US20170114683A1 - Housing element having an integrated heat exchanger - Google Patents

Housing element having an integrated heat exchanger Download PDF

Info

Publication number
US20170114683A1
US20170114683A1 US15/296,895 US201615296895A US2017114683A1 US 20170114683 A1 US20170114683 A1 US 20170114683A1 US 201615296895 A US201615296895 A US 201615296895A US 2017114683 A1 US2017114683 A1 US 2017114683A1
Authority
US
United States
Prior art keywords
operating fluid
flow
temperature control
heat exchange
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/296,895
Inventor
Dimitri Schlee
Bruno Barciela Diaz-Blanco
Marco Tilinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Assigned to MAN TRUCK & BUS AG reassignment MAN TRUCK & BUS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Schlee, Dimitri, BARCIELA DIAZ-BLANCO, BRUNO, TILINSKI, MARCO
Publication of US20170114683A1 publication Critical patent/US20170114683A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • F01M2011/0025Oilsumps with heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0438Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers

Definitions

  • the present disclosure relates to a housing element for an operating fluid, in particular oil, having an integrated heat exchanger.
  • the present disclosure provides a device, in particular an oil sump, preferably for an engine (e.g. an internal combustion engine or on equipment-driving engine), a piston machine and/or a transmission arrangement.
  • the device comprises a housing element for the formation of a side wall structure and for holding an operating fluid (e.g. oil, especially engine and/or lubricating oil) and a heat exchanger for heat exchange with the operating fluid, the heat exchanger being suppliable with temperature control fluid (e.g. water) and having a heat exchange element.
  • an operating fluid e.g. oil, especially engine and/or lubricating oil
  • temperature control fluid e.g. water
  • the device is characterized especially in that the heat exchange element forms at least one through-flow duct, expediently at the top, for the through flow of the operating fluid and at least one through-flow duct, expediently at the bottom, for the through flow of the temperature control fluid.
  • the heat exchange element is thereby expediently integrated into the housing element, thus making possible additional temperature control of the operating fluid in an advantageous manner in terms of cost and/or space.
  • the heat exchange element prefferably forms part of the housing element, preferably a bottom part, with the result, in particular, that the heat exchange element and the housing element are formed by one and the same component. Consequently, the heat exchange element and the housing element are preferably not mounted one upon the other but form a one-piece integral component.
  • the housing element itself thus expediently forms the heat exchange element.
  • the heat exchange element prefferably comprises a plurality of through-flow ducts for the operating fluid and/or a plurality of through-flow ducts for the temperature control fluid.
  • the heat exchange element preferably comprises a wave and/or up-and-down structure, with the result that, on the one hand, the at least one through-flow duct for the operating fluid is formed, expediently towards the top, and/or, on the other hand, the at least one through-flow duct for the temperature control fluid is formed, expediently towards the bottom.
  • the up-and-down structure can be wave-shaped, expediently with rounded portions, or substantially rectangular, trapeziform, zigzag shaped etc., for example. It is possible for the cross section of the at least one through-flow duct for the operating fluid and/or the cross section of the at least one through-flow duct for the temperature control fluid to be of substantially U-shaped, substantially rectangular or substantially trapeziform configuration, for example.
  • the through-flow ducts for the operating fluid preferably extend adjacent and parallel to the through-flow ducts for the temperature control fluid.
  • the through-flow ducts for the operating fluid and the through-flow ducts for the temperature control fluid can overlap (e.g. alternately), expediently laterally, with the result, in particular, that a multiplicity of sandwich structures comprising through-flow ducts for operating fluid and through-flow ducts for temperature control fluid can be formed.
  • At least one opening expediently at least one lower opening, via which operating fluid can be fed to the at least one through-flow duct for the operating fluid, to be formed within the housing element.
  • An opening preferably serves to feed operating fluid to a plurality of through-flow ducts for operating fluid.
  • a bottom element is preferably arranged within the housing element, in particular above the heat exchange element.
  • the bottom element is expediently arranged between the side wall structure and is preferably mounted or cast onto the side wall structure.
  • the bottom element can at least partially span the at least one through-flow duct for the operating fluid.
  • the bottom element can be in contact with the heat exchange element or extend at a distance therefrom.
  • the bottom element can remain spaced apart at the end from the housing element, in particular the side wall structure, thereby forming the at least one opening.
  • the at least one opening can be machined into the bottom element.
  • the at least one opening can be designed as a hole, slotted hole, aperture etc., for example.
  • the bottom element thus preferably serves for the partial separation and partial formation of an operating fluid passage between the upper section of the housing element and the heat exchange element.
  • the bottom element can be mounted, e.g. movably, expediently slidably, within the housing element, making it possible to close the at least one opening and/or to form a bypass opening by moving, expediently sliding, the bottom element, preferably in such a way that operating fluid can be discharged expediently from the housing element or more generally the device while bypassing the at least one through-flow duct for the operating fluid. Accordingly, if the bottom element is moved, expediently slid, it is thereby possible, on the one hand, to close the at least one opening and, on the other hand, to produce the bypass opening at the same time. It is thereby possible to enable a temperature control capacity for the engine, the piston machine and/or the transmission arrangement that is dependent on the operating point. If the engine is running at a partial load point, for example, it will be possible to dispense with the extra temperature control capacity of the heat exchanger and to discharge the temperature control fluid via the bypass, thereby allowing the temperature control capacity to be reduced.
  • the heat exchanger prefferably has a bottom closure element and preferably for the heat exchange element to extend between the bottom closure element and the bottom element. It follows from this that the heat exchanger is formed by parts, expediently by at least three, preferably substantially horizontally aligned parts extending one above the other, namely the bottom element, the heat exchange element and the bottom closure element.
  • bottom element and/or the bottom closure element is/are preferably made substantially flat and/or plate-shaped.
  • bottom element and/or the bottom closure element may be cast or mounted onto the housing element, e.g. adhesively bonded, welded etc., the former expediently on the inside and the latter expediently on the outside.
  • the housing element can be an aluminium and/or a cast housing element, for example.
  • the housing element is preferably embodied in the form of a trough.
  • the temperature control fluid can be used to cool or heat the operating fluid.
  • the at least one through-flow duct for the operating fluid and/or the at least one through-flow duct for the temperature control fluid preferably extends in the form of a tube or a channel.
  • the present disclosure also comprises an engine, in particular a vehicle engine (e.g. motor vehicle engine, marine engine, bus or heavy goods vehicle engine etc.) or equipment-driving engine, transmission arrangement or a piston machine having a device as disclosed herein.
  • a vehicle engine e.g. motor vehicle engine, marine engine, bus or heavy goods vehicle engine etc.
  • the present disclosure likewise comprises a commercial vehicle, e.g. a heavy goods vehicle or bus, having an engine, a piston machine and/or a transmission arrangement provided with a device as disclosed herein.
  • a commercial vehicle e.g. a heavy goods vehicle or bus, having an engine, a piston machine and/or a transmission arrangement provided with a device as disclosed herein.
  • FIG. 1 shows a perspective sectioned view of a device according to one embodiment of the present disclosure
  • FIG. 2 shows another perspective sectioned view of the device in FIG. 1 .
  • FIG. 3 shows a sectioned view of the device in FIGS. 1 and 2 , in particular with an explanation of the operation thereof.
  • FIG. 1 shows a perspective sectioned view of a device V, namely an oil sump, for an engine (not shown), a piston machine (not shown) and/or a transmission arrangement (not shown).
  • the oil sump comprises a housing element 1 for the formation of a side wall structure 1 . 1 and for holding an operating fluid, in particular oil, and a heat exchanger 2 .
  • the heat exchanger 2 can be supplied with temperature control fluid (e.g. water) and comprises a heat exchange element 1 . 2 , by means of which heat exchange between the oil and the water can be achieved.
  • temperature control fluid e.g. water
  • the heat exchange element 1 . 2 comprises a plurality of through-flow ducts B, through which oil flows during operation, and a plurality of through-flow ducts T, through which water flows during operation.
  • the oil can be drawn in by the engine or an oil pump, for example, during operation.
  • the heat exchange element 1 . 2 forms a (bottom) part of the housing element 1 , with the result that the heat exchange element 1 . 2 and the housing element 1 are formed by one and the same component.
  • the oil sump and, in particular, the housing element 1 are thus provided with an integrated heat exchanger 2 .
  • the heat exchange element 1 . 2 comprises an up-and-down structure, in particular a wave shape (e.g. rounded, rectangular, trapeziform etc.), thereby forming the through-flow ducts B for the oil on the upper side thereof and the through-flow ducts T for the water on the lower side thereof.
  • the up-and-down structure results in an enlargement of the surface area, greatly increasing the effectiveness of the heat exchanger 2 .
  • the through-flow ducts B for the oil extend parallel to the through-flow ducts T for the water and are arranged adjacent thereto.
  • the through-flow ducts T for the water and the through-flow ducts B for the oil overlap alternatively, forming a multiplicity of sandwich structures.
  • an opening 1 . 3 Formed within the housing element 1 is an opening 1 . 3 , expediently in the form of a slotted hole, via which oil can be fed to the through-flow ducts B for the oil.
  • a plate-shaped bottom element 3 is furthermore arranged within the housing element 1 .
  • the bottom element 3 spans the through-flow ducts B towards the top and is spaced apart at the end from the housing element 1 , thereby forming the opening 1 . 3 .
  • the bottom element 3 can expediently come into contact with the oil on the upper side and the lower side.
  • the heat exchanger 2 comprises a plate-shaped bottom closure element 4 , with the result that the heat exchange element 1 . 2 is arranged between the bottom closure element 4 and the bottom element 3 .
  • the heat exchanger 2 is thus expediently formed by a 3-plate structure, namely the bottom element 3 , the wave-shaped heat exchange element 1 . 2 and the bottom closure element 4 .
  • the bottom element 3 and the bottom closure element 4 are expediently mounted on the housing element 1 .
  • Reference sign 5 designates a water outlet, via which water can be discharged from the device V or heat exchanger 2 .
  • FIG. 2 shows another perspective sectioned view of the device V from FIG. 1 .
  • reference sign 6 indicates a water inlet, via which water can be introduced into the device V or heat exchanger 2
  • reference sign 7 indicates an oil outlet, via which oil can be discharged from the housing element 1 or heat exchanger 2 .
  • FIG. 3 shows a sectioned view of the device V in FIGS. 1 and 2 with captions relating to the operation thereof.
  • the bottom element 3 it is possible for the bottom element 3 to be mounted in a fixed manner within the housing element 1 . As an alternative, however, it is possible for the bottom element 3 expediently to be arranged in the housing element 1 in such a way that it can be slid substantially horizontally. If the bottom element 3 is embodied in such a way as to be slidable, it is possible, on the one hand, for the opening 1 . 3 to be closed and, on the other hand, for a bypass opening 8 indicated schematically in FIG. 3 simultaneously to be produced by the sliding thereof, allowing oil to be discharged while bypassing through-flow ducts B. It is thereby possible to reduce the heat exchanger capacity. The cooling capacity can thereby be adapted according to the engine operating point. If the engine is running at the partial load points, for example, it would be possible to dispense with heat exchanger cooling, and the water could be discharged through the bypass opening 8 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • General Details Of Gearings (AREA)

Abstract

A device is provided, in particular an oil sump, for an engine and/or a transmission arrangement. The device includes a housing element for the formation of a side wall structure and for holding an operating fluid and a heat exchanger for heat exchange with the operating fluid, the heat exchanger configured to be supplied with temperature control fluid and having a heat exchange element. The heat exchange element forms at least one through-flow duct for the through flow of the operating fluid and at least one through-flow duct for the through flow of the temperature control fluid.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a housing element for an operating fluid, in particular oil, having an integrated heat exchanger.
  • BACKGROUND
  • Particularly in the case of modern engines, oil (engine/lubricating oil) is subject to high stress from extremely high temperatures, something that applies especially to “equipment-driving engines”, which run continuously at maximum power. For economic reasons, the oil is generally cooled by means of standard coolers. Insofar as they are embodied in a conventional size, standard coolers are limited in terms of cooling capacity. That is to say that the oil temperature can be reduced to only a limited extent. As a result, the life of the oil is reduced. A second standard cooler or a higher-capacity cooler is generally undesirable for economic or design reasons. DE 31 42 327 A1 has already disclosed an oil sump for a combustion engine having an inner shell and an outer shell, between which a coolant for the combustion engine flows.
  • SUMMARY
  • It is an object of the present disclosure to provide an improved and/or alternative device for holding an operating fluid, the device comprising a heat exchanger.
  • This object can be achieved by means of the features of the main claim. Advantageous developments of the present disclosure can be found in the dependent claims and the following description of preferred embodiments of the present disclosure.
  • The present disclosure provides a device, in particular an oil sump, preferably for an engine (e.g. an internal combustion engine or on equipment-driving engine), a piston machine and/or a transmission arrangement. The device comprises a housing element for the formation of a side wall structure and for holding an operating fluid (e.g. oil, especially engine and/or lubricating oil) and a heat exchanger for heat exchange with the operating fluid, the heat exchanger being suppliable with temperature control fluid (e.g. water) and having a heat exchange element.
  • The device is characterized especially in that the heat exchange element forms at least one through-flow duct, expediently at the top, for the through flow of the operating fluid and at least one through-flow duct, expediently at the bottom, for the through flow of the temperature control fluid. The heat exchange element is thereby expediently integrated into the housing element, thus making possible additional temperature control of the operating fluid in an advantageous manner in terms of cost and/or space.
  • It is possible for the heat exchange element to form part of the housing element, preferably a bottom part, with the result, in particular, that the heat exchange element and the housing element are formed by one and the same component. Consequently, the heat exchange element and the housing element are preferably not mounted one upon the other but form a one-piece integral component. The housing element itself thus expediently forms the heat exchange element.
  • It is possible for the heat exchange element to comprise a plurality of through-flow ducts for the operating fluid and/or a plurality of through-flow ducts for the temperature control fluid.
  • The heat exchange element preferably comprises a wave and/or up-and-down structure, with the result that, on the one hand, the at least one through-flow duct for the operating fluid is formed, expediently towards the top, and/or, on the other hand, the at least one through-flow duct for the temperature control fluid is formed, expediently towards the bottom. The up-and-down structure can be wave-shaped, expediently with rounded portions, or substantially rectangular, trapeziform, zigzag shaped etc., for example. It is possible for the cross section of the at least one through-flow duct for the operating fluid and/or the cross section of the at least one through-flow duct for the temperature control fluid to be of substantially U-shaped, substantially rectangular or substantially trapeziform configuration, for example.
  • The through-flow ducts for the operating fluid preferably extend adjacent and parallel to the through-flow ducts for the temperature control fluid. As an alternative or in addition, the through-flow ducts for the operating fluid and the through-flow ducts for the temperature control fluid can overlap (e.g. alternately), expediently laterally, with the result, in particular, that a multiplicity of sandwich structures comprising through-flow ducts for operating fluid and through-flow ducts for temperature control fluid can be formed.
  • It is possible for at least one opening, expediently at least one lower opening, via which operating fluid can be fed to the at least one through-flow duct for the operating fluid, to be formed within the housing element. An opening preferably serves to feed operating fluid to a plurality of through-flow ducts for operating fluid.
  • A bottom element is preferably arranged within the housing element, in particular above the heat exchange element. The bottom element is expediently arranged between the side wall structure and is preferably mounted or cast onto the side wall structure.
  • It is possible for the bottom element to at least partially span the at least one through-flow duct for the operating fluid. Here, the bottom element can be in contact with the heat exchange element or extend at a distance therefrom. As an alternative or in addition, the bottom element can remain spaced apart at the end from the housing element, in particular the side wall structure, thereby forming the at least one opening. It is likewise possible for the at least one opening to be machined into the bottom element. The at least one opening can be designed as a hole, slotted hole, aperture etc., for example.
  • The bottom element thus preferably serves for the partial separation and partial formation of an operating fluid passage between the upper section of the housing element and the heat exchange element.
  • The bottom element can be mounted, e.g. movably, expediently slidably, within the housing element, making it possible to close the at least one opening and/or to form a bypass opening by moving, expediently sliding, the bottom element, preferably in such a way that operating fluid can be discharged expediently from the housing element or more generally the device while bypassing the at least one through-flow duct for the operating fluid. Accordingly, if the bottom element is moved, expediently slid, it is thereby possible, on the one hand, to close the at least one opening and, on the other hand, to produce the bypass opening at the same time. It is thereby possible to enable a temperature control capacity for the engine, the piston machine and/or the transmission arrangement that is dependent on the operating point. If the engine is running at a partial load point, for example, it will be possible to dispense with the extra temperature control capacity of the heat exchanger and to discharge the temperature control fluid via the bypass, thereby allowing the temperature control capacity to be reduced.
  • It is possible for the heat exchanger to have a bottom closure element and preferably for the heat exchange element to extend between the bottom closure element and the bottom element. It follows from this that the heat exchanger is formed by parts, expediently by at least three, preferably substantially horizontally aligned parts extending one above the other, namely the bottom element, the heat exchange element and the bottom closure element.
  • It should be mentioned that the bottom element and/or the bottom closure element is/are preferably made substantially flat and/or plate-shaped.
  • It is possible for the bottom element and/or the bottom closure element to be cast or mounted onto the housing element, e.g. adhesively bonded, welded etc., the former expediently on the inside and the latter expediently on the outside.
  • The housing element can be an aluminium and/or a cast housing element, for example.
  • The housing element is preferably embodied in the form of a trough.
  • The temperature control fluid can be used to cool or heat the operating fluid.
  • The at least one through-flow duct for the operating fluid and/or the at least one through-flow duct for the temperature control fluid preferably extends in the form of a tube or a channel.
  • The present disclosure also comprises an engine, in particular a vehicle engine (e.g. motor vehicle engine, marine engine, bus or heavy goods vehicle engine etc.) or equipment-driving engine, transmission arrangement or a piston machine having a device as disclosed herein.
  • The present disclosure likewise comprises a commercial vehicle, e.g. a heavy goods vehicle or bus, having an engine, a piston machine and/or a transmission arrangement provided with a device as disclosed herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above-described preferred embodiments and features of the present disclosure can be combined with one another. Other advantageous developments of the present disclosure are disclosed in the dependent claims or will become apparent from the following description of preferred embodiments of the present disclosure in conjunction with the attached figures.
  • FIG. 1 shows a perspective sectioned view of a device according to one embodiment of the present disclosure,
  • FIG. 2 shows another perspective sectioned view of the device in FIG. 1, and
  • FIG. 3 shows a sectioned view of the device in FIGS. 1 and 2, in particular with an explanation of the operation thereof.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective sectioned view of a device V, namely an oil sump, for an engine (not shown), a piston machine (not shown) and/or a transmission arrangement (not shown).
  • The oil sump comprises a housing element 1 for the formation of a side wall structure 1.1 and for holding an operating fluid, in particular oil, and a heat exchanger 2. The heat exchanger 2 can be supplied with temperature control fluid (e.g. water) and comprises a heat exchange element 1.2, by means of which heat exchange between the oil and the water can be achieved.
  • The heat exchange element 1.2 comprises a plurality of through-flow ducts B, through which oil flows during operation, and a plurality of through-flow ducts T, through which water flows during operation. The oil can be drawn in by the engine or an oil pump, for example, during operation.
  • The heat exchange element 1.2 forms a (bottom) part of the housing element 1, with the result that the heat exchange element 1.2 and the housing element 1 are formed by one and the same component. The oil sump and, in particular, the housing element 1 are thus provided with an integrated heat exchanger 2.
  • The heat exchange element 1.2 comprises an up-and-down structure, in particular a wave shape (e.g. rounded, rectangular, trapeziform etc.), thereby forming the through-flow ducts B for the oil on the upper side thereof and the through-flow ducts T for the water on the lower side thereof. The up-and-down structure results in an enlargement of the surface area, greatly increasing the effectiveness of the heat exchanger 2.
  • The through-flow ducts B for the oil extend parallel to the through-flow ducts T for the water and are arranged adjacent thereto. The through-flow ducts T for the water and the through-flow ducts B for the oil overlap alternatively, forming a multiplicity of sandwich structures.
  • Formed within the housing element 1 is an opening 1.3, expediently in the form of a slotted hole, via which oil can be fed to the through-flow ducts B for the oil.
  • A plate-shaped bottom element 3 is furthermore arranged within the housing element 1. The bottom element 3 spans the through-flow ducts B towards the top and is spaced apart at the end from the housing element 1, thereby forming the opening 1.3. The bottom element 3 can expediently come into contact with the oil on the upper side and the lower side.
  • The heat exchanger 2 comprises a plate-shaped bottom closure element 4, with the result that the heat exchange element 1.2 is arranged between the bottom closure element 4 and the bottom element 3. The heat exchanger 2 is thus expediently formed by a 3-plate structure, namely the bottom element 3, the wave-shaped heat exchange element 1.2 and the bottom closure element 4.
  • The bottom element 3 and the bottom closure element 4 are expediently mounted on the housing element 1.
  • Reference sign 5 designates a water outlet, via which water can be discharged from the device V or heat exchanger 2.
  • FIG. 2 shows another perspective sectioned view of the device V from FIG. 1.
  • In this, reference sign 6 indicates a water inlet, via which water can be introduced into the device V or heat exchanger 2, while reference sign 7 indicates an oil outlet, via which oil can be discharged from the housing element 1 or heat exchanger 2.
  • FIG. 3 shows a sectioned view of the device V in FIGS. 1 and 2 with captions relating to the operation thereof.
  • From FIG. 3, it can be seen that oil is being passed through through-flow ducts B so as to cool down from right to left in FIG. 3, while water is being passed through through-flow ducts T so as to heat up from left to right in FIG. 3.
  • It is possible for the bottom element 3 to be mounted in a fixed manner within the housing element 1. As an alternative, however, it is possible for the bottom element 3 expediently to be arranged in the housing element 1 in such a way that it can be slid substantially horizontally. If the bottom element 3 is embodied in such a way as to be slidable, it is possible, on the one hand, for the opening 1.3 to be closed and, on the other hand, for a bypass opening 8 indicated schematically in FIG. 3 simultaneously to be produced by the sliding thereof, allowing oil to be discharged while bypassing through-flow ducts B. It is thereby possible to reduce the heat exchanger capacity. The cooling capacity can thereby be adapted according to the engine operating point. If the engine is running at the partial load points, for example, it would be possible to dispense with heat exchanger cooling, and the water could be discharged through the bypass opening 8.
  • The present disclosure is not restricted to the preferred embodiments described above. On the contrary, a large number of variants and modifications is possible that likewise make use of the concept of the present disclosure and therefore fall within the scope of protection. Moreover, the present disclosure also claims protection for the subject matter and features of the dependent claims independently of the features and claims to which they refer.

Claims (16)

1. A device for an engine, a piston machine and/or a transmission arrangement, comprising:
a housing element for the formation of a side wall structure and for holding an operating fluid; and
a heat exchanger configured to exchange heat with the operating fluid, the heat exchanger configured to be supplied with temperature control fluid and having a heat exchange element that forms at least one through-flow duct for the through flow of the operating fluid and at least one through-flow duct for the through flow of the temperature control fluid.
2. The device according to claim 1, wherein the heat exchange element is part of the housing element, with the result that the heat exchange element and the housing element are formed by one and the same component.
3. The device according to claim 1, wherein the heat exchange element comprises a plurality of through-flow ducts for the operating fluid and a plurality of through-flow ducts for the temperature control fluid.
4. The device according to claim 1, wherein the heat exchange element comprises a wave or up-and-down structure, with the result that the at least one through-flow duct for the operating fluid and the at least one through-flow duct for the temperature control fluid are formed.
5. The device according to claim 1, wherein the through-flow ducts for the operating fluid extend adjacent and parallel to the through-flow ducts for the temperature control fluid.
6. The device according to claim 1, wherein the through-flow ducts for the operating fluid and the through-flow ducts for the temperature control fluid overlap alternately.
7. The device according to claim 1, wherein at least one opening via which the operating fluid can be fed to the at least one through-flow duct for the operating fluid, is formed within the housing element.
8. The device according to claim 1, wherein a bottom element is arranged above the heat exchange element, between the side wall structure, within the housing element.
9. The device according to claim 8, wherein the bottom element at least partially spans the at least one through-flow duct for the operating fluid.
10. The device according to claim 8, wherein the bottom element is spaced apart at the end from the housing element in order to form the at least one opening.
11. The device according to claim 8, wherein the at least one opening is formed in the bottom element.
12. The device according to claim 8, wherein the bottom element is movable in order to close the at least one opening and/or in order to form a bypass opening, such that operating fluid can be discharged while bypassing the at least one through-flow duct for the operating fluid.
13. The device according to claim 1, wherein the heat exchanger has a bottom closure element and the heat exchange element extends between the bottom closure element and the bottom element.
14. The device according to claim 8, wherein the bottom element is cast or mounted onto the housing element.
15. An engine comprising:
a device comprising:
a housing element for the formation of a side wall structure and for holding an operating fluid, and
a heat exchanger configured to exchange heat with the operating fluid, the heat exchanger configured to be supplied with temperature control fluid and having a heat exchange element that forms at least one through-flow duct for the through flow of the operating fluid and at least one through-flow duct for the through flow of the temperature control fluid.
16. A commercial vehicle comprising:
an engine including a device comprising:
a housing element for the formation of a side wall structure and for holding an operating fluid, and
a heat exchanger configured to exchange heat with the operating fluid, the heat exchanger configured to be supplied with temperature control fluid and having a heat exchange element that forms at least one through-flow duct for the through flow of the operating fluid and at least one through-flow duct for the through flow of the temperature control fluid.
US15/296,895 2015-10-22 2016-10-18 Housing element having an integrated heat exchanger Abandoned US20170114683A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015013792.1A DE102015013792A1 (en) 2015-10-22 2015-10-22 Housing element with integrated heat exchanger
DE102015013792.1 2015-10-22

Publications (1)

Publication Number Publication Date
US20170114683A1 true US20170114683A1 (en) 2017-04-27

Family

ID=57067904

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/296,895 Abandoned US20170114683A1 (en) 2015-10-22 2016-10-18 Housing element having an integrated heat exchanger

Country Status (6)

Country Link
US (1) US20170114683A1 (en)
EP (1) EP3165728B1 (en)
CN (1) CN106948900A (en)
BR (1) BR102016022562B1 (en)
DE (1) DE102015013792A1 (en)
RU (1) RU2729586C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057909A (en) * 2018-08-31 2018-12-21 重庆长安汽车股份有限公司 A kind of Multi Role Aircraft food tray assembly
DE102022203168A1 (en) 2022-03-31 2023-10-05 Zf Friedrichshafen Ag Multi-part oil pan for a drive train and drive train with the oil pan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1043113A (en) * 1964-02-10 1966-09-21 Cunewalde Motoren Cooling device for cooling lubricating oil in an internal combustion engine
EP0197169A1 (en) * 1985-04-09 1986-10-15 Ing. Walter Hengst GmbH & Co. KG Oil cooler
US20050039729A1 (en) * 2002-01-26 2005-02-24 Behr Gmbh & Co Kg Exhaust gas heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1071519B (en) * 1976-10-13 1985-04-10 Fiat Spa INTERNAL COMBUSTION ENGINE LUBRICATION OIL CUP
JPS5919774Y2 (en) * 1979-02-07 1984-06-08 日野自動車株式会社 Automotive engine oil pan
DE2913649A1 (en) * 1979-04-05 1980-10-16 Porsche Ag Oil cooler for water cooled IC engine - has zigzag heat exchange partition between cooling water and oil in chamber in engine block
DE3142327A1 (en) 1981-10-24 1983-05-05 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Oil sump for an internal combustion engine
FR2721975A1 (en) * 1994-06-30 1996-01-05 Peugeot IC engine oil sump heat exchanger
DE102009010486A1 (en) * 2009-02-25 2010-09-16 Man Nutzfahrzeuge Aktiengesellschaft Cooling device for engine and / or transmission oil, in particular an internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1043113A (en) * 1964-02-10 1966-09-21 Cunewalde Motoren Cooling device for cooling lubricating oil in an internal combustion engine
EP0197169A1 (en) * 1985-04-09 1986-10-15 Ing. Walter Hengst GmbH & Co. KG Oil cooler
US20050039729A1 (en) * 2002-01-26 2005-02-24 Behr Gmbh & Co Kg Exhaust gas heat exchanger

Also Published As

Publication number Publication date
RU2729586C2 (en) 2020-08-11
BR102016022562B1 (en) 2023-01-10
EP3165728A1 (en) 2017-05-10
CN106948900A (en) 2017-07-14
EP3165728B1 (en) 2020-01-01
BR102016022562A2 (en) 2017-05-02
RU2016141056A3 (en) 2020-02-19
RU2016141056A (en) 2018-04-19
DE102015013792A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5063449B2 (en) Water jacket spacer
US7753105B2 (en) Liquid cooled condenser having an integrated heat exchanger
US8844504B2 (en) Heat exchanger and method of manufacturing the same
KR101318643B1 (en) Cooling module and control method thereof
US4150655A (en) Lubricating oil sump for internal combustion engines
US10337807B2 (en) Heat exchanger with coolant channel and panel
US8464669B2 (en) Cooling circuit for an internal combustion engine
US20090050302A1 (en) Cooling device for an internal combustion engine
US11162718B2 (en) Stacked plate heat exchanger
US20080185130A1 (en) Heat exchanger with extruded cooling tubes
US20190292979A1 (en) Intercooler consisting of a liquid-cooled precooler and an air-cooled main cooler
US7926558B2 (en) Cooler device
US10473402B2 (en) Heat exchanger module
US20160208745A1 (en) Internal combustion engine
KR20140118878A (en) Air to air heat exchanger
KR102352885B1 (en) Engine water-cooling device
EP3263855B1 (en) Oil cooling structure of engine
KR101653876B1 (en) Heat exchanger in vehicle
MX2013010381A (en) Cover for an intake housing.
US20170114683A1 (en) Housing element having an integrated heat exchanger
JP6174348B2 (en) Internal combustion engine for vehicles
US8857415B2 (en) Charge air cooler
US20080223345A1 (en) Arrangement of a Charge Air Cooler in an Intake System of an Internal Combustion Engine
US20220290588A1 (en) Internal combustion engine including an oil cooler integrated into the cylinder block, and cooling water control
US20120247731A1 (en) Heat exchanger assembly having a seal

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAN TRUCK & BUS AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHLEE, DIMITRI;BARCIELA DIAZ-BLANCO, BRUNO;TILINSKI, MARCO;SIGNING DATES FROM 20161011 TO 20161012;REEL/FRAME:040048/0715

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION