US20160366921A1 - Accessible, fluid raw tahini for use in a squeezed bottle and process for its preparation - Google Patents
Accessible, fluid raw tahini for use in a squeezed bottle and process for its preparation Download PDFInfo
- Publication number
- US20160366921A1 US20160366921A1 US15/189,578 US201615189578A US2016366921A1 US 20160366921 A1 US20160366921 A1 US 20160366921A1 US 201615189578 A US201615189578 A US 201615189578A US 2016366921 A1 US2016366921 A1 US 2016366921A1
- Authority
- US
- United States
- Prior art keywords
- food product
- raw food
- kernels
- sesame
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008569 process Effects 0.000 title description 12
- 239000012530 fluid Substances 0.000 title description 10
- 238000002360 preparation method Methods 0.000 title description 2
- 235000013305 food Nutrition 0.000 claims abstract description 89
- 235000003434 Sesamum indicum Nutrition 0.000 claims abstract description 81
- 239000002245 particle Substances 0.000 claims abstract description 44
- 230000009974 thixotropic effect Effects 0.000 claims abstract description 9
- 239000008159 sesame oil Substances 0.000 claims abstract description 7
- 235000011803 sesame oil Nutrition 0.000 claims abstract description 7
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 241000207961 Sesamum Species 0.000 claims abstract 14
- 238000003801 milling Methods 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 239000003921 oil Substances 0.000 claims description 15
- 235000019198 oils Nutrition 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- 239000012736 aqueous medium Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 6
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000012856 packing Methods 0.000 claims description 2
- 239000012297 crystallization seed Substances 0.000 claims 1
- 244000000231 Sesamum indicum Species 0.000 description 68
- 239000000047 product Substances 0.000 description 29
- 238000000227 grinding Methods 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005549 size reduction Methods 0.000 description 3
- 235000005979 Citrus limon Nutrition 0.000 description 2
- 244000131522 Citrus pyriformis Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001005836 Euchloe ausonia Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241001632427 Radiola Species 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 235000015074 other food component Nutrition 0.000 description 1
- 230000000361 pesticidal effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 235000012045 salad Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/60—Salad dressings; Mayonnaise; Ketchup
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L25/00—Food consisting mainly of nutmeat or seeds; Preparation or treatment thereof
- A23L25/30—Mashed or comminuted products, e.g. pulp, pastes, meal, powders; Products made therefrom, e.g. blocks, flakes, snacks; Liquid or semi-liquid products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D35/00—Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
- B65D35/02—Body construction
- B65D35/04—Body construction made in one piece
- B65D35/08—Body construction made in one piece from plastics material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/70—Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
- B65D85/72—Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- the present disclosure refers to fluid food products and specifically to fluid sesame seeds based food products.
- Sesame seeds are a common ingredient in various cuisines.
- the seeds are processes into Tahini which is a paste made from ground hulled sesame seeds.
- Tahini is served as a dip or as a component of other food products such as hummus and halva.
- Tahini is typically made by first soaking the sesame seeds in water and then crushing to separate the bran from the kernels. The crushed seeds are soaked in salt water, causing the bran to sink. The floating kernels are skimmed off the surface, roasted, and ground to produce an oily paste which is the raw Tahini product. Because of Tahini's high oil content, oiling off may occur following storage.
- the present disclosure provides a raw food product comprising ground roasted sesame seeds dispersed in sesame oil, the raw food product being characterized by at least one, at times at least two, preferably all of the following: (a) particles having an average size of between about 15 ⁇ m to about 70 ⁇ m; (b) being thixotropic, with a viscosity of between about 700 cps to about 2,500 cps; (c) being maintained as a single liquid phase for a time period of at least six months when stored at room temperature.
- the present disclosure provides a method for preparing the raw food product disclosed herein, the method comprising (i) hulling sesame seeds by stirring sesame seeds, suspended in an aqueous media, at a velocity of about 170 rpm to about 220 rpm, to obtain sesame kernels; (ii) roasting the sesame kernels to obtain roasted kernels; (iii) subjecting the roasted kernels to a size reduction method to obtain said raw food product.
- the method comprises crushing the roasted kernels to obtain crushed kernels (i.e. small pieces of particles).
- the method comprises subjecting the crushed kernels to two or more milling stages, preferably, in a ball mill device, to thereby obtain the raw food product.
- the present disclosure provides a ready for use food product comprising a homogenous emulsion of raw food product as disclosed herein in water.
- the method comprises mixing the raw food product disclosed herein with an amount of water sufficient to obtain a homogenous emulsion of a ready for use food product.
- FIG. 1 is a schematic illustration of a milling system in accordance with an embodiment of the present invention.
- FIG. 2 is a flow chart of a milling process in accordance with an embodiment of the present disclosure.
- the present disclosure is based on the development of raw Tahini that is unexpectedly stable during long term storage to an extent that no oiling off or phase separation was observed after even 6 months of storage at room temperature.
- the raw Tahini product is characterized by additional features as further discussed below.
- raw Tahini when referring in the context of the present disclosure to raw Tahini it is to be understood as meaning a fluid food product made of ground sesame seeds; and when referring to “ready for use” Tahini it is to be understood as meaning raw Tahini after being diluted with another fluid such as water, lemon juice or the like.
- the raw food product in accordance with the present disclosure denotes an edible food product that may be consumed as obtained, or may serve in preparation other food products, such as dips, salad sauce etc.
- the term “raw” it is to be understood as a product produced essentially only from the natural/original source of the food product, and in this particular case, from sesame seeds, without the addition of other substances.
- the raw food product contains at least 98% of only the source from which it is produced, i.e. at least 98%, at times, at least 99% and further at times 100% of only the original source (the sesame seeds).
- the inventors have found that grinding (e.g. crushing, milling) hulled and roasted sesame seeds using sequential grinding steps, particularly in a ball mill, resulted in a homogenous emulsion carrying ground sesame particles having an essentially uniform size distribution and this homogenous raw product is stable, i.e. has no apparent phase separation during storage (i.e. no oiling off, as further discussed below).
- grinding e.g. crushing, milling
- oiling off concerns the uncontrolled separation of oil out of a food product, as occurs not only with Tahini, but also with cheese, halva etc., a phenomena that deteriorates the quality of the food product in time.
- phase separated food products are often considered by consumers as damaged, spoiled and having low quality.
- avoiding or preventing oiling off is a challenge in the food industry and the inventors of the present disclosure developed a food product that is stable as a single homogenous phase, namely no-phase separation as a result of long term storage.
- the raw Tahini product of the present disclosure is thixotropic, i.e. it turns less viscous (more flowable) when being subjected to shear forces, such as shaking, agitation, or otherwise being stressed.
- a raw food product comprising particles of ground roasted sesame seeds dispersed in sesame oil, the raw food product being characterized by the following: (a) the particles have an average size/diameter between about 15 ⁇ m to about 40 ⁇ m, at times between about 20 ⁇ M to about 40 ⁇ M; (b) being maintained as a single liquid phase for a time period of at least six months when stored at room temperature. (c) being thixotropic, with a viscosity of between about 700 cps to about 2,500 cps, at times, between about 1,000 cps to about 2,000 cps.
- a method for producing the raw food product comprising (i) hulling sesame seeds by stirring sesame seeds, suspended in an aqueous media, at a velocity of about 170 rpm to about 220 rpm, to obtain sesame kernels; (ii) roasting the sesame kernels to obtain roasted kernels; and (iii) crushing the roasted kernels; and (iv) subjecting the crushed kernels to two or more milling stages in a ball mill device to obtain said raw food product.
- Sesame seeds are well known in the art as the seeds of the sesame plant ( Sesamum indicum or benniseed). The seeds are characterized as being rich in oil, proteins, carbohydrates, fibre, minerals and vitamins and are widely used in the food industry. Sesame seeds are ovate, slightly flattened and have a weight of between 20 and 40 milligrams. Their colors vary throughout the different available varieties, including off-white, buff, tan, gold, brown, reddish, gray and black.
- the sesame seeds from which the raw food product is produced are, in accordance with some embodiments, mature seeds, namely, seeds that have reached their full maturity. Maturity of seeds is understood by those versed in the art. For example, Growers Guides [Sesaco, Sesame Coordinators by D. Ray Langham, Jerry Riney, Glenn Smith, and Terry Wiemers March 2008] define the following phases and stages of sesame growing, including the stage of maturation:
- the mature sesame seeds have a weight of between about 10 mg to about 50 mg, at times between about 20 mg to about 40 mg.
- the sesame seeds have a length (i.e. one dimension) of between about 2.5 mm to about 4.5 mm, a width (i.e. another dimension, different from the length) Of about 1 mm to about 3 mm and thickness (i.e. a dimension different from th length and width) of between about 0.5 mm to about 1.5 mm, at times a length between about 3 mm to about 4 mm, a width of about 2 mm ⁇ 0.5 mm and thickness of about 1 mm ⁇ 0.5 mm.
- the sesame seeds can also be characterized by the moisture content prior to processing according to the method disclosed herein.
- the sesame seeds have no more than 8% moisture prior to applying the hulling step, at times between about 2% w/w to about 8% w/w moisture, at times between about 2% to about 6% moisture prior to applying the hulling step.
- the sesame seeds can also be characterized by the oil content.
- the sesame seeds comprise between about 45% w/w to about 65% w/w oil content, at times, between 50% to 60% oil content.
- the sesame seeds can also be characterized by the protein content.
- the sesame seeds comprise at least 15% protein content, at times, at least 18% protein content, and/or from about 18% w/w to about 30% w/w protein content, at times from about 22% to about 30% protein content.
- the sesame seeds comprise 55% ⁇ 5% oil content and 26% ⁇ 5% protein content out of the total weight of the seeds prior to hulling.
- the sesame seeds are Ethiopian sesame. There are various varieties of Ethiopian seeds including, without being limited thereto, White Humera, Gonder, Wollega, Radish, Mixed, Gedaref, Organic seeds.
- the Ethiopian sesame seeds are those characterized by at least one of the following: natural whitish or pearly white color seeds, minimal oil content of 40-50% w/w, preferably at least 50%, maximal moisture content of 8% w/w, preferably maximal content of 6%, thousand seed weight greater than 3 g, protein content of 18%-30% w/w, at times, 19%-28%. At times, the sesame seeds are regarded as having 99% purity. Further, the Ethiopian seeds are free from dead or alive insects or other infestation.
- the sesame seeds are while Humera type Ethiopian sesame seeds.
- the sesame seeds are Gondar type Ethiopian sesame seeds.
- the sesame seeds are a mixture of sesame seeds comprising at least seeds from Ethiopian origin, i.e. Ethiopian sesame seeds.
- the raw food product i.e. the raw Tahini, comprises the ground roasted sesame seed particles dispersed in sesame oil that is derived from the seeds during the process of production of the raw product.
- the raw food product is a fluid product.
- the raw food product exhibits thixotropic properties.
- Thixotropy i.e. it's viscosity decreases over time while being subjected to shearing forces, while after a time period in rest state (i.e. no stress applied), the material returns completely to its original viscosity.
- the raw food product is characterized by a viscosity upon stress of between 700 cps to 2,500 cps. In some embodiments, the viscosity is between about 1,000 cps to about 2,000 cps at rest (i.e. when no shear forces are applied).
- the raw food product in accordance with the present disclosure comprises milled roasted sesame seeds of a size of less than 40 ⁇ m.
- roast sesame seeds it is to be equivalently regarded as roasted seeds with the meaning of being subjected to controlled heating at temperatures of less than 100° C., at time, less than 80° C., less than 70° C., less than 60° C., or even less than 50° C. that while being browned, the seeds are not burnt.
- the raw food product namely, the raw Tahini
- the raw food product comprises particles of the roasted sesame seeds.
- the overall grinding including milling and/or crushing is conducted to obtain particles of essentially uniform size, having an average size larger than 15 ⁇ m.
- the particles average size is between about 15 ⁇ m to about 40 ⁇ m. In some embodiments, the particles average size is between about 20 ⁇ M to about 40 ⁇ M.
- the raw food product is stable during storage.
- stable in connection with the present disclosure denotes that the raw material maintains a homogeneous uniform fluid phase. In other words, in time there is essentially no separation into two immiscible layers.
- Stability in the context of the present disclosure is determined following the product storage.
- the product described herein is stable for at least 1 month when stored at room temperature, at times for at least 2 month, at times for at least 3 month, at times for at least 4 month, at times for at least 5 month, at times for at least 6 month, at times for at least 8 month, at times for at least 12 month.
- raw Tahini Further characteristics of the raw food product relate to its ability to hold water when mixed with water. It has been found that the raw food product (raw Tahini) disclosed herein and being characterized by the particles dimensions defined herein, is capable of holding an amount of water that is greater than the amount of water held by raw Tahini differently produced. When referring to a different production, it is meant that at least the size of the particles dispersed in the sesame oil are greater than about 40 ⁇ m, at times greater than 60 ⁇ m and the raw Tahini thus obtained has a viscosity of more than 2,500 cps, at times even more than 4,000 cps.
- the raw food product disclosed herein holds at least 10% w/w, at times, at least 20%, or at least 30% more water than a commercial raw Tahini product.
- the ability of the raw Tahini to hold water can be defined by the amount of water that it is capable of holding (being mixed with) while still maintaining its homogenous and uniform form. “Holding” also refers to the capability of being mixed with water and yet being maintained as a single phase, i.e. without breaking.
- a “broken” Tahini is one where the protein containing matter agglomerates or aggregates in the fluid oily medium and this agglomeration is visible to the eye.
- the raw food product (raw Tahini) produced according to the present disclosure is capable of holding water at a Tahini to water ratio of between 1.1:1 and 1.5:1, at times, between 1.1:1 to 1.3:1, or at times, between 1.2:1 to 1.3:1.
- the raw food product comprises a protein content between about 20% w/w to 40% w/w greater than the protein content in commercial raw Tahini
- the raw Tahini comprises at least 20%, at times, between 20-30%, at times about 24% ⁇ 3% protein.
- the raw food product can be prepared by a method generally comprising the steps of hulling sesame seeds, roasting the hulled seeds, and particulating (downsizing/grinding) the hulled seeds.
- the sesame seeds are first pre-treated to remove undesired material.
- Sesame seeds are harvested from the fruits of the sesame flower and may contain sand, dust, dirt, etc. Therefore, the sesame seeds can initially sifted in order to remove the undesired residual material that was collected with the seeds.
- undesired residual material means primarily inorganic material and synthetic and without being limited thereto includes sand, dust, dirt.
- the sesame seeds are sifted using a sifter having a mesh opening such that the seeds pass through and collected while the undesired residual material is retained on the sifter.
- the sifter has mesh openings between about 0.75 mm to about 1.7 mm, at times between about 0.9 mm to about 1.5 mm, further at times between about 1 mm to about 1.2 mm.
- the sifter has mesh openings of about 1 mm ⁇ 0.2 mm. During the sifting process, between 1% to 25% of undesired residual material is removed, at times between 1.5% to 20% In some embodiments, the seeds (sifted or not) are washed.
- Washing can be done with any aqueous solution, for example, with water or with saline water. This facilitates, inter alia, washing off pesticidal material or any other material.
- the wash may be performed by any one or combination of soaking, rinsing, immersing, suspending, or any other form of contacting the seeds with water (or other aqueous solution) without damaging the integrity of the kernels.
- the seeds are washed with water.
- Hulling of the seeds includes removing of the coating of the seeds (“de-coating” or “de-corticated”).
- hulling is achieved by suspending the seeds in an aqueous media (typically water) for at least 30 min , at times, for between 10 min to 60 min, at times between 15 min to 30 min, or between 10 min to 15 min or, at times, for about 22 min ⁇ 5 min.
- the suspended seeds are then gently stirred or agitated, e.g. stirring at a velocity of no more than 400 rpm, at times, no more than 300 rpm, at times at a velocity of about 170 rpm to about 220 rpm. The gentle action is necessary in order to avoid damage to the hulled seeds.
- the gentle stirring can be conducted immediately or shortly after introducing the seeds into the aqueous media (i.e. simultaneously), although preferably the seeds are first suspended in the water and only after time, are subjected to the gentle mixing.
- the velocity can vary depending on the type of device used at this stage.
- the stirring of the water suspended seeds is controlled and requires minimal or no shear forces on the seeds, such that essentially all hulled kernels are maintained intact without any damage.
- the hulled seeds referred to herein also as “hulled kernels” or “kernels” are maintained under condition to keep the moisture of the hulled kernels at a level of between about 40% to about 50%, at times 45% ⁇ 2%.
- the moisture content of the hulled kernels can be determined by any known method in the field, for example by weighting samples and then drying them and calculating the differences in weight which is indicative of the weight of water removed by drying.
- the wet kernels are then subjected to a heating process at temperatures that do not damage the integrity of the protein in the kernel or cause oxidation of the oils therein.
- the hulled sesame kernels are subjected to heating to provide roasted kernels.
- roasted kernels refers to hulled kernels that underwent at least a heating process. Heating is done by techniques known in the industry. In some embodiments, roasting is conducted using a steam oven. It is essential that the roasting be at temperatures that do not affect the kernel's nutritional values, aroma and taste, or cause damage to the protein content or promote oxidation of the lipids and oils in the seeds.
- roasting is at temperatures above 100° C., at times, above 110° C., at times, above 120° C. but typically not more than 140° C., and preferably not more than 130° C.
- the hulled kernels are not necessarily separated from the hull at the roasting stage and the heating is conducted on the “mixture” of hulls and hulled/de-coated kernels. At times, it is even beneficial to maintain, at this roasting stage, the hulls with the kernels as the hulls protect the kernels during the heating, and particularly the surface area of the kernels.
- roasting is terminated when the moisture content is considered suitable for further processing.
- the moisture content following roasting is between about 0.1% to about 10%, at times between about 0.5% to about 5%, further at times between about 0.7% to about 2%.
- the moisture content after roasting is between about 1.0% to about 1.8%, or not more than 1.5% ⁇ 0.2%.
- cooling is to a temperature from about 10° C. to about 45° C. In some other embodiments, cooling is to a temperature from about 20° C. to about 30° C., at times to a temperature of about 22° C. ⁇ 3° C. In some embodiments, cooling is by a blower that while reduces the temperature of the kernels, also separates the hulls from the kernels which are then removed to obtain separated kernels using a sifter having mesh openings of between 0.5 mm to 1.5 mm, at times, around 0.8 ⁇ 0.2 mm.
- the roasted kernels are subjected to a size reduction step. This includes any one or combination of crushing, grinding and milling.
- the roasted kernels are subjected to a step-wise size reduction process.
- the roasted kernels are initially subjected to a first grinding step to obtain crushed roasted kernels which are further subjected to a second step-wise grinding step.
- the term “roasted kernels” encompass also “roasted crushed kernels”.
- the initial grinding process comprises any conventional technique known in the food industry, and in particular, in the sesame seeds grinding industry, to obtain crushed hulled kernels.
- the initial/first grinding irrespective of the particular procedure employed, brings the sesame kernels into a particle size which is above 40 ⁇ m (the size of particles in most conventional raw Tahini), without damaging the protein quality therein.
- the first grinding can be conducted, without being limited thereto, using ball mills.
- the first grinding thus provides particles size of more than 40 ⁇ m and an intermediate product having a viscosity of more than 2,500 cps (typically more than even 4,000 cps).
- the inventors have found that a applying a second, step-wise grinding step on the crushed roasted kernels is essential for obtaining the properties of the raw food product (the raw Tahini) with the characteristics as disclosed and defined herein.
- the further step wise grindings are by a mill ball system where the roasted crushed kernels are subjected to several sequential ball mill grinding stages.
- each milling stage can be under the same or different condition from each other (i.e. each milling stage may be at the same of different condition from any of its preceding or following milling stages).
- the different millings are essentially under the same conditions.
- a ball mill as used herein denotes a slightly inclined or horizontal rotating cylinder that is partially filled with balls, usually stone or metal (such as zirconium), and upon operation, the balls grind material within the cylinder to the necessary fineness by friction and impact with the tumbling balls.
- balls usually stone or metal (such as zirconium)
- the inventors have surprisingly found that using at least two, or even at least three or even at least four and at times, preferably between 4-8 sequential grinding (milling) steps produce at the end of each grinding stage an essentially homogenous particle size population, while subjecting roasted kernels to a single grinding/milling step, for a longer time period resulted in heterogeneous particle sizes.
- a long milling was also found to damage the protein quality due to the long heating in the milling device (burning the oil).
- At least a portion of the grinding step involves also heating the kernels while subjecting them to the crushing/milling stages.
- the grinder preferably ball mill
- the grinding is heated during operation.
- the grinding is conducted at a temperature that promotes fluidity of the oil carrying the particles.
- grinding is at a device's temperature of between about 30° C. to about 70° C., at times, at a device temperature of between about 30° C. to about 60° C., until the particles reach desired size.
- the resulting particles are cooled to about room temperature before being subjected to another round of milling.
- the particles reach an average size of 25 ⁇ m (e.g. after several millings, e.g. after the 8 th time in milling in a ball mill).
- the product comprising particles with an average size of about 25 ⁇ m is considered to be the raw food product. Further or alternatively, the product comprising particles with an average size of about 25 ⁇ m and a viscosity of no more than 2,500 cps, is considered to be the raw food product.
- FIG. 1 A schematic representation of a system for milling the kernels into the raw food product, is described above is illustrated in FIG. 1 .
- the transfer of seeds from source tanks 102 a, 102 b and/or 102 c to main tanks 104 a or 104 b is via reservoir pipe 106 and respective inlet pipes 108 a and 108 b, operated by respective valves 102 va , 102 vb , 102 vc , 104 va and 104 vb and pump 110 .
- the use of two main tanks allows the process to be conducted as a continuous process, such that when one is in open configuration, the other is in closed configuration.
- main tank 104 a is closed by discharge valve 112 va
- discharge valve 112 vb is open, allowing seeds to be discharged from main tank 104 b. Both main tanks are operated using pump 114 .
- Ground seeds (about 40 ⁇ m) are discharged from main tank 104 a or 104 b and subjected to a sequence milling stages using ball milling units, illustrated in this non-limiting embodiment by two sets of ball mill units 116 a and 116 b, each containing, respectively, a ball mil device 118 a or 118 b, followed by an intermediate tank 120 a or 120 b subsequently a heat exchanger 122 a or 122 b, the latter is used to cool the milled product from a temperature of about 60° C. (the temperature in the ball mill) to a temperature around room temperature ( ⁇ 19° C. to ⁇ 30° C.). It is noted that particles exiting a ball mill can be returned/circulated into the ball mill for further processing before being cooled by the heat exchanger.
- ball milling units illustrated in this non-limiting embodiment by two sets of ball mill units 116 a and 116 b, each containing, respectively, a ball mil device 118 a or 118 b, followed by
- milled particles exiting heat exchanger 122 b are re-introduced into ball mill unit 116 a via milling pipe 124 .
- Each milling stage reduces the size and homogenizes the size of the thus produced particles until reaching the desired size and homogeneity, as further discussed herein.
- the reintroduction into mill unit 116 a may be repeated until the particles have reached the desired average size being essentially homogenous size.
- the transfer of the end product (the product of desired particle size) is operated by valve 130 v.
- the raw product is filtered.
- FIG. 2 The operation of the milling stages is also illustrated in FIG. 2 as a flow chart.
- a main tank 104 a will be referred to in FIG. 2 as main tank 204 a.
- a process 200 comprising first delivery of roasted and sifted kernels from reservoir tanks 202 a, 202 b and 202 c, in into two separate main tanks 204 a and 204 b by the operation of pump 210 .
- the separation of the kernels into two main containers is merely for the sake of allowing continuity, such that when one tank is refilled, the other is being used.
- the raw food product thus obtained is collected.
- the raw food product is collected into a storage unit (container) where it is maintained until further processing (e.g. packaging).
- the collection into storage unit is under controlled atmosphere, including, in accordance with some embodiments, anoxic environment.
- an anoxic environment includes nitrogen atmosphere.
- the storage container is preferably maintained at room temperature and under contentious slow mixing (about 5-10 rpm).
- the raw food product can be transferred into individual containers, e.g. bottles, sachets, or other small volume containers for use by the end consumer.
- the container is at least partially flexible, inter alia, to allow squeezing out of the raw product thereof.
- the container is a plastic bottle, e.g. polypropylene bottle.
- the container is a squeezable bottle, e.g. a squeezable down-up bottle or up-down bottle.
- the raw food product is further process by at least diluting it with an aqueous medium.
- the aqueous medium is water.
- the aqueous medium is lemon juice.
- the dilution may be with any water based medium.
- the dilution of the raw product is typically by stirring (mixing) the raw food product with the aqueous medium until a homogenous blend is obtained.
- the raw product is also mixed with other food components.
- the resulting homogenous blend is referred to herein as a “ready for use” food product.
- the ready for use product inherently has a viscosity that is less than that of the raw food product.
- the raw food product and the commercial Tahini were tasted by volunteers.
- the ready for use food product was determined to have a smoother texture, with no stinging feeling usually felt with raw Tahini (commercial/prepared by other methods).
- the ready for use food product was also determined to be sweeter as compared to the commercial reference Tahini
- An Ethiopian line of sesame seeds (Sesamum Indicum, Ethiopian Withish seeds, Humera type, Certificate of Ethiopian Chamber of Commerce and Sectorial Association No. 156295) characterized by a characterized by a weight of 20 mg to 40 mg and dimensions: length between 3 mm to 4 mm, width 2 mm and thickness 1 mm, 4-6% moisture, 50-57% fat and 22-27% protein was used.
- the seeds were sifted using a 1-1.2 mm sifter.
- the sifted seeds were then continuously washed with water to remove pesticides and the like, and then suspended in clean water for 20 to 30 minutes.
- the soaked seeds where then pealed in a wet-pealing process during which separation between the seed coat (bran, hull) and the kernel was achieved.
- De-coating was conducted by gentle mixing in a blender at a spin rate of 170 rpm to 220 rpm (without applying pressure on the seeds, to avoid breaking of the seeds), while maintaining the moisture of the seeds in the range of 39%-46%.
- the de-coated kernels were roasted, using a steam oven, at a temperature around 120° C. During the roasting period samples of kernels are extracted in hexane to verify quality of the kernels and in particular, protein content and quality. The moisture of the roasted kernels at the end of the process was determined to be about 1.5%.
- the kernels are then cooled to a temperature of 20° C.-30° C. Residual hull is removed by sifting the roasted kernels.
- the kernels had an average size of 210 ⁇ M which are then transferred to the milling stage.
- the kernels were collected and initially ground to obtain particles of average size of 40 ⁇ m, as known in the industry, and then further ground in two sequential ball mills (total passings through a ball mill of 8 times), maintained at a temperature of 30° C.-80° C. in accordance with the process steps illustrated in FIGS. 1 and 2 .
- the kernels were passed through four ball mills.
- the average size of the crushed kernels was 120 ⁇ m; after a second ball mill the crushed product had an average size of about 80 ⁇ m; after the third ball mill the crushed product had an average size of 40 ⁇ m and after the fourth ball mill the crushed kernels has an average size of 25 ⁇ m.
- the resulting product was a smooth raw Tahini product.
- the raw tahini product was packaged in squeezable containers for commercial use.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Seeds, Soups, And Other Foods (AREA)
Abstract
Description
- The present disclosure refers to fluid food products and specifically to fluid sesame seeds based food products.
- References considered to be relevant as background to the presently disclosed subject matter are listed below:
- El Khier, M. K. S., Ishag K. E. A., & Yagoub A. E. A. (2008). Chemical Composition and Oil Characteristics of Sesame Seed Cultivars Grown in Sudan. Research Journal of Agriculture and Biological Sciences, 4(6): 761-766.
- Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.
- Sesame seeds play an important role in human nutrition. Most of the sesame seeds are used for oil extraction and the rest are used for edible purposes (El Khier et al, 2008).
- Sesame seeds are a common ingredient in various cuisines. In some cases, the seeds are processes into Tahini which is a paste made from ground hulled sesame seeds. Tahini is served as a dip or as a component of other food products such as hummus and halva. Being an excellent source of essential nutrients, such as calcium, copper, manganese, protein, omega-3, omega-6, and fibers, yet low in levels of sugar and saturated fats, Tahini is favored by health-oriented cuisines as well as by vegetarians and vegans.
- Tahini is typically made by first soaking the sesame seeds in water and then crushing to separate the bran from the kernels. The crushed seeds are soaked in salt water, causing the bran to sink. The floating kernels are skimmed off the surface, roasted, and ground to produce an oily paste which is the raw Tahini product. Because of Tahini's high oil content, oiling off may occur following storage.
- In accordance with some aspects, the present disclosure provides a raw food product comprising ground roasted sesame seeds dispersed in sesame oil, the raw food product being characterized by at least one, at times at least two, preferably all of the following: (a) particles having an average size of between about 15 μm to about 70 μm; (b) being thixotropic, with a viscosity of between about 700 cps to about 2,500 cps; (c) being maintained as a single liquid phase for a time period of at least six months when stored at room temperature.
- In accordance with a second aspect, the present disclosure provides a method for preparing the raw food product disclosed herein, the method comprising (i) hulling sesame seeds by stirring sesame seeds, suspended in an aqueous media, at a velocity of about 170 rpm to about 220 rpm, to obtain sesame kernels; (ii) roasting the sesame kernels to obtain roasted kernels; (iii) subjecting the roasted kernels to a size reduction method to obtain said raw food product.
- In some embodiments, the method comprises crushing the roasted kernels to obtain crushed kernels (i.e. small pieces of particles).
- In some embodiments, the method comprises subjecting the crushed kernels to two or more milling stages, preferably, in a ball mill device, to thereby obtain the raw food product.
- In accordance with yet another aspect, the present disclosure provides a ready for use food product comprising a homogenous emulsion of raw food product as disclosed herein in water.
- Finally, provided is a method for preparing the ready for use food product, the method comprises mixing the raw food product disclosed herein with an amount of water sufficient to obtain a homogenous emulsion of a ready for use food product.
- In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
-
FIG. 1 is a schematic illustration of a milling system in accordance with an embodiment of the present invention. -
FIG. 2 is a flow chart of a milling process in accordance with an embodiment of the present disclosure. - The present disclosure is based on the development of raw Tahini that is unexpectedly stable during long term storage to an extent that no oiling off or phase separation was observed after even 6 months of storage at room temperature. The raw Tahini product is characterized by additional features as further discussed below.
- For the sake of simplicity, when referring in the context of the present disclosure to raw Tahini it is to be understood as meaning a fluid food product made of ground sesame seeds; and when referring to “ready for use” Tahini it is to be understood as meaning raw Tahini after being diluted with another fluid such as water, lemon juice or the like. In other words, the raw food product in accordance with the present disclosure denotes an edible food product that may be consumed as obtained, or may serve in preparation other food products, such as dips, salad sauce etc. By the use of the term “raw” it is to be understood as a product produced essentially only from the natural/original source of the food product, and in this particular case, from sesame seeds, without the addition of other substances. In other words, the raw food product contains at least 98% of only the source from which it is produced, i.e. at least 98%, at times, at least 99% and further at
times 100% of only the original source (the sesame seeds). - The inventors have found that grinding (e.g. crushing, milling) hulled and roasted sesame seeds using sequential grinding steps, particularly in a ball mill, resulted in a homogenous emulsion carrying ground sesame particles having an essentially uniform size distribution and this homogenous raw product is stable, i.e. has no apparent phase separation during storage (i.e. no oiling off, as further discussed below).
- As appreciated, “oiling off” concerns the uncontrolled separation of oil out of a food product, as occurs not only with Tahini, but also with cheese, halva etc., a phenomena that deteriorates the quality of the food product in time. Such phase separated food products are often considered by consumers as damaged, spoiled and having low quality. As such, avoiding or preventing oiling off is a challenge in the food industry and the inventors of the present disclosure developed a food product that is stable as a single homogenous phase, namely no-phase separation as a result of long term storage.
- Further, it has been found that the raw Tahini product of the present disclosure is thixotropic, i.e. it turns less viscous (more flowable) when being subjected to shear forces, such as shaking, agitation, or otherwise being stressed.
- Thus, based on the present finding there is disclosed a raw food product comprising particles of ground roasted sesame seeds dispersed in sesame oil, the raw food product being characterized by the following: (a) the particles have an average size/diameter between about 15 μm to about 40 μm, at times between about 20 μM to about 40 μM; (b) being maintained as a single liquid phase for a time period of at least six months when stored at room temperature. (c) being thixotropic, with a viscosity of between about 700 cps to about 2,500 cps, at times, between about 1,000 cps to about 2,000 cps.
- Further, based on the present finding there is provided a method for producing the raw food product, the method comprising (i) hulling sesame seeds by stirring sesame seeds, suspended in an aqueous media, at a velocity of about 170 rpm to about 220 rpm, to obtain sesame kernels; (ii) roasting the sesame kernels to obtain roasted kernels; and (iii) crushing the roasted kernels; and (iv) subjecting the crushed kernels to two or more milling stages in a ball mill device to obtain said raw food product.
- Sesame seeds are well known in the art as the seeds of the sesame plant (Sesamum indicum or benniseed). The seeds are characterized as being rich in oil, proteins, carbohydrates, fibre, minerals and vitamins and are widely used in the food industry. Sesame seeds are ovate, slightly flattened and have a weight of between 20 and 40 milligrams. Their colors vary throughout the different available varieties, including off-white, buff, tan, gold, brown, reddish, gray and black.
- The sesame seeds from which the raw food product is produced are, in accordance with some embodiments, mature seeds, namely, seeds that have reached their full maturity. Maturity of seeds is understood by those versed in the art. For example, Growers Guides [Sesaco, Sesame Coordinators by D. Ray Langham, Jerry Riney, Glenn Smith, and Terry Wiemers March 2008] define the following phases and stages of sesame growing, including the stage of maturation:
-
Phase/Stage End point of stage DAP/Week* Vegetative Germination Emergence 0-5-1 Seedling 3rd pair true leaf length = 2nd 6-25 Juvenile First buds 26-37 Pre-reproductive 50% open flowers 38-44 Reproductive Early bloom 5 node pairs of capsules 45-52 Mid bloom Branches/minor plants stop flowering 53-81 Late bloom 90% of plants with no open flowers 82-90 Ripening Physiological maturity (PM) 91-106 Drying Full maturity All seed mature 107-112 Initial drydown 1st dry capsules 113-126 Late drydown Full drydown 127-146 *DAP = days after planting/weeks in stage. In some embodiments, the mature sesame seeds are white, pearl white or whitish seeds. - In some embodiments, the mature sesame seeds have a weight of between about 10 mg to about 50 mg, at times between about 20 mg to about 40 mg.
- In some further embodiments, the sesame seeds have a length (i.e. one dimension) of between about 2.5 mm to about 4.5 mm, a width (i.e. another dimension, different from the length) Of about 1 mm to about 3 mm and thickness (i.e. a dimension different from th length and width) of between about 0.5 mm to about 1.5 mm, at times a length between about 3 mm to about 4 mm, a width of about 2 mm±0.5 mm and thickness of about 1 mm±0.5 mm.
- The sesame seeds can also be characterized by the moisture content prior to processing according to the method disclosed herein. In some other embodiments, the sesame seeds have no more than 8% moisture prior to applying the hulling step, at times between about 2% w/w to about 8% w/w moisture, at times between about 2% to about 6% moisture prior to applying the hulling step.
- The sesame seeds can also be characterized by the oil content. In some embodiments, the sesame seeds comprise between about 45% w/w to about 65% w/w oil content, at times, between 50% to 60% oil content.
- The sesame seeds can also be characterized by the protein content. In some embodiments, the sesame seeds comprise at least 15% protein content, at times, at least 18% protein content, and/or from about 18% w/w to about 30% w/w protein content, at times from about 22% to about 30% protein content.
- In some embodiments, the sesame seeds comprise 55%±5% oil content and 26%±5% protein content out of the total weight of the seeds prior to hulling.
- In some embodiments, the sesame seeds are Ethiopian sesame. There are various varieties of Ethiopian seeds including, without being limited thereto, White Humera, Gonder, Wollega, Radish, Mixed, Gedaref, Organic seeds.
- In accordance with the present disclosure the Ethiopian sesame seeds are those characterized by at least one of the following: natural whitish or pearly white color seeds, minimal oil content of 40-50% w/w, preferably at least 50%, maximal moisture content of 8% w/w, preferably maximal content of 6%, thousand seed weight greater than 3 g, protein content of 18%-30% w/w, at times, 19%-28%. At times, the sesame seeds are regarded as having 99% purity. Further, the Ethiopian seeds are free from dead or alive insects or other infestation.
- In some embodiments, the sesame seeds are while Humera type Ethiopian sesame seeds.
- In some other embodiments, the sesame seeds are Gondar type Ethiopian sesame seeds.
- In some other embodiments, the sesame seeds are a mixture of sesame seeds comprising at least seeds from Ethiopian origin, i.e. Ethiopian sesame seeds.
- The raw food product, i.e. the raw Tahini, comprises the ground roasted sesame seed particles dispersed in sesame oil that is derived from the seeds during the process of production of the raw product. Thus, the raw food product is a fluid product.
- As noted above, the raw food product exhibits thixotropic properties. Thixotropy, i.e. it's viscosity decreases over time while being subjected to shearing forces, while after a time period in rest state (i.e. no stress applied), the material returns completely to its original viscosity. In some embodiments, the raw food product is characterized by a viscosity upon stress of between 700 cps to 2,500 cps. In some embodiments, the viscosity is between about 1,000 cps to about 2,000 cps at rest (i.e. when no shear forces are applied).
- The raw food product in accordance with the present disclosure comprises milled roasted sesame seeds of a size of less than 40 μm.
- When referring to roasted sesame seeds it is to be equivalently regarded as roasted seeds with the meaning of being subjected to controlled heating at temperatures of less than 100° C., at time, less than 80° C., less than 70° C., less than 60° C., or even less than 50° C. that while being browned, the seeds are not burnt.
- Further, as noted above, the raw food product, namely, the raw Tahini, comprises particles of the roasted sesame seeds. As further described below, the overall grinding (including milling and/or crushing) is conducted to obtain particles of essentially uniform size, having an average size larger than 15 μm. In some embodiments, the particles average size is between about 15 μm to about 40 μm. In some embodiments, the particles average size is between about 20 μM to about 40 μM.
- As further noted above, the raw food product is stable during storage. The term stable in connection with the present disclosure denotes that the raw material maintains a homogeneous uniform fluid phase. In other words, in time there is essentially no separation into two immiscible layers.
- Stability in the context of the present disclosure is determined following the product storage. In some embodiments, the product described herein is stable for at least 1 month when stored at room temperature, at times for at least 2 month, at times for at least 3 month, at times for at least 4 month, at times for at least 5 month, at times for at least 6 month, at times for at least 8 month, at times for at least 12 month.
- Further characteristics of the raw food product (i.e. raw Tahini) relate to its ability to hold water when mixed with water. It has been found that the raw food product (raw Tahini) disclosed herein and being characterized by the particles dimensions defined herein, is capable of holding an amount of water that is greater than the amount of water held by raw Tahini differently produced. When referring to a different production, it is meant that at least the size of the particles dispersed in the sesame oil are greater than about 40 μm, at times greater than 60 μm and the raw Tahini thus obtained has a viscosity of more than 2,500 cps, at times even more than 4,000 cps.
- In some embodiments, it has been found that the raw food product disclosed herein holds at least 10% w/w, at times, at least 20%, or at least 30% more water than a commercial raw Tahini product. The ability of the raw Tahini to hold water can be defined by the amount of water that it is capable of holding (being mixed with) while still maintaining its homogenous and uniform form. “Holding” also refers to the capability of being mixed with water and yet being maintained as a single phase, i.e. without breaking. A “broken” Tahini is one where the protein containing matter agglomerates or aggregates in the fluid oily medium and this agglomeration is visible to the eye. In this connection while commercially available raw Tahini are typically capable of holding water at a raw Tahini to water ratio of 1:1, the raw food product (raw Tahini) produced according to the present disclosure is capable of holding water at a Tahini to water ratio of between 1.1:1 and 1.5:1, at times, between 1.1:1 to 1.3:1, or at times, between 1.2:1 to 1.3:1.
- Yet, further characteristics of the raw food product relate to its protein content. In some embodiments, the raw food product comprises a protein content between about 20% w/w to 40% w/w greater than the protein content in commercial raw Tahini In some embodiments, the raw Tahini comprises at least 20%, at times, between 20-30%, at times about 24%±3% protein.
- As noted above, the raw food product can be prepared by a method generally comprising the steps of hulling sesame seeds, roasting the hulled seeds, and particulating (downsizing/grinding) the hulled seeds.
- At times, prior to performing the above method steps, the sesame seeds are first pre-treated to remove undesired material. Sesame seeds are harvested from the fruits of the sesame flower and may contain sand, dust, dirt, etc. Therefore, the sesame seeds can initially sifted in order to remove the undesired residual material that was collected with the seeds. In this context, undesired residual material means primarily inorganic material and synthetic and without being limited thereto includes sand, dust, dirt.
- In some embodiments, the sesame seeds are sifted using a sifter having a mesh opening such that the seeds pass through and collected while the undesired residual material is retained on the sifter. In some embodiments, the sifter has mesh openings between about 0.75 mm to about 1.7 mm, at times between about 0.9 mm to about 1.5 mm, further at times between about 1 mm to about 1.2 mm. In some embodiments, the sifter has mesh openings of about 1 mm±0.2 mm. During the sifting process, between 1% to 25% of undesired residual material is removed, at times between 1.5% to 20% In some embodiments, the seeds (sifted or not) are washed. Washing can be done with any aqueous solution, for example, with water or with saline water. This facilitates, inter alia, washing off pesticidal material or any other material. The wash may be performed by any one or combination of soaking, rinsing, immersing, suspending, or any other form of contacting the seeds with water (or other aqueous solution) without damaging the integrity of the kernels.
- In one embodiment, the seeds (sifted or not) are washed with water.
- Hulling of the seeds includes removing of the coating of the seeds (“de-coating” or “de-corticated”). In some embodiments, hulling is achieved by suspending the seeds in an aqueous media (typically water) for at least 30 min , at times, for between 10 min to 60 min, at times between 15 min to 30 min, or between 10 min to 15 min or, at times, for about 22 min±5 min. The suspended seeds are then gently stirred or agitated, e.g. stirring at a velocity of no more than 400 rpm, at times, no more than 300 rpm, at times at a velocity of about 170 rpm to about 220 rpm. The gentle action is necessary in order to avoid damage to the hulled seeds.
- At times, the gentle stirring can be conducted immediately or shortly after introducing the seeds into the aqueous media (i.e. simultaneously), although preferably the seeds are first suspended in the water and only after time, are subjected to the gentle mixing. The velocity can vary depending on the type of device used at this stage. The stirring of the water suspended seeds is controlled and requires minimal or no shear forces on the seeds, such that essentially all hulled kernels are maintained intact without any damage.
- The hulled seeds, referred to herein also as “hulled kernels” or “kernels” are maintained under condition to keep the moisture of the hulled kernels at a level of between about 40% to about 50%, at times 45%±2%. The moisture content of the hulled kernels can be determined by any known method in the field, for example by weighting samples and then drying them and calculating the differences in weight which is indicative of the weight of water removed by drying.
- The wet kernels are then subjected to a heating process at temperatures that do not damage the integrity of the protein in the kernel or cause oxidation of the oils therein. The hulled sesame kernels are subjected to heating to provide roasted kernels. In the context of the present disclosure, the term “roasted kernels” refers to hulled kernels that underwent at least a heating process. Heating is done by techniques known in the industry. In some embodiments, roasting is conducted using a steam oven. It is essential that the roasting be at temperatures that do not affect the kernel's nutritional values, aroma and taste, or cause damage to the protein content or promote oxidation of the lipids and oils in the seeds. To this end the protein amount and quality in the kernels are constantly tested during roasting, for example from extracts derived using n-hexane as a solvent to ensure the protein quality and surface activity. In some embodiment, roasting is at temperatures above 100° C., at times, above 110° C., at times, above 120° C. but typically not more than 140° C., and preferably not more than 130° C.
- It is noted that the hulled kernels are not necessarily separated from the hull at the roasting stage and the heating is conducted on the “mixture” of hulls and hulled/de-coated kernels. At times, it is even beneficial to maintain, at this roasting stage, the hulls with the kernels as the hulls protect the kernels during the heating, and particularly the surface area of the kernels.
- In some embodiments, roasting is terminated when the moisture content is considered suitable for further processing. In some embodiments, the moisture content following roasting is between about 0.1% to about 10%, at times between about 0.5% to about 5%, further at times between about 0.7% to about 2%. In some embodiments, the moisture content after roasting is between about 1.0% to about 1.8%, or not more than 1.5%±0.2%.
- In some embodiments, roasting is for a time period of between 60 min to 100 min, at times between 70 min to 90 min, further at times, for about 80 min±5 min.
- The roasted kernels are then cooled. In some embodiments, cooling is to a temperature from about 10° C. to about 45° C. In some other embodiments, cooling is to a temperature from about 20° C. to about 30° C., at times to a temperature of about 22° C.±3° C. In some embodiments, cooling is by a blower that while reduces the temperature of the kernels, also separates the hulls from the kernels which are then removed to obtain separated kernels using a sifter having mesh openings of between 0.5 mm to 1.5 mm, at times, around 0.8±0.2 mm.
- After cooling, the roasted kernels are subjected to a size reduction step. This includes any one or combination of crushing, grinding and milling.
- In some embodiments, the roasted kernels are subjected to a step-wise size reduction process. Preferably, the roasted kernels are initially subjected to a first grinding step to obtain crushed roasted kernels which are further subjected to a second step-wise grinding step. In the context of the present disclosure, the term “roasted kernels” encompass also “roasted crushed kernels”.
- The initial grinding process (crushing) comprises any conventional technique known in the food industry, and in particular, in the sesame seeds grinding industry, to obtain crushed hulled kernels. The initial/first grinding, irrespective of the particular procedure employed, brings the sesame kernels into a particle size which is above 40 μm (the size of particles in most conventional raw Tahini), without damaging the protein quality therein. The first grinding can be conducted, without being limited thereto, using ball mills. The first grinding thus provides particles size of more than 40 μm and an intermediate product having a viscosity of more than 2,500 cps (typically more than even 4,000 cps).
- The inventors have found that a applying a second, step-wise grinding step on the crushed roasted kernels is essential for obtaining the properties of the raw food product (the raw Tahini) with the characteristics as disclosed and defined herein. The further step wise grindings are by a mill ball system where the roasted crushed kernels are subjected to several sequential ball mill grinding stages.
- In this connection it is noted that the sequential milling stages can be under the same or different condition from each other (i.e. each milling stage may be at the same of different condition from any of its preceding or following milling stages). In some embodiments, the different millings are essentially under the same conditions.
- When referring to the milling conditions it is to be understood as including at least temperature and degree of impact applied (determined, inter alia, by the shell's rotation, size of balls etc.)
- A ball mill as used herein denotes a slightly inclined or horizontal rotating cylinder that is partially filled with balls, usually stone or metal (such as zirconium), and upon operation, the balls grind material within the cylinder to the necessary fineness by friction and impact with the tumbling balls.
- The inventors have surprisingly found that using at least two, or even at least three or even at least four and at times, preferably between 4-8 sequential grinding (milling) steps produce at the end of each grinding stage an essentially homogenous particle size population, while subjecting roasted kernels to a single grinding/milling step, for a longer time period resulted in heterogeneous particle sizes. A long milling was also found to damage the protein quality due to the long heating in the milling device (burning the oil).
- In some embodiments, the crushed kernels are subjected to between 2 to 10, at times, 6 to 9 or 8 sequential milling steps. In some other embodiments, the crushed kernels are subjected to four sequential cycles of milling steps as illustrated in
FIGS. 1 and 2 (which amount to a total of 8 grinding stages). As appreciated, the sequential steps may be done using one ball mill, or several mills operated in series. In some embodiments, grinding involves four milling cycles as illustrated inFIGS. 1 and 2 . - In some embodiments, at least a portion of the grinding step involves also heating the kernels while subjecting them to the crushing/milling stages. To this end, the grinder (preferably ball mill) is heated during operation. In some embodiments, the grinding is conducted at a temperature that promotes fluidity of the oil carrying the particles. In some embodiments, grinding is at a device's temperature of between about 30° C. to about 70° C., at times, at a device temperature of between about 30° C. to about 60° C., until the particles reach desired size. After each milling stage, the resulting particles are cooled to about room temperature before being subjected to another round of milling.
- At the end of the milling stages, the particles reach an average size of 25 μm (e.g. after several millings, e.g. after the 8th time in milling in a ball mill).
- The product comprising particles with an average size of about 25 μm, is considered to be the raw food product. Further or alternatively, the product comprising particles with an average size of about 25 μm and a viscosity of no more than 2,500 cps, is considered to be the raw food product.
- This raw food product is collected and/or may be further processed for packaging.
- A schematic representation of a system for milling the kernels into the raw food product, is described above is illustrated in
FIG. 1 . - Specifically shown is a
milling system 100 to be used on grind sesame seeds having an average size of about 40 μm (after being subjected to some crushing and grinding). Thesystem 100 includes a farm of source tanks filled with initially grinded sesame seeds (about 40 μm), in this particular embodiment, the farm includes three 102 a, 102 b, 102 c.source tanks 102 a, 102 b and 102 c are connected to two main tanks 104 a and 104 b. The transfer of seeds fromSource tanks 102 a, 102 b and/or 102 c to main tanks 104 a or 104 b is viasource tanks reservoir pipe 106 and 108 a and 108 b, operated by respective valves 102 va, 102 vb, 102 vc, 104 va and 104 vb and pump 110. As appreciated, the use of two main tanks allows the process to be conducted as a continuous process, such that when one is in open configuration, the other is in closed configuration. For Example, when main tank 104 a is closed by discharge valve 112 va, discharge valve 112 vb is open, allowing seeds to be discharged from main tank 104 b. Both main tanks are operated usingrespective inlet pipes pump 114. - Ground seeds (about 40 μm) are discharged from main tank 104 a or 104 b and subjected to a sequence milling stages using ball milling units, illustrated in this non-limiting embodiment by two sets of
116 a and 116 b, each containing, respectively, aball mill units 118 a or 118 b, followed by anball mil device 120 a or 120 b subsequently aintermediate tank 122 a or 122 b, the latter is used to cool the milled product from a temperature of about 60° C. (the temperature in the ball mill) to a temperature around room temperature (˜19° C. to ˜30° C.). It is noted that particles exiting a ball mill can be returned/circulated into the ball mill for further processing before being cooled by the heat exchanger.heat exchanger - It has been found by the inventors that in order to obtain the unique features of the raw Tahini product of the present disclosure several short millings in addition to the conventional milling (to a size of 40 μm) are required.
- To further mill the particulate product, i.e. to repeat the milling stage, milled particles exiting
heat exchanger 122 b are re-introduced intoball mill unit 116 a via milling pipe 124. Each milling stage reduces the size and homogenizes the size of the thus produced particles until reaching the desired size and homogeneity, as further discussed herein. The reintroduction intomill unit 116 a may be repeated until the particles have reached the desired average size being essentially homogenous size. - In some embodiments, at the end of at least 4, at times, at least 5, 6, 7 and preferably 8 such additional milling stages reach the desired average size and the thus produced raw product are transferred to storage in
storage tank 130 and packing. The transfer of the end product (the product of desired particle size) is operated byvalve 130 v. At times, before storing, the raw product is filtered. - The operation of the milling stages is also illustrated in
FIG. 2 as a flow chart. For simplicity, the same reference number used inFIG. 1 will be used inFIG. 2 , shifted by 100, to designate the same elements. Thus, for example, a main tank 104 a will be referred to inFIG. 2 asmain tank 204 a. Specifically illustrated inFIG. 2 is aprocess 200 comprising first delivery of roasted and sifted kernels from 202 a, 202 b and 202 c, in into two separatereservoir tanks 204 a and 204 b by the operation ofmain tanks pump 210. As noted above, the separation of the kernels into two main containers is merely for the sake of allowing continuity, such that when one tank is refilled, the other is being used. Roasted kernel is then transported, usingpump 214 into a 1st ball mill 216 a. From 1stintermediate tank 220 a the fluid containing particles is cooled in aheat exchanger 222 a. The cooling is to about room temperature as described above and illustrated in this non-limiting embodiment by the use of cooling water (being introduced into the jacket of the heat exchanger). The cooled particles are then transferred to a 2nd ball mill 216 b. These particles are transferred into a 2nd intermediate tank 220 b and subsequently cooled inheat exchanger 222 b. The process is repeated as illustrated by return line 250, until reaching the desired average particles size of about 25 μm. - Once in the desired average particle size, the raw food product (raw Tahini) thus obtained is collected. In some embodiments, the raw food product is collected into a storage unit (container) where it is maintained until further processing (e.g. packaging). To ensure stable storage conditions, the collection into storage unit is under controlled atmosphere, including, in accordance with some embodiments, anoxic environment. In some embodiments, an anoxic environment includes nitrogen atmosphere. In addition, the storage container is preferably maintained at room temperature and under contentious slow mixing (about 5-10 rpm).
- In some embodiments, the raw food product can be transferred into individual containers, e.g. bottles, sachets, or other small volume containers for use by the end consumer.
- In some embodiments, the container is at least partially flexible, inter alia, to allow squeezing out of the raw product thereof. In some embodiments, the container is a plastic bottle, e.g. polypropylene bottle. In some embodiments, the container is a squeezable bottle, e.g. a squeezable down-up bottle or up-down bottle.
- In some embodiments, the individual (small volume) containers are squeezable containers having a capacity for holding between 250 to 1,500 grams of raw food product, at times 250±50 gram of raw food product.
- In some aspects, the raw food product is further process by at least diluting it with an aqueous medium. In some embodiments, the aqueous medium is water. In some alternative embodiments, the aqueous medium is lemon juice. In yet some other embodiments, the dilution may be with any water based medium.
- The dilution of the raw product is typically by stirring (mixing) the raw food product with the aqueous medium until a homogenous blend is obtained. In some embodiments, the raw product is also mixed with other food components.
- The resulting homogenous blend is referred to herein as a “ready for use” food product. The ready for use product inherently has a viscosity that is less than that of the raw food product.
- The amount of aqueous medium to be mixed with the raw material is not limited to a particular range and depends solely on the consumer's personal taste. Nonetheless, as mentioned above, the raw food product disclosed herein can hold a water volume greater than other commercial Tahini products. In addition, it has been found by the inventors that the mixing with water is relatively longer and less shear forces are required, (i.e. mixing is easier) than that with commercial raw Tahini Without being bound by theory, it is believed that due to the large surface area of the proteins in the raw food product disclosed herein, the inversion point of the emulsion is longer.
- As described herein below in the Examples, the raw food product and the commercial Tahini were tasted by volunteers. The ready for use food product was determined to have a smoother texture, with no stinging feeling usually felt with raw Tahini (commercial/prepared by other methods). The ready for use food product was also determined to be sweeter as compared to the commercial reference Tahini
- An Ethiopian line of sesame seeds (Sesamum Indicum, Ethiopian Withish seeds, Humera type, Certificate of Ethiopian Chamber of Commerce and Sectorial Association No. 156295) characterized by a characterized by a weight of 20 mg to 40 mg and dimensions: length between 3 mm to 4 mm, width 2 mm and thickness 1 mm, 4-6% moisture, 50-57% fat and 22-27% protein was used.
- The seeds were sifted using a 1-1.2 mm sifter.
- The sifted seeds were then continuously washed with water to remove pesticides and the like, and then suspended in clean water for 20 to 30 minutes. The soaked seeds where then pealed in a wet-pealing process during which separation between the seed coat (bran, hull) and the kernel was achieved. De-coating was conducted by gentle mixing in a blender at a spin rate of 170 rpm to 220 rpm (without applying pressure on the seeds, to avoid breaking of the seeds), while maintaining the moisture of the seeds in the range of 39%-46%.
- The de-coated kernels were roasted, using a steam oven, at a temperature around 120° C. During the roasting period samples of kernels are extracted in hexane to verify quality of the kernels and in particular, protein content and quality. The moisture of the roasted kernels at the end of the process was determined to be about 1.5%.
- The kernels are then cooled to a temperature of 20° C.-30° C. Residual hull is removed by sifting the roasted kernels. The kernels had an average size of 210 μM which are then transferred to the milling stage.
- Specifically, the kernels were collected and initially ground to obtain particles of average size of 40 μm, as known in the industry, and then further ground in two sequential ball mills (total passings through a ball mill of 8 times), maintained at a temperature of 30° C.-80° C. in accordance with the process steps illustrated in
FIGS. 1 and 2 . - As shown, overall, the kernels were passed through four ball mills. After the first ball mill, the average size of the crushed kernels was 120 μm; after a second ball mill the crushed product had an average size of about 80 μm; after the third ball mill the crushed product had an average size of 40 μm and after the fourth ball mill the crushed kernels has an average size of 25 μm.
- The resulting product was a smooth raw Tahini product.
- The raw tahini product was packaged in squeezable containers for commercial use.
- The resulting liquid Tahini was characterized as:
-
- having an average particles size in the fluid Tahini of about 40 μm±20 μm;
- being thixotropic with a viscosity, at rest, of about 1,000 cps to 2,000 cps;
- capable of holding at least 1.2 times water, i.e. mixing with water at a Tahini to water ratio of at least 1.2 to 1 provided a homogenous stable rood product.
- protein content of 30% more than the protein content in commercial raw Tahini;
- stable with no phase separation or oiling off for a period of at least 6 month when stored at room temperature;
- smooth texture, with no stinging feeling usually felt with raw Tahini and sweeter taste (as determined by tasters).
Claims (22)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/465,310 US9848633B2 (en) | 2015-06-22 | 2017-03-21 | Accessible, fluid tahini for use in a squeezed bottle and process for its preparation |
| US17/031,467 US20210237965A1 (en) | 2015-06-22 | 2020-09-24 | Container containing raw food product |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IL239576 | 2015-06-22 | ||
| IL239576A IL239576B (en) | 2015-06-22 | 2015-06-22 | An accessible, fluid raw tahini for use in a squuezed bottle and process for its preparation |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/465,310 Continuation US9848633B2 (en) | 2015-06-22 | 2017-03-21 | Accessible, fluid tahini for use in a squeezed bottle and process for its preparation |
| US17/031,467 Continuation US20210237965A1 (en) | 2015-06-22 | 2020-09-24 | Container containing raw food product |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160366921A1 true US20160366921A1 (en) | 2016-12-22 |
Family
ID=55022902
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/189,578 Abandoned US20160366921A1 (en) | 2015-06-22 | 2016-06-22 | Accessible, fluid raw tahini for use in a squeezed bottle and process for its preparation |
| US15/465,310 Active US9848633B2 (en) | 2015-06-22 | 2017-03-21 | Accessible, fluid tahini for use in a squeezed bottle and process for its preparation |
| US17/031,467 Abandoned US20210237965A1 (en) | 2015-06-22 | 2020-09-24 | Container containing raw food product |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/465,310 Active US9848633B2 (en) | 2015-06-22 | 2017-03-21 | Accessible, fluid tahini for use in a squeezed bottle and process for its preparation |
| US17/031,467 Abandoned US20210237965A1 (en) | 2015-06-22 | 2020-09-24 | Container containing raw food product |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US20160366921A1 (en) |
| EP (1) | EP3136877B1 (en) |
| ES (1) | ES2743574T3 (en) |
| IL (1) | IL239576B (en) |
| PL (1) | PL3136877T3 (en) |
| WO (1) | WO2016207887A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2020219493B2 (en) * | 2019-02-06 | 2021-11-04 | Rushdi Food Industries Ltd. | Multi-compartment package for preparing tahini based products and method of using the same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2021306479A1 (en) * | 2020-07-09 | 2023-02-02 | Tetra Laval Holdings & Finance S.A. | A method and system for processing seeds into a paste-like food product |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2014A (en) * | 1841-03-24 | Machine ecu cutting square-joint dovetails | ||
| JP2014060931A (en) * | 2012-09-20 | 2014-04-10 | Kuki Sangyo Kk | Manufacturing method of seed paste |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2282818A (en) * | 1940-06-25 | 1942-05-12 | Musher Foundation Inc | Stabilized food composition |
| IL106655A0 (en) * | 1993-08-11 | 1993-12-08 | Israel Edible Products Ltd | A method for the manufacture of tehina sauce |
| JP2008086213A (en) * | 2006-09-29 | 2008-04-17 | Katagi Foods Co Ltd | Method for producing sesame paste |
| KR100994753B1 (en) * | 2010-04-07 | 2010-11-19 | 하이바이오 주식회사 | Manufacturing method of black sesame paste having high antioxidantal activity |
-
2015
- 2015-06-22 IL IL239576A patent/IL239576B/en active IP Right Grant
-
2016
- 2016-06-22 US US15/189,578 patent/US20160366921A1/en not_active Abandoned
- 2016-06-22 PL PL16738230T patent/PL3136877T3/en unknown
- 2016-06-22 ES ES16738230T patent/ES2743574T3/en active Active
- 2016-06-22 EP EP16738230.8A patent/EP3136877B1/en active Active
- 2016-06-22 WO PCT/IL2016/050662 patent/WO2016207887A1/en active Application Filing
-
2017
- 2017-03-21 US US15/465,310 patent/US9848633B2/en active Active
-
2020
- 2020-09-24 US US17/031,467 patent/US20210237965A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2014A (en) * | 1841-03-24 | Machine ecu cutting square-joint dovetails | ||
| JP2014060931A (en) * | 2012-09-20 | 2014-04-10 | Kuki Sangyo Kk | Manufacturing method of seed paste |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2020219493B2 (en) * | 2019-02-06 | 2021-11-04 | Rushdi Food Industries Ltd. | Multi-compartment package for preparing tahini based products and method of using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016207887A1 (en) | 2016-12-29 |
| EP3136877B1 (en) | 2019-06-12 |
| US20210237965A1 (en) | 2021-08-05 |
| EP3136877A1 (en) | 2017-03-08 |
| PL3136877T3 (en) | 2019-12-31 |
| US20170188615A1 (en) | 2017-07-06 |
| US9848633B2 (en) | 2017-12-26 |
| IL239576A0 (en) | 2015-11-30 |
| ES2743574T3 (en) | 2020-02-19 |
| IL239576B (en) | 2018-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210037866A1 (en) | Emulsifiers and the uses thereof | |
| US20210237965A1 (en) | Container containing raw food product | |
| US4670284A (en) | Edible nut and fruit granule product and process | |
| TWI769369B (en) | Composition containing solid fats and oils, method for producing the same, method for adjusting physical properties, and hardener for fats and oils | |
| CN112931571A (en) | Mango and lotus paste moon cake and making method thereof | |
| RU2335924C1 (en) | Method of manufacturing functional purposed natural honey paste (versions) | |
| CN107296108A (en) | A kind of technique and green zanthoxylum oil for producing green zanthoxylum oil | |
| JP6975726B2 (en) | How to make green pepper powder | |
| Omae et al. | Beetroot extract encapsulated in inulin: Storage stability and incorporation in sorbet | |
| FR2908601A1 (en) | FAT OR FRUIT SPREAD PASTE | |
| Okonkwo et al. | Application of HACCP to post-harvest processing of African breadfruit Treculia african Decne in Nigeria | |
| CN107751971B (en) | Method for keeping taste of fruit particles in jam or fruity jam | |
| CA3151136A1 (en) | Method for manufacturing a food product comprising matter of dairy origin and matter of plant origin, and hybrid food product containing matter of dairy origin and matter of plant origi | |
| CN115087366B (en) | Semi-finished powdered food product based on vegetable food and method for producing the same | |
| KR100570508B1 (en) | Processing method of rice bran | |
| WO2022215021A1 (en) | Salted spreadable food cream, as well as semi-finished product and method for preparing thereof | |
| RU2175496C1 (en) | Method of preparing fruit-and-berry dessert | |
| Bastani et al. | Study of the effect of two different edible coatings on walnut kernel shelf life | |
| RU2183072C2 (en) | Method of preparing fruit-and-berry dessert | |
| RU2181972C2 (en) | Fruit dessert production method | |
| RU2183077C2 (en) | Method of preparing fruit-and-berry dessert | |
| RU2181973C2 (en) | Method for producing fruit dessert | |
| RU2183076C2 (en) | Method of preparing fruit-and-berry dessert | |
| RU2183093C2 (en) | Method of preparing fruit-and-berry dessert | |
| RU2183086C2 (en) | Method of preparing fruit-and-berry dessert |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RUSHDI FOOD INDUSTRIES LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASHIR, IBRAHIM;REEL/FRAME:042318/0876 Effective date: 20170425 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |