JPH0413780A - Modified inorganic powder and production thereof - Google Patents

Modified inorganic powder and production thereof

Info

Publication number
JPH0413780A
JPH0413780A JP11628890A JP11628890A JPH0413780A JP H0413780 A JPH0413780 A JP H0413780A JP 11628890 A JP11628890 A JP 11628890A JP 11628890 A JP11628890 A JP 11628890A JP H0413780 A JPH0413780 A JP H0413780A
Authority
JP
Japan
Prior art keywords
inorganic powder
phosphonic acid
metal oxide
gel
oxide gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11628890A
Other languages
Japanese (ja)
Inventor
Takao Nakatsuka
中司 卓男
Hirohiko Hirao
浩彦 平尾
Seiji Sogabe
誠司 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP11628890A priority Critical patent/JPH0413780A/en
Publication of JPH0413780A publication Critical patent/JPH0413780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To enable hydrophobic surface-treatment of inorganic powder to impart high heat-resistance and obtain the subject powder effective in improving the dispersibility of fillers, etc., in a heat-resistant resin by adsorbing, spraying or mixing a precursor of a metal oxide gel containing an organic phosphonic acid compound to an inorganic powder. CONSTITUTION:The objective powder having a surface coating layer composed of a complex of an organic phosphonic acid compound and a metal oxide gel is produced by adsorbing, spraying or mixing a precursor of a metal oxide gel (preferably aluminum oxide gel) containing an organic phosphonic acid compound(e.g. phenylphosphonic acid or octylphosphonic acid) to an inorganic powder (e.g. silica gel or calcium carbonate).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表面改質された無機粉体及びその製法に関する
ものであり、この発明に係る無機粉体は特に耐熱性樹脂
に充填するフィラーとして有用である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a surface-modified inorganic powder and a method for producing the same, and the inorganic powder according to the present invention is particularly useful as a filler for heat-resistant resin. be.

従来の技術 高分子材料に充填する無機フィラーやガラス繊維の表面
は、汎用の界面活性剤をはじめシラン系、チタネート系
、アルミネート系などのカップリング剤で処理されてい
る。これらの処理を行うことにより樹脂との親和性や反
応性の改善が行われてきた。
Conventional technology The surfaces of inorganic fillers and glass fibers filled in polymeric materials are treated with general-purpose surfactants and coupling agents such as silane, titanate, and aluminate. By performing these treatments, the affinity and reactivity with resins have been improved.

無機粉体の表面改質処理法としては、溶媒中でフィラー
と混合したのち溶媒のみを除去して処理する方法、処理
剤をフィラーにスプレーし乾燥する方法あるいはフィラ
ーと樹脂との複合過程で添加する方法などが知られてい
る。
Surface modification treatment methods for inorganic powder include methods of mixing it with filler in a solvent and then removing only the solvent, spraying a treatment agent onto the filler and drying it, or adding it in a composite process of filler and resin. There are known methods to do this.

本発明に関連する先行技術としては、特開昭57−16
8954号公報に無機フィラーの表面を有機ホスホン酸
の塩類化合物によって処理すると、疎水化に効果がある
ことが開示されている。またソリッド・ステート・イオ
−’−ックス(Solid 5tate Ionics
)26巻63〜69頁(1988)には、ホスホン酸の
金属塩の構造及び熱的性質に関する報告が行われている
が、これを無機粉体の表面処理剤として使用することに
ついては、全く言及されていない。さらに有機リン酸エ
ステルの樹脂難燃効果はよく知られているが、フィラー
表面に固定化し界面物性を改良する試みは、上記公報し
か見当たらない。
Prior art related to the present invention includes Japanese Unexamined Patent Publication No. 57-16
No. 8954 discloses that treating the surface of an inorganic filler with an organic phosphonic acid salt compound is effective in making it hydrophobic. Also, Solid State Ionics (Solid 5tate Ionics)
) Vol. 26, pp. 63-69 (1988), there is a report on the structure and thermal properties of metal salts of phosphonic acid, but there is no information on the use of this as a surface treatment agent for inorganic powders. Not mentioned. Further, although the flame retardant effect of organic phosphate esters on resins is well known, the above-mentioned publication is the only attempt to improve the interfacial properties by immobilizing them on the filler surface.

発明が解決しようとする課題 近年、スーパーエンプラと称される耐熱性樹脂の開発が
目覚ましく、400″C以上の温度で安定なものが開発
されている。
Problems to be Solved by the Invention In recent years, the development of heat-resistant resins called super engineering plastics has been remarkable, and those that are stable at temperatures of 400''C or higher have been developed.

しかしながら、従来知られている表面処理剤は殆ど25
0℃から300℃前後で分解が起こるので、これらの耐
熱性樹脂に使用可能な分解温度の高い表面処理剤の開発
が切望されており、本発明はこの課題の解決を図ろうと
するものである。
However, most of the conventionally known surface treatment agents are
Since decomposition occurs between 0°C and around 300°C, there is a strong need for the development of a surface treatment agent with a high decomposition temperature that can be used for these heat-resistant resins, and the present invention is an attempt to solve this problem. .

課題を解決するための手段 無機フィラー等の親水性表面と疎水性樹脂の界面で高い
親和性を得るためには、その界面に界面活性を示す処理
剤を導入することが考えられ、且つ行われてきた。そこ
でこのような性質を有し、しかも熱的に安定な化合物を
鋭意検索した結果、有機ホスホン酸を含む金属酸化物ゲ
ルが熱安定性に関して大変価れていることを見い出し、
本発明を完遂するに至った。
Means to Solve the Problem In order to obtain high affinity at the interface between a hydrophilic surface such as an inorganic filler and a hydrophobic resin, it is possible and recommended to introduce a treatment agent that exhibits surface activity to the interface. It's here. As a result of an intensive search for a thermally stable compound that possesses these properties, we discovered that metal oxide gel containing organic phosphonic acid is highly valued in terms of thermal stability.
The present invention has now been completed.

無機粉体に対する有機ホスホン酸の表面改質処理は、上
述した公知の方法により、無機塩または有機アンモニウ
ム塩として沈着固定化することが可能である。
The surface modification treatment of organic phosphonic acid on inorganic powder can be performed by depositing and fixing it as an inorganic salt or an organic ammonium salt by the above-mentioned known method.

本発明者等は、無機粉体の表面に金属酸化物のゲル化化
合物と有機ホスホン酸のゲルが混合した沈着層として固
定化させることにより、熱安定性の高い処理層を形成す
ることができた。この場合、金属酸化物ゲルは、良好な
熱伝導体として働き、有機基に加わった熱を粉体に伝え
、粉体の格子エネルギーとして放散することが容易にな
ると推定できる。
The present inventors were able to form a highly thermally stable treated layer by immobilizing a mixed metal oxide gel compound and organic phosphonic acid gel on the surface of an inorganic powder as a deposited layer. Ta. In this case, it can be assumed that the metal oxide gel acts as a good thermal conductor, transmitting the heat added to the organic groups to the powder, and easily dissipating it as lattice energy of the powder.

また本発明において使用される有機ホスホン酸は、安定
な炭素−リンの結合を有する比較的疎水性の高いアルキ
ル基、アリール基を持つものが有効であり、特にリン原
子に直接フェニル基が結合した化合物は熱安定性に優れ
ている。従って、金属酸化物ゲル層と同時に処理するこ
とによって、さらに熱的に安定な表面処理層が形成され
る。
In addition, the organic phosphonic acids used in the present invention are effective to have a relatively hydrophobic alkyl group or aryl group that has a stable carbon-phosphorus bond. The compound has excellent thermal stability. Therefore, by treating the metal oxide gel layer simultaneously, a more thermally stable surface treatment layer can be formed.

本発明の実施に適する代表的な有機ホスホン酸化合物は
、フェニルホスホン酸、ナフチルホスホン酸などの芳香
族性ホスホン酸と、オクチルホスホン酸、デカンホスホ
ン酸、ドデシルホスホン酸などの一般的な脂肪族ホスホ
ン酸及びこれらに官能基を導入した芳香族系および脂肪
族系のホスホン酸である。この場合、耐熱性樹脂との反
応性を有するエステル基やメチロール基などが効果的で
ある。また1分子内に複数のホスホン酸基を有す−るも
の及びホスホン酸基を含むポリマー並びにオリゴマーの
類は、吸着特性に富み、且つ容易にゲル化するので効果
的に使用することができる。
Representative organic phosphonic acid compounds suitable for the practice of the present invention include aromatic phosphonic acids such as phenylphosphonic acid, naphthylphosphonic acid, and common aliphatic phosphonic acids such as octylphosphonic acid, decanephosphonic acid, and dodecylphosphonic acid. Acids and aromatic and aliphatic phosphonic acids into which functional groups have been introduced. In this case, ester groups, methylol groups, and the like that are reactive with heat-resistant resins are effective. Moreover, those having a plurality of phosphonic acid groups in one molecule, and polymers and oligomers containing phosphonic acid groups have excellent adsorption properties and are easily gelled, so that they can be effectively used.

本発明における金属酸化物のゲル化処理層としては、ア
ルミニウム、チタニウム、ジルコニウムなどの酸化物ゲ
ルあるいはこれらの複合型酸化物ゲルが有効である。特
にアルミニウムを用いた場合は、熱安定性ばかりでなく
、分散性の改善効果が顕著である。
As the metal oxide gelling layer in the present invention, oxide gels of aluminum, titanium, zirconium, etc., or composite oxide gels thereof are effective. Particularly when aluminum is used, the effect of improving not only thermal stability but also dispersibility is remarkable.

次に具体的な処理方法について説明する。処理方法は、
まずフィラーと樹脂を複合化する前に処理を行う場合と
、複合化の過程で処理を行う場合とに大別される。前者
の場合、■溶液のpH@調整してゲル化させる方法、■
金属塩の添加または基質の複分解反応などによりゲル化
させる方法がある。後者においては、■金属アルコキシ
ドや金属ハロゲン化物とホスホン酸化合物との反応物を
調製し、充填材と高分子材料との混練り時に添加するこ
とで達成できる。この場合は、ホスホン酸と金属アルコ
キシドの混合モル比により含金属ゲルとホスホン酸金属
塩の割合を任意に変えることができる。またこの■の方
法は、前者の処理においても使用できる。
Next, a specific processing method will be explained. The processing method is
First, there are two main categories: cases in which the treatment is performed before the filler and resin are combined, and cases in which the treatment is performed during the process of combining the filler and resin. In the former case, ■Method to adjust the pH of the solution and make it gel, ■
There are methods of gelling by adding metal salts or metathesis reaction of a substrate. The latter can be achieved by (1) preparing a reaction product of a metal alkoxide or metal halide and a phosphonic acid compound, and adding it at the time of kneading the filler and the polymeric material. In this case, the ratio of the metal-containing gel to the phosphonic acid metal salt can be arbitrarily changed by changing the mixing molar ratio of the phosphonic acid and the metal alkoxide. Furthermore, this method (2) can also be used in the former process.

つぎに、ホスホン酸化合物の熱安定性については、リン
酸モノエステルが高温下で容易に加水分解するのと対照
的である。空気中の熱分析によって得られた熱分解開始
温度の結果は表1に示したとおりであり、熱分解開始点
が325から558℃であって、極めて耐熱性の良いも
のであることが確認できた。また一部のホスホン酸ゲル
は、100〜200°C前後の比較的低温領域で付着水
の放出が認められるが、放出前後での表面疎水化能力は
殆ど影響を受けなかった。
Next, the thermal stability of phosphonic acid compounds is in contrast to that of phosphoric acid monoesters, which are easily hydrolyzed at high temperatures. The results of thermal decomposition onset temperature obtained by thermal analysis in air are shown in Table 1, and it can be confirmed that the thermal decomposition onset temperature is from 325 to 558°C, and that it has extremely good heat resistance. Ta. In addition, some phosphonic acid gels were observed to release adhering water in a relatively low temperature range of around 100 to 200°C, but the surface hydrophobization ability before and after the release was hardly affected.

表1.各種ホスホン酸金属酸化物ゲルの熱分解温度以下
、実施例により詳細に説明する。
Table 1. Thermal decomposition temperatures of various phosphonate metal oxide gels will be explained in detail with reference to Examples below.

実施例1 シリカゲル50gを水1dm’に分散したのち、フェニ
ルホスホン酸2.0g、塩化アルミニウム1.5gを加
えて攪拌する。攪拌を続けながらこの懸濁液のpHを0
.5規定水酸化ナトリウム水溶液で6.5から7.5に
調整すると、フェニルホスホン酸のアルミニウム塩及び
水酸化アルミニウムヒドロゲルが生成し、シリカゲルを
コーティングした。このシリカゲルを24時間静置後、
濾過し、水洗し、125°Cの温度で乾燥すると、フェ
ニルホスホン酸を含むアルミナゲルで表面処理されたシ
リカゲルが得られた。
Example 1 After dispersing 50 g of silica gel in 1 dm' of water, 2.0 g of phenylphosphonic acid and 1.5 g of aluminum chloride are added and stirred. While continuing to stir, the pH of this suspension was reduced to 0.
.. When the temperature was adjusted from 6.5 to 7.5 with a 5N aqueous sodium hydroxide solution, an aluminum salt of phenylphosphonic acid and an aluminum hydroxide hydrogel were produced and coated with silica gel. After leaving this silica gel for 24 hours,
After filtering, washing with water and drying at a temperature of 125°C, a silica gel surface-treated with alumina gel containing phenylphosphonic acid was obtained.

第1図はこの表面処理したシリカゲル、第2図は未処理
のシリカゲルの各走査型電子顕微鏡写真を示したもので
あり、両者の比較により未処理シリカゲル表面の微細な
付着粒子が、この処理をすることによってホスホン酸の
ゲル処理層で覆われて、より滑らかな表面を形成してい
ることが分かる。
Figure 1 shows scanning electron micrographs of the surface-treated silica gel, and Figure 2 shows scanning electron micrographs of the untreated silica gel.A comparison of the two shows that the fine particles on the surface of the untreated silica gel are different from those of the untreated silica gel. It can be seen that by doing this, the surface is covered with a phosphonic acid gel treatment layer, forming a smoother surface.

実施例2 平均繊維長25μmのホウ酸アルミニウムウィスカー5
0gをl dm3の水に分散し、フェニルホスホン酸ア
ルミニウム塩5.0gを加えて加熱溶解したのち、テト
ラブチルジルコニウムのアルコール溶液を徐々に滴下し
ていくとウィスカー表面にフェニルホスホン酸アルミニ
ウム・ジルコニウムのゲルが生成する。このウィスカー
を濾過、洗浄し、140°Cの温度で乾燥すると表面改
質されたウィスカーが得られた。
Example 2 Aluminum borate whiskers 5 with an average fiber length of 25 μm
After dispersing 0 g of aluminum zirconium phenylphosphonate in 1 dm3 of water, adding 5.0 g of aluminum phenylphosphonate and dissolving it by heating, the alcohol solution of tetrabutylzirconium was gradually dropped, and aluminum zirconium phenylphosphonate was added to the whisker surface. A gel is formed. The whiskers were filtered, washed, and dried at a temperature of 140°C to obtain surface-modified whiskers.

前記表面処理したウィスカーの熱分析(空気中、昇温速
度毎分20°C)の結果は第3図に示したとおりであり
、熱分解が480°C付近から始まっていることが分っ
た。
The results of thermal analysis of the surface-treated whiskers (in air, heating rate 20°C per minute) are shown in Figure 3, and it was found that thermal decomposition started at around 480°C. .

つぎに、このウィスカーの表面疎水性を評価するため、
ベンゼン25d中でホウ酸アルミニウムウィスカー0.
25gの分散性を、24時間経過後の沈降体積から評価
したところ、表2に示した結果かえられ分散性に顕著な
改善が認められた。
Next, in order to evaluate the surface hydrophobicity of this whisker,
Aluminum borate whiskers 0.0% in benzene 25d.
When the dispersibility of 25 g was evaluated from the sedimentation volume after 24 hours, the results shown in Table 2 were changed, and a remarkable improvement in the dispersibility was observed.

本本  フェニルホスホン酸基の分析値を示す。This book shows the analysis value of phenylphosphonic acid group.

このフェニルホスホン酸の固定化率は、3規定塩酸によ
る処理層の分解液の紫外光吸収スペクトル測定(263
rv+ )を行い、検量線法により求めた。
The immobilization rate of phenylphosphonic acid was determined by ultraviolet absorption spectrum measurement (263
rv+) and determined by the calibration curve method.

第4図は表面処理したウィスカーの拡散反射赤外吸収ス
ペクトルを示したものであり、フェニルホスホン酸に由
来する吸収帯が1145.1121.1034、102
2+ 979 CI−’に認められた。
Figure 4 shows the diffuse reflection infrared absorption spectrum of the surface-treated whiskers, and the absorption bands derived from phenylphosphonic acid are 1145.1121.1034, 102
2+ 979 CI-'.

走査型電子顕微鏡観察によると、ウィスカー表面は極め
て平滑な表面を示し、表面以外での析出物は認められな
かった。
According to scanning electron microscopy, the whisker surface showed an extremely smooth surface, and no precipitates were observed anywhere other than the surface.

実施例3 メタノール20戚中でテトラブチルジルコニウム1gと
酢酸IJI11!を混合したのち、オクチルホスホン酸
1.5gを混合する。これをシリカゲル50gにスプレ
ーした。24時間放置したのち150℃で1時間加熱し
て、表面処理されたシリカゲルを得た。
Example 3 1 g of tetrabutylzirconium and 11 ml of acetic acid IJI in 20 methanol! After mixing, 1.5 g of octylphosphonic acid is mixed. This was sprayed onto 50 g of silica gel. After being left for 24 hours, it was heated at 150° C. for 1 hour to obtain surface-treated silica gel.

氷晶を熱分析の結果、有機基の分解に基づく発熱ピーク
が340℃付近に認められた。
As a result of thermal analysis of the ice crystals, an exothermic peak due to decomposition of organic groups was observed at around 340°C.

実施例4 炭酸カルシウム(平均粒子径0,54μm)30gを塩
化アルミニウム水溶液(5χ) 300dに分散し、こ
れにβ−フェニルエテンホスホン酸1gの水溶液10−
ヲ徐々に滴下していくと、β−フェニルエテンホスホン
酸カルシウム・アルミニウムゲルでコーティングされた
炭酸カルシウムが得られた。
Example 4 30 g of calcium carbonate (average particle size 0.54 μm) was dispersed in 300 d of an aqueous aluminum chloride solution (5χ), and a 10-g aqueous solution of β-phenylethenephosphonic acid (1 g) was added to this.
By gradually dropping the solution, calcium carbonate coated with calcium β-phenylethenephosphonate/aluminum gel was obtained.

氷晶の熱分解開始点は、熱分析の結果385°Cであり
、この表面処理炭酸カルシウムは、疎水性を示し、水面
を浮遊した。
As a result of thermal analysis, the starting point of thermal decomposition of ice crystals was 385°C, and this surface-treated calcium carbonate exhibited hydrophobicity and floated on the water surface.

発明の効果 本発明によれば、耐熱性の高い疎水的な表面処理が可能
となり、耐熱性樹脂中でのフィラー等の分散性を向上す
ることが可能となった。
Effects of the Invention According to the present invention, it has become possible to perform hydrophobic surface treatment with high heat resistance, and it has become possible to improve the dispersibility of fillers and the like in the heat-resistant resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるフェニルホスホン酸のアルミニう
ムゲルをコーティングしたシリカゲルの走査型電子顕微
鏡写真、第2図は未処理のシリカゲルの走査型電子顕微
鏡写真、第3図はフェニルホスホン酸アルミニウム・ジ
ルコニウムで処理したホウ酸アルミニウムウィスカーの
熱分析(TG−DTA)チャート、第4図はフェニルホ
スホン酸アルミニウム・ジルコニウムゲルにより表面改
質したホウ酸アルミニウムウィスカーの拡散反射赤外吸
収スペクトル線図を示したものである。 第1図 特許出願人 四国化成工業株式会社 第2図 第3α、 w+図 Boo Cm−1 に記載した未処理シリカゲルの粒子構造を示す写真、第
3図は実施例2における表面改質されたウィスカーの熱
分析線図、第4図は同じく拡散反射赤外吸収スペクトル
線図を示したものである。 以上 C 手続補正書 (方式) 事件の表示 平成2年特許願第116288号 発明の名称 改質無機粉体及びその製法 補正をする者 事件との関係:特許出願人 補正命令の日付 平成2年7月31日 補正の対象 明細書の図面の簡単な説明の欄 補正の内容 図面の簡単な説明の欄を下記のとおり補正する。 記
Figure 1 is a scanning electron micrograph of silica gel coated with phenylphosphonic acid aluminum gel according to the present invention, Figure 2 is a scanning electron micrograph of untreated silica gel, and Figure 3 is a scanning electron micrograph of aluminum zirconium phenylphosphonate. Thermal analysis (TG-DTA) chart of aluminum borate whiskers treated with , and Figure 4 shows the diffuse reflection infrared absorption spectrum diagram of aluminum borate whiskers whose surface was modified with aluminum phenylphosphonate/zirconium gel. It is. Figure 1 Patent applicant: Shikoku Kasei Kogyo Co., Ltd. Figure 2 Figure 3 α, w + Figure Boo Cm-1 A photograph showing the particle structure of the untreated silica gel described in Boo Cm-1 Figure 3 is the surface-modified whisker in Example 2 Fig. 4 shows a diffuse reflection infrared absorption spectrum diagram as well. Above C Procedural amendment (method) Display of the case Patent application No. 116288, 1990 Name of the invention Modified inorganic powder and the person making amendments to its manufacturing process Relationship with the case: Date of the order for amendment by the patent applicant July 1990 Contents of the amendment The column for the brief explanation of the drawings of the specification to be amended on the 31st day of the month shall be amended as follows. Record

Claims (2)

【特許請求の範囲】[Claims] (1)表面に有機ホスホン酸化合物と金属酸化物ゲルの
複合体からなる被膜を形成したことを特徴とする改質無
機粉体。
(1) A modified inorganic powder characterized in that a film made of a composite of an organic phosphonic acid compound and a metal oxide gel is formed on the surface.
(2)無機粉体に有機ホスホン酸化合物を含む金属酸化
物ゲルの前駆体を吸着、噴霧または混合する改質無機粉
体の製法。
(2) A method for producing a modified inorganic powder, in which a precursor of a metal oxide gel containing an organic phosphonic acid compound is adsorbed, sprayed, or mixed into an inorganic powder.
JP11628890A 1990-05-02 1990-05-02 Modified inorganic powder and production thereof Pending JPH0413780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11628890A JPH0413780A (en) 1990-05-02 1990-05-02 Modified inorganic powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11628890A JPH0413780A (en) 1990-05-02 1990-05-02 Modified inorganic powder and production thereof

Publications (1)

Publication Number Publication Date
JPH0413780A true JPH0413780A (en) 1992-01-17

Family

ID=14683342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11628890A Pending JPH0413780A (en) 1990-05-02 1990-05-02 Modified inorganic powder and production thereof

Country Status (1)

Country Link
JP (1) JPH0413780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707051A1 (en) * 1994-10-14 1996-04-17 Tioxide Group Services Limited Inorganic particles coated with an alkylphosphonic acid or an ester thereof, their preparation and their use
US8193253B2 (en) * 2006-10-20 2012-06-05 Nissan Chemical Industries, Ltd. Organosol of fluoride colloid particle and method for producing the same
JP2013525516A (en) * 2010-04-16 2013-06-20 オムヤ・デイベロツプメント・アー・ゲー Method for preparing a surface-modified mineral material, the product obtained and its use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707051A1 (en) * 1994-10-14 1996-04-17 Tioxide Group Services Limited Inorganic particles coated with an alkylphosphonic acid or an ester thereof, their preparation and their use
GB2294037A (en) * 1994-10-14 1996-04-17 Tioxide Group Services Ltd Treated inorganic particles
GB2294037B (en) * 1994-10-14 1998-06-24 Tioxide Group Services Ltd Treated titanium dioxide or zinc oxide particles
AU697255B2 (en) * 1994-10-14 1998-10-01 Tioxide Group Services Limited Treated inorganic solids
US5837049A (en) * 1994-10-14 1998-11-17 Tioxide Group Services Limited Treated inorganic solids
US8193253B2 (en) * 2006-10-20 2012-06-05 Nissan Chemical Industries, Ltd. Organosol of fluoride colloid particle and method for producing the same
JP2013525516A (en) * 2010-04-16 2013-06-20 オムヤ・デイベロツプメント・アー・ゲー Method for preparing a surface-modified mineral material, the product obtained and its use
US9580605B2 (en) 2010-04-16 2017-02-28 Omya International Ag Process to prepare surface-modified mineral material, resulting products and uses thereof

Similar Documents

Publication Publication Date Title
JP3242561B2 (en) Flaky aluminum oxide, pearlescent pigment and method for producing the same
Möckel et al. Formation of uniform size anatase nanocrystals from bis (ammonium lactato) titanium dihydroxide by thermohydrolysis
Hsu et al. Paper whiteners: I. Titania coated silica
US3861946A (en) Titanium dioxide nacreous pigments and process for the preparation thereof
JPH07506081A (en) Improved method for producing silica-coated inorganic particles
JP2006306707A (en) Oxide composite material and its production method
JPH09507826A (en) Novel polymer conductive aluminosilicate material, element containing the material and manufacturing method thereof
Bai et al. Facile synthesis of core–shell structured ZrO2@ SiO2 via a modified Stöber method
JPH0641456A (en) Process for producing composite pigment
JP3393276B2 (en) Composite titanium compound powder and method for producing the same
JPH0575684B2 (en)
JPH0413780A (en) Modified inorganic powder and production thereof
JP3490013B2 (en) Method for producing titanium oxide forming solution
JPH01153760A (en) Production of pearl gloss pigment composed of bismuth oxychloride
KR101959045B1 (en) Process for preparing high refractive organic-inorganic hybrid sol
JP3490012B2 (en) Method for producing crystalline titanium oxide particle dispersion liquid
JPH03253598A (en) Dispersion plating method
Nishikawa et al. Preparation of monodispersed spherical silica-alumina particles by hydrolysis of mixed alkoxides
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP2014024711A (en) Smectite-coated silica particles and method for manufacturing the same
JPH0352804A (en) Antibacterial titanium oxide and preparation thereof
JP3610510B2 (en) Method for producing alumina hydrate dispersion
JPH0426528A (en) Production of cerium oxide sol
JP2000143984A (en) Fluorinated polyimide resin composition and its production
JP2989580B1 (en) Fibrous silica and method for producing the same