US20170036301A1 - Acousto-optics deflector and mirror for laser beam steering - Google Patents
Acousto-optics deflector and mirror for laser beam steering Download PDFInfo
- Publication number
- US20170036301A1 US20170036301A1 US14/909,724 US201514909724A US2017036301A1 US 20170036301 A1 US20170036301 A1 US 20170036301A1 US 201514909724 A US201514909724 A US 201514909724A US 2017036301 A1 US2017036301 A1 US 2017036301A1
- Authority
- US
- United States
- Prior art keywords
- laser beam
- acousto
- mirror
- laser
- scanning direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
- B23K26/0821—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
- G02B26/124—Details of the optical system between the light source and the polygonal mirror
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0071—Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1611—Solid materials characterised by an active (lasing) ion rare earth neodymium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
- H01S3/1643—YAG
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/42—Printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/2232—Carbon dioxide (CO2) or monoxide [CO]
Definitions
- Embodiments of the present disclosure generally relate to the field of laser systems, and more particularly, to an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations.
- FIG. 1 schematically illustrates a perspective view of an example laser system including a single acousto-optic deflector and a mirror, in accordance with some embodiments.
- FIG. 2 schematically illustrates an example pattern that is generated by the laser system of FIG. 1 , in accordance with some embodiments.
- FIG. 3 schematically illustrates a perspective view of an example laser system including multiple acousto-optic deflectors and a mirror, in accordance with some embodiments.
- FIG. 4 schematically illustrates an operating principle of an acousto-optic deflector, in accordance with some embodiments.
- FIG. 5 schematically illustrates a flow diagram for a method of steering a laser beam to pattern an integrated circuit (IC) substrate, in accordance with some embodiments.
- FIG. 6 schematically illustrates a cross-section side view of an example IC package assembly, in accordance with some embodiments.
- FIG. 7 schematically illustrates a cross-section side view of laser-drilled vials in an IC substrate, in accordance with some embodiments.
- Embodiments of the present disclosure describe an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations.
- various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art.
- embodiments of the present disclosure may be practiced with only some of the described aspects.
- specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative implementations.
- embodiments of the present disclosure may be practiced without the specific details.
- well-known features are omitted or simplified in order not to obscure the illustrative implementations.
- phrase “A and/or B” means (A), (B), or (A and B).
- phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
- Coupled may mean one or more of the following. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
- directly coupled may mean that two or more elements are in direct contact.
- the phrase “a first feature formed, deposited, or otherwise disposed on a second feature” may mean that the first feature is formed, deposited, or disposed over the second feature, and at least a part of the first feature may be in direct contact (e.g., direct physical and/or electrical contact) or indirect contact (e.g., having one or more other features between the first feature and the second feature) with at least a part of the second feature.
- direct contact e.g., direct physical and/or electrical contact
- indirect contact e.g., having one or more other features between the first feature and the second feature
- module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a system-on-chip chip (SoC), a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
- ASIC Application Specific Integrated Circuit
- SoC system-on-chip chip
- processor shared, dedicated, or group
- memory shared, dedicated, or group
- FIG. 1 schematically illustrates a perspective view of an example laser system 100 including a single acousto-optic deflector (hereinafter “AO deflector 110 ”) and a mirror 112 , in accordance with some embodiments.
- the laser system 100 may include a laser resonator 102 , laser beam 104 , collimator 106 , aperture mask 108 , AO deflector 110 , mirror 112 , lens 114 and X-Y table 116 , coupled as can be seen.
- the laser system 100 may be configured to drill vias (e.g., laser-drilled vias 118 A) in an integrated circuit (IC) substrate 118 using the laser beam 104 .
- the laser system 100 may use mask-less laser direct patterning (LDP) or laser direct imaging (LDI) to pattern the IC substrate 118 with laser-drilled vias.
- LDP mask-less laser direct patterning
- LPI laser direct imaging
- the AO deflector 110 may be used to steer the laser beam 104 in a respective first scanning direction (e.g., X-direction) and the mirror 112 may be used to steer the laser beam 104 in a second scanning direction (e.g., Y-direction) on the IC substrate 118 when the IC substrate 118 is in a path of the laser beam 104 (e.g., on the X-Y stage as depicted).
- the first scanning direction may be substantially perpendicular or perpendicular to the first scanning direction.
- the mirror 112 may include at least one surface to receive the laser beam 104 from the AO deflector 110 .
- the mirror 112 may be a polygon mirror having multiple surfaces that correspond with multiple sides of the polygon.
- the mirror 112 is a hexagon mirror having six surfaces (e.g., surfaces 112 A, 112 B, 112 C) corresponding with six sides of the polygon, as can be seen.
- the mirror 112 may have more or fewer surfaces than depicted in other embodiments.
- the mirror 112 may have a single surface or more than six surfaces.
- the mirror 112 may be configured to move to control the position of the laser beam 104 in the second scanning direction.
- the mirror 112 may rotate, in one embodiment, the mirror 112 may continuously rotate at a constant speed to steer the laser beam 104 in the second scanning direction.
- the mirror 112 may have translation movement to move the laser beam 104 in the second scanning direction.
- the AO deflector 110 may be used to deflect the laser beam 104 in the first scanning direction.
- the AO deflector 110 may deflect the laser beam 104 according to an acoustic signal 120 .
- the laser beam 104 may be deflected at the AO deflector 110 by varying an acoustic signal 120 that is input to the AO deflector 110 .
- a time period for acoustic signal 120 change may be during (e.g., within) a laser pulse off time in order to avoid a laser beam 104 position error in the laser system 100 .
- the timing of turning the laser beam 104 on/off may be synchronized with deflection at the AO deflector 110 and/or the mirror 112 .
- the laser system may include a synch mechanism between the AO deflector 110 with capability of turning on/off the laser and the polygon mirror 112 .
- the laser system 100 may perform two-dimensional (2D) patterning by the laser beam 104 using a combination of steering with the mirror 112 and the AO deflector 110 .
- the AO deflector 110 may be configured to turn the laser beam 104 on and off.
- the AO deflector 110 may switch the laser beam 104 on and off to generate a one dimensional pattern in the first scanning direction.
- the deflected laser beam 104 may reflect off of the mirror 112 rotating at a constant speed.
- the rotation of the polygon mirror may allow laser beam scanning in the second scanning direction to provide 2D patterning.
- the AO deflector 110 may be part of an acousto-optics (AO) module.
- the AO module may include or be a single AO deflector 110 to deflect the laser beam 104 in a first scanning direction only (e.g., a single AO deflector).
- the AO module may include or be multiple AO deflectors (e.g., AO deflectors 210 A, 210 B) to deflect the laser beam 104 in two or more scanning directions.
- the laser system 100 may further include a laser resonator 102 to output the laser beam 104 .
- the laser beam 104 may be of any suitable type including, for example, a carbon dioxide (CO 2 ) laser or a 2 nd /3 rd harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (532 nm/355 nm). Other suitable types of lasers may be used in other embodiments.
- the laser system 100 may further include a collimator 106 in a path of the laser beam 104 to affect a size (e.g., diameter) of the laser beam 104 .
- the laser system 100 may further include an aperture mask 108 in a path of the laser beam 104 to provide a spatial filter for the laser beam 104 , which may provide a desired shape (e.g., circular) of the laser beam 104 .
- the laser system 100 may further include a lens 114 such as a scanning lens to focus or reduce a size of the laser beam 104 .
- the laser system 100 may further include an X-Y table 116 to hold arid move (e.g., in the X or Y direction) an IC substrate 118 in a path of the laser beam 104 to facilitate the formation of laser-drilled vies 118 A in the IC substrate 118 .
- a laser drilling processing speed of the laser system 100 may increase relative to a traditional galvanometer (galvo) laser system because the mirror 112 may not need to accelerate and/or decelerate for beam positioning and the AO deflector 110 may provide non-mechanical beam steering.
- the laser system 100 may further provide increased beam position accuracy relative to a traditional galvo laser system.
- Using the AO deflector 110 and mirror 112 to steer the laser beam 104 may improve alignment accuracy relative to traditional configurations.
- efficiency of laser energy utilization may improve (e.g., for same laser input power, the laser system 100 may have higher process speed) because there may be no mask for the patterning.
- FIG. 2 schematically illustrates an example pattern 200 that is generated by the laser system 100 of FIG. 1 , in accordance with some embodiments.
- each of the features 224 may represent one or more laser pulses by the laser beam 104 on the IC substrate 118 of FIG. 1 and the X-direction is perpendicular to the Y-direction. Due to a continuous rotation of the mirror 112 , a first scanning direction 222 of the laser system 100 may not be exactly perpendicular to the second scanning direction (e.g., the Y-direction), as can be seen.
- An angle, ⁇ , between the first scanning direction 222 and the X-direction may depend on a variety of factors.
- ⁇ may be calculated according to the following, where d is a laser beam pitch, k is a laser frequency, and visa rotation speed of the mirror (e.g., mirror 112 of FIG. 1 ):
- the phrase “substantially perpendicular” includes a deviation from exactly perpendicular by the angle ⁇ .
- FIG. 3 schematically illustrates a perspective view of an example laser system 300 including multiple acousto-optic deflectors 210 A, 210 B and a mirror 112 , in accordance with some embodiments.
- the laser system 300 may generally comport with embodiments described in connection with the laser system 100 , except that in the laser system 300 , the AO module may include two AO deflectors 210 A, 210 B.
- a first AO deflector 210 A of the laser system 300 may deflect the laser beam 104 in the X-direction (e.g., similar to the AO deflector 110 of FIG. 1 ).
- the first AO deflector 210 A may deflect the laser beam 104 by varying an acoustic signal 120 that is input to the first AO deflector 210 A.
- a second AO deflector 210 B of the laser system 300 may deflect the laser beam 104 in the Y-direction (e.g., according to another acoustic signal similar to acoustic signal 120 ).
- the second AO deflector 210 B may track the movement (e.g., rotation) of the mirror 112 and/or compensate for any error in surface flatness of the surface(s) (e.g., surfaces 112 A, 112 B, 112 C) of the mirror 112 .
- the laser beam 104 deflected by the first AO deflector 210 A and the second AO deflector 210 B may hit the mirror 112 rotating at constant speed.
- the rotation of the mirror 112 may steer the laser beam 104 in the Y-direction.
- the laser beam 104 may not need to be switched on and off for the pattern generation and better laser energy utilization may be realized in the laser system 300 relative to the laser system 100 as a result.
- the laser beam 300 may remain on during 2D pattern generation (e.g., forming laser-drilled vias 118 A in the IC substrate 118 ).
- the AO deflector 110 , 210 A, or 210 B of FIG. 1 or 3 may be composed of a material configured to propagate an acoustic wave such as, for example, silica, tellurium dioxide (TeO 2 ), or germanium (Ge).
- the AO deflector may be composed of other suitable materials in other embodiments.
- FIG. 4 schematically illustrates an operating principle of an acousto-optic deflector 400 , which may represent the AO deflector 110 of FIG. 1 or first AO deflector 210 A and second AO deflector 210 B of FIG. 3 , in accordance with some embodiments.
- the acoustic wave generated by a radio frequency (RF) driver may produce a sinusoidal refractive index gradient, which may act as a diffraction grating to an incoming laser beam (e.g., laser beam 104 of FIG. 1 or 3 ).
- RF radio frequency
- an acoustic signal may be input into a mixer together with an output from an oscillator and output to an RF amp, which may be coupled with the AO deflector 400 , as can be seen. Varying the acoustic signal input to the AO deflector 400 may allow steering of the 1 st order diffracted beam from the incident beam to provide an adjustable diffracted beam, as can be seem.
- the transmitted beam may pass through the AO deflector,
- the 1 st order diffracted beam may be utilized in the AO deflector 400 .
- the diffracted angle, ⁇ may be defined according to Equation 2 as follows, where ⁇ is the optical wavelength of the laser beam in air, V a is the acoustical velocity of the material (e.g., crystal) of the AO deflector, is the acoustic frequency of the material of the AO deflector, and ⁇ b is the Bragg angle:
- the acoustic frequency ⁇ a may be controlled by the RF driver, which may steer the laser beam position without the mechanical motion that may be required for a traditional galvo positioning system.
- a diffraction efficiency of the AO deflector 400 may be defined I diffracted /I incident , which may depend on acoustic energy I acoustic of the AO deflector 400 , as defined in Equation 3 as follows, where L is a length of an electrode of the AO deflector 400 , H is a height of the electrode. M is a figure of merit of the optical material as defined in Equation 4:
- I diffracted I incident sin 2 ⁇ ( ⁇ 2 ⁇ ⁇ ⁇ L H ⁇ MI acoustic ) [ 3 ]
- Equation 4 The figure of merit M is defined in Equation 4 as follows, where n is refractive index, p is strain-optic coefficient, ⁇ is density, and V a is acoustical velocity:
- the diffraction efficiency I diffracted /I incident may be adjusted by adjusting the acoustic energy I acoustic .
- the diffraction efficiency may be adjusted from 0 to 90%.
- the AO deflector may include no moving parts, in some embodiments.
- the response time or aperture time, ⁇ may be calculated according to Equation 5, where D is the aperture size (e.g., millimeters), and V a is the acoustic velocity (on the order of 10 3 meters/second in the crystal):
- the response time ⁇ may be on the order of microseconds, which may be a substantial improvement relative to a response time of a galvo system, which may have a response time on the order of milliseconds.
- the operating frequency of the AO deflector may be 3 orders of magnitude higher than the galvo system, according to various embodiments.
- the mirror When the mirror (e.g., mirror 112 of FIG. 1 or 3 ) is rotating at constant speed, no inertia may need to be overcome, which may allow a high rotation speed and improved position accuracy.
- the mirror may rotate on the order of ⁇ 10,000 revolutions per minute (RPM). With a 100 millimeter focal length, 10,000 RPM may provide a scanning speed of about 105 meters/second, which may be substantially faster than a galvo scanning speed (e.g., less than 10 meters/second). Thus, the mirror may provide a scanning speed that is at least 1 order of magnitude greater than a galvo system, according to various embodiments.
- RPM revolutions per minute
- FIG. 5 schematically illustrates a flow diagram for a method 500 of steering a laser beam (e.g., laser beam 104 of FIGS. 1 or 3 ) to pattern an integrated circuit (IC) substrate (e.g., IC substrate 118 of FIG. 1 or 3 ), in accordance with some embodiments.
- the method 500 may comport with techniques described in connection with FIGS. 1-4 and vice versa.
- the method 500 may include activating a laser beam.
- Activating the laser beam may include, for example, powering on a laser beam light source and stimulating the emission of electromagnetic radiation in the form of a laser.
- the method 500 may include deflecting the laser beam in a first scanning direction (e.g., X-direction of FIG. 1 or 3 ) on an IC substrate disposed in a path of the laser beam.
- the laser beam may be deflected in the first scanning direction by an AO deflector (e.g., AO deflector 110 of FIG. 1 or AO deflector 210 A of FIG. 3 ) of an AO module.
- Deflecting the laser beam in the first scanning direction may be accomplished, for example, by varying an acoustic signal (e.g., acoustic signal 120 of FIGS. 1 or 3 ) input into the AO deflector.
- an acoustic signal e.g., acoustic signal 120 of FIGS. 1 or 3
- the method 500 may include moving a mirror to control the position of the laser beam in a second scanning direction (e.g., Y-direction of FIG. 1 or 3 ) that is substantially perpendicular to the first scanning direction, the mirror having at least one surface to receive the laser beam (e.g., from the AO module).
- the mirror may rotate at a constant speed during patterning of laser-drilled vies with the laser system (e.g., laser system 100 of FIG. 1 or 3 ).
- the method 500 may include turning the laser beam on and off when deflecting the laser beam in the first scanning direction.
- the action at 508 may be performed, for example, by the laser system 100 of FIG. 1 having a single AO deflector.
- the AO module/deflector may be configured to turn the laser beam on and off when varying the acoustic signal to deflect the laser beam.
- the AO module may turn the laser beam off when varying the acoustic signal to deflect the laser beam and then back on subsequent to varying the acoustic signal.
- the method 500 may include deflecting the laser beam in the second scanning direction to track the moving of the mirror.
- the action at 510 may be performed, for example, by the laser system 300 of FIG. 3 having a first AO deflector (e.g., first AO deflector 210 A) and second AO deflector (e.g., second AO deflector 210 B).
- the deflecting at 504 may be performed by the first AO deflector of an AO module and the deflecting at 510 may be performed by a second AO deflector of the AO module,
- the method 500 may include patterning the IC substrate using the laser beam.
- the patterning may include forming laser-drilled vias (e.g., laser-drilled vias 118 A of FIG. 1 or 3 ) in a 2D pattern (X-direction and Y-direction) on the IC substrate.
- FIG. 6 schematically illustrates a cross-section side view of an example IC package assembly 600 , in accordance with some embodiments.
- the laser system 100 or 300 of FIG. 1 or 3 may be used to form laser-drilled vies in an IC substrate such as, for example, the package assembly 121 or circuit board 122 .
- the IC package assembly 600 may include one or more dies (hereinafter “die 102 ”) electrically and/or physically coupled with a package assembly 121 (sometimes referred to as a “package substrate”).
- the package assembly 121 may be electrically coupled with a circuit board 122 , as can be seen.
- the die 102 may represent a discrete product made from a semiconductor material (e.g., silicon) using semiconductor fabrication techniques such as thin film deposition, lithography, etching, and the like used in connection with forming complementary metal-oxide-semiconductor (CMOS) devices.
- CMOS complementary metal-oxide-semiconductor
- the die 102 may be, include, or be a part of a radio frequency (RF) die.
- RF radio frequency
- the die may be, include, or be a part of a processor, memory, SoC, or ASIC.
- an underfill material 108 (sometimes referred to as an “encapsulant”) may be disposed between the die 102 and the package assembly 121 to promote adhesion and/or protect features of the die 102 and package assembly 121 .
- the underfill material 108 may be composed of an electrically insulative material and may encapsulate at least a portion of the die 102 and/or die-level interconnect structures 106 , as can be seen. In some embodiments, the underfill material 108 is in direct contact with the die-level interconnect structures 106 .
- the die 102 can be attached to the package assembly 121 according to a wide variety of suitable configurations including, for example, being directly coupled with the package assembly 121 in a flip-chip configuration, as depicted.
- an active side, S 1 of the die 102 including active circuitry is attached to a surface of the package assembly 121 using die-level interconnect structures 106 such as bumps, pillars, or other suitable structures that may also electrically couple the die 102 with the package assembly 121 .
- the active side S 1 of the die 102 may include transistor devices, and an inactive side, S 2 , may be disposed opposite to the active side S 1 , as can be seen.
- the die 102 may generally include a semiconductor substrate 102 a , one or more device layers (hereinafter “device layer 102 b ”), and one or more interconnect layers (hereinafter “interconnect layer 102 c ”).
- the semiconductor substrate 102 a may be substantially composed of a bulk semiconductor material such as, for example, silicon, in some embodiments.
- the device layer 102 b may represent a region where active devices such as transistor devices are formed on the semiconductor substrate 102 a .
- the device layer 102 b may include, for example, structures such as channel bodies and/or source/drain regions of transistor devices.
- the interconnect layer 102 c may include interconnect structures that are configured to route electrical signals to or from the active devices in the device layer 102 b .
- the interconnect layer 102 c may include trenches and/or vias to provide electrical routing and/or contacts.
- the die-level interconnect structures 106 may be configured to route electrical signals between the die 102 and other electrical devices.
- the electrical signals may include, for example, input/output (I/O) signals and/or power/ground signals that are used in connection with operation of the die 102 .
- the package assembly 121 may include a multi-layer package substrate including, for example, build-up laminate layers.
- the package assembly 121 may include electrical routing features (not shown in FIG. 1 ) such as, for example, traces, pads, through-holes, laser-drilled vies, or lines configured to route electrical signals to or from the die 102 .
- the package assembly 121 may be configured to route electrical signals between the die 102 and components for wireless communication that are integrated within the package assembly, or between the die 102 and the circuit board 122 , or between the die 102 and another electrical component (e.g., another die, interposer, interface, component for wireless communication, etc.) coupled with the package assembly 121 .
- the circuit board 122 may be a printed circuit board (PCB) composed of an electrically insulative material such as an epoxy laminate.
- the circuit board 122 may include electrically insulating layers composed of materials such as, for example, polytetrafluoroethylene, phenolic cotton paper materials such as Flame Retardant 4 (FR-4), FR-1, cotton paper, and epoxy materials such as CEM-1 or CEM-3, or woven glass materials that are laminated together using an epoxy resin prepreg material.
- Interconnect structures (not shown) such as traces, trenches or vies may be formed through the electrically insulating layers to route the electrical signals of the die 102 through the circuit board 122 .
- the circuit board 122 may be composed of other suitable materials in other embodiments. In some embodiments, the circuit board 122 is a motherboard.
- Package-level interconnects such as, for example, solder balls 112 may be coupled with the package assembly 121 and/or the circuit board 122 to form corresponding solder joints that are configured to further route the electrical signals between the package assembly 121 and the circuit board 122 .
- Other suitable techniques to physically and/or electrically couple the package assembly 121 with the circuit board 122 may be used in other embodiments.
- the IC package assembly 600 may include a wide variety of other suitable configurations in other embodiments including, for example, suitable combinations of flip-chip and/or wire-bonding configurations, interposers, multi-chip package configurations including system-in-package (SiP) and/or package-on-package (PoP) configurations.
- SiP system-in-package
- PoP package-on-package
- Other suitable techniques to route electrical signals between the die 102 and other components of the IC package assembly 600 may be used in some embodiments.
- FIG. 7 schematically illustrates a cross-section side view of laser-drilled vias 718 A in an IC substrate 718 , in accordance with some embodiments.
- the IC substrate 718 may represent an example portion of an IC substrate 718 , in some embodiments.
- One or more laser-drilled vias 718 A may be formed through an electrically insulative material 730 such as, for example, an epoxy laminate layer.
- the electrically insulative material 730 may be disposed on an electrically conductive material 740 such as, for example, a metal layer (e.g., copper).
- the laser-drilled vias 718 A may have a tapered profile according to various embodiments.
- the one or more laser-drilled vies 718 A may be formed using the laser beam 104 of laser system 100 of FIG. 1 or the laser system 300 of FIG. 3 .
- the one or more laser-drilled vies 718 A may be formed in an IC substrate having other suitable configurations in other embodiments.
- Example 1 of a laser system may include an acousto-optics module to deflect a laser beam in a first scanning direction of the laser beam on an integrated circuit (IC) substrate when the IC substrate is in a path of the laser beam and a mirror having at least one surface to receive the laser beam from the acousto-optics module, the mirror to move to control position of the laser beam in a second scanning direction, wherein the second scanning direction is substantially perpendicular to the first scanning direction.
- Example 2 may include the laser system of Example 1, wherein the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon; and the at least one surface is one of the multiple surfaces.
- Example 3 may include the laser system of Example 2, wherein the polygon mirror has six surfaces corresponding with six sides of a hexagon and the at least one surface is one of the six surfaces.
- Example 4 may include the laser system of Example 1, wherein the mirror is configured to rotate at a constant speed.
- Example 5 may include the laser system of Example 1, wherein the acousto-optics module is configured to deflect the laser beam in the first scanning direction by varying an acoustic signal input into the acousto-optics module.
- Example 6 may include the laser system of Example 5, wherein the acousto-optics module includes a single acousto-optics deflector that is configured to turn the laser beam on and off.
- Example 7 may include the laser system of Example 5, wherein the acousto-optics module includes a first acousto-optics deflector to deflect the laser beam in the first scanning direction and a second acousto-optics deflector to deflect the laser beam in the second scanning direction.
- Example 8 may include the laser system of Example 7, wherein the second acousto-optics deflector is configured to track motion of the mirror.
- Example 9 may include the laser system of any of Examples 1-8, further comprising a lens disposed in a path of the laser beam between the mirror and a table upon which the IC substrate is to be placed when the IC substrate is to be patterned by the laser beam.
- Example 10 may include the laser system of Example 9, further comprising a laser resonator, a collimator disposed in the path of the laser beam between the resonator and the acousto-optics module, and an aperture mask disposed in the path of the laser beam between the resonator and the acousto-optics module.
- Example 11 may include the laser system of any of Examples 1-8, wherein the laser beam is a CO 2 laser beam or a 2 nd or3 rd harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser.
- Example 12 of a method may include activating a laser beam, deflecting, by an acousto-optics module, the laser beam in a first scanning direction on an integrated circuit (IC) substrate disposed in a path of the laser beam, and moving a mirror to control position of the laser beam in a second scanning direction, the mirror having at least one surface to receive the laser beam from the acousto-optics module, wherein the second scanning direction is substantially perpendicular to the first scanning direction.
- Example 13 may include the method of Example 12, wherein moving the mirror comprises rotating the mirror at a constant speed.
- Example 14 may include the method of Example 12, wherein the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon and the at least one surface is one of the multiple surfaces.
- Example 15 may include the method of Example 14, wherein the polygon mirror has six surfaces corresponding with six sides of a hexagon and the at least one surface is one of the six surfaces.
- Example 16 may include the method of Example 12, wherein deflecting the laser beam in the first scanning direction is performed by varying an acoustic signal input into the acousto-optics module.
- Example 17 may include the method of Example 16, further comprising turning, by the acousto-optics module, the laser beam on and off when varying the acoustic signal.
- Example 18 may include the method of Example 16, wherein deflecting the laser beam in the first scanning direction is performed by a first acousto-optics deflector of the acousto-optics module, the method further comprising deflecting, by a second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction.
- Example 19 may include the method of Example 18 , wherein deflecting, by the second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction tracks the moving of the mirror.
- Example 20 may include the method of Example 12, further comprising patterning the IC substrate using the laser beam.
- Various embodiments may include any suitable combination of the above-described embodiments including alternative (or) embodiments of embodiments that are described in conjunctive form (and) above (e.g., the “and” may be “and/or”). Furthermore, some embodiments may include one or more articles of manufacture (e.g., non-transitory computer-readable media) having instructions, stored thereon, that when executed result in actions of any of the above-described embodiments. Moreover, some embodiments may include apparatuses or systems having any suitable means for carrying out the various operations of the above-described embodiments.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Laser Beam Processing (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Embodiments of the present disclosure are directed towards an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations. In one embodiment, a laser system may include an acousto-optics module to deflect a laser beam in a first scanning direction of the laser beam on an integrated circuit (IC) substrate when the IC substrate is in a path of the laser beam and a mirror having at least one surface to receive the laser beam from the acousto -optics module, the mirror to move to control position of the laser beam in a second scanning direction, wherein the second scanning direction is substantially perpendicular to the first scanning direction. Other embodiments may be described and/or claimed.
Description
- Embodiments of the present disclosure generally relate to the field of laser systems, and more particularly, to an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations.
- Ongoing efforts are being made to improve throughput of laser drilling to form vias in an integrated circuit (IC) substrate in order to reduce cost. Some current approaches include increasing a galvo frequency of a laser system, splitting of the laser beam, reducing a shot count per via and/or increasing an X-Y table speed. Among such factors, the galvo frequency may be a primary contributor to throughput time. However, galvo frequency may be difficult to increase because of limitations of the speed of mechanical mirror movement in a galvo system. In laser projection patterning (LPP), a projection mask may be needed for patterning and laser energy utilization may be low due to the laser energy that is blocked by the mask.
- The background description provided herein is for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
- Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
-
FIG. 1 schematically illustrates a perspective view of an example laser system including a single acousto-optic deflector and a mirror, in accordance with some embodiments. -
FIG. 2 schematically illustrates an example pattern that is generated by the laser system ofFIG. 1 , in accordance with some embodiments. -
FIG. 3 schematically illustrates a perspective view of an example laser system including multiple acousto-optic deflectors and a mirror, in accordance with some embodiments. -
FIG. 4 schematically illustrates an operating principle of an acousto-optic deflector, in accordance with some embodiments. -
FIG. 5 schematically illustrates a flow diagram for a method of steering a laser beam to pattern an integrated circuit (IC) substrate, in accordance with some embodiments. -
FIG. 6 schematically illustrates a cross-section side view of an example IC package assembly, in accordance with some embodiments. -
FIG. 7 schematically illustrates a cross-section side view of laser-drilled vials in an IC substrate, in accordance with some embodiments. - Embodiments of the present disclosure describe an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations. In the following description, various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that embodiments of the present disclosure may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative implementations.
- In the following detailed description, reference is made to the accompanying drawings which form a part hereof, wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the subject matter of the present disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
- For the purposes of the present disclosure, the phrase “A and/or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
- The description may use perspective-based descriptions such as top/bottom, in/out, over/under, and the like. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments described herein to any particular orientation.
- The description may use the phrases “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
- The term “coupled with,” along with its derivatives, may be used herein. “Coupled” may mean one or more of the following. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. The term “directly coupled” may mean that two or more elements are in direct contact.
- In various embodiments, the phrase “a first feature formed, deposited, or otherwise disposed on a second feature” may mean that the first feature is formed, deposited, or disposed over the second feature, and at least a part of the first feature may be in direct contact (e.g., direct physical and/or electrical contact) or indirect contact (e.g., having one or more other features between the first feature and the second feature) with at least a part of the second feature.
- As used herein, the term “module” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a system-on-chip chip (SoC), a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
-
FIG. 1 schematically illustrates a perspective view of anexample laser system 100 including a single acousto-optic deflector (hereinafter “AO deflector 110”) and amirror 112, in accordance with some embodiments. According to various embodiments, thelaser system 100 may include alaser resonator 102,laser beam 104,collimator 106,aperture mask 108,AO deflector 110,mirror 112,lens 114 and X-Y table 116, coupled as can be seen. - The
laser system 100 may be configured to drill vias (e.g., laser-drilledvias 118A) in an integrated circuit (IC)substrate 118 using thelaser beam 104. According to various embodiments, thelaser system 100 may use mask-less laser direct patterning (LDP) or laser direct imaging (LDI) to pattern theIC substrate 118 with laser-drilled vias. In some embodiments, theAO deflector 110 may be used to steer thelaser beam 104 in a respective first scanning direction (e.g., X-direction) and themirror 112 may be used to steer thelaser beam 104 in a second scanning direction (e.g., Y-direction) on theIC substrate 118 when theIC substrate 118 is in a path of the laser beam 104 (e.g., on the X-Y stage as depicted). The first scanning direction may be substantially perpendicular or perpendicular to the first scanning direction. - According to various embodiments, the
mirror 112 may include at least one surface to receive thelaser beam 104 from theAO deflector 110. In some embodiments, themirror 112 may be a polygon mirror having multiple surfaces that correspond with multiple sides of the polygon. For example, in the depicted embodiment, themirror 112 is a hexagon mirror having six surfaces (e.g., 112A, 112B, 112C) corresponding with six sides of the polygon, as can be seen. Thesurfaces mirror 112 may have more or fewer surfaces than depicted in other embodiments. For example, in some embodiments, themirror 112 may have a single surface or more than six surfaces. - The
mirror 112 may be configured to move to control the position of thelaser beam 104 in the second scanning direction. In some embodiments, themirror 112 may rotate, in one embodiment, themirror 112 may continuously rotate at a constant speed to steer thelaser beam 104 in the second scanning direction. In some embodiments, themirror 112 may have translation movement to move thelaser beam 104 in the second scanning direction. - The
AO deflector 110 may be used to deflect thelaser beam 104 in the first scanning direction. In some embodiments, theAO deflector 110 may deflect thelaser beam 104 according to anacoustic signal 120. For example, thelaser beam 104 may be deflected at theAO deflector 110 by varying anacoustic signal 120 that is input to theAO deflector 110. A time period foracoustic signal 120 change may be during (e.g., within) a laser pulse off time in order to avoid alaser beam 104 position error in thelaser system 100. According to various embodiments, the timing of turning thelaser beam 104 on/off may be synchronized with deflection at theAO deflector 110 and/or themirror 112. The laser system may include a synch mechanism between theAO deflector 110 with capability of turning on/off the laser and thepolygon mirror 112. - The
laser system 100 may perform two-dimensional (2D) patterning by thelaser beam 104 using a combination of steering with themirror 112 and theAO deflector 110. In some embodiments, theAO deflector 110 may be configured to turn thelaser beam 104 on and off. For example, theAO deflector 110 may switch thelaser beam 104 on and off to generate a one dimensional pattern in the first scanning direction. The deflectedlaser beam 104 may reflect off of themirror 112 rotating at a constant speed. The rotation of the polygon mirror may allow laser beam scanning in the second scanning direction to provide 2D patterning. - According to various embodiments, the
AO deflector 110 may be part of an acousto-optics (AO) module. In thelaser system 100 ofFIG. 1 , the AO module may include or be asingle AO deflector 110 to deflect thelaser beam 104 in a first scanning direction only (e.g., a single AO deflector). In other embodiments, such as in thelaser system 300 ofFIG. 3 , the AO module may include or be multiple AO deflectors (e.g., 210A, 210B) to deflect theAO deflectors laser beam 104 in two or more scanning directions. - In some embodiments, the
laser system 100 may further include alaser resonator 102 to output thelaser beam 104. Thelaser beam 104 may be of any suitable type including, for example, a carbon dioxide (CO2) laser or a 2nd/3rd harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (532 nm/355 nm). Other suitable types of lasers may be used in other embodiments. In some embodiments, thelaser system 100 may further include acollimator 106 in a path of thelaser beam 104 to affect a size (e.g., diameter) of thelaser beam 104. In some embodiments, thelaser system 100 may further include anaperture mask 108 in a path of thelaser beam 104 to provide a spatial filter for thelaser beam 104, which may provide a desired shape (e.g., circular) of thelaser beam 104. In some embodiments, thelaser system 100 may further include alens 114 such as a scanning lens to focus or reduce a size of thelaser beam 104. In some embodiments, thelaser system 100 may further include an X-Y table 116 to hold arid move (e.g., in the X or Y direction) anIC substrate 118 in a path of thelaser beam 104 to facilitate the formation of laser-drilledvies 118A in theIC substrate 118. - A laser drilling processing speed of the
laser system 100 may increase relative to a traditional galvanometer (galvo) laser system because themirror 112 may not need to accelerate and/or decelerate for beam positioning and theAO deflector 110 may provide non-mechanical beam steering. Thelaser system 100 may further provide increased beam position accuracy relative to a traditional galvo laser system. Using theAO deflector 110 andmirror 112 to steer thelaser beam 104 may improve alignment accuracy relative to traditional configurations. In an LDP or LDI configuration, efficiency of laser energy utilization may improve (e.g., for same laser input power, thelaser system 100 may have higher process speed) because there may be no mask for the patterning. -
FIG. 2 schematically illustrates anexample pattern 200 that is generated by thelaser system 100 ofFIG. 1 , in accordance with some embodiments. InFIG. 2 , each of thefeatures 224 may represent one or more laser pulses by thelaser beam 104 on theIC substrate 118 ofFIG. 1 and the X-direction is perpendicular to the Y-direction. Due to a continuous rotation of themirror 112, afirst scanning direction 222 of thelaser system 100 may not be exactly perpendicular to the second scanning direction (e.g., the Y-direction), as can be seen. - An angle, θ, between the
first scanning direction 222 and the X-direction may depend on a variety of factors. For example, inEquation 1, θ may be calculated according to the following, where d is a laser beam pitch, k is a laser frequency, and visa rotation speed of the mirror (e.g.,mirror 112 ofFIG. 1 ): -
- According to various embodiments, the phrase “substantially perpendicular” includes a deviation from exactly perpendicular by the angle θ.
-
FIG. 3 schematically illustrates a perspective view of anexample laser system 300 including multiple acousto- 210A, 210B and aoptic deflectors mirror 112, in accordance with some embodiments. Thelaser system 300 may generally comport with embodiments described in connection with thelaser system 100, except that in thelaser system 300, the AO module may include two 210A, 210B.AO deflectors - A
first AO deflector 210A of thelaser system 300 may deflect thelaser beam 104 in the X-direction (e.g., similar to theAO deflector 110 ofFIG. 1 ). For example, thefirst AO deflector 210A may deflect thelaser beam 104 by varying anacoustic signal 120 that is input to thefirst AO deflector 210A. Asecond AO deflector 210B of thelaser system 300 may deflect thelaser beam 104 in the Y-direction (e.g., according to another acoustic signal similar to acoustic signal 120). In some embodiments, thesecond AO deflector 210B may track the movement (e.g., rotation) of themirror 112 and/or compensate for any error in surface flatness of the surface(s) (e.g., surfaces 112A, 112B, 112C) of themirror 112. For example, thelaser beam 104 deflected by thefirst AO deflector 210A and thesecond AO deflector 210B may hit themirror 112 rotating at constant speed. The rotation of themirror 112 may steer thelaser beam 104 in the Y-direction. Since thefirst AO deflector 210A and thesecond AO deflector 210B can position thelaser beam 104 in 2D (e.g., the X-direction and the Y-direction), thelaser beam 104 may not need to be switched on and off for the pattern generation and better laser energy utilization may be realized in thelaser system 300 relative to thelaser system 100 as a result. In some embodiments, thelaser beam 300 may remain on during 2D pattern generation (e.g., forming laser-drilledvias 118A in the IC substrate 118). - According to various embodiments, the
110, 210A, or 210B ofAO deflector FIG. 1 or 3 may be composed of a material configured to propagate an acoustic wave such as, for example, silica, tellurium dioxide (TeO2), or germanium (Ge). The AO deflector may be composed of other suitable materials in other embodiments. -
FIG. 4 schematically illustrates an operating principle of an acousto-optic deflector 400, which may represent theAO deflector 110 ofFIG. 1 orfirst AO deflector 210A andsecond AO deflector 210B ofFIG. 3 , in accordance with some embodiments. The acoustic wave generated by a radio frequency (RF) driver may produce a sinusoidal refractive index gradient, which may act as a diffraction grating to an incoming laser beam (e.g.,laser beam 104 ofFIG. 1 or 3 ). For example, in some embodiments, an acoustic signal may be input into a mixer together with an output from an oscillator and output to an RF amp, which may be coupled with theAO deflector 400, as can be seen. Varying the acoustic signal input to theAO deflector 400 may allow steering of the 1st order diffracted beam from the incident beam to provide an adjustable diffracted beam, as can be seem. The transmitted beam may pass through the AO deflector, - In some embodiments, the 1st order diffracted beam may be utilized in the
AO deflector 400. For example, the diffracted angle, θ, may be defined according to Equation 2 as follows, where λ is the optical wavelength of the laser beam in air, Va is the acoustical velocity of the material (e.g., crystal) of the AO deflector, is the acoustic frequency of the material of the AO deflector, and θb is the Bragg angle: -
- The acoustic frequency ƒa may be controlled by the RF driver, which may steer the laser beam position without the mechanical motion that may be required for a traditional galvo positioning system. A diffraction efficiency of the
AO deflector 400 may be defined I diffracted/Iincident, which may depend on acoustic energy Iacoustic of theAO deflector 400, as defined in Equation 3 as follows, where L is a length of an electrode of theAO deflector 400, H is a height of the electrode. M is a figure of merit of the optical material as defined in Equation 4: -
- The figure of merit M is defined in Equation 4 as follows, where n is refractive index, p is strain-optic coefficient, ρ is density, and Va is acoustical velocity:
-
- The diffraction efficiency I diffracted/Iincident may be adjusted by adjusting the acoustic energy Iacoustic. For example, in some embodiments, by adjusting the acoustic energy Iaccoustic through the RF driver power control, the diffraction efficiency may be adjusted from 0 to 90%.
- The AO deflector may include no moving parts, in some embodiments. When a new acoustic wave occupies the whole aperture, the
laser beam 104 can be deflected to a new position. The response time or aperture time, τ, may be calculated according to Equation 5, where D is the aperture size (e.g., millimeters), and Va is the acoustic velocity (on the order of 103 meters/second in the crystal): -
- In some embodiments, the response time τ may be on the order of microseconds, which may be a substantial improvement relative to a response time of a galvo system, which may have a response time on the order of milliseconds. The operating frequency of the AO deflector may be 3 orders of magnitude higher than the galvo system, according to various embodiments.
- When the mirror (e.g.,
mirror 112 ofFIG. 1 or 3 ) is rotating at constant speed, no inertia may need to be overcome, which may allow a high rotation speed and improved position accuracy. In some embodiments, the mirror may rotate on the order of ˜10,000 revolutions per minute (RPM). With a 100 millimeter focal length, 10,000 RPM may provide a scanning speed of about 105 meters/second, which may be substantially faster than a galvo scanning speed (e.g., less than 10 meters/second). Thus, the mirror may provide a scanning speed that is at least 1 order of magnitude greater than a galvo system, according to various embodiments. -
FIG. 5 schematically illustrates a flow diagram for amethod 500 of steering a laser beam (e.g.,laser beam 104 ofFIGS. 1 or 3 ) to pattern an integrated circuit (IC) substrate (e.g.,IC substrate 118 ofFIG. 1 or 3 ), in accordance with some embodiments. Themethod 500 may comport with techniques described in connection withFIGS. 1-4 and vice versa. - At 502, the
method 500 may include activating a laser beam. Activating the laser beam may include, for example, powering on a laser beam light source and stimulating the emission of electromagnetic radiation in the form of a laser. - At 504, the
method 500 may include deflecting the laser beam in a first scanning direction (e.g., X-direction ofFIG. 1 or 3 ) on an IC substrate disposed in a path of the laser beam. According to various embodiments, the laser beam may be deflected in the first scanning direction by an AO deflector (e.g.,AO deflector 110 ofFIG. 1 orAO deflector 210A ofFIG. 3 ) of an AO module. Deflecting the laser beam in the first scanning direction may be accomplished, for example, by varying an acoustic signal (e.g.,acoustic signal 120 ofFIGS. 1 or 3 ) input into the AO deflector. - At 506, the
method 500 may include moving a mirror to control the position of the laser beam in a second scanning direction (e.g., Y-direction ofFIG. 1 or 3 ) that is substantially perpendicular to the first scanning direction, the mirror having at least one surface to receive the laser beam (e.g., from the AO module). According to various embodiments, the mirror may rotate at a constant speed during patterning of laser-drilled vies with the laser system (e.g.,laser system 100 ofFIG. 1 or 3 ). - At 508, the
method 500 may include turning the laser beam on and off when deflecting the laser beam in the first scanning direction. The action at 508 may be performed, for example, by thelaser system 100 ofFIG. 1 having a single AO deflector. In some embodiments, the AO module/deflector may be configured to turn the laser beam on and off when varying the acoustic signal to deflect the laser beam. For example, in one embodiment, the AO module may turn the laser beam off when varying the acoustic signal to deflect the laser beam and then back on subsequent to varying the acoustic signal. - Alternatively, at 510, the
method 500 may include deflecting the laser beam in the second scanning direction to track the moving of the mirror. The action at 510 may be performed, for example, by thelaser system 300 ofFIG. 3 having a first AO deflector (e.g.,first AO deflector 210A) and second AO deflector (e.g.,second AO deflector 210B). In some embodiments, the deflecting at 504 may be performed by the first AO deflector of an AO module and the deflecting at 510 may be performed by a second AO deflector of the AO module, - At 512, the
method 500 may include patterning the IC substrate using the laser beam. For example, in some embodiments, the patterning may include forming laser-drilled vias (e.g., laser-drilledvias 118A ofFIG. 1 or 3 ) in a 2D pattern (X-direction and Y-direction) on the IC substrate. - Various operations are described as multiple discrete operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. For example, the actions of
method 500 may be performed in any suitable order according to various embodiments. - Embodiments of the present disclosure may be implemented into a system (e.g., a computing device) using any suitable hardware and/or software to configure as desired.
FIG. 6 schematically illustrates a cross-section side view of an exampleIC package assembly 600, in accordance with some embodiments. According to various embodiments, the 100 or 300 oflaser system FIG. 1 or 3 may be used to form laser-drilled vies in an IC substrate such as, for example, thepackage assembly 121 orcircuit board 122. In some embodiments, theIC package assembly 600 may include one or more dies (hereinafter “die 102 ”) electrically and/or physically coupled with a package assembly 121 (sometimes referred to as a “package substrate”). In some embodiments, thepackage assembly 121 may be electrically coupled with acircuit board 122, as can be seen. - The
die 102 may represent a discrete product made from a semiconductor material (e.g., silicon) using semiconductor fabrication techniques such as thin film deposition, lithography, etching, and the like used in connection with forming complementary metal-oxide-semiconductor (CMOS) devices. In some embodiments, thedie 102 may be, include, or be a part of a radio frequency (RF) die. In other embodiments, the die may be, include, or be a part of a processor, memory, SoC, or ASIC. - In some embodiments, an underfill material 108 (sometimes referred to as an “encapsulant”) may be disposed between the die 102 and the
package assembly 121 to promote adhesion and/or protect features of thedie 102 andpackage assembly 121. Theunderfill material 108 may be composed of an electrically insulative material and may encapsulate at least a portion of thedie 102 and/or die-level interconnect structures 106, as can be seen. In some embodiments, theunderfill material 108 is in direct contact with the die-level interconnect structures 106. - The die 102 can be attached to the
package assembly 121 according to a wide variety of suitable configurations including, for example, being directly coupled with thepackage assembly 121 in a flip-chip configuration, as depicted. In the flip-chip configuration, an active side, S1, of thedie 102 including active circuitry is attached to a surface of thepackage assembly 121 using die-level interconnect structures 106 such as bumps, pillars, or other suitable structures that may also electrically couple the die 102 with thepackage assembly 121. The active side S1 of thedie 102 may include transistor devices, and an inactive side, S2, may be disposed opposite to the active side S1, as can be seen. - The
die 102 may generally include a semiconductor substrate 102 a, one or more device layers (hereinafter “device layer 102 b”), and one or more interconnect layers (hereinafter “interconnect layer 102 c”). The semiconductor substrate 102 a may be substantially composed of a bulk semiconductor material such as, for example, silicon, in some embodiments. Thedevice layer 102 b may represent a region where active devices such as transistor devices are formed on the semiconductor substrate 102 a. Thedevice layer 102 b may include, for example, structures such as channel bodies and/or source/drain regions of transistor devices. Theinterconnect layer 102 c may include interconnect structures that are configured to route electrical signals to or from the active devices in thedevice layer 102 b. For example, theinterconnect layer 102 c may include trenches and/or vias to provide electrical routing and/or contacts. - In some embodiments, the die-
level interconnect structures 106 may be configured to route electrical signals between the die 102 and other electrical devices. The electrical signals may include, for example, input/output (I/O) signals and/or power/ground signals that are used in connection with operation of thedie 102. - In some embodiments, the
package assembly 121 may include a multi-layer package substrate including, for example, build-up laminate layers. Thepackage assembly 121 may include electrical routing features (not shown inFIG. 1 ) such as, for example, traces, pads, through-holes, laser-drilled vies, or lines configured to route electrical signals to or from thedie 102. For example, thepackage assembly 121 may be configured to route electrical signals between the die 102 and components for wireless communication that are integrated within the package assembly, or between the die 102 and thecircuit board 122, or between the die 102 and another electrical component (e.g., another die, interposer, interface, component for wireless communication, etc.) coupled with thepackage assembly 121. - The
circuit board 122 may be a printed circuit board (PCB) composed of an electrically insulative material such as an epoxy laminate. For example, thecircuit board 122 may include electrically insulating layers composed of materials such as, for example, polytetrafluoroethylene, phenolic cotton paper materials such as Flame Retardant 4 (FR-4), FR-1, cotton paper, and epoxy materials such as CEM-1 or CEM-3, or woven glass materials that are laminated together using an epoxy resin prepreg material. Interconnect structures (not shown) such as traces, trenches or vies may be formed through the electrically insulating layers to route the electrical signals of the die 102 through thecircuit board 122. Thecircuit board 122 may be composed of other suitable materials in other embodiments. In some embodiments, thecircuit board 122 is a motherboard. - Package-level interconnects such as, for example,
solder balls 112 may be coupled with thepackage assembly 121 and/or thecircuit board 122 to form corresponding solder joints that are configured to further route the electrical signals between thepackage assembly 121 and thecircuit board 122. Other suitable techniques to physically and/or electrically couple thepackage assembly 121 with thecircuit board 122 may be used in other embodiments. - The
IC package assembly 600 may include a wide variety of other suitable configurations in other embodiments including, for example, suitable combinations of flip-chip and/or wire-bonding configurations, interposers, multi-chip package configurations including system-in-package (SiP) and/or package-on-package (PoP) configurations. Other suitable techniques to route electrical signals between the die 102 and other components of theIC package assembly 600 may be used in some embodiments. -
FIG. 7 schematically illustrates a cross-section side view of laser-drilledvias 718A in anIC substrate 718, in accordance with some embodiments. TheIC substrate 718 may represent an example portion of anIC substrate 718, in some embodiments. One or more laser-drilledvias 718A may be formed through an electricallyinsulative material 730 such as, for example, an epoxy laminate layer. In some embodiments, the electricallyinsulative material 730 may be disposed on an electricallyconductive material 740 such as, for example, a metal layer (e.g., copper). The laser-drilledvias 718A may have a tapered profile according to various embodiments. In some embodiments, the one or more laser-drilledvies 718A may be formed using thelaser beam 104 oflaser system 100 ofFIG. 1 or thelaser system 300 ofFIG. 3 . The one or more laser-drilledvies 718A may be formed in an IC substrate having other suitable configurations in other embodiments. - According to various embodiments, the present disclosure describes a laser system. Example 1 of a laser system may include an acousto-optics module to deflect a laser beam in a first scanning direction of the laser beam on an integrated circuit (IC) substrate when the IC substrate is in a path of the laser beam and a mirror having at least one surface to receive the laser beam from the acousto-optics module, the mirror to move to control position of the laser beam in a second scanning direction, wherein the second scanning direction is substantially perpendicular to the first scanning direction. Example 2 may include the laser system of Example 1, wherein the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon; and the at least one surface is one of the multiple surfaces. Example 3 may include the laser system of Example 2, wherein the polygon mirror has six surfaces corresponding with six sides of a hexagon and the at least one surface is one of the six surfaces. Example 4 may include the laser system of Example 1, wherein the mirror is configured to rotate at a constant speed. Example 5 may include the laser system of Example 1, wherein the acousto-optics module is configured to deflect the laser beam in the first scanning direction by varying an acoustic signal input into the acousto-optics module. Example 6 may include the laser system of Example 5, wherein the acousto-optics module includes a single acousto-optics deflector that is configured to turn the laser beam on and off. Example 7 may include the laser system of Example 5, wherein the acousto-optics module includes a first acousto-optics deflector to deflect the laser beam in the first scanning direction and a second acousto-optics deflector to deflect the laser beam in the second scanning direction. Example 8 may include the laser system of Example 7, wherein the second acousto-optics deflector is configured to track motion of the mirror. Example 9 may include the laser system of any of Examples 1-8, further comprising a lens disposed in a path of the laser beam between the mirror and a table upon which the IC substrate is to be placed when the IC substrate is to be patterned by the laser beam. Example 10 may include the laser system of Example 9, further comprising a laser resonator, a collimator disposed in the path of the laser beam between the resonator and the acousto-optics module, and an aperture mask disposed in the path of the laser beam between the resonator and the acousto-optics module. Example 11 may include the laser system of any of Examples 1-8, wherein the laser beam is a CO2 laser beam or a 2nd or3rd harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser.
- According to various embodiments, the present disclosure describes a method. Example 12 of a method may include activating a laser beam, deflecting, by an acousto-optics module, the laser beam in a first scanning direction on an integrated circuit (IC) substrate disposed in a path of the laser beam, and moving a mirror to control position of the laser beam in a second scanning direction, the mirror having at least one surface to receive the laser beam from the acousto-optics module, wherein the second scanning direction is substantially perpendicular to the first scanning direction. Example 13 may include the method of Example 12, wherein moving the mirror comprises rotating the mirror at a constant speed. Example 14 may include the method of Example 12, wherein the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon and the at least one surface is one of the multiple surfaces. Example 15 may include the method of Example 14, wherein the polygon mirror has six surfaces corresponding with six sides of a hexagon and the at least one surface is one of the six surfaces. Example 16 may include the method of Example 12, wherein deflecting the laser beam in the first scanning direction is performed by varying an acoustic signal input into the acousto-optics module. Example 17 may include the method of Example 16, further comprising turning, by the acousto-optics module, the laser beam on and off when varying the acoustic signal. Example 18 may include the method of Example 16, wherein deflecting the laser beam in the first scanning direction is performed by a first acousto-optics deflector of the acousto-optics module, the method further comprising deflecting, by a second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction. Example 19 may include the method of Example 18, wherein deflecting, by the second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction tracks the moving of the mirror. Example 20 may include the method of Example 12, further comprising patterning the IC substrate using the laser beam.
- Various embodiments may include any suitable combination of the above-described embodiments including alternative (or) embodiments of embodiments that are described in conjunctive form (and) above (e.g., the “and” may be “and/or”). Furthermore, some embodiments may include one or more articles of manufacture (e.g., non-transitory computer-readable media) having instructions, stored thereon, that when executed result in actions of any of the above-described embodiments. Moreover, some embodiments may include apparatuses or systems having any suitable means for carrying out the various operations of the above-described embodiments.
- The above description of illustrated implementations, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments of the present disclosure to the precise forms disclosed. While specific implementations and examples are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the present disclosure, as those skilled in the relevant art will recognize.
- These modifications may be made to embodiments of the present disclosure in light of the above detailed description. The terms used in the following claims should not be construed to limit various embodiments of the present disclosure to the specific implementations disclosed in the specification and the claims. Rather, the scope is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
-
- 1-20. (canceled)
Claims (20)
- 21. A laser system comprising:an acousto-optics module to deflect a laser beam in a first scanning direction of the laser beam on an integrated circuit (IC) substrate when the IC substrate is in a path of the laser beam; anda mirror having at least one surface to receive the laser beam from the acousto-optics module, the mirror to move to control position of the laser beam in a second scanning direction, wherein the second scanning direction is substantially perpendicular to the first scanning direction.
- 22. The laser system of
claim 21 , wherein:the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon; andthe at least one surface is one of the multiple surfaces. - 23. The laser system of
claim 22 , wherein:the polygon mirror has six surfaces corresponding with six sides of a hexagon; andthe at least one surface is one of the six surfaces. - 24. The laser system of
claim 21 , wherein the mirror is configured to rotate at a constant speed. - 25. The laser system of
claim 21 , wherein the acousto-optics module is configured to deflect the laser beam in the first scanning direction by varying an acoustic signal input into the acousto-optics module. - 26. The laser system of
claim 25 , wherein the acousto-optics module includes a single acousto-optics deflector that is configured to turn the laser beam on and off. - 27. The laser system of
claim 25 , wherein the acousto-optics module includes a first acousto-optics deflector to deflect the laser beam in the first scanning direction and a second acousto-optics deflector to deflect the laser beam in the second scanning direction. - 28. The laser system of
claim 27 , wherein the second acousto-optics deflector is configured to track motion of the mirror. - 29. The laser system of
claim 21 , further comprising:a lens disposed in a path of the laser beam between the mirror and a table upon which the IC substrate is to be placed when the IC substrate is to be patterned by the laser beam. - 30. The laser system of
claim 29 , further comprising:a laser resonator;a collimator disposed in the path of the laser beam between the resonator and the acousto-optics module; andan aperture mask disposed in the path of the laser beam between the resonator and the acousto-optics module. - 31. The laser system of
claim 21 , wherein the laser beam is a CO2 laser beam or a 2nd or 3rd harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. - 32. A method comprising:activating a laser beam;deflecting, by an acousto-optics module, the laser beam in a first scanning direction on an integrated circuit (IC) substrate disposed in a path of the laser beam; andmoving a mirror to control position of the laser beam in a second scanning direction, the mirror having at least one surface to receive the laser beam from the acousto-optics module, wherein the second scanning direction is substantially perpendicular to the first scanning direction.
- 33. The method of
claim 32 , wherein moving the mirror comprises rotating the mirror at a constant speed. - 34. The method of
claim 32 , wherein:the mirror is a polygon mirror having multiple surfaces corresponding with multiple sides of the polygon; andthe at least one surface is one of the multiple surfaces. - 35. The method of
claim 34 , wherein:the polygon mirror has six surfaces corresponding with six sides of a hexagon; andthe at least one surface is one of the six surfaces. - 36. The method of
claim 32 , wherein deflecting the laser beam in the first scanning direction is performed by varying an acoustic signal input into the acousto-optics module. - 37. The method of
claim 36 , further comprising:turning, by the acousto-optics module, the laser beam on and off when varying the acoustic signal. - 38. The method of
claim 36 , wherein deflecting the laser beam in the first scanning direction is performed by a first acousto-optics deflector of the acousto-optics module, the method further comprising:deflecting, by a second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction. - 39. The method of
claim 38 , wherein deflecting, by the second acousto-optics deflector of the acousto-optics module, the laser beam in the second scanning direction tracks the moving of the mirror. - 40. The method of
claim 32 , further comprising:patterning the IC substrate using the laser beam.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2015/019179 WO2016144290A1 (en) | 2015-03-06 | 2015-03-06 | Acousto-optics deflector and mirror for laser beam steering |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170036301A1 true US20170036301A1 (en) | 2017-02-09 |
| US10286488B2 US10286488B2 (en) | 2019-05-14 |
Family
ID=56878711
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/909,724 Active 2036-10-12 US10286488B2 (en) | 2015-03-06 | 2015-03-06 | Acousto-optics deflector and mirror for laser beam steering |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US10286488B2 (en) |
| KR (1) | KR102309213B1 (en) |
| CN (1) | CN107430269B (en) |
| TW (1) | TWI603557B (en) |
| WO (1) | WO2016144290A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019155392A (en) * | 2018-03-09 | 2019-09-19 | イビデン株式会社 | Laser processing device and laser processing method |
| CN110587155A (en) * | 2019-08-29 | 2019-12-20 | 武汉安扬激光技术有限责任公司 | Laser processing device for cutting inverted taper hole or groove and using method thereof |
| JP2020037130A (en) * | 2018-09-05 | 2020-03-12 | イビデン株式会社 | Laser processing device and laser processing method |
| US10831082B2 (en) | 2018-05-30 | 2020-11-10 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling laser light propagation direction by using a plurality of nano-antennas |
| US11077526B2 (en) * | 2015-09-09 | 2021-08-03 | Electro Scientific Industries, Inc. | Laser processing apparatus, methods of laser-processing workpieces and related arrangements |
| US20210286172A1 (en) * | 2020-03-11 | 2021-09-16 | Rohr, Inc. | Substrate perforation system & method using polygon mirror(s) |
| CN113547238A (en) * | 2021-09-23 | 2021-10-26 | 济南森峰激光科技股份有限公司 | Method for increasing aperture of micro-hole of high-speed rotating mirror laser processing array |
| WO2022146566A1 (en) | 2020-12-28 | 2022-07-07 | Electro Scientific Industries, Inc. | Apparatus and method for operating acousto-optical deflectors |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019025539A (en) * | 2017-08-04 | 2019-02-21 | 株式会社ディスコ | Laser processing equipment |
| KR102128504B1 (en) * | 2018-01-26 | 2020-07-08 | 주식회사 이오테크닉스 | Inertia Canceling Processing Device and Inertia Canceling Processing Method |
| US12103110B2 (en) | 2019-03-22 | 2024-10-01 | Via Mechanics, Ltd. | Laser processing apparatus and laser processing method |
| JP7404043B2 (en) * | 2019-03-22 | 2023-12-25 | ビアメカニクス株式会社 | Laser processing equipment and laser processing method |
| CN113523577A (en) * | 2021-07-09 | 2021-10-22 | 济南森峰激光科技股份有限公司 | High-speed laser grooving method and device for PERC cell based on rotating mirror and PERC cell |
Citations (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4552456A (en) * | 1981-10-31 | 1985-11-12 | Nissan Motor Company, Limited | Optical pulse radar for an automotive vehicle |
| US5502001A (en) * | 1990-12-19 | 1996-03-26 | Hitachi, Ltd. | Method of forming light beam and method of fabricating semiconductor integrated circuits |
| US5579148A (en) * | 1993-11-29 | 1996-11-26 | Nippondenso Co., Ltd. | Two-dimensional optical scanner |
| US5600478A (en) * | 1990-02-13 | 1997-02-04 | Imaje Sa | Laser marking arrangements |
| US5837962A (en) * | 1996-07-15 | 1998-11-17 | Overbeck; James W. | Faster laser marker employing acousto-optic deflection |
| US5903380A (en) * | 1997-05-01 | 1999-05-11 | Rockwell International Corp. | Micro-electromechanical (MEM) optical resonator and method |
| US20010022566A1 (en) * | 2000-03-16 | 2001-09-20 | Yoji Okazaki | Color laser display employing excitation solid laser unit, fiber laser unit, or semi conductor laser unit |
| US20020040893A1 (en) * | 2000-10-06 | 2002-04-11 | Hitachi Via Mechanics, Ltd. | Method and apparatus for drilling printed wiring boards |
| US6467345B1 (en) * | 1993-10-18 | 2002-10-22 | Xros, Inc. | Method of operating micromachined members coupled for relative rotation |
| US20030189030A1 (en) * | 2001-05-23 | 2003-10-09 | Joaquina Faour | Laser drilling system and method |
| US20040112879A1 (en) * | 2002-12-16 | 2004-06-17 | Masaki Mori | Identification-code laser marking method and apparatus |
| US20040182929A1 (en) * | 2003-03-18 | 2004-09-23 | Sony Corporation | Laser emitting module, window cap, laser pointer, and light emitting module |
| US20040222197A1 (en) * | 1996-11-20 | 2004-11-11 | Ibiden Co., Ltd. | Laser machining apparatus, and apparatus and method for manufacturing a multilayered printed wiring board |
| US20050013328A1 (en) * | 1998-09-08 | 2005-01-20 | Heinrich Jurgensen | Laser radiation source |
| US20050087522A1 (en) * | 2003-10-24 | 2005-04-28 | Yunlong Sun | Laser processing of a locally heated target material |
| US20050145605A1 (en) * | 2001-05-23 | 2005-07-07 | Joaquina Faour | Laser drilling system and method |
| US20050238071A1 (en) * | 2004-04-22 | 2005-10-27 | Michio Oka | One-dimensional illumination apparatus and imaging apparatus |
| US20050237895A1 (en) * | 2004-04-23 | 2005-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method for manufacturing semiconductor device |
| US6961355B1 (en) * | 2003-01-09 | 2005-11-01 | Photonics Industries, Int'l. | Variable power pulsed secondary beam laser |
| US20050263498A1 (en) * | 1996-11-20 | 2005-12-01 | Ibiden Co., Ltd. | Ceramic heater |
| US20050263690A1 (en) * | 2004-06-01 | 2005-12-01 | Olympus Corporation | Laser scanning microscope |
| US20060249491A1 (en) * | 1999-09-01 | 2006-11-09 | Hell Gravure Systems Gmbh | Laser radiation source |
| US20070284347A1 (en) * | 2006-06-13 | 2007-12-13 | Disco Corporation | Via hole forming method |
| US20080009132A1 (en) * | 2006-06-27 | 2008-01-10 | Disco Corporation | Via hole forming method |
| US20080011723A1 (en) * | 2006-07-11 | 2008-01-17 | Disco Corporation | Laser beam processing machine |
| US20080031291A1 (en) * | 2006-08-04 | 2008-02-07 | Disco Corporation | Laser beam irradiation apparatus and laser working machine |
| US20080037596A1 (en) * | 2006-08-09 | 2008-02-14 | Disco Corporation | Laser beam irradiation apparatus and laser working machine |
| US20080061042A1 (en) * | 2006-09-12 | 2008-03-13 | Disco Corporation | Laser beam machining system |
| US20080067157A1 (en) * | 2006-09-14 | 2008-03-20 | Disco Corporation | Via hole forming method |
| US20080105665A1 (en) * | 2006-11-02 | 2008-05-08 | Disco Corporation | Laser processing machine |
| US20080110868A1 (en) * | 2006-11-15 | 2008-05-15 | Disco Corporation | Laser beam processing machine |
| US20080179302A1 (en) * | 2007-01-26 | 2008-07-31 | Disco Corporation | Via hole forming method |
| US20080212999A1 (en) * | 2007-03-02 | 2008-09-04 | Kensuke Masuda | Light-amount detecting device, light source device, optical scanning unit and image forming apparatus |
| US20080299783A1 (en) * | 2007-06-01 | 2008-12-04 | Electro Scientific Industries, Inc. | Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window |
| US20090015896A1 (en) * | 2007-07-10 | 2009-01-15 | Koji Masuda | Optical scanning device and image forming apparatus |
| US20090236323A1 (en) * | 2008-03-24 | 2009-09-24 | Electro Scientific Industries, Inc. | Method and apparatus for laser drilling holes with tailored laser pulses |
| US20110210105A1 (en) * | 2009-12-30 | 2011-09-01 | Gsi Group Corporation | Link processing with high speed beam deflection |
| US20110267415A1 (en) * | 2010-04-28 | 2011-11-03 | Ricoh Company, Ltd. | Light source unit, optical scanning device, and image forming apparatus |
| US20110317727A1 (en) * | 2009-12-14 | 2011-12-29 | Hiroyuki Furuya | Wavelength conversion light source, optical element and image display device |
| US20120002263A1 (en) * | 2010-01-12 | 2012-01-05 | Panasonic Corporation | Laser light source, wavelength conversion laser light source and image display device |
| US20120012762A1 (en) * | 2010-03-04 | 2012-01-19 | Nowak Krzysztof | Laser device, laser system, and extreme ultraviolet light generation apparatus |
| US20120241427A1 (en) * | 2009-12-30 | 2012-09-27 | Gsi Group Corporation | Predictive link processing |
| US20120273472A1 (en) * | 2010-10-22 | 2012-11-01 | Electro Scientific Industries, Inc. | Laser processing systems and methods for beam dithering and skiving |
| US20130044360A1 (en) * | 2011-08-19 | 2013-02-21 | Laser Imaging Systems Gmbh & Co. Kg | System and method for direct imaging |
| US20130148674A1 (en) * | 2011-02-09 | 2013-06-13 | Gigaphoton Inc. | Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light |
| US20130176541A1 (en) * | 2012-01-11 | 2013-07-11 | Panasonic Corporation | Optical component, laser light source apparatus and image display apparatus each including the optical component and manufacturing methods therefor |
| US20130222506A1 (en) * | 2012-02-27 | 2013-08-29 | Kyocera Document Solutions Inc. | Optical scanning device and image forming apparatus using same |
| US20130222863A1 (en) * | 2012-02-24 | 2013-08-29 | Kyocera Document Solutions Inc. | Scanning lens, optical scanning device and image forming apparatus using same |
| US20130222507A1 (en) * | 2012-02-27 | 2013-08-29 | Kyocera Document Solutions Inc. | Optical scanning device and image forming apapratus using same |
| US20130313440A1 (en) * | 2012-05-22 | 2013-11-28 | Kla-Tencor Corporation | Solid-State Laser And Inspection System Using 193nm Laser |
| US20140197140A1 (en) * | 2013-01-11 | 2014-07-17 | Electro Scientific Industries, Inc. | Laser pulse energy control systems and methods |
| US20140204454A1 (en) * | 2011-12-22 | 2014-07-24 | Yonggang Li | Configuration of acousto-optic deflectors for laser beam scanning |
| US20140263223A1 (en) * | 2013-03-15 | 2014-09-18 | Electro Scientific Industries, Inc. | Laser systems and methods for aod tool settling for aod travel reduction |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4213158A (en) * | 1978-06-28 | 1980-07-15 | Xerox Corporation | Optical data recording system utilizing acoustic pulse imaging to minimize image blur |
| US4205348A (en) * | 1978-07-05 | 1980-05-27 | Xerox Corporation | Laser scanning utilizing facet tracking and acousto pulse imaging techniques |
| JPS617818A (en) * | 1984-06-22 | 1986-01-14 | Fuji Photo Film Co Ltd | Optical scanner |
| US6037967A (en) | 1996-12-18 | 2000-03-14 | Etec Systems, Inc. | Short wavelength pulsed laser scanner |
| JP2002244072A (en) * | 2001-02-19 | 2002-08-28 | Nec Corp | Laser beam machine |
| JP3547418B2 (en) * | 2001-10-25 | 2004-07-28 | 三菱商事株式会社 | Method and apparatus for marking liquid crystal panel by laser beam |
| JP3822188B2 (en) * | 2002-12-26 | 2006-09-13 | 日立ビアメカニクス株式会社 | Multi-beam laser drilling machine |
| US20050018037A1 (en) * | 2003-07-22 | 2005-01-27 | Lee Tae-Kyoung | Multi-beam laser scanning unit and laser-beam deflection compensating method |
| US7521651B2 (en) * | 2003-09-12 | 2009-04-21 | Orbotech Ltd | Multiple beam micro-machining system and method |
| US7483196B2 (en) * | 2003-09-23 | 2009-01-27 | Applied Materials, Inc. | Apparatus for multiple beam deflection and intensity stabilization |
| US7133187B2 (en) * | 2004-06-07 | 2006-11-07 | Electro Scientific Industries, Inc. | AOM modulation techniques employing plurality of transducers to improve laser system performance |
| CN100353205C (en) * | 2005-07-20 | 2007-12-05 | 华中科技大学 | Laser scanner based on two-dimensional acousto-optic deflector |
| CN101152819B (en) * | 2006-09-28 | 2010-07-21 | 深圳市大族激光科技股份有限公司 | Device with internal laser carving |
| JP4991241B2 (en) * | 2006-10-18 | 2012-08-01 | 株式会社リコー | Optical scanning apparatus and image forming apparatus |
| WO2008053915A1 (en) * | 2006-11-02 | 2008-05-08 | Nabtesco Corporation | Scanner optical system, laser processing device, and scanner optical device |
| JP4937011B2 (en) * | 2007-06-26 | 2012-05-23 | 住友重機械工業株式会社 | Laser processing apparatus and laser processing method |
| CN102152003B (en) * | 2011-02-24 | 2014-03-12 | 华中科技大学 | Method and device for separating optical crystal by using two laser beams |
| WO2013099922A1 (en) * | 2011-12-27 | 2013-07-04 | 住友化学株式会社 | Laser irradiation device, optical member bonded body manufacturing device, laser irradiation method, and optical member bonded body manufacturing method |
| KR20140043524A (en) * | 2012-09-21 | 2014-04-10 | 한화케미칼 주식회사 | Laser drilling apparatus for forming holes through a substrate for back-contact type solar cell and method of forming holes using the apparatus |
| CN103837933B (en) * | 2012-11-21 | 2016-03-02 | 武汉拓尔奇光电技术有限公司 | A kind of laser galvanometer mode shell cover, the method for end face processing, welding optical cable |
| US10725287B2 (en) * | 2013-06-11 | 2020-07-28 | Nlight, Inc. | Image rotation compensation for multiple beam material processing |
| KR20150015530A (en) * | 2013-06-28 | 2015-02-10 | 인텔 코포레이션 | Mems scanning mirror light pattern generation |
-
2015
- 2015-03-06 WO PCT/US2015/019179 patent/WO2016144290A1/en not_active Ceased
- 2015-03-06 US US14/909,724 patent/US10286488B2/en active Active
- 2015-03-06 CN CN201580077483.8A patent/CN107430269B/en not_active Expired - Fee Related
- 2015-03-06 KR KR1020177021795A patent/KR102309213B1/en active Active
-
2016
- 2016-02-02 TW TW105103333A patent/TWI603557B/en not_active IP Right Cessation
Patent Citations (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4552456A (en) * | 1981-10-31 | 1985-11-12 | Nissan Motor Company, Limited | Optical pulse radar for an automotive vehicle |
| US5600478A (en) * | 1990-02-13 | 1997-02-04 | Imaje Sa | Laser marking arrangements |
| US5502001A (en) * | 1990-12-19 | 1996-03-26 | Hitachi, Ltd. | Method of forming light beam and method of fabricating semiconductor integrated circuits |
| US6467345B1 (en) * | 1993-10-18 | 2002-10-22 | Xros, Inc. | Method of operating micromachined members coupled for relative rotation |
| US5579148A (en) * | 1993-11-29 | 1996-11-26 | Nippondenso Co., Ltd. | Two-dimensional optical scanner |
| US5837962A (en) * | 1996-07-15 | 1998-11-17 | Overbeck; James W. | Faster laser marker employing acousto-optic deflection |
| US20050263498A1 (en) * | 1996-11-20 | 2005-12-01 | Ibiden Co., Ltd. | Ceramic heater |
| US20040222197A1 (en) * | 1996-11-20 | 2004-11-11 | Ibiden Co., Ltd. | Laser machining apparatus, and apparatus and method for manufacturing a multilayered printed wiring board |
| US5903380A (en) * | 1997-05-01 | 1999-05-11 | Rockwell International Corp. | Micro-electromechanical (MEM) optical resonator and method |
| US20050013328A1 (en) * | 1998-09-08 | 2005-01-20 | Heinrich Jurgensen | Laser radiation source |
| US20060249491A1 (en) * | 1999-09-01 | 2006-11-09 | Hell Gravure Systems Gmbh | Laser radiation source |
| US20010022566A1 (en) * | 2000-03-16 | 2001-09-20 | Yoji Okazaki | Color laser display employing excitation solid laser unit, fiber laser unit, or semi conductor laser unit |
| US20020040893A1 (en) * | 2000-10-06 | 2002-04-11 | Hitachi Via Mechanics, Ltd. | Method and apparatus for drilling printed wiring boards |
| US6531677B2 (en) * | 2000-10-06 | 2003-03-11 | Hitachi Via Mechanics, Ltd. | Method and apparatus for drilling printed wiring boards |
| US20030189030A1 (en) * | 2001-05-23 | 2003-10-09 | Joaquina Faour | Laser drilling system and method |
| US20050145605A1 (en) * | 2001-05-23 | 2005-07-07 | Joaquina Faour | Laser drilling system and method |
| US20040112879A1 (en) * | 2002-12-16 | 2004-06-17 | Masaki Mori | Identification-code laser marking method and apparatus |
| US6961355B1 (en) * | 2003-01-09 | 2005-11-01 | Photonics Industries, Int'l. | Variable power pulsed secondary beam laser |
| US20040182929A1 (en) * | 2003-03-18 | 2004-09-23 | Sony Corporation | Laser emitting module, window cap, laser pointer, and light emitting module |
| US20050087522A1 (en) * | 2003-10-24 | 2005-04-28 | Yunlong Sun | Laser processing of a locally heated target material |
| US20050238071A1 (en) * | 2004-04-22 | 2005-10-27 | Michio Oka | One-dimensional illumination apparatus and imaging apparatus |
| US20050237895A1 (en) * | 2004-04-23 | 2005-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method for manufacturing semiconductor device |
| US8222126B2 (en) * | 2004-04-23 | 2012-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method for manufacturing semiconductor device |
| US20050263690A1 (en) * | 2004-06-01 | 2005-12-01 | Olympus Corporation | Laser scanning microscope |
| US20070284347A1 (en) * | 2006-06-13 | 2007-12-13 | Disco Corporation | Via hole forming method |
| US20080009132A1 (en) * | 2006-06-27 | 2008-01-10 | Disco Corporation | Via hole forming method |
| US20080011723A1 (en) * | 2006-07-11 | 2008-01-17 | Disco Corporation | Laser beam processing machine |
| US20080031291A1 (en) * | 2006-08-04 | 2008-02-07 | Disco Corporation | Laser beam irradiation apparatus and laser working machine |
| US20080037596A1 (en) * | 2006-08-09 | 2008-02-14 | Disco Corporation | Laser beam irradiation apparatus and laser working machine |
| US20080061042A1 (en) * | 2006-09-12 | 2008-03-13 | Disco Corporation | Laser beam machining system |
| US20080067157A1 (en) * | 2006-09-14 | 2008-03-20 | Disco Corporation | Via hole forming method |
| US20080105665A1 (en) * | 2006-11-02 | 2008-05-08 | Disco Corporation | Laser processing machine |
| US20080110868A1 (en) * | 2006-11-15 | 2008-05-15 | Disco Corporation | Laser beam processing machine |
| US20080179302A1 (en) * | 2007-01-26 | 2008-07-31 | Disco Corporation | Via hole forming method |
| US20080212999A1 (en) * | 2007-03-02 | 2008-09-04 | Kensuke Masuda | Light-amount detecting device, light source device, optical scanning unit and image forming apparatus |
| US20080299783A1 (en) * | 2007-06-01 | 2008-12-04 | Electro Scientific Industries, Inc. | Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window |
| US20090015896A1 (en) * | 2007-07-10 | 2009-01-15 | Koji Masuda | Optical scanning device and image forming apparatus |
| US20090236323A1 (en) * | 2008-03-24 | 2009-09-24 | Electro Scientific Industries, Inc. | Method and apparatus for laser drilling holes with tailored laser pulses |
| US20110317727A1 (en) * | 2009-12-14 | 2011-12-29 | Hiroyuki Furuya | Wavelength conversion light source, optical element and image display device |
| US20110210105A1 (en) * | 2009-12-30 | 2011-09-01 | Gsi Group Corporation | Link processing with high speed beam deflection |
| US20120241427A1 (en) * | 2009-12-30 | 2012-09-27 | Gsi Group Corporation | Predictive link processing |
| US20120002263A1 (en) * | 2010-01-12 | 2012-01-05 | Panasonic Corporation | Laser light source, wavelength conversion laser light source and image display device |
| US20120012762A1 (en) * | 2010-03-04 | 2012-01-19 | Nowak Krzysztof | Laser device, laser system, and extreme ultraviolet light generation apparatus |
| US20110267415A1 (en) * | 2010-04-28 | 2011-11-03 | Ricoh Company, Ltd. | Light source unit, optical scanning device, and image forming apparatus |
| US20120273472A1 (en) * | 2010-10-22 | 2012-11-01 | Electro Scientific Industries, Inc. | Laser processing systems and methods for beam dithering and skiving |
| US20130148674A1 (en) * | 2011-02-09 | 2013-06-13 | Gigaphoton Inc. | Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light |
| US20130044360A1 (en) * | 2011-08-19 | 2013-02-21 | Laser Imaging Systems Gmbh & Co. Kg | System and method for direct imaging |
| US20140204454A1 (en) * | 2011-12-22 | 2014-07-24 | Yonggang Li | Configuration of acousto-optic deflectors for laser beam scanning |
| US20130176541A1 (en) * | 2012-01-11 | 2013-07-11 | Panasonic Corporation | Optical component, laser light source apparatus and image display apparatus each including the optical component and manufacturing methods therefor |
| US20130222863A1 (en) * | 2012-02-24 | 2013-08-29 | Kyocera Document Solutions Inc. | Scanning lens, optical scanning device and image forming apparatus using same |
| US20130222506A1 (en) * | 2012-02-27 | 2013-08-29 | Kyocera Document Solutions Inc. | Optical scanning device and image forming apparatus using same |
| US20130222507A1 (en) * | 2012-02-27 | 2013-08-29 | Kyocera Document Solutions Inc. | Optical scanning device and image forming apapratus using same |
| US20130313440A1 (en) * | 2012-05-22 | 2013-11-28 | Kla-Tencor Corporation | Solid-State Laser And Inspection System Using 193nm Laser |
| US20140197140A1 (en) * | 2013-01-11 | 2014-07-17 | Electro Scientific Industries, Inc. | Laser pulse energy control systems and methods |
| US20140263223A1 (en) * | 2013-03-15 | 2014-09-18 | Electro Scientific Industries, Inc. | Laser systems and methods for aod tool settling for aod travel reduction |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210316400A1 (en) * | 2015-09-09 | 2021-10-14 | Electro Scientific Industries, Inc. | Laser processing apparatus, methods of laser-processing workpieces and related arrangements |
| US11077526B2 (en) * | 2015-09-09 | 2021-08-03 | Electro Scientific Industries, Inc. | Laser processing apparatus, methods of laser-processing workpieces and related arrangements |
| JP2019155392A (en) * | 2018-03-09 | 2019-09-19 | イビデン株式会社 | Laser processing device and laser processing method |
| US10831082B2 (en) | 2018-05-30 | 2020-11-10 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling laser light propagation direction by using a plurality of nano-antennas |
| US11789332B2 (en) | 2018-05-30 | 2023-10-17 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling laser light propagation direction by using a plurality of nano-antennas |
| JP2020037130A (en) * | 2018-09-05 | 2020-03-12 | イビデン株式会社 | Laser processing device and laser processing method |
| CN110587155A (en) * | 2019-08-29 | 2019-12-20 | 武汉安扬激光技术有限责任公司 | Laser processing device for cutting inverted taper hole or groove and using method thereof |
| US20210286172A1 (en) * | 2020-03-11 | 2021-09-16 | Rohr, Inc. | Substrate perforation system & method using polygon mirror(s) |
| US11237386B2 (en) * | 2020-03-11 | 2022-02-01 | Rohr, Inc. | Substrate perforation system and method using polygon mirror(s) |
| WO2022146566A1 (en) | 2020-12-28 | 2022-07-07 | Electro Scientific Industries, Inc. | Apparatus and method for operating acousto-optical deflectors |
| JP2024503267A (en) * | 2020-12-28 | 2024-01-25 | エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド | Apparatus and method for operating an acousto-optic deflector |
| EP4268014A4 (en) * | 2020-12-28 | 2024-11-20 | Electro Scientific Industries, Inc. | DEVICE AND METHOD FOR OPERATING ACOUSTOOPTICAL DEFLECTORS |
| CN113547238A (en) * | 2021-09-23 | 2021-10-26 | 济南森峰激光科技股份有限公司 | Method for increasing aperture of micro-hole of high-speed rotating mirror laser processing array |
Also Published As
| Publication number | Publication date |
|---|---|
| US10286488B2 (en) | 2019-05-14 |
| CN107430269A (en) | 2017-12-01 |
| TWI603557B (en) | 2017-10-21 |
| TW201644128A (en) | 2016-12-16 |
| KR20170125015A (en) | 2017-11-13 |
| CN107430269B (en) | 2020-10-02 |
| WO2016144290A1 (en) | 2016-09-15 |
| KR102309213B1 (en) | 2021-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10286488B2 (en) | Acousto-optics deflector and mirror for laser beam steering | |
| CN102449863B (en) | Laser processing system using through-the-lens alignment of a laser beam with target characteristics | |
| CN104105994B (en) | Configuration of an acousto-optic deflector for laser beam scanning | |
| US20150338718A1 (en) | Acousto-optic deflector with multiple transducers for optical beam steering | |
| CN102785028B (en) | Laser processing and laser processing device | |
| JP5300544B2 (en) | Optical system and laser processing apparatus | |
| US8383982B2 (en) | Methods and systems for semiconductor structure processing using multiple laser beam spots | |
| JP6764552B2 (en) | Work separation device and work separation method | |
| US20110186555A1 (en) | System for semiconductor structure processing using multiple laser beam spots | |
| US20080124816A1 (en) | Systems and methods for semiconductor structure processing using multiple laser beam spots | |
| US20050281101A1 (en) | Semiconductor structure processing using multiple laterally spaced laser beam spots with on-axis offset | |
| US20090011614A1 (en) | Reconfigurable semiconductor structure processing using multiple laser beam spots | |
| KR20010086244A (en) | Semiconductor chip, semiconductor device, circuit board and electronic equipment and production methods for them | |
| US9093518B1 (en) | Singulation of wafers having wafer-level underfill | |
| KR102525263B1 (en) | Method for processing wafer | |
| TWI647041B (en) | Method and system for optical beam steering | |
| US20050282367A1 (en) | Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures | |
| CN111146097B (en) | Semiconductor wafer laser photolysis bonding optical device | |
| WO2023201860A1 (en) | Blind via drilling method, device, apparatus and system based on selective laser absorption | |
| KR20140148240A (en) | Optical interconnection for stacked integrated circuit | |
| JP2008132500A (en) | Laser processing apparatus, laser processing method, substrate manufacturing method, and electro-optical device manufacturing method | |
| US9130056B1 (en) | Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing | |
| KR20220143575A (en) | Method for manufacturing led display panel | |
| KR101094322B1 (en) | Laser processing apparatus and multi-layer substrate processing method using the same | |
| KR102683622B1 (en) | Manufacturing method of metal pattern and manufacturing method of display device using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |