US20170002204A1 - Process to prepare surface-modified mineral material, resulting products and uses thereof - Google Patents

Process to prepare surface-modified mineral material, resulting products and uses thereof Download PDF

Info

Publication number
US20170002204A1
US20170002204A1 US15/259,733 US201615259733A US2017002204A1 US 20170002204 A1 US20170002204 A1 US 20170002204A1 US 201615259733 A US201615259733 A US 201615259733A US 2017002204 A1 US2017002204 A1 US 2017002204A1
Authority
US
United States
Prior art keywords
mineral material
product according
suspension
hedp
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/259,733
Inventor
Guenter Wimmer
Joachim Schoelkopf
Hans-Joachim Weitzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omya International AG
Original Assignee
Omya International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omya International AG filed Critical Omya International AG
Priority to US15/259,733 priority Critical patent/US20170002204A1/en
Publication of US20170002204A1 publication Critical patent/US20170002204A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • C09C1/022Treatment with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/80Handling the filter cake in the filter for purposes other than for regenerating for drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/88Isotope composition differing from the natural occurrence

Definitions

  • the present invention relates to the field of technologies implemented in order to modify the surface of mineral materials, notably in order to facilitate their dewatering and application following dewatering.
  • a first object of the present invention resides in a process to modify at least part of the surface of at least one mineral material, comprising the following steps:
  • Step b) adding at least one agent to said mineral material(s) of Step a);
  • Step c) obtaining a suspension of said mineral material(s) having a pH which is less than 10 and which is greater than 7 if the isolelectric point of said mineral material of Step a) is greater than 7 and is greater than the isolelectric point of said mineral material of Step a) if said isolelectric point is 7 or lower;
  • said agent is:
  • aqueous solution in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
  • phosphonic acid-comprising compound formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
  • step b) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m 2 of mineral materials specific surface area.
  • a second object of the present invention is a product obtained by the inventive process.
  • a third object of the present invention is a process wherein the product obtained by the inventive process, in the form of a suspension, is dewatered to form a low volume filter or centrifuge cake.
  • a fourth object of the present invention refers to the use, as an additive in an aqueous suspension of mineral materials having a pH between 5 and 10, of at least one agent:
  • the isoelectric point of a mineral material is the pH at which the mineral material surface carries no charge and is evaluated by the measurement method provided in the examples section herebelow.
  • phosphonic acids comprise at least one —PO(OH) 2 group, where this group(s) is linked to the remaining molecule via a covalent P—C bond.
  • Phosphonic acid may be non-polymeric, or pendant phosphonic acid groups may appear along polymer chains, for example introduced therein via monomers comprising phosphonic acid groups.
  • the equilibrium pH of a mineral material is measured at 25° C. according to the measurement method provided in the examples section hereafter. All other pH values are likewise measured at 25° C. according to the measurement method provided in the examples section herebelow.
  • aqueous mineral material-comprising suspensions are often partially or fully dewatered by a filtration, centrifugation or evaporation process.
  • Filtration processes serve to separate fluid from solid components by interposing a medium through which only the fluid can pass.
  • the passage of the fluid through the medium may be assisted by the application of pressure on the suspension in the direction of the filtration medium, or by the creation of a vacuum downstream from the filter.
  • the solid material retained on the filter may still comprise a fraction of fluid. Reduction of the moisture content of a filtered mineral material and increasing the compactness of the cake may be desirable for many reasons, which include: improved recovery from the filter chamber, reduction in transportation and handling costs and reduction of the energy cost of subsequent thermal drying.
  • this material subsequent to recovery of mineral material in the form of a cake following a filtration step, this material must present certain characteristics. If it is to be reintroduced into an aqueous environment, the mineral material must be rapidly wettable. If any reaction at the mineral material's surface is to take place, this surface environment must be adapted to support these reactions.
  • the Applicant has identified that mineral material recovered on a filter following the filtration of an aqueous suspension of this mineral material retains water according to the following mechanisms.
  • inter-particle pore water water in a dense particle matrix will be retained in the pores physically formed by the spaces existing between the particles. Such water is termed “inter-particle pore water”.
  • the Applicant has realized that in order to perform an efficient filtration while obtaining a mineral material that is suitable for certain subsequent applications, it may be advantageous to favor the maximum removal of inter-particle pore water in a dense cake, while maintaining the hydration layer.
  • an aqueous suspension of mineral material which may be prepared by the process of the invention implementing a selected phosphonic acid-based additive, may be dewatered to form a volume-wise small filter or centrifuge cake having a high solids content while maintaining an effective surface hydration layer on the particles.
  • WO 85/03065 likewise refers to the separation of mineral particles from an aqueous phase using certain non-ionic surfactants based on relatively low molecular weight block copolymers of ethylene oxide and butylene oxide.
  • U.S. Pat. No. 6,123,855 also mentions non-ionic surfactants as calcium carbonate slurry dewatering aids, such surfactants being especially a polyalkylene glycol ether, an alcohol alkoxylate or an alkylphenolhydroxypolyoxyethylene.
  • US 2002/0096271 describes a process implementing an alkyleneamine additive to enhance water-removal from sodium carbonate-comprising lime mud.
  • dewatering agents as intended in the present invention are not to be confused with clarifying, flocculating or coagulating agents, which act according to a different mechanism leading to a different result.
  • clarifying, flocculating or coagulating chemicals coagulate or flocculate suspended solids into large agglomerated particles, which then settle by gravity or otherwise to form a cake.
  • Such cakes tend not to be dense since the packing of large flocs is generally poor, implying large inter-floc pore volume.
  • the addition of the particular agent of the present invention does not result in the clarification of the suspension, and spontaneous formation of a cake due to gravitational settling of formed flocs. Advantages of the present invention may be observed when following addition of the selected phosphonate system according to the inventive process, the suspension is filtered to form a low volume, high solids content filter cake wherein the particles maintain a surface hydration layer.
  • Phosphonic acids and their salts, are known metal chelants, which when dosed in the appropriate amount, also in the form of esters, may serve as scale inhibitors in aqueous systems by inhibiting the precipitation of calcium salts, according, for example, to U.S. Pat. No. 4,802,990, wherein 1-hydroxyethane 1,1-diphosphonic acid (HEDP) is used in combination with a second acid for this purpose in an aqueous environment, or to US 2005/0096233, wherein calcium carbonate and barium sulphate deposition in oil wells is inhibited by implementation of a polymer featuring pendant phosphonate groups.
  • HEDP 1-hydroxyethane 1,1-diphosphonic acid
  • U.S. Pat. No. 4,802,990 mentions their use to dissolve mineral salts.
  • Organophosphonates are additionally known as mineral flotation agents, according to, for example, WO 02/089991. Certain phosphonates or phosphonocarboxylic acids may influence the form of precipitated calcium carbonate when dosed partway through the precipitation process, according to EP 1 151 966. Such compounds may additionally be employed in fluidising systems, as described in FR 2 393 037, DE 44 04 219, FR 2 393 037 and FR 2 765 495.
  • FR 78 16616 refers to the mixture of pigments with 0.01 to 5% by weight of phosphonocarboxylic acid, or their salts, as dispersant in an aqueous environment to obtain a suspension having a solids content of from 30 to 80% by weight.
  • titanium dioxide is treated with aluminium oxide and then ground and mixed with a number of additives, among which is 2-phosphonobutane-1,2,4-tricarboxylic acid, to form a high solids content suspension that is stable over time.
  • a first object of the present invention resides in a process to modify at least part of the surface of at least one mineral material, comprising the following steps:
  • Step b) adding at least one agent to said mineral material(s) of Step a);
  • Step c) obtaining a suspension of said mineral material(s) having a pH which is less than 10 and which is greater than 7 if the isolelectric point of said mineral material of Step a) is greater than 7 and is greater than the isolelectric point of said mineral material of Step a) if said isolelectric point is 7 or lower;
  • said agent is:
  • a “chelate complex” shall be understood to represent a complex, in which a chelant is coordinated via at least two ligand groups to a metal ion or a metal containing cationic compound, so that there is a ring of atoms including the metal cation or the metal in the form of a cationic compound.
  • a phosphonic acid-comprising compound, or salt or ester thereof is a chelant if it is a bis- or multi-phosphonic acid group-comprising compound, or if in addition to a phosphonic acid group one or more further ligands (such as a carboxyl group) are present which form a metal-ligand association.
  • Step a) of the present invention refers to providing at least one mineral material in the form of an aqueous cake or suspension, said cake or suspension having a pH between 5 and 10
  • Said suspension may be formed by suspending said mineral material provided in the form of a powder.
  • a cake is understood to refer to a cake formed on a filter medium following filtration, following centrifugation, or following sedimentation and decantation of an aqueous suspension of at least one mineral material.
  • said suspension or cake has a pH of between 7 and 10. Even more preferably, this pH lies between 8 and 9.
  • Said mineral material is preferably calcium and/or magnesium-comprising mineral material.
  • Said mineral material is preferably a carbonate and/or gypsum and/or dolomite. Even more preferably, said mineral material is a carbonate.
  • said mineral material is preferably selected from the group consisting of dolomite, calcium carbonate, Group IIA and/or IIIA element-comprising phyllosilicates such as montmorillonite and talc, magnesite, magnesium-comprising chlorite, kaolin clay, and mixtures thereof.
  • Said mineral material is most preferably a calcium carbonate.
  • Calcium carbonate may be a ground natural calcium carbonate, a precipitated calcium carbonate, a surface-reacted calcium carbonate, or a mixture thereof.
  • Ground natural calcium carbonate in the meaning of the present invention is a calcium carbonate obtained from natural sources, such as limestone, marble or chalk, and processed through a wet and/or dry treatment such as grinding, screening and/or fractionising, for example by a cyclone or classifier.
  • Precipitated calcium carbonate in the meaning of the present invention is a synthesized material, generally obtained by precipitation following reaction of carbon dioxide and lime in an aqueous environment or by precipitation of a calcium and carbonate ion source in water.
  • PCC may be metastable vaterite, stable calcite or aragonite.
  • Said GNCC or PCC may be surface reacted to form a surface-reacted calcium carbonate, which are materials comprising GNCC and/or PCC and an insoluble, at least partially crystalline, non-carbonate calcium salt extending from the surface of at least part of the calcium carbonate.
  • Such surface-reacted products may, for example, be prepared according to WO 00/39222, WO 2004/083316, WO 2005/121257, WO 2009/074492, unpublished European patent application with filing number 09162727.3, and unpublished European patent application with filing number 09162738.0.
  • Said aqueous suspension or cake of Step a) preferably comprises less than 0.1% by weight, based on the weight of dry mineral material, of a polyacrylate-based dispersant.
  • Said mineral material preferably has a BET specific surface area, measured in accordance with the measurement method described in the examples section hereafter, of between 5 and 150 m 2 /g, preferably of between 5 and 60 m 2 /g, and more preferably of between 10 and 50 m 2 /g.
  • Said mineral material preferably has a weight median diameter (d 50 ), measured in accordance with the measurement method described in the examples section hereafter, of between 0.2 and 5 ⁇ m, and preferably of between 0.5 and 2 ⁇ m.
  • the solids content in the case of an aqueous suspension, may range from 1 to 85% by weight, but preferably lies between 10 and 80% by weight, based on the weight of the suspension.
  • the solids content is generally between 20 and 80% by weight, is preferably between 40 and 75% by weight, and even is more preferably between 50 and 70% by weight.
  • Step b) refers to adding at least one agent to said mineral material(s) of Step a), said agent being:
  • a stable aqueous colloid is a multiphase system in which at least one phase is finely distributed but not molecularly dissolved within the other phase in a way that the system is structurally stable, i.e. no sedimentation, agglomeration, aggregation, flotation.
  • aqueous colloids scatter light.
  • said agent is dosed in an amount corresponding to from 0.1 to 0.75 mg by dry weight of agent per m 2 of the total surface of the mineral material.
  • said agent is preferably dosed in an amount corresponding to from 0.1 to 5%, more preferably from 0.15 to 0.75%, and even more preferably from 0.15 to 0.5% by dry weight relative to the dry weight of mineral material.
  • said agent is provided in the form of an aqueous solution having a pH of between 0 and 5, and more preferably of between 0.5 and 4.5.
  • the metal cations of said agent can be part of a compound.
  • metal cations selected from aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof
  • metal cations that have been buffered with nitric, sulphuric, oxalic acid or other appropriate buffer systems.
  • titanium this is advantageously provided in the form of titanyl sulphate.
  • Said phosphonic acid-comprising compound is preferably an alkyl diphosphonic acid, a particularly preferred alkyl diphosphonic acid being 1-hydroxyethane 1,1-diphosphonic acid (HEDP).
  • HEDP 1-hydroxyethane 1,1-diphosphonic acid
  • diphosphonic acids that may employed in the present invention include methylene diphosphonic acid (MDP), hydroxymethylene diphosphonic acid (HMDP), hydroxycyclomethylene diphosphonic acid (HCMDP), and 1-hydroxy-3-aminopropane-1,1-diphosphonic acid (APD).
  • MDP methylene diphosphonic acid
  • HMDP hydroxymethylene diphosphonic acid
  • HCMDP hydroxycyclomethylene diphosphonic acid
  • API 1-hydroxy-3-aminopropane-1,1-diphosphonic acid
  • Said phosphonic acid-comprising compound may be a triphosphonic acid, such as aminotri(methylenephosphonic acid) (ATMP), or one or more compounds including a higher number of phosphonic acid groups, such as diethylenetriaminepenta(methylenephosphonic acid) (DTPMP).
  • ATMP aminotri(methylenephosphonic acid)
  • DTPMP diethylenetriaminepenta(methylenephosphonic acid)
  • said phosphonic acid-comprising compound may include further groups, such as carboxylic acid groups.
  • An example of such a phosphonic acid-comprising compound is phosphonosuccinic acid (PSA),
  • the metal of said metal cation or metal-comprising cationic compound is selected from the group consisting of: aluminium and zirconium.
  • said agent is formed by mixing aluminium and/or zirconium cations, preferably provided in the form of hydroxides, with HEDP (forming Al-HEDP and Zr-HEDP, respectively).
  • said agent is provided in the form of an aqueous solution or colloidal suspension having a dry weight of from 5 to 70%.
  • Al-HEDP and Zr-HEDP may, for example, be formed by adding the corresponding aluminium or zirconium hydroxide (optionally in the form of a powder) into an aqueous solution comprising HEPD.
  • this solution comprises 5 to 20% by dry weight, relative to the weight of the solution, of HEDP.
  • the aluminium or zirconium hydroxide is added in such an amount so as to form a final solution of agent having 1 to 25 equivalent weight parts of aluminium or zirconium on the total solution weight.
  • Al-HEDP is formed by dosing Al(OH) 3 :HEDP in a 1:5 to 1:8 weight ratio.
  • additives having a basic character such as an alkali-HEDP salt (such as Na-HEDP or K-HEDP) may be present in addition to said agent, provided that said agent is in an aqueous environment having a pH of less than 6 when introduced in the process.
  • alkali-HEDP salt such as Na-HEDP or K-HEDP
  • Step b) may implement the further addition of water in order to meet a preferred water:mineral material ratio of 95:5 to 10:90 in Step c). If water is added, it may be added in combination with said agent, and indeed may even represent an aqueous solvent of said agent.
  • Step b) is preferably performed under mixing.
  • said agent may be formed in situ in the mineral material suspension. It is however more preferred to form said agent prior to its addition to the mineral material suspension.
  • Step b) Because said agent implemented in Step b) is acidic, it may be necessary, in order to fall into the final suspension pH range of Step c), which is greater than 7 and in any case must be greater than the isoelectric point of said mineral material of Step a), and is less than 10, to add a base (hereafter “Base B”), before and/or during and/or after addition of said agent.
  • Base B a base
  • an “acid” and a “base” shall be understood to represent, respectively, acids and bases in accordance with the Bronsted acid-base theory; that is to say, an acid is a proton donor and a base is a proton acceptor, leading, respectively, to a pH decrease and increase when dissolved in water.
  • Base B may be added simultaneously with said agent, though this route is less preferred.
  • Base B is added before said agent, said agent is preferably added once the pH following addition of Base B has stabilised.
  • Base B is preferably added once the pH of the suspension is stable.
  • Base B is added prior to all or part of said agent, and that the remaining Base B is added after the addition of all or part of said agent.
  • Base B is preferably selected from among sodium silicate, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium aluminate, basic polyphosphates, basic phosphonates and mixtures thereof, and is more preferably a basic polyphosphate or a basic phosphonate, said basic polyphosphate being preferably a pyrophosphate and especially a potassium salt of pyrophosphate, and said basic phosphonate being preferably an alkali compound of HEDP, such as a sodium and/or potassium and/or lithium compound of HEDP
  • Base B be added prior to said agent, it is preferred that Base B be added in an amount so as to reach a mineral material cake or suspension pH of greater than 10.
  • Base B is preferably added in an amount of greater than or equal to 0.1% by dry weight, and preferably from 0.2 to 0.5% by dry weight, relative to the dry weight of mineral material.
  • Base B presents a high buffering capacity, such that a relatively high amount of acidic agent can be added before reaching a pH of between 6.5 and 10.
  • Base B is a potassium pyrophosphate or a sodium and/or potassium and/or lithium compound of HEDP in the form of an aqueous solution.
  • the mineral material may be ground prior to, during or following addition of said agent and/or said Base B.
  • the suspension obtainable by the process of the invention preferably has a pH of between 7.5 and 9.0.
  • This suspension may, in one embodiment, subsequently be filtered on a filtration medium to form a filter cake of surface-modified mineral material.
  • the suspension may be filtered on a filter paper having a 3 ⁇ m pore size.
  • This suspension may alternatively be centrifuged to form a centrifuge cake of surface-modified mineral material.
  • This suspension may alternatively be concentrated by thermal or mechanical methods.
  • the obtained filter cake or centrifuge cake preferably has a solids content of between 40 and 80% by weight.
  • the obtained filter cake or centrifuge cake may additionally be dried to form a dry surface-modified mineral material.
  • a dry surface-modified mineral material features a water pick-up, measured according to the measurement method given in the examples section herebelow, of between 0.3 and 1.0%, and preferably of between 0.3 and 0.5%.
  • the obtained suspension or dry product may find applications in, among other applications, paper, including in the base paper and/or paper coating, plastics and especially thermoplastics, sealants such as silicone sealants, paints, concretes and cosmetics.
  • plastics and especially thermoplastics, sealants such as silicone sealants, paints, concretes and cosmetics.
  • sealants such as silicone sealants, paints, concretes and cosmetics.
  • the suspension or dry product further presents the general advantage of not being based on oil-based products.
  • the dry product moreover does not lead to the emission of volatile products on processing at temperatures typical of the plastics industry, i.e. from 150 to 300° C.
  • the obtained suspension or dry product may be furthermore used as an intermediate product that is further processed.
  • the obtained suspension or dry product may be ground with further materials such as a binder as described in WO 2006/008657.
  • Solids contents were determined using a Mettler LP16 PM100 mass balance equipped with an LP16 IR dryer.
  • the specific surface area was measured using Gemini V instrumentation from Micrometrics, via the BET method according to ISO 9277 using nitrogen, following conditioning of the sample by heating at 250° C. for a period of 30 minutes.
  • Weight median grain diameter and grain diameter mass distribution of a particulate material were determined via the sedimentation method, i.e. an analysis of sedimentation behaviour in a gravimetric field. The measurement is made with a SedigraphTM 5120.
  • the method and the instrument are known to the skilled person and are commonly used to determine grain size of fillers and pigments.
  • the measurement was carried out in an aqueous solution of 0.1 wt % Na 4 P 2 O 7 .
  • the samples were dispersed using a high speed stirrer and ultrasonic.
  • the isoelectric point of a mineral material is evaluated in deionised water at 25° C. using Malvern Zetasizer Nano ZS instrumentation.
  • the water pick-up of a particulate material is determined by first drying the material in an oven at 110° C. to constant weight, and thereafter exposing the dried material to an atmosphere of 80% relative humidity for 60 hours at a temperature of 20° C.
  • the water pick-up corresponds to the % increase in weight of the material following exposure to the humid environment, relative to the dried material weight.
  • Precipitated calcium carbonate was obtained by bubbling CO 2 gas through a 13 to 15° C. suspension of lime having a solids content of about 15% by dry weight and containing between 0.05 and 1% of a slaking additive.
  • the obtained PCC suspension had a solids content of about 17% by dry weight and the PCC material had a specific surface area of between 10 and 12 m 2 /g.
  • the surface-reacted calcium carbonate was prepared in a 10 m 3 reactor. Dry natural calcium carbonate having a d 50 of 1 ⁇ m was filled into this vessel along with water to form a suspension having a solids content of 10% by dry weight. 25% phosphoric acid (calculated dry/dry, said phosphoric acid being provided in the form of a 30% solution) was then added to the vessel over a time period of 60 minutes under stirring. Thereafter, 20 kg of a lime suspension (200 L of a 10% suspension) was introduced into the vessel.
  • KOH Potassium hydroxide
  • Potassium pyrophosphate (K 4 P 2 O 7 ), in the form of a 60% by dry weight aqueous solution, was obtained from Chemische Fabrik Budenheim.
  • HEDP 1-Hydroxyethane-1,1-diphosphonic acid
  • Aluminium hydroxide (Al(OH) 3 ), sold under the commercial name Martinal® OL-107 in the form of a powder, was obtained from Martinswerk.
  • Potassium HEDP (K 4 HEDP) was synthesized by adding 90 g of KOH to an aqueous solution of HEDP previously formed by adding 200 g of water to 108 g of the 60 weight % aqueous solution of HEDP under stirring.
  • the obtained clear solution had a pH of 12.0 and a concentration of K 4 HEDP of 33.5 g/100 g of water.
  • Lithium HEDP Li 4 HEDP was synthesized by adding 113 g of LiOH to 2 200 g of a 7% aqueous solution of HEDP under stirring. The obtained suspension had a pH of 11.6.
  • Al-HEDP chelate complexes in the form of an aqueous colloidal solution in which the weight ratio of Al(OH) 3 :HEDP was 1:5, 1:8 and 1:10, were prepared as follows: aluminium hydroxide powder was added to the 60% HEDP solution in the necessary amount with respect to the desired weight ratio under stirring until a homogeneous white suspension was obtained. This suspension was then heated under continued stirring (at approximately 500 rpm) until a colloidal suspension developed. The solution temperature was then allowed to settle to approximately 23° C. The final dry weight of each of the colloidal suspension was 62 to 65% and the final pH 1.8.
  • Sn-HEDP chelate complexes in the form of an aqueous colloidal solution in which the weight ratio of Sn(OH) 2 :HEDP was 1:4, were prepared as follows: Sn(OH) 2 was freshly synthesized by adding 75 mL of ammonia to an aqueous solution of 20 g of SnSO 4 in 100 g of water. The obtained suspension was filtered on a Buchner funnel filter to obtain a filter cake. This filter cake was then added to 100 g of an aqueous 60% HEDP solution under stirring until a homogeneous suspension was obtained. The suspension was subsequently heated to a temperature of between 90 and 95° C. under stirring at 500 rpm until a milky colloidal suspension developed. The suspension temperature was then allowed to cool to about 23° C. The final colloidal suspension had a solids content of 67% by dry weight and the final pH was 0.9.
  • Co-HEDP chelate complexes in the form of an aqueous solution in which the weight ratio of Co(OH) 2 :HEDP was 1:10, were prepared as follows: 9.3 g of Co(OH) 2 was added to 155 g of an aqueous 60% HEDP solution under stirring until a homogeneous suspension was obtained. The suspension was then heated to a temperature of between 90 and 95° C. under stirring at 500 rpm until a milky paste developed. The paste was then diluted with water to 27% by dry weight; the obtained solution had a violet colour and was allowed to cool to 23° C. The solution pH was of 0.85.
  • Ti-HEDP chelate complexes in the form of an aqueous colloidal solution in which the weight ratio of Ti(SO 4 ) 2 :HEDP was 1:5, were prepared as follows: 15 g of a 60% titanyl sulphate solution was added to 150 g of a 60% HEDP solution under stirring and heating to 95 to 98° C. until a clear colloidal suspension developed. The suspension was then allowed to cool to approximately 23° C. The final solids content of the suspension was 60% by dry weight and the final pH ⁇ 1.
  • the additive system listed in the Table below is added under stirring using an IKA RW 20 stirrer at 500 rpm, to an aqueous suspension of 150 g of undispersed ground natural calcium carbonate suspension having an isoelectric point of about 9 and a specific surface area of approximately 11 m 2 /g, and wherein 75% by dry weight of the particles have a diameter of less than 1 ⁇ m; the initial solids content of this suspension is 20% by dry weight.
  • each of the suspensions of Table 1 were filtered over a time period of 30 minutes using a 3 ⁇ m pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m 3 /h).
  • test 4 shows that relative to the untreated calcium carbonate, not only does the resulting filter cake present a significantly higher solids content, but further the obtained calcium carbonate material treated by the process of the invention (test 4) has a 50% greater degree of water pick-up, attesting to a greater natural hydration layer. Comparing tests 2 and 3 furthermore shows that only the process of the invention, implementing a chelate complex instead of a chelant alone, leads to the desired results.
  • each of the suspensions of Tables 2 and 3 were filtered over a time period of 30 minutes using a 3 ⁇ m pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m 3 /h).
  • a compact high solids content filter cake was obtained in which the mineral maintained a hydration layer.
  • each of the suspensions of Table 6 were filtered over a time period of 30 minutes using a 3 ⁇ m pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m 3 /h).
  • a compact high solids content filter cake was obtained in which the mineral maintained a hydration layer.

Abstract

The present invention refers to a process to modify at least part of the surface of at least one mineral material, and to the use, as an additive in an aqueous suspension of mineral materials having a pH between 5 and 10, of at least one agent, wherein the additive allows for the formation of a low volume, high solids content filter or centrifuge cake on dewatering the suspension.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of U.S. application Ser. No. 13/640,325, filed Dec. 3, 2012, which is a U.S. National phase of PCT Application No. PCT/EP2011/055405, filed Apr. 7, 2011, which claims priority to European Application No. 10160235.7, filed Apr. 16, 2010 and U.S. Provisional Application No. 61/343,128, filed Apr. 23, 2010, the contents of which are hereby incorporated by reference.
  • FIELD OF INVENTION
  • The present invention relates to the field of technologies implemented in order to modify the surface of mineral materials, notably in order to facilitate their dewatering and application following dewatering.
  • A first object of the present invention resides in a process to modify at least part of the surface of at least one mineral material, comprising the following steps:
  • Step a) providing at least one mineral material in the form of an aqueous cake or suspension, said cake or suspension having a pH between 5 and 10;
  • Step b) adding at least one agent to said mineral material(s) of Step a);
  • Step c) obtaining a suspension of said mineral material(s) having a pH which is less than 10 and which is greater than 7 if the isolelectric point of said mineral material of Step a) is greater than 7 and is greater than the isolelectric point of said mineral material of Step a) if said isolelectric point is 7 or lower;
  • characterised in that:
  • said agent is:
  • in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
  • formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
  • provided in step b) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of mineral materials specific surface area.
  • A second object of the present invention is a product obtained by the inventive process.
  • A third object of the present invention is a process wherein the product obtained by the inventive process, in the form of a suspension, is dewatered to form a low volume filter or centrifuge cake.
  • A fourth object of the present invention refers to the use, as an additive in an aqueous suspension of mineral materials having a pH between 5 and 10, of at least one agent:
      • in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
      • formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
      • in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of the total surface of the mineral material.
      • characterised in that this additive leads to the formation of a low volume, high solids content filter or centrifuge or sedimentation cake on dewatering the suspension.
  • For the purpose of the present invention, the isoelectric point of a mineral material is the pH at which the mineral material surface carries no charge and is evaluated by the measurement method provided in the examples section herebelow.
  • For the purpose of the present application, phosphonic acids comprise at least one —PO(OH)2 group, where this group(s) is linked to the remaining molecule via a covalent P—C bond. Phosphonic acid may be non-polymeric, or pendant phosphonic acid groups may appear along polymer chains, for example introduced therein via monomers comprising phosphonic acid groups.
  • For the purpose of the present application, the equilibrium pH of a mineral material is measured at 25° C. according to the measurement method provided in the examples section hereafter. All other pH values are likewise measured at 25° C. according to the measurement method provided in the examples section herebelow.
  • To adjust the solids content of an aqueous mineral material-comprising suspension or, more commonly, to limit volume- or weight-related transportation costs, aqueous mineral material-comprising suspensions are often partially or fully dewatered by a filtration, centrifugation or evaporation process.
  • Filtration processes serve to separate fluid from solid components by interposing a medium through which only the fluid can pass. The passage of the fluid through the medium may be assisted by the application of pressure on the suspension in the direction of the filtration medium, or by the creation of a vacuum downstream from the filter.
  • Even when filtration is performed to an extent that no further fluid passes through the filtration medium, the solid material retained on the filter may still comprise a fraction of fluid. Reduction of the moisture content of a filtered mineral material and increasing the compactness of the cake may be desirable for many reasons, which include: improved recovery from the filter chamber, reduction in transportation and handling costs and reduction of the energy cost of subsequent thermal drying.
  • On the other hand, subsequent to recovery of mineral material in the form of a cake following a filtration step, this material must present certain characteristics. If it is to be reintroduced into an aqueous environment, the mineral material must be rapidly wettable. If any reaction at the mineral material's surface is to take place, this surface environment must be adapted to support these reactions.
  • The Applicant has identified that mineral material recovered on a filter following the filtration of an aqueous suspension of this mineral material retains water according to the following mechanisms.
  • Firstly, if the mineral material particles feature any pores, water may be retained in the pore volume of this material. Such water is termed “intra-particle pore water”.
  • Secondly, it is well know that mineral materials, such as calcium carbonate, develop or maintain a surface hydration layer in the presence of sufficient moisture. The water in this hydration layer may be retained at the surface by localized attractive forces, as the water molecules orient themselves to compensate the punctual positive or negative charges along the mineral material's surface, thereby lowering the effective surface energy of the mineral material. Reference is made in this respect to the doctoral thesis entitled “Observation and Modelling of Fluid Transport into Porous Paper Coating Structures” by Dr. Joachim Scholkopf (University of Plymouth, 2002). Such water is referred to as “hydration layer water”.
  • Thirdly, due to capillary and other forces, water in a dense particle matrix will be retained in the pores physically formed by the spaces existing between the particles. Such water is termed “inter-particle pore water”.
  • The Applicant has realized that in order to perform an efficient filtration while obtaining a mineral material that is suitable for certain subsequent applications, it may be advantageous to favor the maximum removal of inter-particle pore water in a dense cake, while maintaining the hydration layer.
  • Indeed, according to recent scientific publications, such as “Change in Surface Properties of Heavy Calcium Carbonate with Surface Hydration” by FUJI MASAYOSHI et al. (Inorganic Materials, volume 6; no. 282; pages 348-353 (1999)) and “Calcite (101 4) surface in humid environments” by J. Baltrusaitis et al. (Surface Science (5 Jul. 2009)), it has been shown that a surface hydration layer is often necessary to support the adsorption of additives at the surface of a mineral material such as calcium carbonate. Additionally, the water of the hydration layer may be needed to catalyze or enable certain surface reactions. Moreover, a mineral material particle already including a surface hydration layer is far more easily introduced into an aqueous environment than an entirely dry particle.
  • The Applicant has surprisingly found that an aqueous suspension of mineral material, which may be prepared by the process of the invention implementing a selected phosphonic acid-based additive, may be dewatered to form a volume-wise small filter or centrifuge cake having a high solids content while maintaining an effective surface hydration layer on the particles.
  • The prior art referring to the dewatering of aqueous suspensions of mineral materials includes U.S. Pat. No. 4,207,186, which refers to the dewatering of mineral concentrates using a synergistic mixture of a hydrophobic alcohol having 8 to 18 carbon atoms, and a non-ionic surfactant that is especially an alcohol ethoxylate, to significantly lower the residual water content of the obtained filter cake.
  • WO 85/03065 likewise refers to the separation of mineral particles from an aqueous phase using certain non-ionic surfactants based on relatively low molecular weight block copolymers of ethylene oxide and butylene oxide.
  • U.S. Pat. No. 6,123,855 also mentions non-ionic surfactants as calcium carbonate slurry dewatering aids, such surfactants being especially a polyalkylene glycol ether, an alcohol alkoxylate or an alkylphenolhydroxypolyoxyethylene.
  • US 2002/0096271 describes a process implementing an alkyleneamine additive to enhance water-removal from sodium carbonate-comprising lime mud.
  • It is of note that dewatering agents as intended in the present invention are not to be confused with clarifying, flocculating or coagulating agents, which act according to a different mechanism leading to a different result. Such clarifying, flocculating or coagulating chemicals coagulate or flocculate suspended solids into large agglomerated particles, which then settle by gravity or otherwise to form a cake. Such cakes tend not to be dense since the packing of large flocs is generally poor, implying large inter-floc pore volume.
  • The addition of the particular agent of the present invention does not result in the clarification of the suspension, and spontaneous formation of a cake due to gravitational settling of formed flocs. Advantages of the present invention may be observed when following addition of the selected phosphonate system according to the inventive process, the suspension is filtered to form a low volume, high solids content filter cake wherein the particles maintain a surface hydration layer.
  • Nonetheless, it is not to be understood that the invention requires the filtration step to take place. The Applicant considers that the material resulting from the process of the invention is itself of broader interest, the dewatering improvement being only one among many possible advantageous features of the resulting product.
  • Phosphonic acids, and their salts, are known metal chelants, which when dosed in the appropriate amount, also in the form of esters, may serve as scale inhibitors in aqueous systems by inhibiting the precipitation of calcium salts, according, for example, to U.S. Pat. No. 4,802,990, wherein 1-hydroxyethane 1,1-diphosphonic acid (HEDP) is used in combination with a second acid for this purpose in an aqueous environment, or to US 2005/0096233, wherein calcium carbonate and barium sulphate deposition in oil wells is inhibited by implementation of a polymer featuring pendant phosphonate groups. U.S. Pat. No. 4,802,990 mentions their use to dissolve mineral salts. Their application as corrosion inhibitors is also common. They may be found as components of fertilizers. Organophosphonates are additionally known as mineral flotation agents, according to, for example, WO 02/089991. Certain phosphonates or phosphonocarboxylic acids may influence the form of precipitated calcium carbonate when dosed partway through the precipitation process, according to EP 1 151 966. Such compounds may additionally be employed in fluidising systems, as described in FR 2 393 037, DE 44 04 219, FR 2 393 037 and FR 2 765 495.
  • Among the documents referring to this latter technical problem, FR 78 16616 refers to the mixture of pigments with 0.01 to 5% by weight of phosphonocarboxylic acid, or their salts, as dispersant in an aqueous environment to obtain a suspension having a solids content of from 30 to 80% by weight. In Example 1 of this patent application, titanium dioxide is treated with aluminium oxide and then ground and mixed with a number of additives, among which is 2-phosphonobutane-1,2,4-tricarboxylic acid, to form a high solids content suspension that is stable over time. The Applicant would first mention that current methodologies used to surface treat titanium dioxide with aluminium oxide generally require the implementation of a strong acid in combination with an aluminium salt, such as sodium aluminate; such a treatment is not an option for acid sensitive materials such as calcium carbonate. Moreover, aluminium oxide is not water soluble, even under acidic conditions, and therefore any aluminium oxide on the titanium dioxide surface of FR 78 16616 cannot be used as an adduct to form the water-soluble chelate complex according to the present invention.
  • As such, none of the above documents disclose or even suggest the specific and advantageous process and product of the present invention.
  • A first object of the present invention resides in a process to modify at least part of the surface of at least one mineral material, comprising the following steps:
  • Step a) providing at least one mineral material in the form of an aqueous cake or suspension, said cake or suspension having a pH between 5 and 10;
  • Step b) adding at least one agent to said mineral material(s) of Step a);
  • Step c) obtaining a suspension of said mineral material(s) having a pH which is less than 10 and which is greater than 7 if the isolelectric point of said mineral material of Step a) is greater than 7 and is greater than the isolelectric point of said mineral material of Step a) if said isolelectric point is 7 or lower;
  • characterised in that:
  • said agent is:
      • in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
      • formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
      • provided in step b) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of the total surface of the mineral material.
  • Without wishing to be bound to any theory, the Applicant believes that the agent employed in the present invention forms a deposit in an advantageous manner on the surface of the mineral material, passing via the intermediate formation of a chelate complex on contacting the mineral material environment having a pH of greater than 5. For the purpose of the present application, a “chelate complex” shall be understood to represent a complex, in which a chelant is coordinated via at least two ligand groups to a metal ion or a metal containing cationic compound, so that there is a ring of atoms including the metal cation or the metal in the form of a cationic compound. A phosphonic acid-comprising compound, or salt or ester thereof, is a chelant if it is a bis- or multi-phosphonic acid group-comprising compound, or if in addition to a phosphonic acid group one or more further ligands (such as a carboxyl group) are present which form a metal-ligand association.
  • Step a)
  • Step a) of the present invention refers to providing at least one mineral material in the form of an aqueous cake or suspension, said cake or suspension having a pH between 5 and 10
  • Said suspension may be formed by suspending said mineral material provided in the form of a powder.
  • A cake is understood to refer to a cake formed on a filter medium following filtration, following centrifugation, or following sedimentation and decantation of an aqueous suspension of at least one mineral material.
  • In a preferred embodiment, said suspension or cake has a pH of between 7 and 10. Even more preferably, this pH lies between 8 and 9.
  • Said mineral material is preferably calcium and/or magnesium-comprising mineral material.
  • Said mineral material is preferably a carbonate and/or gypsum and/or dolomite. Even more preferably, said mineral material is a carbonate.
  • In particular, said mineral material is preferably selected from the group consisting of dolomite, calcium carbonate, Group IIA and/or IIIA element-comprising phyllosilicates such as montmorillonite and talc, magnesite, magnesium-comprising chlorite, kaolin clay, and mixtures thereof.
  • Said mineral material is most preferably a calcium carbonate. Calcium carbonate may be a ground natural calcium carbonate, a precipitated calcium carbonate, a surface-reacted calcium carbonate, or a mixture thereof.
  • “Ground natural calcium carbonate” (GNCC) in the meaning of the present invention is a calcium carbonate obtained from natural sources, such as limestone, marble or chalk, and processed through a wet and/or dry treatment such as grinding, screening and/or fractionising, for example by a cyclone or classifier.
  • “Precipitated calcium carbonate” (PCC) in the meaning of the present invention is a synthesized material, generally obtained by precipitation following reaction of carbon dioxide and lime in an aqueous environment or by precipitation of a calcium and carbonate ion source in water. PCC may be metastable vaterite, stable calcite or aragonite.
  • Said GNCC or PCC may be surface reacted to form a surface-reacted calcium carbonate, which are materials comprising GNCC and/or PCC and an insoluble, at least partially crystalline, non-carbonate calcium salt extending from the surface of at least part of the calcium carbonate. Such surface-reacted products may, for example, be prepared according to WO 00/39222, WO 2004/083316, WO 2005/121257, WO 2009/074492, unpublished European patent application with filing number 09162727.3, and unpublished European patent application with filing number 09162738.0.
  • Said aqueous suspension or cake of Step a) preferably comprises less than 0.1% by weight, based on the weight of dry mineral material, of a polyacrylate-based dispersant.
  • Said mineral material preferably has a BET specific surface area, measured in accordance with the measurement method described in the examples section hereafter, of between 5 and 150 m2/g, preferably of between 5 and 60 m2/g, and more preferably of between 10 and 50 m2/g.
  • Said mineral material preferably has a weight median diameter (d50), measured in accordance with the measurement method described in the examples section hereafter, of between 0.2 and 5 μm, and preferably of between 0.5 and 2 μm.
  • In the case of an aqueous suspension, the solids content, as measured according to the method provided in the Examples section herebelow, may range from 1 to 85% by weight, but preferably lies between 10 and 80% by weight, based on the weight of the suspension.
  • In the case of a cake, the solids content is generally between 20 and 80% by weight, is preferably between 40 and 75% by weight, and even is more preferably between 50 and 70% by weight.
  • Step b)
  • Step b) refers to adding at least one agent to said mineral material(s) of Step a), said agent being:
      • in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
      • formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
      • provided in step b) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of the total surface of the mineral material.
  • For the purpose of the present invention, a stable aqueous colloid is a multiphase system in which at least one phase is finely distributed but not molecularly dissolved within the other phase in a way that the system is structurally stable, i.e. no sedimentation, agglomeration, aggregation, flotation. Typically aqueous colloids scatter light.
  • Preferably, said agent is dosed in an amount corresponding to from 0.1 to 0.75 mg by dry weight of agent per m2 of the total surface of the mineral material.
  • In another embodiment, said agent is preferably dosed in an amount corresponding to from 0.1 to 5%, more preferably from 0.15 to 0.75%, and even more preferably from 0.15 to 0.5% by dry weight relative to the dry weight of mineral material.
  • Preferably, said agent is provided in the form of an aqueous solution having a pH of between 0 and 5, and more preferably of between 0.5 and 4.5.
  • The metal cations of said agent can be part of a compound.
  • For certain metal cations selected from aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, the skilled man will recognise that freshly synthesised hydroxides may be advantageously employed. Advantages may also be observed using metal cations that have been buffered with nitric, sulphuric, oxalic acid or other appropriate buffer systems. In the case of titanium, this is advantageously provided in the form of titanyl sulphate.
  • Said phosphonic acid-comprising compound is preferably an alkyl diphosphonic acid, a particularly preferred alkyl diphosphonic acid being 1-hydroxyethane 1,1-diphosphonic acid (HEDP).
  • Other diphosphonic acids that may employed in the present invention include methylene diphosphonic acid (MDP), hydroxymethylene diphosphonic acid (HMDP), hydroxycyclomethylene diphosphonic acid (HCMDP), and 1-hydroxy-3-aminopropane-1,1-diphosphonic acid (APD).
  • Said phosphonic acid-comprising compound may be a triphosphonic acid, such as aminotri(methylenephosphonic acid) (ATMP), or one or more compounds including a higher number of phosphonic acid groups, such as diethylenetriaminepenta(methylenephosphonic acid) (DTPMP).
  • It is also possible for said phosphonic acid-comprising compound to include further groups, such as carboxylic acid groups. An example of such a phosphonic acid-comprising compound is phosphonosuccinic acid (PSA),
  • In a preferred embodiment, the metal of said metal cation or metal-comprising cationic compound is selected from the group consisting of: aluminium and zirconium.
  • In a most preferred embodiment, said agent is formed by mixing aluminium and/or zirconium cations, preferably provided in the form of hydroxides, with HEDP (forming Al-HEDP and Zr-HEDP, respectively).
  • In a preferred embodiment, said agent is provided in the form of an aqueous solution or colloidal suspension having a dry weight of from 5 to 70%.
  • Al-HEDP and Zr-HEDP may, for example, be formed by adding the corresponding aluminium or zirconium hydroxide (optionally in the form of a powder) into an aqueous solution comprising HEPD. In one embodiment, this solution comprises 5 to 20% by dry weight, relative to the weight of the solution, of HEDP. In such a case, the aluminium or zirconium hydroxide is added in such an amount so as to form a final solution of agent having 1 to 25 equivalent weight parts of aluminium or zirconium on the total solution weight.
  • In one preferred embodiment, Al-HEDP is formed by dosing Al(OH)3:HEDP in a 1:5 to 1:8 weight ratio.
  • It is to be understood that further additives having a basic character, such as an alkali-HEDP salt (such as Na-HEDP or K-HEDP) may be present in addition to said agent, provided that said agent is in an aqueous environment having a pH of less than 6 when introduced in the process.
  • Step b) may implement the further addition of water in order to meet a preferred water:mineral material ratio of 95:5 to 10:90 in Step c). If water is added, it may be added in combination with said agent, and indeed may even represent an aqueous solvent of said agent.
  • Step b) is preferably performed under mixing.
  • In one alternative embodiment, said agent may be formed in situ in the mineral material suspension. It is however more preferred to form said agent prior to its addition to the mineral material suspension.
  • Base B
  • Because said agent implemented in Step b) is acidic, it may be necessary, in order to fall into the final suspension pH range of Step c), which is greater than 7 and in any case must be greater than the isoelectric point of said mineral material of Step a), and is less than 10, to add a base (hereafter “Base B”), before and/or during and/or after addition of said agent.
  • For the purpose of the present invention, an “acid” and a “base” shall be understood to represent, respectively, acids and bases in accordance with the Bronsted acid-base theory; that is to say, an acid is a proton donor and a base is a proton acceptor, leading, respectively, to a pH decrease and increase when dissolved in water.
  • It is of note that Base B may be added simultaneously with said agent, though this route is less preferred.
  • If Base B is added before said agent, said agent is preferably added once the pH following addition of Base B has stabilised.
  • Likewise, if said agent is added first, Base B is preferably added once the pH of the suspension is stable.
  • It is also possible that a part of Base B is added prior to all or part of said agent, and that the remaining Base B is added after the addition of all or part of said agent.
  • Base B is preferably selected from among sodium silicate, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium aluminate, basic polyphosphates, basic phosphonates and mixtures thereof, and is more preferably a basic polyphosphate or a basic phosphonate, said basic polyphosphate being preferably a pyrophosphate and especially a potassium salt of pyrophosphate, and said basic phosphonate being preferably an alkali compound of HEDP, such as a sodium and/or potassium and/or lithium compound of HEDP
  • If all of Base B is added prior to said agent, it is preferred that Base B be added in an amount so as to reach a mineral material cake or suspension pH of greater than 10.
  • Base B is preferably added in an amount of greater than or equal to 0.1% by dry weight, and preferably from 0.2 to 0.5% by dry weight, relative to the dry weight of mineral material.
  • It may be advantageous that Base B presents a high buffering capacity, such that a relatively high amount of acidic agent can be added before reaching a pH of between 6.5 and 10.
  • In a particular preferred embodiment, Base B is a potassium pyrophosphate or a sodium and/or potassium and/or lithium compound of HEDP in the form of an aqueous solution.
  • Additional Process Steps
  • In one embodiment of the process of the present invention, the mineral material may be ground prior to, during or following addition of said agent and/or said Base B.
  • Obtained Mineral Material in Suspension
  • The suspension obtainable by the process of the invention preferably has a pH of between 7.5 and 9.0.
  • This suspension may, in one embodiment, subsequently be filtered on a filtration medium to form a filter cake of surface-modified mineral material. For example, the suspension may be filtered on a filter paper having a 3 μm pore size.
  • This suspension may alternatively be centrifuged to form a centrifuge cake of surface-modified mineral material.
  • This suspension may alternatively be concentrated by thermal or mechanical methods.
  • The obtained filter cake or centrifuge cake preferably has a solids content of between 40 and 80% by weight.
  • The obtained filter cake or centrifuge cake may additionally be dried to form a dry surface-modified mineral material. Such a dry surface-modified mineral material features a water pick-up, measured according to the measurement method given in the examples section herebelow, of between 0.3 and 1.0%, and preferably of between 0.3 and 0.5%.
  • The obtained suspension or dry product may find applications in, among other applications, paper, including in the base paper and/or paper coating, plastics and especially thermoplastics, sealants such as silicone sealants, paints, concretes and cosmetics. The skilled man will recognise that the suspension or dry product further presents the general advantage of not being based on oil-based products. When implemented in plastic applications, the dry product moreover does not lead to the emission of volatile products on processing at temperatures typical of the plastics industry, i.e. from 150 to 300° C.
  • The obtained suspension or dry product may be furthermore used as an intermediate product that is further processed. For example, the obtained suspension or dry product may be ground with further materials such as a binder as described in WO 2006/008657.
  • EXAMPLES Measurement Methods Solids Content of a Suspension or Dispersion (% by Weight)
  • Solids contents were determined using a Mettler LP16 PM100 mass balance equipped with an LP16 IR dryer.
  • pH of a Suspension or Dispersion
  • Suspension or dispersion pH values were measured using Seven Multi instrumentation from Toledo at 25° C.
  • Specific Surface Area (SSA) of a Particulate Material (m2/g)
  • The specific surface area was measured using Gemini V instrumentation from Micrometrics, via the BET method according to ISO 9277 using nitrogen, following conditioning of the sample by heating at 250° C. for a period of 30 minutes.
  • Particle Size Distribution (Mass % Particles with a Diameter <X) and Weight Median Grain Diameter (d50) of a Particulate Material
  • Weight median grain diameter and grain diameter mass distribution of a particulate material were determined via the sedimentation method, i.e. an analysis of sedimentation behaviour in a gravimetric field. The measurement is made with a Sedigraph™ 5120.
  • The method and the instrument are known to the skilled person and are commonly used to determine grain size of fillers and pigments. The measurement was carried out in an aqueous solution of 0.1 wt % Na4P2O7. The samples were dispersed using a high speed stirrer and ultrasonic.
  • Isoelectric Point of a Mineral Material
  • The isoelectric point of a mineral material is evaluated in deionised water at 25° C. using Malvern Zetasizer Nano ZS instrumentation.
  • Water Pick-Up of a Particulate Material
  • The water pick-up of a particulate material is determined by first drying the material in an oven at 110° C. to constant weight, and thereafter exposing the dried material to an atmosphere of 80% relative humidity for 60 hours at a temperature of 20° C. The water pick-up corresponds to the % increase in weight of the material following exposure to the humid environment, relative to the dried material weight.
  • Materials
  • Precipitated calcium carbonate (PCC) was obtained by bubbling CO2 gas through a 13 to 15° C. suspension of lime having a solids content of about 15% by dry weight and containing between 0.05 and 1% of a slaking additive. The obtained PCC suspension had a solids content of about 17% by dry weight and the PCC material had a specific surface area of between 10 and 12 m2/g.
  • The surface-reacted calcium carbonate (SRGCC) was prepared in a 10 m3 reactor. Dry natural calcium carbonate having a d50 of 1 μm was filled into this vessel along with water to form a suspension having a solids content of 10% by dry weight. 25% phosphoric acid (calculated dry/dry, said phosphoric acid being provided in the form of a 30% solution) was then added to the vessel over a time period of 60 minutes under stirring. Thereafter, 20 kg of a lime suspension (200 L of a 10% suspension) was introduced into the vessel.
  • Potassium hydroxide (KOH), in the form of granules, was obtained from Fluka.
  • Potassium pyrophosphate (K4P2O7), in the form of a 60% by dry weight aqueous solution, was obtained from Chemische Fabrik Budenheim.
  • 1-Hydroxyethane-1,1-diphosphonic acid (HEDP), in the form of a 60% by dry weight aqueous solution, was obtained from Chemische Fabrik Budenheim.
  • Sodium pyrophosphate (Na4HEDP), in the form of a 25% by dry weight aqueous solution, was obtained from Chemische Fabrik Budenheim.
  • Aluminium hydroxide (Al(OH)3), sold under the commercial name Martinal® OL-107 in the form of a powder, was obtained from Martinswerk.
  • Potassium HEDP (K4HEDP) was synthesized by adding 90 g of KOH to an aqueous solution of HEDP previously formed by adding 200 g of water to 108 g of the 60 weight % aqueous solution of HEDP under stirring. The obtained clear solution had a pH of 12.0 and a concentration of K4HEDP of 33.5 g/100 g of water.
  • Lithium HEDP (Li4HEDP) was synthesized by adding 113 g of LiOH to 2 200 g of a 7% aqueous solution of HEDP under stirring. The obtained suspension had a pH of 11.6.
  • Al-HEDP chelate complexes, in the form of an aqueous colloidal solution in which the weight ratio of Al(OH)3:HEDP was 1:5, 1:8 and 1:10, were prepared as follows: aluminium hydroxide powder was added to the 60% HEDP solution in the necessary amount with respect to the desired weight ratio under stirring until a homogeneous white suspension was obtained. This suspension was then heated under continued stirring (at approximately 500 rpm) until a colloidal suspension developed. The solution temperature was then allowed to settle to approximately 23° C. The final dry weight of each of the colloidal suspension was 62 to 65% and the final pH 1.8.
  • Sn-HEDP chelate complexes, in the form of an aqueous colloidal solution in which the weight ratio of Sn(OH)2:HEDP was 1:4, were prepared as follows: Sn(OH)2 was freshly synthesized by adding 75 mL of ammonia to an aqueous solution of 20 g of SnSO4 in 100 g of water. The obtained suspension was filtered on a Buchner funnel filter to obtain a filter cake. This filter cake was then added to 100 g of an aqueous 60% HEDP solution under stirring until a homogeneous suspension was obtained. The suspension was subsequently heated to a temperature of between 90 and 95° C. under stirring at 500 rpm until a milky colloidal suspension developed. The suspension temperature was then allowed to cool to about 23° C. The final colloidal suspension had a solids content of 67% by dry weight and the final pH was 0.9.
  • Co-HEDP chelate complexes, in the form of an aqueous solution in which the weight ratio of Co(OH)2:HEDP was 1:10, were prepared as follows: 9.3 g of Co(OH)2 was added to 155 g of an aqueous 60% HEDP solution under stirring until a homogeneous suspension was obtained. The suspension was then heated to a temperature of between 90 and 95° C. under stirring at 500 rpm until a milky paste developed. The paste was then diluted with water to 27% by dry weight; the obtained solution had a violet colour and was allowed to cool to 23° C. The solution pH was of 0.85.
  • Ti-HEDP chelate complexes, in the form of an aqueous colloidal solution in which the weight ratio of Ti(SO4)2:HEDP was 1:5, were prepared as follows: 15 g of a 60% titanyl sulphate solution was added to 150 g of a 60% HEDP solution under stirring and heating to 95 to 98° C. until a clear colloidal suspension developed. The suspension was then allowed to cool to approximately 23° C. The final solids content of the suspension was 60% by dry weight and the final pH<1.
  • Example 1 Lab-Scale Examples
  • In this example, the process of the present invention is compared to prior art processes.
  • The additive system listed in the Table below is added under stirring using an IKA RW 20 stirrer at 500 rpm, to an aqueous suspension of 150 g of undispersed ground natural calcium carbonate suspension having an isoelectric point of about 9 and a specific surface area of approximately 11 m2/g, and wherein 75% by dry weight of the particles have a diameter of less than 1 μm; the initial solids content of this suspension is 20% by dry weight.
  • Thereafter, each of the suspensions of Table 1 were filtered over a time period of 30 minutes using a 3 μm pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m3/h).
  • The solids contents of the resulting filter cakes are given in Table 1. The collected material in the filter cakes was then dried and the water-pick value determined.
  • TABLE 1
    Test 1 2 3 4
    Invention (IN)/ PA PA IN IN
    Prior Art (PA)
    Type of Additive none HEDP K4HEDP K4P2O7
    System followed by followed by followed by
    Na4HEDP Al(OH)3:HEDP 1:8 Al(OH)3:HEDP 1:8
    Amount of none 0.25 HEDP +0.20 0.20 K4HEDP + 0.20 0.20 K4P2O7 + 0.20
    Additive System
    (% by dry weight Na4HEDP Al(OH)3:HEDP Al(OH)3:HEDP
    on dry weight of for a total of 0.45 for a total of 0.40 for a total of 0.40
    mineral material)
    Amount of Agent 0.18 mg 0.18 mg
    (g dry agent/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2
    mineral material) CaCO3 CaCO3
    pH of mineral 8.4 8.5 8.3
    material
    suspension
    following additive
    system addition
    Final filter cake 42.3 43.5 46.1 49.0
    solids content (%
    by weight)
    Water pick up (% 0.24 0.28 0.36
    weight increase)
  • The above table shows that relative to the untreated calcium carbonate, not only does the resulting filter cake present a significantly higher solids content, but further the obtained calcium carbonate material treated by the process of the invention (test 4) has a 50% greater degree of water pick-up, attesting to a greater natural hydration layer. Comparing tests 2 and 3 furthermore shows that only the process of the invention, implementing a chelate complex instead of a chelant alone, leads to the desired results.
  • Example 2 Lab-Scale Examples
  • This example illustrates various embodiments of the invention.
  • The additive systems listed in Tables 2 and 3 below are added, under stirring using a Dispermat dissolver at 1 500 rpm, to an aqueous suspension of 500 g of undispersed ground natural calcium carbonate having an isoelectric point of about 9 and a specific surface area of approximately 11 m2/g, and wherein 75% by weight of the particles have a diameter of less than 1 μm; the initial solids content of this suspension is 70 to 75% by dry weight.
  • Thereafter, each of the suspensions of Tables 2 and 3 were filtered over a time period of 30 minutes using a 3 μm pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m3/h). In all cases, a compact high solids content filter cake was obtained in which the mineral maintained a hydration layer.
  • TABLE 2
    Test 5 6 7 8
    Invention (IN)/ IN IN IN IN
    Prior Art (PA)
    Type of K4P2O7 K4HEDP Li4HEDP Al(OH)3:HEDP
    Additive followed by followed by followed by 1:5
    System Al(OH)3:HEDP Al(OH)3:HEDP Al(OH)3:HEDP followed by
    1:5 1:5 1:5 K4P2O7
    Amount of 0.25 K4P2O7 + 0.20 0.25 K4HEDP + 0.20 0.25 Li4HEDP + 0.20 0.20 K4P2O7 + 0.25
    Additive
    System (% by Al(OH)3:HEDP Al(OH)3:HEDP Al(OH)3:HEDP Al(OH)3:HEDP
    dry weight on for a total of 0.45 for a total of 0.45 for a total of 0.45 for a total of 0.45
    dry weight of
    CaCO3)
    Amount of 0.18 mg 0.18 mg 0.18 mg 0.23 mg
    Agent (g dry Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2
    agent/m2 CaCO3 CaCO3 CaCO3 CaCO3
    mineral
    material)
    pH of mineral 8.3 8.5 8.6 8.9
    material
    suspension
    following
    additive system
    addition
  • TABLE 3
    Test 9 10 11 12
    Invention (IN)/ IN IN IN IN
    Prior Art (PA)
    Type of Additive Na4HEDP Ti(SO4)2:HEDP 1:5 K4P2O7 K4P2O7
    System followed by followed by followed by followed by
    Al(OH)3:HEDP 1:5 Na4HEDP Sn(OH)2:HEDP 1:7 Co(OH)2:HEDP 1:10
    Amount of 0.10 Na4HEDP + 0.18 0.75 0.50 K4P2O7 + 0.50 0.20 K4P2O7 + 0.20
    Additive System Ti(SO4)2:HEDP + 0.25
    (% by dry Al(OH)3:HEDP Sn(OH)2:HEDP Co(OH)2:HEDP
    weight on dry for a total of 0.28 Na4HEDP for a total of 1.00 for a total of 0.40
    weight of for a total of 1.00
    CaCO3)
    Amount of 0.16 mg 0.69 mg 0.45 mg 0.18 mg
    Agent (g dry Al(OH)3:HEDP/m2 Ti(SO4)2:HEDP/m2 Sn(OH)2:HEDP/m2 Co(OH)2:HEDP/m2
    agent/m2 CaCO3 CaCO3 CaCO3 CaCO3
    mineral
    material)
    pH of mineral 8.6 7.6 7.4 9.0
    material
    suspension
    following
    additive system
    addition
  • TABLE 4
    Test 13 14 15
    Invention (IN)/ IN IN IN
    Prior Art (PA)
    Type of Additive Premixture in a 1:1: Premixture in a 1:1: Premixture of
    System weight ratio of weight ratio of KOH and [Al(OH)3:HEDP
    K4P2O7 and K4P2O7 and 1:5], pH 3.7
    [Al(OH)3:HEDP [Al(OH)3:HEDP
    1:5], pH 4 1:5], pH 4
    Amount of 0.4 of the premixture 0.3 of the premixture 0.4 of the premixture
    Additive System
    (% by dry weight
    on dry weight of
    CaCO3)
    Amount of Agent 0.18 mg 0.14 mg
    (g dry agent/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2
    mineral material) CaCO3 CaCO3
    pH of mineral 8.5 8.7 8.1
    material
    suspension
    following additive
    system addition
  • Example 3 Lab-Scale Examples
  • This example illustrates various embodiments of the invention.
  • The additive systems listed in Table 5 below are added, under stirring using a Dispermat dissolver at 1 500 to 5 000 rpm, to an aqueous suspension of 500 g of the indicated mineral material; the initial solids content of this suspension is 40 to 42% by dry weight.
  • Thereafter, each of the suspensions of Table 6 were filtered over a time period of 30 minutes using a 3 μm pore size Rotilabo round filter located in a Buchner funnel filter (70 mm in diameter; 30 mm in height) equipped with a 1 L vacuum flask connected via an M7 2C diaphragm vacuum pump from Vacuubrand GmbH (suction capacity: 2.4 m3/h). In all cases, a compact high solids content filter cake was obtained in which the mineral maintained a hydration layer.
  • TABLE 5
    Test 16 17 18 19
    Invention IN IN IN IN
    (IN)/ Prior
    Art (PA)
    Type of PCC SRGCC Talc Talc
    mineral
    material
    Mineral 18 30 45 45
    material
    specific
    surface area
    (m2/g)
    Type of K4HEDP K4HEDP K4P2O7 K4P2O7
    Additive followed by followed by followed by followed by
    System Al(OH)3:HEDP 1:5 Al(OH)3:HEDP 1:5 Al(OH)3:HEDP 1:10 Al(OH)3:HEDP 1:10
    Amount of 0.5 K4HEDP + 0.17 0.2 K4HEDP + 0.17 0.2 K4P2O7 + 0.2 0.2 K4P2O7 + 0.4
    Additive Al(OH)3:HEDP Al(OH)3:HEDP Al(OH)3:HEDP Al(OH)3:HEDP
    System (% for a total of 0.67 for a total of 0.37 for a total of 0.4 for a total of 0.6
    by dry
    weight on
    dry weight
    of CaCO3)
    Amount of 0.09 mg 0.06 mg 0.04 mg 0.08 mg
    Agent (g dry Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2 Al(OH)3:HEDP/m2
    agent/m2 PCC SRGCC Talc Talc
    mineral
    material)
    pH of 9.3 8.5 8.1 8
    mineral
    material
    suspension
    following
    additive
    system
    addition

Claims (36)

1. A product obtained by a process for manufacturing a surface-modified mineral material in which at least part of the surface of a mineral material is modified, the process comprising the following steps:
(a) preparing an aqueous suspension of mineral material having a solids content of from 10 to 80% by weight, based on the weight of the suspension, and at a pH of 5 to 10, wherein the mineral matter comprises calcium carbonate or talc;
(b) contacting the aqueous suspension of mineral matter of step (a) with at least one agent so that at least part of the surface of the mineral matter is modified;
(c) obtaining a suspension of the surface-modified mineral material from step (b) having a pH which is less than 10 and which is greater than 7 if the isoelectric point of the mineral material provided in step (a) is greater than 7, or a pH that is greater than the isoelectric point of the mineral material provided in step (a) if the isoelectric point is 7 or lower; and
(d) subjecting the suspension of the surface-modified mineral material from step (c) to one or more of: (i) filtration on a filtration medium to form a filter cake of surface-modified mineral material, (ii) centrifugation to form a centrifuge cake of surface-modified mineral material, (iii) concentration by thermal or mechanical methods to form a concentrated surface-modified mineral material, and (iv) drying to form a dried surface-modified mineral material;
wherein the agent is:
(i) in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
(ii) formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, wherein the metal is selected from the group consisting of aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and wherein the phosphonic acid-comprising compound and the metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
(iii) added in step (b) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of the total surface of the mineral material.
2. The product of claim 1, wherein the suspension of step (a) has a pH of 7 to 10.
3. The product according to claim 1, wherein the suspension of step (a) has a pH of 8 to 9.
4. The product according to claim 1, wherein the mineral material is talc.
5. The product according to claim 1, wherein the mineral material is calcium carbonate.
6. The product according to claim 1, wherein the mineral material is surface-reacted calcium carbonate.
7. The product according to claim 1, wherein the mineral material comprises calcium carbonate and one or more of dolomite, a Group IIA and/or IIIA element-comprising phyllosilicate, montmorillonite, talc, magnesite, magnesium-comprising chlorite, and kaolin clay.
8. The product according to claim 1, wherein the aqueous suspension of step (a) comprises less than 0.1% by weight, based on the weight of dry mineral material, of a polyacrylate-based dispersant.
9. The product according to claim 1, wherein the mineral material provided in step (a) has a BET specific surface area of 5 to 150 m2/g.
10. The product according to claim 1, wherein the mineral material provided in step (a) has a BET specific surface area of 5 to 60 m2/g.
11. The product according to claim 1, wherein the mineral material provided in step (a) has a weight median diameter (d50) of 0.2 to 5 μm.
12. The product according to claim 1, wherein the mineral material provided in step (a) has a weight median diameter (d50) of 0.5 to 2 μm.
13. The product according to claim 1, wherein the suspension in step (a) has a solids content of 40 to 75% by weight, based on the weight of the suspension.
14. The product according to claim 1, wherein the agent is dosed in step (b) in an amount corresponding to from 0.1 to 0.75 mg by dry weight of agent per m2 of the total surface of the mineral material.
15. The product according to claim 1, wherein the agent is dosed in step (b) in an amount corresponding to from 0.1 to 5%, by dry weight relative to the dry weight of mineral material.
16. The product according to claim 1, wherein the agent is dosed in step (b) in an amount corresponding to from 0.15 to 0.75%, by dry weight relative to the dry weight of mineral material.
17. The product according to claim 1, wherein the agent is dosed in step (b) in an amount corresponding to from 0.15 to 0.5%, by dry weight relative to the dry weight of mineral material.
18. The product according to claim 1, wherein the agent is provided in the form of an aqueous solution having a pH of 0 to 5.
19. The product according to claim 1, wherein the agent is provided in the form of an aqueous solution having a pH of between 0.5 to 4.5.
20. The product according to claim 1, wherein the phosphonic acid-comprising compound is an alkyl diphosphonic acid.
21. The product according to claim 1, wherein the phosphonic acid-comprising compound is 1-hydroxyethane 1,1-diphosphonic acid (HEDP).
22. The product according to claim 1, wherein the phosphonic acid-comprising compound is a selected from the group consisting of methylene diphosphonic acid (MDP), hydroxymethylene diphosphonic acid (HMDP), hydroxycyclomethylene diphosphonic acid (HCMDP), 1-hydroxy-3-aminopropane-1,1-diphosphonic acid (APD), aminotri(methylenephosphonic acid) (ATMP), diethylenetriaminepenta(methylenephosphonic acid) (DTPMP) and phosphonosuccinic acid (PSA).
23. The product according to claim 1, wherein the metal of the metal cation or metal-comprising cationic compound is aluminium or zirconium.
24. The product according to claim 1, wherein a base is added before and/or after the agent.
25. The product according to claim 24, wherein the base is selected from the group consisting of sodium silicate, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium aluminate, a basic polyphosphate, a basic phosphonate, and any mixture thereof.
26. The product according to claim 24, wherein the base is a basic polyphosphate or a basic phosphonate.
27. The product according to claim 24, wherein the base is a potassium salt of pyrophosphate, an alkali compound of HEDP, or a sodium and/or potassium and/or lithium compound of HEDP.
28. The product according to claim 24, wherein the base is added in an amount of greater than or equal to 0.1% by dry weight, relative to the dry weight of mineral material.
29. The product according to claim 24, wherein the base is added in an amount of from 0.2 to 0.5% by dry weight, relative to the dry weight of mineral material.
30. The product according to claim 1, wherein the mineral matter is precipitated calcium carbonate or ground calcium carbonate.
31. The product according to claim 1, wherein in step (d), step (i) is preformed and the product is a filter cake of surface-modified mineral material.
32. The product according to claim 1, wherein in step (d), step (ii) is preformed and the product is a centrifuge cake of surface-modified mineral material.
33. The product according to claim 1, wherein in step (d), step (iii) is preformed and the product is a concentrated surface-modified mineral material.
34. The product according to claim 1, wherein in step (d), step (iv) is preformed and the product is a dried surface-modified mineral material.
35. Paper, plastics, sealants, paints, concretes or cosmetics comprising the product according to claim 1.
36. The product according to claim 1, which is an aqueous suspension of mineral material having a pH between 5 and 10, comprising at least one additive:
(a) in the form of an aqueous solution or a stable aqueous colloid having a pH of less than 6;
(b) formed by mixing, in an aqueous environment, at least one phosphonic acid-comprising compound with one or more metal cations or metal-comprising cationic compounds, where said metal is selected from the group consisting of: aluminium, zirconium, zinc, cobalt, chrome, iron, copper, tin, titanium and mixtures thereof, and where said phosphonic acid-comprising compound and said metal cations or metal-comprising cationic compounds are dosed such that the molar ratio of phosphonate hydroxyl groups:metal cation or metal comprising cationic compound is from 10:1 to 2:1; and
(c) in an amount corresponding to from 0.04 to 1 mg by dry weight of agent per m2 of the total surface of the mineral material, wherein the additive facilitates dewatering of the suspension.
US15/259,733 2010-04-16 2016-09-08 Process to prepare surface-modified mineral material, resulting products and uses thereof Abandoned US20170002204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/259,733 US20170002204A1 (en) 2010-04-16 2016-09-08 Process to prepare surface-modified mineral material, resulting products and uses thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP10160235.7A EP2377900B1 (en) 2010-04-16 2010-04-16 Process to prepare surface-modified mineral material, resulting products and uses thereof
EP10160235.7 2010-04-16
US34312810P 2010-04-23 2010-04-23
PCT/EP2011/055405 WO2011128242A1 (en) 2010-04-16 2011-04-07 Process to prepare surface-modified mineral material, resulting products and uses thereof
US201213640325A 2012-12-03 2012-12-03
US15/259,733 US20170002204A1 (en) 2010-04-16 2016-09-08 Process to prepare surface-modified mineral material, resulting products and uses thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/640,325 Division US9580605B2 (en) 2010-04-16 2011-04-07 Process to prepare surface-modified mineral material, resulting products and uses thereof
PCT/EP2011/055405 Division WO2011128242A1 (en) 2010-04-16 2011-04-07 Process to prepare surface-modified mineral material, resulting products and uses thereof

Publications (1)

Publication Number Publication Date
US20170002204A1 true US20170002204A1 (en) 2017-01-05

Family

ID=42732675

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/640,325 Active 2031-05-09 US9580605B2 (en) 2010-04-16 2011-04-07 Process to prepare surface-modified mineral material, resulting products and uses thereof
US15/259,733 Abandoned US20170002204A1 (en) 2010-04-16 2016-09-08 Process to prepare surface-modified mineral material, resulting products and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/640,325 Active 2031-05-09 US9580605B2 (en) 2010-04-16 2011-04-07 Process to prepare surface-modified mineral material, resulting products and uses thereof

Country Status (16)

Country Link
US (2) US9580605B2 (en)
EP (2) EP2377900B1 (en)
JP (1) JP5715685B2 (en)
KR (1) KR101403738B1 (en)
CN (1) CN102906201B (en)
AU (1) AU2011240183B2 (en)
BR (1) BR112012026378A2 (en)
CA (1) CA2795925C (en)
CL (1) CL2012002857A1 (en)
DK (1) DK2377900T3 (en)
ES (1) ES2433441T3 (en)
MX (1) MX2012011913A (en)
PT (1) PT2377900E (en)
RU (1) RU2520478C1 (en)
SI (1) SI2377900T1 (en)
WO (1) WO2011128242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158854A (en) * 2020-09-25 2021-01-01 大石桥市华实耐火材料有限公司 Low-iron high-whiteness calcined talc and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628775A1 (en) * 2012-02-17 2013-08-21 Omya Development AG Mineral material powder with high dispersion ability and use of said mineral material powder
RS55687B1 (en) * 2012-03-30 2017-07-31 Omya Int Ag Dispersed calcium carbonate containing material for an improved stability under alkaline conditions
EP2872446B1 (en) 2012-07-12 2020-01-22 Nouryon Chemicals International B.V. Free flowing salt composition prepared by evaporative crystallization
PL2719373T3 (en) * 2012-10-12 2017-10-31 Omya Int Ag Fast disintegrating solid dosage form formulation comprising functionalized calcium carbonate and method of their manufacture
PT2770017E (en) * 2013-02-22 2015-11-30 Omya Int Ag New surface treatment of white mineral materials for application in plastics
PL2949707T3 (en) * 2014-05-26 2017-08-31 Omya International Ag Process for the preparation of crumbles comprising calcium carbonate
US10647143B2 (en) 2014-05-26 2020-05-12 Omya International Ag Calcium carbonate for rotogravure printing medium
KR102127644B1 (en) 2014-06-10 2020-06-30 삼성전자 주식회사 Method for fabricating semiconductor device
EP2995654A1 (en) 2014-09-15 2016-03-16 Omya International AG Dry process for preparing a surface-modified alkaline earth metal carbonate-containing material
EP3088475A1 (en) * 2015-04-27 2016-11-02 Omya International AG Modified mineral-based filler comprising copper salts
KR20180094995A (en) * 2015-12-16 2018-08-24 바스프 에스이 Method for epoxidation of propene to propylene oxide
EP3192837B1 (en) * 2016-01-14 2020-03-04 Omya International AG Wet surface treatment of surface-modified calcium carbonate
EP3659968A1 (en) * 2018-11-29 2020-06-03 ImerTech Mineral composition
CN110183876A (en) * 2019-06-21 2019-08-30 中国矿业大学(北京) Powdered whiting modifying agent, the method for modifying of powdered whiting, modified heavy calcium carbonate and its application
CN115725130B (en) * 2022-12-10 2024-02-13 福州大学 Antibacterial toughening PE composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547817A (en) * 1967-06-22 1970-12-15 Betz Laboratories Inhibition of scale formation
US4367207A (en) * 1980-12-18 1983-01-04 Pfizer Inc. Process for the preparation of finely divided precipitated calcium carbonate
US4497713A (en) * 1982-04-01 1985-02-05 Betz Laboratories Method of inhibiting corrosion and deposition in aqueous systems
US4892902A (en) * 1986-11-07 1990-01-09 Nippon Shokubai Kagaku, Co., Ltd. Method for production of aqueous dispersion of inorganic pigment
US20090056942A1 (en) * 2005-11-16 2009-03-05 Rhodia Inc. Method for recovering oil from an oil reservoir

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390199A (en) * 1977-01-20 1978-08-08 Shiraishi Kogyo Kaisha Ltd Method of modifying calcium carbonate
DE2725210A1 (en) 1977-06-03 1978-12-14 Bayer Ag HIGH SOLID SUSPENSIONS
US4207186A (en) 1978-12-05 1980-06-10 American Cyanamid Company Process for dewatering mineral concentrates
JPS5857216B2 (en) * 1980-12-28 1983-12-19 互応化学工業株式会社 pigment dispersant
CA1252016A (en) 1984-01-09 1989-04-04 Kay E. Cawiezel Mineral dewatering method
JPS60166221A (en) * 1984-02-06 1985-08-29 Mitsubishi Monsanto Chem Co Vaterite type calcium carbonate composition of fine powder
IT1175345B (en) 1984-02-10 1987-07-01 Pirelli DIRECTIONAL TIRE FOR MOTOR VEHICLES
US4802990A (en) 1987-07-30 1989-02-07 Inskeep Jr Eugene L Solution and method for dissolving minerals
FI100476B (en) * 1989-06-06 1997-12-15 Pluss Stauffer Ag Highly concentrated aqueous suspension of minerals and / or fillers and / or pigments
US5043017A (en) * 1990-03-09 1991-08-27 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
JPH0413780A (en) 1990-05-02 1992-01-17 Shikoku Chem Corp Modified inorganic powder and production thereof
DE4404219A1 (en) 1994-02-10 1995-08-17 Bayer Ag Aq. clay suspensions contg. inorganic liquefier
GB9504962D0 (en) * 1995-03-11 1995-04-26 Tioxide Group Services Ltd Composite pigmentary material
ZA9710639B (en) 1996-12-13 1998-06-15 Minerals Tech Inc Dewatering of calcium carbonate.
FR2765495B1 (en) 1997-07-03 1999-09-03 Synthron DISPERSANT / FLUIDIFYING AGENTS BASED ON CATIONIC POLYMER AND PHOSPHONIC ACID DERIVATIVE USEFUL FOR THE PRODUCTION OF AQUEOUS SUSPENSIONS CONCENTRATED OF MINERAL MATERIALS
FR2787802B1 (en) 1998-12-24 2001-02-02 Pluss Stauffer Ag NOVEL FILLER OR PIGMENT OR MINERAL TREATED FOR PAPER, ESPECIALLY PIGMENT CONTAINING NATURAL CACO3, METHOD FOR MANUFACTURING SAME, COMPOSITIONS CONTAINING THEM, AND APPLICATIONS THEREOF
US6312560B1 (en) 1999-07-23 2001-11-06 Huntsman Ethyleneamines Ltd. Use of alkyleneamines for enhancing lime mud dewatering
FR2803304B1 (en) 1999-12-29 2006-03-24 Ceca Sa INORGANIC DEPOSIT INHIBITORS, ESPECIALLY IN OIL WELLS
ATE270250T1 (en) 2000-04-14 2004-07-15 Schaefer Kalk STABLE PLATE-SHAPED CALCITIC CALCIUM CARBONATE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE
US6536595B2 (en) 2001-05-02 2003-03-25 Ge Betz, Inc. Mineral ore flotation aid
GB0301975D0 (en) * 2003-01-29 2003-02-26 Rhodia Cons Spec Ltd Treating slurries
FR2852600B1 (en) 2003-03-18 2005-06-10 NEW MINERAL PIGMENT CONTAINING CALCIUM CARBONATE, AQUEOUS SUSPENSION CONTAINING SAME AND USES THEREOF
FR2871474B1 (en) 2004-06-11 2006-09-15 Omya Development Ag NEW DRY MINERAL PIGMENT CONTAINING CALCIUM CARBONATE, AQUEOUS SUSPENSION CONTAINING IT AND USES THEREOF
FR2873127B1 (en) 2004-07-13 2008-08-29 Omya Development Ag PROCESS FOR THE PRODUCTION OF SELF-ADHESIVE, DRIED OR AQUEOUS SUSPENSION OR DISPERSION PIGMENT PARTICLES CONTAINING INORGANIC MATERIALS AND BINDERS
ES2436104T3 (en) * 2007-11-02 2013-12-27 Omya International Ag Use of a surface treated calcium carbonate in tissue paper, process for preparing a tissue paper product of improved softness and resulting tissue paper products of improved softness
ES2352298T3 (en) 2007-12-12 2011-02-17 Omya Development Ag PROCESS FOR PERFORMING PRECIPITATED CALCIUM CARBONATE TREATED SUPERFICIALLY.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547817A (en) * 1967-06-22 1970-12-15 Betz Laboratories Inhibition of scale formation
US4367207A (en) * 1980-12-18 1983-01-04 Pfizer Inc. Process for the preparation of finely divided precipitated calcium carbonate
US4497713A (en) * 1982-04-01 1985-02-05 Betz Laboratories Method of inhibiting corrosion and deposition in aqueous systems
US4892902A (en) * 1986-11-07 1990-01-09 Nippon Shokubai Kagaku, Co., Ltd. Method for production of aqueous dispersion of inorganic pigment
US20090056942A1 (en) * 2005-11-16 2009-03-05 Rhodia Inc. Method for recovering oil from an oil reservoir

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158854A (en) * 2020-09-25 2021-01-01 大石桥市华实耐火材料有限公司 Low-iron high-whiteness calcined talc and preparation method thereof

Also Published As

Publication number Publication date
EP2377900B1 (en) 2013-07-31
EP2377900A1 (en) 2011-10-19
PT2377900E (en) 2013-11-07
AU2011240183B2 (en) 2014-01-23
US20130137779A1 (en) 2013-05-30
ES2433441T3 (en) 2013-12-11
KR20130020888A (en) 2013-03-04
CN102906201A (en) 2013-01-30
CL2012002857A1 (en) 2013-11-04
SI2377900T1 (en) 2013-12-31
RU2012148709A (en) 2014-05-27
EP2558540A1 (en) 2013-02-20
JP5715685B2 (en) 2015-05-13
US9580605B2 (en) 2017-02-28
KR101403738B1 (en) 2014-06-03
BR112012026378A2 (en) 2016-08-02
CN102906201B (en) 2014-07-09
CA2795925C (en) 2016-03-22
WO2011128242A1 (en) 2011-10-20
RU2520478C1 (en) 2014-06-27
AU2011240183A1 (en) 2012-11-01
DK2377900T3 (en) 2013-11-04
CA2795925A1 (en) 2011-12-20
MX2012011913A (en) 2012-11-16
JP2013525516A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US9580605B2 (en) Process to prepare surface-modified mineral material, resulting products and uses thereof
JP6704051B2 (en) Alkoxysilane treatment of calcium carbonate-containing materials
KR20100108548A (en) Surface-reacted precipitated calcium carbonate, process to make same, and uses thereof
RU2591983C2 (en) Dispersed calcium carbonate, containing substance to achieve improved stability in alkaline conditions
JP7038046B2 (en) High solids PCC with copolymer additives
US10836646B2 (en) Dry process for preparing a surface-modified alkaline earth metal carbonate-containing material
US20180282172A1 (en) Production of precipitated calcium carbonate (pcc)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION