US20170122604A1 - Constant temperature and humidity machine - Google Patents

Constant temperature and humidity machine Download PDF

Info

Publication number
US20170122604A1
US20170122604A1 US15/337,342 US201615337342A US2017122604A1 US 20170122604 A1 US20170122604 A1 US 20170122604A1 US 201615337342 A US201615337342 A US 201615337342A US 2017122604 A1 US2017122604 A1 US 2017122604A1
Authority
US
United States
Prior art keywords
humidity
air
constant temperature
air inlet
mistorizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/337,342
Inventor
Binglu Song
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua City Xin'an Electric Co Ltd
Original Assignee
Jinhua City Xin'an Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua City Xin'an Electric Co Ltd filed Critical Jinhua City Xin'an Electric Co Ltd
Publication of US20170122604A1 publication Critical patent/US20170122604A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F11/0012
    • F24F11/0015
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/008Air-humidifier with water reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to controlling temperature and humidity technology.
  • the present invention relates to a constant temperature and humidity machine.
  • the present invention is directed to various embodiments of a constant temperature and humidity machine.
  • the constant temperature and humidity machine may be employed for automatically adjusting a room temperature and humidity to a desired room temperature and humidity based on or according to a detected temperature and humidity.
  • the constant temperature and humidity machine includes housing, a dual air duct, a power control board, an oscillating air grid, silica tubes, a dual fan, a temperature and humidity sensor, a water tank, a mistorizer, a mistorizer fan, and a mist duct.
  • the housing defines an inner cavity and includes a back cover, a front cover, and a top cover.
  • the back cover defines an air inlet
  • the front cover defines an air outlet
  • the top cover is configured to couple to both the back cover and the front cover.
  • the dual air duct is positioned within the inner cavity of the housing, the dual air duct defining ducting extending within the inner cavity to a duct opening such that the duct opening is sized to correspond with and is disposed adjacent the air outlet of the front cover.
  • the power control board is positioned within the housing.
  • the oscillating air grid is positioned in or adjacent the air outlet of the front cover such that the oscillating air grid is controlled with and coupled to an oscillating air grid motor.
  • the oscillating air grid motor is electrically coupled to the power control board.
  • the silica tubes are positioned within the ducting and electrically coupled to the power control board, the silica tubes configured to heat air passing through the dual air duct.
  • the dual fan is positioned below the dual air duct and electrically coupled to the power control board.
  • the temperature and humidity sensor is positioned adjacent the dual fan and electrically coupled to the power control board.
  • the water tank is configured to hold water, the water tank positioned below and adjacent the dual fan.
  • the mistorizer is positioned above and adjacent the water tank and is electrically coupled to the power control board.
  • the mistorizer fan is positioned below the mistorizer and adjacent the water in the water tank, the mistorizer fan electrically coupled to the power control board.
  • the mist duct defines mist holes in a side wall of the mist duct, the mist duct being coupled to the mistorizer.
  • the mistorizer fan is configured to deliver a mist upward from the mistorizer and through the mist duct to be delivered through the mist holes and out the housing.
  • the temperature and humidity machine further includes a mistorizing device coupled to the water tank.
  • the mistorizing device is configured to produce ultrasonic frequencies to generate the mist.
  • the ultrasonic frequencies produced by the mistorizing device are in the range of 1.0 to 1.7 MHz.
  • the power control board is installed on the water tank.
  • the power control board is configured to control functions of the oscillating air synchronous motor, the silica tubes, the dual fun, the mistorizer, the mistorizer fan, and the temperature and humidity sensor.
  • the top cover defines a first installation hole and a second installation hole, the first installation hole configured to receive a key circuit board and the second installation hole configured to receive a display circuit board.
  • the key circuit board is configured to receive input from a user.
  • the display circuit board is configured to display input from the user and/or display current local temperature and humidity data.
  • the air outlet of the front cover is defined in an upper portion of the front cover, and wherein the air outlet holes of the front cover are defined in a lower portion of the front cover.
  • the first air inlet defined in the back cover includes a first air inlet plate that defines a plurality of first air inlet holes therein, the first air inlet plate positioned adjacent or within the first air inlet.
  • the back cover defines a second air inlet positioned in a lower portion of the back cover, the second air inlet includes a second air inlet plate that defines a plurality of second air inlet holes therein, the second air inlet plate positioned adjacent or within the second air inlet.
  • the constant temperature and humidity machine is characterized in that it consists of a housing, an air outlet is disposed on the front wall of the said housing, a dual air duct is installed in the inner cavity of the housing and connected with the oscillating air grid controlled by the oscillating air synchronous motor at the opening of the said dual air duct, the said oscillating air synchronous motor is electrically connected with the power control board, the oscillating air grid is opposite the air outlet of the housing, two silica tubes are installed in the inner cavity of the dual air duct and electrically connected with the power control board, a dual fan is disposed under the said dual air duct and electrically connected with the power control board, a temperature and humidity sensor is disposed behind the dual fan and electrically connected with the power control board, a water tank is disposed at the bottom of the inner cavity of the housing and the water in the water tank is supplied to the mistorizer electrically connected with the power control board, a small fan is disposed at the bottom of the mistorizer and electrical
  • the constant temperature and humidity machine in the present invention is characterized in that a mistorizing device is disposed at the bottom of the inner cavity of the said housing and the said water tank is installed on the mistorizing device.
  • the constant temperature and humidity machine in the present invention is characterized in that the said power control board is installed on the water tank.
  • the constant temperature and humidity machine in the present invention is characterized in that the housing consists of the front cover, the back cover and the top cover, the front cover and back cover are connected and then clamped under the top cover, the first installation hole and the second installation hole are disposed on the said top cover, the key circuit board is installed in the first installation hole, and the display circuit board is installed in the second installation hole.
  • the constant temperature and humidity machine in the present invention is characterized in that the air outlet is disposed at the top of the front cover, and a plurality of air inlet holes are disposed at the bottom of the front cover.
  • the constant temperature and humidity machine in the present invention is characterized in that the first air inlet is disposed in the position where the top of the back cover corresponds to the dual air duct, the first air inlet board is disposed in the first air inlet hole, a plurality of air inlet holes are disposed on the first air inlet plates, the second air inlet is disposed on the bottom of the back cover, the second air inlet plate is disposed on the second air inlet, and a plurality of second air inlet holes are disposed on the second air inlet plate.
  • the constant temperature and humidity machine of the present invention has several advantages, as follows: (1) According to the above structural design, the present invention uses micro-computer chips to control the operation of the constant temperature and humidity machine. When the constant temperature and humidity machine is automatically operating, it will detect room temperature and humidity with its temperature and humidity sensor, and then automatically adjust room temperature and humidity.
  • the silica tubes are is used to increase room temperature; the mistorizer is disposed at the top of the water tank and directly connected with the mist duct, the mist holes of the mist duct are directly opposite the oscillating air grid and the silica tubes, and the dual fan is disposed under the oscillating air grid and the silica tubes, so that air flows are generated under increased pressure, air and mist is mixed, and the mistorizer automatically sends mist, thereby automatically adjusting room temperature and humidity.
  • the dual fan is automatically turned on to send air to cool the room, and room temperature and humidity is automatically adjusted according to the detected room temperature and humidity.
  • FIG. 1 is an exploded view of a constant temperature and humidity machine, according to an embodiment of the present invention
  • FIG. 2 is a side view of the constant temperature and humidity machine, according to another embodiment of the present invention.
  • FIG. 3 is a front view of the constant temperature and humidity machine, according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along section line A-A of FIG. 3 , according to another embodiment of the present invention.
  • a constant temperature and humidity machine of the present invention may be employed for automatically adjusting a room temperature and humidity level according to a detected temperature and humidity level in the room, detected by the machine. For example, a user may input a desired temperature and humidity (or moisture level) on the constant temperature and humidity machine. Such machine may then automatically adjust the room temperature and humidity levels to the desired levels by dispersing heat or providing a cooling effect, as well as modify moisture levels. In this manner, the constant temperature and humidity machine may modify the temperature and humidity within a room depending on the desired settings relative to the detected temperature and humidity within the room or given area which the machine sits.
  • the dispersal of heat by the constant temperature and humidity machine may be provided with air flow over a heating element, such as silica tubes 21 , which also may be in combination with a fine mist mixed with air to modify the humidity or moisture levels in the room.
  • the cooling effect may be provided with a cooling element with, for example, air flow as well as in combination with a generated fine mist provided by the machine.
  • the generated mist of the present invention may be provided with an ultrasonic mistorizing device 24 along with other components described herein, generating the fine mist with optimal droplet sizes that when mixed with air, the mist can provide an improved cooling effect and modifies the humidity and temperature in the room to desired levels.
  • the constant temperature and humidity machine may include a housing 1 .
  • the housing 1 may include a front cover 2 , a back cover 3 and a top cover 4 .
  • the front cover 2 and the back cover 3 may be coupled together with a clamping arrangement under the top cover 4 .
  • the front cover 2 and the back cover may include side walls extending perpendicularly or transversely from the front and back sides of the front and back covers 2 , 3 so that when assembled the housing defines an internal cavity therein for housing the various components of the constant temperature and humidity machine.
  • a bottom surface of the mistorizing device 24 may define the bottom side of the machine.
  • the housing may also include a bottom side or bottom housing.
  • the front cover 2 may define an air outlet 5 disposed at an upper portion of the front cover 2 . Further, the front cover may define a plurality of air outlet holes 6 disposed at a lower portion of the front cover 2 .
  • the back cover 3 may define a first air inlet 7 disposed at an upper portion of the back cover 3 .
  • the first air inlet 7 defined in the back cover 3 may be sized to hold or receive a first air inlet plate 8 such that the first air inlet plate 8 may be installed in the first air inlet 7 .
  • the first air inlet plate 8 may be positioned adjacent the first air inlet 7 .
  • Such first air inlet plate 8 may define a plurality of first air inlet holes 9 therein.
  • the back cover 3 may define a second air inlet 10 so as to be disposed at a lower portion of the back cover 3 . Similar to the first air inlet 7 , the second air inlet 10 defined in the back cover 3 may be sized and configured to hold and receive a second air inlet plate 11 so as to be installed in or on the second air inlet 10 . The second air inlet plate 11 may be positioned adjacent the second air inlet 10 . Further, the second air inlet plate 11 may define a plurality of second air inlet holes 12 disposed on the second air inlet plate 11 .
  • the top cover may define a first installation hole 13 and a second installation hole 14 , each disposed on the top cover 4 .
  • the first installation hole 13 may be sized and configured to receive a key circuit board 15 so as to be installed in the first installation hole 13 .
  • the second installation hole may be sized and configured to receive a display circuit board 16 such that the display circuit board 16 may be installed to be positioned in or adjacent to the second installation hole 14 .
  • the key circuit board 15 may be sized and configured to receive input data from a user. Such input data may include temperature and humidity settings desired by the user.
  • the display circuit board 16 may be sized and configured to display input setting from the user and/or display current local temperature and humidity data, and/or any other displayed data that would be helpful for a user while operating the machine, such as the operating conditions of the machine.
  • the housing 1 may define the internal cavity for housing additional components of the constant temperature and humidity machine.
  • the constant temperature and humidity machine may include a dual air duct 17 that may be installed in the inner cavity of the housing 1 such that an outlet opening of the dual air duct 17 may be positioned adjacent the air outlet 5 defined in the front cover.
  • an oscillating air grid 19 may be coupled to the front cover 2 or be coupled to the outlet opening of the dual air duct 17 .
  • the oscillating air grid 19 may be controlled by a motor, such as an oscillating air synchronous motor 18 , at the outlet opening of the dual air duct 17 .
  • Such oscillating air synchronous motor 18 may oscillate at one or more speeds so as to disperse air from the dual air duct in various directions in the room. Further, the oscillating air synchronous motor 18 may be electrically coupled or connected to a power control board 20 . Such power control board 20 may be employed to electrically control, activate, and de-activate various components of the constant temperature and humidity machine, as further described herein and as known to one of ordinary skill in the art. With this arrangement, the oscillating air grid 19 may be positioned adjacent to or opposite the air outlet 5 of the housing 1 to effectively deliver air flow to the room.
  • the dual air duct 17 may include a heating element and/or a cooling element.
  • the heating element may include silica tubes, such as two silica tubes 21 .
  • the two silica tubes 21 may be installed in an inner cavity or ducting of the dual air duct 17 . Further, the two silica tubes 21 may be electrically coupled or connected to the power control board 20 .
  • the dual air duct 17 may communicate air flow so as to be coupled to a dual fan 22 .
  • the dual fan 22 may be disposed or positioned under the dual air duct 17 . Further, the dual fan 22 may be electrically coupled or connected with the power control board 20 .
  • a temperature and humidity sensor 23 may be coupled to and/or positioned behind the dual fan 22 . The temperature and humidity sensor 23 may be electrically coupled or connected to the power control board 20 .
  • the constant temperature and humidity machine may include a mistorizing system that may include a mistorizing device 24 , a water tank 25 , a mistorizer 26 , a small fan 29 and a mist duct 28 .
  • the mistorizing device 24 may be positioned at the bottom or lower portion within the internal cavity of the housing 1 .
  • the water tank 25 may be positioned or installed directly on the mistorizing device 24 .
  • the power control board 20 may be installed on the water tank 25 . Upon the mistorizing device 24 being activated, the water at the top of the water tank 25 is supplied to the mistorizer 26 , the mistorizer 26 being electrically connected with the power control board 20 .
  • the small fan 29 or mistorizer fan may be electrically coupled or connected with the power control board 20 and positioned or disposed at the bottom of the mistorizer 26 .
  • the mistorizer 26 delivers a mistorizer-generated mist upward from the mistorizer 26 and through the mist duct 28 coupled to the mistorizer 26 .
  • mist As the mist is delivered through the mist duct 28 , mist then can disperse through a plurality of mist holes defined in a side wall of the mist duct 28 .
  • the mist may be delivered through the mist duct 28 and then toward the dual air duct 17 and then over the silica tubes 21 and toward the oscillating air grid 19 to exit from the air outlet 5 .
  • the mist may be delivered from the mist duct 28 and then delivered through the air outlet holes 6 defined in the front cover.
  • the first air inlet 7 may be positioned adjacent to or opposite the dual air duct 17 .
  • the power control board 20 may be connected or coupled to the small fan 29 , and the small fan 29 may be disposed under a top cover of the mistorizing device 24 .
  • the mistorizing device 24 may be sized and configured to produce a vibration produced by ultrasonic frequency. At certain ultrasonic frequencies, the mistorizing device 24 may be sized and configured to generate the before discussed mist. In one embodiment, the mistorizing device 24 may vibrate to generate water droplet sizes that provide an optimal cooling effect, the ultrasonic frequency to produce optimal vibration and, thus, optimal droplet size may be in the range of 1.0 to 1.7 megahertz (MHz).
  • other ultrasonic frequencies may be applied with the mistorizing device 24 that may be in the range of 1.0 to 1.3 MHz, 1.0 to 1.4 MHz, 1.0 to 1.5 MHz, or 1.0 to 1.6 MHz, in order to achieve the optimal droplet size for manipulating the humidity and moisture content in the room.
  • function keys on the key circuit board 15 may be pressed to control the operation or functionality of the constant temperature and humidity machine such that the display circuit board 16 may display the operating conditions of the constant temperature and humidity machine as well as the current conditions of the room.
  • the dual fan 22 , the silica tubes 21 , the mistorizer 26 , the oscillating air synchronous motor 18 , the small fan 29 and the temperature and humidity sensor 23 are electrically connected with the power control board 20 , such components and their respective operations may be automatically controlled by microcomputer chips on the power control board 20 , based on changes to the temperature and humidity in the room, so as to ensure constant temperature and humidity as desired by the user.
  • the constant temperature and humidity machine When the constant temperature and humidity machine is automatically operating, it will detect room temperature and humidity with its temperature and humidity sensor 23 , and then automatically adjust the room temperature and humidity.
  • the silica tubes 21 may be used to increase room temperature; the mistorizer 26 is disposed at the top of the water tank 25 and directly connected with the mist duct 28 , the mist holes of the mist duct 28 may be directly opposite the oscillating air grid 19 and the silica tubes 21 , and the dual fan 22 is disposed under the oscillating air grid 19 and the silica tubes 21 , so that air flow may be generated under increased pressure, air and mist may be mixed, and the mistorizer 26 automatically sends mist, thereby automatically adjusting room temperature and humidity.
  • the dual fan 22 may be automatically turned on to send air to cool the room, and room temperature and humidity may be automatically adjusted according to the detected room temperature and humidity.
  • a user can press the keys on the key circuit board 15 to turn on the dual fan 22 to cool the room, and/or turn on the silica tubes 21 to heat the room, and/or turn on the mistorizer 26 to increase humidity in the room.

Abstract

A constant temperature and humidity machine for automatically adjusting a room temperature and humidity to a desired room temperature and humidity based on a detected temperature and humidity of the machine. The machine includes silica tubes, a mistorizing system, and various components for flowing air in a heated state, a cooled state, and/or a moistened state. The machine also includes various sensors and circuits configured to detect a temperature and/or humidity in the room and automatically (or manually) activate and de-activate the silica tubes, the mistorizing system, and/or air flow components in the machine to adjust the temperature and/or humidity in the room to a desired temperature and/or humidity. Such mistorizing system produces ultrasonic frequencies to generate a mist from a water tank such that the particular ultrasonic frequencies generate an optimal droplet size for flowing moistened air from the constant temperature and humidity machine.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority to Chinese Patent Application No. 201510706942.6, filed on Oct. 28, 2015, entitled A CONSTANT TEMPERATURE AND HUMIDITY MACHINE, the disclosure of which is incorporated herein in its entirety by reference.
  • TECHNICAL FIELD
  • The present invention relates to controlling temperature and humidity technology. In particular, the present invention relates to a constant temperature and humidity machine.
  • BACKGROUND
  • Ordinary fans in the present market typically force and move air in a room at constant speeds. Such ordinary fans only provide localized cooling on hot days, regardless of the temperature and humidity level in a given area or room. With the continuous improvement of living standards, it's been realized that humidity is also related to a person's comfort level. In particular, in developed countries, people in pursuit of more comfortable living conditions and a higher quality of life also desire a more comfortable temperature and humidity level and may also desire to be able to readily control the temperature and humidity level in a given area or room.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to various embodiments of a constant temperature and humidity machine. For example, the constant temperature and humidity machine may be employed for automatically adjusting a room temperature and humidity to a desired room temperature and humidity based on or according to a detected temperature and humidity. In accordance with one embodiment, the constant temperature and humidity machine includes housing, a dual air duct, a power control board, an oscillating air grid, silica tubes, a dual fan, a temperature and humidity sensor, a water tank, a mistorizer, a mistorizer fan, and a mist duct. The housing defines an inner cavity and includes a back cover, a front cover, and a top cover. The back cover defines an air inlet, the front cover defines an air outlet, and the top cover is configured to couple to both the back cover and the front cover. The dual air duct is positioned within the inner cavity of the housing, the dual air duct defining ducting extending within the inner cavity to a duct opening such that the duct opening is sized to correspond with and is disposed adjacent the air outlet of the front cover. The power control board is positioned within the housing. The oscillating air grid is positioned in or adjacent the air outlet of the front cover such that the oscillating air grid is controlled with and coupled to an oscillating air grid motor. The oscillating air grid motor is electrically coupled to the power control board. The silica tubes are positioned within the ducting and electrically coupled to the power control board, the silica tubes configured to heat air passing through the dual air duct. The dual fan is positioned below the dual air duct and electrically coupled to the power control board. The temperature and humidity sensor is positioned adjacent the dual fan and electrically coupled to the power control board. The water tank is configured to hold water, the water tank positioned below and adjacent the dual fan. The mistorizer is positioned above and adjacent the water tank and is electrically coupled to the power control board. The mistorizer fan is positioned below the mistorizer and adjacent the water in the water tank, the mistorizer fan electrically coupled to the power control board. The mist duct defines mist holes in a side wall of the mist duct, the mist duct being coupled to the mistorizer. With this arrangement, the mistorizer fan is configured to deliver a mist upward from the mistorizer and through the mist duct to be delivered through the mist holes and out the housing.
  • In one embodiment, the temperature and humidity machine further includes a mistorizing device coupled to the water tank. In another embodiment, the mistorizing device is configured to produce ultrasonic frequencies to generate the mist. In another embodiment, the ultrasonic frequencies produced by the mistorizing device are in the range of 1.0 to 1.7 MHz.
  • In another embodiment, the power control board is installed on the water tank. In still another embodiment, the power control board is configured to control functions of the oscillating air synchronous motor, the silica tubes, the dual fun, the mistorizer, the mistorizer fan, and the temperature and humidity sensor.
  • In another embodiment, the top cover defines a first installation hole and a second installation hole, the first installation hole configured to receive a key circuit board and the second installation hole configured to receive a display circuit board. In yet another embodiment, the key circuit board is configured to receive input from a user. In another embodiment, the display circuit board is configured to display input from the user and/or display current local temperature and humidity data.
  • In another embodiment, the air outlet of the front cover is defined in an upper portion of the front cover, and wherein the air outlet holes of the front cover are defined in a lower portion of the front cover. In still another embodiment, the first air inlet defined in the back cover includes a first air inlet plate that defines a plurality of first air inlet holes therein, the first air inlet plate positioned adjacent or within the first air inlet. In another embodiment, the back cover defines a second air inlet positioned in a lower portion of the back cover, the second air inlet includes a second air inlet plate that defines a plurality of second air inlet holes therein, the second air inlet plate positioned adjacent or within the second air inlet.
  • In accordance with another embodiment of the present invention, the constant temperature and humidity machine is characterized in that it consists of a housing, an air outlet is disposed on the front wall of the said housing, a dual air duct is installed in the inner cavity of the housing and connected with the oscillating air grid controlled by the oscillating air synchronous motor at the opening of the said dual air duct, the said oscillating air synchronous motor is electrically connected with the power control board, the oscillating air grid is opposite the air outlet of the housing, two silica tubes are installed in the inner cavity of the dual air duct and electrically connected with the power control board, a dual fan is disposed under the said dual air duct and electrically connected with the power control board, a temperature and humidity sensor is disposed behind the dual fan and electrically connected with the power control board, a water tank is disposed at the bottom of the inner cavity of the housing and the water in the water tank is supplied to the mistorizer electrically connected with the power control board, a small fan is disposed at the bottom of the mistorizer and electrically connected with the power control board, the small fan sends the mistorizer-generated mist upward the mistorizer, the mistorizer is connected with the mist duct, and a plurality of mist holes are disposed on the side wall of the mist duct and directly opposite the oscillating air grid and the silica tubes.
  • In another embodiment, the constant temperature and humidity machine in the present invention is characterized in that a mistorizing device is disposed at the bottom of the inner cavity of the said housing and the said water tank is installed on the mistorizing device.
  • In another embodiment, the constant temperature and humidity machine in the present invention is characterized in that the said power control board is installed on the water tank.
  • In another embodiment, the constant temperature and humidity machine in the present invention is characterized in that the housing consists of the front cover, the back cover and the top cover, the front cover and back cover are connected and then clamped under the top cover, the first installation hole and the second installation hole are disposed on the said top cover, the key circuit board is installed in the first installation hole, and the display circuit board is installed in the second installation hole.
  • In another embodiment, the constant temperature and humidity machine in the present invention is characterized in that the air outlet is disposed at the top of the front cover, and a plurality of air inlet holes are disposed at the bottom of the front cover.
  • In another embodiment, the constant temperature and humidity machine in the present invention is characterized in that the first air inlet is disposed in the position where the top of the back cover corresponds to the dual air duct, the first air inlet board is disposed in the first air inlet hole, a plurality of air inlet holes are disposed on the first air inlet plates, the second air inlet is disposed on the bottom of the back cover, the second air inlet plate is disposed on the second air inlet, and a plurality of second air inlet holes are disposed on the second air inlet plate.
  • After the implementation of the above solution, the constant temperature and humidity machine of the present invention has several advantages, as follows: (1) According to the above structural design, the present invention uses micro-computer chips to control the operation of the constant temperature and humidity machine. When the constant temperature and humidity machine is automatically operating, it will detect room temperature and humidity with its temperature and humidity sensor, and then automatically adjust room temperature and humidity. In the cold and dry winter, the silica tubes are is used to increase room temperature; the mistorizer is disposed at the top of the water tank and directly connected with the mist duct, the mist holes of the mist duct are directly opposite the oscillating air grid and the silica tubes, and the dual fan is disposed under the oscillating air grid and the silica tubes, so that air flows are generated under increased pressure, air and mist is mixed, and the mistorizer automatically sends mist, thereby automatically adjusting room temperature and humidity. In summer, the dual fan is automatically turned on to send air to cool the room, and room temperature and humidity is automatically adjusted according to the detected room temperature and humidity. (2) When the constant temperature and humidity machine is operating under manual adjustment, a user can press the keys on the key circuit board to turn on the dual fan to cool the room, or turn on the silica tubes to heat the room, or turn on the mistorizer to increase humidity.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1 is an exploded view of a constant temperature and humidity machine, according to an embodiment of the present invention;
  • FIG. 2 is a side view of the constant temperature and humidity machine, according to another embodiment of the present invention;
  • FIG. 3 is a front view of the constant temperature and humidity machine, according to another embodiment of the present invention; and
  • FIG. 4 is a cross-sectional view taken along section line A-A of FIG. 3, according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 1 and 2, a constant temperature and humidity machine of the present invention is provided. Such constant temperature and humidity machine may be employed for automatically adjusting a room temperature and humidity level according to a detected temperature and humidity level in the room, detected by the machine. For example, a user may input a desired temperature and humidity (or moisture level) on the constant temperature and humidity machine. Such machine may then automatically adjust the room temperature and humidity levels to the desired levels by dispersing heat or providing a cooling effect, as well as modify moisture levels. In this manner, the constant temperature and humidity machine may modify the temperature and humidity within a room depending on the desired settings relative to the detected temperature and humidity within the room or given area which the machine sits. The dispersal of heat by the constant temperature and humidity machine may be provided with air flow over a heating element, such as silica tubes 21, which also may be in combination with a fine mist mixed with air to modify the humidity or moisture levels in the room. The cooling effect may be provided with a cooling element with, for example, air flow as well as in combination with a generated fine mist provided by the machine. The generated mist of the present invention may be provided with an ultrasonic mistorizing device 24 along with other components described herein, generating the fine mist with optimal droplet sizes that when mixed with air, the mist can provide an improved cooling effect and modifies the humidity and temperature in the room to desired levels.
  • Now with reference to FIGS. 1 through 4, the constant temperature and humidity machine may include a housing 1. The housing 1 may include a front cover 2, a back cover 3 and a top cover 4. The front cover 2 and the back cover 3 may be coupled together with a clamping arrangement under the top cover 4. The front cover 2 and the back cover may include side walls extending perpendicularly or transversely from the front and back sides of the front and back covers 2, 3 so that when assembled the housing defines an internal cavity therein for housing the various components of the constant temperature and humidity machine. In one embodiment, a bottom surface of the mistorizing device 24 may define the bottom side of the machine. In another embodiment, the housing may also include a bottom side or bottom housing.
  • The front cover 2 may define an air outlet 5 disposed at an upper portion of the front cover 2. Further, the front cover may define a plurality of air outlet holes 6 disposed at a lower portion of the front cover 2. The back cover 3 may define a first air inlet 7 disposed at an upper portion of the back cover 3. In addition, the first air inlet 7 defined in the back cover 3 may be sized to hold or receive a first air inlet plate 8 such that the first air inlet plate 8 may be installed in the first air inlet 7. In one embodiment, the first air inlet plate 8 may be positioned adjacent the first air inlet 7. Such first air inlet plate 8 may define a plurality of first air inlet holes 9 therein.
  • Further, the back cover 3 may define a second air inlet 10 so as to be disposed at a lower portion of the back cover 3. Similar to the first air inlet 7, the second air inlet 10 defined in the back cover 3 may be sized and configured to hold and receive a second air inlet plate 11 so as to be installed in or on the second air inlet 10. The second air inlet plate 11 may be positioned adjacent the second air inlet 10. Further, the second air inlet plate 11 may define a plurality of second air inlet holes 12 disposed on the second air inlet plate 11.
  • The top cover may define a first installation hole 13 and a second installation hole 14, each disposed on the top cover 4. The first installation hole 13 may be sized and configured to receive a key circuit board 15 so as to be installed in the first installation hole 13. The second installation hole may be sized and configured to receive a display circuit board 16 such that the display circuit board 16 may be installed to be positioned in or adjacent to the second installation hole 14. The key circuit board 15 may be sized and configured to receive input data from a user. Such input data may include temperature and humidity settings desired by the user. The display circuit board 16 may be sized and configured to display input setting from the user and/or display current local temperature and humidity data, and/or any other displayed data that would be helpful for a user while operating the machine, such as the operating conditions of the machine.
  • The housing 1 may define the internal cavity for housing additional components of the constant temperature and humidity machine. For example, the constant temperature and humidity machine may include a dual air duct 17 that may be installed in the inner cavity of the housing 1 such that an outlet opening of the dual air duct 17 may be positioned adjacent the air outlet 5 defined in the front cover. At the air outlet 5, an oscillating air grid 19 may be coupled to the front cover 2 or be coupled to the outlet opening of the dual air duct 17. The oscillating air grid 19 may be controlled by a motor, such as an oscillating air synchronous motor 18, at the outlet opening of the dual air duct 17. Such oscillating air synchronous motor 18 may oscillate at one or more speeds so as to disperse air from the dual air duct in various directions in the room. Further, the oscillating air synchronous motor 18 may be electrically coupled or connected to a power control board 20. Such power control board 20 may be employed to electrically control, activate, and de-activate various components of the constant temperature and humidity machine, as further described herein and as known to one of ordinary skill in the art. With this arrangement, the oscillating air grid 19 may be positioned adjacent to or opposite the air outlet 5 of the housing 1 to effectively deliver air flow to the room.
  • Further, the dual air duct 17 may include a heating element and/or a cooling element. In one embodiment, the heating element may include silica tubes, such as two silica tubes 21. The two silica tubes 21 may be installed in an inner cavity or ducting of the dual air duct 17. Further, the two silica tubes 21 may be electrically coupled or connected to the power control board 20. The dual air duct 17 may communicate air flow so as to be coupled to a dual fan 22. The dual fan 22 may be disposed or positioned under the dual air duct 17. Further, the dual fan 22 may be electrically coupled or connected with the power control board 20. Further, a temperature and humidity sensor 23 may be coupled to and/or positioned behind the dual fan 22. The temperature and humidity sensor 23 may be electrically coupled or connected to the power control board 20.
  • Further, the constant temperature and humidity machine may include a mistorizing system that may include a mistorizing device 24, a water tank 25, a mistorizer 26, a small fan 29 and a mist duct 28. The mistorizing device 24 may be positioned at the bottom or lower portion within the internal cavity of the housing 1. The water tank 25 may be positioned or installed directly on the mistorizing device 24. The power control board 20 may be installed on the water tank 25. Upon the mistorizing device 24 being activated, the water at the top of the water tank 25 is supplied to the mistorizer 26, the mistorizer 26 being electrically connected with the power control board 20. The small fan 29 or mistorizer fan may be electrically coupled or connected with the power control board 20 and positioned or disposed at the bottom of the mistorizer 26. With this arrangement, the mistorizer 26 delivers a mistorizer-generated mist upward from the mistorizer 26 and through the mist duct 28 coupled to the mistorizer 26. As the mist is delivered through the mist duct 28, mist then can disperse through a plurality of mist holes defined in a side wall of the mist duct 28. In one embodiment, the mist may be delivered through the mist duct 28 and then toward the dual air duct 17 and then over the silica tubes 21 and toward the oscillating air grid 19 to exit from the air outlet 5. In another embodiment, the mist may be delivered from the mist duct 28 and then delivered through the air outlet holes 6 defined in the front cover. The first air inlet 7 may be positioned adjacent to or opposite the dual air duct 17. The power control board 20 may be connected or coupled to the small fan 29, and the small fan 29 may be disposed under a top cover of the mistorizing device 24.
  • In one embodiment, the mistorizing device 24 may be sized and configured to produce a vibration produced by ultrasonic frequency. At certain ultrasonic frequencies, the mistorizing device 24 may be sized and configured to generate the before discussed mist. In one embodiment, the mistorizing device 24 may vibrate to generate water droplet sizes that provide an optimal cooling effect, the ultrasonic frequency to produce optimal vibration and, thus, optimal droplet size may be in the range of 1.0 to 1.7 megahertz (MHz). In other embodiments, other ultrasonic frequencies may be applied with the mistorizing device 24 that may be in the range of 1.0 to 1.3 MHz, 1.0 to 1.4 MHz, 1.0 to 1.5 MHz, or 1.0 to 1.6 MHz, in order to achieve the optimal droplet size for manipulating the humidity and moisture content in the room.
  • When operating the constant temperature and humidity machine, function keys on the key circuit board 15 may be pressed to control the operation or functionality of the constant temperature and humidity machine such that the display circuit board 16 may display the operating conditions of the constant temperature and humidity machine as well as the current conditions of the room. In this manner, as the dual fan 22, the silica tubes 21, the mistorizer 26, the oscillating air synchronous motor 18, the small fan 29 and the temperature and humidity sensor 23 are electrically connected with the power control board 20, such components and their respective operations may be automatically controlled by microcomputer chips on the power control board 20, based on changes to the temperature and humidity in the room, so as to ensure constant temperature and humidity as desired by the user.
  • When the constant temperature and humidity machine is automatically operating, it will detect room temperature and humidity with its temperature and humidity sensor 23, and then automatically adjust the room temperature and humidity. For example, in the cold and dry winter, the silica tubes 21 may be used to increase room temperature; the mistorizer 26 is disposed at the top of the water tank 25 and directly connected with the mist duct 28, the mist holes of the mist duct 28 may be directly opposite the oscillating air grid 19 and the silica tubes 21, and the dual fan 22 is disposed under the oscillating air grid 19 and the silica tubes 21, so that air flow may be generated under increased pressure, air and mist may be mixed, and the mistorizer 26 automatically sends mist, thereby automatically adjusting room temperature and humidity. In summer, the dual fan 22 may be automatically turned on to send air to cool the room, and room temperature and humidity may be automatically adjusted according to the detected room temperature and humidity. When the constant temperature and humidity machine is operating under manual adjustment, a user can press the keys on the key circuit board 15 to turn on the dual fan 22 to cool the room, and/or turn on the silica tubes 21 to heat the room, and/or turn on the mistorizer 26 to increase humidity in the room.
  • While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. Further, the structural features of any one embodiment disclosed herein may be combined or replaced by any one of the structural features of another embodiment set forth herein. As such, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims (12)

What is claimed is:
1. A constant temperature and humidity machine, comprising:
a housing defining an inner cavity, the housing including a back cover, a front cover, and a top cover, the back cover defining an air inlet, the front cover defining an air outlet, and the top cover configured to couple to both the back cover and the front cover;
a dual air duct positioned within the inner cavity of the housing, the dual air duct defining ducting extending within the inner cavity to a duct opening, the duct opening sized to correspond with and disposed adjacent the air outlet of the front cover;
a power control board positioned within the housing;
an oscillating air grid positioned in or adjacent the air outlet of the front cover, the oscillating air grid controlled with and coupled to an oscillating air grid motor, the oscillating air grid motor electrically coupled to the power control board;
silica tubes positioned within the ducting and electrically coupled to the power control board, the silica tubes configured to heat air passing through the dual air duct;
a dual fan positioned below the dual air duct and electrically coupled to the power control board;
a temperature and humidity sensor positioned adjacent the dual fan and electrically coupled to the power control board;
a water tank configured to hold water, the water tank positioned below and adjacent the dual fan;
a mistorizer positioned above and adjacent the water tank and electrically coupled to the power control board;
a mistorizer fan positioned below the mistorizer and adjacent the water in the water tank, the mistorizer fan electrically coupled to the power control board; and
a mist duct defining mist holes in a side wall of the mist duct, the mist duct coupled to the mistorizer such that the mistorizer fan is configured to deliver a mist upward from the mistorizer and through the mist duct to be delivered through the mist holes and out the housing.
2. The constant temperature and humidity machine of claim 1, further comprising a mistorizing device coupled to the water tank.
3. The constant temperature and humidity machine of claim 2, wherein the mistorizing device is configured to produce ultrasonic frequencies to generate the mist.
4. The constant temperature and humidity machine of claim 3, wherein the ultrasonic frequencies produced by the mistorizing device are in the range of 1.0 to 1.7 MHz.
5. The constant temperature and humidity machine of claim 1, wherein the power control board is installed on the water tank.
6. The constant temperature and humidity machine of claim 1, wherein the top cover defines a first installation hole and a second installation hole, the first installation hole configured to receive a key circuit board and the second installation hole configured to receive a display circuit board.
7. The constant temperature and humidity machine of claim 6, wherein the key circuit board is configured to receive input from a user.
8. The constant temperature and humidity machine of claim 6, wherein the display circuit board is configured to display input from the user and/or display current local temperature and humidity data.
9. The constant temperature and humidity machine of claim 1, wherein the power control board is configured to control functions of the oscillating air synchronous motor, the silica tubes, the dual fun, the mistorizer, the mistorizer fan, and the temperature and humidity sensor.
10. The constant temperature and humidity machine of claim 1, wherein the air outlet of the front cover is defined in an upper portion of the front cover, and wherein the air outlet holes of the front cover are defined in a lower portion of the front cover.
11. The constant temperature and humidity machine of claim 10, wherein the first air inlet defined in the back cover includes a first air inlet plate that defines a plurality of first air inlet holes therein, the first air inlet plate positioned adjacent or within the first air inlet.
12. The constant temperature and humidity machine of claim 10, wherein the back cover defines a second air inlet positioned in a lower portion of the back cover, the second air inlet includes a second air inlet plate that defines a plurality of second air inlet holes therein, the second air inlet plate positioned adjacent or within the second air inlet.
US15/337,342 2015-10-28 2016-10-28 Constant temperature and humidity machine Abandoned US20170122604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510706942.6 2015-10-28
CN201510706942.6A CN105240972A (en) 2015-10-28 2015-10-28 Constant temperature and humidity machine

Publications (1)

Publication Number Publication Date
US20170122604A1 true US20170122604A1 (en) 2017-05-04

Family

ID=55038715

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/337,342 Abandoned US20170122604A1 (en) 2015-10-28 2016-10-28 Constant temperature and humidity machine

Country Status (2)

Country Link
US (1) US20170122604A1 (en)
CN (1) CN105240972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10004165B1 (en) * 2017-03-10 2018-06-19 Amazon Technnologies, Inc. Self-filling humidity control device for equipment racks
US20210222894A1 (en) * 2019-07-09 2021-07-22 Condair Group Ag Mist humidifier blower methods and systems
US11841166B2 (en) * 2017-12-14 2023-12-12 Siu Tai Chau Semiconductor refrigeration and heating air conditioner

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1094101A (en) * 1963-07-24 1967-12-06 Anthony Bikker Improvements in or relating to electric space heaters
US3469785A (en) * 1967-07-28 1969-09-30 Macrosonics Corp High frequency ultrasonic fog generator and method
US4087495A (en) * 1976-03-25 1978-05-02 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4520864A (en) * 1982-05-29 1985-06-04 Toshiba Electric Appliances Co., Ltd. Year-round air conditioner with evaporator band and special heater placement
US4642441A (en) * 1981-08-17 1987-02-10 Allware Agencies Limited Portable fan for winter and summer use
US4737173A (en) * 1986-07-03 1988-04-12 Amway Corporation Room air treatment system
US4743739A (en) * 1986-02-20 1988-05-10 Tateishi Arthur K Oscillating louver electric fan heater
US4746466A (en) * 1986-03-03 1988-05-24 Tdk Corporation Ultrasonic atomizing apparatus
US5660586A (en) * 1995-09-22 1997-08-26 Duracraft Corporation Variable discharge window fan
US5693266A (en) * 1995-08-30 1997-12-02 Daewoo Electronics Co., Inc. Heating-type ultrasonic humidifier
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
US20040108604A1 (en) * 2000-06-21 2004-06-10 Pan Huang Chuan Water level control device for a humidifier
US20040120700A1 (en) * 2002-12-18 2004-06-24 Orr Paul W. Electric heater
US20050086963A1 (en) * 2003-10-24 2005-04-28 Lee Hae R. Indoor unit in air conditioner
US20060037355A1 (en) * 2004-08-19 2006-02-23 Lg Electronics Inc. Stand-type air conditioner
US20060182429A1 (en) * 2005-02-11 2006-08-17 Lasko Holdings, Inc. Portable electric heater
US20060264166A1 (en) * 2005-04-07 2006-11-23 Ngan Hon H Air fan
US7158716B2 (en) * 2002-12-18 2007-01-02 Lasko Holdings, Inc. Portable pedestal electric heater
US20070077042A1 (en) * 2005-09-22 2007-04-05 Sunbeam Products, Inc. Portable electrical appliance with diagnostic system
US20070129001A1 (en) * 2005-12-02 2007-06-07 Lasko Holdings, Inc. Portable air moving device with air stream intensity adjustment
US7231777B1 (en) * 2004-10-26 2007-06-19 Henry Arnold Portable personal cooling device
US20090014556A1 (en) * 2006-10-18 2009-01-15 Weatherworks Mist-Spraying Electric Fan
US20090120925A1 (en) * 2007-11-09 2009-05-14 Lasko Holdings, Inc. Heater with 360 degree rotation of heated air stream
US20090229289A1 (en) * 2006-01-04 2009-09-17 Daikin Industries, Ltd. Indoor unit of air conditioner
US20110162528A1 (en) * 2008-09-25 2011-07-07 Panasonic Electric Works Co., Ltd. Reduced water mist generating device and electric apparatus
US20130153173A1 (en) * 2011-12-20 2013-06-20 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus
WO2014036907A1 (en) * 2012-09-07 2014-03-13 Jack Hou Humidifier
US20140147297A1 (en) * 2012-11-28 2014-05-29 Lasko Holding, Inc. Air Movement Apparatus With Improved Air Blending
US20140306636A1 (en) * 2013-04-12 2014-10-16 Steven Yu Fan control system
WO2015025539A1 (en) * 2013-08-23 2015-02-26 シャープ株式会社 Air purification device
US20150241072A1 (en) * 2013-06-19 2015-08-27 Kwang Soo Kim Energy-saved smart safety cooling/warming wind apparatus for the four seasons
WO2015145465A2 (en) * 2014-03-28 2015-10-01 Symphony Limited An air cooler
US20150285516A1 (en) * 2014-04-07 2015-10-08 Trane International Inc. Protective Housing Structure
US20160209055A1 (en) * 2015-01-20 2016-07-21 Allied Air Enterprises Llc Systems and methods for a heating and cooling unit and components thereof
US20160252260A1 (en) * 2015-02-27 2016-09-01 General Electric Company Packaged terminal air conditioner unit
US20160363366A1 (en) * 2015-06-12 2016-12-15 General Electric Company Packaged terminal air conditioner unit
US20170138622A1 (en) * 2014-07-03 2017-05-18 Qingdao Haier Air Conditioner General Corp., Ltd. Humidification device and air treatment system
US9745981B2 (en) * 2011-11-11 2017-08-29 Dyson Technology Limited Fan assembly
US20170276380A1 (en) * 2014-10-29 2017-09-28 Sharp Kabushiki Kaisha Hygroscopic material and dehumidifier using same
US9797414B2 (en) * 2013-07-09 2017-10-24 Dyson Technology Limited Fan assembly
US20170304861A1 (en) * 2014-11-21 2017-10-26 Dong Jin Seo Ultrasonic humidifier
US20170354988A1 (en) * 2014-12-26 2017-12-14 Daikin Industries, Ltd. Humidifier

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1094101A (en) * 1963-07-24 1967-12-06 Anthony Bikker Improvements in or relating to electric space heaters
US3469785A (en) * 1967-07-28 1969-09-30 Macrosonics Corp High frequency ultrasonic fog generator and method
US4087495A (en) * 1976-03-25 1978-05-02 Mikuni Kogyo Kabushiki Kaisha Ultrasonic air humidifying apparatus
US4642441A (en) * 1981-08-17 1987-02-10 Allware Agencies Limited Portable fan for winter and summer use
US4520864A (en) * 1982-05-29 1985-06-04 Toshiba Electric Appliances Co., Ltd. Year-round air conditioner with evaporator band and special heater placement
US4743739A (en) * 1986-02-20 1988-05-10 Tateishi Arthur K Oscillating louver electric fan heater
US4746466A (en) * 1986-03-03 1988-05-24 Tdk Corporation Ultrasonic atomizing apparatus
US4737173A (en) * 1986-07-03 1988-04-12 Amway Corporation Room air treatment system
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
US5693266A (en) * 1995-08-30 1997-12-02 Daewoo Electronics Co., Inc. Heating-type ultrasonic humidifier
US5660586A (en) * 1995-09-22 1997-08-26 Duracraft Corporation Variable discharge window fan
US20040108604A1 (en) * 2000-06-21 2004-06-10 Pan Huang Chuan Water level control device for a humidifier
US7158716B2 (en) * 2002-12-18 2007-01-02 Lasko Holdings, Inc. Portable pedestal electric heater
US20040120700A1 (en) * 2002-12-18 2004-06-24 Orr Paul W. Electric heater
US7337626B2 (en) * 2003-10-24 2008-03-04 Lg Electronics Inc. Indoor unit in air conditioner
US20050086963A1 (en) * 2003-10-24 2005-04-28 Lee Hae R. Indoor unit in air conditioner
US20060037355A1 (en) * 2004-08-19 2006-02-23 Lg Electronics Inc. Stand-type air conditioner
US7047761B2 (en) * 2004-08-19 2006-05-23 Lg Electronics Inc. Stand-type air conditioner
US7231777B1 (en) * 2004-10-26 2007-06-19 Henry Arnold Portable personal cooling device
US20060182429A1 (en) * 2005-02-11 2006-08-17 Lasko Holdings, Inc. Portable electric heater
US20060264166A1 (en) * 2005-04-07 2006-11-23 Ngan Hon H Air fan
US20070077042A1 (en) * 2005-09-22 2007-04-05 Sunbeam Products, Inc. Portable electrical appliance with diagnostic system
US20070129001A1 (en) * 2005-12-02 2007-06-07 Lasko Holdings, Inc. Portable air moving device with air stream intensity adjustment
US20090229289A1 (en) * 2006-01-04 2009-09-17 Daikin Industries, Ltd. Indoor unit of air conditioner
US20090014556A1 (en) * 2006-10-18 2009-01-15 Weatherworks Mist-Spraying Electric Fan
US20090120925A1 (en) * 2007-11-09 2009-05-14 Lasko Holdings, Inc. Heater with 360 degree rotation of heated air stream
US20110162528A1 (en) * 2008-09-25 2011-07-07 Panasonic Electric Works Co., Ltd. Reduced water mist generating device and electric apparatus
US9745981B2 (en) * 2011-11-11 2017-08-29 Dyson Technology Limited Fan assembly
US20130153173A1 (en) * 2011-12-20 2013-06-20 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus
WO2014036907A1 (en) * 2012-09-07 2014-03-13 Jack Hou Humidifier
US20140147297A1 (en) * 2012-11-28 2014-05-29 Lasko Holding, Inc. Air Movement Apparatus With Improved Air Blending
US20140306636A1 (en) * 2013-04-12 2014-10-16 Steven Yu Fan control system
US20150241072A1 (en) * 2013-06-19 2015-08-27 Kwang Soo Kim Energy-saved smart safety cooling/warming wind apparatus for the four seasons
US9797414B2 (en) * 2013-07-09 2017-10-24 Dyson Technology Limited Fan assembly
WO2015025539A1 (en) * 2013-08-23 2015-02-26 シャープ株式会社 Air purification device
WO2015145465A2 (en) * 2014-03-28 2015-10-01 Symphony Limited An air cooler
US20150285516A1 (en) * 2014-04-07 2015-10-08 Trane International Inc. Protective Housing Structure
US20170138622A1 (en) * 2014-07-03 2017-05-18 Qingdao Haier Air Conditioner General Corp., Ltd. Humidification device and air treatment system
US20170138620A1 (en) * 2014-07-03 2017-05-18 Qingdao Haier Air Conditioner General Corp., Ltd. Humidification device and air treatment system
US20170276380A1 (en) * 2014-10-29 2017-09-28 Sharp Kabushiki Kaisha Hygroscopic material and dehumidifier using same
US20170304861A1 (en) * 2014-11-21 2017-10-26 Dong Jin Seo Ultrasonic humidifier
US20170354988A1 (en) * 2014-12-26 2017-12-14 Daikin Industries, Ltd. Humidifier
US20160209055A1 (en) * 2015-01-20 2016-07-21 Allied Air Enterprises Llc Systems and methods for a heating and cooling unit and components thereof
US20160252260A1 (en) * 2015-02-27 2016-09-01 General Electric Company Packaged terminal air conditioner unit
US20160363366A1 (en) * 2015-06-12 2016-12-15 General Electric Company Packaged terminal air conditioner unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10004165B1 (en) * 2017-03-10 2018-06-19 Amazon Technnologies, Inc. Self-filling humidity control device for equipment racks
US11841166B2 (en) * 2017-12-14 2023-12-12 Siu Tai Chau Semiconductor refrigeration and heating air conditioner
US20210222894A1 (en) * 2019-07-09 2021-07-22 Condair Group Ag Mist humidifier blower methods and systems
US11754301B2 (en) * 2019-07-09 2023-09-12 Condair Group Ag Mist humidifier blower methods and systems

Also Published As

Publication number Publication date
CN105240972A (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US20170122604A1 (en) Constant temperature and humidity machine
JP4857835B2 (en) Bathroom sauna equipment
CN205768836U (en) The seat ventilation system of optional room blasting and wind suction
JP2006288712A (en) Sauna apparatus
CN108758799B (en) Air treatment device
WO2014196141A1 (en) Vehicle heating device and heated vehicle seat
US7896319B2 (en) Sauna apparatus
WO2019042327A1 (en) Wall-mounted air-conditioning indoor unit
CN106152465B (en) Floor type air conditioner indoor unit and control method thereof
US20060272337A1 (en) Seat air conditioning unit
US20100001084A1 (en) Air Conditioning Equipment
US2852657A (en) Heater
JP4475132B2 (en) Sauna equipment
JPS5625012A (en) Air conditioning device for automobile
CN107013979B (en) Air conditioner indoor wall hanging machine and control method thereof
JP4654624B2 (en) Bathroom sauna equipment
CN106287971B (en) Floor type air conditioner indoor unit and control method thereof
KR101138346B1 (en) Air conditioner for ship
KR20170098043A (en) Vents mounted on clothing
JP6311533B2 (en) humidifier
KR200295558Y1 (en) Air Cushion
CN110811348A (en) Ventilation system of oven
CN220459115U (en) Warm cup pad
CN220369639U (en) Intelligent temperature control structure of high-speed blower
CN109340909B (en) Air conditioner indoor unit and air conditioner

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION