet.
  • the deco member 43 on the lower side of the refrigerator door 10 may be provided with a door handle 44 .
  • the door handle 44 may be recessed in a pocket form such that the refrigerator door 10 may be rotated.
  • the deco member 43 on the lower side of the refrigerator door 10 may include a lever 45 for opening and closing the refrigerator door 10 , and a latch assembly 31 may be driven through manipulation of the lever 45 such that maintenance of an opened or closed state of the refrigerator door 10 may be selected.
  • the cover display 200 may be mounted on a rear surface of the front panel 20 .
  • the cover display 200 may guide mounting of the display assembly 300 and the touch sensor assembly 500 .
  • a front panel hole 13 may pass through the front panel 20 .
  • the front panel hole 13 may define a passage that connects the touch plate 12 and the touch sensor assembly 500 , and may be formed at a location corresponding to the touch plate 12 .
  • the front panel hole 13 may guide a mounting location of the cover display 200
  • a cover protrusion 210 that protrudes forward may be formed in the cover display 200 , and the cover protrusion 210 may be inserted into the front panel hole 13 . While the cover protrusion 210 is inserted into the front panel hole 13 , the cover display 200 may be attached to a rear surface of the front panel 20 using an adhesive.
  • various methods for firmly fixing the cover display 200 may be provided.
  • the cover display 200 may be located to an intended precise location of the rear surface of the front panel 20 .
  • the cover protrusion 210 and the front panel hole 13 may guide a mounting location of the cover display 200 .
  • a precise location of the cover display 200 may refer to a location at which a second through-hole 220 formed in the display 200 is precisely aligned with a first through-hole 21 formed in the front panel 20 . It refers to a state in which the first through-hole 21 is arranged inside the second through-hole 220 to be aligned with the second through-hole 220 such that light irradiated from the LED 320 of the display assembly 300 is emitted to the outside without being blocked.
  • the cover protrusion 210 may be formed at a location corresponding to the front panel hole 13 while being situated adjacent to the second through-hole 220 , to which the front panel hole 13 corresponds. Further, the cover protrusion 210 may be formed in a shape corresponding to the front panel hole 13 such that an integral feeling may be provided.
  • the front panel hole 13 and the touch plate 12 may have a circular or polygonal shape.
  • the cover protrusion 210 may have a size corresponding to the size of the front panel hole 13 . Accordingly, when the cover protrusion 210 is inserted into the front panel hole 13 , an outer peripheral surface of the cover protrusion 210 may be adhered to an inner peripheral surface of the front panel hole 13 .
  • the number of the cover protrusions 210 may correspond to the number of the front panel holes 13 .
  • a plurality of cover protrusions 210 and plurality of front panel holes 13 may be provided. Because the plurality of cover protrusions 210 of the cover display 200 are inserted into the responding front panel holes 13 , mounting locations of the cover protrusions 210 may be guided to the front panel 20 more stably while the cover protrusions 210 are not shaken.
  • the first through-hole 21 may be situated inside the corresponding second through-hole 220 . Further, the cover display 200 may be accommodated inside the frame 100 while being mounted on the front panel 20 .
  • the touch sensor assembly 500 may be directly mounted on the rear surface of the cover display 200 and provided in the interior of the frame 100 . After the touch sensor assembly 500 is mounted on the cover display 200 , the display assembly 300 may be inserted into an interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400 .
  • the display assembly 300 may be situated inside the cover display 200 .
  • the LED 320 may correspond to the second through-hole 220 of the cover display 200 , and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • a front surface and an upper surface of the frame 100 may be open, and a space 110 having an opened upper surface may be formed in the frame 100 when the frame 100 is attached to the front panel 20 .
  • a periphery of the frame 100 except for an upper end of the frame 100 , may be bent towards the front panel 20 , and an end of the frame 100 may be bent to the outside again to form a frame bonding part 120 .
  • the frame bonding part 120 may be attached to a bonding member 25 that is formed of a double-sided tape or an adhesive such that the frame 100 may be attached to the rear surface of the front panel 20 .
  • an upper end of the frame 100 may contact a lower surface of the deco member 40 . Accordingly, the opened upper surface of the frame 100 may communicate with the insertion hole 41 , and accordingly, an independent space may be defined in the interior of the refrigerator door 10 .
  • a plurality of reinforcing ribs 130 may be formed on the rear surface of the frame 100 such that they may cross each other longitudinally and transversely, and even when an expandable liquid of high pressure forming the insulation member 24 is filled, the space in the interior of the frame 100 may be maintained by the reinforcing ribs 130 .
  • Plate supports 140 in which a support plate 141 is seated, may be formed at left and right ends of an upper side of the frame 100 .
  • the support plate 141 may be installed in an upper space of the frame 100 corresponding to an upper side of the cover display 200 while the cover display 200 is mounted, to support the front panel 20 on the rear side. Accordingly, a corresponding portion of the front panel 20 may be prevented from being shaken and the front panel 20 may be prevented from being deformed by an external impact as well.
  • the plate support 140 may be stepped to support opposite ends of the support plate 141 . While the frame 100 is attached to the front panel 20 the support plate 141 may be slid and inserted into a space between the plate support 140 and the front panel 20 .
  • the support plate 141 m be attached to a rear surface of the front panel 20 when the frame 100 is attached, while opposite ends of the support plate 141 are fixed to the plate support 140 .
  • An electric wire entrance 150 may be formed at an upper portion of a side surface of the frame 100 .
  • the electric wire entrance 150 may define a passage, through which an electric wire that connects electric components provided in the interior of the frame 100 and a power supply on the cabinet may be inserted and extracted.
  • the electric wire entrance 150 may be formed at an upper portion of a side surface of the frame 100 that is close to a hinge and a hinge hole of the refrigerator door 10 . When the expandable liquid is injected into the refrigerator door 10 , the electric wire entrance 150 may be finished to prevent the expandable liquid from being introduced into the frame 100 .
  • Constraint recesses 160 may be formed on the left and right sides of the fame 100 .
  • the constraint recesses 160 may be formed such that constraint parts 230 protruding from the left and right ends of the cover display 200 to lateral sides may be inserted into the constraint recesses 160 .
  • the constraint recesses 160 may be recessed outwards and have a shape corresponding to the constraint parts 230 , so that the cover display 200 is prevented from being moved and a precise location of the cover display 200 is maintained.
  • Cover supports 170 that support the cover display 200 may be formed at lower portions of the constraint recesses 160 , at which the cover display 200 is situated.
  • the cover supports 170 protrude from the left and right surfaces of the frame 100 , to push and support the left and right ends of the cover display 200 on the rear side.
  • the cover support 170 may push the cover display 200 forwards such that the cover display 200 remains attached to the front panel 20 .
  • the cover supports 170 may push the cover display 200 such that the front panel 20 and the cover display 200 remain attached to each other.
  • a plurality of cover supports 170 may be vertically arranged at a predetermined interval to uniformly push and support the whole cover display 200 .
  • a protrusion 171 that protrudes forwards may be formed on a front surface of the cover support 170 that is adjacent to the cover display 200 .
  • the protrusion 171 may have a rib shape or a boss shape that extends transversely, and may make line or point contact with the cover display 200 . Accordingly, the cover display 200 may be prevented from being inclined even though a contact surface between the cover display 200 and the cover support 170 is not uniform, and a uniform pressure may be delivered to the cover display 200 due to the cover supports 170 .
  • the cover display 200 may be a plate formed of plastic, and may be accommodated inside the frame 100 while being mounted on the front panel 20 .
  • Constraint parts 230 which protrude outwards and are inserted into the constraint recesses 160 , may be formed at upper portions of the left and right ends of the cover display 200 .
  • a plurality of second through-holes 220 may be formed at locations of the cover display 200 which correspond to the display window 11 .
  • the second through-holes 220 may guide light irradiated from the LED to the first through-holes 21 .
  • the sizes of the second through-holes 220 may be the same as or larger than the sizes of the first through-holes 21 . Accordingly, while the cover display 200 is arranged on the rear surface of the front panel 20 , the first through-holes 21 may be situated inside the corresponding second through-holes 220 . Further, the first through-holes may have a shape corresponding to the seven segments, and may have various hole shapes for displaying other pieces of information.
  • the display assembly 300 and the touch sensor assembly 500 may be arranged on the rear surface of the cover display 200 .
  • the display assembly 300 may be arranged at a location of the rear surface of the cover display 200 at which the second through-holes 220 are formed.
  • the touch sensor assembly 500 may be arranged at a location of the rear surface of the cover display 200 at which the cover protrusions 210 are formed.
  • the display assembly 300 may include a display PCB 310 , on which the LED 320 is mounted.
  • the LED 320 may be provided at a location corresponding to the second through-holes 220 . While the display assembly 310 is arranged on the rear surface of the cover display 200 , the LED 320 may be arranged at a location corresponding to the second through-holes 220 to irradiate light towards the second through-holes 220 .
  • the cover protrusions 210 that protrude forwards may be formed at locations of the cover display 200 which correspond to the front panel holes 13 .
  • Protrusion holes 211 may be formed in the cover protrusion 210 of the cover display 200 .
  • the protrusion holes 211 may pass through the center of the cover protrusions 210 .
  • the protrusion holes 211 may define passages to connect the sensor 520 of the touch sensor assembly 500 and the touch plate 12 .
  • the touch plate 12 may connect the front panel holes 13 and the sensor 520 through the protrusion holes 211 .
  • the touch sensor assembly 500 may include a touch sensor PCB 510 , on which the sensor 520 is mounted. Further, a conductive member 700 may be provided on a front surface of the sensor 520 of the touch sensor PCB 510 .
  • the conductive member 700 may connect the sensor 520 and the touch plate 12 such that a current by static electricity may flow between the sensor and the touch plate 12 .
  • the conductive member 700 may be inserted into the protrusion hole 211 and may be formed of a conductive material
  • the conductive member 700 may be formed of a metal or a conductive synthetic resin.
  • the conductive member 700 may be fixed to a front surface of the sensor 520 . Accordingly, as the conductive member 700 fixed to the front surface of the sensor 520 is inserted into the protrusion hole 211 , the touch sensor assembly 500 may be fixed to the rear surface of the cover display 200 .
  • a shape of the conductive member 700 may correspond to a shape of the protrusion hole 211 , and may have an outer diameter corresponding to an inner diameter of the protrusion hole 211 .
  • the conductive member 700 may fill the protrusion hole 211 when inserted into the protrusion hole 211 , to prevent foreign substances from being introduced through the protrusion hole 211 .
  • the touch sensor assembly 500 may be directly mounted on the cover display 200 . After the touch sensor assembly 500 is mounted on the cover display 200 , the display assembly 300 may be inserted into an interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400 .
  • the frame display 400 may have a plate shape, in which the display PCB 310 may be seated, such that the display PCB 310 may be mounted.
  • a rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the display PCB 310 may be accommodated.
  • Sliding insertion parts 415 that are bent to the left and right sides are formed on the left and right ends of the frame display 400 .
  • the sliding insertion parts 415 may be inserted into guide rails 240 (see FIG. 8 ) that are formed in the cover display 200 . Accordingly, the frame display 400 may be mounted on the cover display 200 by the sliding insertion parts 415 .
  • Reinforcing ribs 411 that are formed at a predetermined interval transversely and longitudinally to define a lattice shape may be formed on the whole front surface of the frame display 400 .
  • a frame cutting part 414 may be formed at an upper end of the frame display 400 .
  • the frame cutting part 414 may be cut at a location corresponding to the display terminal 311 to have a size corresponding to the size of the display terminal 311 , thereby preventing the display terminal 311 and the frame display 400 from interfering with each other.
  • a boss 413 may be formed n the frame display 400 , to which a screw 312 may be coupled to fix the display PCB 310 .
  • the boss 413 may be coupled to the screw 312 and support the display PCB 310 on the lower side.
  • a frame handle 420 that extends upwards may be provided at a central portion of an upper end of the frame display 400 .
  • the frame handle 420 may be manipulated by the user while being gripped by the user, when the frame display 400 is coupled to the cover display 200 , and may have a predetermined length.
  • the frame handle 420 may include a first vertical part 421 that extends from the frame display 400 , an inclined part 422 that extends from an upper end of the first vertical part 421 to be inclined rearwards, and a second vertical part 423 that extend from an upper end of the inclined part 422 upwards again.
  • the first vertical part 421 and the second vertical part 423 may extend in parallel and may be connected by the inclined part 422 .
  • a grip part 424 configured to be gripped by the user, may be formed at an upper end of the second vertical part 423 to extend transversely.
  • the frame display 400 when the frame display 400 is inserted, it may be inserted into the insertion hole 41 from a lower end of the frame display 400 while the grip part 424 is gripped. As the frame display 400 is inserted downwards, the frame display 400 may be easily adhered to the rear surface of the cover display 200 due to the structure of the frame handle 420 .
  • the insertion hole cover 42 may contact the grip part 424 .
  • a handle coupling part having a shape corresponding to the grip part 424 is formed on a lower surface of the insertion hole cover 42 , an upper end of the frame handle 420 may be coupled to the handle coupling part to remain fixed when the insertion hole cover 42 is closed.
  • the touch sensor PCB 510 may be formed separately from the display PCB 310 , and may be spaced apart from the display PCB 310 .
  • the touch sensor PCB 510 and the display PCB 310 may be connected to each other by a cable connector 600 .
  • the cable connector 600 may include a first cable connector 610 connected to the touch sensor PCB 510 and a second cable connector 620 connected to the display PCB 310 , and the first cable connector 610 and the second cable connector 620 may be connected to each other when mounting the display assembly 300 on the refrigerator door 10 while the first cable connector 610 and the second cable connector 620 are connected to the touch sensor PCB 510 and the display PCB 310 , respectively.
  • the whole length of the cable connector 600 may be larger than a distance from the touch sensor assembly 500 to the insertion hole 41 so that the display assembly 300 may be mounted after the touch assembly 500 is connected to the cover display 200 on the outside of the insertion hole 41 while the touch assembly 500 is mounted on the cover display 200 .
  • the cover display 200 may be situated on the rear surface of the front panel 20 .
  • the cover protrusions 210 of the cover display 200 may be inserted into and mounted in the front panel holes 13 of the front panel 20 . Accordingly, the cover display 200 may be firmly arranged not to be moved from the rear surface of the front panel 20 .
  • the first through-holes 21 of the front panel 20 and the corresponding second through-holes 220 of the cover display 200 may communicate with each other at the corresponding locations.
  • the first through-holes 21 may be situated inside the corresponding through-holes 220 so that light irradiated from the LED 320 may be stably emitted to the outside.
  • the cover protrusion 210 may protrude forwards, and the forward protrusion may have a thickness corresponding to the thickness of the front panel 20 . Accordingly, while the cover protrusions 210 are completely inserted into the front panel holes 13 , front surfaces of the cover protrusions 210 may be exposed to the outside of the front panel 20 through the front panel holes 13 . The front surfaces of the cover protrusions 210 may be situated on the same plane as the front surface of the front panel 20 .
  • the touch plate 12 may be smaller than the front panel holes 13 to be inserted into the front panel holes 13 .
  • the outer diameter of the touch plates 12 may be smaller than the inner diameter of the front panel holes 13 .
  • the touch plates 12 may be smaller than the size of the front panel hole 13 and may be larger than the size of the protrusion holes 211 to be seated on the front surfaces of the cover protrusions 210 .
  • a touch plate seating part 212 in which the touch plate 12 is accommodated and seated, may be formed on the front surface of the cover protrusion 210 .
  • the touch plate seating part 212 may be recessed at the center of the front surface of the cover protrusion 210 to have a size and a shape corresponding to the touch plate 12 .
  • the touch plate seating part 212 may be recessed to have a shape corresponding to a shape of the touch plate 12 and have a thickness corresponding to a depth of the touch plate 12 .
  • the touch plate 12 When the touch plate 12 is seated in the touch plate seating part 212 the touch plate 12 may be situated on the rear side of the front panel hole 13 . Further, the front surface of the touch plate 12 may be situated on the same plane as the front surface of the front panel 20 .
  • the touch plate 12 may have the same central axis as that of the front panel hole 13 .
  • the center of the touch plate 12 may pass through an axis that passes through the center of the front panel hole 13 .
  • an outer peripheral surface of the touch plate 12 may be spaced apart from an inner peripheral surface of the front panel hole 13 .
  • the cover protrusion 210 may constitute a front external appearance having an integral feeling. Because the touch plate 12 is smaller than the front panel hole 13 and the cover protrusion 210 has a size corresponding to a size of the front panel hole 13 , at least a portion of the front surface of the cover protrusion 210 may be exposed to the outside through the front panel hole 13 . A front periphery of the cover protrusion 210 corresponding to the outside of the touch plate seating part 212 may be exposed to the outside through the front panel hole 13 .
  • the front surface of the cover protrusion 210 exposed to the outside through the front panel hole 13 may define a border of the front panel 20 and the touch plate 12 . Accordingly, the user may easily recognize a touch area due to the cover protrusion 210 exposed to the outside.
  • the front surface of the cover protrusion 210 exposed to the outside may be colored so that the user may recognize a touch area more easily.
  • the touch sensor assembly 500 may be arranged on the rear surface of the cover display 200 .
  • the sensor 520 may be mounted on the touch sensor PCB 510 .
  • the sensor 520 may correspond to the protrusion hole 211 in the touch sensor PCB 510 , and may be situated such that the center of the sensor 520 is positioned at the center of the protrusion hole 211 .
  • the sensor 520 , the cover protrusion 210 , and the touch plate 12 may be arranged at corresponding locations such that they have the same central axis.
  • the conductive member 700 may be situated in the interior of the protrusion hole 211 . Further, the conductive member 700 may contact the touch plate 12 and the sensor 520 so that a current due to static electricity may flow between the touch plate 12 and the sensor 520 .
  • the conductive member 700 may have an outer peripheral surface corresponding to an inner peripheral surface of the protrusion hole 211 and may have a shape and a size corresponding to the protrusion hole 211 to fill the protrusion hole 211 . Accordingly, foreign substances may be prevented from being introduced through the protrusion hole 211 .
  • the conductive member 700 may have a thickness corresponding to the forward/rearward thickness of the protrusion hole 211 . While the touch plate 12 is seated in the touch plate seating part 212 , the front surface of the conductive member 700 may contact the touch plate 12 . When the conductive member 700 is situated in the protrusion hole 211 , the touch plate 12 may contact the conductive member 700 such that the sensor 520 may be charged. If the cover protrusion 210 of the cover display 200 is inserted into the front panel hole 13 and the touch plate 12 is seated in the touch plate seating part 212 , the front surface of the touch plate 12 is situated on the same plate as the front surface of the front panel 20 .
  • the sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the protrusion hole 211 .
  • the conductive member 700 may pass through the protrusion hole 211 and connect the touch plate 12 and the sensor 520 such that a current by static electricity may flow between the touch plate 12 and the sensor 520 . If the user touches the touch plate 12 , the sensor 520 may recognize a touch of the touch plate 12 by static electricity.
  • the touch sensor assembly 500 may be directly mounted on the rear surface of the cover display 200 , and the display assembly 300 may be inserted into the interior space of the frame 100 while being mounted on the frame display 400 .
  • the touch sensor assembly 500 and the display assembly 300 may be inserted into the interior space of the frame 100 after being mounted on the frame display 400 together.
  • an embodiment in which the touch assembly 500 and the display assembly 300 are mounted on the frame display 400 together will be described in detail.
  • a frame 100 may be attached to a rear surface of the front panel 20 .
  • the frame 100 may provide a separate space that is not filled with the expandable liquid in the interior of the refrigerator door 10 , and provide a space in which a cover display 200 , a display assembly 300 , a touch sensor assembly 500 , and a frame display 400 are accommodated.
  • the deco members 40 and 43 may define upper and lower external appearances of the refrigerator door 10 , and may be configured to shield opened upper and lower ends of the refrigerator door 10 , which are formed when the front panel 20 and the door liner 30 are coupled to each other.
  • An insertion hole 41 and an insertion hole cover 42 that opens and closes the insertion hole 41 may be provided in the upper deco member 40 of the refrigerator door 10 .
  • the insertion hole 41 may pass through the deco member 40 , and may be communicated with a space in which the frame 100 is formed.
  • the insertion hole 41 may have a size that is large such that the frame display 400 may be inserted through the insertion hole 41 , and may be situated on a vertically upper side of the cover display 400 .
  • the cover display 200 may be mounted on a rear surface of the front panel 20 .
  • the cover display 200 may guide mounting of the display assembly 300 and the touch sensor assembly 500 .
  • a cover protrusion 210 that protrudes forwards may be formed in the cover display 200 and the cover protrusion 210 may be inserted into the front panel hole 13 formed in the front panel 20 .
  • the cover display 200 may be positioned at an intended precise location of the rear surface of the front panel 20 .
  • the cover protrusion 210 and the front panel hole 13 may guide a mounting location of the cover display 200 .
  • a precise location of the cover display 200 may refer to a location at which a second through-hole 220 formed in the display 200 is precisely aligned with a first through-hole 21 formed in the front panel 20 .
  • the first through-hole 21 may be arranged inside the second through-hole 220 to be aligned with the second through-hole 220 such that light irradiated from the LED 320 of the display assembly 300 is emitted to the outside without being blocked.
  • the touch sensor assembly 500 and the display assembly 300 may be inserted into the interior space of the frame 100 after being mounted on the frame display 400 together.
  • the frame display 400 may have a plate shape, in which the touch sensor assembly 500 and the display assembly 300 may be seated.
  • a rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the touch sensor PCB 510 and the display.
  • PCB 310 may be accommodated.
  • a boss 413 may be formed in the frame display 400 , to which a screw 31 may be coupled to fix the display PCB 310 .
  • a sensor coupling boss 418 may be formed in the frame display 400 , to which a screw 312 may be coupled to fix the sensor PCB 510 .
  • the touch sensor assembly 500 and the display assembly 300 may be fixedly mounted on the frame display 400 by the screw 312 .
  • Sliding insertion parts 415 that are bent to the left and right sides may be formed on the left and right ends of the frame display 400 .
  • the sliding insertion parts 415 may be inserted into guide rails 240 (see FIG. 8 ) that are formed in the cover display 200 .
  • the frame display 400 may be mounted on the cover display 200 by the sliding insertion parts 415 , after being inserted into the insertion hole 41 If the frame display 400 is completely inserted, the touch sensor assembly 500 and the display assembly 300 may be situated on the rear side of the cover display 200 .
  • the display assembly 300 may be situated on the rear side of the cover display 200 .
  • the LED 320 may correspond to the second through-hole 220 of the cover display 200 , and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • the sensor 520 mounted on the touch sensor assembly 500 may correspond to the protrusion hole 211 .
  • the sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the front panel hole 13 .
  • the sensor 520 may be positioned on a straight line together with the touch plate 12 provided in the front panel hole 13 .
  • the sensor 520 may be connected to the touch plate 12 through the protrusion hole 211 .
  • the conductive member 750 may be provided on the rear surface of the touch plate 12 , which faces the sensor 520 .
  • the conductive member 750 may connect the sensor 520 and the touch plate 12 such that a current by static electricity may flow between the sensor 520 and the touch plate 12 .
  • the conductive member 750 may be inserted into the protrusion hole 211 and may be formed of a conductive material.
  • the conductive member 750 may be formed of a metal or a conductive synthetic resin.
  • the conductive member 750 may be provided in the touch plate 12 , and when the touch plate 12 is formed of a metal, the conductive ember 750 may be integrally formed with the touch plate 12
  • a shape of the conductive member 750 may correspond to a shape of the protrusion hole 211 , and may have an outer diameter corresponding to an inner diameter of the protrusion hole 211 . Accordingly, the conductive member 750 may fill the protrusion hole 211 when inserted into the protrusion hole 211 , to prevent foreign substances from being introduced through the protrusion hole 211 . If the cover protrusion 210 of the cover display 200 is inserted into the front panel hole 13 and the touch plate 12 is seated in the touch plate seating part 212 , the front surface of the touch plate 12 may be situated on the same plate as the front surface of the front panel 20 .
  • the sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the protrusion hole 211 .
  • the conductive member 750 may pass through the protrusion hole 211 and connect the touch plate 12 and the sensor 520 such that a current by static electricity may flow between the touch plate 12 and the sensor 520 .
  • the sensor 520 may recognize a touch of the touch plate 12 by static electricity.
  • the display assembly 300 and the touch sensor assembly 500 may be integrally formed to be provided as one integrated sensor assembly 800 .
  • the display PCB 310 and the touch sensor PCB 510 may not be separately formed but may be provided as one integrated PCB 810 .
  • the cable connector 600 including the first cable connector 610 and the second cable connector 620 may be provided as an integrated cable connector 650 as the integrated PCB 810 is provided.
  • the integrated sensor assembly 800 may be inserted into the interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400 .
  • the present disclosure may include a plate shape in which the integrated sensor assembly 800 may be seated.
  • a rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the integrated sensor assembly 800 is accommodated.
  • Sliding insertion parts 415 that are bent to the left and right sides are formed on the left and right ends of the frame display 400 .
  • the sliding insertion parts 415 may be inserted into guide rails 240 that are formed in the cover display 200 . Accordingly, the frame display 400 may be mounted on the cover display 200 by the sliding insertion part 415 .
  • An integrated sensor coupling boss 419 may be formed in the frame display 400 , to which a screw 312 may be coupled to fix the integrated PCB 810 .
  • the integrated sensor assembly 800 may be fixedly mounted on the frame 400 by the screw 312 .
  • the integrated sensor assembly 800 may be situated on the rear side of the cover display 200 , and light irradiated by the LED 320 may be irradiated to the outside via the cover display 200 and the display window 11 .
  • the LED 320 may be situated to correspond to the second through-hole 220 of the cover display 200 , and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • the sensor 520 mounted on the touch sensor assembly 810 may correspond to the protrusion hole 211 .
  • the sensor 520 may be situated inside the cover display 200 at a location corresponding to the front panel hole 13 . Accordingly, the sensor 520 may be positioned on a straight line together with the touch plate 12 included in the front panel hole 13 .
  • the sensor 520 may be connected to the touch plate 12 through the protrusion hole 211 .
  • the cover display may be easily arranged at a precise location of the rear surface of the front panel and deviation of the arrangement location of the cover display may be minimized. Further, because the cover protrusions are inserted into the front panel holes, the first through-holes and the second through-holes are aligned with each other at corresponding locations. Accordingly, because the centers of the first through-holes and the second through-holes may be prevented from being deviated, light irradiated from the light emitting member may be uniformly emitted to the front side of the front panel through the first through-holes.
  • the touch plates provided on the front surface of the cover protrusions may be connected to the sensors provided inside the door through the protrusion holes formed in the cover protrusions such that the sensors are changed. Accordingly, when the touch plate is touched, the sensor may detect a touch.
  • the touch plate and the front panel are formed of the same metal material to provide an external appearance having an integral feeling.
  • the conductive members that connect the touch plates to the protrusion holes such that the touch plates and the sensors are charged have the size and shape corresponding to those of the protrusion holes to bury the protrusion holes. Accordingly, foreign substances may be prevented from being introduced through the protrusion holes.
  • the front surfaces of the cover protrusions may be located on the same plane as the front surface of the front panel when the cover protrusions are inserted into the front panel holes. Further, the front surfaces of the touch plates, which are seated in the touch plate seating parts formed on the front surfaces of the cover protrusions, also are located on the same plate as the front surface of the front panel. Accordingly, the front panel, the touch plates, and the cover protrusions provide an integral feeling, and may provide an appealing external appearance.
  • the touch plates are smaller than the front panel holes, the front surfaces of the cover protrusions are exposed to the outside. Accordingly, the user may recognize a touch area more easily by using the spaced spaces of the touch plates and the front panel holes and the cover protrusions exposed to the outside, and accordingly, convenience of use may be improved.
  • the cover display may be prevented from being shaken so that the first through-hole and the second through-hole may be aligned with each other at a more precise location. Accordingly, light emitted to the front side of the front panel through the first through-holes may become uniform.
  • a refrigerator may include a cover display in which a first through-hole, through which light of a light emitting member passes, is formed in a front panel and a second through-hole, which is communicated with the first through-hole to guide the light of the light emitting member, is formed on a rear surface of the front panel, wherein the first through-hole and the second through-hole are aligned with each other at a precise location.
  • the refrigerator may include a manipulation part that is touched by the user for use of the refrigerator and a sensor detects static electricity generated when the manipulation part is touched.
  • the refrigerator may allow the user to easily recognize a manipulation part and in which the user may feel as though the manipulation part was integral with a front surface of a door.
  • a refrigerator may include a door, a front panel that defines an external appearance of the door and is formed of a metal, a front panel hole that is formed in the front panel, a cover display that is provided on a rear surface of the front panel, a cover protrusion that extends from the cover display to an inside of the front panel hole, a touch plate that is mounted on the cover protrusion, is exposed through the front panel hole, and is formed of a metal, and a capacitive touch sensor that is arranged on a rear side of the cover display and is connected to the touch plate such that a current flows between the touch sensor and the touch plate, wherein the touch plate has a size that is smaller than a size of the front panel hole and is spaced apart from an inner peripheral surface of the front panel hole, and the cover protrusion is formed along an inner circumference of the front panel hole to divide a section between the touch plate and the front panel.
  • a touch plate seating part an inner area of which, except for a periphery of the touch plate seating part, is recessed may be formed on a front surface of the cover protrusion, and the touch plate may be seated in the touch plate seating part. While the touch plate may be seated in the touch plate seating part, a front surface of the touch plate and a front surface of the front panel may be situated on the same plane.
  • a front surface of the cover protrusion, which is exposed between the touch plate and the front panel, may be situated on the same plane as the plane on which the front panel is situated.
  • a front surface of the cover protrusion, which is exposed between the touch plate and the front panel, may be colored to define a border between the front panel and the touch plate.
  • the front panel and the touch plate may be formed of the same material.
  • a protrusion hole that passes through the cover plate may be formed in the cover protrusion, and a conductive member that connects the touch plate and the touch sensor such that a current flows between the touch plate and the touch sensor may be provided in the protrusion hole.
  • the conductive member may have a size and a shape that correspond to a size and a shape of the protrusion hole to bury the protrusion hole.
  • the touch plate and the conductive member may be integrally formed.
  • the refrigerator may further include a light emitting member that is arranged on a rear side of the cover display inside the door, a display window that is formed on one side of the front panel, which is spaced apart from the front panel hole and includes a set of fine first through-holes, through which light of the light emitting member passes, and a plurality of second through-holes that is formed in the cover display to guide the light of the light emitting member to the display window, and while the cover protrusion is inserted into the front panel hole, the first through-holes and the corresponding second through-holes are aligned with each other.
  • An integrated PCB on which the touch sensor together with the light emitting member are mounted, may be provided on a rear side of the cover display.
  • a sensor PCB, on which the touch sensor is mounted, and a display PCB, on which the light emitting member is mounted, may be provided on a rear side of the cover display. While the sensor PCB and the display PCB are provided on a rear side of the cover display, the touch sensor may be situated to correspond to the front panel hole and the light emitting member may be situated to correspond to the second through-holes.
  • a plate-shaped frame display which is mounted to be slid, may be provided in the cover display, the display PCB may be mounted on the frame display, and the sensor PCB may be mounted on a rear surface of the cover display.
  • a plate-shaped frame display which is mounted to be slid, may be provided in the cover display, and the sensor PCB and the display PCB may be mounted on the frame display together.
  • a plurality of cover protrusions may be arranged to be spaced apart from each other, and the number of the front panel holes may correspond to the number of the cover protrusions such that the front panel holes are situated at locations correspond to the cover protrusions.
  • a side-by-side type refrigerator will be exemplified for convenience of description and understanding in the embodiments of the present disclosure, and the present disclosure may be applied to home appliances that may equipped with a touch sensor assembly as well as all types of refrigerators.
  • any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc. means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.

Abstract

A refrigerator includes a door, a front panel that defines an external appearance of the door and is formed of a metal, a front panel hole that is formed in the front panel, a cover display that is provided on a rear surface of the front panel, a cover protrusion that extends from the cover display to an inside of the front panel hole, a touch plate that is mounted on the cover protrusion, is exposed through the front panel hole, and is formed of a metal, and a capacitive touch sensor that is arranged on a rear side of the cover display and is connected to the touch plate such that a current flows between the touch sensor and the touch plate. The touch plate has a size that is smaller than a size of the front panel hole and is spaced apart from an inner peripheral surface of the front panel hole, and the cover protrusion is formed along an inner circumference of the front panel hole to divide a section between the touch plate and the front panel.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • The application claims priority under 35 U.S.C. §119 and 35 U.S.C. §365 to Korean Patent Application No. 10-2015-0167689, filed in Korea on Nov. 27, 2015, chose entire disclosure is hereby incorporated by reference.
  • BACKGROUND
  • 1. Field
  • The present-disclosure relates to a refrigerator.
  • 2. Background
  • In general, a touch sensor assembly used in home appliances may generate a signal for operations of the home appliance by recognizing a push operation of the user. The touch sensor may include a capacitive sensor and a resistive cell sensor, and may detect a touch operation of the user by the sensor, process signals, and allow an operation of the home appliance to be performed. However, in recent years, the home appliances have employed an external member formed of steel or glass or coated with similar materials to improve the external appearances thereof, and the touch sensor assemblies for recognizing touch operations of the external members also have been developed.
  • A refrigerator may be an electric device that stores foods in a storage space shielded by a doer at low temperature. To achieve this, the refrigerator may cool the interior of the storage space by using cooling air generated through heat exchange between the cooling air and a refrigerant that circulates a freezing cycle to preserve the stored foods in an optimum state.
  • The interior of the refrigerator may include a refrigerator compartment and a freezer compartment, and reception members such as shelves, drawers, and baskets, may be provided in the interior of the refrigerator compartment and the freezer compartment. Further, the refrigerator compartment and the freezer compartment may be shielded by doors. The refrigerators are variously classified according to an arrangement and a door form of the refrigerator compartment and the freezer compartment.
  • As refrigerators have recently become luxurious and multifunctional, refrigerators having an improved external appearance and equipped with various convenience units have been released. For example, the refrigerators in which an external member that defines an external appearance of the refrigerator is formed of steel or glass, or coated of similar materials and which employs various structures of displays and manipulation units for facilitating manipulations of the user have been developed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements and wherein:
  • FIG. 1 is a front view of a refrigerator according to an embodiment of the present disclosure;
  • FIG. 2 is a perspective view of a refrigerator door according to an embodiment of the present disclosure;
  • FIG. 3 illustrates a display window and manipulation part of the refrigerator door;
  • FIG. 4 is an exploded perspective view illustrating a mounting structure of a display assembly of the refrigerator door;
  • FIG. 5 is an exploded perspective view illustrating that the front panel of the refrigerator door is separated;
  • FIG. 6 is an exploded perspective view illustrating a coupling structure of a touch sensor assembly, a cover display, a display assembly, a frame display, and a frame according to an embodiment of the present disclosure;
  • FIG. 7 is a sectional view taken along line 7-7′ of FIG. 4;
  • FIG. 8 is a sectional view taken along line 8-8′ of FIG. 4;
  • FIG. 9 is a view schematically illustrating structures of the touch plate, the front panel, the cover display, and the touch sensor assembly before and after assembly thereof according to an embodiment of the present disclosure;
  • FIG. 10 is a cutaway perspective view illustrating a coupling structure of the front panel and the cover display in FIG. 8;
  • FIG. 11 illustrates a coupling structure of the touch plate and the touch sensor assembly in FIG. 10;
  • FIG. 12 is an exploded perspective view illustrating a mounting structure of a display assembly and a touch sensor assembly of the refrigerator door according to another embodiment of the present disclosure;
  • FIG. 13 is an exploded perspective view illustrating that the front panel of the refrigerator door according to the embodiment of FIG. 12 is separated;
  • FIG. 14 is a view schematically illustrating structures of the touch plate, the front panel, the cover display, and the touch sensor assembly before and after assembly thereof according to the embodiment of FIG. 12;
  • FIG. 15 is an exploded perspective view illustrating a mounting structure of an integrated sensor assembly of the refrigerator door according to another embodiment of the present disclosure; and
  • FIG. 16 is an exploded perspective view illustrating that the front panel of the refrigerator door according to the embodiment of FIG. 15 is separated.
  • DETAILED DESCRIPTION
  • As illustrated in FIG. 1, an external shape of the refrigerator 1 according to an embodiment of the present disclosure may be defined by a cabinet that defines a storage space and refrigerator doors 10 that are mounted on the cabinet to open and close a storage space. The storage space may be partitioned into left and right parts and/or upper and lower parts, and a plurality of refrigerator doors 10 that open and close the spaces may be provided on the opened front surface of the storage space. The refrigerator doors 10 may open and close the storage space in a sliding or rotating type, and may define an external appearance of the front surface of the refrigerator 1 in a closed state.
  • Further, a display window (or display area) 11 and a manipulation part may be provided on one side of the plurality of refrigerator doors 10 at a height at which the display window 11 and the manipulation part may be easily manipulated and identified by the user. The display window 11 may be adapted to display an operational state of the refrigerator 1 to the outside, and express a symbol or a number while light irradiated from the interior of the refrigerator door 10 passes through the display window 11 to allow the user to verify the symbol or number from the outside. The display window 11 may generally refer to a hole, through which light may pass, or a transparent part.
  • The manipulation part may include a plurality of touch plates 12 that are touched by the user to operate the refrigerator 1 and may be provided on an area of the front surface of the refrigerator door 10, and a part that may detect a push operation may be defined by various methods including surface processing such as printing or etching or transmission of light.
  • As illustrated in FIGS. 2 and 3, an overall external appearance of the refrigerator door 10 may be defined by a front panel 20 that defines an external appearance of the refrigerator door 10 as a whole, deco members 40 and 43 that are provided at an upper end and a lower end of the front panel 20 respectively, and a door liner 30 that defines a rear external appearance of the refrigerator door 10. The front panel 20 may define a front external appearance of the refrigerator door 10, and may be a plate formed of stainless steel. Further, the front panel 20 may define at least portion of an external appearance of the refrigerator door 10, and may be expressed as an external member in home appliances other than a refrigerator.
  • The front panel 20 may be formed of a metal or a material that has a texture such as a metallic texture other than stainless steel, and may be formed of glass or plastic if necessary. The front panel 20 may define a portion of a side surface of the refrigerator door 10 as well as the front surface of the refrigerator door 10 if necessary, and fingerprint prevention processing or hair line processing may be further provided on a surface of the front panel 20.
  • The display window 11 may be defined by a plurality of first through-holes 21 that are arranged in an area of the front panel 20. The display window 11 may include a set of first through-holes 21 by which a number display part (or number display) 11 a that displays numbers and a symbol display part (or symbol display) 11 b that displays a symbol, a letter, or a picture are defined.
  • The number display part 11 a may be formed by arranging a set of first through-holes 21 in a shape of seven segments. The number display part 11 a may be provided in an upper part and a lower part of the display window 11 to independently display temperatures of a refrigerator compartment and a freezer compartment. Of course, the number display part 11 a may display other information that may be expressed by numbers, in addition to temperature information, and may selectively display information through manipulation of the manipulation part.
  • Further, the symbol display part 11 b may be formed below the number display part 11 a. The symbol display part 11 b may display an operational state of the refrigerator 1 with a symbol or a picture, and a set of first through-holes 21 may have a corresponding shape such that the user may intuitively recognize the operational state of the refrigerator 1.
  • For example, in the symbol display part 11 b of FIG. 3, the upper symbol display part 11 b may be expressed in a lock shape to display a locking state, the middle symbol display part 11 b may be expressed in a filter shape to display an operation of a microorganism removal or deodorization function, and the lower symbol display part 11 b may be expressed in a rotating fan shape to display a rapid freezing function. Of course, the shape of the symbol display part 11 b may be expressed variously, and various numbers of the symbol display parts 11 b may be formed.
  • The display window 11 may correspond to the arrangement of the second through-holes 220 (see FIG. 6), which will be described below, such that light irradiated from an LED 320 (see FIG. 6) of a display assembly 300 may pass through the display window 11. The first through-holes 21 may have a minute size through laser processing or etching, and may have a size by which the first through-holes 21 cannot be easily identified from the outside while light does not pass through the first through-holes 21.
  • Although FIG. 3 is illustrated such that the number display part 11 a and the symbol display part 11 b are clearly viewed on the drawing to illustrate that the number display part 11 a and the symbol display part 11 b have the plurality of first through-holes 21, the number display part 11 a and the symbol display part 11 b cannot be easily distinguished visibly if the number display part 11 a and the symbol display part 11 b are spaced apart from the user because the sizes of the first through-holes 21 are actually minute. In the number display part 11 a, only a part to which light is irradiated may pass through the first through-holes 21 according to an operation of seven segments such that a number may be displayed on the front panel 20 and a part to which light is not irradiated cannot be easily distinguished.
  • Further, in the symbol display part 11 b, although the symbol display part 11 b may be identified from the outside because light is irradiated to the symbol display part 11 b when a corresponding LED 320 is turned on when the corresponding function is used, the symbol display part 11 b cannot be easily distinguished while the LED 320 is turned off. The areas of the number display part 11 a and the symbol display part 11 b that define the display window 11 to which light is not radiated may have the first through-holes 21 having a size that is so minute that the user cannot identify the first through-holes 21 from the outside. Accordingly, other elements may not be arranged on a front external appearance of the refrigerator door 10 and the front panel 20 may give the user a feeling as though the whole front external appearance of the refrigerator door 10 was formed of a metal plate, thereby showing a simple and luxurious aesthetic feeling.
  • Meanwhile, a sealing member (or sealant) 22 may be filled in the interior of the first through-holes 21. The sealing member 22 may prevent the first through-holes 21 from being blocked by foreign substances. The sealing member 22 may be formed of a material, such as silicon or epoxy, which blocks the first through-holes 21 but transmits light. Further, because the insides of the first through-holes 21 are filled by the sealing member 22, the machined surfaces of the first through-holes 21 may be prevented from being corroded.
  • The sealing member 22 may fill the insides of the first through-holes 21 through a separate process, and if necessary, in a process of coating a surface of the front panel 20, the plurality of first through-holes 21 may be blocked by filling the first through-holes 21 with the sealing member 22 or attaching the sealing member 22 in the form of a sheet. As such, a fingerprint, coating liquid and/or a diffusion sheet of the front panel 20 may function as the sealing member 22.
  • The manipulation part may include a plurality of touch plates 12, through which the user may perform a touch operation. The touch plates 12 display an area, through which a touch sensor assembly 500 may detect a touch when the user touches the touch plate 12. Accordingly, when the user touches the touch plate 12, a sensor 520 (see FIG. 8) provided in the touch sensor assembly 500 may be manipulated.
  • The sensor 520 may be a capacitive sensor that detects a change in static electricity. Further the sensor 520 may be connected to the touch plate 12 such that a current by static electricity is delivered from the touch plate 12 to the sensor 520. Accordingly, when the user touches the touch plate 12, the sensor 520 may detect a change in static electricity to recognize a touch.
  • The touch plate 12 may be separate from the front panel 20, and may be formed of the same material as that of the front panel 20 such that the user feels as though the touch plate 12 was integrally formed with the front panel 20. The touch plate 12 may display a letter or a symbol such that the user intuitively understands and manipulates the corresponding function of the touch plate 12. Further, because the touch plate 12 is separate from the front panel 20, a peripheral end of the touch plate 12 may allow the user to distinguish a touchable area. Accordingly, the user may recognize the touch plate 12 effectively.
  • As illustrated in FIGS. 4 and 5, the door liner 30 may be coupled to the front panel 20, and define a surface that faces an inside of the storage pace. The door liner 30 may be injection-molded of plastic, and may provide a structure in which a gasket is arranged or on which a basket is mounted, along a periphery of the door liner 30. Further, the door liner 30 may define a space between the door liner 30 and the front panel 20 when being coupled to the front panel 20, and an expandable liquid that forms an insulating member 24 may be filled in the space.
  • A frame 100 may be attached to a rear surface of the front panel 20. The frame 100 may provide a separate space that s not filled with the expandable liquid in the interior of the refrigerator door 10, and may provide a space in which a cover display 200, a display assembly 300, a touch sensor assembly 500, and a frame display 400 are accommodated. Although the display assembly 300 and the touch sensor assembly 500 may not be provided as separate configurations but may be integrally formed with each other, an embodiment in which the display assembly 300 and the touch sensor assembly 500 are provided as separate configurations will be described below in detail.
  • The deco members 40 and 43 may define upper and lower external appearances of the refrigerator door 10, and may shield opened upper and lower ends of the refrigerator door 10, which are formed when the front panel 20 and the door liner 30 are coupled to each other. An insertion hole 41 and an insertion hole cover 42 that opens and closes the insertion hole 41 may be provided in the upper deco member 40 of the refrigerator door 10. The insertion hole 41 may pass through the deco member 40, and may be communicated with a space in which the frame 100 is formed. Further, the insertion hole 41 may have a size that is large such that the frame display 400 may be inserted through the insertion hole 41, and may be situated on a vertically upper side of the cover display 400.
  • A hinge hole, in which a hinge that functions as a rotary shaft of the refrigerator door 10 may be mounted, is formed on one side of the deco member 40. Further, an electric wire that is guided inside the frame 100 through the hinge hole may enter and exit from the frame 100 and may be connected to a power supply of the cabinet.
  • The deco member 43 on the lower side of the refrigerator door 10 may be provided with a door handle 44. The door handle 44 may be recessed in a pocket form such that the refrigerator door 10 may be rotated. Further, the deco member 43 on the lower side of the refrigerator door 10 may include a lever 45 for opening and closing the refrigerator door 10, and a latch assembly 31 may be driven through manipulation of the lever 45 such that maintenance of an opened or closed state of the refrigerator door 10 may be selected. The cover display 200 may be mounted on a rear surface of the front panel 20. The cover display 200 may guide mounting of the display assembly 300 and the touch sensor assembly 500.
  • A front panel hole 13 may pass through the front panel 20. The front panel hole 13 may define a passage that connects the touch plate 12 and the touch sensor assembly 500, and may be formed at a location corresponding to the touch plate 12.
  • The front panel hole 13 may guide a mounting location of the cover display 200 A cover protrusion 210 that protrudes forward may be formed in the cover display 200, and the cover protrusion 210 may be inserted into the front panel hole 13. While the cover protrusion 210 is inserted into the front panel hole 13, the cover display 200 may be attached to a rear surface of the front panel 20 using an adhesive. Of course, in addition to the method of attaching the cover display 200 to the front panel 20 by an adhesive, various methods for firmly fixing the cover display 200 may be provided.
  • While the cover protrusion 210 is inserted into the front panel hole 13, the cover display 200 may be located to an intended precise location of the rear surface of the front panel 20. The cover protrusion 210 and the front panel hole 13 may guide a mounting location of the cover display 200.
  • A precise location of the cover display 200 may refer to a location at which a second through-hole 220 formed in the display 200 is precisely aligned with a first through-hole 21 formed in the front panel 20. It refers to a state in which the first through-hole 21 is arranged inside the second through-hole 220 to be aligned with the second through-hole 220 such that light irradiated from the LED 320 of the display assembly 300 is emitted to the outside without being blocked.
  • To achieve this, the cover protrusion 210 may be formed at a location corresponding to the front panel hole 13 while being situated adjacent to the second through-hole 220, to which the front panel hole 13 corresponds. Further, the cover protrusion 210 may be formed in a shape corresponding to the front panel hole 13 such that an integral feeling may be provided. The front panel hole 13 and the touch plate 12 may have a circular or polygonal shape.
  • The cover protrusion 210 may have a size corresponding to the size of the front panel hole 13. Accordingly, when the cover protrusion 210 is inserted into the front panel hole 13, an outer peripheral surface of the cover protrusion 210 may be adhered to an inner peripheral surface of the front panel hole 13.
  • The number of the cover protrusions 210 may correspond to the number of the front panel holes 13. A plurality of cover protrusions 210 and plurality of front panel holes 13 may be provided. Because the plurality of cover protrusions 210 of the cover display 200 are inserted into the responding front panel holes 13, mounting locations of the cover protrusions 210 may be guided to the front panel 20 more stably while the cover protrusions 210 are not shaken.
  • If the cover display 200 is mounted on the front panel 20, the first through-hole 21 may be situated inside the corresponding second through-hole 220. Further, the cover display 200 may be accommodated inside the frame 100 while being mounted on the front panel 20.
  • The touch sensor assembly 500 may be directly mounted on the rear surface of the cover display 200 and provided in the interior of the frame 100. After the touch sensor assembly 500 is mounted on the cover display 200, the display assembly 300 may be inserted into an interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400.
  • If the frame display 400 is completely inserted, the display assembly 300 may be situated inside the cover display 200. Further, the LED 320 may correspond to the second through-hole 220 of the cover display 200, and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • As illustrated in FIGS. 6 and 7, a front surface and an upper surface of the frame 100 may be open, and a space 110 having an opened upper surface may be formed in the frame 100 when the frame 100 is attached to the front panel 20. To achieve this, a periphery of the frame 100, except for an upper end of the frame 100, may be bent towards the front panel 20, and an end of the frame 100 may be bent to the outside again to form a frame bonding part 120. The frame bonding part 120 may be attached to a bonding member 25 that is formed of a double-sided tape or an adhesive such that the frame 100 may be attached to the rear surface of the front panel 20.
  • While the frame 100 is attached to the front panel 20, an upper end of the frame 100 may contact a lower surface of the deco member 40. Accordingly, the opened upper surface of the frame 100 may communicate with the insertion hole 41, and accordingly, an independent space may be defined in the interior of the refrigerator door 10.
  • Even when an expandable liquid is injected into the interior of the refrigerator door 10 to form the insulation member 24, the expandable liquid may not be introduced into the space the interior of the frame 100. A plurality of reinforcing ribs 130 may be formed on the rear surface of the frame 100 such that they may cross each other longitudinally and transversely, and even when an expandable liquid of high pressure forming the insulation member 24 is filled, the space in the interior of the frame 100 may be maintained by the reinforcing ribs 130.
  • Plate supports 140, in which a support plate 141 is seated, may be formed at left and right ends of an upper side of the frame 100. The support plate 141 may be installed in an upper space of the frame 100 corresponding to an upper side of the cover display 200 while the cover display 200 is mounted, to support the front panel 20 on the rear side. Accordingly, a corresponding portion of the front panel 20 may be prevented from being shaken and the front panel 20 may be prevented from being deformed by an external impact as well.
  • The plate support 140 may be stepped to support opposite ends of the support plate 141. While the frame 100 is attached to the front panel 20 the support plate 141 may be slid and inserted into a space between the plate support 140 and the front panel 20. The support plate 141 m be attached to a rear surface of the front panel 20 when the frame 100 is attached, while opposite ends of the support plate 141 are fixed to the plate support 140.
  • An electric wire entrance 150 may be formed at an upper portion of a side surface of the frame 100. The electric wire entrance 150 may define a passage, through which an electric wire that connects electric components provided in the interior of the frame 100 and a power supply on the cabinet may be inserted and extracted. The electric wire entrance 150 may be formed at an upper portion of a side surface of the frame 100 that is close to a hinge and a hinge hole of the refrigerator door 10. When the expandable liquid is injected into the refrigerator door 10, the electric wire entrance 150 may be finished to prevent the expandable liquid from being introduced into the frame 100.
  • Constraint recesses 160 may be formed on the left and right sides of the fame 100. The constraint recesses 160 may be formed such that constraint parts 230 protruding from the left and right ends of the cover display 200 to lateral sides may be inserted into the constraint recesses 160. The constraint recesses 160 may be recessed outwards and have a shape corresponding to the constraint parts 230, so that the cover display 200 is prevented from being moved and a precise location of the cover display 200 is maintained.
  • Cover supports 170 that support the cover display 200 may be formed at lower portions of the constraint recesses 160, at which the cover display 200 is situated. The cover supports 170 protrude from the left and right surfaces of the frame 100, to push and support the left and right ends of the cover display 200 on the rear side.
  • Accordingly, if the frame 100 is attached to the front panel 20 and the expandable liquid is injected into the refrigerator door 10 while the cover display 200 is attached to the rear surface of the front panel 20, the cover support 170 may push the cover display 200 forwards such that the cover display 200 remains attached to the front panel 20. In particular, even when the bonding member 25 that attaches the cover display 200 to the front panel 20 is hardened to lose its function, the cover supports 170 may push the cover display 200 such that the front panel 20 and the cover display 200 remain attached to each other.
  • A plurality of cover supports 170 may be vertically arranged at a predetermined interval to uniformly push and support the whole cover display 200. A protrusion 171 that protrudes forwards may be formed on a front surface of the cover support 170 that is adjacent to the cover display 200. The protrusion 171 may have a rib shape or a boss shape that extends transversely, and may make line or point contact with the cover display 200. Accordingly, the cover display 200 may be prevented from being inclined even though a contact surface between the cover display 200 and the cover support 170 is not uniform, and a uniform pressure may be delivered to the cover display 200 due to the cover supports 170.
  • The cover display 200 may be a plate formed of plastic, and may be accommodated inside the frame 100 while being mounted on the front panel 20. Constraint parts 230, which protrude outwards and are inserted into the constraint recesses 160, may be formed at upper portions of the left and right ends of the cover display 200.
  • A plurality of second through-holes 220 may be formed at locations of the cover display 200 which correspond to the display window 11. The second through-holes 220 may guide light irradiated from the LED to the first through-holes 21.
  • The sizes of the second through-holes 220 may be the same as or larger than the sizes of the first through-holes 21. Accordingly, while the cover display 200 is arranged on the rear surface of the front panel 20, the first through-holes 21 may be situated inside the corresponding second through-holes 220. Further, the first through-holes may have a shape corresponding to the seven segments, and may have various hole shapes for displaying other pieces of information.
  • The display assembly 300 and the touch sensor assembly 500 may be arranged on the rear surface of the cover display 200. The display assembly 300 may be arranged at a location of the rear surface of the cover display 200 at which the second through-holes 220 are formed. The touch sensor assembly 500 may be arranged at a location of the rear surface of the cover display 200 at which the cover protrusions 210 are formed.
  • The display assembly 300 may include a display PCB 310, on which the LED 320 is mounted. The LED 320 may be provided at a location corresponding to the second through-holes 220. While the display assembly 310 is arranged on the rear surface of the cover display 200, the LED 320 may be arranged at a location corresponding to the second through-holes 220 to irradiate light towards the second through-holes 220.
  • The cover protrusions 210 that protrude forwards may be formed at locations of the cover display 200 which correspond to the front panel holes 13. Protrusion holes 211 may be formed in the cover protrusion 210 of the cover display 200. The protrusion holes 211 may pass through the center of the cover protrusions 210. The protrusion holes 211 may define passages to connect the sensor 520 of the touch sensor assembly 500 and the touch plate 12. The touch plate 12 may connect the front panel holes 13 and the sensor 520 through the protrusion holes 211.
  • The touch sensor assembly 500 may include a touch sensor PCB 510, on which the sensor 520 is mounted. Further, a conductive member 700 may be provided on a front surface of the sensor 520 of the touch sensor PCB 510.
  • The conductive member 700 may connect the sensor 520 and the touch plate 12 such that a current by static electricity may flow between the sensor and the touch plate 12. The conductive member 700 may be inserted into the protrusion hole 211 and may be formed of a conductive material The conductive member 700 may be formed of a metal or a conductive synthetic resin.
  • The conductive member 700 may be fixed to a front surface of the sensor 520. Accordingly, as the conductive member 700 fixed to the front surface of the sensor 520 is inserted into the protrusion hole 211, the touch sensor assembly 500 may be fixed to the rear surface of the cover display 200.
  • A shape of the conductive member 700 may correspond to a shape of the protrusion hole 211, and may have an outer diameter corresponding to an inner diameter of the protrusion hole 211. The conductive member 700 may fill the protrusion hole 211 when inserted into the protrusion hole 211, to prevent foreign substances from being introduced through the protrusion hole 211.
  • The touch sensor assembly 500 may be directly mounted on the cover display 200. After the touch sensor assembly 500 is mounted on the cover display 200, the display assembly 300 may be inserted into an interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400.
  • The frame display 400 may have a plate shape, in which the display PCB 310 may be seated, such that the display PCB 310 may be mounted. A rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the display PCB 310 may be accommodated. Sliding insertion parts 415 that are bent to the left and right sides are formed on the left and right ends of the frame display 400. The sliding insertion parts 415 may be inserted into guide rails 240 (see FIG. 8) that are formed in the cover display 200. Accordingly, the frame display 400 may be mounted on the cover display 200 by the sliding insertion parts 415.
  • Reinforcing ribs 411 that are formed at a predetermined interval transversely and longitudinally to define a lattice shape may be formed on the whole front surface of the frame display 400. A frame cutting part 414 may be formed at an upper end of the frame display 400. The frame cutting part 414 may be cut at a location corresponding to the display terminal 311 to have a size corresponding to the size of the display terminal 311, thereby preventing the display terminal 311 and the frame display 400 from interfering with each other.
  • A boss 413 may be formed n the frame display 400, to which a screw 312 may be coupled to fix the display PCB 310. The boss 413 may be coupled to the screw 312 and support the display PCB 310 on the lower side.
  • A frame handle 420 that extends upwards may be provided at a central portion of an upper end of the frame display 400. The frame handle 420 may be manipulated by the user while being gripped by the user, when the frame display 400 is coupled to the cover display 200, and may have a predetermined length.
  • The frame handle 420 may include a first vertical part 421 that extends from the frame display 400, an inclined part 422 that extends from an upper end of the first vertical part 421 to be inclined rearwards, and a second vertical part 423 that extend from an upper end of the inclined part 422 upwards again. The first vertical part 421 and the second vertical part 423 may extend in parallel and may be connected by the inclined part 422. A grip part 424, configured to be gripped by the user, may be formed at an upper end of the second vertical part 423 to extend transversely.
  • Accordingly, when the frame display 400 is inserted, it may be inserted into the insertion hole 41 from a lower end of the frame display 400 while the grip part 424 is gripped. As the frame display 400 is inserted downwards, the frame display 400 may be easily adhered to the rear surface of the cover display 200 due to the structure of the frame handle 420.
  • If the insertion hole cover 42 is closed while the frame display 400 is completely inserted, the insertion hole cover 42 may contact the grip part 424. Although not illustrated, because a handle coupling part having a shape corresponding to the grip part 424 is formed on a lower surface of the insertion hole cover 42, an upper end of the frame handle 420 may be coupled to the handle coupling part to remain fixed when the insertion hole cover 42 is closed.
  • The touch sensor PCB 510 may be formed separately from the display PCB 310, and may be spaced apart from the display PCB 310. The touch sensor PCB 510 and the display PCB 310 may be connected to each other by a cable connector 600.
  • The cable connector 600 may include a first cable connector 610 connected to the touch sensor PCB 510 and a second cable connector 620 connected to the display PCB 310, and the first cable connector 610 and the second cable connector 620 may be connected to each other when mounting the display assembly 300 on the refrigerator door 10 while the first cable connector 610 and the second cable connector 620 are connected to the touch sensor PCB 510 and the display PCB 310, respectively. The whole length of the cable connector 600 may be larger than a distance from the touch sensor assembly 500 to the insertion hole 41 so that the display assembly 300 may be mounted after the touch assembly 500 is connected to the cover display 200 on the outside of the insertion hole 41 while the touch assembly 500 is mounted on the cover display 200.
  • The cover display 200 may be situated on the rear surface of the front panel 20. The cover protrusions 210 of the cover display 200 may be inserted into and mounted in the front panel holes 13 of the front panel 20. Accordingly, the cover display 200 may be firmly arranged not to be moved from the rear surface of the front panel 20.
  • While the cover protrusions 210 are inserted into the front panel holes 13, the first through-holes 21 of the front panel 20 and the corresponding second through-holes 220 of the cover display 200 may communicate with each other at the corresponding locations. The first through-holes 21 may be situated inside the corresponding through-holes 220 so that light irradiated from the LED 320 may be stably emitted to the outside.
  • The cover protrusion 210 may protrude forwards, and the forward protrusion may have a thickness corresponding to the thickness of the front panel 20. Accordingly, while the cover protrusions 210 are completely inserted into the front panel holes 13, front surfaces of the cover protrusions 210 may be exposed to the outside of the front panel 20 through the front panel holes 13. The front surfaces of the cover protrusions 210 may be situated on the same plane as the front surface of the front panel 20.
  • The touch plate 12 may be smaller than the front panel holes 13 to be inserted into the front panel holes 13. When the front panel holes 13 are circular, the outer diameter of the touch plates 12 may be smaller than the inner diameter of the front panel holes 13. The touch plates 12 may be smaller than the size of the front panel hole 13 and may be larger than the size of the protrusion holes 211 to be seated on the front surfaces of the cover protrusions 210.
  • A touch plate seating part 212, in which the touch plate 12 is accommodated and seated, may be formed on the front surface of the cover protrusion 210. The touch plate seating part 212 may be recessed at the center of the front surface of the cover protrusion 210 to have a size and a shape corresponding to the touch plate 12. The touch plate seating part 212 may be recessed to have a shape corresponding to a shape of the touch plate 12 and have a thickness corresponding to a depth of the touch plate 12.
  • When the touch plate 12 is seated in the touch plate seating part 212 the touch plate 12 may be situated on the rear side of the front panel hole 13. Further, the front surface of the touch plate 12 may be situated on the same plane as the front surface of the front panel 20.
  • If the touch plate 12 is seated in the touch plate seating part 212, the touch plate 12 may have the same central axis as that of the front panel hole 13. The center of the touch plate 12 may pass through an axis that passes through the center of the front panel hole 13. While the touch plate 12 is inserted into the front panel hole 13, an outer peripheral surface of the touch plate 12 may be spaced apart from an inner peripheral surface of the front panel hole 13.
  • According to the structure, because the front surface of the front panel 20, the front surface of the cover protrusion 210, and the front surface of the touch plate 12 are formed on the same plane, the cover protrusion 210 may constitute a front external appearance having an integral feeling. Because the touch plate 12 is smaller than the front panel hole 13 and the cover protrusion 210 has a size corresponding to a size of the front panel hole 13, at least a portion of the front surface of the cover protrusion 210 may be exposed to the outside through the front panel hole 13. A front periphery of the cover protrusion 210 corresponding to the outside of the touch plate seating part 212 may be exposed to the outside through the front panel hole 13.
  • The front surface of the cover protrusion 210 exposed to the outside through the front panel hole 13 may define a border of the front panel 20 and the touch plate 12. Accordingly, the user may easily recognize a touch area due to the cover protrusion 210 exposed to the outside. The front surface of the cover protrusion 210 exposed to the outside may be colored so that the user may recognize a touch area more easily.
  • The touch sensor assembly 500 may be arranged on the rear surface of the cover display 200. The sensor 520 may be mounted on the touch sensor PCB 510. The sensor 520 may correspond to the protrusion hole 211 in the touch sensor PCB 510, and may be situated such that the center of the sensor 520 is positioned at the center of the protrusion hole 211. The sensor 520, the cover protrusion 210, and the touch plate 12 may be arranged at corresponding locations such that they have the same central axis.
  • The conductive member 700 may be situated in the interior of the protrusion hole 211. Further, the conductive member 700 may contact the touch plate 12 and the sensor 520 so that a current due to static electricity may flow between the touch plate 12 and the sensor 520.
  • The conductive member 700 may have an outer peripheral surface corresponding to an inner peripheral surface of the protrusion hole 211 and may have a shape and a size corresponding to the protrusion hole 211 to fill the protrusion hole 211. Accordingly, foreign substances may be prevented from being introduced through the protrusion hole 211.
  • The conductive member 700 may have a thickness corresponding to the forward/rearward thickness of the protrusion hole 211. While the touch plate 12 is seated in the touch plate seating part 212, the front surface of the conductive member 700 may contact the touch plate 12. When the conductive member 700 is situated in the protrusion hole 211, the touch plate 12 may contact the conductive member 700 such that the sensor 520 may be charged. If the cover protrusion 210 of the cover display 200 is inserted into the front panel hole 13 and the touch plate 12 is seated in the touch plate seating part 212, the front surface of the touch plate 12 is situated on the same plate as the front surface of the front panel 20.
  • The sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the protrusion hole 211. The conductive member 700 may pass through the protrusion hole 211 and connect the touch plate 12 and the sensor 520 such that a current by static electricity may flow between the touch plate 12 and the sensor 520. If the user touches the touch plate 12, the sensor 520 may recognize a touch of the touch plate 12 by static electricity.
  • In the above embodiment, the touch sensor assembly 500 may be directly mounted on the rear surface of the cover display 200, and the display assembly 300 may be inserted into the interior space of the frame 100 while being mounted on the frame display 400. The touch sensor assembly 500 and the display assembly 300 may be inserted into the interior space of the frame 100 after being mounted on the frame display 400 together. Hereinafter, an embodiment in which the touch assembly 500 and the display assembly 300 are mounted on the frame display 400 together will be described in detail.
  • The remaining configurations, except for the configuration in which the touch assembly 500 and the display assembly 300 are mounted on the frame display 400 together, are the same as those of the above-described embodiments. Accordingly, the same configurations will be denoted by the same reference numerals, and a description of the same configurations will be omitted.
  • A frame 100 may be attached to a rear surface of the front panel 20. The frame 100 may provide a separate space that is not filled with the expandable liquid in the interior of the refrigerator door 10, and provide a space in which a cover display 200, a display assembly 300, a touch sensor assembly 500, and a frame display 400 are accommodated. The deco members 40 and 43 may define upper and lower external appearances of the refrigerator door 10, and may be configured to shield opened upper and lower ends of the refrigerator door 10, which are formed when the front panel 20 and the door liner 30 are coupled to each other.
  • An insertion hole 41 and an insertion hole cover 42 that opens and closes the insertion hole 41 may be provided in the upper deco member 40 of the refrigerator door 10. The insertion hole 41 may pass through the deco member 40, and may be communicated with a space in which the frame 100 is formed. The insertion hole 41 may have a size that is large such that the frame display 400 may be inserted through the insertion hole 41, and may be situated on a vertically upper side of the cover display 400.
  • The cover display 200 may be mounted on a rear surface of the front panel 20. The cover display 200 may guide mounting of the display assembly 300 and the touch sensor assembly 500. A cover protrusion 210 that protrudes forwards may be formed in the cover display 200 and the cover protrusion 210 may be inserted into the front panel hole 13 formed in the front panel 20.
  • While the cover protrusion 210 is inserted into the front panel 1 the cover display 200 may be positioned at an intended precise location of the rear surface of the front panel 20. The cover protrusion 210 and the front panel hole 13 may guide a mounting location of the cover display 200.
  • A precise location of the cover display 200 may refer to a location at which a second through-hole 220 formed in the display 200 is precisely aligned with a first through-hole 21 formed in the front panel 20. The first through-hole 21 may be arranged inside the second through-hole 220 to be aligned with the second through-hole 220 such that light irradiated from the LED 320 of the display assembly 300 is emitted to the outside without being blocked. The touch sensor assembly 500 and the display assembly 300 may be inserted into the interior space of the frame 100 after being mounted on the frame display 400 together.
  • The frame display 400 may have a plate shape, in which the touch sensor assembly 500 and the display assembly 300 may be seated. A rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the touch sensor PCB 510 and the display. PCB 310 may be accommodated.
  • A boss 413 may be formed in the frame display 400, to which a screw 31 may be coupled to fix the display PCB 310. A sensor coupling boss 418 may be formed in the frame display 400, to which a screw 312 may be coupled to fix the sensor PCB 510. The touch sensor assembly 500 and the display assembly 300 may be fixedly mounted on the frame display 400 by the screw 312.
  • Sliding insertion parts 415 that are bent to the left and right sides may be formed on the left and right ends of the frame display 400. The sliding insertion parts 415 may be inserted into guide rails 240 (see FIG. 8) that are formed in the cover display 200. The frame display 400 may be mounted on the cover display 200 by the sliding insertion parts 415, after being inserted into the insertion hole 41 If the frame display 400 is completely inserted, the touch sensor assembly 500 and the display assembly 300 may be situated on the rear side of the cover display 200.
  • The display assembly 300 may be situated on the rear side of the cover display 200. The LED 320 may correspond to the second through-hole 220 of the cover display 200, and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • The sensor 520 mounted on the touch sensor assembly 500 may correspond to the protrusion hole 211. The sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the front panel hole 13. The sensor 520 may be positioned on a straight line together with the touch plate 12 provided in the front panel hole 13. The sensor 520 may be connected to the touch plate 12 through the protrusion hole 211.
  • The conductive member 750 may be provided on the rear surface of the touch plate 12, which faces the sensor 520. The conductive member 750 may connect the sensor 520 and the touch plate 12 such that a current by static electricity may flow between the sensor 520 and the touch plate 12.
  • The conductive member 750 may be inserted into the protrusion hole 211 and may be formed of a conductive material. The conductive member 750 may be formed of a metal or a conductive synthetic resin. The conductive member 750 may be provided in the touch plate 12, and when the touch plate 12 is formed of a metal, the conductive ember 750 may be integrally formed with the touch plate 12
  • A shape of the conductive member 750 may correspond to a shape of the protrusion hole 211, and may have an outer diameter corresponding to an inner diameter of the protrusion hole 211. Accordingly, the conductive member 750 may fill the protrusion hole 211 when inserted into the protrusion hole 211, to prevent foreign substances from being introduced through the protrusion hole 211. If the cover protrusion 210 of the cover display 200 is inserted into the front panel hole 13 and the touch plate 12 is seated in the touch plate seating part 212, the front surface of the touch plate 12 may be situated on the same plate as the front surface of the front panel 20.
  • The sensor 520 may be situated on the rear side of the cover display 200 at a location corresponding to the protrusion hole 211. The conductive member 750 may pass through the protrusion hole 211 and connect the touch plate 12 and the sensor 520 such that a current by static electricity may flow between the touch plate 12 and the sensor 520. As the user touches the touch plate 12, the sensor 520 may recognize a touch of the touch plate 12 by static electricity.
  • The display assembly 300 and the touch sensor assembly 500 may be integrally formed to be provided as one integrated sensor assembly 800. The display PCB 310 and the touch sensor PCB 510 may not be separately formed but may be provided as one integrated PCB 810. The cable connector 600 including the first cable connector 610 and the second cable connector 620 may be provided as an integrated cable connector 650 as the integrated PCB 810 is provided.
  • The integrated sensor assembly 800 may be inserted into the interior space of the frame 100 through the insertion hole 41 while being mounted on the frame display 400. The same configurations as those of the above-described embodiments, except for the configuration in which the integrated PCB 810 and the integrated cable connector 650, will be denoted by the same reference numerals, and a detailed description of the same configurations will be omitted.
  • The present disclosure may include a plate shape in which the integrated sensor assembly 800 may be seated. A rim 410 that is bent forwards along a periphery of the frame display 400 may be formed to define a space, in which the integrated sensor assembly 800 is accommodated. Sliding insertion parts 415 that are bent to the left and right sides are formed on the left and right ends of the frame display 400. The sliding insertion parts 415 may be inserted into guide rails 240 that are formed in the cover display 200. Accordingly, the frame display 400 may be mounted on the cover display 200 by the sliding insertion part 415.
  • An integrated sensor coupling boss 419 may be formed in the frame display 400, to which a screw 312 may be coupled to fix the integrated PCB 810. The integrated sensor assembly 800 may be fixedly mounted on the frame 400 by the screw 312.
  • If the frame display 400 1s completely inserted, the integrated sensor assembly 800 may be situated on the rear side of the cover display 200, and light irradiated by the LED 320 may be irradiated to the outside via the cover display 200 and the display window 11. The LED 320 may be situated to correspond to the second through-hole 220 of the cover display 200, and light irradiated by the LED 320 may pass through the second through-hole 220 and the first through-hole 21 of the display window 11 and may be irradiated to the outside.
  • The sensor 520 mounted on the touch sensor assembly 810 may correspond to the protrusion hole 211. The sensor 520 may be situated inside the cover display 200 at a location corresponding to the front panel hole 13. Accordingly, the sensor 520 may be positioned on a straight line together with the touch plate 12 included in the front panel hole 13. The sensor 520 may be connected to the touch plate 12 through the protrusion hole 211.
  • Because a mounting location of the cover display is guided by the front panel holes formed in the front panel and the cover protrusions formed in the cover display, the cover display may be easily arranged at a precise location of the rear surface of the front panel and deviation of the arrangement location of the cover display may be minimized. Further, because the cover protrusions are inserted into the front panel holes, the first through-holes and the second through-holes are aligned with each other at corresponding locations. Accordingly, because the centers of the first through-holes and the second through-holes may be prevented from being deviated, light irradiated from the light emitting member may be uniformly emitted to the front side of the front panel through the first through-holes.
  • The touch plates provided on the front surface of the cover protrusions may be connected to the sensors provided inside the door through the protrusion holes formed in the cover protrusions such that the sensors are changed. Accordingly, when the touch plate is touched, the sensor may detect a touch.
  • The touch plate and the front panel are formed of the same metal material to provide an external appearance having an integral feeling. The conductive members that connect the touch plates to the protrusion holes such that the touch plates and the sensors are charged have the size and shape corresponding to those of the protrusion holes to bury the protrusion holes. Accordingly, foreign substances may be prevented from being introduced through the protrusion holes.
  • Because the cover protrusions have a thickness corresponding to the thickness of the front panel, the front surfaces of the cover protrusions may be located on the same plane as the front surface of the front panel when the cover protrusions are inserted into the front panel holes. Further, the front surfaces of the touch plates, which are seated in the touch plate seating parts formed on the front surfaces of the cover protrusions, also are located on the same plate as the front surface of the front panel. Accordingly, the front panel, the touch plates, and the cover protrusions provide an integral feeling, and may provide an appealing external appearance.
  • Because the touch plates are smaller than the front panel holes, the front surfaces of the cover protrusions are exposed to the outside. Accordingly, the user may recognize a touch area more easily by using the spaced spaces of the touch plates and the front panel holes and the cover protrusions exposed to the outside, and accordingly, convenience of use may be improved.
  • Because the outer peripheral surfaces of the cover protrusions contact the inner peripheral surfaces of the front panel holes, the cover display may be prevented from being shaken so that the first through-hole and the second through-hole may be aligned with each other at a more precise location. Accordingly, light emitted to the front side of the front panel through the first through-holes may become uniform.
  • A refrigerator may include a cover display in which a first through-hole, through which light of a light emitting member passes, is formed in a front panel and a second through-hole, which is communicated with the first through-hole to guide the light of the light emitting member, is formed on a rear surface of the front panel, wherein the first through-hole and the second through-hole are aligned with each other at a precise location.
  • The refrigerator may include a manipulation part that is touched by the user for use of the refrigerator and a sensor detects static electricity generated when the manipulation part is touched. The refrigerator may allow the user to easily recognize a manipulation part and in which the user may feel as though the manipulation part was integral with a front surface of a door.
  • A refrigerator may include a door, a front panel that defines an external appearance of the door and is formed of a metal, a front panel hole that is formed in the front panel, a cover display that is provided on a rear surface of the front panel, a cover protrusion that extends from the cover display to an inside of the front panel hole, a touch plate that is mounted on the cover protrusion, is exposed through the front panel hole, and is formed of a metal, and a capacitive touch sensor that is arranged on a rear side of the cover display and is connected to the touch plate such that a current flows between the touch sensor and the touch plate, wherein the touch plate has a size that is smaller than a size of the front panel hole and is spaced apart from an inner peripheral surface of the front panel hole, and the cover protrusion is formed along an inner circumference of the front panel hole to divide a section between the touch plate and the front panel.
  • A touch plate seating part an inner area of which, except for a periphery of the touch plate seating part, is recessed may be formed on a front surface of the cover protrusion, and the touch plate may be seated in the touch plate seating part. While the touch plate may be seated in the touch plate seating part, a front surface of the touch plate and a front surface of the front panel may be situated on the same plane.
  • A front surface of the cover protrusion, which is exposed between the touch plate and the front panel, may be situated on the same plane as the plane on which the front panel is situated. A front surface of the cover protrusion, which is exposed between the touch plate and the front panel, may be colored to define a border between the front panel and the touch plate. The front panel and the touch plate may be formed of the same material.
  • A protrusion hole that passes through the cover plate may be formed in the cover protrusion, and a conductive member that connects the touch plate and the touch sensor such that a current flows between the touch plate and the touch sensor may be provided in the protrusion hole. The conductive member may have a size and a shape that correspond to a size and a shape of the protrusion hole to bury the protrusion hole. The touch plate and the conductive member may be integrally formed.
  • The refrigerator may further include a light emitting member that is arranged on a rear side of the cover display inside the door, a display window that is formed on one side of the front panel, which is spaced apart from the front panel hole and includes a set of fine first through-holes, through which light of the light emitting member passes, and a plurality of second through-holes that is formed in the cover display to guide the light of the light emitting member to the display window, and while the cover protrusion is inserted into the front panel hole, the first through-holes and the corresponding second through-holes are aligned with each other. An integrated PCB, on which the touch sensor together with the light emitting member are mounted, may be provided on a rear side of the cover display.
  • A sensor PCB, on which the touch sensor is mounted, and a display PCB, on which the light emitting member is mounted, may be provided on a rear side of the cover display. While the sensor PCB and the display PCB are provided on a rear side of the cover display, the touch sensor may be situated to correspond to the front panel hole and the light emitting member may be situated to correspond to the second through-holes.
  • A plate-shaped frame display, which is mounted to be slid, may be provided in the cover display, the display PCB may be mounted on the frame display, and the sensor PCB may be mounted on a rear surface of the cover display. A plate-shaped frame display, which is mounted to be slid, may be provided in the cover display, and the sensor PCB and the display PCB may be mounted on the frame display together. A plurality of cover protrusions may be arranged to be spaced apart from each other, and the number of the front panel holes may correspond to the number of the cover protrusions such that the front panel holes are situated at locations correspond to the cover protrusions.
  • In particular, a side-by-side type refrigerator will be exemplified for convenience of description and understanding in the embodiments of the present disclosure, and the present disclosure may be applied to home appliances that may equipped with a touch sensor assembly as well as all types of refrigerators.
  • This application relates to U.S. application Ser. No. 14/931,776 filed on Nov. 3, 2015, and U.S. application Ser. Nos. 14/977,572, 14/977,588, 14/977,605, 14/977,615, and 14/977,623, all filed on Dec. 21, 2015, which are hereby incorporated by reference in their entirety. Further, one of ordinary skill in the art will recognize that features disclosed in these above-noted applications may be combined in any combination with features disclosed herein.
  • Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art

Claims (16)

What is claimed is:
1. A refrigerator comprising:
a door;
a front panel that defines an external appearance f the door and is formed of a metal;
a front panel hole that is formed in the front panel;
a cover display that is provided on a rear surface of the front panel and having a cover protrusion that extends from the cover display to an inside of the front panel hole and forms an opening;
a touch plate that is mounted into the opening formed by the cover protrusion, is exposed through the front panel hole, and is formed of a metal; and
a capacitive touch sensor that is arranged on a rear side of the cover display and is coupled to the touch plate to allow a current to flow between the touch sensor and the touch plate, wherein the touch plate has a smaller size than the front panel hole and is spaced apart from an inner peripheral surface of the front panel hole, and the cover protrusion is formed along an inner circumference of the front panel hole to separate the touch plate from the front panel.
2. The refrigerator of claim 1, wherein a touch plate seating part is recessed into a front surface of the cover protrusion, and the touch plate is seated in the touch plate seating part.
3. The refrigerator claim 2, wherein while the touch plate is seated in the touch plate seating part, a front surface of the touch plate and a front surface of the front panel are situated on the same plane.
4. The refrigerator claim 3, wherein a front surface of the cover protrusion, which is exposed between the touch plate and the front panel, is situated on the same plane as the plane on which the front panel is situated.
5. The refrigerator claim 1, wherein a front surface of the cover protrusion, which is exposed between the touch plate and the front panel, is colored to define a border between the front panel and the touch plate.
6. The refrigerator claim 1, wherein the front panel and the touch plate are formed of the same material.
7. The refrigerator claim 1 wherein a protrusion hole that passes through the cover plate is formed in the cover protrusion and a conductive member that connects the touch plate and the touch sensor such that a current flows between the touch plate and the touch sensor is provided in the protrusion hole.
8. The refrigerator claim 7, wherein the conductive member has a size and a shape that correspond to a size and a shape of the protrusion hole to fill the protrusion hole.
9. The refrigerator claim 7, wherein the touch plate and the conductive member are integrally formed.
10. The refrigerator claim 1, further including:
a light emitting member that is arranged on a rear side of the cover display inside the door;
a display window that is formed on one side of the front panel, which is spaced apart from the front panel hole and comprises a set of fine first through-holes, through which light of the light emitting member passes; and
a plurality of second through-holes that is formed in the cover display to guide the light of the light emitting member to the display window, wherein while the cover protrusion is inserted into the front panel hole, the first through-holes and the corresponding second through-holes are aligned with each other.
11. The refrigerator claim 10, wherein the touch sensor and the light emitting member are mounted on an integrated PCB is provided on a rear side of the cover display.
12. The refrigerator claim 10, wherein a sensor PCB, on which the touch sensor is mounted, and a display PCB, on which the light emitting member is mounted, are provided on a rear side of the cover display.
13. The refrigerator of claim 12, wherein while the sensor PCB and the display PCB are provided on a rear side of the cover display, the touch sensor is positioned to correspond to the front panel hole and the light emitting member is positioned to correspond to the second through-holes.
14. The refrigerator of claim 13, wherein the display PCB is mounted to a plate-shaped frame display, which is mounted to be slid within the cover display and the sensor PCB is mounted on a rear surface of the cover display.
15. The refrigerator of claim 13, wherein a plate-shaped frame display, which is mounted to be slid, is provided in the cover display, and the sensor PCB and the display PCB are mounted on the frame display together.
16. The refrigerator claim 1, wherein a plurality of cover protrusions are arranged to be spaced apart from each other, and the number of the front panel holes corresponds to the number of the cover protrusions such that the front panel holes are positioned at locations corresponding to the cover protrusions.
US15/358,226 2015-11-27 2016-11-22 Refrigerator Active 2037-09-26 US10859309B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0167689 2015-11-27
KR1020150167689A KR101736608B1 (en) 2015-11-27 2015-11-27 Refrigerator

Publications (2)

Publication Number Publication Date
US20170153055A1 true US20170153055A1 (en) 2017-06-01
US10859309B2 US10859309B2 (en) 2020-12-08

Family

ID=58777366

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/358,226 Active 2037-09-26 US10859309B2 (en) 2015-11-27 2016-11-22 Refrigerator

Country Status (2)

Country Link
US (1) US10859309B2 (en)
KR (1) KR101736608B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192352A1 (en) * 2014-01-07 2015-07-09 Samsung Electronics Co., Ltd Refrigerator and manufacturing method thereof
US9958199B2 (en) * 2015-09-01 2018-05-01 Samsung Electronics Co., Ltd. Refrigerator
US10180250B2 (en) * 2016-07-27 2019-01-15 Whirlpool Corporation User interface for a household appliance
WO2021077183A1 (en) * 2019-10-25 2021-04-29 Electrolux Do Brasil S.A. Door hinge and foot assembly
EP3819573A1 (en) * 2019-11-05 2021-05-12 LG Electronics Inc. Refrigerator
WO2021098551A1 (en) * 2019-11-20 2021-05-27 青岛海尔电冰箱有限公司 Refrigeration device, and door body and assembly method for refrigeration device
KR20210105615A (en) * 2020-02-19 2021-08-27 엘지전자 주식회사 Refregerator
US20230258385A1 (en) * 2020-06-30 2023-08-17 Chongqing Haier Refrigeration Electric Appliance Co., Ltd. Refrigerator door with replaceable door panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200125305A (en) * 2019-04-26 2020-11-04 엘지전자 주식회사 Refrigerator
KR102486948B1 (en) * 2020-12-16 2023-01-10 엘지전자 주식회사 Refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030110784A1 (en) * 2001-12-19 2003-06-19 Lg Electronics Inc. Display apparatus for refrigerator
US20060043087A1 (en) * 2004-09-01 2006-03-02 Western Industries, Inc. Warming apparatus
US20060144056A1 (en) * 2005-01-04 2006-07-06 Lg Electronics Inc. Display unit for refrigerator
US20080006454A1 (en) * 2006-07-10 2008-01-10 Apple Computer, Inc. Mutual capacitance touch sensing device
US20110016910A1 (en) * 2009-07-21 2011-01-27 Su Re Bak Refrigerator and method of operating the same
US20120274602A1 (en) * 2011-04-29 2012-11-01 Qualcomm Mems Technologies, Inc. Wiring and periphery for integrated capacitive touch devices
US20160117022A1 (en) * 2014-10-24 2016-04-28 Lg Electronics Inc. Touch Sensor Assembly And Refrigerator Door With Touch Sensor Assembly And Method For Manufacturing The Same

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1026237A (en) 1973-09-17 1978-02-14 Kureha Kagaku Kogyo Kabushiki Kaisha Key board switch
US4056699A (en) 1975-11-13 1977-11-01 Essex International, Inc. Touch plate assembly
JPS5814433A (en) 1981-07-17 1983-01-27 リズム時計工業株式会社 Device for preventing erroenous operation of touch switch
US5239152A (en) 1990-10-30 1993-08-24 Donnelly Corporation Touch sensor panel with hidden graphic mode
JPH0660031A (en) 1992-08-11 1994-03-04 Toshiba Corp Display device for transaction process state
JPH0695803A (en) 1992-09-17 1994-04-08 Oki Electric Ind Co Ltd Error informing method for touch sensor
US5780530A (en) 1996-03-19 1998-07-14 Nippon Paint Co., Ltd. Thermosetting resin composition
US5973420A (en) 1996-10-03 1999-10-26 Colortronics Technologies L.L.C. Electrical system having a clear conductive composition
DE19645678C2 (en) 1996-11-06 2000-05-25 Preh Elektro Feinmechanik Control unit for switching and controlling household appliances
US5923522A (en) 1997-06-27 1999-07-13 Eaton Corporation Capacitive switch with elastomeric membrane actuator
DE29722565U1 (en) 1997-12-20 1998-02-19 Schurter Gmbh Electric push button
KR100292502B1 (en) 1998-11-07 2001-07-12 구자홍 Touch switch and method for fabricating electrified layer therof
US6242076B1 (en) 1999-02-08 2001-06-05 Michael D. Andriash Illuminated imageable vision control panels and methods of fabricating
DE19956084C2 (en) 1999-11-22 2002-04-18 Christian Freiseisen sealing unit
KR100346266B1 (en) 2000-06-01 2002-07-26 엘지전자주식회사 Touch Switch Having Electroluminescent Sheet For Backlighting
US6421253B1 (en) 2000-09-08 2002-07-16 Powerwave Technologies, Inc. Durable laminated electronics assembly using epoxy preform
JP3795323B2 (en) 2000-12-05 2006-07-12 日精樹脂工業株式会社 Foreign matter detection method for injection molding machine
US20030043449A1 (en) 2001-09-03 2003-03-06 Ngk Insulators, Ltd. Display device and method for producing the same
FI112415B (en) 2001-11-28 2003-11-28 Nokia Oyj Piezoelectric user interface
TWI238348B (en) 2002-05-13 2005-08-21 Kyocera Corp Portable information terminal, display control device, display control method, and recording media
JP3610495B2 (en) 2002-07-19 2005-01-12 オリオン電機株式会社 Soldering structure for printed circuit boards and electronic components
US6954987B2 (en) 2003-05-22 2005-10-18 Powerwave Technologies, Inc. Method of interconnecting a circuit board to a substrate
US7155317B1 (en) 2004-08-20 2006-12-26 Nhan Tran Occupant Counter Control Switch for automatic turning on and off electrical appliances in a room
US7911321B2 (en) 2004-10-26 2011-03-22 Adac Plastics, Inc. Keyless entry system incorporating concealable keypad
US7518381B2 (en) 2004-12-17 2009-04-14 Stoneridge Control Devices, Inc. Touch sensor system and method
KR100578400B1 (en) 2005-01-04 2006-05-11 삼성전자주식회사 Control panel of refrigerator
KR101134301B1 (en) 2005-02-28 2012-04-13 엘지디스플레이 주식회사 Light Emitting Diodes back-light assembly and liquid crystal display device module using thereof
JP2006250485A (en) 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd Refrigerator door device
US7255466B2 (en) 2005-05-17 2007-08-14 Lear Corporation Illuminated keyless entry control device
KR100634365B1 (en) 2005-08-11 2006-10-16 엘지전자 주식회사 A door for refrigerator and manufacture method of the same
EP1760886B1 (en) 2005-08-19 2011-04-20 E.G.O. Control Systems GmbH Sensor device
JP2007073834A (en) 2005-09-08 2007-03-22 Shinko Electric Ind Co Ltd Wiring formation method on insulating resin layer
JP2007100995A (en) 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Heating device with electrostatic capacity type touch panel
US7543453B2 (en) 2005-12-09 2009-06-09 Whirlpool Corporation Measured fill water dispenser for refrigerator
KR100663866B1 (en) 2006-01-03 2007-01-03 엘지전자 주식회사 Mounting structure of display for refrigerator
US7208960B1 (en) 2006-02-10 2007-04-24 Milliken & Company Printed capacitive sensor
NL2000026C2 (en) 2006-03-14 2007-09-21 Switch B V D Improved piezoelectric switch.
US8089473B2 (en) 2006-04-20 2012-01-03 Masco Corporation Of Indiana Touch sensor
US20100114011A1 (en) 2006-07-24 2010-05-06 Wolfgang Herrmann Metering system for ozone or ozone/oxygen mixture
US7573701B2 (en) 2006-08-30 2009-08-11 U-Line Corporation Electronic control mount with switch support and light guide
KR100756451B1 (en) 2006-09-15 2007-09-07 엘지전자 주식회사 A refrigerator mode control method
US8245522B2 (en) 2006-10-25 2012-08-21 Lg Electronics Inc. Display for refrigerator
KR101237564B1 (en) 2006-11-18 2013-02-26 엘지전자 주식회사 Display for a refrigerator
US7989725B2 (en) 2006-10-30 2011-08-02 Ink-Logix, Llc Proximity sensor for a vehicle
US8149225B2 (en) 2006-12-06 2012-04-03 Lg Electronics Inc. Display apparatus for refrigerator
KR20080056559A (en) 2006-12-18 2008-06-23 엘지전자 주식회사 Touch screen apparatus and commend-input method thereof
KR100881186B1 (en) 2007-01-04 2009-02-05 삼성전자주식회사 Touch screen display device
KR100866342B1 (en) * 2007-01-22 2008-10-31 (주) 코콤 Touch Sensor Module
US20080196945A1 (en) 2007-02-21 2008-08-21 Jason Konstas Preventing unintentional activation of a sensor element of a sensing device
EP2149143A4 (en) 2007-04-20 2012-01-11 Ink Logix Llc In-molded capacitive switch
EP2048781B1 (en) 2007-10-08 2018-06-13 Whirlpool Corporation Touch switch for electrical appliances and electrical appliance provided with such switch
DE102007050654B4 (en) * 2007-10-24 2015-06-18 Diehl Ako Stiftung & Co. Kg Capacitive touch switch
DE102007054778A1 (en) 2007-11-16 2009-05-20 Diehl Ako Stiftung & Co. Kg Operating device with at least one pressure switch
KR101043527B1 (en) 2007-12-05 2011-06-23 엘지전자 주식회사 Stainless steel out-case of home appliance having anti-fingerprint coating
KR101346502B1 (en) 2008-02-21 2013-12-31 엘지전자 주식회사 Refrigerator and method for manufacturing a door of refrigerator
KR101437984B1 (en) 2008-03-07 2014-09-05 엘지전자 주식회사 Horizontal adjusting apparatus for refrigerator
KR20090127580A (en) 2008-06-09 2009-12-14 삼성전자주식회사 Display unit and household appliance having the same
US20090322700A1 (en) 2008-06-30 2009-12-31 Tyco Electronics Corporation Method and apparatus for detecting two simultaneous touches and gestures on a resistive touchscreen
DE102008033369A1 (en) 2008-07-08 2010-01-14 E.G.O. Elektro-Gerätebau GmbH Operating device for an electrical appliance and evaluation method for this operating device
FR2934921B1 (en) 2008-08-05 2010-09-24 Stantum MULTICONTACT TOUCH SENSOR WITH VARIABLE SIZE AND IMPEDANCE SPACING MEANS
US8648832B2 (en) 2008-09-25 2014-02-11 Stoneridge Control Devices, Inc. Touch sensor system and method
KR101602431B1 (en) 2008-11-05 2016-03-10 삼성전자 주식회사 Refrigerator
CN101741371B (en) 2008-11-27 2012-03-21 无锡松下冷机有限公司 Touch switch
CN101738051B (en) 2008-11-27 2012-10-31 无锡松下冷机有限公司 Refrigerator
DE102008062216B4 (en) 2008-12-13 2010-09-23 Diehl Ako Stiftung & Co. Kg Operating device with at least one pressure switch
US8384679B2 (en) 2008-12-23 2013-02-26 Todd Robert Paleczny Piezoelectric actuator arrangement
EP2202619A1 (en) 2008-12-23 2010-06-30 Research In Motion Limited Portable electronic device including tactile touch-sensitive input device and method of controlling same
KR101132463B1 (en) 2009-02-20 2012-03-30 엘지전자 주식회사 Refrigerator door with hidden display
DE102009010952A1 (en) 2009-02-27 2010-09-09 Schott Ag Coating for the display area of glass or glass-ceramic panes, method for producing such a coating and its use
DE102009001412B4 (en) 2009-03-09 2018-10-11 Volkswagen Ag Capacitive display and control element
JP2010230226A (en) 2009-03-26 2010-10-14 Haier Sanyo Electric Co Ltd Temperature indicator and cooling storage including the temperature indicator
JP5584433B2 (en) 2009-06-17 2014-09-03 株式会社ジャパンディスプレイ Liquid crystal display
DE102009033538A1 (en) 2009-07-09 2011-01-13 E.G.O. Elektro-Gerätebau GmbH Operating device for an electrical appliance
KR101537616B1 (en) 2009-07-22 2015-07-22 엘지전자 주식회사 A refrigerator and a production method for a operation panel thereof
KR20110015745A (en) 2009-08-10 2011-02-17 삼성전자주식회사 Appratus and method for controlling sensitivity of touch in a portable terminal
JP2011048696A (en) 2009-08-27 2011-03-10 Kyocera Corp Input device
US9543948B2 (en) 2009-09-01 2017-01-10 Microchip Technology Incorporated Physical force capacitive touch sensors
JP5282904B2 (en) 2009-10-22 2013-09-04 東芝ライテック株式会社 Wall switch device
JP5347913B2 (en) 2009-11-06 2013-11-20 ソニー株式会社 SENSOR DEVICE, ELECTRONIC DEVICE, AND METHOD FOR MANUFACTURING SENSOR DEVICE
CA2724487A1 (en) 2009-12-08 2011-06-08 Magna International Inc. Appliance doors having integrated lighting and controls
CN102116554A (en) 2010-01-04 2011-07-06 Lg电子株式会社 Refrigerator
KR101748605B1 (en) 2010-01-15 2017-06-20 엘지전자 주식회사 Refrigerator and diagnostic system for the refrigerator
KR20110111192A (en) 2010-04-02 2011-10-10 삼성전자주식회사 Method and apparatus for implementing electrode patterns in touch panel
US8860686B2 (en) 2010-04-30 2014-10-14 Atmel Corporation Multi-chip touch screens
JP5595128B2 (en) 2010-06-08 2014-09-24 キヤノン株式会社 Operating device and image reading device
US8960022B2 (en) 2010-06-15 2015-02-24 Aito B.V. Device for detecting the presence of at least one human finger on surface, and a method of using the device in the user interface of a machine, a device (in particular a portable device), or a system
JP5667805B2 (en) 2010-07-14 2015-02-12 日立アプライアンス株式会社 refrigerator
US8320131B2 (en) 2010-08-11 2012-11-27 Research In Motion Limited Actuator assembly and electronic device including same
KR20120026870A (en) 2010-09-10 2012-03-20 삼성전자주식회사 Circuit board and semiconductor module including the same
CN103109135B (en) 2010-09-10 2015-09-30 Bsh家用电器有限公司 Domestic-appliance-odeviceng deviceng
JP2012098828A (en) 2010-10-29 2012-05-24 Minebea Co Ltd Input device and input control method for electronic device
KR101360885B1 (en) 2010-11-10 2014-02-13 케이에스씨비 주식회사 Light Diffusive Ink Composition, Light Guide Panel And Back Light Unit Using The Same
KR101131288B1 (en) 2010-12-06 2012-03-30 삼성전기주식회사 A method of manufacturing printed circuit board
JP2012124452A (en) 2010-12-06 2012-06-28 Samsung Electro-Mechanics Co Ltd Printed substrate and manufacturing method of the same
KR20120116207A (en) 2011-04-12 2012-10-22 엘지전자 주식회사 A display device and a refrigerator comprising the display device
JP2013025503A (en) 2011-07-19 2013-02-04 Canon Inc Electronic device, control method therefor, program, and storage medium
JP5784429B2 (en) 2011-09-07 2015-09-24 株式会社東芝 refrigerator
JP5996174B2 (en) 2011-09-27 2016-09-21 東芝ライフスタイル株式会社 refrigerator
KR101360116B1 (en) 2011-10-13 2014-02-07 주식회사 디오시스템즈 Touch panel manufacturing method and touch panel manufactured by the same
CN202582565U (en) 2012-01-21 2012-12-05 汉王科技股份有限公司 A piezoelectric sensor, and a touch-controlled assembly and a mobile terminal which utilize the piezoelectric sensor
US20130229359A1 (en) 2012-03-05 2013-09-05 Shun On Electronic Co., Ltd. Electronic apparatus
JP5866230B2 (en) 2012-03-05 2016-02-17 シャープ株式会社 refrigerator
JP2014031958A (en) 2012-08-03 2014-02-20 Panasonic Corp Refrigerator and display device
JP2014031978A (en) 2012-08-06 2014-02-20 Panasonic Corp Refrigerator and operation display device
JP6038543B2 (en) 2012-08-21 2016-12-07 東芝ライフスタイル株式会社 refrigerator
CN104781623B (en) 2012-08-28 2017-02-22 东芝生活电器株式会社 Refrigerator
JP5992782B2 (en) 2012-09-12 2016-09-14 シャープ株式会社 refrigerator
KR101999264B1 (en) 2012-10-10 2019-07-12 삼성전자주식회사 Refrigerator and controlling method thereof
JP5971757B2 (en) 2012-10-19 2016-08-17 シャープ株式会社 refrigerator
US9240162B2 (en) 2012-12-31 2016-01-19 Lg Display Co., Ltd. Transparent display apparatus and method for controlling the same
JP5988880B2 (en) 2013-01-15 2016-09-07 日立アプライアンス株式会社 refrigerator
US8841957B2 (en) 2013-01-23 2014-09-23 General Electric Company Appliance and a method for operating a control panel of the same
EP2770638A1 (en) 2013-02-20 2014-08-27 Aito Interactive Oy Piezoelectric sensor, and an electrical appliance, an installation or a gadget comprising at least one piezoelectric sensor
JP6168470B2 (en) 2013-03-29 2017-07-26 Toto株式会社 Capacitive touch sensor
KR102183719B1 (en) 2013-04-08 2020-11-27 삼성전자주식회사 Refrigerator and manufacturing method thereof
US8960934B2 (en) 2013-04-08 2015-02-24 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing the same
US9448628B2 (en) 2013-05-15 2016-09-20 Microsoft Technology Licensing, Llc Localized key-click feedback
JP6373653B2 (en) 2013-06-25 2018-08-15 東芝ライフスタイル株式会社 refrigerator
US9207802B2 (en) 2013-07-01 2015-12-08 Atmel Korea Llc Suppression of unintended touch objects
JP5681824B1 (en) 2013-10-01 2015-03-11 株式会社フジクラ Wiring board assembly and manufacturing method thereof
KR20150081800A (en) 2014-01-07 2015-07-15 삼성전자주식회사 Refrigerator and manufacturing method thereof
CN106028891B (en) 2014-02-27 2019-07-19 三菱电机株式会社 Dry arm device
KR101954749B1 (en) 2014-04-01 2019-03-06 삼성전자주식회사 Refrigerator and control method for the same
EP2975345B1 (en) 2014-07-16 2019-01-02 LG Electronics Inc. Refrigerator door and manufacturing method of the same
CN105577156B (en) 2014-10-09 2020-08-25 E.G.O.电气设备制造股份有限公司 Operation control unit for electrical equipment and electrical equipment
CN106461316A (en) 2014-11-07 2017-02-22 Lg 电子株式会社 Metal touch sensing apparatus, and home appliance having metal touch sensing apparatus and method for controlling the same
KR101659180B1 (en) 2014-12-22 2016-09-22 엘지전자 주식회사 Tuch sensor assembly and refrigerator door with Tuch sensor assembly
KR101668922B1 (en) 2014-12-24 2016-10-24 엘지전자 주식회사 Home appliance display assembly and manufacture method thereof
EP3147609B1 (en) 2015-09-25 2023-07-26 Lg Electronics Inc. A refrigerator door including an exterior member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030110784A1 (en) * 2001-12-19 2003-06-19 Lg Electronics Inc. Display apparatus for refrigerator
US20060043087A1 (en) * 2004-09-01 2006-03-02 Western Industries, Inc. Warming apparatus
US20060144056A1 (en) * 2005-01-04 2006-07-06 Lg Electronics Inc. Display unit for refrigerator
US20080006454A1 (en) * 2006-07-10 2008-01-10 Apple Computer, Inc. Mutual capacitance touch sensing device
US20110016910A1 (en) * 2009-07-21 2011-01-27 Su Re Bak Refrigerator and method of operating the same
US20120274602A1 (en) * 2011-04-29 2012-11-01 Qualcomm Mems Technologies, Inc. Wiring and periphery for integrated capacitive touch devices
US20160117022A1 (en) * 2014-10-24 2016-04-28 Lg Electronics Inc. Touch Sensor Assembly And Refrigerator Door With Touch Sensor Assembly And Method For Manufacturing The Same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192352A1 (en) * 2014-01-07 2015-07-09 Samsung Electronics Co., Ltd Refrigerator and manufacturing method thereof
US9958199B2 (en) * 2015-09-01 2018-05-01 Samsung Electronics Co., Ltd. Refrigerator
US10317133B2 (en) * 2015-09-01 2019-06-11 Samsung Electronics Co., Ltd. Refrigerator
US20190249919A1 (en) * 2015-09-01 2019-08-15 Samsung Electronics Co., Ltd. Refrigerator
US10690404B2 (en) * 2015-09-01 2020-06-23 Samsung Electronics Co., Ltd. Refrigerator
US10180250B2 (en) * 2016-07-27 2019-01-15 Whirlpool Corporation User interface for a household appliance
WO2021077183A1 (en) * 2019-10-25 2021-04-29 Electrolux Do Brasil S.A. Door hinge and foot assembly
EP3819573A1 (en) * 2019-11-05 2021-05-12 LG Electronics Inc. Refrigerator
US11460239B2 (en) * 2019-11-05 2022-10-04 Lg Electronics Inc. Refrigerator
AU2020264346B2 (en) * 2019-11-05 2022-11-10 Lg Electronics Inc. Refrigerator
WO2021098551A1 (en) * 2019-11-20 2021-05-27 青岛海尔电冰箱有限公司 Refrigeration device, and door body and assembly method for refrigeration device
KR20210105615A (en) * 2020-02-19 2021-08-27 엘지전자 주식회사 Refregerator
KR102448186B1 (en) * 2020-02-19 2022-09-29 엘지전자 주식회사 Refregerator
US20230258385A1 (en) * 2020-06-30 2023-08-17 Chongqing Haier Refrigeration Electric Appliance Co., Ltd. Refrigerator door with replaceable door panel

Also Published As

Publication number Publication date
US10859309B2 (en) 2020-12-08
KR101736608B1 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US10859309B2 (en) Refrigerator
US11056051B2 (en) Touch sensor assembly and refrigerator door with touch sensor assembly and method for manufacturing the same
US10619915B2 (en) Touch sensing apparatus for metal panel including display window with through-holes and touch part home appliance having metal panel and touch sensing apparatus, and method for controlling the same
KR101639522B1 (en) Refrigerator door with Tuch sensor assembly
KR101659181B1 (en) Tuch sensor assembly and refrigerator door with Tuch sensor assembly
KR101659180B1 (en) Tuch sensor assembly and refrigerator door with Tuch sensor assembly
KR101668921B1 (en) Tuch sensor assembly and refrigerator door with Tuch sensor assembly
CN109028730B (en) Refrigerator and method of manufacturing the same
EP3578908B1 (en) Refrigerator and method for controlling the same
KR101770032B1 (en) Outplate for home appliance
AU2021202353B2 (en) Refrigerator
AU2020264346B2 (en) Refrigerator
KR20220003344A (en) Refregerator
KR20220086312A (en) Refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONG, JINIL;REEL/FRAME:040663/0147

Effective date: 20161117

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE