US20130148674A1 - Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light - Google Patents

Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light Download PDF

Info

Publication number
US20130148674A1
US20130148674A1 US13/817,817 US201213817817A US2013148674A1 US 20130148674 A1 US20130148674 A1 US 20130148674A1 US 201213817817 A US201213817817 A US 201213817817A US 2013148674 A1 US2013148674 A1 US 2013148674A1
Authority
US
United States
Prior art keywords
laser beam
semiconductor laser
pulsed laser
laser apparatus
pulsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/817,817
Other versions
US9570884B2 (en
Inventor
Krzysztof NOWAK
Osamu Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Assigned to GIGAPHOTON INC. reassignment GIGAPHOTON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOWAK, KRZYSZTOF, WAKABAYASHI, OSAMU
Publication of US20130148674A1 publication Critical patent/US20130148674A1/en
Assigned to TRIMEL BIOPHARMA SRL reassignment TRIMEL BIOPHARMA SRL RELEASE OF SECURITY INTEREST Assignors: GENERAL ELECTRIC CAPITAL CORPORATION
Application granted granted Critical
Publication of US9570884B2 publication Critical patent/US9570884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Definitions

  • This disclosure relates to a laser apparatus, an extreme ultraviolet (EUV) light generation system, a method for controlling the laser apparatus, and a method for generating the EUV light.
  • EUV extreme ultraviolet
  • microfabrication with feature sizes at 60 nm to 45 nm, and further, microfabrication with feature sizes of 32 nm or less will be required.
  • an exposure apparatus is expected to be developed, in which an apparatus for generating EUV light at a wavelength of approximately 13 nm is combined with a reduced projection reflective optical system.
  • LPP Laser Produced Plasma
  • DPP Discharge Produced Plasma
  • SR Synchrotron Radiation
  • a laser apparatus may include: a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus; at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth.
  • a laser apparatus may include: a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus which includes a semiconductor laser device, an optical resonator including an output coupler and a grating between which the semiconductor laser device is provided; at least one amplifier configured to amplify the pulsed laser beam outputted from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam outputted from the master oscillator such that a wavelength chirping range of the pulsed laser beam to be outputted from the master oscillator overlaps at least a part of the at least one gain bandwidth.
  • An extreme ultraviolet light generation system may include: a laser apparatus including a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus, at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth, and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth; a chamber; a target supply unit configured to supply a target material toward a predetermined region inside the chamber; and a collector mirror for selectively reflecting at least extreme ultraviolet light emitted in the predetermined region inside the chamber.
  • a method for controlling a laser apparatus comprising a master oscillator including a semiconductor laser apparatus, and an amplifier, may include: outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of at least one gain bandwidth; and amplifying the pulsed laser beam from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth.
  • a method for generating an extreme ultraviolet light in an extreme ultraviolet light generation system including a laser apparatus, a chamber, a target supply unit, and a collector mirror may include: outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of at least one gain bandwidth; amplifying the pulsed laser beam outputted from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth; irradiating a target material by the amplified pulsed laser beam in a predetermined region inside the chamber; and outputting the extreme ultraviolet light emitted in the predetermined region inside the chamber by selectively reflecting the extreme ultraviolet light.
  • FIG. 1 schematically illustrates the configuration of a laser apparatus according to a first embodiment.
  • FIG. 2 illustrates an example of amplification control in the first embodiment where the initial wavelength of the wavelength chirping range is made to overlap a gain bandwidth of the CO 2 gas gain medium.
  • FIG. 3 illustrates an example of amplification control in the first embodiment where the wavelength chirping range is controlled such that a part thereof overlaps the entirety of a gain bandwidth of the CO 2 gas gain medium.
  • FIG. 4 schematically illustrates the configuration of a distributed-feedback semiconductor laser apparatus.
  • FIG. 5 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus.
  • FIG. 6 illustrates an example according to the first embodiment where a pulsed laser beam is outputted by making a current flow in pulses in a semiconductor laser device.
  • FIG. 7 illustrates gain bandwidths of the CO 2 gas gain medium.
  • FIG. 8 illustrates amplified laser beams in each gain bandwidth of the CO 2 gas gain medium.
  • FIG. 9 schematically illustrates the configuration of a laser apparatus including a regenerative amplifier according to a second embodiment.
  • FIG. 10 illustrates an example of amplification control in the laser apparatus including the regenerative amplifier according to the second embodiment.
  • FIG. 11 illustrates an example of the configuration of the regenerative amplifier according to the second embodiment.
  • FIG. 12 illustrates an example of the operation of the regenerative amplifier according to the second embodiment.
  • FIG. 13 is a timing chart showing the operation from the input of an oscillation trigger into a semiconductor laser apparatus until an amplified pulsed laser beam is outputted.
  • FIG. 14 schematically illustrates the configuration of a laser apparatus according to a third embodiment.
  • FIG. 15 illustrates a case where a single-longitudinal-mode semiconductor laser is allocated to each of the gain bandwidths in the third embodiment.
  • FIG. 16 shows an example of pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 15 .
  • FIG. 17 illustrates a case where multiple single-longitudinal-mode semiconductor lasers are allocated to a single gain bandwidth in the third embodiment.
  • FIG. 18 shows an example of a pulsed laser beam amplified in the given gain bandwidth in the case shown in FIG. 17 .
  • FIG. 19 illustrates a case where five single-longitudinal-mode semiconductor lasers are allocated to three of the gain bandwidths in the third embodiment.
  • FIG. 20 shows an example of pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 19 .
  • FIG. 21 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 22 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 23 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 24 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 25 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 26 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 27 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 28 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 29 schematically illustrates the configuration of a laser apparatus according to a fourth embodiment.
  • FIG. 30 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus 310 B.
  • FIG. 31 illustrates the relationship among the gain bandwidths of the CO 2 gas gain medium, selected wavelengths by a grating, and longitudinal modes at which the semiconductor laser elements oscillate in the fourth embodiment.
  • FIG. 32 shows an example of a single-longitudinal-mode outputted from a semiconductor laser apparatus in the fourth embodiment.
  • FIG. 33 illustrates changes over time in wavelength chirping, in temperature of an active layer, and in beam intensity of an outputted pulsed laser beam, when a current pulse flowing in the semiconductor laser device is varied.
  • FIG. 34 schematically illustrates the configuration of a laser apparatus and the control system thereof according to a fifth embodiment.
  • FIG. 35 schematically illustrates the configuration of a measuring system for acquiring control parameters, in advance, for the laser apparatus in the fifth embodiment.
  • FIG. 36 illustrates an example of chirping characteristics of the semiconductor laser apparatus in the fifth embodiment.
  • FIG. 37 illustrates an example of the control parameter acquisition operation by the measuring system and the laser controller in the fifth embodiment.
  • FIG. 38 illustrates amplification control operation including feedback-control by the laser controller in the fifth embodiment.
  • FIG. 39 schematically illustrates the configuration of a laser apparatus and the control system thereof including a loop for feedback-control according to a sixth embodiment.
  • FIG. 40 illustrates an example of the feedback-control in the sixth embodiment.
  • FIG. 41 schematically illustrates the configuration of an exemplary LPP type EUV light generation system.
  • FIG. 42 schematically illustrates the configuration of an EUV light generation system according to an eighth embodiment.
  • FIG. 43 illustrates the operation for controlling a timing as which a target is irradiated by a pulsed laser beam in the eighth embodiment.
  • FIG. 44 illustrates an example of chirping range adjusting processing in FIG. 43 .
  • FIG. 45 illustrates an example of timing adjusting processing in FIG. 43 .
  • FIG. 46 schematically illustrates the configuration of an EUV light generation system according to a ninth embodiment.
  • FIG. 47 illustrates an example of a beam path adjusting unit according to one aspect of this disclosure.
  • FIG. 48 illustrates another example of a beam path adjusting unit according to another aspect of this disclosure.
  • FIG. 49 shows the relationship between longitudinal modes of semiconductor lasers and selected wavelengths by a grating, when a grating with a broad range of wavelength selectivity is used.
  • FIG. 50 illustrates the control in the laser apparatus shown in FIG. 14 including a grating with a broad range of wavelength selectivity, where the longitudinal modes of the respective semiconductor lasers are amplified in the respective gain bandwidths of the CO 2 gas gain medium.
  • FIG. 51 shows beam intensity of each of the pulsed laser beams amplified under the control shown in FIG. 50 .
  • the chirping range in wavelengths of a semiconductor laser beam is controlled such that at least part of the chirping range overlaps at least part of a gain bandwidth of a molecular gas gain medium.
  • the term “plasma generation region” can refer to a three-dimensional space in which plasma is generated.
  • the term “droplet” can refer to one or more liquid droplet(s) of a molten target material. Accordingly, the shape of the droplet is generally substantially spherical due to the surface tension at the surface of the droplet.
  • the term “beam path” is a path along which a laser beam travels.
  • the “beam path length” is a product of a distance in which the light actually travels and a refraction index of a medium through which the light travels.
  • the “gain bandwidth” is a bandwidth in which a laser beam can be amplified as it travels through the gain medium.
  • the side toward the source of the laser beam is referred to as “upstream,” and the side toward the target of the laser beam is referred to as “downstream.”
  • a laser apparatus according to one aspect of this disclosure will be illustrated with examples.
  • FIG. 1 schematically illustrates the configuration of a laser apparatus 3 according to a first embodiment.
  • the laser apparatus 3 may include a semiconductor laser apparatus 310 , a relay optical system 320 , and an amplifier 330 .
  • Various amplifiers such as a regenerative amplifier and a slab amplifier, may be used as the amplifier 330 .
  • the laser apparatus 3 may include a plurality of amplifiers 330 connected serially.
  • the semiconductor laser apparatus 310 may serve as a master oscillator (MO).
  • the semiconductor laser apparatus 310 may include a semiconductor laser controller 311 , a semiconductor laser device 312 , a Peltier device 313 , a temperature controller 314 , a current controller 315 , and a temperature sensor 316 .
  • the current controller 315 may be configured to input current pulses to the semiconductor laser device 312 under the control of the semiconductor laser controller 311 so that the semiconductor laser device 312 can oscillate.
  • the temperature sensor 316 may be in contact with the semiconductor laser device 312 .
  • the temperature sensor 316 may measure the temperature of or around an active layer in the semiconductor laser device 312 , or may measure the temperature at a position distanced from the active layer.
  • the Peltier device 313 may be in contact with the semiconductor laser device 312 along the direction in which the active layer of the semiconductor laser device 312 extends.
  • the temperature sensor 316 may input the measured values to the temperature controller 314 .
  • the temperature controller 314 may actuate the Peltier device 313 in accordance with the measured values inputted from the temperature sensor 316 , under the control of the semiconductor laser controller 311 . With this, the temperature of the semiconductor laser device 312 may be controlled.
  • the amplifier 330 may be configured to amplify the pulsed laser beam from the semiconductor laser apparatus 310 .
  • the amplifier 330 may be a power amplifier (PA) or a power oscillator (PO).
  • the amplifier 330 may include a sealed chamber.
  • the chamber may be provided with windows 331 and 332 , through which the pulsed laser beam may travel.
  • the chamber may be filled with a gas containing CO 2 gas, for example.
  • the amplifier 330 may be provided with at least a pair of discharge electrodes and a power source (not shown) for applying voltage between the discharge electrodes so as to excite the gas.
  • the amplifier 330 may be configured to excite the gas inside the chamber, and the excited gas may serve as a gain medium (hereinafter, referred to as CO 2 gas gain medium).
  • the relay optical system 320 may guide the pulsed laser beam outputted from the semiconductor laser apparatus 310 to the amplifier 330 .
  • the relay optical system 320 may include an optical system for expanding the pulsed laser beam in diameter (beam cross-section), for example.
  • the beam cross-section may refer to a region along a plane perpendicular to the axis of the pulsed laser beam, in which the beam intensity is at or above a predetermined value across the planar region.
  • the pulsed laser beam that has been expanded in diameter may pass through most of the space where the CO 2 gas gain medium is present inside the amplifier 330 . With this, the pulsed laser beam can be amplified efficiently.
  • a pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 .
  • the outputted pulsed laser beam S 3 may enter the relay optical system 320 and be expanded in diameter by the relay optical system 320 .
  • the pulsed laser beam S 3 which has been expanded in diameter, may enter the amplifier 330 through the window 331 provided at the input side of the chamber.
  • the pulsed laser beam S 3 that has entered the amplifier 330 may be amplified as it travels through the CO 2 gas gain medium inside the chamber. With this, an amplified pulsed laser beam S 6 may be outputted from the amplifier 330 through the window 332 provided at the output side of the chamber.
  • a waveform signal for generating a current pulse (hereinafter referred to as a current pulse waveform) may be inputted to the current controller 315 from the semiconductor laser controller 311 .
  • the current controller 315 may cause a current pulse of a predetermined waveform to flow in the semiconductor laser device 312 based on the inputted current pulse waveform.
  • the semiconductor laser device 312 may oscillate.
  • the pulsed laser beam S 3 may be outputted from the semiconductor laser device 312 .
  • the wavelength of the pulsed laser beam S 3 to be outputted from the semiconductor laser apparatus 310 may be controlled so as to overlap at least a part of the gain bandwidths of the CO 2 gas gain medium inside the amplifier 330 .
  • the wavelength of the pulsed laser beam S 3 to be outputted from the semiconductor laser apparatus 310 may vary depending on the temperature of the semiconductor laser device 312 . Accordingly, the wavelength of the pulsed laser beam S 3 may be controlled by controlling the temperature of the semiconductor laser device 312 .
  • the temperature may be controlled by using feedback-control of the Peltier device 313 based on the temperature of the semiconductor laser device 312 detected by the temperature sensor 316 , for example.
  • the wavelength of the pulsed laser beam S 3 to be outputted from the semiconductor laser apparatus 310 may vary depending on the temperature of the semiconductor laser device 312 .
  • factors causing the temperature of the semiconductor laser device 312 to fluctuate may include, in addition to the fact that the semiconductor laser device 312 is heated or cooled directly by a heater or a cooling device, ohmic heating resulting from current supplied to the semiconductor laser device 312 .
  • the wavelength of the pulsed laser beam S 3 to be outputted from the semiconductor laser apparatus 310 may chirp depending on the change in temperature of the semiconductor laser device 312 .
  • a wavelength chirping range of a pulsed laser beam outputted from a semiconductor laser is wider than a gain bandwidth of the CO 2 gas gain medium in an amplifier.
  • the semiconductor laser apparatus 310 may be controlled such that at least a part of the chirping range of the output wavelength of the semiconductor laser apparatus 310 overlaps at least a part of a gain bandwidth of the CO 2 gas gain medium.
  • the output wavelength of the semiconductor laser apparatus 310 may refer to the central wavelength or the peak wavelength of the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 at a given time.
  • the semiconductor laser apparatus 310 may be controlled such that at least a part of the chirping range of the output wavelength (hereinafter, simply referred to as wavelength chirping range) of the semiconductor laser apparatus 310 overlaps at least a part of a gain bandwidth of the CO 2 gas gain medium.
  • the pulsed laser beam S 3 may be amplified by the CO 2 gas gain medium for a duration in which the wavelength of the pulsed laser beam S 3 overlaps the given gain bandwidth.
  • examples of the amplification control will be discussed. In the case shown below, the pulsed laser beam S 3 is amplified using a gain bandwidth at P(18) transition of the CO 2 gas gain medium.
  • FIG. 2 illustrates an example of amplification control in such case.
  • an oscillation trigger S 1 may be inputted to the semiconductor laser apparatus 310 at a timing Tt, for example (see FIG. 2( a )). Then, a current pulse S 2 of predetermined strength may flow in the semiconductor laser device 312 for a predetermined period (see FIG. 2( b )). With this, the semiconductor laser apparatus 310 may oscillate, and the pulsed laser beam S 3 of intensity in accordance with the current waveform may be outputted at a timing delayed by a delay time ⁇ T (see FIG. 2( c )). The rise of the pulsed laser beam S 3 may be at a timing Tt+ ⁇ T.
  • an output wavelength (which is also referred to as a temporal waveform in this disclosure) S 4 of the pulsed laser beam S 3 may shift toward a longer wavelength with time. This phenomenon is the wavelength chirping. Accordingly, the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the initial wavelength of the output wavelength S 4 overlaps the gain bandwidth S 51 at P(18) transition of the CO 2 gas gain medium. With this, the pulsed laser beam S 3 may be amplified for a duration in which the output wavelength S 4 of the pulsed laser beam S 3 overlaps the gain bandwidth S 51 (that is, the initial portion of the temporal waveform of the pulsed laser beam S 3 ).
  • the output wavelength S 4 of the pulsed laser beam S 3 may continue to chirp toward the longer wavelength. Then, when the output wavelength S 4 goes outside the gain bandwidth S 51 , the pulsed laser beam 3 ceases to be amplified. According to such operation, as shown in FIG. 2( e ), for a duration in which the output wavelength S 4 of the pulsed laser beam S 3 overlaps the gain bandwidth S 51 , the amplified pulsed laser beam S 6 may be outputted from the amplifier 330 . A rise timing Tp of the pulsed laser beam S 6 may be delayed by a delay time Td from the output timing Tt+ ⁇ T of the pulsed laser beam S 3 .
  • an onset of the amplification period of the pulsed laser beam S 3 may be delayed by a slight delay time ⁇ T from the input of the oscillation trigger. Accordingly, synchronizing the oscillation of the laser apparatus 3 with generation of droplets by a droplet generator (see droplet generator 26 in FIG. 41 ) may be facilitated, for example.
  • FIG. 3 illustrates an example of amplification control in such case.
  • the timings and operation from the input of the oscillation trigger S 1 until the pulsed laser beam S 3 is outputted may be similar to the case shown in FIGS. 2( a ) through 2 ( c ).
  • the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the initial wavelength of the pulsed laser beam S 3 is shorter than the gain bandwidth S 51 at P(18) transition.
  • the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the wavelength of the pulsed laser beam S 3 at its falling edge is longer than the gain bandwidth S 51 .
  • the temperature of the semiconductor laser device 312 may be controlled such that a wavelength chirping range R 4 of the pulsed laser beam S 3 contains the entirety of the gain bandwidth 51 at P(18) transition.
  • the amplified pulsed laser beam S 6 may be outputted from the amplifier 330 .
  • the rise of the pulsed laser beam S 6 may occur at the timing Tp, which is delayed by a delay time Td which is from the rise of the pulsed laser beam S 3 until the output wavelength S 4 starts to overlap the gain bandwidth S 51 .
  • the delay time Td (> ⁇ T) corresponding to the difference between the initial wavelength and the gain bandwidth S 51 may be generated (see FIG. 3( d )).
  • the delay time Td corresponds to the duration from the input of the oscillation trigger S 1 into the semiconductor laser apparatus 310 until the amplified pulsed laser beam S 6 is outputted. Accordingly, when the oscillation of the laser apparatus 3 is to be synchronized with the generation of droplets by the droplet generator (see FIG. 41) for generating the EUV light, the oscillation trigger S 1 may need to be inputted, taking the above delay time Td into consideration.
  • the wavelength chirping range is controlled so as to overlap the entirety of a single gain bandwidth as described above, the following advantages may be obtained, compared to the case where the initial wavelength of the wavelength chirping range is controlled to overlap a gain bandwidth of the CO 2 gas gain medium.
  • the pulsed laser beam S 6 that has been amplified more may be obtained.
  • the pulsed laser beam S 6 of a longer pulse width may be obtained.
  • a change at the beginning in the temporal waveform S 4 of the semiconductor laser apparatus 310 is greater than a change toward the end after that beginning in the temporal waveform S 4 .
  • a portion in FIG. 2( d ) where the temporal waveform S 4 overlaps the gain bandwidth S 51 is referred to as a first portion, and a portion in FIG. 3( d ) where the temporal waveform S 4 overlaps the gain bandwidth S 51 is referred to as a second portion, in this disclosure. Durations in which the wavelength of the pulsed laser beam S 3 overlaps the gain bandwidth S 51 may differ between the first portion of FIG. 2( d ) and the second portion of FIG. 3( d ).
  • the duration of the second portion in FIG. 3( d ) is longer than that of the first portion in FIG. 2( d ).
  • the temperature of the semiconductor laser device 312 may be controlled such that the portion toward the end of the temporal waveform S 4 of the pulsed laser beam S 3 (e.g., a portion other than the first portion) overlaps a gain bandwidth of the CO 2 gas gain medium. This may allow the duration in which the wavelength chirping range R 4 overlaps the gain bandwidth S 51 to become longer; thus, the pulsed laser beam S 6 that is longer in duration and has larger energy may be obtained.
  • the semiconductor laser apparatus 310 which may be used in the laser apparatus 3 of the first embodiment, will be illustrated with examples.
  • FIG. 4 schematically illustrates the configuration of a distributed-feedback semiconductor laser apparatus 310 A.
  • the distributed-feedback semiconductor laser apparatus 310 A may include a semiconductor laser device 312 A and the Peltier device 313 .
  • the distributed-feedback semiconductor laser apparatus 310 A may further include the semiconductor laser controller 311 , the temperature controller 314 , the current controller 315 , and the temperature sensor 316 .
  • the semiconductor laser device 312 A may be formed such that a grating 3124 and an active layer 3122 are formed on a semiconductor substrate 3123 .
  • the top of the active layer 3122 may be protected by passivation layer 3121 , for example.
  • the active layer 3122 may serve as a gain medium for amplifying a laser beam.
  • the grating 3124 may serve as both an optical resonator and a wavelength selector.
  • the distributed-feedback semiconductor laser apparatus 310 A when a current I flows from a convex of the grating 3124 toward the active layer 3122 , a portion of the active layer 3122 may function as a laser gain medium inside the active layer 3122 . Further, an optical resonator may be formed by the grating 3124 formed on the semiconductor substrate 3123 , whereby the oscillation wavelength may be selected. With the optical resonator and the gain medium, the laser oscillation may occur inside the distributed-feedback semiconductor laser apparatus 310 A. As a result, the pulsed laser beam S 3 may be outputted at a wavelength that may be determined by the selected wavelength by the grating 3124 and the optical path length of the optical resonator.
  • the optical path length of the optical resonator formed in the distributed-feedback semiconductor laser apparatus 310 A may be determined by the length of and the refractive index of the active layer 3122 of the semiconductor laser device 312 A.
  • the refractive index of the active layer 3122 may depend on the temperature. Accordingly, controlling the temperature of the semiconductor laser device 312 A may allow the optical path length of the optical resonator to be controlled.
  • FIG. 5 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus 310 B.
  • the external-resonator type semiconductor laser apparatus 310 B may include an output coupler (OC) 3125 , a semiconductor laser device 312 B, the Peltier device 313 , a collimator lens 3126 , and a grating 3127 .
  • OC output coupler
  • the active layer 3122 may be formed inside the semiconductor laser device 312 B.
  • the active layer 3122 may serve as a gain medium.
  • the output coupler 3125 and the grating 3127 may jointly form an optical resonator.
  • the grating 3127 may also function as a wavelength selector.
  • the grating 3127 may be in Littrow arrangement so that the angle of incidence coincides with the angle of diffraction.
  • the external-resonator type semiconductor laser apparatus 310 B when a predetermined pulsed current flows in the semiconductor laser device 312 B, the inside of the active layer 3122 may be excited, to thereby function as a gain medium. Further, the optical resonator may be formed jointly by the output coupler 3125 and the grating 3127 . With this, by controlling the current to flow in the semiconductor laser device 312 B, the laser oscillation may occur in the external-resonator type semiconductor laser apparatus 310 B. Accordingly, the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 B at a wavelength that may be determined by the selected wavelength by the grating 3127 and the optical path length of the optical resonator. A posture of the grating can be controlled so that the pulsed laser beam is incident on the grating 3127 at a specified angle.
  • the optical path length of the optical resonator formed in the external-resonator type semiconductor laser apparatus 310 B may be determined by the length of and the refractive index of the active layer 3122 of the semiconductor laser device 312 B.
  • the optical path length may depend on the distance between the output coupler 3125 and the semiconductor laser device 312 B and the refractive index of that space (filled with the air, for example), and on the distance between the semiconductor laser device 312 B and the grating 3127 and the refractive index of that space (filled with the air, for example).
  • the refractive index of the active layer 3122 may depend on its temperature. Accordingly, controlling the temperature of the semiconductor laser device 312 B may allow the optical path length of the optical resonator to be controlled.
  • the optical path length of the optical resonator may also be controlled by controlling at least one of a type, a mixture ratio, and pressure of a gas with which the space between the output coupler 3125 and the semiconductor laser device 312 B and the space between the semiconductor laser device 312 B and the grating 3127 are filled.
  • the oscillation wavelength of the semiconductor laser apparatus 310 may partly depend on the optical path length of the optical resonator in the semiconductor laser apparatus 310 . Further, it may also depend on the selected wavelength by the grating. As mentioned above, the optical path length of the optical resonator may vary as the refractive index of the active layer 3122 changes. The refractive index of the active layer 3122 may depend on its temperature. Accordingly, as the temperature of the semiconductor laser device 312 changes, the optical path length of the optical resonator in the semiconductor laser apparatus 310 may change, and as a result, the oscillation wavelength may change.
  • the current pulse S 2 (see FIG. 6( b )) flows in the semiconductor laser device 312 to thereby cause the pulsed laser beam S 3 (see FIG. 6( c )) to be outputted will be described.
  • the current pulse S 2 flowing in the semiconductor laser device 312 may cause a temperature S 7 of the active layer 3122 to fluctuate over time (see FIG. 6( a )).
  • the output wavelength S 4 may chirp in accordance with the change in the temperature of the active layer 3122 .
  • the temperature S 7 of the active layer 3122 may rise rapidly at the beginning of the current pulse S 2 and may rise steadily toward the end. Then, as the current pulse S 2 is turned OFF, the temperature S 7 of the active layer 3122 may start to fall, and thereafter may approach the temperature set by the Peltier device 313 .
  • the output wavelength S 4 of the semiconductor laser apparatus 310 may shift rapidly toward the longer wavelength at the beginning of the current pulse S 2 , as in the change in the temperature S 7 of the active layer 3122 . This shift in the wavelength may become gradual toward the end of the current pulse S 2 . In this way, when the current pulse S 2 flows in the semiconductor laser device 312 , the wavelength of the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 may chirp.
  • FIGS. 7 and 8 illustrate gain bandwidths of the CO 2 gas gain medium.
  • the CO 2 gas gain medium may have a plurality of gain bandwidths (for example, P(18), P(20), P(22), P(24), P(26), P(28), P(30) transitions) S 51 through S 57 .
  • the wavelength width of each of the gain bandwidths S 51 through S 57 may be approximately 0.0016 ⁇ m, for example. This wavelength width may be narrower than the wavelength chirping range of the pulsed laser beam S 3 described with reference to FIG. 2 . Further, the gain in each of the gain bandwidths S 51 through S 57 may differ from one another.
  • the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 may be amplified while the wavelength of the pulsed laser beam S 3 overlaps at least one of the gain bandwidths S 51 through S 57 .
  • the wavelength spectral profile of the pulsed laser beam S 3 is a broad spectral profile having such a width that contains P(18) through P(30) transitions as shown in FIG. 7
  • the pulsed laser beam S 3 amplified by the CO 2 gas gain medium may be outputted from the amplifier 330 as pulsed laser beams S 61 through S 67 with the beam intensity corresponding to the gain properties of the respective gain bandwidths S 51 through S 57 , as shown in FIG. 8 .
  • the laser apparatus 3 serves as a basis, but the embodiment is not limited to the laser apparatus 3 .
  • FIG. 9 schematically illustrates the configuration of a laser apparatus including a regenerative amplifier according to a second embodiment.
  • a laser apparatus 3 A may include the semiconductor laser apparatus 310 , a regenerative amplifier 370 , a preamplifier 330 A, high-reflection mirrors M 31 and M 32 , a relay optical system 320 B, and a main amplifier 330 B.
  • the relay optical system 320 B may be disposed upstream from the main amplifier 330 B in the direction in which the pulsed laser beam S 6 travels.
  • the semiconductor laser apparatus 310 may be similar in configuration to the semiconductor laser apparatus 310 shown in FIG. 1 .
  • the regenerative amplifier 370 may be configured to amplify the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 .
  • the pulsed laser beam S 3 that has entered the regenerative amplifier 370 may be amplified as it travels back and forth through a CO 2 gas gain medium inside the regenerative amplifier 370 . With this, an amplified pulsed laser beam S 6 a may be outputted from the regenerative amplifier 370 .
  • the preamplifier 330 A may be a slab amplifier.
  • the preamplifier 330 A may include a chamber 335 , an input window 331 , an output window 332 , and mirrors 333 and 334 .
  • the chamber 335 may be filled with the CO 2 gas.
  • two electrodes (not shown) may be provided inside the chamber 335 for exciting the CO 2 gas.
  • the two mirrors 333 and 334 may be arranged to form a multipass optical path, along which the pulsed laser beam S 6 a travels back and forth through the CO 2 gas gain medium.
  • the preamplifier 330 A may be configured to further amplify the pulsed laser beam S 6 a that has been amplified in the regenerative amplifier 370 and output the amplified pulsed laser beam S 6 b.
  • the high-reflection mirrors M 31 and M 32 may be arranged to guide the pulsed laser beam S 6 b outputted from the preamplifier 330 A to the relay optical system 320 B.
  • the relay optical system 320 B may transform the shape of the beam cross-section of the pulsed laser beam S 6 b such that the shape of the beam cross-section of the pulsed laser beam S 6 b substantially coincides with the shape of the cross-section of the amplification region inside the main amplifier 330 B.
  • the main amplifier 330 B may be a fast-axial-flow amplifier.
  • the main amplifier 330 B may include a chamber 338 , an input window 336 , and an output window 337 .
  • Discharge tubes (not shown), through which the gas containing the CO 2 gas may flow, may be provided inside the chamber 338 .
  • the main amplifier 330 B may be configured to further amplify the pulsed laser beam S 6 b that has been amplified in the preamplifier 330 A and output an amplified pulsed laser beam S 6 c.
  • the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 .
  • the outputted pulsed laser beam S 3 may be amplified in the regenerative amplifier 370 containing the CO 2 gas gain medium.
  • the amplified pulsed laser beam S 6 a may then enter the preamplifier 330 A containing the CO 2 gas gain medium.
  • the pulsed laser beam S 6 a that has entered the preamplifier 330 A may be amplified as it travels along the multipass optical path formed through the CO 2 gas gain medium.
  • the amplified pulsed laser beam S 6 b may be reflected by the high-reflection mirrors M 31 and M 32 and may enter the relay optical system 320 B.
  • the relay optical system 320 B may adjust the shape of the beam cross-section of the pulsed laser beam S 6 b .
  • the pulsed laser beam S 6 b of which the shape of the beam cross-section has been adjusted, may be further amplified as it travels through the main amplifier 330 B containing the CO 2 gas gain medium.
  • the amplification control in the laser apparatus 3 A including the regenerative amplifier will be described in detail with reference to the drawings.
  • the case where the wavelength chirping range (see R 41 in FIG. 10 ) overlaps the entirety of a single gain bandwidth (see S 51 in FIG. 10 ) of the CO 2 gas gain medium will be illustrated as an example.
  • FIG. 10 shows an example of the amplification control in the laser apparatus 3 A including the regenerative amplifier.
  • the oscillation trigger S 1 is inputted to the semiconductor laser controller 311 , as shown in FIG. 10( a )
  • the current pulse S 2 may flow in the semiconductor laser device 312 as shown in FIG. 10( b ).
  • the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 as shown in FIG. 10( c ).
  • the output wavelength S 4 of the pulsed laser beam S 3 may be controlled in advance such that the wavelength chirping range overlaps a gain bandwidth of the CO 2 gas gain medium (see FIG. 10( d )).
  • the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 may be amplified in the regenerative amplifier 370 containing the CO 2 gas gain medium (see FIG. 10( e )). Thereafter, the amplified pulsed laser beam S 6 a may be further amplified in the preamplifier 330 A (see FIG. 10( f )). The pulsed laser beam S 6 b amplified in the preamplifier 330 A may be further amplified in the main amplifier 330 B (see FIG. 10( g )).
  • FIG. 11 illustrates an example of the configuration of the regenerative amplifier.
  • the regenerative amplifier 370 may include resonator mirrors 375 and 377 , EO (electro Optic) Pockels cells 373 and 376 , a polarization beam splitter 371 , a chamber 372 filled with a CO 2 gas gain medium, and a quarter-wave plate 374 .
  • EO electro Optic
  • the resonator mirrors 375 and 377 may constitute an optical resonator.
  • the EO Pockels cell 376 and the polarization beam splitter 371 may be disposed on the beam path between the chamber 372 and the resonator mirror 377 .
  • the EO Pockels cell 373 and the quarter-wave plate 374 may be disposed on the beam path between the chamber 372 and the resonator mirror 375 .
  • FIG. 12 shows an example of the operation of the regenerative amplifier 370 .
  • the linearly polarized pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 may be incident on the polarization beam splitter 371 as mainly the S-polarization component.
  • the S-polarization component of the pulsed laser beam S 3 may be reflected by the beam splitter 371 . With this, most of the pulsed laser beam S 3 may enter the regenerative amplifier 370 .
  • the pulsed laser beam S 3 that has entered the regenerative amplifier 370 may travel through the CO 2 gas gain medium inside the chamber 372 .
  • the pulsed laser beam S 3 may be amplified for a duration in which the wavelength chirping range overlaps the gain bandwidth (see FIG. 10( d )).
  • the pulsed laser beam S 3 may pass through the EO Pockels cell 373 and through the quarter-wave plate 374 , to thereby be transformed into the circularly polarized pulsed laser beam S 3 .
  • the circularly polarized pulsed laser beam S 3 may be reflected by the resonator mirror 375 and may again pass through the quarter-wave plate 374 . With this, the circularly polarized pulsed laser beam S 3 may be transformed into the linearly polarized pulsed laser beam S 3 that may be incident as mainly the P-polarization component on the polarization beam splitter 371 .
  • the pulsed laser beam S 3 may be amplified further as it travels through the CO 2 gas gain medium inside the chamber 372 . Then, the pulsed laser beam S 3 may be incident on the polarization beam splitter 371 and be transmitted through the polarization beam splitter 371 .
  • the pulsed laser beam S 3 that has been transmitted through the polarization beam splitter 371 may pass through the EO Pockels cell 376 , be reflected by the resonator mirror 377 , and again pass through the EO Pockels cell 376 and the polarization beam splitter 371 . Then, the pulsed laser beam S 3 may be further amplified as it travels through the CO 2 gas gain medium inside the chamber 372 . The pulsed laser beam S 3 that has been further amplified may be transformed into the circularly polarized pulsed laser beam S 3 when it passes through the EO Pockels cell 373 to which voltage S 91 (see FIG. 12( b )) is applied by a power source (not shown).
  • the circularly polarized pulsed laser beam S 3 may pass through the quarter-wave plate 374 , to thereby be transformed into the linearly polarized pulsed laser beam S 3 that may be incident as mainly the S-polarization component on the polarization beam splitter 371 .
  • the pulsed laser beam S 3 may be reflected by the resonator mirror 375 and may again pass through the quarter-wave plate 374 and the EO Pockels cell 373 to which the voltage S 91 is applied, to thereby be transformed into the linearly polarized pulsed laser beam S 3 that may be incident as mainly the P-polarization component on the polarization beam splitter 371 .
  • the pulsed laser beam S 3 may be further amplified as it travels back and forth multiple times between the resonator mirrors 375 and 377 .
  • voltage S 92 (see FIG. 12( c )) may be applied to the EO Pockels cell 376 by a power source (not shown).
  • the linearly polarized pulse laser beam S 3 which may be incident as mainly the P-polarization component on the polarization beam splitter 371 , may be transformed into the circularly polarized pulsed laser beam S 3 .
  • the circularly polarized pulsed laser beam S 3 may be reflected by the resonator mirror 377 and may again pass through the EO Pockels cell 376 to which the voltage S 92 is applied, to thereby be transformed into the linearly polarized pulsed laser beam S 3 that may be incident as mainly the S-polarization component on the polarization beam splitter 371 .
  • the S-polarization component of the pulsed laser beam S 3 may be reflected by the beam splitter 371 .
  • the amplified pulsed laser beam S 6 a may be outputted from the regenerative amplifier 370 .
  • the voltage S 91 applied to the EO Pockels cell 373 may be turned OFF in order to allow a subsequent pulsed laser beam to enter the regenerative amplifier 370 .
  • FIG. 13 is a timing chart from the input of an oscillation trigger into a semiconductor laser apparatus until an amplified pulsed laser beam is outputted from a regenerative amplifier.
  • the oscillation trigger S 1 is inputted to the semiconductor laser controller 311 at the timing Tt as shown in FIG. 13( a )
  • the current pulse S 2 may flow in the semiconductor laser device 312 (see FIG. 13( b )).
  • the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 as shown in FIG. 13( c ).
  • the pulsed laser beam S 3 may be amplified while the chirping range R 4 of the output wavelength S 4 of the pulsed laser beam S 3 overlaps the gain bandwidth S 51 of the CO 2 gas gain medium.
  • a delay time Td may be required from the timing Tt at which the oscillation trigger S 1 is inputted to the semiconductor laser controller 311 until the timing Tp at which the output wavelength S 4 of the pulsed laser beam S 3 initially overlaps the gain bandwidth S 51 .
  • the pulsed laser beam S 3 that has entered the regenerative amplifier 370 may travel back and forth multiple times (for example, ten times) in the optical resonator of the regenerative amplifier 370 . Accordingly, a timing at which the amplified pulsed laser beam S 6 a is outputted from the regenerative amplifier 370 may be further delayed (see delay time Tr in FIG. 13( e )).
  • a delay time Tdr from the timing Tt at which the oscillation trigger S 1 is inputted to the semiconductor laser controller 311 until a timing To at which the amplified pulsed laser beam S 6 a is outputted from the regenerative amplifier 370 may be the sum of the delay time Td and a time Tr during which the pulsed laser beam S 3 travels back and forth in the resonator of the regenerative amplifier 370 .
  • the oscillation trigger S 1 may preferably be inputted in consideration of the above delay times.
  • FIG. 14 schematically illustrates the configuration of a laser apparatus 3 B according to a third embodiment.
  • the laser apparatus 3 B shown in FIG. 14 may be similar in configuration to the laser apparatus 3 shown in FIG. 1 .
  • the semiconductor laser apparatus 310 may be replaced by a semiconductor laser system 310 S.
  • the semiconductor laser system 3105 may include semiconductor laser apparatuses 310 - 1 through 310 - n , a beam path adjusting unit 360 , and a semiconductor laser controller 311 A.
  • Each of the semiconductor laser apparatuses 310 - 1 through 310 - n may be similar in configuration to the semiconductor laser apparatus 310 .
  • the semiconductor laser controller 311 A may be configured to control each of the semiconductor laser apparatuses 310 - 1 through 310 - n .
  • the beam path adjusting unit 360 may be positioned so as to make the beam paths of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n substantially coincide with one another.
  • Each of the semiconductor laser apparatuses 310 - 1 through 310 - n may oscillate at the timing and with the intensity specified by the semiconductor laser controller 311 A.
  • Each of the semiconductor laser apparatuses 310 - 1 through 310 - n may output a pulsed laser beam when a current pulse flows in the respective semiconductor laser devices 312 (see, e.g., FIG. 1 ).
  • the pulsed laser beam outputted from each of the semiconductor laser apparatuses 310 - 1 through 310 - n may be controlled such that at least a part of the wavelength chirping range of each pulsed laser beam overlaps a gain bandwidth of the CO 2 gas gain medium.
  • the wavelength chirping range of each of the semiconductor laser apparatuses 310 - 1 through 310 - n may be controlled by controlling the temperature of the respective semiconductor laser devices 312 .
  • the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n may enter the beam path adjusting unit 360 .
  • the beam path adjusting unit 360 may serve to make the beam paths of the respective pulsed laser beams substantially coincide with one another.
  • the beam path adjusting unit 360 may be an optical system configured to make the beam paths of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n substantially coincide with one another.
  • the beam path adjusting unit 360 may be an optical system in which a grating, a beam splitter, and the like are combined.
  • the pulsed laser beam S 3 including the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n may be outputted from the semiconductor laser system 310 S.
  • the pulsed laser beam S 3 may be expanded in diameter by the relay optical system 320 , and thereafter may be amplified to the pulsed laser beam S 6 by the amplifier 330 .
  • each of the semiconductor laser apparatuses 310 - 1 through 310 - n may be similar in configuration to the semiconductor laser apparatus in the first embodiment; thus, duplicate description thereof will be omitted.
  • FIG. 15 shows the case where single-longitudinal-mode semiconductor laser apparatuses are allocated to respective gain bandwidths.
  • FIG. 16 shows an example of the pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 15 .
  • FIGS. 15 and 16 a case where five semiconductor laser apparatuses 310 - 1 through 310 - 5 , each of which oscillates at a single-longitudinal-mode, are used will be illustrated.
  • the gain bandwidths S 51 through S 57 of the CO 2 gas gain medium the gain bandwidths S 52 through S 56 are used here.
  • the gain in each of the gain bandwidths S 51 through S 57 may differ from one another.
  • the pulsed laser beams at single-longitudinal-modes L 3 , L 5 , L 7 , L 9 , and L 11 ) with beam intensity corresponding to the gain of the respective gain bandwidths are outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 .
  • wavelength chirping ranges R 4 a through R 4 e of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 at the respective single-longitudinal-modes L 3 , L 5 , L 7 , L 9 , and L 11 may overlap at least parts of the gain bandwidths S 52 through S 56 , respectively.
  • the semiconductor laser controller 311 A may control the beam intensity of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 at the single-longitudinal-modes L 3 , L 5 , L 7 , L 9 , and L 11 in accordance with the peak gain in the corresponding gain bandwidths S 52 through S 56 .
  • a single-longitudinal-mode pulsed laser beam with relatively small beam intensity may be associated with a gain bandwidth with a relatively high peak gain (e.g., S 52 ), and a single-longitudinal-mode pulsed laser beam with relatively high beam intensity may be associated with a gain bandwidth of a relatively low peak gain (e.g., S 53 ).
  • the peak intensity of each of the pulsed laser beams S 62 through S 66 amplified by the CO 2 gas gain medium may become substantially equal, as shown in FIG. 16 .
  • amplification efficiency can be improved, compared to the case where a pulsed laser beam is amplified using a single gain bandwidth, for example.
  • FIG. 17 shows the case where the multiple single-longitudinal-mode semiconductor laser apparatuses are allocated to a single gain bandwidth.
  • FIG. 18 shows an example of a pulsed laser beam amplified in the case shown in FIG. 17 .
  • FIGS. 17 and 18 the case where three semiconductor laser apparatuses 310 - 1 through 310 - 3 each of which oscillates at a single-longitudinal-mode are used is illustrated.
  • the gain bandwidth S 52 is used.
  • the wavelength chirping ranges R 4 a through R 4 c of the pulsed laser beams outputted from the multiple (three in this example) semiconductor laser apparatuses 310 - 1 through 310 - 3 at single-longitudinal-modes L 3 a through L 3 c may overlap at least a part of the single gain bandwidth S 52 .
  • the peak intensity of the pulsed laser beam S 6 outputted from the amplifier 330 may be increased.
  • the gain in the gain bandwidth S 52 may be greater than those in the other gain bandwidths. Accordingly, the number of semiconductor lasers allocated to each gain bandwidth may be modified in accordance with the gain in each gain bandwidth. It is assumed in this example that the gain bandwidths S 52 through S 54 are used, and the gain in the gain bandwidth S 52 is twice as much as the gain in the gain bandwidth S 53 or S 54 . Because the gain in the gain bandwidth S 52 is greater than those in the gain bandwidths S 53 and S 54 , as mentioned above, twice or more (two, for example) as many semiconductor laser apparatuses as the number (one, for example) of the semiconductor laser apparatuses allocated to the gain bandwidth S 52 may be allocated to the gain bandwidth S 53 or S 54 . With this, the current given to each of the semiconductor laser apparatuses may be made substantially equal, which may facilitate the temperature control in the semiconductor laser system 310 S.
  • FIG. 19 shows the case where five single-longitudinal-mode semiconductor laser apparatuses are allocated to three gain bandwidths.
  • FIG. 20 shows an example of the pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 19 .
  • FIGS. 19 and 20 show the case where five semiconductor laser apparatuses 310 - 1 through 310 - 5 each of which oscillates at a single-longitudinal-mode are used.
  • FIGS. 19 and 20 show the case where, of the gain bandwidths S 51 through S 57 of the CO 2 gas gain medium, the gain bandwidths S 52 through S 54 are used.
  • the wavelength chirping ranges R 4 a through R 4 e of longitudinal modes L 3 , L 5 b , L 5 c , L 7 d , and L 7 e at which the multiple (five in the example shown in FIG. 19 ) semiconductor laser apparatuses 310 - 1 through 310 - 5 oscillate may overlap at least parts of the gain bandwidths S 52 through S 54 , respectively.
  • a plurality of the wavelength chirping ranges may overlap at least a part of a single gain bandwidth.
  • the number of wavelength chirping ranges to overlap a single gain bandwidth may preferably be adjusted in accordance with the gain in the respective gain bandwidths.
  • the overall beam intensity of each of the pulsed laser beams in the respective gain bandwidths is substantially equal (see FIG. 20 ).
  • the wavelength chirping range R 4 a of the pulsed laser beam outputted from the semiconductor laser apparatus 310 - 1 at the single-longitudinal-mode L 3 may overlap at least a part of the gain bandwidth S 52 .
  • the wavelength chirping ranges R 4 b and R 4 c of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 2 and 310 - 3 at the single-longitudinal-modes L 5 b and L 5 c may overlap at least a part of the gain bandwidth S 53 .
  • the wavelength chirping ranges R 4 d and R 4 e of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 4 and 310 - 5 at the single-longitudinal-modes L 7 d and L 7 e may overlap at least a part of the gain bandwidth S 54 .
  • spectral waveforms of pulsed laser beams S 62 c through S 64 c amplified by the CO 2 gas gain medium may be such that their peak intensities are substantially equal to each other, as shown in FIG. 20 .
  • amplification efficiency can be improved, compared to the case where the pulsed laser beam L 3 is amplified using the single gain bandwidth S 52 , for example.
  • Waveform control of the pulsed laser beam S 6 outputted from the amplifier 330 will be discussed.
  • the temporal waveform of the pulsed laser beam S 6 outputted from the amplifier 330 may be controlled by controlling not only a current waveform given to each of the semiconductor laser apparatuses 310 - 1 through 310 - n but also timings at which a current is supplied to each of the semiconductor laser apparatuses 310 - 1 through 310 - n.
  • the pulsed laser beam S 6 with high peak intensity or the pulsed laser beam S 6 with a longer pulse width may be obtained.
  • the waveform of the pulsed laser beam S 6 may be controlled by controlling the timing at which a pulsed laser beam is outputted from each of the semiconductor laser apparatuses. For example, when the timings at which the multiple pulsed laser beams are outputted from the amplifier are adjusted to coincide with one another, the pulsed laser beam S 6 with high peak intensity may be obtained. Alternatively, when the timings at which the multiple pulsed laser beams are outputted from the amplifier are adjusted to differ from one another, the pulsed laser beam S 6 with a longer pulse width may be obtained.
  • each case will be described with examples.
  • FIGS. 21 through 24 show timing charts in the case where the timings at which the pulsed laser beams are outputted from the amplifier coincide with one another.
  • five semiconductor laser apparatuses 310 - 1 through 310 - 5 are used.
  • the intensity of the current pulse inputted to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 may be controlled in accordance with the gain in the respective gain bandwidths corresponding to the respective longitudinal modes.
  • the intensity of current pulses S 22 through S 26 inputted to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 may be controlled.
  • pulsed laser beams S 32 through S 36 with the beam intensity corresponding to the intensity of the current pulses S 22 through S 26 may be outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 .
  • oscillation triggers may preferably be given to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 at timings Tt 1 through Tt 3 such that the amplified pulsed laser beams S 62 through S 66 may be outputted from the amplifier 330 simultaneously at a timing Tt 4 .
  • the timings Tt 1 through Tt 3 at which the oscillation triggers are inputted to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 may preferably be set so as to precede by delay times Tdr 2 through Tdr 6 , respectively.
  • the delay times Tdr 2 through Tdr 6 preceding the timing Tt 4 are required for the respective pulsed laser beams S 32 through S 36 to be amplified in the regenerative amplifier 370 , and are required for the pulsed laser beams to be outputted as amplified pulsed laser beams S 62 through S 66 , respectively, from the regenerative amplifier 370 .
  • the current pulses S 22 through S 26 may be given to the semiconductor laser apparatuses 310 - 1 through 310 - 5 at the aforementioned timings. Accordingly, the intensity of the pulsed laser beam S 6 outputted from the amplifier 330 may be the sum of the intensity of the pulsed laser beams S 62 through S 66 ( FIG. 23 ) amplified in the respective gain bandwidths S 52 through S 56 . As a result, the pulsed laser beam S 6 with high peak intensity may be obtained.
  • FIGS. 25 through 28 show timing charts in the case where timings at which the pulsed laser beams are outputted from the amplifier differ from one another.
  • five semiconductor laser apparatuses 310 - 1 through 310 - 5 are used.
  • timings at which the pulsed laser beams S 32 through S 36 are outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 may be offset from one another by adjusting rise timings T 1 through T 5 of the current pulses S 22 through S 26 (that is, the output timings of the oscillation triggers) inputted to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 (see FIG. 26 ).
  • the rising edges of the current pulses S 22 through S 26 are misaligned with each other.
  • timings at which the pulsed laser beams S 62 c through S 66 c are outputted from the amplifier 330 may be offset from one another.
  • the rise timings T 1 through T 5 may be offset from one another such that the offset amount in the timings at which the pulsed laser beams S 62 c through S 66 c are outputted is substantially equal.
  • the rise timings T 1 through T 5 may preferably be set so as to precede the timings at which pulsed laser beams S 62 c through S 66 c are outputted from the amplifier 330 , respectively, by the delay times Tdr 2 through Tdr 6 .
  • the current pulses S 22 through S 26 may be supplied to the respective semiconductor laser apparatuses 310 - 1 through 310 - 5 at the aforementioned timings.
  • the pulsed laser beam S 6 outputted from the amplifier 330 may thus be arranged in series and closely with each other, as shown in FIG. 28 . As a result, the pulsed laser beam. S 6 with a longer pulsed width may be obtained.
  • the amplification efficiency of the pulsed laser beams S 32 through S 36 may be increased.
  • the offset amount in the timings at which the pulsed laser beams S 32 through S 36 are outputted may be varied, which may allow the pulse shape of the pulsed laser beam S 6 outputted from the amplifier 330 to be varied. This may make it possible to generate the pulsed laser beam S 6 with an optimal pulse shape which can meet a condition. Further, largely offsetting the rise timings of the pulsed laser beams may make it possible to generate a plurality of laser beams, such as a pre-pulse laser beam and a main pulse laser beam.
  • the laser apparatus 3 B shown in FIG. 14 may include the regenerative amplifier 370 as in the laser apparatus 3 A shown in FIG. 9 .
  • FIG. 29 schematically illustrates the configuration of a laser apparatus 3 C according to a fourth embodiment. As illustrated in FIG. 29 , the laser apparatus 3 C may be similar in configuration to the laser apparatus 3 A shown in FIG. 9 , but may differ in that the semiconductor laser apparatus 310 is replaced by the semiconductor laser system 3105 shown in FIG. 14 . Other configuration and operation may be similar to those of the above-described embodiments; thus, detailed description thereof will be omitted here.
  • the wavelength of the longitudinal mode pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 will be described first.
  • the oscillation wavelength of the semiconductor laser apparatus 310 will be described, first.
  • the external-resonator type semiconductor laser apparatus 310 B will be used as an example.
  • FIG. 30 schematically illustrates the configuration of the external-resonator type semiconductor laser apparatus 310 B.
  • the longitudinal mode (wavelength) of the external-resonator type semiconductor laser apparatus 310 B may be represented by Expression (1) below.
  • the distance between the output coupler 3125 and the semiconductor laser device 312 B is Lg1, and the refraction index of that space is n1.
  • the length of the active layer 3122 B is Lg2, and the refraction index thereof is n2.
  • the distance between the semiconductor laser device 312 B and the grating 3127 is Lg3, and the refraction index of that space is n3.
  • the optical path length L of the optical resonator formed in the external-resonator type semiconductor laser apparatus 310 B may be represented by Expression (2) below.
  • FSR free spectral range
  • the central wavelength of a selected bandwidth may be represented by Expression (4) below.
  • the external-resonator type semiconductor laser apparatus 3108 may, when the longitudinal mode ⁇ of the optical resonator coincides with the selected central wavelength ⁇ G by the grating 3127 , oscillate at the given wavelength.
  • FIG. 31 illustrates the relationship among the gain bandwidths of the CO 2 gas gain medium, the wavelength selectivity by the grating, and the longitudinal modes at which the semiconductor laser device oscillates.
  • FIG. 32 shows an example of the pulsed laser beam S 3 outputted from the semiconductor laser apparatus at a single-longitudinal-mode.
  • the semiconductor laser device 312 in the semiconductor laser apparatus 310 may oscillate at longitudinal modes L 1 through L 13 .
  • the selected wavelength range S 8 by the grating 3124 or 3127 of the semiconductor laser apparatus 310 contains the longitudinal mode L 3 of the longitudinal modes L 1 through L 13 .
  • the longitudinal mode at which the semiconductor laser apparatus 310 oscillates may be the longitudinal mode L 3 .
  • the wavelength ⁇ L of the longitudinal mode L 3 may be 10.5912 ⁇ m, from Expression (1) above.
  • the wavelength gap (FSR) of the longitudinal modes L 1 through L 13 may be 0.0101 ⁇ m.
  • the wavelength selection range S 8 selected by the grating 3124 or 3127 may include the wavelength of the longitudinal mode L 3 .
  • the oscillation wavelength of the semiconductor laser apparatus 310 may in fact be the wavelength of the longitudinal mode L 3 .
  • the wavelength of the longitudinal mode L 3 may be contained in the gain bandwidth S 52 at P(20) transition of the CO 2 gas gain medium.
  • the wavelength of the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 overlaps the gain bandwidth S 52 , as shown in FIG. 32 ; thus, the pulsed laser beam S 3 may be amplified in the gain bandwidth S 52 of the CO 2 gas gain medium.
  • the wavelength chirping range of the semiconductor laser apparatus 310 may overlap at least part of any one of the gain bandwidths S 51 through S 57 .
  • the initial wavelength of the pulsed laser beam S 3 may be shorter than the wavelength of the gain bandwidth S 52 .
  • the wavelength of the pulsed laser beam S 3 may overlap at least part of the gain bandwidth S 52 as the wavelength of the pulsed laser beam S 3 chirps.
  • the optical path length L of the optical resonator may be controlled by controlling at least one among the optical path lengths Lg1 and Lg3 and the refraction indexes n1 through n3. With this, the wavelength chirping range of the semiconductor laser apparatus 310 B may be controlled.
  • Control of the refraction index n1 of the space between the output coupler 3125 and the semiconductor laser device 312 B Control at least one of the type and the density (pressure) of the gas in the space between the output coupler 3125 and the semiconductor laser device 312 B; (2) Control of the distance Lg1 between the output coupler 3125 and the semiconductor laser device 312 B: Relatively displace the output coupler 3125 and the semiconductor laser device 312 B in the direction of the beam axis; (3) Control of the refraction index n2 of the active layer 3122 B: Control the temperature of the semiconductor laser device 312 B; (4) Control of the refraction index n3 of the space between the semiconductor laser device 312 B and the grating 3127 : Control at least one of the type and the density (pressure) of the gas in the space between the semiconductor laser device 312 B and the grating 3127 ; (5) Control of the distance Lg3 between the semiconductor laser device 312 B and the grating 3127 : Relatively displace the semiconductor laser device 3
  • the distributed-feedback semiconductor laser apparatus 310 A which is an internal-resonator type semiconductor laser apparatus
  • the grating 3124 and the optical resonator may be formed inside the semiconductor laser device 312 A (see FIG. 4 ). Accordingly, the wavelength of the longitudinal mode determined by the central wavelength of the bandwidth selected by the grating 3124 and the optical path length of the optical resonator may vary in accordance with the change in temperature of the active layer 3122 . Thus, controlling the temperature of the semiconductor laser device 312 A may make it possible to control the wavelength chirping range.
  • the chirping range of the oscillation wavelength may be controlled as well.
  • FIG. 33 shows a change over time in the wavelength chirping, the temperature of the active layers, and the beam intensity of the outputted pulsed laser beam.
  • the temperature of the active layer 3122 of the semiconductor laser device 312 may change due to the current flowing in the semiconductor laser device 312 .
  • the rise in the temperature of the active layer 3122 may become steeper as the intensity of the current flowing in the semiconductor laser device 312 increases. For example, as shown in FIG.
  • temperature S 7 c of the active layer 3122 when the current pulse S 2 c flows in the semiconductor laser device 312 may vary more than temperature S 7 a of the active layer 3122 when the current pulse S 2 a flows in the semiconductor laser device 312 , as shown in FIG. 33( a ).
  • a wavelength chirping range Rc when the current pulse S 2 c flows in the semiconductor laser device 312 may be wider than a wavelength chirping range Ra when the current pulse S 2 a flows in the semiconductor laser device 312 .
  • the temperature of the semiconductor laser device 312 may continue to rise while the current pulse is being supplied to the semiconductor laser device 312 . Accordingly, the wavelength chirping may continue during that period.
  • the wavelength chirping range may be relatively wide if the intensity of the current pulse is high. For example, as shown in FIG.
  • temperature S 7 b of the active layer 3122 when the current pulse S 2 b flows in the semiconductor laser device 312 may vary more than the temperature S 7 a of the active layer 3122 when the current pulse S 2 a flows in the semiconductor laser device 312 , as shown in FIG. 33( a ).
  • a wavelength chirping range Rb when the current pulse S 2 b flows in the semiconductor laser device 312 may be wider than the wavelength chirping range Ra when the current pulse S 2 a flows in the semiconductor laser device 312 .
  • the wavelength chirping range may be controlled by controlling the intensity and the pulse width of the current pulse that flows in the semiconductor laser device 312 .
  • the wavelength may chirp rapidly at the beginning of the current pulse, but the change may become smaller toward the end of the current pulse. From this, it may be preferable that a portion toward the end of the wavelength chirping range is controlled to overlap a gain bandwidth of the CO 2 gas gain medium. This may allow the pulse width of the amplified pulsed laser beam to be extended.
  • the wavelength selection range S 8 by the grating 3127 shown in FIG. 31 may be set to wavelengths corresponding to the gain bandwidths S 51 , S 53 , S 54 , S 55 , S 56 , or S 57 at other transitions (P(18), P(22), P(24), P(26), P(28), and P(30)).
  • the semiconductor laser apparatus 310 A that oscillates at a single-longitudinal-mode of a wavelength corresponding to the gain bandwidth S 51 , S 53 , S 54 , S 55 , S 56 , or S 57 at P(18), P(22), P(24), P(26), P(28), or P(30) transition other than P(20) transition can be obtained.
  • control system of the laser apparatus 3 shown in FIG. 1 will be described in detail with reference to the drawings.
  • the configuration and the operation below may be applicable to the laser apparatuses 3 A through 3 C according to the other embodiments.
  • FIG. 34 schematically illustrates the configuration of the laser apparatus 3 and the control system thereof.
  • the control system of the laser apparatus 3 may include a laser controller 350 and a memory 351 .
  • the memory 351 may hold various control parameters for the laser controller 350 to control the semiconductor laser apparatus 310 .
  • the control parameters may include chirping characteristics of the semiconductor laser device 312 .
  • the memory 351 may hold the chirping characteristics by associating the chirping characteristics to a current value I and a pulse width W of the current pulse which flows in the semiconductor laser device 312 , a set temperature SMTt of a temperature adjusting unit of the semiconductor laser device 312 , and a repetition rate f.
  • the laser controller 350 may load necessary control parameters from the memory 351 when causing the semiconductor laser apparatus 310 to oscillate.
  • the laser controller 350 may input various control signals to the semiconductor laser controller 311 of the semiconductor laser apparatus 310 , based on the loaded control parameters.
  • the semiconductor laser controller 311 may be configured to control the temperature controller 314 and the current controller 315 , based on the inputted various control signals. With this, the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 .
  • the laser controller 350 may be configured to control the intensity and the timing at which the CO 2 gas gain medium in the amplifier 330 is excited.
  • the laser controller 350 may excite the CO 2 gas gain medium in the amplifier 330 in synchronization with the timing at which the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 passes through the amplifier 330 . With this, the power consumption in the amplifier 330 may be reduced.
  • FIG. 35 schematically illustrates the configuration of a measuring system for obtaining the control parameters in advance for the laser apparatus 3 .
  • the measuring system 380 may include a focusing lens 381 , a member with an input slit 382 , a high-reflection mirror 383 , a concave mirror 384 , a grating 385 , a concave mirror 386 , and a linear sensor 387 .
  • the laser controller 350 may input to the semiconductor laser apparatus 310 the set temperature SMTt of the temperature controller 314 of the semiconductor laser device 312 . With this, the temperature of the semiconductor laser device 312 may be adjusted to the set temperature SMTt. Further, the laser controller 350 may input to the semiconductor laser apparatus 310 the current value I and the pulse width W of the current pulse to flow in the semiconductor laser device 312 . With this, the current value and the pulse width of the current pulse supplied to the semiconductor laser device 312 from the current controller 315 may be set to the current value I and the pulse width W, respectively. Furthermore, the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the repetition rate f.
  • a delay generator 352 may be provided on a signal path through which the oscillation triggers are transmitted.
  • the current controller 315 in the semiconductor laser apparatus 310 may control the current pulses to flow in the semiconductor laser device 312 at the repetition rate f.
  • the pulsed laser beam S 3 may be outputted from the semiconductor laser apparatus 310 at the repetition rate f.
  • the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 may travel through the focusing lens 381 and the input slit 382 .
  • the pulsed laser beam S 3 that has passed through the input slit 382 may be reflected by the high-reflection mirror 383 and the concave mirror 384 , to thereby be collimated.
  • the pulsed laser beam S 3 reflected by the concave mirror 384 may be incident on the grating 385 .
  • Rays of the pulsed laser beam L 3 may be diffracted by the grating 385 in accordance with their wavelengths. Diffracted rays SD 3 diffracted by the grating 385 may be reflected by the concave mirror 386 .
  • the linear sensor 387 may be disposed at the focus of the concave mirror 386 . In that case, diffracted rays SD 3 may be focused at positions on the linear sensor 387 in accordance with their diffraction angles.
  • An image data obtained by the linear sensor 387 may be inputted to the laser controller 350 .
  • the laser controller 350 may detect the wavelength of the pulsed laser beam S 3 based on the inputted image data.
  • the laser controller 350 may hold the state of a wavelength change over time detected per pulse in the pulsed laser beam S 3 as the chirping characteristics of the semiconductor laser apparatus 310 . Furthermore, the laser controller 350 may hold in the memory 351 the obtained chirping characteristics by associating the chirping characteristics with the control parameters (current value I, pulse width W, set temperature SMTt (see FIG. 36 , discussed below), and repetition rate f) currently set for the semiconductor laser apparatus 310 .
  • the control parameters current value I, pulse width W, set temperature SMTt (see FIG. 36 , discussed below), and repetition rate f
  • FIG. 36 shows an example of the chirping characteristics of the semiconductor laser apparatus.
  • FIG. 36 shows the case where the wavelength of the pulsed laser beam S 3 is adjusted, but not limited to, with respect to the gain bandwidth S 52 . However, the wavelength of the pulsed laser beam S 3 may be adjusted with respect to the other gain bandwidths S 51 and S 53 through S 57 .
  • a curve Cp indicates temperature dependency of temporally initial wavelengths in a single pulse of the pulsed laser beam S 3 .
  • a curve Cf indicates temperature dependency of temporally final wavelengths in a single pulse of the pulsed laser beam S 3 .
  • the wavelength of the pulsed laser beam S 3 may shift from the curve Cp to the curve Cf in the duration of a single pulse.
  • a set temperature SMTp may be set so that the final wavelength of the pulsed laser beam S 3 becomes the longest wavelength ⁇ max of the gain bandwidth S 52 in the curve Cp.
  • a set temperature SMTf may be set so that the final wavelength of the pulsed laser beam S 3 becomes the shortest wavelength ⁇ min of the gain bandwidth S 52 .
  • the set temperature SMTt of the semiconductor laser apparatus 310 is at or above the set temperature SMTp, the wavelength of the pulsed laser beam S 3 does not overlap the gain bandwidth S 52 ; therefore, the pulsed laser beam S 3 may not be amplified.
  • the set temperature SMTt is at or below the set temperature SMTf, the wavelength of the pulsed laser beam S 3 does not overlap the gain bandwidth S 52 , either; therefore, the pulsed laser beam S 3 may not be amplified.
  • the set temperature SMTt may be set at a temperature (intermediate temperature, for example) between the set temperature SMTf and the set temperature SMTp, for example.
  • the pulsed laser beam S 3 may be amplified using a bandwidth with higher gain.
  • the amplification efficiency may be improved.
  • the set temperature SMTt between the set temperature SMTf and the set temperature STMp may be obtained from Expression (5) below.
  • FIG. 37 illustrates an example of control parameter acquisition operation by the measuring system 380 and the laser controller 350 .
  • the measuring system 380 may preferably be arranged downstream from the semiconductor laser apparatus 310 .
  • the laser controller 350 may first select a semiconductor laser apparatus subject for measurement (Step S 301 ). However, when the laser apparatus includes only a single semiconductor laser apparatus, Step S 301 may be omitted.
  • the laser controller 350 may reset a timer (not shown) (Step S 302 ). Subsequently, the laser controller 350 may select a single set of control parameters from a plurality of sets of control parameters held in the control system (Step S 303 ). Each set of control parameters may include the current value I and the pulse width W of the current pulse to flow in the semiconductor laser device 312 , the set temperature SMTt of the temperature adjusting unit of the semiconductor laser device 312 , and the repetition rate f. The plurality of sets of control parameters may be held in the memory 351 , for example. The laser controller 350 may read out the plurality of sets of control parameters held in the memory 351 and select one from the sets.
  • the laser controller 350 may send the control parameters included in the selected set of control parameters to the semiconductor laser controller 311 of the semiconductor laser apparatus 310 , to thereby set the control parameters to the semiconductor laser controller 311 (Step S 304 ). Subsequently, the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the predetermined repetition rate f, whereby the semiconductor laser apparatus 310 may oscillate at the predetermined repetition rate f (Step S 305 ). Then, the laser controller 350 may start measuring an elapsed time with the timer (Step S 306 ).
  • the laser controller 350 may measure the initial wavelength ⁇ p of the pulsed laser beam S 3 outputted from the semiconductor laser apparatus 310 (Step S 307 ).
  • the initial wavelength ⁇ p may be measured based on the image data inputted from the linear sensor 387 of the measuring system 380 , for example.
  • the laser controller 350 may measure the chirping characteristics of the pulsed laser beam S 3 (Step S 308 ).
  • the chirping characteristics may be measured based on the change over time in the image data inputted from the linear sensor 387 , for example.
  • the laser controller 350 may determine whether or not the chirping characteristics of the pulsed laser beam S 3 are in a steady state (Step S 309 ). Whether or not the chirping characteristics are in the steady state may be determined based on whether or not the chirping characteristics of immediately preceding several pulses of the pulsed laser beams S 3 sufficiently coincide with one another. When the chirping characteristics are not in the steady state (Step S 309 ; NO), the laser controller 350 may return to Step S 307 and measure the initial wavelength ⁇ p and the chirping characteristics of a subsequent pulse of the pulsed laser beam S 3 (Steps S 307 and S 308 ).
  • the laser controller 350 may acquire an elapsed time Tw measured by the timer (Step S 310 ).
  • the chirping characteristics of the pulsed laser beam S 3 may not be stabilized until the temperature of the semiconductor laser device 312 is in the steady state. Accordingly, acquiring the elapsed time Tw required for the chirping characteristics to reach the steady state in advance may help determine easily whether or not the chirping characteristics reaches the steady state even when the apparatus is placed in operation.
  • the laser controller 350 may measure the final wavelength ⁇ f of the pulsed laser beam S 3 (Step S 311 ).
  • the final wavelength ⁇ f may be measured based on the image data inputted from the linear sensor 387 of the measuring system 380 , for example.
  • the laser controller 350 may store the initial wavelength ⁇ p, the final wavelength ⁇ f, and the elapsed time Tw acquired with the above operation for the selected semiconductor laser apparatus 310 in the memory 351 (Step S 312 ).
  • the above parameters are associated with the identification information of, and the set of control parameters for, the selected semiconductor laser apparatus 310 .
  • the laser controller 350 may determine whether or not the measurement for all the control parameters in the selected set has been completed for the selected semiconductor laser apparatus 310 (Step S 313 ). When the measurement in all the control parameters has not been completed (Step S 313 ; NO), the laser controller 350 may return to Step S 302 and repeat the subsequent steps.
  • the laser controller 350 may determine whether or not the above measurement has been completed for all the semiconductor laser apparatuses 310 (Step S 314 ). When the measurement for all the semiconductor laser apparatuses 310 has not been completed (Step S 314 ; NO), the laser controller 350 may return to Step S 301 and repeat the subsequent steps. When the measurement for all the semiconductor laser apparatuses 310 has been completed (Step S 314 ; YES), the laser controller 350 may terminate this operation.
  • the measurement data in all the control parameters in the selected set with respect to all the semiconductor laser apparatuses 310 may be stored in the memory 351 .
  • FIG. 38 shows the amplification control operation by the laser controller 350 .
  • the laser controller 350 may first set a reception refusal of the oscillation trigger (Step S 321 ).
  • the oscillation trigger may be inputted to the laser controller 350 from an external apparatus, such as an exposure apparatus, or may be given to the laser controller 350 from a trigger generator (not shown) inside the laser controller 350 .
  • the laser controller 350 may reset a timer (not shown) (Step S 322 ). Subsequently, the laser controller 350 may load the initial wavelength ⁇ p, the final wavelength ⁇ f, and the elapsed time Tw associated with the identification information, and the set of control parameters of, the respective semiconductor laser apparatuses 310 from the memory 351 (Step S 323 ).
  • the initial wavelength ⁇ p, the final wavelength ⁇ f, and the elapsed time Tw may be associated with the set of control parameters (i.e., no identification information).
  • the laser controller 350 may obtain a set temperature SMT for controlling the wavelength chirping range of a given semiconductor laser apparatus 310 to overlap the target gain bandwidth of the semiconductor laser apparatus 310 (Step S 324 ).
  • the set temperature SMT may be obtained from Expression (5) above, for example.
  • the laser controller 350 may set the control parameters loaded in Step S 323 and the set temperature SMT obtained in Step S 324 to the respective semiconductor laser apparatuses 310 (Step S 325 ).
  • the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the predetermined repetition rate f, whereby the semiconductor laser apparatus 310 may oscillate at the predetermined repetition rate f (Step S 326 ). Thereafter, the laser controller 350 may start measuring an elapsed time with the timer (Step S 327 ).
  • the laser controller 350 may stand by until the elapsed time Tw has passed (Step S 328 ; NO). Whether or not the elapsed time Tw has passes may be determined based on the count value in the timer.
  • the laser controller 350 may set a reception permission of the oscillation trigger (Step S 329 ). With this, the laser controller 350 may cause the semiconductor laser apparatus 310 to oscillate based on the oscillation trigger received from an external apparatus or from the trigger generator provided therein.
  • the laser controller 350 may determine whether or not there has been a change in the control parameters (Step S 330 ).
  • the information on the change in the control parameters may be given to the laser controller 350 from an external apparatus, for example.
  • the laser controller 350 may return to Step S 321 and repeat the subsequent steps.
  • the laser controller 350 may determine whether or not the control of the semiconductor laser apparatus 310 is to be terminated (Step S 331 ).
  • Whether or not the control of the semiconductor laser apparatus 310 is to be terminated may be determined based on whether or not the termination or completion of exposure has been notified from the external apparatus, for example.
  • the laser controller 350 may terminate this operation.
  • the laser controller 350 may return to Step S 329 and repeat the subsequent steps.
  • the laser apparatus 3 capable of feedback-control will be described in detail with reference to the drawings.
  • the configuration and the operation below may be applicable to the laser apparatuses 3 A through 3 C according to the other embodiments as well.
  • FIG. 39 schematically illustrates the configuration of the laser apparatus 3 including a loop for feedback-control and the control system thereof.
  • the feedback-control system of the laser apparatus 3 may further include a monitor unit 340 .
  • the monitor unit 340 may be provided on the beam path of the pulsed laser beam S 6 downstream from the amplifier 330 .
  • the monitor unit 340 may include a beam splitter 341 , a focusing lens 342 , and an optical detector 343 .
  • the beam splitter 341 may reflect a part of the pulsed laser beam S 6 outputted from the amplifier 330 .
  • the focusing lens 342 may be disposed so as to focus the part of the pulsed laser beam S 6 reflected by the beam splitter 341 on a photosensitive surface of the optical detector 343 .
  • the optical detector 343 may detect a timing Tp at which the pulsed laser beam S 6 is outputted or may detect a pulse shape of the pulsed laser beam S 6 .
  • a spectroscope for detecting the wavelength of the pulsed laser beam S 6 may be used in place of the optical detector 343 .
  • the monitor unit 340 may be configured to detect the pulsed laser beam S 3 , and if that is the case, the monitor unit 340 may be provided on the beam path of the pulsed laser beam S 3 upstream from the amplifier 330 .
  • the laser controller 350 may be connected to the monitor unit 340 , the amplifier 330 , and the semiconductor laser controller 311 .
  • the laser controller 350 may be configured to control these, to thereby control the output and the amplification of the pulsed laser beam S 3 .
  • the amplification control operation may be similar to the operation described with reference to FIG. 38 .
  • the feedback-control carried out by the laser controller 350 during the amplification control operation will be discussed with examples.
  • the delay time may be set in advance as a target delay time Tdt.
  • the control system may basically use feedback-control to adjust the temperature of the semiconductor laser device 312 such that the timing Tp, which is detected in the monitor unit 340 , at which the amplified pulsed laser beam S 6 is outputted from the amplifier 330 may achieve the target delay time Tdt.
  • the pulsed laser beam S 3 may be outputted regularly from the semiconductor laser apparatus 310 at the timing Tt+ ⁇ T.
  • the pulsed laser beam S 3 may enter the amplifier 330 via the relay optical system 320 .
  • the pulsed laser beam S 3 may be amplified while the wavelength chirping range of the pulsed laser beam S 3 overlaps a gain bandwidth of the CO 2 gas gain medium.
  • the pulsed laser beam S 6 may be outputted from the amplifier 330 at the timing Tp delayed by the delay time Td from the timing Tt.
  • the timing Tp at which the pulsed laser beam S 6 is outputted from the amplifier 330 may be detected by the monitor unit 340 .
  • the timing Tp detected by the monitor unit 340 may be inputted to the laser controller 350 (Step S 105 ).
  • the monitor unit 340 may detect the pulse shape, the wavelength, and so forth of the pulsed laser beam S 6 .
  • the laser controller 350 may calculate the delay time Td of the timing Tp from the timing Tt, based on the detection result inputted from the monitor unit 340 (Step S 106 ). Thereafter, the laser controller 350 may calculate a difference between the target delay time Tdt and the delay time Td (Step S 107 ).
  • the laser controller 350 may reset the current value I, the pulse width W, and the set temperature SMT of the semiconductor laser device 312 to the semiconductor laser controller 311 , so that the difference ⁇ Td approximates to 0 (Step S 108 ). Thereafter, the laser controller 350 may return to Step S 105 .
  • the laser controller 350 may repeat the feedback-control in Steps S 105 through S 108 , whereby the timing at which the amplified pulsed laser beam S 6 is outputted may be stabilized.
  • FIG. 41 schematically illustrates the configuration of an exemplary LPP type EUV light generation apparatus 1 .
  • the EUV light generation apparatus 1 may be used with at least one laser apparatus 903 .
  • a system including the EUV light generation apparatus 1 and the laser apparatus 903 may be referred to as an EUV light generation system.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit (droplet generator 26 , for example).
  • the interior of the chamber 2 may preferably be vacuum or kept at pressure lower than the atmospheric pressure.
  • the chamber 2 may be filled with a gas which is highly transmissive to the EUV light.
  • the target supply unit may be mounted to the chamber 2 so as to penetrate a wall of the chamber 2 , for example.
  • a target material to be supplied by the target supply unit may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or any combination thereof.
  • the chamber 2 may have at least one through-hole formed in the wall thereof.
  • the through-hole may be covered with a window 21 , and a pulsed laser beam 31 may travel through the window 21 into the chamber 2 .
  • An EUV collector mirror 23 having a spheroidal reflective surface may be provided inside the chamber 2 , for example.
  • the EUV collector mirror 23 may have first and second foci.
  • the EUV collector mirror 23 may have a multi-layered reflective film formed on a surface thereof, and the reflective film may include molybdenum and silicon that are laminated in alternate layers, for example.
  • the EUV collector mirror 23 may preferably be disposed such that the first focus thereof lies in a plasma generation region 25 and the second focus thereof lies in an intermediate focus (IF) region 292 defined by the specification of an exposure apparatus.
  • the EUV collector mirror 23 may have a through-hole 24 formed at the center thereof, and the pulsed laser beam 31 may travel through the through-hole 24 .
  • the EUV light generation system may include an EUV light generation control unit 5 . Further, the EUV light generation apparatus 1 may include a target sensor 4 .
  • the target sensor 4 may be equipped with an imaging function and may detect at least one of the presence, the trajectory, and the position of a target.
  • the EUV light generation apparatus 1 may include a connection part 29 for allowing the interior of the chamber 2 and the interior of the exposure apparatus 6 to be in communication with each other.
  • a wall 291 having an aperture may be disposed inside the connection part 29 .
  • the wall 291 may be disposed such that the second focus of the EUV collector mirror 23 lies in the aperture formed in the wall 291 .
  • the EUV light generation system may include a laser beam direction control unit 34 , a laser beam focusing mirror 22 , and a target collection unit 28 positioned for collecting a target 27 .
  • the laser beam direction control unit 34 may include an optical element for defining the direction in which the laser beam travels and an actuator for adjusting the position and the orientation (or posture) of the optical element.
  • the pulsed laser beam 31 outputted from the laser apparatus 903 may pass through the laser beam direction control unit 34 , and may be outputted from the laser beam direction control unit 34 after having its direction optionally adjusted.
  • the pulsed laser beam 31 may travel through the window 21 and enter the chamber 2 .
  • the pulsed laser beam 31 may travel inside the chamber 2 along at least one beam path from the laser apparatus 903 , be reflected by the laser beam focusing mirror 22 , and strike at least one target 27 .
  • the droplet generator 26 may output the targets 27 toward the plasma generation region 25 inside the chamber 2 .
  • the target 27 may be irradiated by at least one pulse of the pulsed laser beam 31 .
  • the target 27 which has been irradiated by the pulsed laser beam 31 , may be turned into plasma, and rays of light including EUV light 251 may be emitted from the plasma.
  • the EUV light 251 may be reflected selectively by the EUV collector mirror 23 .
  • EUV light 252 reflected by the EUV collector mirror 23 may travel through the intermediate focus region 292 and be outputted to the exposure apparatus 6 .
  • the target 27 may be irradiated by multiple pulses included in the pulsed laser beam 31 .
  • the EUV light generation control unit 5 may integrally control the EUV light generation system.
  • the EUV light generation control unit 5 may process image data of the droplet 27 captured by the target sensor 4 . Further, the EUV light generation control unit 5 may control at least one of the timing at which the target 27 is outputted and the direction into which the target 27 is outputted (e.g., the timing with which and/or direction in which the target is outputted from the droplet generator 26 ), for example.
  • the EUV light generation control unit 5 may control at least one of the timing with which the laser apparatus 903 oscillates (e.g., by controlling laser apparatus 903 ), the direction in which the pulsed laser beam 31 travels (e.g., by controlling laser beam direction control unit 34 ), and the position at which the pulsed laser beam 31 is focused (e.g., by controlling laser apparatus 903 , laser beam direction control unit 34 , or the like), for example.
  • the various controls mentioned above are merely examples, and other controls may be added as necessary.
  • FIG. 42 schematically illustrates the configuration of an EUV light generation system according to an eighth embodiment.
  • an EUV light generation system 1000 may include an EUV light generation controller 100 , the laser apparatus 3 , the laser beam direction control unit 34 , the chamber 2 , and the droplet generator 26 .
  • the laser apparatus 3 may include the amplifier 330 , high-reflection mirrors M 31 and M 32 , a relay optical system 320 B, and a main amplifier 330 B.
  • the laser apparatus 3 may include the monitor unit 340 disposed on the beam path of the pulsed laser beam S 6 downstream from the main amplifier 330 B. Further, the chamber 2 may be provided with a droplet controller 35 .
  • the EUV light generation controller 100 may be connected to the laser controller 350 , the droplet controller 35 , and an exposure apparatus controller 200 and may transmit control signals to and from these controllers.
  • the droplet controller 35 may send an output signal to the droplet generator 26 directing the timing at which the target 27 is to be outputted.
  • the position of the target 27 may be detected by the target sensor 4 .
  • the detection data may then be sent to the droplet controller 35 .
  • the laser controller 350 may cause the semiconductor laser controller 311 to output a current pulse to the current controller 315 .
  • the current controller 315 may cause a current pulse of a predetermined waveform, based on the current pulse from the semiconductor laser controller 311 , to flow in the semiconductor laser device 312 .
  • the pulsed laser beam S 3 may be outputted.
  • the pulsed laser beam S 3 outputted from the semiconductor laser device 312 may be amplified as it travels through the relay optical system 320 , the amplifier 330 , and the main amplifier 330 B via the high-reflection mirrors M 31 and M 32 and the relay optical system 320 B.
  • the monitor unit 340 provided on the beam path of the pulsed laser beam S 6 downstream from the main amplifier 330 B may detect the passing timing, the pulse energy, the pulse shape, the wavelength, and so forth of the amplified pulsed laser beam S 6 .
  • the laser controller 350 may send control signals to the semiconductor laser controller 311 , the amplifier 330 , and the main amplifier 330 B, based on the detection results by the monitor unit 340 .
  • FIG. 43 shows the operation for controlling the timing at which a target is irradiated by the pulsed laser beam.
  • the EUV light generation controller 100 may first execute a subroutine (chirping range adjusting processing) for setting the certain parameters so that at least a part of the wavelength chirping range of the semiconductor laser apparatus 310 overlaps at least a part of one of the gain bandwidths S 51 through S 57 of the CO 2 gas gain medium (Step S 201 ).
  • a subroutine chirping range adjusting processing
  • the EUV light generation controller 100 may stand by until it receives an instruction signal requesting the generation of the EUV light from the exposure apparatus controller 200 (Step S 202 ; NO).
  • the EUV light generation controller 100 may execute a subroutine (timing adjusting processing) for adjusting the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S 6 is focused in the plasma generation region 25 (Step S 203 ).
  • the EUV light generation controller 100 may determine whether or not it has received an instruction signal requesting the halt in the generation of the EUV light from the exposure apparatus controller 200 (Step S 204 ). When the instruction signal has not been received (Step S 204 ; NO), the EUV light generation controller 100 may return to Step S 203 . On the other hand, when the instruction signal has been received (Step S 204 ; YES), the EUV light generation controller 100 may return to Step S 201 .
  • the droplet generator 26 When the signal is inputted to the droplet generator 26 from the droplet controller 35 for causing the droplet generator 26 to output the target 27 , the droplet generator 26 may output the target 27 toward the plasma generation region 25 . Then, the pulsed laser beam 6 may be focused in the plasma generation region 25 in synchronization with the timing at which the target 27 arrives in the plasma generation region 25 .
  • the Peltier device 313 serving as the temperature adjusting unit may be provided in the semiconductor laser apparatus 310 for controlling the temperature of the semiconductor laser device 312 of the semiconductor laser apparatus 310 . Accordingly, in the chirping range adjusting processing in Step S 201 of FIG. 43 , as shown in FIG. 44 , the EUV light generation controller 100 may set at least any one of the set temperature SMT of the Peltier device 313 , the pulse width W (temporal length) of the current pulse to flow in the semiconductor laser device 312 , and the current value I of the current pulse to flow in the semiconductor laser device 312 .
  • the EUV light generation controller 100 may return to the operation shown in FIG. 43 .
  • the EUV light generation controller 100 may first acquire a droplet arrival time Ts, which is a duration from the transmission of a droplet output instruction for requesting the droplet generator 26 to output the target 27 until the target 27 arrives in the plasma generation region 25 (Step S 221 ). Arrival of the target 27 in the plasma generation region 25 may be detected based, for example, on the timing at which the target sensor 4 captures the image of the target 27 . For example, the droplet arrival time Ts may be obtained by measuring a period from the timing at which the droplet output instruction is outputted until the target 27 is detected by the target sensor 4 .
  • the position at which the target 27 is detected by the target sensor 4 may not coincide with the plasma generation region 25 in some cases. If that is the case, a distance DS 1 between the droplet generator 26 and the position at which the target 27 is detected by the target sensor 4 and a distance DS 2 between the droplet generator 26 and the plasma generation region 25 may be measured. Then, the speed of the target 27 may be calculated from the distance DS 1 and the time elapsed from the timing at which the droplet output instruction is outputted until the target 27 is detected. Based on the calculated result, the droplet arrival time Ts for the distance DS 2 may be calculated.
  • the EUV light generation controller 100 may acquire a laser beam arrival time Tf, which is a duration from the input of the oscillation trigger into the semiconductor laser apparatus 310 until the pulsed laser beam S 6 arrives in the plasma generation region 25 (Step S 222 ).
  • a time Tf 0 which is a duration (for example) may be detected from the input of the oscillation trigger into the semiconductor laser apparatus 310 until the pulsed laser beam S 6 is detected by the monitor unit 340 .
  • an arrival time Tx of the pulsed laser beam 6 which may be acquired in advance, required to travel from the monitor unit 340 to the plasma generation region 25 may be added to the time Tf 0 .
  • the arrival time Tx of the pulsed laser beam S 6 from the monitor unit 340 to the plasma generation region 25 may be a value obtained by measurement, or a value obtained by calculation of the optical path length from the monitor unit 340 to the plasma generation region 25 .
  • the EUV light generation controller 100 may calculate a time lag TL by subtracting the laser beam arrival time Tf from the droplet arrival time Ts (Step S 223 ).
  • the time lag TL may be a difference between the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S 6 arrives in the plasma generation region 25 , in the case where the droplet output instruction and the oscillation trigger are outputted simultaneously, for example.
  • the timing at which the oscillation trigger is outputted is delayed by the time lag TL with respect to the timing at which the droplet output instruction is outputted. This may allow the target 27 and the pulsed laser beam S 6 to arrive in the plasma generation region 25 at substantially the same time.
  • the time lag TL may also be used to determine the aforementioned delay times Tdr, Tdt, and so forth.
  • the EUV light generation controller 100 may send the droplet output instruction to the droplet generator 26 (Step S 224 ). Further, the EUV light generation controller 100 may input the oscillation trigger to the semiconductor laser controller 311 at a timing delayed by the time lag TL from the output of the droplet output instruction (Step S 225 ). With this, the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S 6 arrives in the plasma generation region 25 may be synchronized. The target 27 may thus be irradiated by the pulsed laser beam S 6 in the plasma generation region 25 .
  • any of the laser apparatuses 3 A, 3 B, and 3 C of the other embodiments may be applied as well, in place of the laser apparatus 3 .
  • FIG. 46 schematically illustrates the configuration of an EUV light generation system 1000 A to which the laser apparatus 3 C shown in FIG. 29 is applied.
  • the EUV light generation system 1000 A may be similar in configuration to the EUV light generation system 1000 shown in FIG. 42 , but may differ in that the semiconductor laser system 3 C may be included in place of the semiconductor laser apparatus 310 .
  • Other configuration may be similar to that of the EUV light generation system 1000 shown in FIG. 42 .
  • the EUV light generation controller 100 may be connected to the laser controller 350 , the droplet controller 35 , and the exposure apparatus controller 200 and may transmit control signals to and from these controllers.
  • the droplet controller 35 may send an output signal to the droplet generator 26 directing the timing at which the target 27 is to be outputted.
  • the position of the target 27 may be detected by the target sensor 4 .
  • the detection data may be sent to the droplet controller 35 .
  • the laser controller 350 may send the oscillation triggers for causing the semiconductor laser controller 311 A to supply current pulses to the respective semiconductor laser apparatuses 310 - 1 through 310 - n .
  • the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n may have their beam paths adjusted so as to coincide with one another by the beam path adjusting unit 360 .
  • the pulsed laser beam S 3 which includes the pulsed laser beam outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n , may be amplified as it passes through the regenerative amplifier 370 , the preamplifier 330 A, and the main amplifier 330 B via the high-reflection mirrors M 31 and M 32 and the relay optical system 320 B.
  • the monitor unit 340 provided on the beam path of the pulsed laser beam S 6 downstream from the main amplifier 330 B may detect the passing timing, the pulse energy, the pulse shape, the wavelength, and so forth of the pulsed laser beam S 6 .
  • the laser controller 350 may send control signals to the semiconductor laser controller 311 A, the regenerative amplifier 370 , the preamplifier 330 A, and the main amplifier 330 B, respectively, based on the detection result by the monitor unit 340 .
  • the operation for controlling the timing at which the target 27 supplied into the chamber 2 is irradiated by the pulsed laser beam S 6 may be similar to the operation described above with reference to FIGS. 43 through 45 .
  • the laser apparatus 3 C may be similar in operation to the laser apparatus 3 B described with reference to FIGS. 16 through 28 , except in that the laser apparatus 3 C includes the regenerative amplifier 370 .
  • the operation of the regenerative amplifier 370 may be similar to the operation described with reference to FIGS. 11 and 12 .
  • FIG. 47 shows a case where a reflective type grating 361 is used as the beam path adjusting unit 360 .
  • a reflective type grating 361 is used as the beam path adjusting unit 360 .
  • an m-th diffracted rays (here, m is a positive integer, for example, one) of these laser beams may be diffracted at different angles.
  • the relationship among the angle ⁇ of incidence, the angle ⁇ of diffraction, and the wavelength ⁇ may satisfy Expression (6) below.
  • Expression (6) m is the order of the diffracted ray.
  • the semiconductor laser apparatuses 310 - 1 through 310 - n may be positioned with respect to the grating 361 such that m-th diffracted rays of the respective pulsed laser beams outputted from the respective semiconductor laser apparatuses 310 - 1 through 310 - n at different wavelengths ( ⁇ 1 through ⁇ n ) are diffracted at the same angle ⁇ by the grating 361 .
  • the arrangement of the semiconductor laser apparatuses 310 - 1 through 310 - n with respect to the grating 361 may satisfy Expression (7) below.
  • the grating 361 may make it possible to achieve the beam path adjusting unit 360 of a compact and simple configuration.
  • the reflective type grating 361 is used.
  • this embodiment is not limited thereto, and a transmissive type grating may be used as well.
  • the beam path adjusting unit 360 embodied by the grating 361 may be used to make the beam paths of pulsed laser beams at the same wavelength coincide with one another.
  • the beam paths of diffracted rays of different orders may be made to coincide with one another. For example, as shown in FIG.
  • the semiconductor laser apparatuses 310 - 1 through 310 - n may be positioned with respect to the grating 361 such that the ⁇ 1st order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310 - 1 , the 0th order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310 - 2 , and the +1st order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310 - 3 are diffracted by the grating 361 at the same angle ⁇ .
  • the arrangement of the semiconductor laser apparatuses 310 - 1 through 310 - 3 with respect to the grating 361 may satisfy Expression (8) below.
  • the grating 361 may achieve the beam path adjusting unit 360 having a compact and simple configuration.
  • a transmissive type grating may be used.
  • a multi-longitudinal mode semiconductor laser apparatus may also be used as the semiconductor laser apparatus 310 .
  • the external-resonator type semiconductor laser apparatus 310 B shown in FIG. 5 is embodied by the multi-longitudinal mode semiconductor laser apparatus, in place of the grating 3127 with the wavelength selection range S 8 as shown in FIG. 31 , a grating with a broader wavelength selection range S 81 as shown in FIG. 49 may be used.
  • FIG. 49 shows a case where the external-resonator type semiconductor laser apparatus 310 B oscillates at ten longitudinal modes.
  • the external-resonator type semiconductor laser apparatus 310 B may preferably be controlled to oscillate such that the initial wavelength of the pulsed laser beam outputted from the external-resonator type semiconductor laser apparatus 310 B is shorter than the corresponding gain bandwidths S 52 through S 56 .
  • the wavelength chirping may occur at each of the longitudinal modes L 3 through L 12 , as shown in FIG. 50 . As shown in FIG.
  • a pulsed laser beam containing the pulsed laser beams S 62 through S 66 amplified in the respective gain bandwidths S 52 through S 56 may be outputted while the wavelength chirping ranges R 4 a through R 4 j of the respective longitudinal modes L 3 through L 12 overlap the gain bandwidths S 52 through S 56 .
  • the longitudinal modes L 4 , L 6 , L 8 , L 10 , and L 12 which do not overlap any of the gain bandwidths S 51 through S 57 in their wavelength chirping ranges, may not be amplified.

Abstract

A laser apparatus may include: a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus; at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority from Japanese Patent Application No. 2011-026228 filed Feb. 9, 2011, and Japanese Patent Application No. 2011-271346 filed Dec. 12, 2011.
  • BACKGROUND
  • 1. Technical Field
  • This disclosure relates to a laser apparatus, an extreme ultraviolet (EUV) light generation system, a method for controlling the laser apparatus, and a method for generating the EUV light.
  • 2. Related Art
  • In recent years, semiconductor production processes have become capable of producing semiconductor devices with increasingly fine feature sizes, as photolithography has been making rapid progress toward finer fabrication. In the next generation of semiconductor production processes, microfabrication with feature sizes at 60 nm to 45 nm, and further, microfabrication with feature sizes of 32 nm or less will be required. In order to meet the demand for microfabrication at 32 nm or less, for example, an exposure apparatus is expected to be developed, in which an apparatus for generating EUV light at a wavelength of approximately 13 nm is combined with a reduced projection reflective optical system.
  • Three kinds of systems for generating EUV light have been known in general, which include a Laser Produced Plasma (LPP) type system in which plasma generated by irradiating a target material by a laser beam is used, a Discharge Produced Plasma (DPP) type system in which plasma generated by electric discharge is used, and a Synchrotron Radiation (SR) type system in which orbital radiation is used.
  • SUMMARY
  • A laser apparatus according to one aspect of this disclosure may include: a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus; at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth.
  • A laser apparatus according to another aspect of this disclosure may include: a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus which includes a semiconductor laser device, an optical resonator including an output coupler and a grating between which the semiconductor laser device is provided; at least one amplifier configured to amplify the pulsed laser beam outputted from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam outputted from the master oscillator such that a wavelength chirping range of the pulsed laser beam to be outputted from the master oscillator overlaps at least a part of the at least one gain bandwidth.
  • An extreme ultraviolet light generation system according to yet another aspect of this disclosure may include: a laser apparatus including a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus, at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth, and a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth; a chamber; a target supply unit configured to supply a target material toward a predetermined region inside the chamber; and a collector mirror for selectively reflecting at least extreme ultraviolet light emitted in the predetermined region inside the chamber.
  • A method for controlling a laser apparatus comprising a master oscillator including a semiconductor laser apparatus, and an amplifier, according to still another aspect of this disclosure may include: outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of at least one gain bandwidth; and amplifying the pulsed laser beam from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth.
  • A method for generating an extreme ultraviolet light in an extreme ultraviolet light generation system including a laser apparatus, a chamber, a target supply unit, and a collector mirror, according to still another aspect of this disclosure may include: outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of at least one gain bandwidth; amplifying the pulsed laser beam outputted from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth; irradiating a target material by the amplified pulsed laser beam in a predetermined region inside the chamber; and outputting the extreme ultraviolet light emitted in the predetermined region inside the chamber by selectively reflecting the extreme ultraviolet light.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Hereinafter, selected embodiments of this disclosure will be described with reference to the accompanying drawings.
  • FIG. 1 schematically illustrates the configuration of a laser apparatus according to a first embodiment.
  • FIG. 2 illustrates an example of amplification control in the first embodiment where the initial wavelength of the wavelength chirping range is made to overlap a gain bandwidth of the CO2 gas gain medium.
  • FIG. 3 illustrates an example of amplification control in the first embodiment where the wavelength chirping range is controlled such that a part thereof overlaps the entirety of a gain bandwidth of the CO2 gas gain medium.
  • FIG. 4 schematically illustrates the configuration of a distributed-feedback semiconductor laser apparatus.
  • FIG. 5 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus.
  • FIG. 6 illustrates an example according to the first embodiment where a pulsed laser beam is outputted by making a current flow in pulses in a semiconductor laser device.
  • FIG. 7 illustrates gain bandwidths of the CO2 gas gain medium.
  • FIG. 8 illustrates amplified laser beams in each gain bandwidth of the CO2 gas gain medium.
  • FIG. 9 schematically illustrates the configuration of a laser apparatus including a regenerative amplifier according to a second embodiment.
  • FIG. 10 illustrates an example of amplification control in the laser apparatus including the regenerative amplifier according to the second embodiment.
  • FIG. 11 illustrates an example of the configuration of the regenerative amplifier according to the second embodiment.
  • FIG. 12 illustrates an example of the operation of the regenerative amplifier according to the second embodiment.
  • FIG. 13 is a timing chart showing the operation from the input of an oscillation trigger into a semiconductor laser apparatus until an amplified pulsed laser beam is outputted.
  • FIG. 14 schematically illustrates the configuration of a laser apparatus according to a third embodiment.
  • FIG. 15 illustrates a case where a single-longitudinal-mode semiconductor laser is allocated to each of the gain bandwidths in the third embodiment.
  • FIG. 16 shows an example of pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 15.
  • FIG. 17 illustrates a case where multiple single-longitudinal-mode semiconductor lasers are allocated to a single gain bandwidth in the third embodiment.
  • FIG. 18 shows an example of a pulsed laser beam amplified in the given gain bandwidth in the case shown in FIG. 17.
  • FIG. 19 illustrates a case where five single-longitudinal-mode semiconductor lasers are allocated to three of the gain bandwidths in the third embodiment.
  • FIG. 20 shows an example of pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 19.
  • FIG. 21 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 22 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 23 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 24 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier coincide with each other in the third embodiment.
  • FIG. 25 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 26 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 27 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 28 is a timing chart showing a case where timings at which pulsed laser beams are outputted from an amplifier are offset from one another in the third embodiment.
  • FIG. 29 schematically illustrates the configuration of a laser apparatus according to a fourth embodiment.
  • FIG. 30 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus 310B.
  • FIG. 31 illustrates the relationship among the gain bandwidths of the CO2 gas gain medium, selected wavelengths by a grating, and longitudinal modes at which the semiconductor laser elements oscillate in the fourth embodiment.
  • FIG. 32 shows an example of a single-longitudinal-mode outputted from a semiconductor laser apparatus in the fourth embodiment.
  • FIG. 33 illustrates changes over time in wavelength chirping, in temperature of an active layer, and in beam intensity of an outputted pulsed laser beam, when a current pulse flowing in the semiconductor laser device is varied.
  • FIG. 34 schematically illustrates the configuration of a laser apparatus and the control system thereof according to a fifth embodiment.
  • FIG. 35 schematically illustrates the configuration of a measuring system for acquiring control parameters, in advance, for the laser apparatus in the fifth embodiment.
  • FIG. 36 illustrates an example of chirping characteristics of the semiconductor laser apparatus in the fifth embodiment.
  • FIG. 37 illustrates an example of the control parameter acquisition operation by the measuring system and the laser controller in the fifth embodiment.
  • FIG. 38 illustrates amplification control operation including feedback-control by the laser controller in the fifth embodiment.
  • FIG. 39 schematically illustrates the configuration of a laser apparatus and the control system thereof including a loop for feedback-control according to a sixth embodiment.
  • FIG. 40 illustrates an example of the feedback-control in the sixth embodiment.
  • FIG. 41 schematically illustrates the configuration of an exemplary LPP type EUV light generation system.
  • FIG. 42 schematically illustrates the configuration of an EUV light generation system according to an eighth embodiment.
  • FIG. 43 illustrates the operation for controlling a timing as which a target is irradiated by a pulsed laser beam in the eighth embodiment.
  • FIG. 44 illustrates an example of chirping range adjusting processing in FIG. 43.
  • FIG. 45 illustrates an example of timing adjusting processing in FIG. 43.
  • FIG. 46 schematically illustrates the configuration of an EUV light generation system according to a ninth embodiment.
  • FIG. 47 illustrates an example of a beam path adjusting unit according to one aspect of this disclosure.
  • FIG. 48 illustrates another example of a beam path adjusting unit according to another aspect of this disclosure.
  • FIG. 49 shows the relationship between longitudinal modes of semiconductor lasers and selected wavelengths by a grating, when a grating with a broad range of wavelength selectivity is used.
  • FIG. 50 illustrates the control in the laser apparatus shown in FIG. 14 including a grating with a broad range of wavelength selectivity, where the longitudinal modes of the respective semiconductor lasers are amplified in the respective gain bandwidths of the CO2 gas gain medium.
  • FIG. 51 shows beam intensity of each of the pulsed laser beams amplified under the control shown in FIG. 50.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • Hereinafter, selected embodiments of this disclosure will be described in detail with reference to the accompanying drawings. The embodiments to be described below are merely illustrative in nature and do not limit the scope of this disclosure. Further, the configuration(s) and operation(s) described in each embodiment are not all essential in implementing this disclosure. Note that like elements are referenced by like reference numerals and characters, and duplicate descriptions thereof will be omitted herein.
  • Hereinafter, a laser apparatus, an extreme ultraviolet light generation system, a method for controlling the laser apparatus, and a method for controlling the extreme ultraviolet light generation system will be described in detail with reference to the accompanying drawings. This disclosure will be described following the table of contents below.
  • CONTENTS 1. Overview 2. Terms
  • 3. CO2 Laser Apparatus with QCL as MO
  • 3.1 Embodiment Where Single QCL Is Used as MO (First Embodiment) 3.1.1 Configuration 3.1.2 Operation 3.1.2.1 Overview of Operation of Laser Apparatus 3.1.2.2 Overview of Operation of Semiconductor Laser Apparatus 3.1.2.3 Amplification Control by CO2 Gas Gain Medium 3.1.2.3.1 Case Where Initial Wavelength in Wavelength Chirping Range of QCL Laser Beam Overlaps Part of Gain Bandwidth of CO2 Gas Gain Medium 3.1.2.3.2 Case Where Wavelength Chirping Range of QCL Laser Beam Overlaps Entirety of Single Gain Bandwidth of CO2 Gas Gain Medium 3.1.3 Semiconductor Laser 3.1.3.1 Internal-Resonator Type Semiconductor Laser 3.1.3.2 External-Resonator Type Semiconductor Laser 3.1.4 Wavelength Chirping Characteristics of QCL 3.1.5 Amplification Properties of CO2 Gas Gain Medium 3.2 Embodiment Including Regenerative Amplifier (Second Embodiment) 3.2.1 Configuration 3.2.2 Operation 3.2.2.1 Overview of Operation of Laser Apparatus 3.2.2.2 Amplification Control Including Regenerative Amplifier 3.2.2.2.1 Regenerative Amplifier 3.2.2.2.1.1 Configuration 3.2.2.2.1.2 Operation 3.2.2.2.1.3 Delaying Pulsed Laser Beam by Regenerative Amplifier 3.3 Embodiment Where Multiple QCLs Are Used as MO (Third Embodiment) 3.3.1 Configuration 3.3.2 Operation 3.3.3 Combination of Oscillation Wavelength of Semiconductor Laser and Gain Bandwidth of CO2 gas Gain Medium 3.3.3.1 Case Where Single QCL Is Allocated to Each Gain Bandwidth 3.3.3.2 Case Where Multiple QCLs are Allocated to Single Gain Bandwidth
  • 3.3.3.3 Case Where Number of QCLs Allocated to Each Gain Bandwidth is Modified In Accordance with Gain of Each Gain Bandwidth
  • 3.3.4 Waveform Control of Amplified Pulsed Laser Beam by Adjusting Timing of QCLs
  • 3.3.4.1 Case Where Timings at Which Amplified Pulsed Laser Beams Are Outputted From Amplifier Are Controlled to Coincide with Each Other
    3.3.4.2 Case Where Timings at Which Amplified Pulsed Laser Beams Are Outputted From Amplifier Are Offset from One Another
  • 3.4 Embodiment Where Laser Apparatus With Multiple QCLs as MO Includes Regenerative Amplifier (Fourth Embodiment) 3.5 Longitudinal Mode Outputted by QCL 3.5.1 Resonator of QCL 3.5.2 Relationship Between Longitudinal Mode of QCL and Wavelength Selectivity by Grating 3.5.3 Controlling Beam Path Length 3.5.4 Controlling Current Pulse to Flow in Semiconductor Laser Device 3.5.5 Setting Wavelength Selectivity by Design
  • 4. Control System of CO2 Laser Apparatus with QCL as MO (Fifth Embodiment)
  • 4.1 Configuration 4.2 Overview of Operation 4.3 Control Parameters and Measuring System Thereof 4.3.1 Measuring Configuration 4.3.2 Chirping Characteristics 4.3.3 Measuring Operation 4.4 Amplification Control Operation 4.5 Control System of CO2 Laser Apparatus Capable of Feedback-Control (Sixth Embodiment) 4.5.1 Feedback-Control Configuration 4.5.2 Feedback-Control Operation 5. Extreme Ultraviolet Light Generation System (Seventh Embodiment) 5.1 Exemplary Laser Produced Plasma Type EUV Light Generation System 5.1.1 Configuration 5.1.2 Operation
  • 5.2 EUV Light Generation System to Which CO2 Laser Apparatus with QCL as MO Is Applied (Eighth Embodiment)
  • 5.2.1 Configuration 5.2.2 Operation 5.2.2.1 Flow of Controlling Timing at Which Target Is Irradiated by Pulsed Laser Beam 5.2.2.1.1 Main Flow 5.2.2.1.2 Chirping Range Adjusting Processing 5.2.2.1.3 Timing Adjusting Processing
  • 5.3 EUV Light Generation System to Which CO2 Laser Apparatus with Multiple QCLs as MO Is Applied (Ninth Embodiment)
  • 5.3.1 Configuration 5.3.2 Operation 6. Supplementary Descriptions 6.1 Beam Path Adjusting Unit for Multiple QCL Laser Beams 6.1.1 Beam Path Adjusting Unit for Multiple QCL Laser Beams at Different Oscillation Wavelengths 6.1.2 Beam Path Adjusting Unit for Multiple QCL Laser Beams at the Same Oscillation Wavelength 6.2 Case Where Semiconductor Laser That Oscillates at Multi-Longitudinal Mode Is Applied 1. Overview
  • An overview of the embodiments described below is as follows. In some of the embodiments of this disclosure, the chirping range in wavelengths of a semiconductor laser beam is controlled such that at least part of the chirping range overlaps at least part of a gain bandwidth of a molecular gas gain medium.
  • 2. Terms
  • Terms used in this disclosure will be defined as follows. The term “plasma generation region” can refer to a three-dimensional space in which plasma is generated. The term “droplet” can refer to one or more liquid droplet(s) of a molten target material. Accordingly, the shape of the droplet is generally substantially spherical due to the surface tension at the surface of the droplet. The term “beam path” is a path along which a laser beam travels. The “beam path length” is a product of a distance in which the light actually travels and a refraction index of a medium through which the light travels. The “gain bandwidth” is a bandwidth in which a laser beam can be amplified as it travels through the gain medium.
  • In a beam path of a laser beam, the side toward the source of the laser beam is referred to as “upstream,” and the side toward the target of the laser beam is referred to as “downstream.”
  • 3. CO2 Laser Apparatus with QCL as MO
  • A laser apparatus according to one aspect of this disclosure will be illustrated with examples.
  • 3.1 Embodiment where Single QCL is Used as MO (First Embodiment)
  • A laser apparatus where a single quantum cascade laser (QCL) is used as a master oscillator will be described in detail with reference to the drawings.
  • 3.1.1 Configuration
  • FIG. 1 schematically illustrates the configuration of a laser apparatus 3 according to a first embodiment. As illustrated in FIG. 1, the laser apparatus 3 may include a semiconductor laser apparatus 310, a relay optical system 320, and an amplifier 330. Various amplifiers, such as a regenerative amplifier and a slab amplifier, may be used as the amplifier 330. The laser apparatus 3 may include a plurality of amplifiers 330 connected serially.
  • The semiconductor laser apparatus 310 may serve as a master oscillator (MO). The semiconductor laser apparatus 310 may include a semiconductor laser controller 311, a semiconductor laser device 312, a Peltier device 313, a temperature controller 314, a current controller 315, and a temperature sensor 316.
  • The current controller 315 may be configured to input current pulses to the semiconductor laser device 312 under the control of the semiconductor laser controller 311 so that the semiconductor laser device 312 can oscillate.
  • The temperature sensor 316 may be in contact with the semiconductor laser device 312. The temperature sensor 316 may measure the temperature of or around an active layer in the semiconductor laser device 312, or may measure the temperature at a position distanced from the active layer. The Peltier device 313 may be in contact with the semiconductor laser device 312 along the direction in which the active layer of the semiconductor laser device 312 extends. The temperature sensor 316 may input the measured values to the temperature controller 314. The temperature controller 314 may actuate the Peltier device 313 in accordance with the measured values inputted from the temperature sensor 316, under the control of the semiconductor laser controller 311. With this, the temperature of the semiconductor laser device 312 may be controlled.
  • The amplifier 330 may be configured to amplify the pulsed laser beam from the semiconductor laser apparatus 310. The amplifier 330 may be a power amplifier (PA) or a power oscillator (PO). The amplifier 330 may include a sealed chamber. The chamber may be provided with windows 331 and 332, through which the pulsed laser beam may travel. The chamber may be filled with a gas containing CO2 gas, for example. Further, the amplifier 330 may be provided with at least a pair of discharge electrodes and a power source (not shown) for applying voltage between the discharge electrodes so as to excite the gas. The amplifier 330 may be configured to excite the gas inside the chamber, and the excited gas may serve as a gain medium (hereinafter, referred to as CO2 gas gain medium).
  • The relay optical system 320 may guide the pulsed laser beam outputted from the semiconductor laser apparatus 310 to the amplifier 330. The relay optical system 320 may include an optical system for expanding the pulsed laser beam in diameter (beam cross-section), for example. Here, the beam cross-section may refer to a region along a plane perpendicular to the axis of the pulsed laser beam, in which the beam intensity is at or above a predetermined value across the planar region. The pulsed laser beam that has been expanded in diameter may pass through most of the space where the CO2 gas gain medium is present inside the amplifier 330. With this, the pulsed laser beam can be amplified efficiently.
  • 3.1.2 Operation
  • Subsequently, the operation of the laser apparatus 3 will be described.
  • 3.1.2.1 Overview of Operation of Laser Apparatus
  • General operation of the laser apparatus 3 will be described first. A pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310. The outputted pulsed laser beam S3 may enter the relay optical system 320 and be expanded in diameter by the relay optical system 320. The pulsed laser beam S3, which has been expanded in diameter, may enter the amplifier 330 through the window 331 provided at the input side of the chamber. The pulsed laser beam S3 that has entered the amplifier 330 may be amplified as it travels through the CO2 gas gain medium inside the chamber. With this, an amplified pulsed laser beam S6 may be outputted from the amplifier 330 through the window 332 provided at the output side of the chamber.
  • 3.1.2.2 Overview of Operation of Semiconductor Laser Apparatus
  • General operation of the semiconductor laser apparatus 310 will be described. In the semiconductor laser apparatus 310, a waveform signal for generating a current pulse (hereinafter referred to as a current pulse waveform) may be inputted to the current controller 315 from the semiconductor laser controller 311. The current controller 315 may cause a current pulse of a predetermined waveform to flow in the semiconductor laser device 312 based on the inputted current pulse waveform. When the current pulse flows in the semiconductor laser device 312, the semiconductor laser device 312 may oscillate. As a result, the pulsed laser beam S3 may be outputted from the semiconductor laser device 312.
  • Here, the wavelength of the pulsed laser beam S3 to be outputted from the semiconductor laser apparatus 310 may be controlled so as to overlap at least a part of the gain bandwidths of the CO2 gas gain medium inside the amplifier 330. The wavelength of the pulsed laser beam S3 to be outputted from the semiconductor laser apparatus 310 may vary depending on the temperature of the semiconductor laser device 312. Accordingly, the wavelength of the pulsed laser beam S3 may be controlled by controlling the temperature of the semiconductor laser device 312. Here, the temperature may be controlled by using feedback-control of the Peltier device 313 based on the temperature of the semiconductor laser device 312 detected by the temperature sensor 316, for example.
  • As mentioned above, the wavelength of the pulsed laser beam S3 to be outputted from the semiconductor laser apparatus 310 may vary depending on the temperature of the semiconductor laser device 312. Here, factors causing the temperature of the semiconductor laser device 312 to fluctuate may include, in addition to the fact that the semiconductor laser device 312 is heated or cooled directly by a heater or a cooling device, ohmic heating resulting from current supplied to the semiconductor laser device 312. The wavelength of the pulsed laser beam S3 to be outputted from the semiconductor laser apparatus 310 may chirp depending on the change in temperature of the semiconductor laser device 312. Typically, a wavelength chirping range of a pulsed laser beam outputted from a semiconductor laser is wider than a gain bandwidth of the CO2 gas gain medium in an amplifier. Thus, only a part of the pulsed laser beam may be amplified in a given amplifier in some cases. Accordingly, in order to amplify the pulsed laser beam S3 efficiently in the amplifier 330, the semiconductor laser apparatus 310 may be controlled such that at least a part of the chirping range of the output wavelength of the semiconductor laser apparatus 310 overlaps at least a part of a gain bandwidth of the CO2 gas gain medium. Here, the output wavelength of the semiconductor laser apparatus 310 may refer to the central wavelength or the peak wavelength of the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 at a given time.
  • 3.1.2.3 Amplification Control by CO2 Gas Gain Medium
  • As mentioned above, in the amplification control of the pulsed laser beam S3, the semiconductor laser apparatus 310 may be controlled such that at least a part of the chirping range of the output wavelength (hereinafter, simply referred to as wavelength chirping range) of the semiconductor laser apparatus 310 overlaps at least a part of a gain bandwidth of the CO2 gas gain medium. With this, the pulsed laser beam S3 may be amplified by the CO2 gas gain medium for a duration in which the wavelength of the pulsed laser beam S3 overlaps the given gain bandwidth. Hereinafter, examples of the amplification control will be discussed. In the case shown below, the pulsed laser beam S3 is amplified using a gain bandwidth at P(18) transition of the CO2 gas gain medium.
  • 3.1.2.3.1 Case where Initial Wavelength in Wavelength Chirping Range of QCL Laser Beam Overlaps Part of Gain Bandwidth of CO2 Gas Gain Medium
  • First, the case where the initial wavelength of a wavelength chirping range is controlled to overlap a gain bandwidth of the CO2 gas gain medium will be illustrated as an example. FIG. 2 illustrates an example of amplification control in such case.
  • As shown in FIG. 2, an oscillation trigger S1 may be inputted to the semiconductor laser apparatus 310 at a timing Tt, for example (see FIG. 2( a)). Then, a current pulse S2 of predetermined strength may flow in the semiconductor laser device 312 for a predetermined period (see FIG. 2( b)). With this, the semiconductor laser apparatus 310 may oscillate, and the pulsed laser beam S3 of intensity in accordance with the current waveform may be outputted at a timing delayed by a delay time ΔT (see FIG. 2( c)). The rise of the pulsed laser beam S3 may be at a timing Tt+ΔT.
  • Here, as shown in FIG. 2( d), an output wavelength (which is also referred to as a temporal waveform in this disclosure) S4 of the pulsed laser beam S3 may shift toward a longer wavelength with time. This phenomenon is the wavelength chirping. Accordingly, the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the initial wavelength of the output wavelength S4 overlaps the gain bandwidth S51 at P(18) transition of the CO2 gas gain medium. With this, the pulsed laser beam S3 may be amplified for a duration in which the output wavelength S4 of the pulsed laser beam S3 overlaps the gain bandwidth S51 (that is, the initial portion of the temporal waveform of the pulsed laser beam S3). Thereafter, the output wavelength S4 of the pulsed laser beam S3 may continue to chirp toward the longer wavelength. Then, when the output wavelength S4 goes outside the gain bandwidth S51, the pulsed laser beam 3 ceases to be amplified. According to such operation, as shown in FIG. 2( e), for a duration in which the output wavelength S4 of the pulsed laser beam S3 overlaps the gain bandwidth S51, the amplified pulsed laser beam S6 may be outputted from the amplifier 330. A rise timing Tp of the pulsed laser beam S6 may be delayed by a delay time Td from the output timing Tt+ΔT of the pulsed laser beam S3.
  • In this way, when the initial wavelength of the wavelength chirping range is controlled to overlap the gain bandwidth of the CO2 gas gain medium, an onset of the amplification period of the pulsed laser beam S3 may be delayed by a slight delay time ΔT from the input of the oscillation trigger. Accordingly, synchronizing the oscillation of the laser apparatus 3 with generation of droplets by a droplet generator (see droplet generator 26 in FIG. 41) may be facilitated, for example.
  • 3.1.2.3.2 Case where Wavelength Chirping Range of QCL Laser Beam Overlaps Entirety of Single Gain Bandwidth of CO2 Gas Gain Medium
  • Subsequently, the case where the wavelength chirping range is controlled so as to overlap the entirety of a single gain bandwidth of the CO2 gas gain medium will be illustrated as an example. FIG. 3 illustrates an example of amplification control in such case.
  • As shown in FIGS. 3( a) through 3(c), the timings and operation from the input of the oscillation trigger S1 until the pulsed laser beam S3 is outputted may be similar to the case shown in FIGS. 2( a) through 2(c). However, as shown in FIGS. 3( c) and 3(d), the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the initial wavelength of the pulsed laser beam S3 is shorter than the gain bandwidth S51 at P(18) transition. Further, the temperature controller 314 may control the temperature of the semiconductor laser device 312 by using the Peltier device 313 such that the wavelength of the pulsed laser beam S3 at its falling edge is longer than the gain bandwidth S51. In other words, the temperature of the semiconductor laser device 312 may be controlled such that a wavelength chirping range R4 of the pulsed laser beam S3 contains the entirety of the gain bandwidth 51 at P(18) transition. According to such operation, as shown in FIG. 3( e), for a duration in which the output wavelength S4 of the pulsed laser beam S3 overlaps the gain bandwidth S51, the amplified pulsed laser beam S6 may be outputted from the amplifier 330. The rise of the pulsed laser beam S6 may occur at the timing Tp, which is delayed by a delay time Td which is from the rise of the pulsed laser beam S3 until the output wavelength S4 starts to overlap the gain bandwidth S51.
  • Here, when the initial wavelength of the pulsed laser beam S3 is not controlled to overlap the gain bandwidth 551, the delay time Td (>ΔT) corresponding to the difference between the initial wavelength and the gain bandwidth S51 may be generated (see FIG. 3( d)). The delay time Td corresponds to the duration from the input of the oscillation trigger S1 into the semiconductor laser apparatus 310 until the amplified pulsed laser beam S6 is outputted. Accordingly, when the oscillation of the laser apparatus 3 is to be synchronized with the generation of droplets by the droplet generator (see FIG. 41) for generating the EUV light, the oscillation trigger S1 may need to be inputted, taking the above delay time Td into consideration.
  • When the wavelength chirping range is controlled so as to overlap the entirety of a single gain bandwidth as described above, the following advantages may be obtained, compared to the case where the initial wavelength of the wavelength chirping range is controlled to overlap a gain bandwidth of the CO2 gas gain medium.
  • (1) The pulsed laser beam S6 that has been amplified more may be obtained.
    (2) The pulsed laser beam S6 of a longer pulse width may be obtained.
  • Here, as shown in FIGS. 2( d) and 3(d), a change at the beginning in the temporal waveform S4 of the semiconductor laser apparatus 310 is greater than a change toward the end after that beginning in the temporal waveform S4. A portion in FIG. 2( d) where the temporal waveform S4 overlaps the gain bandwidth S51 is referred to as a first portion, and a portion in FIG. 3( d) where the temporal waveform S4 overlaps the gain bandwidth S51 is referred to as a second portion, in this disclosure. Durations in which the wavelength of the pulsed laser beam S3 overlaps the gain bandwidth S51 may differ between the first portion of FIG. 2( d) and the second portion of FIG. 3( d). For example, the duration of the second portion in FIG. 3( d) is longer than that of the first portion in FIG. 2( d). Accordingly, the temperature of the semiconductor laser device 312 may be controlled such that the portion toward the end of the temporal waveform S4 of the pulsed laser beam S3 (e.g., a portion other than the first portion) overlaps a gain bandwidth of the CO2 gas gain medium. This may allow the duration in which the wavelength chirping range R4 overlaps the gain bandwidth S51 to become longer; thus, the pulsed laser beam S6 that is longer in duration and has larger energy may be obtained.
  • 3.1.3 Semiconductor Laser
  • Subsequently, the semiconductor laser apparatus 310, which may be used in the laser apparatus 3 of the first embodiment, will be illustrated with examples.
  • 3.1.3.1 Internal-Resonator Type Semiconductor Laser
  • The case where an internal-resonator type semiconductor laser is used as the semiconductor laser apparatus 310 will be discussed, first. An example of the internal-resonator type semiconductor lasers may include a distributed-feedback semiconductor laser. FIG. 4 schematically illustrates the configuration of a distributed-feedback semiconductor laser apparatus 310A.
  • As illustrated in FIG. 4, the distributed-feedback semiconductor laser apparatus 310A may include a semiconductor laser device 312A and the Peltier device 313. Here, as in the semiconductor laser apparatus 310 described with reference to FIG. 1, the distributed-feedback semiconductor laser apparatus 310A may further include the semiconductor laser controller 311, the temperature controller 314, the current controller 315, and the temperature sensor 316.
  • The semiconductor laser device 312A may be formed such that a grating 3124 and an active layer 3122 are formed on a semiconductor substrate 3123. The top of the active layer 3122 may be protected by passivation layer 3121, for example. The active layer 3122 may serve as a gain medium for amplifying a laser beam. The grating 3124 may serve as both an optical resonator and a wavelength selector.
  • In the distributed-feedback semiconductor laser apparatus 310A, when a current I flows from a convex of the grating 3124 toward the active layer 3122, a portion of the active layer 3122 may function as a laser gain medium inside the active layer 3122. Further, an optical resonator may be formed by the grating 3124 formed on the semiconductor substrate 3123, whereby the oscillation wavelength may be selected. With the optical resonator and the gain medium, the laser oscillation may occur inside the distributed-feedback semiconductor laser apparatus 310A. As a result, the pulsed laser beam S3 may be outputted at a wavelength that may be determined by the selected wavelength by the grating 3124 and the optical path length of the optical resonator.
  • Here, the optical path length of the optical resonator formed in the distributed-feedback semiconductor laser apparatus 310A may be determined by the length of and the refractive index of the active layer 3122 of the semiconductor laser device 312A. The refractive index of the active layer 3122 may depend on the temperature. Accordingly, controlling the temperature of the semiconductor laser device 312A may allow the optical path length of the optical resonator to be controlled.
  • 3.1.3.2 External-Resonator Type Semiconductor Laser
  • Subsequently, the case where an external-resonator type semiconductor laser is used as the semiconductor laser apparatus 310 will be illustrated. FIG. 5 schematically illustrates the configuration of an external-resonator type semiconductor laser apparatus 310B.
  • As illustrated in FIG. 5, the external-resonator type semiconductor laser apparatus 310B may include an output coupler (OC) 3125, a semiconductor laser device 312B, the Peltier device 313, a collimator lens 3126, and a grating 3127.
  • The active layer 3122 may be formed inside the semiconductor laser device 312B. The active layer 3122 may serve as a gain medium. The output coupler 3125 and the grating 3127 may jointly form an optical resonator. Here, the grating 3127 may also function as a wavelength selector. The grating 3127 may be in Littrow arrangement so that the angle of incidence coincides with the angle of diffraction.
  • In the external-resonator type semiconductor laser apparatus 310B, when a predetermined pulsed current flows in the semiconductor laser device 312B, the inside of the active layer 3122 may be excited, to thereby function as a gain medium. Further, the optical resonator may be formed jointly by the output coupler 3125 and the grating 3127. With this, by controlling the current to flow in the semiconductor laser device 312B, the laser oscillation may occur in the external-resonator type semiconductor laser apparatus 310B. Accordingly, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310B at a wavelength that may be determined by the selected wavelength by the grating 3127 and the optical path length of the optical resonator. A posture of the grating can be controlled so that the pulsed laser beam is incident on the grating 3127 at a specified angle.
  • Here, the optical path length of the optical resonator formed in the external-resonator type semiconductor laser apparatus 310B may be determined by the length of and the refractive index of the active layer 3122 of the semiconductor laser device 312B. Similarly, the optical path length may depend on the distance between the output coupler 3125 and the semiconductor laser device 312B and the refractive index of that space (filled with the air, for example), and on the distance between the semiconductor laser device 312B and the grating 3127 and the refractive index of that space (filled with the air, for example). The refractive index of the active layer 3122 may depend on its temperature. Accordingly, controlling the temperature of the semiconductor laser device 312B may allow the optical path length of the optical resonator to be controlled. In the case of the external-resonator type semiconductor laser apparatus 310B, however, the optical path length of the optical resonator may also be controlled by controlling at least one of a type, a mixture ratio, and pressure of a gas with which the space between the output coupler 3125 and the semiconductor laser device 312B and the space between the semiconductor laser device 312B and the grating 3127 are filled.
  • 3.1.4 Wavelength Chirping Characteristics of QCL
  • Subsequently, wavelength chirping characteristics of the semiconductor laser apparatus 310 will be discussed. The oscillation wavelength of the semiconductor laser apparatus 310 may partly depend on the optical path length of the optical resonator in the semiconductor laser apparatus 310. Further, it may also depend on the selected wavelength by the grating. As mentioned above, the optical path length of the optical resonator may vary as the refractive index of the active layer 3122 changes. The refractive index of the active layer 3122 may depend on its temperature. Accordingly, as the temperature of the semiconductor laser device 312 changes, the optical path length of the optical resonator in the semiconductor laser apparatus 310 may change, and as a result, the oscillation wavelength may change.
  • Here, with reference to FIG. 6, the case where the current pulse S2 (see FIG. 6( b)) flows in the semiconductor laser device 312 to thereby cause the pulsed laser beam S3 (see FIG. 6( c)) to be outputted will be described. Even when the temperature of the semiconductor laser device 312 is controlled by using the Peltier device 313, the current pulse S2 flowing in the semiconductor laser device 312 may cause a temperature S7 of the active layer 3122 to fluctuate over time (see FIG. 6( a)). Accordingly, as shown in FIG. 6( a), the output wavelength S4 may chirp in accordance with the change in the temperature of the active layer 3122.
  • The temperature S7 of the active layer 3122 may rise rapidly at the beginning of the current pulse S2 and may rise steadily toward the end. Then, as the current pulse S2 is turned OFF, the temperature S7 of the active layer 3122 may start to fall, and thereafter may approach the temperature set by the Peltier device 313.
  • Here, as the temperature of the active layer 3122 rises, the refraction index of the active layer 3122 may increase, whereby the optical path length of the optical resonator may increase. Accordingly, the output wavelength S4 of the semiconductor laser apparatus 310 may shift rapidly toward the longer wavelength at the beginning of the current pulse S2, as in the change in the temperature S7 of the active layer 3122. This shift in the wavelength may become gradual toward the end of the current pulse S2. In this way, when the current pulse S2 flows in the semiconductor laser device 312, the wavelength of the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 may chirp.
  • 3.1.5 Amplification Properties of CO2 Gas Gain Medium
  • Subsequently, the amplification properties of the CO2 gas gain medium in the amplifier will be discussed. FIGS. 7 and 8 illustrate gain bandwidths of the CO2 gas gain medium.
  • As shown in FIG. 7, the CO2 gas gain medium may have a plurality of gain bandwidths (for example, P(18), P(20), P(22), P(24), P(26), P(28), P(30) transitions) S51 through S57. The wavelength width of each of the gain bandwidths S51 through S57 may be approximately 0.0016 μm, for example. This wavelength width may be narrower than the wavelength chirping range of the pulsed laser beam S3 described with reference to FIG. 2. Further, the gain in each of the gain bandwidths S51 through S57 may differ from one another.
  • The pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 may be amplified while the wavelength of the pulsed laser beam S3 overlaps at least one of the gain bandwidths S51 through S57. Here, assuming that the wavelength spectral profile of the pulsed laser beam S3 is a broad spectral profile having such a width that contains P(18) through P(30) transitions as shown in FIG. 7, the pulsed laser beam S3 amplified by the CO2 gas gain medium may be outputted from the amplifier 330 as pulsed laser beams S61 through S67 with the beam intensity corresponding to the gain properties of the respective gain bandwidths S51 through S57, as shown in FIG. 8.
  • 3.2 Embodiment Including Regenerative Amplifier (Second Embodiment)
  • Subsequently, the laser apparatus including the regenerative amplifier will be described in detail with reference to the drawings. In the second embodiment, the laser apparatus 3 serves as a basis, but the embodiment is not limited to the laser apparatus 3.
  • 3.2.1 Configuration
  • FIG. 9 schematically illustrates the configuration of a laser apparatus including a regenerative amplifier according to a second embodiment. As illustrated in FIG. 9, a laser apparatus 3A may include the semiconductor laser apparatus 310, a regenerative amplifier 370, a preamplifier 330A, high-reflection mirrors M31 and M32, a relay optical system 320B, and a main amplifier 330B. The relay optical system 320B may be disposed upstream from the main amplifier 330B in the direction in which the pulsed laser beam S6 travels.
  • The semiconductor laser apparatus 310 may be similar in configuration to the semiconductor laser apparatus 310 shown in FIG. 1. The regenerative amplifier 370 may be configured to amplify the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310. To be more specific, the pulsed laser beam S3 that has entered the regenerative amplifier 370 may be amplified as it travels back and forth through a CO2 gas gain medium inside the regenerative amplifier 370. With this, an amplified pulsed laser beam S6 a may be outputted from the regenerative amplifier 370.
  • The preamplifier 330A may be a slab amplifier. The preamplifier 330A may include a chamber 335, an input window 331, an output window 332, and mirrors 333 and 334. The chamber 335 may be filled with the CO2 gas. Further, two electrodes (not shown) may be provided inside the chamber 335 for exciting the CO2 gas. The two mirrors 333 and 334 may be arranged to form a multipass optical path, along which the pulsed laser beam S6 a travels back and forth through the CO2 gas gain medium. The preamplifier 330A may be configured to further amplify the pulsed laser beam S6 a that has been amplified in the regenerative amplifier 370 and output the amplified pulsed laser beam S6 b.
  • The high-reflection mirrors M31 and M32 may be arranged to guide the pulsed laser beam S6 b outputted from the preamplifier 330A to the relay optical system 320B. The relay optical system 320B may transform the shape of the beam cross-section of the pulsed laser beam S6 b such that the shape of the beam cross-section of the pulsed laser beam S6 b substantially coincides with the shape of the cross-section of the amplification region inside the main amplifier 330B.
  • The main amplifier 330B may be a fast-axial-flow amplifier. The main amplifier 330B may include a chamber 338, an input window 336, and an output window 337. Discharge tubes (not shown), through which the gas containing the CO2 gas may flow, may be provided inside the chamber 338. The main amplifier 330B may be configured to further amplify the pulsed laser beam S6 b that has been amplified in the preamplifier 330A and output an amplified pulsed laser beam S6 c.
  • 3.2.2 Operation
  • Subsequently, the operation of the laser apparatus 3A will be described.
  • 3.2.2.1 Overview of Operation of Laser Apparatus
  • General operation of the laser apparatus 3A will be described first. In general, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310. The outputted pulsed laser beam S3 may be amplified in the regenerative amplifier 370 containing the CO2 gas gain medium. The amplified pulsed laser beam S6 a may then enter the preamplifier 330A containing the CO2 gas gain medium. The pulsed laser beam S6 a that has entered the preamplifier 330A may be amplified as it travels along the multipass optical path formed through the CO2 gas gain medium. Subsequently, the amplified pulsed laser beam S6 b may be reflected by the high-reflection mirrors M31 and M32 and may enter the relay optical system 320B. As mentioned above, the relay optical system 320B may adjust the shape of the beam cross-section of the pulsed laser beam S6 b. The pulsed laser beam S6 b, of which the shape of the beam cross-section has been adjusted, may be further amplified as it travels through the main amplifier 330B containing the CO2 gas gain medium.
  • 3.2.2.2 Amplification Control Including Regenerative Amplifier
  • Subsequently, the amplification control in the laser apparatus 3A including the regenerative amplifier will be described in detail with reference to the drawings. In the description to follow, as in the case shown in FIG. 3, the case where the wavelength chirping range (see R41 in FIG. 10) overlaps the entirety of a single gain bandwidth (see S51 in FIG. 10) of the CO2 gas gain medium will be illustrated as an example.
  • FIG. 10 shows an example of the amplification control in the laser apparatus 3A including the regenerative amplifier. When the oscillation trigger S1 is inputted to the semiconductor laser controller 311, as shown in FIG. 10( a), the current pulse S2 may flow in the semiconductor laser device 312 as shown in FIG. 10( b). As a result, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310 as shown in FIG. 10( c). As described above, the output wavelength S4 of the pulsed laser beam S3 may be controlled in advance such that the wavelength chirping range overlaps a gain bandwidth of the CO2 gas gain medium (see FIG. 10( d)).
  • The pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 may be amplified in the regenerative amplifier 370 containing the CO2 gas gain medium (see FIG. 10( e)). Thereafter, the amplified pulsed laser beam S6 a may be further amplified in the preamplifier 330A (see FIG. 10( f)). The pulsed laser beam S6 b amplified in the preamplifier 330A may be further amplified in the main amplifier 330B (see FIG. 10( g)).
  • 3.2.2.2.1 Regenerative Amplifier
  • Here, the regenerative amplifier 370 will be described.
  • 3.2.2.2.1.1 Configuration
  • FIG. 11 illustrates an example of the configuration of the regenerative amplifier. As illustrated in FIG. 11, the regenerative amplifier 370 may include resonator mirrors 375 and 377, EO (electro Optic) Pockels cells 373 and 376, a polarization beam splitter 371, a chamber 372 filled with a CO2 gas gain medium, and a quarter-wave plate 374.
  • The resonator mirrors 375 and 377 may constitute an optical resonator. The EO Pockels cell 376 and the polarization beam splitter 371 may be disposed on the beam path between the chamber 372 and the resonator mirror 377. The EO Pockels cell 373 and the quarter-wave plate 374 may be disposed on the beam path between the chamber 372 and the resonator mirror 375.
  • 3.2.2.2.1.2 Operation
  • FIG. 12 shows an example of the operation of the regenerative amplifier 370. As shown in FIG. 12, the linearly polarized pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 (see FIG. 12( a)) may be incident on the polarization beam splitter 371 as mainly the S-polarization component. The S-polarization component of the pulsed laser beam S3 may be reflected by the beam splitter 371. With this, most of the pulsed laser beam S3 may enter the regenerative amplifier 370.
  • The pulsed laser beam S3 that has entered the regenerative amplifier 370 may travel through the CO2 gas gain medium inside the chamber 372. Here, when the wavelength chirping range of the pulsed laser beam S3 overlaps at least a part of the gain bandwidth, the pulsed laser beam S3 may be amplified for a duration in which the wavelength chirping range overlaps the gain bandwidth (see FIG. 10( d)). Thereafter, the pulsed laser beam S3 may pass through the EO Pockels cell 373 and through the quarter-wave plate 374, to thereby be transformed into the circularly polarized pulsed laser beam S3. The circularly polarized pulsed laser beam S3 may be reflected by the resonator mirror 375 and may again pass through the quarter-wave plate 374. With this, the circularly polarized pulsed laser beam S3 may be transformed into the linearly polarized pulsed laser beam S3 that may be incident as mainly the P-polarization component on the polarization beam splitter 371. The pulsed laser beam S3 may be amplified further as it travels through the CO2 gas gain medium inside the chamber 372. Then, the pulsed laser beam S3 may be incident on the polarization beam splitter 371 and be transmitted through the polarization beam splitter 371.
  • The pulsed laser beam S3 that has been transmitted through the polarization beam splitter 371 may pass through the EO Pockels cell 376, be reflected by the resonator mirror 377, and again pass through the EO Pockels cell 376 and the polarization beam splitter 371. Then, the pulsed laser beam S3 may be further amplified as it travels through the CO2 gas gain medium inside the chamber 372. The pulsed laser beam S3 that has been further amplified may be transformed into the circularly polarized pulsed laser beam S3 when it passes through the EO Pockels cell 373 to which voltage S91 (see FIG. 12( b)) is applied by a power source (not shown). Subsequently, the circularly polarized pulsed laser beam S3 may pass through the quarter-wave plate 374, to thereby be transformed into the linearly polarized pulsed laser beam S3 that may be incident as mainly the S-polarization component on the polarization beam splitter 371. The pulsed laser beam S3 may be reflected by the resonator mirror 375 and may again pass through the quarter-wave plate 374 and the EO Pockels cell 373 to which the voltage S91 is applied, to thereby be transformed into the linearly polarized pulsed laser beam S3 that may be incident as mainly the P-polarization component on the polarization beam splitter 371. The pulsed laser beam S3 may be further amplified as it travels back and forth multiple times between the resonator mirrors 375 and 377.
  • With the above operation, after the pulsed laser beam S3 is amplified sufficiently, voltage S92 (see FIG. 12( c)) may be applied to the EO Pockels cell 376 by a power source (not shown). With this, the linearly polarized pulse laser beam S3, which may be incident as mainly the P-polarization component on the polarization beam splitter 371, may be transformed into the circularly polarized pulsed laser beam S3. The circularly polarized pulsed laser beam S3 may be reflected by the resonator mirror 377 and may again pass through the EO Pockels cell 376 to which the voltage S92 is applied, to thereby be transformed into the linearly polarized pulsed laser beam S3 that may be incident as mainly the S-polarization component on the polarization beam splitter 371. The S-polarization component of the pulsed laser beam S3 may be reflected by the beam splitter 371. With this, the amplified pulsed laser beam S6 a may be outputted from the regenerative amplifier 370. At this point, the voltage S91 applied to the EO Pockels cell 373 may be turned OFF in order to allow a subsequent pulsed laser beam to enter the regenerative amplifier 370.
  • 3.2.2.2.1.3 Delaying Pulsed Laser Beam by Regenerative Amplifier
  • When the regenerative amplifier 370 is used, compared to the case where other types of amplifiers are used, a delay time given to the pulsed laser beam S3 may preferably be set long enough for the pulsed laser beam S3 to be synchronized with the generation of droplets by the droplet generator 26. FIG. 13 is a timing chart from the input of an oscillation trigger into a semiconductor laser apparatus until an amplified pulsed laser beam is outputted from a regenerative amplifier. When the oscillation trigger S1 is inputted to the semiconductor laser controller 311 at the timing Tt as shown in FIG. 13( a), the current pulse S2 may flow in the semiconductor laser device 312 (see FIG. 13( b)). With this, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310 as shown in FIG. 13( c). As shown in FIG. 13( d), when the pulsed laser beam S3 enters the optical resonator in the regenerative amplifier 370, the pulsed laser beam S3 may be amplified while the chirping range R4 of the output wavelength S4 of the pulsed laser beam S3 overlaps the gain bandwidth S51 of the CO2 gas gain medium. As shown in FIG. 13( e), a delay time Td may be required from the timing Tt at which the oscillation trigger S1 is inputted to the semiconductor laser controller 311 until the timing Tp at which the output wavelength S4 of the pulsed laser beam S3 initially overlaps the gain bandwidth S51. Further, the pulsed laser beam S3 that has entered the regenerative amplifier 370 may travel back and forth multiple times (for example, ten times) in the optical resonator of the regenerative amplifier 370. Accordingly, a timing at which the amplified pulsed laser beam S6 a is outputted from the regenerative amplifier 370 may be further delayed (see delay time Tr in FIG. 13( e)).
  • A delay time Tdr from the timing Tt at which the oscillation trigger S1 is inputted to the semiconductor laser controller 311 until a timing To at which the amplified pulsed laser beam S6 a is outputted from the regenerative amplifier 370 may be the sum of the delay time Td and a time Tr during which the pulsed laser beam S3 travels back and forth in the resonator of the regenerative amplifier 370.
  • From the above, when the timing at which the pulsed laser beam S3 is outputted from the laser apparatus 3A of FIG. 9 needs to be controlled, the oscillation trigger S1 may preferably be inputted in consideration of the above delay times.
  • 3.3 Embodiment Where Multiple QCLs Are Used as MO (Third Embodiment)
  • Subsequently, a laser apparatus where multiple QCLs are used as a master oscillator will be described in detail with reference to the drawings. In the description to follow, the configuration similar to that of the above embodiments will be referenced by similar reference characters, and duplicate description thereof will be omitted.
  • 3.3.1 Configuration
  • FIG. 14 schematically illustrates the configuration of a laser apparatus 3B according to a third embodiment. The laser apparatus 3B shown in FIG. 14 may be similar in configuration to the laser apparatus 3 shown in FIG. 1. However, in the laser apparatus 3B, the semiconductor laser apparatus 310 may be replaced by a semiconductor laser system 310S.
  • The semiconductor laser system 3105 may include semiconductor laser apparatuses 310-1 through 310-n, a beam path adjusting unit 360, and a semiconductor laser controller 311A. Each of the semiconductor laser apparatuses 310-1 through 310-n may be similar in configuration to the semiconductor laser apparatus 310. The semiconductor laser controller 311A may be configured to control each of the semiconductor laser apparatuses 310-1 through 310-n. The beam path adjusting unit 360 may be positioned so as to make the beam paths of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n substantially coincide with one another.
  • 3.3.2 Operation
  • Subsequently, the operation of the laser apparatus 3B will be described. Each of the semiconductor laser apparatuses 310-1 through 310-n may oscillate at the timing and with the intensity specified by the semiconductor laser controller 311A. Each of the semiconductor laser apparatuses 310-1 through 310-n may output a pulsed laser beam when a current pulse flows in the respective semiconductor laser devices 312 (see, e.g., FIG. 1). The pulsed laser beam outputted from each of the semiconductor laser apparatuses 310-1 through 310-n may be controlled such that at least a part of the wavelength chirping range of each pulsed laser beam overlaps a gain bandwidth of the CO2 gas gain medium. As described above, the wavelength chirping range of each of the semiconductor laser apparatuses 310-1 through 310-n may be controlled by controlling the temperature of the respective semiconductor laser devices 312.
  • The pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n may enter the beam path adjusting unit 360. The beam path adjusting unit 360 may serve to make the beam paths of the respective pulsed laser beams substantially coincide with one another. The beam path adjusting unit 360 may be an optical system configured to make the beam paths of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n substantially coincide with one another. The beam path adjusting unit 360 may be an optical system in which a grating, a beam splitter, and the like are combined. As the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n enter the beam path adjusting unit 360, the pulsed laser beam S3 including the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n may be outputted from the semiconductor laser system 310S. As in the case shown in FIG. 1, the pulsed laser beam S3 may be expanded in diameter by the relay optical system 320, and thereafter may be amplified to the pulsed laser beam S6 by the amplifier 330.
  • Here, each of the semiconductor laser apparatuses 310-1 through 310-n may be similar in configuration to the semiconductor laser apparatus in the first embodiment; thus, duplicate description thereof will be omitted.
  • 3.3.3 Combination of Oscillation Wavelength of Semiconductor Laser and Gain Bandwidth of CO2 gas Gain Medium
  • The case where oscillation wavelengths of the respective semiconductor laser apparatuses are controlled to overlap the gain bandwidths of the CO2 gas gain medium when multiple semiconductor laser apparatuses are used will be described with examples.
  • 3.3.3.1 Case where Single QCL is Allocated to Each Gain Bandwidth
  • A case where single-longitudinal-mode semiconductor laser apparatuses are allocated to respective gain bandwidths will be described, first. FIG. 15 shows the case where single-longitudinal-mode semiconductor laser apparatuses are allocated to respective gain bandwidths. FIG. 16 shows an example of the pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 15. Here, in FIGS. 15 and 16, a case where five semiconductor laser apparatuses 310-1 through 310-5, each of which oscillates at a single-longitudinal-mode, are used will be illustrated. Further, of the gain bandwidths S51 through S57 of the CO2 gas gain medium, the gain bandwidths S52 through S56 are used here.
  • As shown in FIG. 15, in the amplifier 330 containing a CO2 gas gain medium, the gain in each of the gain bandwidths S51 through S57 may differ from one another. Thus, it may be preferable that the pulsed laser beams (at single-longitudinal-modes L3, L5, L7, L9, and L11) with beam intensity corresponding to the gain of the respective gain bandwidths are outputted from the respective semiconductor laser apparatuses 310-1 through 310-5.
  • In the example shown in FIG. 15, wavelength chirping ranges R4 a through R4 e of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-5 at the respective single-longitudinal-modes L3, L5, L7, L9, and L11 may overlap at least parts of the gain bandwidths S52 through S56, respectively. In this case, the semiconductor laser controller 311A may control the beam intensity of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-5 at the single-longitudinal-modes L3, L5, L7, L9, and L11 in accordance with the peak gain in the corresponding gain bandwidths S52 through S56. In this example, a single-longitudinal-mode pulsed laser beam with relatively small beam intensity may be associated with a gain bandwidth with a relatively high peak gain (e.g., S52), and a single-longitudinal-mode pulsed laser beam with relatively high beam intensity may be associated with a gain bandwidth of a relatively low peak gain (e.g., S53).
  • With the above control, the peak intensity of each of the pulsed laser beams S62 through S66 amplified by the CO2 gas gain medium may become substantially equal, as shown in FIG. 16. With this, amplification efficiency can be improved, compared to the case where a pulsed laser beam is amplified using a single gain bandwidth, for example.
  • 3.3.3.2 Case Where Multiple QCLs are Allocated to Single Gain Bandwidth
  • Subsequently, a case where multiple single-longitudinal-mode semiconductor laser apparatuses are allocated to a single gain bandwidth will be described below. FIG. 17 shows the case where the multiple single-longitudinal-mode semiconductor laser apparatuses are allocated to a single gain bandwidth. FIG. 18 shows an example of a pulsed laser beam amplified in the case shown in FIG. 17. Here, in FIGS. 17 and 18, the case where three semiconductor laser apparatuses 310-1 through 310-3 each of which oscillates at a single-longitudinal-mode are used is illustrated. Further, of the gain bandwidths S51 through S57 of the CO2 gas gain medium, the gain bandwidth S52 is used.
  • As shown in FIG. 17, the wavelength chirping ranges R4 a through R4 c of the pulsed laser beams outputted from the multiple (three in this example) semiconductor laser apparatuses 310-1 through 310-3 at single-longitudinal-modes L3 a through L3 c may overlap at least a part of the single gain bandwidth S52. With this, as shown in FIG. 18, the peak intensity of the pulsed laser beam S6 outputted from the amplifier 330 may be increased.
  • 3.3.3.3 Case where Number of QCLs Allocated to Each Gain Bandwidth is Modified in Accordance with Gain of Each Gain Bandwidth
  • Further, as discussed above, the gain in the gain bandwidth S52, for example, may be greater than those in the other gain bandwidths. Accordingly, the number of semiconductor lasers allocated to each gain bandwidth may be modified in accordance with the gain in each gain bandwidth. It is assumed in this example that the gain bandwidths S52 through S54 are used, and the gain in the gain bandwidth S52 is twice as much as the gain in the gain bandwidth S53 or S54. Because the gain in the gain bandwidth S52 is greater than those in the gain bandwidths S53 and S54, as mentioned above, twice or more (two, for example) as many semiconductor laser apparatuses as the number (one, for example) of the semiconductor laser apparatuses allocated to the gain bandwidth S52 may be allocated to the gain bandwidth S53 or S54. With this, the current given to each of the semiconductor laser apparatuses may be made substantially equal, which may facilitate the temperature control in the semiconductor laser system 310S.
  • FIG. 19 shows the case where five single-longitudinal-mode semiconductor laser apparatuses are allocated to three gain bandwidths. FIG. 20 shows an example of the pulsed laser beams amplified in the respective gain bandwidths in the case shown in FIG. 19. Here, FIGS. 19 and 20 show the case where five semiconductor laser apparatuses 310-1 through 310-5 each of which oscillates at a single-longitudinal-mode are used. Further, FIGS. 19 and 20 show the case where, of the gain bandwidths S51 through S57 of the CO2 gas gain medium, the gain bandwidths S52 through S54 are used.
  • As shown in FIG. 19, the wavelength chirping ranges R4 a through R4 e of longitudinal modes L3, L5 b, L5 c, L7 d, and L7 e at which the multiple (five in the example shown in FIG. 19) semiconductor laser apparatuses 310-1 through 310-5 oscillate may overlap at least parts of the gain bandwidths S52 through S54, respectively. Here, a plurality of the wavelength chirping ranges may overlap at least a part of a single gain bandwidth. When the plurality of wavelength chirping ranges overlaps a single gain bandwidth, the number of wavelength chirping ranges to overlap a single gain bandwidth may preferably be adjusted in accordance with the gain in the respective gain bandwidths. As a result, the overall beam intensity of each of the pulsed laser beams in the respective gain bandwidths is substantially equal (see FIG. 20).
  • In the example shown in FIG. 19, the wavelength chirping range R4 a of the pulsed laser beam outputted from the semiconductor laser apparatus 310-1 at the single-longitudinal-mode L3 may overlap at least a part of the gain bandwidth S52. The wavelength chirping ranges R4 b and R4 c of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-2 and 310-3 at the single-longitudinal-modes L5 b and L5 c may overlap at least a part of the gain bandwidth S53. Further, the wavelength chirping ranges R4 d and R4 e of the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-4 and 310-5 at the single-longitudinal-modes L7 d and L7 e may overlap at least a part of the gain bandwidth S54.
  • With the above combination, spectral waveforms of pulsed laser beams S62 c through S64 c amplified by the CO2 gas gain medium may be such that their peak intensities are substantially equal to each other, as shown in FIG. 20. With this, amplification efficiency can be improved, compared to the case where the pulsed laser beam L3 is amplified using the single gain bandwidth S52, for example.
  • 3.3.4 Waveform Control of Amplified Pulsed Laser Beam by Adjusting Timing of QCLs
  • Waveform control of the pulsed laser beam S6 outputted from the amplifier 330 will be discussed. The temporal waveform of the pulsed laser beam S6 outputted from the amplifier 330 may be controlled by controlling not only a current waveform given to each of the semiconductor laser apparatuses 310-1 through 310-n but also timings at which a current is supplied to each of the semiconductor laser apparatuses 310-1 through 310-n.
  • By controlling the waveform of the pulsed laser beam S6, the pulsed laser beam S6 with high peak intensity or the pulsed laser beam S6 with a longer pulse width may be obtained. The waveform of the pulsed laser beam S6 may be controlled by controlling the timing at which a pulsed laser beam is outputted from each of the semiconductor laser apparatuses. For example, when the timings at which the multiple pulsed laser beams are outputted from the amplifier are adjusted to coincide with one another, the pulsed laser beam S6 with high peak intensity may be obtained. Alternatively, when the timings at which the multiple pulsed laser beams are outputted from the amplifier are adjusted to differ from one another, the pulsed laser beam S6 with a longer pulse width may be obtained. Hereinafter, each case will be described with examples. In the description to follow, the case where semiconductor laser apparatuses are allocated to the plurality of gain bandwidths shown in FIG. 15, respectively, will be used as an example, but this embodiment is not limited thereto. For example, the case below may be applicable to the case shown in FIG. 17 or 19.
  • 3.3.4.1 Case where Timings at which Amplified Pulsed Laser Beams Are Outputted from Amplifier are Controlled to Coincide with Each Other
  • FIGS. 21 through 24 show timing charts in the case where the timings at which the pulsed laser beams are outputted from the amplifier coincide with one another. In the following description, five semiconductor laser apparatuses 310-1 through 310-5 are used.
  • As in the case described with reference to FIG. 15, the intensity of the current pulse inputted to the respective semiconductor laser apparatuses 310-1 through 310-5 may be controlled in accordance with the gain in the respective gain bandwidths corresponding to the respective longitudinal modes. For example, as shown in FIG. 21, the intensity of current pulses S22 through S26 inputted to the respective semiconductor laser apparatuses 310-1 through 310-5 may be controlled. As a result, as shown in FIG. 22, pulsed laser beams S32 through S36 with the beam intensity corresponding to the intensity of the current pulses S22 through S26 may be outputted from the respective semiconductor laser apparatuses 310-1 through 310-5.
  • As shown in FIGS. 21 and 23, oscillation triggers (current pulses S22 through S26) may preferably be given to the respective semiconductor laser apparatuses 310-1 through 310-5 at timings Tt1 through Tt3 such that the amplified pulsed laser beams S62 through S66 may be outputted from the amplifier 330 simultaneously at a timing Tt4. The timings Tt1 through Tt3 at which the oscillation triggers are inputted to the respective semiconductor laser apparatuses 310-1 through 310-5 may preferably be set so as to precede by delay times Tdr2 through Tdr6, respectively. The delay times Tdr2 through Tdr6 preceding the timing Tt4 are required for the respective pulsed laser beams S32 through S36 to be amplified in the regenerative amplifier 370, and are required for the pulsed laser beams to be outputted as amplified pulsed laser beams S62 through S66, respectively, from the regenerative amplifier 370.
  • The current pulses S22 through S26 may be given to the semiconductor laser apparatuses 310-1 through 310-5 at the aforementioned timings. Accordingly, the intensity of the pulsed laser beam S6 outputted from the amplifier 330 may be the sum of the intensity of the pulsed laser beams S62 through S66 (FIG. 23) amplified in the respective gain bandwidths S52 through S56. As a result, the pulsed laser beam S6 with high peak intensity may be obtained.
  • 3.3.4.2 Case where Timings at which Amplified Pulsed Laser Beams are Outputted from Amplifier are Offset from One Another
  • FIGS. 25 through 28 show timing charts in the case where timings at which the pulsed laser beams are outputted from the amplifier differ from one another. In the description to follow, five semiconductor laser apparatuses 310-1 through 310-5 are used.
  • As shown in FIG. 25, timings at which the pulsed laser beams S32 through S36 are outputted from the respective semiconductor laser apparatuses 310-1 through 310-5 may be offset from one another by adjusting rise timings T1 through T5 of the current pulses S22 through S26 (that is, the output timings of the oscillation triggers) inputted to the respective semiconductor laser apparatuses 310-1 through 310-5 (see FIG. 26). In other words, the rising edges of the current pulses S22 through S26 are misaligned with each other. With this, as shown in FIG. 27, timings at which the pulsed laser beams S62 c through S66 c are outputted from the amplifier 330 may be offset from one another. Here, the rise timings T1 through T5 may be offset from one another such that the offset amount in the timings at which the pulsed laser beams S62 c through S66 c are outputted is substantially equal. In that case, the rise timings T1 through T5 may preferably be set so as to precede the timings at which pulsed laser beams S62 c through S66 c are outputted from the amplifier 330, respectively, by the delay times Tdr2 through Tdr6.
  • The current pulses S22 through S26 may be supplied to the respective semiconductor laser apparatuses 310-1 through 310-5 at the aforementioned timings. The pulsed laser beam S6 outputted from the amplifier 330 may thus be arranged in series and closely with each other, as shown in FIG. 28. As a result, the pulsed laser beam. S6 with a longer pulsed width may be obtained.
  • In this way, when the pulsed laser beams S32 through S36 outputted from the respective semiconductor laser apparatuses 310-1 through 310-5 are amplified using the plurality of gain bandwidths S52 through S56, the amplification efficiency of the pulsed laser beams S32 through S36 may be increased. Further, the offset amount in the timings at which the pulsed laser beams S32 through S36 are outputted may be varied, which may allow the pulse shape of the pulsed laser beam S6 outputted from the amplifier 330 to be varied. This may make it possible to generate the pulsed laser beam S6 with an optimal pulse shape which can meet a condition. Further, largely offsetting the rise timings of the pulsed laser beams may make it possible to generate a plurality of laser beams, such as a pre-pulse laser beam and a main pulse laser beam.
  • 3.4 Embodiment where Laser Apparatus with Multiple QCLs as MO Includes Regenerative Amplifier (Fourth Embodiment)
  • The laser apparatus 3B shown in FIG. 14 may include the regenerative amplifier 370 as in the laser apparatus 3A shown in FIG. 9. FIG. 29 schematically illustrates the configuration of a laser apparatus 3C according to a fourth embodiment. As illustrated in FIG. 29, the laser apparatus 3C may be similar in configuration to the laser apparatus 3A shown in FIG. 9, but may differ in that the semiconductor laser apparatus 310 is replaced by the semiconductor laser system 3105 shown in FIG. 14. Other configuration and operation may be similar to those of the above-described embodiments; thus, detailed description thereof will be omitted here.
  • 3.5 Longitudinal Mode Outputted by QCL
  • In order to facilitate the understanding of the fourth embodiment, the wavelength of the longitudinal mode pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 will be described first.
  • 3.5.1 Resonator of QCL
  • The oscillation wavelength of the semiconductor laser apparatus 310 will be described, first. Here, the external-resonator type semiconductor laser apparatus 310B will be used as an example. FIG. 30 schematically illustrates the configuration of the external-resonator type semiconductor laser apparatus 310B.
  • In the configuration shown in FIG. 30, the longitudinal mode (wavelength) of the external-resonator type semiconductor laser apparatus 310B may be represented by Expression (1) below.

  • mλL=L  (1)
      • m: order
      • λL: (longitudinal mode) wavelength of laser oscillation
      • L: optical path length of the resonator
  • Here, the distance between the output coupler 3125 and the semiconductor laser device 312B is Lg1, and the refraction index of that space is n1. The length of the active layer 3122B is Lg2, and the refraction index thereof is n2. Further, the distance between the semiconductor laser device 312B and the grating 3127 is Lg3, and the refraction index of that space is n3. Then, the optical path length L of the optical resonator formed in the external-resonator type semiconductor laser apparatus 310B may be represented by Expression (2) below.

  • L=(n1·Lg1+n2·Lg2+n3·Lg3)  (2)
  • Further, the free spectral range (FSR) of the longitudinal mode may be represented by Expression (3) below.

  • FSR=λ2/(2L)  (3)
  • Here, when the grating 3127 is in the Littrow arrangement, the angle of incidence and the angle of diffraction are the same angle β; thus, the central wavelength of a selected bandwidth may be represented by Expression (4) below.

  • mG/n3)=2·a·sin β  (4)
      • m: order
      • λG: central wavelength of selected bandwidth
      • n3: refraction index of space between the semiconductor laser device 312B and the grating 3127
      • a: grating space
      • β: angle of diffraction (=angle of incidence α)
  • The external-resonator type semiconductor laser apparatus 3108 may, when the longitudinal mode λ of the optical resonator coincides with the selected central wavelength λG by the grating 3127, oscillate at the given wavelength.
  • 3.5.2 Relationship Between Longitudinal Mode of QCL and Wavelength Selectivity by Grating
  • The relationship between the longitudinal mode at which the semiconductor laser apparatus 310 oscillates and the wavelength selectivity by the grating 3127 will be discussed. Here, the case where the pulsed laser beam S3 of a single-longitudinal-mode at a wavelength coinciding with the gain bandwidth S52 of P(20) transition is outputted from the semiconductor laser apparatus 310 will be illustrated. FIG. 31 illustrates the relationship among the gain bandwidths of the CO2 gas gain medium, the wavelength selectivity by the grating, and the longitudinal modes at which the semiconductor laser device oscillates. FIG. 32 shows an example of the pulsed laser beam S3 outputted from the semiconductor laser apparatus at a single-longitudinal-mode. Here, in the example shown in FIG. 31, the semiconductor laser device 312 in the semiconductor laser apparatus 310 may oscillate at longitudinal modes L1 through L13. Further, it is assumed that the selected wavelength range S8 by the grating 3124 or 3127 of the semiconductor laser apparatus 310 (distributed-feedback semiconductor laser apparatus 310A or external-resonator type semiconductor laser apparatus 310B) contains the longitudinal mode L3 of the longitudinal modes L1 through L13. In this case, the longitudinal mode at which the semiconductor laser apparatus 310 oscillates may be the longitudinal mode L3.
  • As shown in FIG. 31, when the optical path length L of the optical resonator formed in the semiconductor laser apparatus 310 is 5549.8 μm and the order m of the diffracted ray selected by the grating 3124 or 3127 is 524, the wavelength λL of the longitudinal mode L3 may be 10.5912 μm, from Expression (1) above. Further, from Expression (3) above, the wavelength gap (FSR) of the longitudinal modes L1 through L13 may be 0.0101 μm. In that case, the wavelength selection range S8 selected by the grating 3124 or 3127 may include the wavelength of the longitudinal mode L3. As a result, the oscillation wavelength of the semiconductor laser apparatus 310 may in fact be the wavelength of the longitudinal mode L3.
  • The wavelength of the longitudinal mode L3 may be contained in the gain bandwidth S52 at P(20) transition of the CO2 gas gain medium. In this way, by making the wavelength of the longitudinal mode L3 and the wavelength selection range S8 by the grating 3124 or 3127 overlap the gain bandwidth S52 at P(20) transition, the wavelength of the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 overlaps the gain bandwidth S52, as shown in FIG. 32; thus, the pulsed laser beam S3 may be amplified in the gain bandwidth S52 of the CO2 gas gain medium.
  • Here, the case where the oscillation wavelength of the semiconductor laser apparatus 310 is controlled to overlap the gain bandwidth S52 at P(20) transition is described above. However, without being limited thereto, the wavelength chirping range of the semiconductor laser apparatus 310 may overlap at least part of any one of the gain bandwidths S51 through S57. For example, the initial wavelength of the pulsed laser beam S3 may be shorter than the wavelength of the gain bandwidth S52. In this case, the wavelength of the pulsed laser beam S3 may overlap at least part of the gain bandwidth S52 as the wavelength of the pulsed laser beam S3 chirps.
  • 3.5.3 Controlling Optical Path Length
  • When the external-resonator type semiconductor laser apparatus 310B is used as the semiconductor laser apparatus 310, as may be apparent from Expression (2) above, the optical path length L of the optical resonator may be controlled by controlling at least one among the optical path lengths Lg1 and Lg3 and the refraction indexes n1 through n3. With this, the wavelength chirping range of the semiconductor laser apparatus 310B may be controlled.
  • Hereinafter, specific examples of the control will be discussed.
  • (1) Control of the refraction index n1 of the space between the output coupler 3125 and the semiconductor laser device 312B: Control at least one of the type and the density (pressure) of the gas in the space between the output coupler 3125 and the semiconductor laser device 312B;
    (2) Control of the distance Lg1 between the output coupler 3125 and the semiconductor laser device 312B: Relatively displace the output coupler 3125 and the semiconductor laser device 312B in the direction of the beam axis;
    (3) Control of the refraction index n2 of the active layer 3122B: Control the temperature of the semiconductor laser device 312B;
    (4) Control of the refraction index n3 of the space between the semiconductor laser device 312B and the grating 3127: Control at least one of the type and the density (pressure) of the gas in the space between the semiconductor laser device 312B and the grating 3127;
    (5) Control of the distance Lg3 between the semiconductor laser device 312B and the grating 3127: Relatively displace the semiconductor laser device 312B and the grating 3127 in the direction of the beam axis.
  • Meanwhile, when the distributed-feedback semiconductor laser apparatus 310A, which is an internal-resonator type semiconductor laser apparatus, is used as the semiconductor laser apparatus 310, the grating 3124 and the optical resonator may be formed inside the semiconductor laser device 312A (see FIG. 4). Accordingly, the wavelength of the longitudinal mode determined by the central wavelength of the bandwidth selected by the grating 3124 and the optical path length of the optical resonator may vary in accordance with the change in temperature of the active layer 3122. Thus, controlling the temperature of the semiconductor laser device 312A may make it possible to control the wavelength chirping range.
  • 3.5.4 Controlling Current Pulse to Flow in Semiconductor Laser Device
  • Further, by controlling the current pulse to flow in the semiconductor laser device 312 of the semiconductor laser apparatus 310, the chirping range of the oscillation wavelength may be controlled as well. FIG. 33 shows a change over time in the wavelength chirping, the temperature of the active layers, and the beam intensity of the outputted pulsed laser beam.
  • Even when the temperature of the semiconductor device 312 is controlled by using the Peltier device 313 so as to be retained constant, for example, the temperature of the active layer 3122 of the semiconductor laser device 312 may change due to the current flowing in the semiconductor laser device 312. The rise in the temperature of the active layer 3122 may become steeper as the intensity of the current flowing in the semiconductor laser device 312 increases. For example, as shown in FIG. 33( b), when a current pulse S2 c is greater than a current pulse S2 a, temperature S7 c of the active layer 3122 when the current pulse S2 c flows in the semiconductor laser device 312 may vary more than temperature S7 a of the active layer 3122 when the current pulse S2 a flows in the semiconductor laser device 312, as shown in FIG. 33( a). As a result, as in the output wavelengths S4 a and S4 c shown in FIG. 33( a), a wavelength chirping range Rc when the current pulse S2 c flows in the semiconductor laser device 312 may be wider than a wavelength chirping range Ra when the current pulse S2 a flows in the semiconductor laser device 312.
  • The temperature of the semiconductor laser device 312 may continue to rise while the current pulse is being supplied to the semiconductor laser device 312. Accordingly, the wavelength chirping may continue during that period. Here, even if the period in which the current pulse is being supplied is short, the wavelength chirping range may be relatively wide if the intensity of the current pulse is high. For example, as shown in FIG. 33( b), when the pulse width of the current pulse S2 b is made shorter than the pulse width of the current pulse S2 a and the current pulse S2 b is made stronger than the current pulse S2 a, temperature S7 b of the active layer 3122 when the current pulse S2 b flows in the semiconductor laser device 312 may vary more than the temperature S7 a of the active layer 3122 when the current pulse S2 a flows in the semiconductor laser device 312, as shown in FIG. 33( a). As a result, as in the output wavelengths S4 a and S4 b shown in FIG. 33( a), a wavelength chirping range Rb when the current pulse S2 b flows in the semiconductor laser device 312 may be wider than the wavelength chirping range Ra when the current pulse S2 a flows in the semiconductor laser device 312.
  • Based on the above, it may be understood that the wavelength chirping range may be controlled by controlling the intensity and the pulse width of the current pulse that flows in the semiconductor laser device 312.
  • Here, the wavelength may chirp rapidly at the beginning of the current pulse, but the change may become smaller toward the end of the current pulse. From this, it may be preferable that a portion toward the end of the wavelength chirping range is controlled to overlap a gain bandwidth of the CO2 gas gain medium. This may allow the pulse width of the amplified pulsed laser beam to be extended.
  • 3.5.5 Setting Wavelength Selectivity by Design (1) External-Resonator Type Semiconductor Laser
  • In the case of the external-resonator type semiconductor laser apparatus 310B, by modifying the angle β of incidence on the grating 3127 shown in FIG. 30, the wavelength selection range S8 by the grating 3127 shown in FIG. 31 may be set to wavelengths corresponding to the gain bandwidths S51, S53, S54, S55, S56, or S57 at other transitions (P(18), P(22), P(24), P(26), P(28), and P(30)).
  • (2) Internal-Resonator Type Semiconductor Laser
  • In the case of the internal-resonator type semiconductor laser, such as the distributed-feedback semiconductor laser apparatus 310A (see FIG. 4), by adjusting the gaps W1 in the grating 3124 when manufacturing the semiconductor laser device 312A, as in the case of the external-resonator type semiconductor laser apparatus 310B, the semiconductor laser apparatus 310A that oscillates at a single-longitudinal-mode of a wavelength corresponding to the gain bandwidth S51, S53, S54, S55, S56, or S57 at P(18), P(22), P(24), P(26), P(28), or P(30) transition other than P(20) transition can be obtained.
  • 4. Control System of CO2 Laser Apparatus with QCL as MO (Fifth Embodiment)
  • Subsequently, the control system of the laser apparatus 3 shown in FIG. 1 will be described in detail with reference to the drawings. Here, the configuration and the operation below may be applicable to the laser apparatuses 3A through 3C according to the other embodiments.
  • 4.1 Configuration
  • FIG. 34 schematically illustrates the configuration of the laser apparatus 3 and the control system thereof. As illustrated in FIG. 34, the control system of the laser apparatus 3 may include a laser controller 350 and a memory 351.
  • The memory 351 may hold various control parameters for the laser controller 350 to control the semiconductor laser apparatus 310. The control parameters may include chirping characteristics of the semiconductor laser device 312. The memory 351 may hold the chirping characteristics by associating the chirping characteristics to a current value I and a pulse width W of the current pulse which flows in the semiconductor laser device 312, a set temperature SMTt of a temperature adjusting unit of the semiconductor laser device 312, and a repetition rate f.
  • 4.2 Overview of Operation
  • The laser controller 350 may load necessary control parameters from the memory 351 when causing the semiconductor laser apparatus 310 to oscillate. The laser controller 350 may input various control signals to the semiconductor laser controller 311 of the semiconductor laser apparatus 310, based on the loaded control parameters. The semiconductor laser controller 311 may be configured to control the temperature controller 314 and the current controller 315, based on the inputted various control signals. With this, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310.
  • Further, the laser controller 350 may be configured to control the intensity and the timing at which the CO2 gas gain medium in the amplifier 330 is excited. For example, the laser controller 350 may excite the CO2 gas gain medium in the amplifier 330 in synchronization with the timing at which the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 passes through the amplifier 330. With this, the power consumption in the amplifier 330 may be reduced.
  • 4.3 Control Parameters and Measuring System Thereof
  • Here, the control parameters held in the memory 351 will be discussed. The control parameters may be obtained in advance by adjustment, simulation, and so forth, for example. FIG. 35 schematically illustrates the configuration of a measuring system for obtaining the control parameters in advance for the laser apparatus 3.
  • 4.3.1 Measuring Configuration
  • As illustrated in FIG. 35, the measuring system 380 may include a focusing lens 381, a member with an input slit 382, a high-reflection mirror 383, a concave mirror 384, a grating 385, a concave mirror 386, and a linear sensor 387.
  • The laser controller 350 may input to the semiconductor laser apparatus 310 the set temperature SMTt of the temperature controller 314 of the semiconductor laser device 312. With this, the temperature of the semiconductor laser device 312 may be adjusted to the set temperature SMTt. Further, the laser controller 350 may input to the semiconductor laser apparatus 310 the current value I and the pulse width W of the current pulse to flow in the semiconductor laser device 312. With this, the current value and the pulse width of the current pulse supplied to the semiconductor laser device 312 from the current controller 315 may be set to the current value I and the pulse width W, respectively. Furthermore, the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the repetition rate f. At this time, in the case where timing synchronization with the droplet generator 26 is necessary, a delay generator 352 may be provided on a signal path through which the oscillation triggers are transmitted. With this, the current controller 315 in the semiconductor laser apparatus 310 may control the current pulses to flow in the semiconductor laser device 312 at the repetition rate f. As a result, the pulsed laser beam S3 may be outputted from the semiconductor laser apparatus 310 at the repetition rate f.
  • The pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 may travel through the focusing lens 381 and the input slit 382. The pulsed laser beam S3 that has passed through the input slit 382 may be reflected by the high-reflection mirror 383 and the concave mirror 384, to thereby be collimated. The pulsed laser beam S3 reflected by the concave mirror 384 may be incident on the grating 385. Rays of the pulsed laser beam L3 may be diffracted by the grating 385 in accordance with their wavelengths. Diffracted rays SD3 diffracted by the grating 385 may be reflected by the concave mirror 386. The linear sensor 387 may be disposed at the focus of the concave mirror 386. In that case, diffracted rays SD3 may be focused at positions on the linear sensor 387 in accordance with their diffraction angles. An image data obtained by the linear sensor 387 may be inputted to the laser controller 350. The laser controller 350 may detect the wavelength of the pulsed laser beam S3 based on the inputted image data.
  • Further, the laser controller 350 may hold the state of a wavelength change over time detected per pulse in the pulsed laser beam S3 as the chirping characteristics of the semiconductor laser apparatus 310. Furthermore, the laser controller 350 may hold in the memory 351 the obtained chirping characteristics by associating the chirping characteristics with the control parameters (current value I, pulse width W, set temperature SMTt (see FIG. 36, discussed below), and repetition rate f) currently set for the semiconductor laser apparatus 310.
  • 4.3.2 Chirping Characteristics
  • Here, the chirping characteristics of the semiconductor laser apparatus will be discussed with reference to the drawings. FIG. 36 shows an example of the chirping characteristics of the semiconductor laser apparatus. FIG. 36 shows the case where the wavelength of the pulsed laser beam S3 is adjusted, but not limited to, with respect to the gain bandwidth S52. However, the wavelength of the pulsed laser beam S3 may be adjusted with respect to the other gain bandwidths S51 and S53 through S57.
  • In FIG. 36, a curve Cp indicates temperature dependency of temporally initial wavelengths in a single pulse of the pulsed laser beam S3. A curve Cf indicates temperature dependency of temporally final wavelengths in a single pulse of the pulsed laser beam S3. Thus, the wavelength of the pulsed laser beam S3 may shift from the curve Cp to the curve Cf in the duration of a single pulse.
  • Further, a set temperature SMTp may be set so that the final wavelength of the pulsed laser beam S3 becomes the longest wavelength λmax of the gain bandwidth S52 in the curve Cp. A set temperature SMTf may be set so that the final wavelength of the pulsed laser beam S3 becomes the shortest wavelength λmin of the gain bandwidth S52. In that case, when the set temperature SMTt of the semiconductor laser apparatus 310 is at or above the set temperature SMTp, the wavelength of the pulsed laser beam S3 does not overlap the gain bandwidth S52; therefore, the pulsed laser beam S3 may not be amplified. When the set temperature SMTt is at or below the set temperature SMTf, the wavelength of the pulsed laser beam S3 does not overlap the gain bandwidth S52, either; therefore, the pulsed laser beam S3 may not be amplified.
  • Accordingly, the set temperature SMTt may be set at a temperature (intermediate temperature, for example) between the set temperature SMTf and the set temperature SMTp, for example. With this, the pulsed laser beam S3 may be amplified using a bandwidth with higher gain. As a result, the amplification efficiency may be improved. Here, the set temperature SMTt between the set temperature SMTf and the set temperature STMp may be obtained from Expression (5) below.

  • SMTt=(SMTf+SMTp)/2  (5)
  • 4.3.3 Measuring Operation
  • The operation for acquiring the control parameters by the measuring system 380 and the laser controller 350 will be described in detail with reference to the drawings. The description to follow will be given with a focus on the operation of the laser controller 350.
  • FIG. 37 illustrates an example of control parameter acquisition operation by the measuring system 380 and the laser controller 350. As shown in FIG. 35, the measuring system 380 may preferably be arranged downstream from the semiconductor laser apparatus 310. As shown in FIG. 37, the laser controller 350 may first select a semiconductor laser apparatus subject for measurement (Step S301). However, when the laser apparatus includes only a single semiconductor laser apparatus, Step S301 may be omitted.
  • Then, the laser controller 350 may reset a timer (not shown) (Step S302). Subsequently, the laser controller 350 may select a single set of control parameters from a plurality of sets of control parameters held in the control system (Step S303). Each set of control parameters may include the current value I and the pulse width W of the current pulse to flow in the semiconductor laser device 312, the set temperature SMTt of the temperature adjusting unit of the semiconductor laser device 312, and the repetition rate f. The plurality of sets of control parameters may be held in the memory 351, for example. The laser controller 350 may read out the plurality of sets of control parameters held in the memory 351 and select one from the sets.
  • Then, the laser controller 350 may send the control parameters included in the selected set of control parameters to the semiconductor laser controller 311 of the semiconductor laser apparatus 310, to thereby set the control parameters to the semiconductor laser controller 311 (Step S304). Subsequently, the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the predetermined repetition rate f, whereby the semiconductor laser apparatus 310 may oscillate at the predetermined repetition rate f (Step S305). Then, the laser controller 350 may start measuring an elapsed time with the timer (Step S306).
  • Subsequently, the laser controller 350 may measure the initial wavelength λp of the pulsed laser beam S3 outputted from the semiconductor laser apparatus 310 (Step S307). The initial wavelength λp may be measured based on the image data inputted from the linear sensor 387 of the measuring system 380, for example.
  • Then, the laser controller 350 may measure the chirping characteristics of the pulsed laser beam S3 (Step S308). The chirping characteristics may be measured based on the change over time in the image data inputted from the linear sensor 387, for example.
  • Thereafter, the laser controller 350 may determine whether or not the chirping characteristics of the pulsed laser beam S3 are in a steady state (Step S309). Whether or not the chirping characteristics are in the steady state may be determined based on whether or not the chirping characteristics of immediately preceding several pulses of the pulsed laser beams S3 sufficiently coincide with one another. When the chirping characteristics are not in the steady state (Step S309; NO), the laser controller 350 may return to Step S307 and measure the initial wavelength λp and the chirping characteristics of a subsequent pulse of the pulsed laser beam S3 (Steps S307 and S308).
  • On the other hand, when the chirping characteristics are in the steady state (Step S309; YES), the laser controller 350 may acquire an elapsed time Tw measured by the timer (Step S310). The chirping characteristics of the pulsed laser beam S3 may not be stabilized until the temperature of the semiconductor laser device 312 is in the steady state. Accordingly, acquiring the elapsed time Tw required for the chirping characteristics to reach the steady state in advance may help determine easily whether or not the chirping characteristics reaches the steady state even when the apparatus is placed in operation.
  • Then, the laser controller 350 may measure the final wavelength λf of the pulsed laser beam S3 (Step S311). The final wavelength λf may be measured based on the image data inputted from the linear sensor 387 of the measuring system 380, for example.
  • Subsequently, the laser controller 350 may store the initial wavelength λp, the final wavelength λf, and the elapsed time Tw acquired with the above operation for the selected semiconductor laser apparatus 310 in the memory 351 (Step S312). The above parameters are associated with the identification information of, and the set of control parameters for, the selected semiconductor laser apparatus 310.
  • Then, the laser controller 350 may determine whether or not the measurement for all the control parameters in the selected set has been completed for the selected semiconductor laser apparatus 310 (Step S313). When the measurement in all the control parameters has not been completed (Step S313; NO), the laser controller 350 may return to Step S302 and repeat the subsequent steps.
  • Thereafter, when the measurement in all the control parameters is completed (Step S313; YES), the laser controller 350 may determine whether or not the above measurement has been completed for all the semiconductor laser apparatuses 310 (Step S314). When the measurement for all the semiconductor laser apparatuses 310 has not been completed (Step S314; NO), the laser controller 350 may return to Step S301 and repeat the subsequent steps. When the measurement for all the semiconductor laser apparatuses 310 has been completed (Step S314; YES), the laser controller 350 may terminate this operation.
  • With the above operation, the measurement data in all the control parameters in the selected set with respect to all the semiconductor laser apparatuses 310 may be stored in the memory 351.
  • 4.4 Amplification Control Operation
  • The amplification control operation of the laser apparatus 3 will be described in detail with reference to the drawings. Here, the operation below may be applicable to the laser apparatuses 3A through 3C according to the other embodiments as well. FIG. 38 shows the amplification control operation by the laser controller 350.
  • In the amplification control operation, as shown in FIG. 38, the laser controller 350 may first set a reception refusal of the oscillation trigger (Step S321). The oscillation trigger may be inputted to the laser controller 350 from an external apparatus, such as an exposure apparatus, or may be given to the laser controller 350 from a trigger generator (not shown) inside the laser controller 350.
  • Then, the laser controller 350 may reset a timer (not shown) (Step S322). Subsequently, the laser controller 350 may load the initial wavelength λp, the final wavelength λf, and the elapsed time Tw associated with the identification information, and the set of control parameters of, the respective semiconductor laser apparatuses 310 from the memory 351 (Step S323). Here, when there is only a single semiconductor laser apparatus 310, the initial wavelength λp, the final wavelength λf, and the elapsed time Tw may be associated with the set of control parameters (i.e., no identification information).
  • Thereafter, the laser controller 350 may obtain a set temperature SMT for controlling the wavelength chirping range of a given semiconductor laser apparatus 310 to overlap the target gain bandwidth of the semiconductor laser apparatus 310 (Step S324). Here, the set temperature SMT may be obtained from Expression (5) above, for example.
  • Subsequently, the laser controller 350 may set the control parameters loaded in Step S323 and the set temperature SMT obtained in Step S324 to the respective semiconductor laser apparatuses 310 (Step S325).
  • Then, the laser controller 350 may input the oscillation triggers to the semiconductor laser controller 311 at the predetermined repetition rate f, whereby the semiconductor laser apparatus 310 may oscillate at the predetermined repetition rate f (Step S326). Thereafter, the laser controller 350 may start measuring an elapsed time with the timer (Step S327).
  • Subsequently, the laser controller 350 may stand by until the elapsed time Tw has passed (Step S328; NO). Whether or not the elapsed time Tw has passes may be determined based on the count value in the timer. When the elapsed time Tw has passed (Step S328; YES), the laser controller 350 may set a reception permission of the oscillation trigger (Step S329). With this, the laser controller 350 may cause the semiconductor laser apparatus 310 to oscillate based on the oscillation trigger received from an external apparatus or from the trigger generator provided therein.
  • Thereafter, the laser controller 350 may determine whether or not there has been a change in the control parameters (Step S330). The information on the change in the control parameters may be given to the laser controller 350 from an external apparatus, for example. When there has been a change in the control parameters (Step S330; YES), the laser controller 350 may return to Step S321 and repeat the subsequent steps. On the other hand, when there is no change in the control parameters (Step S330; NO), the laser controller 350 may determine whether or not the control of the semiconductor laser apparatus 310 is to be terminated (Step S331). Whether or not the control of the semiconductor laser apparatus 310 is to be terminated may be determined based on whether or not the termination or completion of exposure has been notified from the external apparatus, for example. When the control of the semiconductor laser apparatus 310 is to be terminated (Step S331; YES), the laser controller 350 may terminate this operation. On the other hand, when the control of the semiconductor laser apparatus 310 is not to be terminated (Step S331; NO), the laser controller 350 may return to Step S329 and repeat the subsequent steps.
  • 4.5 Control System of CO2 Laser Apparatus Capable of Feedback-Control (Sixth Embodiment)
  • The laser apparatus 3 capable of feedback-control will be described in detail with reference to the drawings. Here, the configuration and the operation below may be applicable to the laser apparatuses 3A through 3C according to the other embodiments as well.
  • 4.5.1 Feedback-Control Configuration
  • FIG. 39 schematically illustrates the configuration of the laser apparatus 3 including a loop for feedback-control and the control system thereof. As it may be apparent when FIG. 39 is compared to FIG. 34, the feedback-control system of the laser apparatus 3 may further include a monitor unit 340.
  • The monitor unit 340 may be provided on the beam path of the pulsed laser beam S6 downstream from the amplifier 330. The monitor unit 340 may include a beam splitter 341, a focusing lens 342, and an optical detector 343. The beam splitter 341 may reflect a part of the pulsed laser beam S6 outputted from the amplifier 330. The focusing lens 342 may be disposed so as to focus the part of the pulsed laser beam S6 reflected by the beam splitter 341 on a photosensitive surface of the optical detector 343. The optical detector 343 may detect a timing Tp at which the pulsed laser beam S6 is outputted or may detect a pulse shape of the pulsed laser beam S6. Alternatively, a spectroscope for detecting the wavelength of the pulsed laser beam S6 may be used in place of the optical detector 343. Here, the monitor unit 340 may be configured to detect the pulsed laser beam S3, and if that is the case, the monitor unit 340 may be provided on the beam path of the pulsed laser beam S3 upstream from the amplifier 330.
  • The laser controller 350 may be connected to the monitor unit 340, the amplifier 330, and the semiconductor laser controller 311. The laser controller 350 may be configured to control these, to thereby control the output and the amplification of the pulsed laser beam S3.
  • 4.5.2 Feedback-Control Operation
  • The operation of the laser apparatus 3 including a loop for feedback-control and the control system thereof will be described. Here, the amplification control operation may be similar to the operation described with reference to FIG. 38. Below, the feedback-control carried out by the laser controller 350 during the amplification control operation will be discussed with examples. When the timing Tp at which the amplified pulsed laser beam S6 is outputted requires a delay time, the delay time may be set in advance as a target delay time Tdt. The control system may basically use feedback-control to adjust the temperature of the semiconductor laser device 312 such that the timing Tp, which is detected in the monitor unit 340, at which the amplified pulsed laser beam S6 is outputted from the amplifier 330 may achieve the target delay time Tdt.
  • In the amplification control operation, the pulsed laser beam S3 may be outputted regularly from the semiconductor laser apparatus 310 at the timing Tt+ΔT. The pulsed laser beam S3 may enter the amplifier 330 via the relay optical system 320. In the amplifier 330, the pulsed laser beam S3 may be amplified while the wavelength chirping range of the pulsed laser beam S3 overlaps a gain bandwidth of the CO2 gas gain medium. As a result, the pulsed laser beam S6 may be outputted from the amplifier 330 at the timing Tp delayed by the delay time Td from the timing Tt. The timing Tp at which the pulsed laser beam S6 is outputted from the amplifier 330 may be detected by the monitor unit 340. As shown in FIG. 40, the timing Tp detected by the monitor unit 340 may be inputted to the laser controller 350 (Step S105). Here, the monitor unit 340 may detect the pulse shape, the wavelength, and so forth of the pulsed laser beam S6.
  • Then, the laser controller 350 may calculate the delay time Td of the timing Tp from the timing Tt, based on the detection result inputted from the monitor unit 340 (Step S106). Thereafter, the laser controller 350 may calculate a difference between the target delay time Tdt and the delay time Td (Step S107).
  • Subsequently, the laser controller 350 may reset the current value I, the pulse width W, and the set temperature SMT of the semiconductor laser device 312 to the semiconductor laser controller 311, so that the difference ΔTd approximates to 0 (Step S108). Thereafter, the laser controller 350 may return to Step S105.
  • In this way, the laser controller 350 may repeat the feedback-control in Steps S105 through S108, whereby the timing at which the amplified pulsed laser beam S6 is outputted may be stabilized.
  • 5. Extreme Ultraviolet Light Generation System (Seventh Embodiment)
  • Subsequently, an EUV light generation system will be described with examples.
  • 5.1 Exemplary Laser Produced Plasma Type EUV Light Generation System
  • First, an exemplary EUV light generation system will be described in detail with reference to the drawings.
  • 5.1.1 Configuration
  • FIG. 41 schematically illustrates the configuration of an exemplary LPP type EUV light generation apparatus 1. The EUV light generation apparatus 1 may be used with at least one laser apparatus 903. In this application, a system including the EUV light generation apparatus 1 and the laser apparatus 903 may be referred to as an EUV light generation system. As illustrated in FIG. 41 and described in detail below, the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit (droplet generator 26, for example). The interior of the chamber 2 may preferably be vacuum or kept at pressure lower than the atmospheric pressure. The chamber 2 may be filled with a gas which is highly transmissive to the EUV light. The target supply unit may be mounted to the chamber 2 so as to penetrate a wall of the chamber 2, for example. A target material to be supplied by the target supply unit may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or any combination thereof.
  • The chamber 2 may have at least one through-hole formed in the wall thereof. The through-hole may be covered with a window 21, and a pulsed laser beam 31 may travel through the window 21 into the chamber 2. An EUV collector mirror 23 having a spheroidal reflective surface may be provided inside the chamber 2, for example. The EUV collector mirror 23 may have first and second foci. The EUV collector mirror 23 may have a multi-layered reflective film formed on a surface thereof, and the reflective film may include molybdenum and silicon that are laminated in alternate layers, for example. The EUV collector mirror 23 may preferably be disposed such that the first focus thereof lies in a plasma generation region 25 and the second focus thereof lies in an intermediate focus (IF) region 292 defined by the specification of an exposure apparatus. The EUV collector mirror 23 may have a through-hole 24 formed at the center thereof, and the pulsed laser beam 31 may travel through the through-hole 24.
  • The EUV light generation system may include an EUV light generation control unit 5. Further, the EUV light generation apparatus 1 may include a target sensor 4. The target sensor 4 may be equipped with an imaging function and may detect at least one of the presence, the trajectory, and the position of a target.
  • Further, the EUV light generation apparatus 1 may include a connection part 29 for allowing the interior of the chamber 2 and the interior of the exposure apparatus 6 to be in communication with each other. A wall 291 having an aperture may be disposed inside the connection part 29. The wall 291 may be disposed such that the second focus of the EUV collector mirror 23 lies in the aperture formed in the wall 291.
  • Further, the EUV light generation system may include a laser beam direction control unit 34, a laser beam focusing mirror 22, and a target collection unit 28 positioned for collecting a target 27. The laser beam direction control unit 34 may include an optical element for defining the direction in which the laser beam travels and an actuator for adjusting the position and the orientation (or posture) of the optical element.
  • 5.1.2 Operation
  • With reference to FIG. 41, the pulsed laser beam 31 outputted from the laser apparatus 903 may pass through the laser beam direction control unit 34, and may be outputted from the laser beam direction control unit 34 after having its direction optionally adjusted. The pulsed laser beam 31 may travel through the window 21 and enter the chamber 2. The pulsed laser beam 31 may travel inside the chamber 2 along at least one beam path from the laser apparatus 903, be reflected by the laser beam focusing mirror 22, and strike at least one target 27.
  • The droplet generator 26 may output the targets 27 toward the plasma generation region 25 inside the chamber 2. The target 27 may be irradiated by at least one pulse of the pulsed laser beam 31. The target 27, which has been irradiated by the pulsed laser beam 31, may be turned into plasma, and rays of light including EUV light 251 may be emitted from the plasma. The EUV light 251 may be reflected selectively by the EUV collector mirror 23. EUV light 252 reflected by the EUV collector mirror 23 may travel through the intermediate focus region 292 and be outputted to the exposure apparatus 6. The target 27 may be irradiated by multiple pulses included in the pulsed laser beam 31.
  • The EUV light generation control unit 5 may integrally control the EUV light generation system. The EUV light generation control unit 5 may process image data of the droplet 27 captured by the target sensor 4. Further, the EUV light generation control unit 5 may control at least one of the timing at which the target 27 is outputted and the direction into which the target 27 is outputted (e.g., the timing with which and/or direction in which the target is outputted from the droplet generator 26), for example. Furthermore, the EUV light generation control unit 5 may control at least one of the timing with which the laser apparatus 903 oscillates (e.g., by controlling laser apparatus 903), the direction in which the pulsed laser beam 31 travels (e.g., by controlling laser beam direction control unit 34), and the position at which the pulsed laser beam 31 is focused (e.g., by controlling laser apparatus 903, laser beam direction control unit 34, or the like), for example. The various controls mentioned above are merely examples, and other controls may be added as necessary.
  • 5.2 EUV Light Generation System to which CO2 Laser Apparatus with QCL as MO is Applied (Eighth Embodiment)
  • The case where the above-described laser apparatus 3 is applied to the EUV light generation system shown in FIG. 41, for example, will be described with reference to the drawings. Below, the case where the laser apparatus 3 shown in FIG. 1 is applied to the EUV light generation system shown in FIG. 41 will be discussed.
  • 5.2.1 Configuration
  • FIG. 42 schematically illustrates the configuration of an EUV light generation system according to an eighth embodiment. As shown in FIG. 42, an EUV light generation system 1000 may include an EUV light generation controller 100, the laser apparatus 3, the laser beam direction control unit 34, the chamber 2, and the droplet generator 26. The laser apparatus 3 may include the amplifier 330, high-reflection mirrors M31 and M32, a relay optical system 320B, and a main amplifier 330B.
  • Further, the laser apparatus 3 may include the monitor unit 340 disposed on the beam path of the pulsed laser beam S6 downstream from the main amplifier 330B. Further, the chamber 2 may be provided with a droplet controller 35.
  • 5.2.2 Operation
  • The general operation of the EUV light generation system 1000 shown in FIG. 42 will be described. The EUV light generation controller 100 may be connected to the laser controller 350, the droplet controller 35, and an exposure apparatus controller 200 and may transmit control signals to and from these controllers. The droplet controller 35 may send an output signal to the droplet generator 26 directing the timing at which the target 27 is to be outputted. When the target 27 is outputted from the droplet generator 26, the position of the target 27 may be detected by the target sensor 4. The detection data may then be sent to the droplet controller 35.
  • Upon receiving a trigger signal from the EUV light generation controller 100, the laser controller 350 may cause the semiconductor laser controller 311 to output a current pulse to the current controller 315. The current controller 315 may cause a current pulse of a predetermined waveform, based on the current pulse from the semiconductor laser controller 311, to flow in the semiconductor laser device 312. When the current pulse flows in the semiconductor laser device 312, the pulsed laser beam S3 may be outputted. The pulsed laser beam S3 outputted from the semiconductor laser device 312 may be amplified as it travels through the relay optical system 320, the amplifier 330, and the main amplifier 330B via the high-reflection mirrors M31 and M32 and the relay optical system 320B. The monitor unit 340 provided on the beam path of the pulsed laser beam S6 downstream from the main amplifier 330B may detect the passing timing, the pulse energy, the pulse shape, the wavelength, and so forth of the amplified pulsed laser beam S6. The laser controller 350 may send control signals to the semiconductor laser controller 311, the amplifier 330, and the main amplifier 330B, based on the detection results by the monitor unit 340.
  • 5.2.2.1 Flow of Controlling Timing at which Target is Irradiated by Pulsed Laser Beam
  • Subsequently, the operation for controlling the timing at which the target 27 supplied into the chamber 2 is irradiated by the pulsed laser beam S6 will be described in detail with reference to the drawings.
  • 5.2.2.1.1 Main Flow
  • FIG. 43 shows the operation for controlling the timing at which a target is irradiated by the pulsed laser beam. As shown in FIG. 43, the EUV light generation controller 100 may first execute a subroutine (chirping range adjusting processing) for setting the certain parameters so that at least a part of the wavelength chirping range of the semiconductor laser apparatus 310 overlaps at least a part of one of the gain bandwidths S51 through S57 of the CO2 gas gain medium (Step S201).
  • Then, the EUV light generation controller 100 may stand by until it receives an instruction signal requesting the generation of the EUV light from the exposure apparatus controller 200 (Step S202; NO). Upon receiving the instruction signal (Step S202; YES), the EUV light generation controller 100 may execute a subroutine (timing adjusting processing) for adjusting the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S6 is focused in the plasma generation region 25 (Step S203).
  • Thereafter, the EUV light generation controller 100 may determine whether or not it has received an instruction signal requesting the halt in the generation of the EUV light from the exposure apparatus controller 200 (Step S204). When the instruction signal has not been received (Step S204; NO), the EUV light generation controller 100 may return to Step S203. On the other hand, when the instruction signal has been received (Step S204; YES), the EUV light generation controller 100 may return to Step S201.
  • When the signal is inputted to the droplet generator 26 from the droplet controller 35 for causing the droplet generator 26 to output the target 27, the droplet generator 26 may output the target 27 toward the plasma generation region 25. Then, The pulsed laser beam 6 may be focused in the plasma generation region 25 in synchronization with the timing at which the target 27 arrives in the plasma generation region 25.
  • 5.2.2.1.2 Chirping Range Adjusting Processing
  • The Peltier device 313 serving as the temperature adjusting unit may be provided in the semiconductor laser apparatus 310 for controlling the temperature of the semiconductor laser device 312 of the semiconductor laser apparatus 310. Accordingly, in the chirping range adjusting processing in Step S201 of FIG. 43, as shown in FIG. 44, the EUV light generation controller 100 may set at least any one of the set temperature SMT of the Peltier device 313, the pulse width W (temporal length) of the current pulse to flow in the semiconductor laser device 312, and the current value I of the current pulse to flow in the semiconductor laser device 312. On that basis, at least a part of the chirping range of the oscillation wavelength of the semiconductor laser apparatus 310 overlaps at least a part of one of the gain bandwidths S51 through S57 of the amplifier 330 and the main amplifier 330B (Step S211). Thereafter, the EUV light generation controller 100 may return to the operation shown in FIG. 43.
  • 5.2.2.1.3 Timing Adjusting Processing
  • In the timing adjusting processing indicated in step S203 of FIG. 43, as shown in FIG. 45, the EUV light generation controller 100 may first acquire a droplet arrival time Ts, which is a duration from the transmission of a droplet output instruction for requesting the droplet generator 26 to output the target 27 until the target 27 arrives in the plasma generation region 25 (Step S221). Arrival of the target 27 in the plasma generation region 25 may be detected based, for example, on the timing at which the target sensor 4 captures the image of the target 27. For example, the droplet arrival time Ts may be obtained by measuring a period from the timing at which the droplet output instruction is outputted until the target 27 is detected by the target sensor 4. The position at which the target 27 is detected by the target sensor 4 may not coincide with the plasma generation region 25 in some cases. If that is the case, a distance DS1 between the droplet generator 26 and the position at which the target 27 is detected by the target sensor 4 and a distance DS2 between the droplet generator 26 and the plasma generation region 25 may be measured. Then, the speed of the target 27 may be calculated from the distance DS1 and the time elapsed from the timing at which the droplet output instruction is outputted until the target 27 is detected. Based on the calculated result, the droplet arrival time Ts for the distance DS2 may be calculated.
  • Subsequently, the EUV light generation controller 100 may acquire a laser beam arrival time Tf, which is a duration from the input of the oscillation trigger into the semiconductor laser apparatus 310 until the pulsed laser beam S6 arrives in the plasma generation region 25 (Step S222). In the acquisition of the laser beam arrival time Tf, a time Tf0 which is a duration (for example) may be detected from the input of the oscillation trigger into the semiconductor laser apparatus 310 until the pulsed laser beam S6 is detected by the monitor unit 340. Then, an arrival time Tx of the pulsed laser beam 6, which may be acquired in advance, required to travel from the monitor unit 340 to the plasma generation region 25 may be added to the time Tf 0. The sum of these times may serve as the laser beam arrival time Tf. Here, the arrival time Tx of the pulsed laser beam S6 from the monitor unit 340 to the plasma generation region 25 may be a value obtained by measurement, or a value obtained by calculation of the optical path length from the monitor unit 340 to the plasma generation region 25.
  • Then, the EUV light generation controller 100 may calculate a time lag TL by subtracting the laser beam arrival time Tf from the droplet arrival time Ts (Step S223). The time lag TL may be a difference between the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S6 arrives in the plasma generation region 25, in the case where the droplet output instruction and the oscillation trigger are outputted simultaneously, for example. The timing at which the oscillation trigger is outputted is delayed by the time lag TL with respect to the timing at which the droplet output instruction is outputted. This may allow the target 27 and the pulsed laser beam S6 to arrive in the plasma generation region 25 at substantially the same time. The time lag TL may also be used to determine the aforementioned delay times Tdr, Tdt, and so forth.
  • Thereafter, the EUV light generation controller 100 may send the droplet output instruction to the droplet generator 26 (Step S224). Further, the EUV light generation controller 100 may input the oscillation trigger to the semiconductor laser controller 311 at a timing delayed by the time lag TL from the output of the droplet output instruction (Step S225). With this, the timing at which the target 27 arrives in the plasma generation region 25 and the timing at which the pulsed laser beam S6 arrives in the plasma generation region 25 may be synchronized. The target 27 may thus be irradiated by the pulsed laser beam S6 in the plasma generation region 25.
  • 5.3 EUV Light Generation System to which CO2 Laser Apparatus with Multiple QCLs as MO is Applied (Ninth Embodiment)
  • To the EUV light generation system shown in FIG. 41, any of the laser apparatuses 3A, 3B, and 3C of the other embodiments may be applied as well, in place of the laser apparatus 3.
  • 5.3.1 Configuration
  • FIG. 46 schematically illustrates the configuration of an EUV light generation system 1000A to which the laser apparatus 3C shown in FIG. 29 is applied. As illustrated in FIG. 46, the EUV light generation system 1000A may be similar in configuration to the EUV light generation system 1000 shown in FIG. 42, but may differ in that the semiconductor laser system 3C may be included in place of the semiconductor laser apparatus 310. Other configuration may be similar to that of the EUV light generation system 1000 shown in FIG. 42.
  • 5.3.2 Operation
  • Subsequently, the general operation of the EUV light generation system 1000A shown in FIG. 46 will be discussed. The EUV light generation controller 100 may be connected to the laser controller 350, the droplet controller 35, and the exposure apparatus controller 200 and may transmit control signals to and from these controllers.
  • The droplet controller 35 may send an output signal to the droplet generator 26 directing the timing at which the target 27 is to be outputted. When the target 27 is outputted from the droplet generator 26, the position of the target 27 may be detected by the target sensor 4. The detection data may be sent to the droplet controller 35.
  • Upon receiving the trigger signal from the EUV light generation controller 100, the laser controller 350 may send the oscillation triggers for causing the semiconductor laser controller 311A to supply current pulses to the respective semiconductor laser apparatuses 310-1 through 310-n. The pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n may have their beam paths adjusted so as to coincide with one another by the beam path adjusting unit 360. The pulsed laser beam S3, which includes the pulsed laser beam outputted from the respective semiconductor laser apparatuses 310-1 through 310-n, may be amplified as it passes through the regenerative amplifier 370, the preamplifier 330A, and the main amplifier 330B via the high-reflection mirrors M31 and M32 and the relay optical system 320B. The monitor unit 340 provided on the beam path of the pulsed laser beam S6 downstream from the main amplifier 330B may detect the passing timing, the pulse energy, the pulse shape, the wavelength, and so forth of the pulsed laser beam S6. The laser controller 350 may send control signals to the semiconductor laser controller 311A, the regenerative amplifier 370, the preamplifier 330A, and the main amplifier 330B, respectively, based on the detection result by the monitor unit 340.
  • In the EUV light generation system 1000A, the operation for controlling the timing at which the target 27 supplied into the chamber 2 is irradiated by the pulsed laser beam S6 may be similar to the operation described above with reference to FIGS. 43 through 45. Further, the laser apparatus 3C may be similar in operation to the laser apparatus 3B described with reference to FIGS. 16 through 28, except in that the laser apparatus 3C includes the regenerative amplifier 370. The operation of the regenerative amplifier 370 may be similar to the operation described with reference to FIGS. 11 and 12.
  • 6. Supplementary Descriptions 6.1 Beam Path Adjusting Unit for Multiple QCL Laser Beams
  • An example of the above-described beam path adjusting unit 360 will be described below.
  • 6.1.1 Beam Path Adjusting Unit for Multiple QCL Laser Beams at Different Oscillation Wavelengths
  • FIG. 47 shows a case where a reflective type grating 361 is used as the beam path adjusting unit 360. For example, when laser beams at respectively different wavelengths are incident on the grating 361 at the same angle, an m-th diffracted rays (here, m is a positive integer, for example, one) of these laser beams may be diffracted at different angles. Here, the relationship among the angle α of incidence, the angle β of diffraction, and the wavelength λ may satisfy Expression (6) below. In Expression (6), m is the order of the diffracted ray.

  • mλ=a(sin α±sin β)  (6)
  • Accordingly, as shown in FIG. 47, the semiconductor laser apparatuses 310-1 through 310-n may be positioned with respect to the grating 361 such that m-th diffracted rays of the respective pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n at different wavelengths (λ1 through λn) are diffracted at the same angle β by the grating 361. Here, assuming the angles at which the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-n are incident on the grating 361 are angles α1 through αn, the arrangement of the semiconductor laser apparatuses 310-1 through 310-n with respect to the grating 361 may satisfy Expression (7) below.
  • m λ 1 = a ( sin α 1 ± sin β ) m λ 2 = a ( sin α 2 ± sin β ) m λ n = a ( sin α n ± sin β ) ( 7 )
  • In this way, using the grating 361 may make it possible to achieve the beam path adjusting unit 360 of a compact and simple configuration. In this example, the reflective type grating 361 is used. However, this embodiment is not limited thereto, and a transmissive type grating may be used as well.
  • 6.1.2 Beam Path Adjusting Unit for Multiple QCL Laser Beams at the Same Oscillation Wavelength
  • The beam path adjusting unit 360 embodied by the grating 361 may be used to make the beam paths of pulsed laser beams at the same wavelength coincide with one another. In this case, the beam paths of diffracted rays of different orders may be made to coincide with one another. For example, as shown in FIG. 48, when the beam paths of the pulsed laser beams outputted from three semiconductor laser apparatuses 310-1 through 310-3 at the same wavelength are made to coincide with one another, the semiconductor laser apparatuses 310-1 through 310-n may be positioned with respect to the grating 361 such that the −1st order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310-1, the 0th order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310-2, and the +1st order diffracted ray of the pulsed laser beam outputted from the semiconductor laser apparatus 310-3 are diffracted by the grating 361 at the same angle β. In this case, assuming the angles at which the pulsed laser beams outputted from the respective semiconductor laser apparatuses 310-1 through 310-3 are incident on the grating 361 are angles α−1, α0, and α+1, respectively, the arrangement of the semiconductor laser apparatuses 310-1 through 310-3 with respect to the grating 361 may satisfy Expression (8) below.

  • −1 =a(sin α−1±sin β)

  • 0 =a(sin α0±sin β)

  • +1 =a(sin α+1±sin β)  (8)
  • In this way, even when the beam paths of the pulsed laser beams at the same wavelength are made to coincide with one another, the grating 361 may achieve the beam path adjusting unit 360 having a compact and simple configuration. In this example as well, a transmissive type grating may be used.
  • 6.2 Case where Semiconductor Laser that Oscillates at Multi-Longitudinal Mode is Applied
  • A multi-longitudinal mode semiconductor laser apparatus may also be used as the semiconductor laser apparatus 310. For example, when the external-resonator type semiconductor laser apparatus 310B shown in FIG. 5 is embodied by the multi-longitudinal mode semiconductor laser apparatus, in place of the grating 3127 with the wavelength selection range S8 as shown in FIG. 31, a grating with a broader wavelength selection range S81 as shown in FIG. 49 may be used. FIG. 49 shows a case where the external-resonator type semiconductor laser apparatus 310B oscillates at ten longitudinal modes.
  • Even in this case, the external-resonator type semiconductor laser apparatus 310B may preferably be controlled to oscillate such that the initial wavelength of the pulsed laser beam outputted from the external-resonator type semiconductor laser apparatus 310B is shorter than the corresponding gain bandwidths S52 through S56. When a current flows in the semiconductor laser device 312B, the wavelength chirping may occur at each of the longitudinal modes L3 through L12, as shown in FIG. 50. As shown in FIG. 51, a pulsed laser beam containing the pulsed laser beams S62 through S66 amplified in the respective gain bandwidths S52 through S56 may be outputted while the wavelength chirping ranges R4 a through R4 j of the respective longitudinal modes L3 through L12 overlap the gain bandwidths S52 through S56. Here, the longitudinal modes L4, L6, L8, L10, and L12, which do not overlap any of the gain bandwidths S51 through S57 in their wavelength chirping ranges, may not be amplified.
  • The above-described embodiments and the modifications thereof are merely examples for implementing this disclosure, and this disclosure is not limited thereto. Making various modifications according to the specifications or the like is within the scope of this disclosure, and it is apparent from the above description that other various embodiments are possible within the scope of this disclosure. For example, the modifications illustrated for particular ones of the embodiments can be applied to other embodiments as well (including the other embodiments described herein).
  • The terms used in this specification and the appended claims should be interpreted as “non-limiting.” For example, the terms “include” and “be included” should be interpreted as “including the stated elements but not being limited to the stated elements.” The term “have” should be interpreted as “including the stated elements but not being limited to the stated elements.” Further, the modifier “one (a/an)” should be interpreted as “at least one” or “one or more.”

Claims (35)

What is claimed is:
1. A laser apparatus, comprising:
a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus;
at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and
a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth.
2. The laser apparatus according to claim 1, wherein the parameter is an optical path length in the at least one semiconductor laser apparatus.
3. The laser apparatus according to claim 2, wherein the controller controls a temperature of the at least one semiconductor laser apparatus.
4. The laser apparatus according to claim 2, wherein the controller controls the optical path length by controlling a current to be supplied to the at least one semiconductor laser apparatus.
5. The laser apparatus according to claim 1, wherein the at least one semiconductor laser apparatus is configured to oscillate at a multi-longitudinal mode.
6. The laser apparatus according to claim 1, wherein
the master oscillator includes a plurality of semiconductor laser apparatuses, and
each of the plurality of semiconductor laser apparatuses is configured to oscillated at a single-longitudinal mode.
7. The laser apparatus according to claim 6, wherein at least two of the plurality of the semiconductor laser apparatuses are configured to oscillate at the same wavelength.
8. The laser apparatus according to claim 1, further comprising a plurality of amplifiers for amplifying the pulsed laser beam.
9. The laser apparatus according to claim 1, further comprising a regenerative amplifier for amplifying the pulsed laser beam.
10. The laser apparatus according to claim 1, further comprising a current controller for supplying a current to the at least one semiconductor laser apparatus,
wherein the controller is configured to control a timing at which the current controller supplies a current to the at least one semiconductor laser apparatus, based on a duration from a preceding input of a current to the at least one semiconductor laser apparatus until an arrival of the pulsed laser beam at a predetermined position.
11. The laser apparatus according to claim 1, further comprising:
a current controller for supplying a current to the at least one semiconductor laser apparatus; and
a memory,
wherein the controller is configured to control a timing at which the current controller supplies a current to the at least one semiconductor laser apparatus, based on a data stored in the memory, the data being a duration from a input of a current to the at least one semiconductor laser apparatus until an arrival of the pulsed laser beam at a predetermined position.
12. The laser apparatus according to claim 10, wherein
the predetermined position is located downstream from the at least one amplifier,
a monitor unit is provided at the predetermined position, the monitor unit being configured to detect the pulsed laser beam, and
the arrival of the pulsed laser beam at the predetermined position is determined based on a detection result of the pulsed laser beam by the monitor unit.
13. The laser apparatus according to claim 11, wherein
the predetermined position is located downstream from the at least one amplifier,
a monitor unit is disposed at the predetermined position, the monitor unit being configured to detect the pulsed laser beam, and
the arrival of the pulsed laser beam at the predetermined position is determined based on a detection result of the pulsed laser beam by the monitor unit.
14. A laser apparatus, comprising:
a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus which includes a semiconductor laser device, an optical resonator including an output coupler and a grating between which the semiconductor laser device is provided;
at least one amplifier configured to amplify the pulsed laser beam outputted from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth; and
a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam outputted from the master oscillator such that a wavelength chirping range of the pulsed laser beam to be outputted from the master oscillator overlaps at least a part of the at least one gain bandwidth.
15. The laser apparatus according to claim 14, wherein the parameter is an optical path length in the at least one semiconductor laser apparatus.
16. The laser apparatus according to claim 15, wherein the controller controls the optical path length by controlling a temperature of the at least one semiconductor laser apparatus.
17. The laser apparatus according to claim 15, wherein the controller controls the optical path length by controlling at least either of a gas density in a space between the output coupler and the semiconductor laser device and a gas density in a space between the grating and the semiconductor laser device.
18. The laser apparatus according to claim 15, wherein the controller control the optical path length by controlling at least either of a distance between the output coupler and the semiconductor laser device and a distance between the grating and the semiconductor laser device.
19. The laser apparatus according to claim 15, wherein the controller controls the optical path length by controlling a current to be supplied to the at least one semiconductor laser apparatus.
20. The laser apparatus according to claim 14, wherein the controller is configured to control a posture of the grating so that the pulsed laser beam is incident on the grating at a predetermined angle.
21. The laser apparatus according to claim 14, wherein the at least one semiconductor laser apparatus is configured to oscillate at a multi-longitudinal mode.
22. The laser apparatus according to claim 14, wherein
the master oscillator includes a plurality of semiconductor laser apparatuses, and
each of the plurality of semiconductor laser apparatuses is configured to oscillated at a single-longitudinal mode.
23. The laser apparatus according to claim 22, wherein at least two of the plurality of the semiconductor laser apparatuses are configured to oscillate at the same wavelength.
24. The laser apparatus according to claim 14, further comprising a plurality of amplifiers for amplifying the pulsed laser beam.
25. The laser apparatus according to claim 14, further comprising a regenerative amplifier for amplifying the pulsed laser beam.
26. The laser apparatus according to claim 14, further comprising a current controller for supplying a current to the at least one semiconductor laser apparatus,
wherein the controller is configured to control a timing at which the current controller supplies a current to the at least one semiconductor laser apparatus, based on a duration from a preceding input of a current to the at least one semiconductor laser apparatus until an arrival of the pulsed laser beam at a predetermined position.
27. The laser apparatus according to claim 14, further comprising:
a current controller for supplying a current to the at least one semiconductor laser apparatus; and
a memory,
wherein the controller is configured to control a timing at which the current controller supplies a current to the at least one semiconductor laser apparatus, based on a data stored in the memory, the data being a duration from a input of a current to the at least one semiconductor laser apparatus until an arrival of the pulsed laser beam at a predetermined position.
28. The laser apparatus according to claim 26, wherein
the predetermined position is located downstream from the at least one amplifier,
a monitor unit is disposed at the predetermined position, the monitor unit being configured to detect the pulsed laser beam, and
the arrival of the pulsed laser beam at the predetermined position is determined based on a detection result of the pulsed laser beam by the monitor unit.
29. The laser apparatus according to claim 27, wherein
the predetermined position is located downstream from the at least one amplifier,
a monitor unit is provided at the predetermined position, the monitor unit being configured to detect the pulsed laser beam, and
the arrival of the pulsed laser beam at the predetermined position is determined based on a detection result of the pulsed laser beam by the monitor unit.
30. An extreme ultraviolet light generation system, comprising:
a laser apparatus including
a master oscillator configured to output a pulsed laser beam at a repetition rate, the master oscillator including at least one semiconductor laser apparatus,
at least one amplifier configured to amplify the pulsed laser beam from the master oscillator, the at least one amplifier being configured to include at least one gain bandwidth, and
a controller for controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth;
a chamber;
a target supply unit configured to supply a target material toward a predetermined region inside the chamber; and
a collector mirror for selectively reflecting at least extreme ultraviolet light emitted in the predetermined region inside the chamber.
31. A method for controlling a laser apparatus comprising a master oscillator including a semiconductor laser apparatus, and an amplifier, the method comprising:
outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam to be outputted from the master oscillator overlaps at least a part of at least one gain bandwidth; and
amplifying the pulsed laser beam outputted from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth.
32. The method according to claim 31, further comprising adjusting a wavelength and a timing at which the pulsed laser beam is outputted from the master oscillator so that the wavelength of the pulsed laser beam from the master oscillator overlaps at least a part of the at least one gain bandwidth.
33. The method according to claim 31, further comprising controlling a timing at which the pulsed laser beam is outputted from the master oscillator based on a delay time of the amplifier.
34. The method according to claim 31, wherein
the laser apparatus further includes a regenerative amplifier for amplifying the pulsed laser beam, and
a timing at which the pulsed laser beam is outputted from the master oscillator is controlled based on a delay time of the regenerative amplifier.
35. A method for generating an extreme ultraviolet light in au extreme ultraviolet light generation system including a laser apparatus, a chamber, a target supply unit, and a collector mirror, the method comprising:
outputting a pulsed laser beam from the master oscillator while controlling a parameter affecting an output wavelength of the pulsed laser beam from the master oscillator such that a wavelength chirping range of the pulsed laser beam from the master oscillator overlaps at least a part of at least one gain bandwidth;
amplifying the pulsed laser beam from the master oscillator in the amplifier, the amplifier being configured to have at least one gain bandwidth;
irradiating a target material by the amplified pulsed laser beam in a predetermined region inside the chamber; and
outputting the extreme ultraviolet light emitted in the predetermined region inside the chamber by selectively reflecting the extreme ultraviolet light.
US13/817,817 2011-02-09 2012-01-25 Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light Active US9570884B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011026228 2011-02-09
JP2011-026228 2011-02-09
JP2011-271346 2011-12-12
JP2011271346A JP6054028B2 (en) 2011-02-09 2011-12-12 Laser apparatus and extreme ultraviolet light generation system
PCT/IB2012/000113 WO2012107815A2 (en) 2011-02-09 2012-01-25 Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light

Publications (2)

Publication Number Publication Date
US20130148674A1 true US20130148674A1 (en) 2013-06-13
US9570884B2 US9570884B2 (en) 2017-02-14

Family

ID=45955024

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/817,817 Active US9570884B2 (en) 2011-02-09 2012-01-25 Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light

Country Status (4)

Country Link
US (1) US9570884B2 (en)
EP (1) EP2673856A2 (en)
JP (1) JP6054028B2 (en)
WO (1) WO2012107815A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099140A1 (en) * 2011-03-30 2013-04-25 Gigaphoton Inc. Laser apparatus, extreme ultraviolet light generation system, and method for generating laser beam
US20150049341A1 (en) * 2013-08-19 2015-02-19 Canon Kabushiki Kaisha Method for driving light source apparatus and surface emitting laser, and image acquiring apparatus
US20150311976A1 (en) * 2013-06-04 2015-10-29 Fujitsu Optical Components Limited Light source module and optical transceiver
WO2016007312A3 (en) * 2014-07-07 2016-03-10 Asml Netherlands B.V. Extreme ultraviolet light source
US20170036301A1 (en) * 2015-03-06 2017-02-09 Intel Corporation Acousto-optics deflector and mirror for laser beam steering
US20170136575A1 (en) * 2014-07-03 2017-05-18 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus
US20170181259A1 (en) * 2014-10-27 2017-06-22 Gigaphoton Inc. Laser apparatus and extreme ultraviolet light generating apparatus
US20170373461A1 (en) * 2015-04-23 2017-12-28 Gigaphoton Inc. Laser apparatus and measurement unit
US20180074412A1 (en) * 2016-09-12 2018-03-15 Cymer, Llc Estimating a gain relationship of an optical source
US9991665B2 (en) 2014-06-09 2018-06-05 Gigaphoton Inc. Laser system
US20180351318A1 (en) * 2016-03-18 2018-12-06 Gigaphoton Inc. Laser device and laser device control method
CN112740491A (en) * 2018-09-21 2021-04-30 浜松光子学株式会社 Laser device and laser waveform control method
US11031750B2 (en) 2018-03-28 2021-06-08 Nichia Corporation Light source device
US11387623B2 (en) 2019-06-10 2022-07-12 Nichia Corporation Light source device and external cavity laser module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080796B2 (en) * 2014-03-31 2017-02-15 クリナップ株式会社 Kitchen sink
US10524345B2 (en) * 2017-04-28 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Residual gain monitoring and reduction for EUV drive laser
JP6946748B2 (en) * 2017-05-29 2021-10-06 株式会社島津製作所 Laser device
WO2023199513A1 (en) * 2022-04-15 2023-10-19 ギガフォトン株式会社 Laser apparatus, method for controlling wavelength of laser apparatus, and method for manufacturing electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526071B1 (en) * 1998-10-16 2003-02-25 New Focus, Inc. Tunable laser transmitter with internal wavelength grid generators
US6661815B1 (en) * 2002-12-31 2003-12-09 Intel Corporation Servo technique for concurrent wavelength locking and stimulated brillouin scattering suppression
US20040258107A1 (en) * 2003-05-23 2004-12-23 Sherrer David W. External cavity semi-conductor laser and method for fabrication thereof
US20080175279A1 (en) * 2005-09-29 2008-07-24 Motoki Kakui Light source apparatus
US20090087186A1 (en) * 2007-09-28 2009-04-02 Holman Kevin W Time-multiplexed optical waveform generation
US20100220756A1 (en) * 2009-02-27 2010-09-02 Nowak Krzysztof Laser apparatus and extreme ultraviolet light source apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
JP2689012B2 (en) * 1990-07-19 1997-12-10 株式会社小松製作所 Narrowband oscillation laser device
US6421363B1 (en) 1998-03-17 2002-07-16 Marek A. Osinski Semiconductor lasers and amplifiers with grating-induced anisotropic waveguide
US6900916B2 (en) 1999-03-04 2005-05-31 Fuji Photo Film Co., Ltd. Color laser display apparatus having fluorescent screen scanned with modulated ultraviolet laser light
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
US7518787B2 (en) 2006-06-14 2009-04-14 Cymer, Inc. Drive laser for EUV light source
JP2003115631A (en) 2001-10-04 2003-04-18 Hamamatsu Photonics Kk Semiconductor laser apparatus
US7671349B2 (en) 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
GB0208100D0 (en) * 2002-04-09 2002-05-22 Univ Strathclyde Semiconductor diode laser spectrometer arrangement
US6836499B2 (en) 2002-05-24 2004-12-28 Lucent Technologies Inc. Optical amplifier for quantum cascade laser
JP4693364B2 (en) 2004-05-12 2011-06-01 キヤノン株式会社 Optical wavelength conversion device, control method therefor, and image projection device using the same
JP2006091285A (en) 2004-09-22 2006-04-06 Sumitomo Electric Ind Ltd Light emitting apparatus
JP5100990B2 (en) 2004-10-07 2012-12-19 ギガフォトン株式会社 Driver laser for extreme ultraviolet light source device and LPP type extreme ultraviolet light source device
US7233442B1 (en) 2005-01-26 2007-06-19 Aculight Corporation Method and apparatus for spectral-beam combining of high-power fiber lasers
JP2006267457A (en) 2005-03-23 2006-10-05 Hoya Corp Illumination optical system
US7529281B2 (en) * 2006-07-11 2009-05-05 Mobius Photonics, Inc. Light source with precisely controlled wavelength-converted average power
US7780794B2 (en) 2006-07-21 2010-08-24 Ivera Medical Corporation Medical implement cleaning device
JP5086664B2 (en) 2007-03-02 2012-11-28 ギガフォトン株式会社 Extreme ultraviolet light source device
JP5263727B2 (en) 2007-11-22 2013-08-14 コーア株式会社 Resistor
JP5536401B2 (en) 2008-10-16 2014-07-02 ギガフォトン株式会社 Laser device and extreme ultraviolet light source device
JP5701618B2 (en) * 2010-03-04 2015-04-15 ギガフォトン株式会社 Extreme ultraviolet light generator
JP5765730B2 (en) * 2010-03-11 2015-08-19 ギガフォトン株式会社 Extreme ultraviolet light generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526071B1 (en) * 1998-10-16 2003-02-25 New Focus, Inc. Tunable laser transmitter with internal wavelength grid generators
US6661815B1 (en) * 2002-12-31 2003-12-09 Intel Corporation Servo technique for concurrent wavelength locking and stimulated brillouin scattering suppression
US20040258107A1 (en) * 2003-05-23 2004-12-23 Sherrer David W. External cavity semi-conductor laser and method for fabrication thereof
US20080175279A1 (en) * 2005-09-29 2008-07-24 Motoki Kakui Light source apparatus
US20090087186A1 (en) * 2007-09-28 2009-04-02 Holman Kevin W Time-multiplexed optical waveform generation
US20100220756A1 (en) * 2009-02-27 2010-09-02 Nowak Krzysztof Laser apparatus and extreme ultraviolet light source apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099140A1 (en) * 2011-03-30 2013-04-25 Gigaphoton Inc. Laser apparatus, extreme ultraviolet light generation system, and method for generating laser beam
US8885680B2 (en) * 2011-03-30 2014-11-11 Gigaphoton Inc. Laser apparatus, extreme ultraviolet light generation system, and method for generating laser beam
US9515728B2 (en) * 2013-06-04 2016-12-06 Fujitsu Optical Components Limited Light source module and optical transceiver
US20150311976A1 (en) * 2013-06-04 2015-10-29 Fujitsu Optical Components Limited Light source module and optical transceiver
US20150049341A1 (en) * 2013-08-19 2015-02-19 Canon Kabushiki Kaisha Method for driving light source apparatus and surface emitting laser, and image acquiring apparatus
US9991665B2 (en) 2014-06-09 2018-06-05 Gigaphoton Inc. Laser system
US20170136575A1 (en) * 2014-07-03 2017-05-18 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus
US11498156B2 (en) * 2014-07-03 2022-11-15 Nippon Steel Corporation Laser processing apparatus
WO2016007312A3 (en) * 2014-07-07 2016-03-10 Asml Netherlands B.V. Extreme ultraviolet light source
US9357625B2 (en) 2014-07-07 2016-05-31 Asml Netherlands B.V. Extreme ultraviolet light source
US10064261B2 (en) 2014-07-07 2018-08-28 Asml Netherlands B.V. Extreme ultraviolet light source
CN106537511A (en) * 2014-07-07 2017-03-22 Asml荷兰有限公司 Extreme ultraviolet light source
US9826616B2 (en) 2014-07-07 2017-11-21 Asml Netherlands B.V. Extreme ultraviolet light source utilizing a target of finite extent
US20170181259A1 (en) * 2014-10-27 2017-06-22 Gigaphoton Inc. Laser apparatus and extreme ultraviolet light generating apparatus
US10165665B2 (en) * 2014-10-27 2018-12-25 Gigaphoton Inc. Laser apparatus and extreme ultraviolet light generating apparatus
US20170036301A1 (en) * 2015-03-06 2017-02-09 Intel Corporation Acousto-optics deflector and mirror for laser beam steering
US10286488B2 (en) * 2015-03-06 2019-05-14 Intel Corporation Acousto-optics deflector and mirror for laser beam steering
US10483713B2 (en) * 2015-04-23 2019-11-19 Gigaphoton Inc. Laser apparatus and measurement unit
US20170373461A1 (en) * 2015-04-23 2017-12-28 Gigaphoton Inc. Laser apparatus and measurement unit
US20180351318A1 (en) * 2016-03-18 2018-12-06 Gigaphoton Inc. Laser device and laser device control method
US10971887B2 (en) * 2016-03-18 2021-04-06 Gigaphoton Inc. Laser device and laser device control method
US10036963B2 (en) * 2016-09-12 2018-07-31 Cymer, Llc Estimating a gain relationship of an optical source
US20180074412A1 (en) * 2016-09-12 2018-03-15 Cymer, Llc Estimating a gain relationship of an optical source
US11031750B2 (en) 2018-03-28 2021-06-08 Nichia Corporation Light source device
US11664641B2 (en) 2018-03-28 2023-05-30 Nichia Corporation Light source device
CN112740491A (en) * 2018-09-21 2021-04-30 浜松光子学株式会社 Laser device and laser waveform control method
US20210273407A1 (en) * 2018-09-21 2021-09-02 Hamamatsu Photonics K.K. Laser device, and laser waveform control method
US11387623B2 (en) 2019-06-10 2022-07-12 Nichia Corporation Light source device and external cavity laser module

Also Published As

Publication number Publication date
JP6054028B2 (en) 2016-12-27
WO2012107815A3 (en) 2012-12-13
JP2012182434A (en) 2012-09-20
WO2012107815A2 (en) 2012-08-16
US9570884B2 (en) 2017-02-14
EP2673856A2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US9570884B2 (en) Laser apparatus, extreme ultraviolet light generation system, method for controlling the laser apparatus, and method for generating the extreme ultraviolet light
US9318864B2 (en) Laser beam output control with optical shutter
US8885680B2 (en) Laser apparatus, extreme ultraviolet light generation system, and method for generating laser beam
US20130094529A1 (en) Laser apparatus, method for generating laser beam, and extreme ultraviolet light generation system
US8311066B2 (en) Laser apparatus and extreme ultraviolet light source apparatus
US8569722B2 (en) Extreme ultraviolet light generation apparatus
US9980360B2 (en) Extreme ultraviolet light generation system
US8692220B2 (en) Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
US8811436B2 (en) Laser apparatus, extreme ultraviolet light generation system including the laser apparatus, and method for controlling the laser apparatus
US20120012762A1 (en) Laser device, laser system, and extreme ultraviolet light generation apparatus
US20120305811A1 (en) Extreme ultraviolet light generation system
US10151640B2 (en) Light beam measurement device, laser apparatus, and light beam separator
US20160087389A1 (en) Laser system, extreme ultraviolet light generation system, and method of controlling laser apparatus
JP2013179247A (en) Master oscillator system and laser equipment
US20140300950A1 (en) Laser apparatus
WO2016067343A1 (en) Laser device and extreme ultraviolet light generation device
US20190239330A1 (en) Laser device and extreme ultraviolet light generation device
WO2019123516A1 (en) Laser device, euv light generation system, and method for manufacturing electronic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA

Free format text: SECURITY AGREEMENT;ASSIGNOR:TRIMEL BIOPHARMA SRL;REEL/FRAME:028613/0855

Effective date: 20120718

AS Assignment

Owner name: GIGAPHOTON INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOWAK, KRZYSZTOF;WAKABAYASHI, OSAMU;SIGNING DATES FROM 20130129 TO 20130131;REEL/FRAME:029834/0742

AS Assignment

Owner name: TRIMEL BIOPHARMA SRL, BARBADOS

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:033417/0304

Effective date: 20140718

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4