US20170131014A1 - Temperature Controlled Cargo Containers - Google Patents
Temperature Controlled Cargo Containers Download PDFInfo
- Publication number
- US20170131014A1 US20170131014A1 US15/415,350 US201715415350A US2017131014A1 US 20170131014 A1 US20170131014 A1 US 20170131014A1 US 201715415350 A US201715415350 A US 201715415350A US 2017131014 A1 US2017131014 A1 US 2017131014A1
- Authority
- US
- United States
- Prior art keywords
- phase change
- change plate
- warm
- storage space
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/003—Transport containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B63/00—Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged
- B65B63/08—Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged for heating or cooling articles or materials to facilitate packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/74—Large containers having means for heating, cooling, aerating or other conditioning of contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/74—Large containers having means for heating, cooling, aerating or other conditioning of contents
- B65D88/745—Large containers having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/006—Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/02—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/12—Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/06—Several compression cycles arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/02—Refrigerators including a heater
Definitions
- the present disclosure is directed to containers for controlling the temperature of a product placed therein and methods of using temperature controlled cargo containers.
- Some example temperature controlled cargo containers may include one or more thermal masses conditioned to temperatures above and/or below a target temperature.
- Example thermal masses may include plates including phase change materials, such as eutectic materials.
- One or more fans may be selectively operated to circulate air in the cargo container across one or more of the thermal masses to maintain the temperature within the cargo container within a prescribed temperature band.
- Some example temperature controlled cargo containers may include refrigeration units and/or heaters for regenerating the thermal masses while receiving power from an external power source and/or may include one or more rechargeable batteries for providing power during transport or storage independent of external power sources.
- a method of controlling the temperature of a product may include placing a product in an interior storage space of a container, where the container includes a warm phase change plate and a cold phase change plate; and changing a temperature of the interior storage space by causing airflow across at least one of the warm phase change plate and the cold phase change plate.
- changing the temperature of the interior storage space may include sensing a temperature associated with the product; if the temperature associated with the product is above a target temperature range, operating a cooling fan associated with causing air flow across the cold phase change plate; and if the temperature associated with the product is below the target temperature range, operating a warming fan associated with causing air flow across the warm phase change plate.
- operating the cooling fan associated with the cold phase change plate may include drawing air from the interior storage space through a separator wall at least partially interposing the interior storage space and the cold phase change plate, flowing the air past the cold phase change plate, and discharging the air into the interior storage space.
- operating the warming fan associated with the warm phase change plate may include drawing air from the interior storage space through a separator wall at least partially interposing the interior storage space and the warm phase change plate, flowing the air past the warm phase change plate, and discharging the air into the interior storage space.
- a method may include, prior to changing a temperature of the interior storage space, conditioning at least one of the warm phase change plate and the cold phase change plate.
- conditioning the cold phase change plate may include operating a refrigeration unit to cause freezing of a cold phase change solution within the cold phase change plate.
- conditioning the warm phase change plate may include operating a heater to melt a warm phase change solution within the warm phase change plate.
- changing a temperature of the interior storage space may include directing the airflow along a first side of the at least one of the warm phase change plate and the cold phase change plate in a first direction and directing the airflow along a second side of the at least one of the warm phase change plate and the cold phase change plate in a second direction, where the second direction may be substantially opposite the first direction.
- a method may include reducing natural circulation flow across at least one of the warm phase change plate and the cold phase change plate.
- reducing natural circulation flow across at least one of the warm phase change plate and the cold phase change plate may include providing an air trap associated with at least one of the warm phase change plate and the cold phase change plate.
- providing the air trap may include providing at least one of a downwardly extending wall at least partially interposing the warm phase change plate and the interior storage space, and an upwardly extending wall at least partially interposing the cold phase change plate and the interior storage space.
- a method may include transporting the container from a first location to a second location while the product remains within the interior storage space.
- a method of storing a product in a container may include operating a refrigeration system to cool a cold phase change plate associated with an interior storage space of a container; operating a heater to heat a warm phase change plate associated with the interior storage space; placing a product in the interior storage space; measuring a temperature associated with the interior storage space; and selectively operating at least one fan to cause airflow across at least one of the cold phase change plate and the warm phase change plate if the temperature associated with the interior storage space departs from a predetermined temperature range.
- a method may include, prior to operating the refrigeration system and operating the heater, connecting the refrigeration system and the heater to a first external source of electrical power. In a detailed embodiment, a method may include, after operating the refrigeration system and operating the heater, disconnecting the refrigeration system and the heater from the first external source of electrical power. In a detailed embodiment, a method may include, after disconnecting the refrigeration system and the heater from the first external source of electrical power, loading the container into a vehicle. In a detailed embodiment, loading the container into a vehicle may include loading the refrigeration system and the heater into the vehicle, the refrigeration system and the heater being mounted to the container.
- a method may include transporting the container from a first location to a second location using the vehicle; and, at the second location, conditioning at least one of the cold phase change plate and the warm phase change plate.
- a method may include, prior to conditioning the at least one of the cold phase change plate and the warm phase change plate at the second location, connecting at least one of the refrigeration unit and the heater to a second external source of electrical power.
- a method may include, after the refrigeration unit and the heater have been disconnected from the first external source of electrical power and prior to connecting the refrigeration unit and the heater to the second external source of electrical power, operating the at least one fan using power supplied from a rechargeable battery associated with the container.
- a temperature controlled container may include an interior space for receiving a product; a warm phase change plate arranged for selective heat exchange with the interior space; and a cold phase change plate arranged for selective heat exchange with the interior space.
- the warm phase change plate and the cold phase change plate may be at least partially separated from the interior space by a separator wall.
- a temperature controlled cargo container may include a first fan selectively operable to cause forced convection between the interior space and the warm phase change plate; and a second fan selectively operable to cause forced convection between the interior space and the cold phase change plate.
- the cold phase change plate may include a first phase change solution
- the warm phase change plate may include a second phase change solution.
- a melting point of the second phase change solution may be higher than a melting point of the first phase change solution.
- a target temperature range may lie between the melting point of the first phase change solution and the melting point of the second phase change solution.
- the melting point of the first phase change solution may be about ⁇ 5.5° C.
- the melting point of the second phase change solution may be about 15° C.
- the target temperature range may be about 2-8° C.
- a container may include an interior space for receiving a product; a phase change plate arranged for selective heat exchange with the interior space; and a trap arranged to reduce natural convection heat transfer between the phase change plate and the interior space while allowing forced convection heat transfer between the phase change plate and the interior space.
- the phase change plate may include a cold phase change plate and/or the trap may include an upwardly extending wall at least partially interposing the interior space and the cold phase change plate.
- the trap may include a P-trap.
- a container may include a fan configured to cause air flow from the interior space, across the cold phase change plate, and into the interior space.
- the phase change plate may include a warm phase change plate and/or the trap may include a downwardly extending wall at least partially interposing the interior space and the warm phase change plate.
- the trap may include a P-trap.
- a container include a fan configured to cause air flow from the interior space, across the warm phase change plate, and into the interior space.
- a container may include a phase change plate including a first side and a second side and/or a flow path arranged to direct airflow along the first side in a first direction and then along the second side in a second direction, where the second direction may be substantially opposite the first direction.
- the first side may be substantially opposite the second side.
- a container may include at least one fan configured to cause the airflow through the flow path.
- the phase change plate may be at least partially separated from an interior storage space of the container by a wall.
- the phase change plate may include at least one augmented surface.
- the augmented surface may include at least one internally extending fin.
- a shipping system may include a container including an interior space for receiving a product, a warm phase change plate arranged for selective heat exchange with the interior space, and a cold phase change plate arranged for selective heat exchange with the interior space; a refrigeration system mounted to the container and configured to cool the cold phase change plate; and a heating system configured to heat the warm phase change plate.
- a shipping system may include a data logger configured to record data pertaining to the container.
- the data may include a temperature associated with the interior space.
- the warm phase change plate may include a cold phase change material having a melting point of about ⁇ 5.5° C.
- the cold phase change plate may include a warm phase change material having a melting point of about 15° C.
- the heating system may include at least one electrical resistance heater in thermal communication with the warm phase change plate.
- a container for shipping pharmaceuticals may include a warm phase change plate and/or a cold phase change plate.
- the container may include an interior storage space for pharmaceuticals, the interior storage space being in selective thermal communication with the warm phase change plate and/or the cold phase change plate.
- a container may include a warming fan configured to cause airflow across the warm phase change plate and/or a cooling fan configured to cause airflow across the cold phase change plate.
- the cold phase change plate may include a cold eutectic material having a melting point of about ⁇ 5.5° C. and/or the warm phase change plate may include a warm eutectic material having a melting point of about 15° C.
- a container a refrigeration system arranged to cool the cold phase change plate and/or a heater arranged to heat the warm phase change plate.
- FIG. 1 is an isometric view of an example temperature controlled cargo container
- FIG. 2 is an overhead cross-sectional view of an example temperature controlled cargo container
- FIG. 3 is an elevational cross-sectional view of an example temperature controlled cargo container
- FIG. 4 is an elevational cross-sectional view of an example temperature controlled cargo container
- FIG. 5 is a cross-sectional view of a wall of an example temperature controlled cargo container
- FIG. 6 is cross-sectional view of an example phase change plate for a temperature controlled cargo container
- FIG. 7 is a schematic diagram of an example refrigeration system for a temperature controlled cargo container
- FIG. 8 is a schematic diagram of an example electrical system for a temperature controlled cargo container
- FIG. 9 is a schematic diagram illustrating an example temperature controlled cargo container configured for use with external conditioning sources
- FIG. 10 is a is a schematic diagram illustrating an example temperature controlled cargo container configured for use with removable phase change plates.
- FIG. 11 is a perspective view of two example temperature controlled cargo containers on an aircraft pallet; all arranged in accordance with at least some aspects of the present disclosure.
- the present disclosure includes, inter alia, temperature controlled cargo containers and methods for using temperature controlled cargo containers.
- some products may be transported (e.g., by ground, sea, and/or air modes) and may be exposed to ambient conditions outside of an allowable product temperature range during such transportation and/or during storage. Temperature excursions outside of the allowable product temperature range may detrimentally affect a product, such as by reducing the efficacy and/or shelf life of a pharmaceutical product.
- Some example temperature controlled cargo containers may be configured to maintain a product located therein within an allowable product temperature range while the temperature controlled cargo container is exposed to various ambient conditions.
- some example temperature controlled cargo containers may be configured to maintain pharmaceutical products within an interior storage space at about 5° C. (e.g., between about 2° C. and about 8° C.) during ground, sea, and/or air transportation and/or during temporary and/or long-term storage.
- Some example temperature controlled cargo containers may maintain an interior storage space at about 5° C. for about 72 hrs when the ambient temperature is about 30° C. while operating independently from external power sources and/or cooling sources.
- Some example temperature controlled cargo containers may maintain an interior storage space at about 5° C. during ambient temperature excursions, such as from about ⁇ 40° C. to about +60° C.
- an example temperature controlled cargo container 100 may include a generally rectangular enclosure 101 and/or an equipment section 111 , which may be disposed substantially adjacent to enclosure 101 .
- Enclosure 101 may include walls 102 and/or a door 103 , which may be pivotably affixed to walls 102 by a hinge 109 .
- door 103 and equipment section 111 may be disposed on generally opposite sides of enclosure 101 .
- a door sealing assembly associated with door 103 may include thermal breaks on one or both sides of the door/enclosure interface, redundant compression bulb gaskets, and/or multi-point (e.g., three-point) draw latches which may fix the gasket compression depth.
- Enclosure 101 and/or equipment section 111 may be mounted on a pallet base 113 , which may facilitate handling of temperature controlled cargo container 100 by forklifts and/or other material handling equipment, for example.
- An interior storage space 104 within enclosure 101 (which may be accessible via door 103 ) may receive a product 106 , such as a pharmaceutical product.
- Some example temperature controlled cargo containers 100 may include at least one cold thermal mass and/or at least one warm thermal mass disposed within enclosure 101 .
- a cold phase change plate 112 and/or a warm phase change plate 212 may be mounted within enclosure, such as generally opposite door 103 .
- Cold phase change plate 112 may comprise a cold phase change material (PCM), which may include a eutectic material, having a desired melting point (e.g., about ⁇ 5.5° C. (e.g., about 5.5° C. below 0° C.)).
- Warm phase change plate 212 may comprise a warm phase change material, which may include a eutectic material, having a desired melting point (e.g., about 15° C.).
- Some example temperature controlled cargo containers may include one or more thermal masses (e.g., cold phase change plates 112 and/or warm phase change plates 212 ) having sufficient thermal capacitance (e.g., total energy capacity) to accommodate the total energy requirements of a design condition.
- Some exemplary temperature controlled cargo containers may include one or more thermal masses having sufficient surface area and/or thermal conductivity to accommodate the peak heat transfer rate requirements of a design condition.
- phase change plates may be constructed from, for example, galvanized steel, aluminum, and/or stainless steel. In some example embodiments, such materials may be welded.
- An example phase change plate may have a generally flattened, rectangular shape with dimensions of about 4.5′′ ⁇ 6.5′′ ⁇ 40′′. As used herein, “plate” refers to generally rectangular shapes as well as any other desirable shape.
- Warm phase change plate 212 and/or cold phase change plate 112 may be conditioned.
- conditioning refers to freezing the cold phase change material of cold phase change plate 112 and/or melting the warm phase change material of warm phase change plate 212 .
- Product 106 may be placed in interior storage space 104 of temperature controlled cargo container 100 .
- the temperature of interior storage space 104 may be controlled by causing airflow across at least one of warm phase change plate 212 and cold phase change plate 112 .
- airflow across cold phase change plate 112 may cool interior storage space 104 and/or airflow across warm phase change plate 212 may warm interior storage space 104 .
- one or more phase change plates 112 , 212 may be mounted such that they are at least partially thermally insulated from one or more other phase change plates 112 , 212 and/or from interior storage space 104 .
- a divider wall 107 which may be insulated, may interpose cold phase change plate 112 and warm phase change plate 212 .
- An interior separator wall 105 which may be insulated, may at least partially interpose interior storage space 104 and cold phase change plate 112 and/or warm phase change plate 212 .
- interior storage space 104 may be generally rectangular and/or may be substantially defined by door 103 , walls 102 , and/or interior separator wall 105 .
- Interior separator wall 105 may not extend fully between walls 102 , thereby allowing thermal communication between interior space 104 and phase change plates 112 , 212 when desired.
- one or more cooling fans 108 may be selectively operable to cause flow of air 110 past a cold thermal mass, such as cold phase change plate 112
- one or more warming fans 208 may be selectively operable to cause flow of air 210 past a warm thermal mass, such as warm phase change plate 212 .
- fans 108 , 208 may be arranged draw air 110 , 210 from interior storage space 104 , through separator wall 105 , and past phase change plate 112 , 212 and/or to discharge air 110 , 210 into interior storage space 104 .
- Some example embodiments may include at least two cooling fans 108 and/or at least two warming fans 208 , which may allow continued operation of temperature controlled cargo container 100 if one of cooling fans 108 and/or one of warming fans 208 fails.
- Some example cooling fans 108 and/or warming fans 208 may include fans driven by low voltage DC motors.
- Some example temperature controlled cargo containers 100 may be configured to selectively direct air flow 110 , 210 past one or more phase change plates 112 , 212 such that the air 110 , 210 passes along one side of phase change plate 112 , 212 in a first direction and passes along an opposite side of phase change plate 112 , 212 in an opposite direction.
- air 110 may flow generally downward along a front face 112 A of cold phase change plate 112 and may flow generally upward along a rear face 112 B of cold phase change plate 112 .
- air 210 may flow generally upward along a front face 212 A of warm phase change plate 212 and may flow generally downward along a rear face 212 B of warm phase change plate 212 .
- the present disclosure contemplates that such a flow arrangement may reduce the temperature variation in the phase change materials within cold phase change plate 112 and/or warm phase change plate 212 as measured along axes generally parallel with the air flow.
- Some exemplary temperature controlled cargo containers may be designed to reduce natural convection (e.g., fluid motion caused by density differences in the fluid due to temperature gradients) past one or more phase change plates 112 , 212 .
- an upwardly extending wall 114 (which may be referred to as a “false wall”) may be provided near cold phase change plate 112 , such as between cold phase change plate 112 and separator wall 105 .
- Wall 114 may prevent cooler, denser air near the cold phase change plate 112 from settling into the interior storage space 104 .
- FIG. 3 an upwardly extending wall 114 (which may be referred to as a “false wall”) may be provided near cold phase change plate 112 , such as between cold phase change plate 112 and separator wall 105 .
- Wall 114 may prevent cooler, denser air near the cold phase change plate 112 from settling into the interior storage space 104 .
- a downwardly extending wall 214 (which may be referred to as a “false wall”) may be provided near warm phase change plate 212 , such as between warm phase change plate 212 and separator wall 105 .
- Wall 214 may prevent warmer, less dense air near the warm phase change plate 212 from rising into the interior storage space 104 .
- Such walls 114 , 214 may shape the respective air flow paths into P-traps 114 A, 214 A.
- Some example embodiments may direct air flow in a generally serpentine path past phase change plates 112 , 212 .
- walls 105 , 114 , 214 and/or phase change plates 112 , 212 may provide a generally S-shaped serpentine air flow path.
- Some exemplary embodiments may reduce natural convection using one or more devices in addition to or instead of a P-trap.
- some example embodiments may include one or more dampers and/or shutters, which may be selectively opened and/or shut by pneumatic, spring, electromechanical (such as solenoid or motor) and/or other similar actuators.
- dampers and/or shutters may be mounted to obstruct a natural convection flow path, such as adjacent to separator wall 105 .
- Walls 102 may be insulated, such as by vacuum panels.
- walls 102 may have a thickness 401 of about 4′′ and/or may have an R-value (a measure of thermal resistance) of about R-70 to resist thermal energy transfer between interior storage space 104 and the ambient environment.
- an example wall may include an exterior skin 402 and/or an interior skin 404 .
- Exterior skin 402 and/or interior skin 404 may comprise aluminum and/or may have a thickness of about 0.030′′, for example.
- An insulating foam layer, such as poured foam 406 may be provided adjacent to exterior skin 402 .
- Poured foam 406 may have a thickness 408 of about 2′′, for example.
- a vacuum panel 410 may be provided adjacent to poured foam 406 .
- Vacuum panel 410 may have a thickness 412 of about 1′′, for example.
- An insulating foam layer, such as poured foam 414 may be provided between vacuum panel 410 and interior skin 404 .
- Poured foam 414 may have a thickness 416 of about 1 ⁇ 2′′ or about 3 ⁇ 4′′, for example.
- poured foam 414 may be replaced by a foam board, which may be bonded to vacuum panel 410 and/or interior skin 404 , such as using an adhesive.
- walls 102 may comprise a stressed skin construction, which may provide a relatively high strength with relatively low weight.
- inner layers e.g., poured foam 406 , vacuum panel 410 , and/or poured foam 414
- outer layers e.g., exterior skin 402 and/or interior skin 404
- Such a construction may provide a wall structure having relatively high area moment of inertia, which may add considerable structural strength to the product with minimal additional weight, while allowing a “flex” component to the structure.
- Some exemplary temperature controlled cargo containers 100 may include one or more thermal masses including one or more augmented surfaces, such as fins and/or other similar heat transfer enhancing features, internally and/or externally.
- an example phase change plate 302 may include one or more thermally conductive fins 304 extending through the thickness 306 of the plate 302 , such as substantially from one wall 308 to the opposite wall 310 , which may enhance heat transfer to and/or from phase change material 312 (e.g., a eutectic solution and/or other phase change material) between walls 308 , 310 .
- phase change material 312 e.g., a eutectic solution and/or other phase change material
- one or more fins 304 may be mounted to the first wall 308 and may seat against the second wall 310 when the phase change plate 302 is assembled.
- phase change materials may be relatively poor thermal conductors and that utilizing conductive augmentations within the phase change material may reduce the temperature gradient across the thickness of the phase change material.
- phase change plates may include refrigerant lines (and/or lines for other materials used to condition phase change materials) and/or electrical resistance heaters extending therethrough for conditioning the phase change material.
- FIG. 7 is a schematic diagram of an example refrigeration system 500 which may be used in connection with an example temperature controlled cargo container 100 .
- refrigeration system 500 may include two substantially independent refrigeration units 500 A, 500 B, thus providing redundancy.
- Refrigeration units 500 A, 500 B may be substantially identical and, for purposes, of clarity, FIG. 7 is discussed with reference to refrigeration unit 500 A with the understanding that refrigeration unit 500 B may include corresponding components.
- An individual refrigeration unit 500 A may include a compressor 504 , a condenser 506 , a fan 508 configured to provide airflow across condenser 506 , and/or an expansion valve 512 .
- an individual refrigeration unit 500 A may include an evaporator 502 disposed in thermal communication with one or more cold phase change plates 112 (e.g., with evaporator coils extending through the interior of cold phase change plate 112 ).
- evaporators 502 associated with more than one individual refrigeration unit 500 A, 500 B may be in thermal contact with the same cold phase change plate 112 , which may increase the reliability of temperature controlled cargo container 100 because the failure of a single refrigeration unit 500 A, 500 B may not prevent cold phase change plate 112 from being conditioned.
- Each of refrigeration units 500 A, 500 B may be sized to be capable of conditioning one or more cold phase change plates 112 without the other system operating.
- the time to condition one or more cold phase change plates 112 with a single refrigeration unit 500 A, 500 B operating may be longer than the time to condition one or more cold phase change plate 112 with both refrigeration units 500 A, 500 B operating.
- one or more cold phase change plates 112 and/or evaporator 502 may be located within enclosure 101 and/or many of the remaining components of refrigeration units 500 A, 500 B may be disposed in equipment section 111 .
- FIG. 8 is a schematic diagram of an example electrical system 600 associated with a temperature controlled cargo container 100 according to the present disclosure.
- An external power source connection 602 may provide power to one or more power supplies 604 , 606 , 608 and/or a battery charger 610 .
- Power supply 604 may feed refrigeration unit 500 A and/or warm plate regenerator 612 (e.g., an electrical resistance heater in thermal contact with warm phase change plate 212 ).
- Power supply 606 may feed refrigeration unit 500 B and/or warm plate regenerator 614 .
- Battery charger 610 may provide a charging current to rechargeable battery 616 , which may feed control electronics 618 , warming fans 208 A, 208 B, and/or cooling fans 108 A, 108 B.
- Power supply 608 may also feed control electronics 618 , warming fans 208 A, 208 B, and/or cooling fans 108 A, 108 B.
- Some example temperature controlled cargo containers 100 may be operable in a recharge mode (also referred to as an active mode) and/or a transport move (also referred to as a passive mode).
- a temperature controlled cargo container 100 may connected to an external power source, such as standard electric line power (e.g., 100-230 VAC, 50 or 60 Hz).
- refrigeration units 500 A, 500 B may cool cold phase change plate 112 , which may freeze the cold phase change material of cold phase change plate 112 .
- one or more warm plate regenerators 612 , 614 e.g., electrical resistance heaters
- Refrigeration units 500 A, 500 B and/or regenerators 612 , 614 may be powered from the external power source.
- Rechargeable battery 616 (such as a 12 V lead-acid battery) may be charged from the external power source.
- the components within box 620 as well as the components within box 622 of FIG. 8 may be powered from the external power source when in the recharge mode.
- some example temperature controlled cargo containers may be constructed to interface with external conditioning systems. Such embodiments may or may not include refrigeration units 500 A, 500 B, warm plate regenerators 612 , 614 , and/or equipment section 111 . As illustrated in FIG. 9 , an example temperature controlled cargo container 100 A holding product 106 A may be generally similar to temperature controlled cargo container 100 described above. Temperature controlled cargo container 100 A may be configured for use with externally supplied conditioning for cold phase change plate 112 A and/or warm phase change plate 212 A.
- cold phase change plate 112 A may be conditioned by a chilled fluid 802 (e.g., a water-ethylene glycol solution at about ⁇ 5° C.) circulated through a heat exchanger 800 in thermal contact with cold phase change plate 112 A.
- Chilled fluid 802 may be propelled by a pump 804 via through appropriate conduits, which may include fittings 806 , 808 (e.g., quick disconnect fittings).
- a refrigeration system 810 which may be powered from an external power source 812 , may remove heat from chilled fluid 802 using a heat exchanger 814 .
- refrigeration system 810 may include one or more vapor-compression refrigeration systems, which may be generally similar to refrigeration units 500 A, 500 B.
- warm phase change plate 212 A may be conditioned by a warmed fluid 902 (e.g., a water-ethylene glycol solution at about 25° C.) circulated through a heat exchanger 900 in thermal contact with warm phase change plate 212 A.
- Warmed fluid 902 may be propelled by a pump 904 via through appropriate conduits, which may include fittings 906 , 908 (e.g., quick disconnect fittings).
- a heater system 910 which may be powered from an external power source 912 , may remove heat from chilled fluid 902 using a heat exchanger 914 .
- heater system 910 may include one or more electrical resistance heaters in thermal contact with warmed fluid 902 in heat exchanger 914 .
- Some example temperature controlled cargo containers 100 B may include one or more readily removable and/or replaceable cold phase change plates 112 B and/or warm phase change plates 212 B. Such example embodiments may allow pre-conditioned cold phase change plates 112 B and/or warm phase change plates 212 B to be installed into temperature controlled cargo container 100 B prior to transport. In addition, such embodiments may permit replacement of partially or fully expended cold phase change plates 112 B and/or warm phase change plates 212 B with conditioned cold phase change plates 112 B and/or warm phase change plates 212 B during extended storage and/or during extended transport. Such embodiments may or may not include refrigeration units 500 A, 500 B, warm plate regenerators 612 , 614 , and/or equipment section 111 .
- removable cold phase change plates 112 B may be conditioned in an environmental chamber 1002 (which may be maintained at about ⁇ 5° C.) and/or removable warm phase change plates 212 B may be conditioned in an environmental chamber 1004 (which may be maintained at about 15° C.).
- some example temperature controlled cargo containers 100 may be disconnected from the external power source and/or conditioning source.
- the temperature of interior storage space 104 may be monitored, and one or more of fans 108 A, 108 B, 208 A, 208 B may be selectively operated to circulate air across one or more cold phase change plates 112 and/or one or more warm phase change plates 212 as necessary to maintain the temperature of interior storage space 104 within a prescribed temperature band (e.g., between about 2° C. and about 8° C.).
- a prescribed temperature band e.g., between about 2° C. and about 8° C.
- fans 108 A, 108 B may be operated to circulate air across cold phase change plate 112 , which may cool interior storage space 104 .
- fans 208 A, 208 B may be operated to circulate air across warm phase change plate 212 , which may warm interior storage space 104 .
- circulation of air across cold phase change plate 112 may transfer heat from the air to the cold phase change material, which may cause the cold phase change material to melt. As the cold phase change material melts, it may absorb from the air an amount of heat equal to its latent heat of fusion.
- circulation of air across warm phase change plate 212 may transfer heat from the warm phase change material to the air, which may cause the warm phase change material to freeze. As the warm phase change material freezes, it may transfer to the air an amount of heat equal to it latent heat of fusion.
- Control electronics 618 e.g., temperature monitoring components, fan control components, etc.
- fans 108 A, 108 B, 208 A, 208 B may be powered from the rechargeable battery 616 in the transport mode.
- refrigeration units 500 A, 500 B used to cool cold phase change plates 112 and/or the regenerator used to heat warm phase change plates 212 may not operate during transport mode.
- the components within box 622 of FIG. 8 may be powered from battery 616 during the transport mode.
- various control electronics 618 may be powered from rechargeable battery 616 during the transport mode.
- the control electronics may include, for example, a low power embedded industrial PC for low power consumption and/or low EMI (electromagnetic interference).
- the control electronics and/or status panel may be configured to communicate the condition of the cargo unit to the user. For example, a temperature of the interior storage space 104 may be displayed and/or transmitted to a user.
- a data logger may monitor and/or record the temperature in the interior storage space 104 .
- the data logger may be independently powered by a non-replaceable battery with an extended life, such as a three year life.
- Some exemplary temperature controlled cargo containers may be configured to be received within and/or on an air transport cargo unit for shipment via air.
- two exemplary 76 cubic foot capacity temperature controlled cargo containers 100 may be placed inside an L9 unit load device (ULD) for shipment aboard certain types of aircraft.
- L9 unit load device L9 unit load device
- FIG. 11 some example temperature controlled cargo containers 100 may be transported in a net/pallet configuration.
- One or more temperature controlled cargo containers 100 may be placed on a generally flat pallet 700 , which may be referred to as a “cookie sheet” in the air transport industry.
- Temperature controlled cargo containers 100 may be fastened to pallet 700 using, for example, one or more straps 702 and/or nets 704 .
- Pallet 700 with temperature controlled cargo containers 100 thereon may be considered a ULD for air transport purposes and/or may be readily loaded into and secured within an aircraft (or other vehicle).
- Some example temperature controlled cargo containers 100 may be configured to function as a ULD in an air transport system. Such example embodiments may be sized and/or shaped substantially the same as a ULD used by an air carrier, and the air carrier may load such temperature controlled cargo containers 100 in an aircraft in generally the same manner as other ULDs.
- Some example temperature controlled cargo containers 100 may be sized to receive standard units of product.
- an example 76 cubic foot capacity temperature controlled cargo container 100 may include an interior storage space 104 sized to receive an about 40′′ ⁇ 48′′ pallet containing about 250 lbs. of product.
- interior storage space 104 may have interior dimensions of about 46′′ high ⁇ 44′′ wide x 53′′ deep.
- Such an example embodiment may have overall dimensions of about 58′′ high ⁇ 52.75′′ wide ⁇ 80′′ long, and its tare weight may be about 1250 lbs.
- thermal masses comprising phase change materials may include one or more of water, potassium nitrate, ethylene glycol, propylene glycol, one or more alcohols (e.g., ethyl alcohol, methyl alcohol, and/or isopropyl alcohol), potassium chloride, sodium borate, zinc, and/or ammonium chloride.
- one or more thermal masses comprising any materials capable of accepting and/or delivering appropriate amounts of thermal energy at appropriate rates to satisfy design conditions.
- phase change materials providing desired melting points.
- Some example temperature controlled cargo containers have been described herein with reference to a target temperature of about 5° C., which may correspond to temperature range of about 2° C. to about 8° C.
- Other example temperature controlled cargo containers according to the present disclosure may be configured to maintain a product located therein at colder temperatures (e.g., about ⁇ 20° C., about ⁇ 40° C., about ⁇ 80° C., and/or about ⁇ 100° C.) or warmer temperatures (e.g., about 25° C., about 50° C., and/or about 60° C.).
- temperature controlled cargo containers according to the present disclosure may be configured to maintain any desired interior temperature.
- Some example temperature controlled cargo containers may include warm and cold thermal masses including phase change materials having melting points differing from a target temperature by various amounts.
- a warm phase change material may have a melting point about 15° C. above a target temperature and a cold phase change material may have a melting point about 15° C. below the target temperature.
- the melting points of the warm and cold phase change materials may differ from the target temperature by any other desired amount (e.g., about 5° C., about 10° C., about 20° C., about 25° C., etc.).
- the melting point of the warm phase change material may differ from the target temperature by a greater (or lesser) amount than the cold phase change material differs from the target temperature.
- a warm phase change material may have a melting point of about 10° C. about above a target temperature and a cold phase change material may have a melting point of about 20° C. below the target temperature.
- Some example temperature controlled cargo containers may be operated as follows.
- a refrigeration system may be operated to cool a cold phase change plate associated with an interior storage space of a container.
- a heater may be operated to heat a warm phase change plate associated with the interior storage space.
- a product may be placed in the interior storage space.
- a temperature associated with the interior storage space may be measured.
- At least one fan may be selectively operated to cause airflow across at least one of the cold phase change plate and the warm phase change plate if the temperature associated with the interior storage space departs from a predetermined temperature range.
- ambient conditions refer to the environmental conditions to which a temperature controlled cargo container is subject.
- the ambient temperature for a temperature controlled cargo container on an airport ramp may be the outside air temperature at the ramp.
- the ambient temperature for a temperature controlled cargo container being transported in an aircraft at cruise altitude may be the interior temperature of the aircraft where the temperature controlled cargo container is stowed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 61/244,232, filed Sep. 21, 2009, which is incorporated by reference.
- The present disclosure is directed to containers for controlling the temperature of a product placed therein and methods of using temperature controlled cargo containers.
- The following documents may be related to cargo containers and/or temperature controlled transport: U.S. Pat. Nos. 3,180,403; 4,462,461; 5,561,986; 6,020,575; 6,281,797; 6,694,765; 6,865,516; and 7,501,944; and U.S. Patent Application Publication No. 2007/0175236, and are incorporated by reference into this Background section.
- Some example temperature controlled cargo containers according to the present disclosure may include one or more thermal masses conditioned to temperatures above and/or below a target temperature. Example thermal masses may include plates including phase change materials, such as eutectic materials. One or more fans may be selectively operated to circulate air in the cargo container across one or more of the thermal masses to maintain the temperature within the cargo container within a prescribed temperature band. Some example temperature controlled cargo containers may include refrigeration units and/or heaters for regenerating the thermal masses while receiving power from an external power source and/or may include one or more rechargeable batteries for providing power during transport or storage independent of external power sources.
- In an aspect, a method of controlling the temperature of a product may include placing a product in an interior storage space of a container, where the container includes a warm phase change plate and a cold phase change plate; and changing a temperature of the interior storage space by causing airflow across at least one of the warm phase change plate and the cold phase change plate.
- In a detailed embodiment, changing the temperature of the interior storage space may include sensing a temperature associated with the product; if the temperature associated with the product is above a target temperature range, operating a cooling fan associated with causing air flow across the cold phase change plate; and if the temperature associated with the product is below the target temperature range, operating a warming fan associated with causing air flow across the warm phase change plate. In a detailed embodiment, operating the cooling fan associated with the cold phase change plate may include drawing air from the interior storage space through a separator wall at least partially interposing the interior storage space and the cold phase change plate, flowing the air past the cold phase change plate, and discharging the air into the interior storage space. In a detailed embodiment, operating the warming fan associated with the warm phase change plate may include drawing air from the interior storage space through a separator wall at least partially interposing the interior storage space and the warm phase change plate, flowing the air past the warm phase change plate, and discharging the air into the interior storage space.
- In a detailed embodiment, a method may include, prior to changing a temperature of the interior storage space, conditioning at least one of the warm phase change plate and the cold phase change plate. In a detailed embodiment, conditioning the cold phase change plate may include operating a refrigeration unit to cause freezing of a cold phase change solution within the cold phase change plate. In a detailed embodiment, conditioning the warm phase change plate may include operating a heater to melt a warm phase change solution within the warm phase change plate.
- In a detailed embodiment, changing a temperature of the interior storage space may include directing the airflow along a first side of the at least one of the warm phase change plate and the cold phase change plate in a first direction and directing the airflow along a second side of the at least one of the warm phase change plate and the cold phase change plate in a second direction, where the second direction may be substantially opposite the first direction.
- In a detailed embodiment, a method may include reducing natural circulation flow across at least one of the warm phase change plate and the cold phase change plate. In a detailed embodiment, reducing natural circulation flow across at least one of the warm phase change plate and the cold phase change plate may include providing an air trap associated with at least one of the warm phase change plate and the cold phase change plate. In a detailed embodiment, providing the air trap may include providing at least one of a downwardly extending wall at least partially interposing the warm phase change plate and the interior storage space, and an upwardly extending wall at least partially interposing the cold phase change plate and the interior storage space.
- In a detailed embodiment, a method may include transporting the container from a first location to a second location while the product remains within the interior storage space.
- In an aspect, a method of storing a product in a container may include operating a refrigeration system to cool a cold phase change plate associated with an interior storage space of a container; operating a heater to heat a warm phase change plate associated with the interior storage space; placing a product in the interior storage space; measuring a temperature associated with the interior storage space; and selectively operating at least one fan to cause airflow across at least one of the cold phase change plate and the warm phase change plate if the temperature associated with the interior storage space departs from a predetermined temperature range.
- In a detailed embodiment, a method may include, prior to operating the refrigeration system and operating the heater, connecting the refrigeration system and the heater to a first external source of electrical power. In a detailed embodiment, a method may include, after operating the refrigeration system and operating the heater, disconnecting the refrigeration system and the heater from the first external source of electrical power. In a detailed embodiment, a method may include, after disconnecting the refrigeration system and the heater from the first external source of electrical power, loading the container into a vehicle. In a detailed embodiment, loading the container into a vehicle may include loading the refrigeration system and the heater into the vehicle, the refrigeration system and the heater being mounted to the container. In a detailed embodiment, a method may include transporting the container from a first location to a second location using the vehicle; and, at the second location, conditioning at least one of the cold phase change plate and the warm phase change plate. In a detailed embodiment, a method may include, prior to conditioning the at least one of the cold phase change plate and the warm phase change plate at the second location, connecting at least one of the refrigeration unit and the heater to a second external source of electrical power. In a detailed embodiment, a method may include, after the refrigeration unit and the heater have been disconnected from the first external source of electrical power and prior to connecting the refrigeration unit and the heater to the second external source of electrical power, operating the at least one fan using power supplied from a rechargeable battery associated with the container.
- In an aspect, a temperature controlled container may include an interior space for receiving a product; a warm phase change plate arranged for selective heat exchange with the interior space; and a cold phase change plate arranged for selective heat exchange with the interior space.
- In a detailed embodiment, the warm phase change plate and the cold phase change plate may be at least partially separated from the interior space by a separator wall. In a detailed embodiment, a temperature controlled cargo container may include a first fan selectively operable to cause forced convection between the interior space and the warm phase change plate; and a second fan selectively operable to cause forced convection between the interior space and the cold phase change plate. In a detailed embodiment, the cold phase change plate may include a first phase change solution, and the warm phase change plate may include a second phase change solution. In a detailed embodiment, a melting point of the second phase change solution may be higher than a melting point of the first phase change solution. In a detailed embodiment, a target temperature range may lie between the melting point of the first phase change solution and the melting point of the second phase change solution. In a detailed embodiment, the melting point of the first phase change solution may be about −5.5° C., and the melting point of the second phase change solution may be about 15° C. In a detailed embodiment, the target temperature range may be about 2-8° C.
- In an aspect, a container may include an interior space for receiving a product; a phase change plate arranged for selective heat exchange with the interior space; and a trap arranged to reduce natural convection heat transfer between the phase change plate and the interior space while allowing forced convection heat transfer between the phase change plate and the interior space.
- In a detailed embodiment, the phase change plate may include a cold phase change plate and/or the trap may include an upwardly extending wall at least partially interposing the interior space and the cold phase change plate. In a detailed embodiment, the trap may include a P-trap. In a detailed embodiment, a container may include a fan configured to cause air flow from the interior space, across the cold phase change plate, and into the interior space.
- In a detailed embodiment, the phase change plate may include a warm phase change plate and/or the trap may include a downwardly extending wall at least partially interposing the interior space and the warm phase change plate. In a detailed embodiment, the trap may include a P-trap. In a detailed embodiment, a container include a fan configured to cause air flow from the interior space, across the warm phase change plate, and into the interior space.
- In an aspect, a container may include a phase change plate including a first side and a second side and/or a flow path arranged to direct airflow along the first side in a first direction and then along the second side in a second direction, where the second direction may be substantially opposite the first direction.
- In a detailed embodiment, the first side may be substantially opposite the second side. In a detailed embodiment, a container may include at least one fan configured to cause the airflow through the flow path. In a detailed embodiment, the phase change plate may be at least partially separated from an interior storage space of the container by a wall.
- In a detailed embodiment, the phase change plate may include at least one augmented surface. In a detailed embodiment, the augmented surface may include at least one internally extending fin.
- In an aspect, a shipping system may include a container including an interior space for receiving a product, a warm phase change plate arranged for selective heat exchange with the interior space, and a cold phase change plate arranged for selective heat exchange with the interior space; a refrigeration system mounted to the container and configured to cool the cold phase change plate; and a heating system configured to heat the warm phase change plate.
- In a detailed embodiment, a shipping system may include a data logger configured to record data pertaining to the container. In a detailed embodiment, the data may include a temperature associated with the interior space.
- In a detailed embodiment, the warm phase change plate may include a cold phase change material having a melting point of about −5.5° C. In a detailed embodiment, the cold phase change plate may include a warm phase change material having a melting point of about 15° C. In a detailed embodiment, the heating system may include at least one electrical resistance heater in thermal communication with the warm phase change plate.
- In an aspect, a container for shipping pharmaceuticals may include a warm phase change plate and/or a cold phase change plate.
- In a detailed embodiment, the container may include an interior storage space for pharmaceuticals, the interior storage space being in selective thermal communication with the warm phase change plate and/or the cold phase change plate. In a detailed embodiment, a container may include a warming fan configured to cause airflow across the warm phase change plate and/or a cooling fan configured to cause airflow across the cold phase change plate. In a detailed embodiment, the cold phase change plate may include a cold eutectic material having a melting point of about −5.5° C. and/or the warm phase change plate may include a warm eutectic material having a melting point of about 15° C. In a detailed embodiment, a container a refrigeration system arranged to cool the cold phase change plate and/or a heater arranged to heat the warm phase change plate.
- The detailed description refers to the following figures in which:
-
FIG. 1 is an isometric view of an example temperature controlled cargo container; -
FIG. 2 is an overhead cross-sectional view of an example temperature controlled cargo container; -
FIG. 3 is an elevational cross-sectional view of an example temperature controlled cargo container; -
FIG. 4 is an elevational cross-sectional view of an example temperature controlled cargo container; -
FIG. 5 is a cross-sectional view of a wall of an example temperature controlled cargo container; -
FIG. 6 is cross-sectional view of an example phase change plate for a temperature controlled cargo container; -
FIG. 7 is a schematic diagram of an example refrigeration system for a temperature controlled cargo container; -
FIG. 8 is a schematic diagram of an example electrical system for a temperature controlled cargo container; -
FIG. 9 is a schematic diagram illustrating an example temperature controlled cargo container configured for use with external conditioning sources; -
FIG. 10 is a is a schematic diagram illustrating an example temperature controlled cargo container configured for use with removable phase change plates; and -
FIG. 11 is a perspective view of two example temperature controlled cargo containers on an aircraft pallet; all arranged in accordance with at least some aspects of the present disclosure. - The present disclosure includes, inter alia, temperature controlled cargo containers and methods for using temperature controlled cargo containers.
- The present disclosure contemplates that some products (e.g., pharmaceutical products) may be transported (e.g., by ground, sea, and/or air modes) and may be exposed to ambient conditions outside of an allowable product temperature range during such transportation and/or during storage. Temperature excursions outside of the allowable product temperature range may detrimentally affect a product, such as by reducing the efficacy and/or shelf life of a pharmaceutical product.
- Some example temperature controlled cargo containers according to the present disclosure may be configured to maintain a product located therein within an allowable product temperature range while the temperature controlled cargo container is exposed to various ambient conditions. For example, some example temperature controlled cargo containers may be configured to maintain pharmaceutical products within an interior storage space at about 5° C. (e.g., between about 2° C. and about 8° C.) during ground, sea, and/or air transportation and/or during temporary and/or long-term storage. Some example temperature controlled cargo containers may maintain an interior storage space at about 5° C. for about 72 hrs when the ambient temperature is about 30° C. while operating independently from external power sources and/or cooling sources. Some example temperature controlled cargo containers may maintain an interior storage space at about 5° C. during ambient temperature excursions, such as from about −40° C. to about +60° C.
- Referring to
FIGS. 1-4 , an example temperature controlledcargo container 100 according to the present disclosure may include a generallyrectangular enclosure 101 and/or anequipment section 111, which may be disposed substantially adjacent toenclosure 101.Enclosure 101 may includewalls 102 and/or adoor 103, which may be pivotably affixed towalls 102 by ahinge 109. In some example embodiments,door 103 andequipment section 111 may be disposed on generally opposite sides ofenclosure 101. A door sealing assembly associated withdoor 103 may include thermal breaks on one or both sides of the door/enclosure interface, redundant compression bulb gaskets, and/or multi-point (e.g., three-point) draw latches which may fix the gasket compression depth.Enclosure 101 and/orequipment section 111 may be mounted on apallet base 113, which may facilitate handling of temperature controlledcargo container 100 by forklifts and/or other material handling equipment, for example. Aninterior storage space 104 within enclosure 101 (which may be accessible via door 103) may receive aproduct 106, such as a pharmaceutical product. - Some example temperature controlled
cargo containers 100 may include at least one cold thermal mass and/or at least one warm thermal mass disposed withinenclosure 101. For example, a coldphase change plate 112 and/or a warmphase change plate 212 may be mounted within enclosure, such as generally oppositedoor 103. Coldphase change plate 112 may comprise a cold phase change material (PCM), which may include a eutectic material, having a desired melting point (e.g., about −5.5° C. (e.g., about 5.5° C. below 0° C.)). Warmphase change plate 212 may comprise a warm phase change material, which may include a eutectic material, having a desired melting point (e.g., about 15° C.). - Some example temperature controlled cargo containers may include one or more thermal masses (e.g., cold
phase change plates 112 and/or warm phase change plates 212) having sufficient thermal capacitance (e.g., total energy capacity) to accommodate the total energy requirements of a design condition. Some exemplary temperature controlled cargo containers may include one or more thermal masses having sufficient surface area and/or thermal conductivity to accommodate the peak heat transfer rate requirements of a design condition. - Some example phase change plates may be constructed from, for example, galvanized steel, aluminum, and/or stainless steel. In some example embodiments, such materials may be welded. An example phase change plate may have a generally flattened, rectangular shape with dimensions of about 4.5″×6.5″×40″. As used herein, “plate” refers to generally rectangular shapes as well as any other desirable shape.
- Some example temperature controlled
cargo containers 100 according to the present disclosure may be operated as follows. Warmphase change plate 212 and/or coldphase change plate 112 may be conditioned. As used herein, “conditioning” refers to freezing the cold phase change material of coldphase change plate 112 and/or melting the warm phase change material of warmphase change plate 212.Product 106 may be placed ininterior storage space 104 of temperature controlledcargo container 100. The temperature ofinterior storage space 104 may be controlled by causing airflow across at least one of warmphase change plate 212 and coldphase change plate 112. Specifically, airflow across coldphase change plate 112 may coolinterior storage space 104 and/or airflow across warmphase change plate 212 may warminterior storage space 104. - In some example temperature controlled
cargo containers 100, one or morephase change plates phase change plates interior storage space 104. For example, adivider wall 107, which may be insulated, may interpose coldphase change plate 112 and warmphase change plate 212. Aninterior separator wall 105, which may be insulated, may at least partially interposeinterior storage space 104 and coldphase change plate 112 and/or warmphase change plate 212. Thus, in some example embodiments,interior storage space 104 may be generally rectangular and/or may be substantially defined bydoor 103,walls 102, and/orinterior separator wall 105.Interior separator wall 105 may not extend fully betweenwalls 102, thereby allowing thermal communication betweeninterior space 104 andphase change plates - In some example temperature controlled
cargo containers 100, one or more coolingfans 108 may be selectively operable to cause flow ofair 110 past a cold thermal mass, such as coldphase change plate 112, and/or one or more warmingfans 208 may be selectively operable to cause flow ofair 210 past a warm thermal mass, such as warmphase change plate 212. As illustrated inFIGS. 3 and 4 ,fans draw air interior storage space 104, throughseparator wall 105, and pastphase change plate air interior storage space 104. Some example embodiments may include at least two coolingfans 108 and/or at least two warmingfans 208, which may allow continued operation of temperature controlledcargo container 100 if one of coolingfans 108 and/or one of warmingfans 208 fails. Someexample cooling fans 108 and/or warmingfans 208 may include fans driven by low voltage DC motors. - Some example temperature controlled
cargo containers 100 may be configured to selectivelydirect air flow phase change plates air phase change plate phase change plate FIG. 3 ,air 110 may flow generally downward along afront face 112A of coldphase change plate 112 and may flow generally upward along arear face 112B of coldphase change plate 112. Similarly, referring toFIG. 4 ,air 210 may flow generally upward along afront face 212A of warmphase change plate 212 and may flow generally downward along arear face 212B of warmphase change plate 212. The present disclosure contemplates that such a flow arrangement may reduce the temperature variation in the phase change materials within coldphase change plate 112 and/or warmphase change plate 212 as measured along axes generally parallel with the air flow. - Some exemplary temperature controlled cargo containers may be designed to reduce natural convection (e.g., fluid motion caused by density differences in the fluid due to temperature gradients) past one or more
phase change plates FIG. 3 , an upwardly extending wall 114 (which may be referred to as a “false wall”) may be provided near coldphase change plate 112, such as between coldphase change plate 112 andseparator wall 105.Wall 114 may prevent cooler, denser air near the coldphase change plate 112 from settling into theinterior storage space 104. Similarly, referring toFIG. 4 , a downwardly extending wall 214 (which may be referred to as a “false wall”) may be provided near warmphase change plate 212, such as between warmphase change plate 212 andseparator wall 105.Wall 214 may prevent warmer, less dense air near the warmphase change plate 212 from rising into theinterior storage space 104.Such walls traps phase change plates walls phase change plates - Some exemplary embodiments may reduce natural convection using one or more devices in addition to or instead of a P-trap. For example, some example embodiments may include one or more dampers and/or shutters, which may be selectively opened and/or shut by pneumatic, spring, electromechanical (such as solenoid or motor) and/or other similar actuators. Such dampers and/or shutters may be mounted to obstruct a natural convection flow path, such as adjacent to
separator wall 105. -
Walls 102 may be insulated, such as by vacuum panels. In some example embodiments,walls 102 may have athickness 401 of about 4″ and/or may have an R-value (a measure of thermal resistance) of about R-70 to resist thermal energy transfer betweeninterior storage space 104 and the ambient environment. Referring toFIG. 5 , an example wall may include anexterior skin 402 and/or aninterior skin 404.Exterior skin 402 and/orinterior skin 404 may comprise aluminum and/or may have a thickness of about 0.030″, for example. An insulating foam layer, such as pouredfoam 406, may be provided adjacent toexterior skin 402. Pouredfoam 406 may have athickness 408 of about 2″, for example. Avacuum panel 410 may be provided adjacent to pouredfoam 406.Vacuum panel 410 may have athickness 412 of about 1″, for example. An insulating foam layer, such as pouredfoam 414, may be provided betweenvacuum panel 410 andinterior skin 404. Pouredfoam 414 may have athickness 416 of about ½″ or about ¾″, for example. In some example embodiments, pouredfoam 414 may be replaced by a foam board, which may be bonded tovacuum panel 410 and/orinterior skin 404, such as using an adhesive. - In some example temperature controlled
cargo containers 100,walls 102 may comprise a stressed skin construction, which may provide a relatively high strength with relatively low weight. In some example embodiments, inner layers (e.g., pouredfoam 406,vacuum panel 410, and/or poured foam 414) and/or outer layers (e.g.,exterior skin 402 and/or interior skin 404) may be disposed such that layers may not slide relative to others layer. Such a construction may provide a wall structure having relatively high area moment of inertia, which may add considerable structural strength to the product with minimal additional weight, while allowing a “flex” component to the structure. - Some exemplary temperature controlled
cargo containers 100 may include one or more thermal masses including one or more augmented surfaces, such as fins and/or other similar heat transfer enhancing features, internally and/or externally. For example, referring toFIG. 6 , an examplephase change plate 302 may include one or more thermallyconductive fins 304 extending through thethickness 306 of theplate 302, such as substantially from onewall 308 to theopposite wall 310, which may enhance heat transfer to and/or from phase change material 312 (e.g., a eutectic solution and/or other phase change material) betweenwalls more fins 304 may be mounted to thefirst wall 308 and may seat against thesecond wall 310 when thephase change plate 302 is assembled. - It is within the scope of the disclosure to utilize
fins 304 or other conductive augmentations of any cross section or profile. The present disclosure contemplates that some example phase change materials may be relatively poor thermal conductors and that utilizing conductive augmentations within the phase change material may reduce the temperature gradient across the thickness of the phase change material. Some example phase change plates may include refrigerant lines (and/or lines for other materials used to condition phase change materials) and/or electrical resistance heaters extending therethrough for conditioning the phase change material. -
FIG. 7 is a schematic diagram of anexample refrigeration system 500 which may be used in connection with an example temperature controlledcargo container 100. In some example embodiments,refrigeration system 500 may include two substantiallyindependent refrigeration units Refrigeration units FIG. 7 is discussed with reference torefrigeration unit 500A with the understanding thatrefrigeration unit 500B may include corresponding components. Anindividual refrigeration unit 500A may include acompressor 504, acondenser 506, afan 508 configured to provide airflow acrosscondenser 506, and/or anexpansion valve 512. - In some example embodiments, an
individual refrigeration unit 500A may include anevaporator 502 disposed in thermal communication with one or more cold phase change plates 112 (e.g., with evaporator coils extending through the interior of cold phase change plate 112). In some example embodiments,evaporators 502 associated with more than oneindividual refrigeration unit phase change plate 112, which may increase the reliability of temperature controlledcargo container 100 because the failure of asingle refrigeration unit phase change plate 112 from being conditioned. Each ofrefrigeration units phase change plates 112 without the other system operating. However, the time to condition one or more coldphase change plates 112 with asingle refrigeration unit phase change plate 112 with bothrefrigeration units phase change plates 112 and/orevaporator 502 may be located withinenclosure 101 and/or many of the remaining components ofrefrigeration units equipment section 111. -
FIG. 8 is a schematic diagram of an exampleelectrical system 600 associated with a temperature controlledcargo container 100 according to the present disclosure. An external power source connection 602 may provide power to one ormore power supplies Power supply 604 may feedrefrigeration unit 500A and/or warm plate regenerator 612 (e.g., an electrical resistance heater in thermal contact with warm phase change plate 212).Power supply 606 may feedrefrigeration unit 500B and/orwarm plate regenerator 614. Battery charger 610 may provide a charging current torechargeable battery 616, which may feedcontrol electronics 618, warmingfans fans 108A, 108B. Power supply 608 may also feedcontrol electronics 618, warmingfans fans - Some example temperature controlled
cargo containers 100 may be operable in a recharge mode (also referred to as an active mode) and/or a transport move (also referred to as a passive mode). In an example recharge mode, a temperature controlledcargo container 100 may connected to an external power source, such as standard electric line power (e.g., 100-230 VAC, 50 or 60 Hz). - In the recharge mode,
refrigeration units phase change plate 112, which may freeze the cold phase change material of coldphase change plate 112. Similarly, one or more warm plate regenerators 612, 614 (e.g., electrical resistance heaters) may heat warmphase change plate 212, which may melt the warm phase change material of warmphase change plate 212.Refrigeration units regenerators 612, 614 may be powered from the external power source. Rechargeable battery 616 (such as a 12 V lead-acid battery) may be charged from the external power source. In some example embodiments, the components withinbox 620 as well as the components withinbox 622 ofFIG. 8 may be powered from the external power source when in the recharge mode. - Referring to
FIG. 9 , some example temperature controlled cargo containers according to the present disclosure may be constructed to interface with external conditioning systems. Such embodiments may or may not includerefrigeration units warm plate regenerators 612, 614, and/orequipment section 111. As illustrated inFIG. 9 , an example temperature controlledcargo container 100 A holding product 106A may be generally similar to temperature controlledcargo container 100 described above. Temperature controlledcargo container 100A may be configured for use with externally supplied conditioning for coldphase change plate 112A and/or warmphase change plate 212A. For example, coldphase change plate 112A may be conditioned by a chilled fluid 802 (e.g., a water-ethylene glycol solution at about −5° C.) circulated through aheat exchanger 800 in thermal contact with coldphase change plate 112A.Chilled fluid 802 may be propelled by apump 804 via through appropriate conduits, which may includefittings 806, 808 (e.g., quick disconnect fittings). Arefrigeration system 810, which may be powered from anexternal power source 812, may remove heat fromchilled fluid 802 using aheat exchanger 814. In some example embodiments,refrigeration system 810 may include one or more vapor-compression refrigeration systems, which may be generally similar torefrigeration units - Similarly, warm
phase change plate 212A may be conditioned by a warmed fluid 902 (e.g., a water-ethylene glycol solution at about 25° C.) circulated through aheat exchanger 900 in thermal contact with warmphase change plate 212A. Warmedfluid 902 may be propelled by apump 904 via through appropriate conduits, which may includefittings 906, 908 (e.g., quick disconnect fittings). Aheater system 910, which may be powered from anexternal power source 912, may remove heat fromchilled fluid 902 using aheat exchanger 914. In some example embodiments,heater system 910 may include one or more electrical resistance heaters in thermal contact with warmed fluid 902 inheat exchanger 914. - Referring to
FIG. 10 , Some example temperature controlledcargo containers 100B according to the present disclosure may include one or more readily removable and/or replaceable coldphase change plates 112B and/or warmphase change plates 212B. Such example embodiments may allow pre-conditioned coldphase change plates 112B and/or warmphase change plates 212B to be installed into temperature controlledcargo container 100B prior to transport. In addition, such embodiments may permit replacement of partially or fully expended coldphase change plates 112B and/or warmphase change plates 212B with conditioned coldphase change plates 112B and/or warmphase change plates 212B during extended storage and/or during extended transport. Such embodiments may or may not includerefrigeration units warm plate regenerators 612, 614, and/orequipment section 111. For example, removable coldphase change plates 112B may be conditioned in an environmental chamber 1002 (which may be maintained at about −5° C.) and/or removable warmphase change plates 212B may be conditioned in an environmental chamber 1004 (which may be maintained at about 15° C.). - In an example transport mode, some example temperature controlled
cargo containers 100 may be disconnected from the external power source and/or conditioning source. In the transport mode, the temperature ofinterior storage space 104 may be monitored, and one or more offans phase change plates 112 and/or one or more warmphase change plates 212 as necessary to maintain the temperature ofinterior storage space 104 within a prescribed temperature band (e.g., between about 2° C. and about 8° C.). For example, if the temperature within theinterior storage space 104 exceeds a predetermined setpoint,fans phase change plate 112, which may coolinterior storage space 104. Similarly, if the temperature withininterior storage space 104 drops below a predetermined setpoint,fans phase change plate 212, which may warminterior storage space 104. - More specifically, circulation of air across cold
phase change plate 112 may transfer heat from the air to the cold phase change material, which may cause the cold phase change material to melt. As the cold phase change material melts, it may absorb from the air an amount of heat equal to its latent heat of fusion. Similarly, circulation of air across warmphase change plate 212 may transfer heat from the warm phase change material to the air, which may cause the warm phase change material to freeze. As the warm phase change material freezes, it may transfer to the air an amount of heat equal to it latent heat of fusion. - Control electronics 618 (e.g., temperature monitoring components, fan control components, etc.) and/or
fans rechargeable battery 616 in the transport mode. In some example embodiments,refrigeration units phase change plates 112 and/or the regenerator used to heat warmphase change plates 212 may not operate during transport mode. In some example embodiments, the components withinbox 622 ofFIG. 8 may be powered frombattery 616 during the transport mode. - In some example embodiments, various control electronics 618 (which may include a status panel) may be powered from
rechargeable battery 616 during the transport mode. The control electronics may include, for example, a low power embedded industrial PC for low power consumption and/or low EMI (electromagnetic interference). The control electronics and/or status panel may be configured to communicate the condition of the cargo unit to the user. For example, a temperature of theinterior storage space 104 may be displayed and/or transmitted to a user. In some example embodiments, a data logger may monitor and/or record the temperature in theinterior storage space 104. In some example embodiments, the data logger may be independently powered by a non-replaceable battery with an extended life, such as a three year life. - Some exemplary temperature controlled cargo containers according to the present disclosure may be configured to be received within and/or on an air transport cargo unit for shipment via air. For example, two exemplary 76 cubic foot capacity temperature controlled
cargo containers 100 may be placed inside an L9 unit load device (ULD) for shipment aboard certain types of aircraft. Similarly, as illustrated inFIG. 11 , some example temperature controlledcargo containers 100 may be transported in a net/pallet configuration. One or more temperature controlledcargo containers 100 may be placed on a generallyflat pallet 700, which may be referred to as a “cookie sheet” in the air transport industry. Temperature controlledcargo containers 100 may be fastened topallet 700 using, for example, one ormore straps 702 and/or nets 704.Pallet 700 with temperature controlledcargo containers 100 thereon may be considered a ULD for air transport purposes and/or may be readily loaded into and secured within an aircraft (or other vehicle). - Some example temperature controlled
cargo containers 100 according to the present disclosure may be configured to function as a ULD in an air transport system. Such example embodiments may be sized and/or shaped substantially the same as a ULD used by an air carrier, and the air carrier may load such temperature controlledcargo containers 100 in an aircraft in generally the same manner as other ULDs. - Some example temperature controlled
cargo containers 100 may be sized to receive standard units of product. For example, an example 76 cubic foot capacity temperature controlledcargo container 100 may include aninterior storage space 104 sized to receive an about 40″×48″ pallet containing about 250 lbs. of product. In such an example embodiment,interior storage space 104 may have interior dimensions of about 46″ high×44″ wide x 53″ deep. Such an example embodiment may have overall dimensions of about 58″ high×52.75″ wide×80″ long, and its tare weight may be about 1250 lbs. - Some example thermal masses comprising phase change materials may include one or more of water, potassium nitrate, ethylene glycol, propylene glycol, one or more alcohols (e.g., ethyl alcohol, methyl alcohol, and/or isopropyl alcohol), potassium chloride, sodium borate, zinc, and/or ammonium chloride. In general, it is within the scope of the present disclosure to utilize one or more thermal masses comprising any materials capable of accepting and/or delivering appropriate amounts of thermal energy at appropriate rates to satisfy design conditions. Further, it is within the scope of the present disclosure to utilize any phase change materials providing desired melting points.
- Some example temperature controlled cargo containers have been described herein with reference to a target temperature of about 5° C., which may correspond to temperature range of about 2° C. to about 8° C. Other example temperature controlled cargo containers according to the present disclosure may be configured to maintain a product located therein at colder temperatures (e.g., about −20° C., about −40° C., about −80° C., and/or about −100° C.) or warmer temperatures (e.g., about 25° C., about 50° C., and/or about 60° C.). In general, temperature controlled cargo containers according to the present disclosure may be configured to maintain any desired interior temperature.
- Some example temperature controlled cargo containers according to the present disclosure may include warm and cold thermal masses including phase change materials having melting points differing from a target temperature by various amounts. For example, a warm phase change material may have a melting point about 15° C. above a target temperature and a cold phase change material may have a melting point about 15° C. below the target temperature. Similarly, the melting points of the warm and cold phase change materials may differ from the target temperature by any other desired amount (e.g., about 5° C., about 10° C., about 20° C., about 25° C., etc.). In some example embodiments, the melting point of the warm phase change material may differ from the target temperature by a greater (or lesser) amount than the cold phase change material differs from the target temperature. For example, a warm phase change material may have a melting point of about 10° C. about above a target temperature and a cold phase change material may have a melting point of about 20° C. below the target temperature.
- Some example temperature controlled cargo containers may be operated as follows. A refrigeration system may be operated to cool a cold phase change plate associated with an interior storage space of a container. A heater may be operated to heat a warm phase change plate associated with the interior storage space. A product may be placed in the interior storage space. A temperature associated with the interior storage space may be measured. At least one fan may be selectively operated to cause airflow across at least one of the cold phase change plate and the warm phase change plate if the temperature associated with the interior storage space departs from a predetermined temperature range.
- As used herein, ambient conditions refer to the environmental conditions to which a temperature controlled cargo container is subject. For example, the ambient temperature for a temperature controlled cargo container on an airport ramp may be the outside air temperature at the ramp. As another example, the ambient temperature for a temperature controlled cargo container being transported in an aircraft at cruise altitude may be the interior temperature of the aircraft where the temperature controlled cargo container is stowed.
- While exemplary embodiments have been set forth above for the purpose of disclosure, modifications of the disclosed embodiments as well as other embodiments thereof may occur to those skilled in the art. Accordingly, it is to be understood that the disclosure is not limited to the above precise embodiments and that changes may be made without departing from the scope. Likewise, it is to be understood that it is not necessary to meet any or all of the stated advantages or objects disclosed herein to fall within the scope of the disclosure, since inherent and/or unforeseen advantages may exist even though they may not have been explicitly discussed herein.
- What is claimed is:
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/415,350 US20170131014A1 (en) | 2009-09-21 | 2017-01-25 | Temperature Controlled Cargo Containers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24423209P | 2009-09-21 | 2009-09-21 | |
US12/705,803 US20110067852A1 (en) | 2009-09-21 | 2010-02-15 | Temperature controlled cargo containers |
US15/415,350 US20170131014A1 (en) | 2009-09-21 | 2017-01-25 | Temperature Controlled Cargo Containers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/705,803 Division US20110067852A1 (en) | 2009-09-21 | 2010-02-15 | Temperature controlled cargo containers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170131014A1 true US20170131014A1 (en) | 2017-05-11 |
Family
ID=43755619
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/705,803 Abandoned US20110067852A1 (en) | 2009-09-21 | 2010-02-15 | Temperature controlled cargo containers |
US14/626,375 Abandoned US20150158667A1 (en) | 2009-09-21 | 2015-02-19 | Temperature Controlled Cargo Containers |
US14/626,285 Abandoned US20150166262A1 (en) | 2009-09-21 | 2015-02-19 | Temperature Controlled Cargo Containers |
US15/415,350 Abandoned US20170131014A1 (en) | 2009-09-21 | 2017-01-25 | Temperature Controlled Cargo Containers |
US15/416,010 Abandoned US20170131015A1 (en) | 2009-09-21 | 2017-01-26 | Temperature Controlled Cargo Containers |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/705,803 Abandoned US20110067852A1 (en) | 2009-09-21 | 2010-02-15 | Temperature controlled cargo containers |
US14/626,375 Abandoned US20150158667A1 (en) | 2009-09-21 | 2015-02-19 | Temperature Controlled Cargo Containers |
US14/626,285 Abandoned US20150166262A1 (en) | 2009-09-21 | 2015-02-19 | Temperature Controlled Cargo Containers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/416,010 Abandoned US20170131015A1 (en) | 2009-09-21 | 2017-01-26 | Temperature Controlled Cargo Containers |
Country Status (3)
Country | Link |
---|---|
US (5) | US20110067852A1 (en) |
EP (1) | EP2480844A4 (en) |
WO (1) | WO2011035102A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3983735A4 (en) * | 2019-06-17 | 2023-06-14 | Thermocan Dynamics Inc. | Dynamic temperature regulating device |
AU2021215298B2 (en) * | 2020-08-14 | 2023-06-15 | Hussmann Corporation | Temperature-controlled container |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8162542B2 (en) * | 2008-02-25 | 2012-04-24 | Tednologies, Inc. | Environment controlled cargo container |
AP2014007819A0 (en) * | 2012-01-27 | 2014-07-31 | Sure Chill Company Ltd | Refrigeration apparatus |
FR2990422B1 (en) * | 2012-05-14 | 2015-01-30 | Carrosserie Aubineau Sa | POSITIONABLE TYPE LOAD TRANSPORT BODY ON A BEARING, TRAILER OR SEMI-TRAILER ROLLING CHASSIS |
US9719713B2 (en) * | 2012-06-11 | 2017-08-01 | Carrier Corporation | Refrigerated cargo container, method for cooling a cargo, method for heating a cargo |
DE102012025192A1 (en) * | 2012-12-10 | 2014-06-12 | Va-Q-Tec Ag | Method and apparatus for the preconditioning of latent heat storage elements |
DE102013002555A1 (en) | 2012-12-18 | 2014-06-18 | Va-Q-Tec Ag | Method and apparatus for the preconditioning of latent heat storage elements |
GB201301494D0 (en) | 2013-01-28 | 2013-03-13 | True Energy Ltd | Refrigeration apparatus |
ES2510090B1 (en) * | 2013-04-17 | 2015-12-15 | Loramendi, S.Coop. | Device for conditioning granular material contained in a silo and silo incorporating said device |
WO2014193600A1 (en) * | 2013-05-02 | 2014-12-04 | Thermo King Corporation | Apparatus for the storage, transport and distribution of refrigerated or frozen goods, in particular for thermally insulated containers of refrigerated vehicles, cold rooms and the like |
US9821700B2 (en) | 2014-05-02 | 2017-11-21 | Thermo King Corporation | Integrated charging unit for passive refrigeration system |
US20170292759A1 (en) * | 2014-09-09 | 2017-10-12 | Xalt Energy | A refrigerated container, a system for refrigeration, and a method of refrigerating the container |
US10618661B2 (en) * | 2015-02-23 | 2020-04-14 | Airbus Operations Gmbh | On-board removable container for cooling cargo materials and equipment in aircraft |
WO2016178641A1 (en) * | 2015-05-06 | 2016-11-10 | Topal Ömer Ali | Waste heat exchanger for produced hot metal parts |
US20180152044A1 (en) * | 2015-05-31 | 2018-05-31 | Thermo King Corporation | Method and system for extending autonomous operation of a self-contained climate controlled storage unit |
US10575474B1 (en) * | 2015-07-17 | 2020-03-03 | Bose Family Trust | Enclosure temperature control system |
US9999179B2 (en) * | 2015-07-17 | 2018-06-19 | The Bose Family Trust | Enclosure temperature control system |
AT517516B1 (en) | 2015-08-04 | 2018-02-15 | Rep Ip Ag | Transport container for transporting temperature-sensitive cargo |
EP3341665B1 (en) | 2015-09-11 | 2024-07-10 | The Sure Chill Company Limited | Portable refrigeration system and chilling panel |
US10583978B2 (en) | 2015-10-06 | 2020-03-10 | Cold Chain Technologies, Llc | Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover |
EP3359459B1 (en) | 2015-10-06 | 2021-08-04 | Cold Chain Technologies, LLC | Pallet cover comprising one or more temperature-control members |
US11591133B2 (en) | 2015-10-06 | 2023-02-28 | Cold Chain Technologies, Llc | Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover |
US11964795B2 (en) | 2015-10-06 | 2024-04-23 | Cold Chain Technologies, Llc | Device comprising one or more temperature-control members and kit for use in making the device |
US10278895B2 (en) | 2016-04-11 | 2019-05-07 | Tokitae Llc | Portable device for cold chain storage |
ITUA20163308A1 (en) * | 2016-05-10 | 2017-11-10 | Bonetto S R L | ISOTHERMAL CONTAINER FOR THE TRANSPORT OF PERISHABLE FOODS |
WO2017218909A1 (en) * | 2016-06-17 | 2017-12-21 | Carrier Corporation | Mechanical subcooler with battery supplement |
US11340005B2 (en) | 2016-07-25 | 2022-05-24 | Cold Chain Technologies, Llc | Hybrid method and system for transporting and/or storing temperature-sensitive materials |
US11499770B2 (en) | 2017-05-09 | 2022-11-15 | Cold Chain Technologies, Llc | Shipping system for storing and/or transporting temperature-sensitive materials |
US11511928B2 (en) | 2017-05-09 | 2022-11-29 | Cold Chain Technologies, Llc | Shipping system for storing and/or transporting temperature-sensitive materials |
US11975907B2 (en) * | 2017-05-11 | 2024-05-07 | United States Postal Service | Systems and methods for maintaining temperature control of items in a distribution network |
CN107314612A (en) * | 2017-06-29 | 2017-11-03 | 青岛海尔股份有限公司 | The control system and control method of refrigerator |
NL2019470B1 (en) * | 2017-08-31 | 2019-03-11 | Coolfinity Ip B V | Cooling cabinet and method for operating the cooling cabinet |
RU186952U1 (en) * | 2018-07-30 | 2019-02-11 | Юрий Николаевич Харченко | PRODUCT COOLING Keg |
US11999559B2 (en) | 2018-08-10 | 2024-06-04 | Cold Chain Technologies, Llc | Apparatus and method for protectively covering temperature sensitive products |
CN109050385B (en) * | 2018-08-14 | 2020-06-05 | 惠龙易通国际物流股份有限公司 | Tank wagon and fixing base |
US10935291B2 (en) | 2018-10-31 | 2021-03-02 | International Business Machines Corporation | Internal climate control system |
CN109631406B (en) * | 2019-01-09 | 2024-03-15 | 中铁第四勘察设计院集团有限公司 | Railway cold chain logistics pipeline system container with refrigerating device |
US11137805B2 (en) | 2019-06-14 | 2021-10-05 | Klinge Corporation | Dual redundant cooling system for a container |
EP3831625A1 (en) * | 2019-12-03 | 2021-06-09 | Carrier Corporation | Methods and systems for cooling |
SE544291C2 (en) * | 2020-10-02 | 2022-03-29 | Envirotainer Eng Ab | A method for testing performance of a climate-controlled freight container and such freight container |
SE544309C2 (en) * | 2020-10-02 | 2022-04-05 | Envirotainer Eng Ab | A climate-controlled freight container and a method for controlling the climate in a climate-controlled freight container |
CN112793940A (en) * | 2020-12-30 | 2021-05-14 | 深圳市森若新材科技有限公司 | Passive refrigerated container and system |
WO2022253278A1 (en) * | 2021-06-01 | 2022-12-08 | 浙江雪波蓝科技有限公司 | Mobile freshness preservation container and cold-chain vehicle having same |
CN115420050B (en) * | 2022-08-29 | 2024-02-02 | 天津太平洋制药有限公司 | Pharmacy refrigerating plant |
EP4438481A1 (en) * | 2023-03-31 | 2024-10-02 | Airbus Operations GmbH | Thermal control system for thermal sensitive freight transportation and transport container and aircraft having the same |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US211821A (en) * | 1878-12-11 | 1879-01-28 | Improvement in driers for cotton, wool | |
US2202954A (en) * | 1937-09-16 | 1940-06-04 | Ind Patents Corp | Refrigeration unit |
US2525866A (en) * | 1949-05-06 | 1950-10-17 | Harold E Christman | Air circulation control for refrigerator trucks |
US3248897A (en) * | 1965-03-30 | 1966-05-03 | Stark Virgil | Air conditioning device |
DE1679202A1 (en) * | 1967-04-22 | 1971-04-08 | Hessische Elek Zitaets Ag | Storage heater with heat discharge either through natural convection or through forced convection using an air jet blower |
US4037650A (en) * | 1975-05-23 | 1977-07-26 | National Research Development Corporation | Thermal storage apparatus |
US4248291A (en) * | 1978-10-18 | 1981-02-03 | Seymour Jarmul | Compact thermal energy reservoirs |
US5029450A (en) * | 1989-08-11 | 1991-07-09 | Sanyo Electric Co., Ltd. | Refrigerator commodities transport system |
FR2691237A1 (en) * | 1992-05-15 | 1993-11-19 | Grandi Rene | Device for regenerating joules or frigories for cold storage and distribution module. |
US5916256A (en) * | 1995-12-29 | 1999-06-29 | Frigotainer Insulated Air Cargo Containers Ab | Refrigerating system of a refrigerated freight container |
EP1128139A1 (en) * | 2000-02-24 | 2001-08-29 | Zanotti S.p.A. | Refrigerating system for refrigerator motor vehicles |
US20040226309A1 (en) * | 2003-02-17 | 2004-11-18 | Broussard Kenneth W. | Temperature controlled, pallet-sized shipping container |
US20060042275A1 (en) * | 2003-04-28 | 2006-03-02 | Daikin Industries, Ltd Umeda Center Bldg., 4-12 | Refrigeration unit for container |
US7263855B2 (en) * | 2005-06-08 | 2007-09-04 | Doubleday Acquisitions, Llc | Cargo container for transporting temperature sensitive items |
US8162542B2 (en) * | 2008-02-25 | 2012-04-24 | Tednologies, Inc. | Environment controlled cargo container |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125867A (en) * | 1964-03-24 | Refrigeration system connector apparatus | ||
US2534272A (en) * | 1947-12-22 | 1950-12-19 | Dole Refrigerating Co | Multitemperature refrigerator car |
US2589031A (en) * | 1950-01-18 | 1952-03-11 | Rollin F Allyne | Method of and apparatus for controlling temperature of trailer cargo and the like |
US2723083A (en) * | 1952-02-05 | 1955-11-08 | Constantine W Bary | Heat pump apparatus |
US3199579A (en) * | 1960-02-11 | 1965-08-10 | Foster Refrigerator Corp | Heating and cooling food storage cabinet |
US3180403A (en) * | 1960-10-31 | 1965-04-27 | Unarco Industries | Railway refrigerator car |
US3205033A (en) * | 1961-11-21 | 1965-09-07 | United Service Equipment Co In | Tray support and thermal wall for a hot and cold food service cart |
US3468369A (en) * | 1967-04-10 | 1969-09-23 | Freez Porter Systems Inc | Process and apparatus for handling perishable materials |
US3744272A (en) * | 1971-12-22 | 1973-07-10 | Us Army | Refrigeration system with heat exchanger employing eutectic |
BE853896A (en) * | 1975-07-01 | 1977-08-16 | Os Bad Rozwojowy Aparatury Nis | CIRCUIT BREAKER |
US4250955A (en) * | 1978-07-07 | 1981-02-17 | Bastian Blessing Co. Inc. | Self-service replenishable food cabinet |
US4276752A (en) * | 1978-09-22 | 1981-07-07 | Pax Equipment Management, Inc. | Refrigerated air cargo container |
US4462461A (en) * | 1982-05-10 | 1984-07-31 | Grant Hendrie J | Thermal management system and apparatus |
US4528439A (en) * | 1982-10-29 | 1985-07-09 | Standard Oil Company | Portable thermally insulated case |
US4709750A (en) * | 1986-04-10 | 1987-12-01 | Internorth, Inc. | Phase change heat exchanger |
JPS6358079A (en) * | 1986-08-27 | 1988-03-12 | ホシザキ電機株式会社 | Isothermal humid refrigerator |
US4831837A (en) * | 1987-01-08 | 1989-05-23 | Sanden Corporation | Transporting system for refrigerated merchandise |
JPH0533896Y2 (en) * | 1988-03-17 | 1993-08-27 | ||
US4936104A (en) * | 1988-07-21 | 1990-06-26 | Hicke Gerald E | Air conditioning method and apparatus for refrigerated vehicles |
DE3843287A1 (en) * | 1988-12-22 | 1990-06-28 | Klaus Rehahn | Meal transporting container with a door |
US5159973A (en) * | 1991-03-28 | 1992-11-03 | Plastics Manufacturing Co. | Dual temperature maintenance food serving compartment with pre-cooled cooling modules and heat storage pellets |
US5172567A (en) * | 1991-05-29 | 1992-12-22 | Thermo King Corporation | Eutectic beams for use in refrigeration |
GB9411942D0 (en) * | 1994-06-15 | 1994-08-03 | Boc Group Plc | A portable chilling unit |
FR2725265B1 (en) * | 1994-09-30 | 1996-12-13 | Grandi Rene Vincent | DEVICE FOR REGULATING AND TRANSFERRING REFRIGERATED OR CALORIC FLUIDS FOR TRANSPORT CONTAINERS |
EP0848800B1 (en) * | 1995-09-08 | 2000-12-13 | René Grandi | Mobile trolley for distributing hot and cold meal trays having warming-up and refrigeration capacities with self-contained reserve and ... |
US6116042A (en) * | 1995-11-06 | 2000-09-12 | Throwleigh Technologies, Llc | Container for transportation of temperature sensitive products |
US5901572A (en) * | 1995-12-07 | 1999-05-11 | Rocky Research | Auxiliary heating and air conditioning system for a motor vehicle |
US5950450A (en) * | 1996-06-12 | 1999-09-14 | Vacupanel, Inc. | Containment system for transporting and storing temperature-sensitive materials |
CA2319262C (en) * | 1998-01-22 | 2004-11-23 | Daicolo Co., Ltd. | Storage equipment and storage method |
US6020575A (en) * | 1998-04-20 | 2000-02-01 | Tcp/Reliable Inc. | Temperature-controlled container with heating means and eutectic pack |
AUPP686398A0 (en) * | 1998-10-30 | 1998-11-26 | Richardson, Donald G. | A method of recording the temperature of perishable products in cold chain distribution |
SE515742C2 (en) * | 2000-02-11 | 2001-10-01 | Envirotainer Engineering Aktie | Air freight container, cooling unit for an air freight container and manufacturing process for an air freight container |
US6281797B1 (en) * | 2000-04-04 | 2001-08-28 | Marconi Data Systems Inc. | Method and apparatus for detecting a container proximate to a transportation vessel hold |
USD467730S1 (en) * | 2001-07-10 | 2002-12-31 | Envirotainer Engineering Ab | Container |
USD466294S1 (en) * | 2001-07-10 | 2002-12-03 | Envirotainer Engineering Ab | Container |
US6668819B1 (en) * | 2001-12-31 | 2003-12-30 | Ralph Remsburg | Method and apparatus for temperature control of an enclosure |
US6694765B1 (en) * | 2002-07-30 | 2004-02-24 | Thermo King Corporation | Method and apparatus for moving air through a heat exchanger |
US20040177895A1 (en) * | 2002-11-15 | 2004-09-16 | Polar Cargo Systems, Inc. | Controlled-environment cargo container |
WO2004063766A1 (en) * | 2003-01-08 | 2004-07-29 | Envirotainer Ab | Activation of tracking device |
US20070175236A1 (en) * | 2004-03-24 | 2007-08-02 | Nathan Dryzun | Portable refrigeration container |
US9182155B2 (en) * | 2004-12-08 | 2015-11-10 | Ethan J. Crumlin | Environmentally adaptable transport device |
US20060174648A1 (en) * | 2005-01-26 | 2006-08-10 | Gary Lantz | Insulated shipping container and method |
US7913511B2 (en) * | 2005-06-08 | 2011-03-29 | Doubleday Acquisitions, Llc | Cargo container for transporting temperature sensitive items |
ITTO20080415A1 (en) * | 2008-05-30 | 2009-11-30 | Aris Spa | CONTAINER FOR SPECIAL MATERIALS |
US20120227424A1 (en) * | 2011-03-10 | 2012-09-13 | Prince Castle LLC | Converging/Diverging Front Intake |
-
2010
- 2010-02-15 US US12/705,803 patent/US20110067852A1/en not_active Abandoned
- 2010-09-17 EP EP10817879.9A patent/EP2480844A4/en not_active Withdrawn
- 2010-09-17 WO PCT/US2010/049246 patent/WO2011035102A1/en active Application Filing
-
2015
- 2015-02-19 US US14/626,375 patent/US20150158667A1/en not_active Abandoned
- 2015-02-19 US US14/626,285 patent/US20150166262A1/en not_active Abandoned
-
2017
- 2017-01-25 US US15/415,350 patent/US20170131014A1/en not_active Abandoned
- 2017-01-26 US US15/416,010 patent/US20170131015A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US211821A (en) * | 1878-12-11 | 1879-01-28 | Improvement in driers for cotton, wool | |
US2202954A (en) * | 1937-09-16 | 1940-06-04 | Ind Patents Corp | Refrigeration unit |
US2525866A (en) * | 1949-05-06 | 1950-10-17 | Harold E Christman | Air circulation control for refrigerator trucks |
US3248897A (en) * | 1965-03-30 | 1966-05-03 | Stark Virgil | Air conditioning device |
DE1679202A1 (en) * | 1967-04-22 | 1971-04-08 | Hessische Elek Zitaets Ag | Storage heater with heat discharge either through natural convection or through forced convection using an air jet blower |
US4037650A (en) * | 1975-05-23 | 1977-07-26 | National Research Development Corporation | Thermal storage apparatus |
US4248291A (en) * | 1978-10-18 | 1981-02-03 | Seymour Jarmul | Compact thermal energy reservoirs |
US5029450A (en) * | 1989-08-11 | 1991-07-09 | Sanyo Electric Co., Ltd. | Refrigerator commodities transport system |
FR2691237A1 (en) * | 1992-05-15 | 1993-11-19 | Grandi Rene | Device for regenerating joules or frigories for cold storage and distribution module. |
US5916256A (en) * | 1995-12-29 | 1999-06-29 | Frigotainer Insulated Air Cargo Containers Ab | Refrigerating system of a refrigerated freight container |
EP1128139A1 (en) * | 2000-02-24 | 2001-08-29 | Zanotti S.p.A. | Refrigerating system for refrigerator motor vehicles |
US20040226309A1 (en) * | 2003-02-17 | 2004-11-18 | Broussard Kenneth W. | Temperature controlled, pallet-sized shipping container |
US20060042275A1 (en) * | 2003-04-28 | 2006-03-02 | Daikin Industries, Ltd Umeda Center Bldg., 4-12 | Refrigeration unit for container |
US7263855B2 (en) * | 2005-06-08 | 2007-09-04 | Doubleday Acquisitions, Llc | Cargo container for transporting temperature sensitive items |
US8162542B2 (en) * | 2008-02-25 | 2012-04-24 | Tednologies, Inc. | Environment controlled cargo container |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3983735A4 (en) * | 2019-06-17 | 2023-06-14 | Thermocan Dynamics Inc. | Dynamic temperature regulating device |
US11815306B2 (en) | 2019-06-17 | 2023-11-14 | Thermocan Dynamics Inc. | Dynamic temperature regulating device |
AU2021215298B2 (en) * | 2020-08-14 | 2023-06-15 | Hussmann Corporation | Temperature-controlled container |
Also Published As
Publication number | Publication date |
---|---|
US20150166262A1 (en) | 2015-06-18 |
US20170131015A1 (en) | 2017-05-11 |
EP2480844A1 (en) | 2012-08-01 |
EP2480844A4 (en) | 2018-01-24 |
WO2011035102A1 (en) | 2011-03-24 |
US20150158667A1 (en) | 2015-06-11 |
US20110067852A1 (en) | 2011-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170131014A1 (en) | Temperature Controlled Cargo Containers | |
US10752434B2 (en) | Temperature controlled cargo containers | |
US6308518B1 (en) | Thermal barrier enclosure system | |
US6758057B2 (en) | Bimodal refrigeration system and method | |
US20110277489A1 (en) | Refrigerated container | |
US11060783B2 (en) | Transport container for transporting temperature-sensitive transport goods | |
US20150316309A1 (en) | Transport refrigeration system with air temperature control | |
WO2015025675A1 (en) | Cooler | |
KR101525438B1 (en) | Cooling system of refrigeration top car using phase-change material and control method thereof | |
EP2992280B1 (en) | Apparatus for preserving, transporting and distributing refrigerated or frozen products, particularly for thermally insulated compartments of refrigeration vehicles, refrigeration chambers or the like | |
WO2014021841A1 (en) | Battery cooling system and method for cooling a battery | |
US20220214075A1 (en) | Charging system and charging cradle for food transportation systems | |
EP1421323B1 (en) | Thermal barrier enclosure system | |
AU2001286740A1 (en) | Thermal barrier enclosure system | |
US20240011688A1 (en) | Autonomous portable refrigeration unit | |
WO2023242250A1 (en) | Refrigerated container and method for transporting perishable goods | |
KR101466864B1 (en) | Multipurpose cooling system using phase-change material and control method thereof | |
KR20200027158A (en) | Hybrid type reefer container capable of self-generating power | |
JP2022184713A (en) | Structure and method for regulating temperature of container for transportation | |
WO2007042162A1 (en) | Refrigerator vehicle and process for distributing food products | |
US10903536B2 (en) | Battery and a battery thermal arrangement | |
EP4265986A1 (en) | System and method for temperature-controlled storage and/or transport of a product | |
EP3574270A1 (en) | Heat pump device | |
WO2022254987A1 (en) | Temperature control structure and temperature control method for transport container | |
WO2024023247A1 (en) | Temperature-controlled container and method for the transport of perishable goods, in particular for land and/or maritime transport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COOL CONTAINERS LLC, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FARRAR, DAVID SCOTT;REEL/FRAME:041081/0970 Effective date: 20100415 Owner name: AAR MANUFACTURING, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOL CONTAINERS LLC;REEL/FRAME:041082/0038 Effective date: 20140808 Owner name: SONOCO DEVELOPMENT, INC., SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONOCO PROTECTIVE SOLUTIONS, INC.;REEL/FRAME:041082/0152 Effective date: 20161221 Owner name: SONOCO PROTECTIVE SOLUTIONS, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AAR MANUFACTURING, INC.;REEL/FRAME:041082/0085 Effective date: 20160829 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |