US20160366603A1 - Silent redial during mobile-originated call - Google Patents

Silent redial during mobile-originated call Download PDF

Info

Publication number
US20160366603A1
US20160366603A1 US15/245,408 US201615245408A US2016366603A1 US 20160366603 A1 US20160366603 A1 US 20160366603A1 US 201615245408 A US201615245408 A US 201615245408A US 2016366603 A1 US2016366603 A1 US 2016366603A1
Authority
US
United States
Prior art keywords
call
failure
attempting
qos
mobile originated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/245,408
Inventor
Arvind Swaminathan
Srinivasan Balasubramanian
Samir Ginde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US15/245,408 priority Critical patent/US20160366603A1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALASUBRAMANIAN, SRINIVASAN, GINDE, Samir V., SWAMINATHAN, ARVIND
Publication of US20160366603A1 publication Critical patent/US20160366603A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/424Arrangements for automatic redialling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • H04W76/027
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions

Definitions

  • aspects of the present disclosure relate generally to wireless communications, and more particularly, to techniques for improving silent redial during a mobile originated (MO) call.
  • MO mobile originated
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, data, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., bandwidth and transmit power). Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems and orthogonal frequency division multiple access (OFDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • OFDMA orthogonal frequency division multiple access
  • a wireless multiple-access communication system can simultaneously support communication for multiple wireless terminals.
  • Each terminal communicates with one or more base stations via transmissions on the forward and reverse links.
  • the forward link (or downlink) refers to the communication link from the base stations to the terminals
  • the reverse link (or uplink) refers to the communication link from the terminals to the base stations.
  • This communication link may be established via a single-input single-output, multiple-input single-output or a multiple-input multiple-output (MIMO) system.
  • MIMO multiple-input multiple-output
  • a MIMO system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission.
  • a MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, which are also referred to as spatial channels.
  • NS independent channels corresponds to a dimension.
  • the MIMO system can provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • a method for wireless communications generally includes detecting a failure that occurs during a mobile originated call, determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempting to retry the call.
  • RAT radio access technology
  • a method for wireless communications generally includes detecting a failure that occurs during a mobile originated call in a current system, selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempting the call based on the selected subsequent system.
  • RAT radio access technology
  • a method for wireless communications generally includes detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • UE user equipment
  • BS base station
  • QCI quantized channel information
  • RAT radio access technology
  • a method for wireless communications generally includes attempting a mobile original call, receiving a quality of service (QoS) failure message in response to attempting the call, determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempting the call in an effort to save the call after a predetermined amount of time.
  • QoS quality of service
  • an apparatus for wireless communications generally includes means for detecting a failure that occurs during a mobile originated call, means for determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and means for attempting to retry the call.
  • RAT radio access technology
  • an apparatus for wireless communications generally includes means for detecting a failure that occurs during a mobile originated call in a current system, means for selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and means for attempting the call based on the selected subsequent system.
  • RAT radio access technology
  • an apparatus for wireless communications generally includes means for detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), means for determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and means for redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • UE user equipment
  • RAT radio access technology
  • an apparatus for wireless communications generally includes means for attempting a mobile original call, means for receiving a quality of service (QoS) failure message in response to attempting the call, means for determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and means for re-attempting the call in an effort to save the call after a predetermined amount of time.
  • QoS quality of service
  • an apparatus for wireless communications generally includes at least one processor and a memory coupled to the at least one processor.
  • the at least on processor is generally configured to detect a failure that occurs during a mobile originated call, determine how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempt to retry the call.
  • RAT radio access technology
  • an apparatus for wireless communications generally includes at least one processor and a memory coupled to the at least one processor.
  • the at least on processor is generally configured to detect a failure that occurs during a mobile originated call in a current system, select a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempt the call based on the selected subsequent system.
  • RAT radio access technology
  • an apparatus for wireless communications generally includes at least one processor and a memory coupled to the at least one processor.
  • the at least on processor is generally configured to detect a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), determine quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirect the UE to another system in an effort to speed up a silent redial procedure.
  • UE user equipment
  • QCI quantized channel information
  • an apparatus for wireless communications generally includes at least one processor and a memory coupled to the at least one processor.
  • the at least on processor is generally configured to attempt a mobile original call, receive a quality of service (QoS) failure message in response to attempting the call, determine that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempt the call in an effort to save the call after a predetermined amount of time.
  • QoS quality of service
  • a computer-program product for wireless communications generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during a mobile originated call, determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempting to retry the call.
  • RAT radio access technology
  • a computer-program product for wireless communications generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during a mobile originated call in a current system, selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempting the call based on the selected subsequent system.
  • RAT radio access technology
  • a computer-program product for wireless communications generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS). determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • QCI quantized channel information
  • a computer-program product for wireless communications generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for attempting a mobile original call, receiving a quality of service (QoS) failure message in response to attempting the call, determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempting the call in an effort to save the call after a predetermined amount of time.
  • QoS quality of service
  • FIG. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with certain aspects of the present disclosure.
  • FIG. 2 shows a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communications network, in accordance with certain aspects of the present disclosure.
  • UE user equipment
  • FIG. 3 illustrates example operations for attempting to retry a MO call, according to aspects of the present disclosure.
  • FIG. 4 illustrates example operations for attempting a MO call based on a selected subsequent system, according to aspects of the present disclosure.
  • FIG. 5 illustrates an example call-flow diagram, which may improve a silent redial success rate when resource reservation fails at a local eNB, according to aspects of the present disclosure.
  • FIG. 6 illustrates example operations for redirecting a UE to another system when, for example, a resource reservation failure occurs at a local eNB, according to aspects of the present disclosure.
  • FIG. 7 illustrates an example call-flow diagram, which may improve a silent redial success rate when resource reservation fails at a destination eNB, according to aspects of the present disclosure.
  • FIG. 8 illustrates example operations for attempting to salvage a MO call when, for example, a resource reservation failure occurs at a destination eNB, according to aspects of the present disclosure.
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA), cdma2000, etc.
  • UTRA includes wideband CDMA (WCDMA), time division synchronous CDMA (TD-SCDMA), and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as global system for mobile communications (GSM).
  • GSM global system for mobile communications
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, etc.
  • E-UTRA evolved UTRA
  • UMB ultra mobile broadband
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • Flash-OFDM® Flash-OFDM®
  • UTRA and E-UTRA are part of universal mobile telecommunication system (UMTS).
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A), in both frequency division duplex (FDD) and time division duplex (TDD), are new releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • FDD frequency division duplex
  • TDD time division duplex
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP).
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2).
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
  • FIG. 1 shows a wireless communication network 100 , which may be an LTE network or some other wireless network.
  • Wireless network 100 may include a number of evolved Node Bs (eNBs) 110 and other network entities.
  • An eNB is an entity that communicates with user equipments (UEs) and may also be referred to as a base station, a Node B, an access point, etc.
  • UEs user equipments
  • Each eNB may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of an eNB and/or an eNB subsystem serving this coverage area, depending on the context in which the term is used.
  • the Node Bs 110 may implement the functionality described herein for improving silent redial in mobile originated calls.
  • a Node B may detect failures during mobile originated calls from a UE and may redirect the UE to another system in an effort to speed up a silent redial procedure.
  • An eNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG)).
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a pico cell may be referred to as a pico eNB.
  • An eNB for a femto cell may be referred to as a femto eNB or a home eNB (HeNB).
  • HeNB home eNB
  • an eNB 110 a may be a macro eNB for a macro cell 102 a
  • an eNB 110 b may be a pico eNB for a pico cell 102 b
  • an eNB 110 c may be a femto eNB for a femto cell 102 c .
  • An eNB may support one or multiple (e.g., three) cells.
  • the terms “eNB”, “base station” and “cell” may be used interchangeably herein.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., an eNB or a UE) and send a transmission of the data to a downstream station (e.g., a UE or an eNB).
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110 d may communicate with macro eNB 110 a and a UE 120 d in order to facilitate communication between eNB 110 a and UE 120 d .
  • a relay station may also be referred to as a relay eNB, a relay base station, a relay, etc.
  • Wireless network 100 may be a heterogeneous network that includes eNBs of different types, e.g., macro eNBs, pico eNBs, femto eNBs, relay eNBs, etc. These different types of eNBs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100 .
  • macro eNBs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico eNBs, femto eNBs, and relay eNBs may have lower transmit power levels (e.g., 0.1 to 2 Watts).
  • a network controller 130 may couple to a set of eNBs and may provide coordination and control for these eNBs.
  • Network controller 130 may communicate with the eNBs via a backhaul.
  • the eNBs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100 , and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a smart phone, a netbook, a smartbook, etc.
  • PDA personal digital assistant
  • WLL wireless local loop
  • the UEs 120 may implement the functionality described herein for improving silent redial in mobile originated calls. For example, the UEs may maintain timers, counts, and thresholds for use in silent redial. UEs 120 may also detect a failure during mobile originated call, determine how to attempt retrying the call, select a subsequent system for attempting the call, and attempt to retry the call as described herein.
  • FIG. 2 shows a block diagram of a design of base station/eNB 110 and UE 120 , which may be one of the base stations/eNBs and one of the UEs in FIG. 1 .
  • Base station 110 may be equipped with T antennas 234 a through 234 t
  • UE 120 may be equipped with R antennas 252 a through 252 r , where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based on CQIs received from the UE, process (e.g., encode and modulate) the data for each UE based on the MCS(s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for SRPI, etc.) and control information (e.g., CQI requests, grants, upper layer signaling, etc.) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the PSS and SSS).
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232 a through 232 t .
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232 a through 232 t may be transmitted via T antennas 234 a through 234 t , respectively.
  • antennas 252 a through 252 r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254 a through 254 r , respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) its received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254 a through 254 r , perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260 , and provide decoded control information and system information to a controller/processor 280 .
  • a channel processor 284 may determine RSRP, RSSI, RSRQ, CQI, etc., as described below.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, etc.) from controller/processor 280 . Processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254 a through 254 r (e.g., for SC-FDM, OFDM, etc.), and transmitted to base station 110 .
  • control information e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, etc.
  • Processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254 a through 254 r (e.g., for SC-FDM, OFDM, etc.), and transmitted to base station
  • the uplink signals from UE 120 and other UEs may be received by antennas 234 , processed by demodulators 232 , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120 .
  • Processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240 .
  • Controllers/processors 240 and 280 may direct operations at base station 110 and UE 120 , respectively.
  • Processors 240 and 280 and/or other processors and modules at base station 110 and UE 120 may perform or direct processes for the techniques described herein.
  • processors 240 and 280 may implement the functionality described herein for improving silent redial in mobile originated calls.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120 , respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • Silent redial refers to the autonomous redialing of a call by a UE without user intervention when failures occur. Silent redial may improve a user's experience, for example, by hiding recoverable failures from the user. Aspects of the present disclosure provide a framework for improving silent redial during a MO VoLTE call.
  • aspects of the present disclosure include detecting a failure that occurs during a MO call in a current system and determining how to attempt to retry the call based, at least in part, on a restriction status of the call. For example, a UE may select a subsequent system for attempting the call based, in part, on a feature of the detected failure and whether or not the MO call is restricted to a particular radio access technology (RAT).
  • RAT radio access technology
  • the UE may attempt to perform silent redial for up to T_silent_redial seconds (e.g., 30 seconds).
  • T_silent_redial seconds e.g. 30 seconds.
  • Count_soft_failure may be initialized to 0.
  • the time between silent redial attempts may not be less than T_min_spacing seconds (e.g., 4 seconds).
  • a T_min_spacing of, for example, 4 seconds may restrict the number of call originations and may allow conditions to improve before retrying the call.
  • Each failure during a MO call may be classified into three categories: soft failures, hard failures, or no retry failures.
  • a UE may select a subsequent system for attempting the call and attempt to retry the call based, in part, on the detected failure.
  • Soft failures occur when there is a sufficiently high probability of success if the call is re-originated over the current LTE system. Thus, in the case of a soft failure, it may be preferable to retry the MO call over the current LTE system, since acquiring another system to place the call may result in a long call setup delay.
  • Hard failures occur when call origination may not be performed for a long time over the current LTE system or when the probability of success of placing the MO call over the current LTE system is low. Accordingly, in the case of a hard failure, it may be preferable to retry the MO call over another system.
  • No retry failures occur when re-originating the call may not result in success of the MO call (e.g., SIP: 402 response received). No retry failures may also occur when the MO call is restricted to LTE and the failure is such that a call attempt may not be retried over LTE.
  • a MO call may be a voice over multimode call or a VoLTE restricted call.
  • the user interface may not have restricted the radio access technologies (RATs) over which the call may be attempted.
  • the UI may have placed a restriction that the MO call may be attempted only over LTE.
  • a UE may place a voice over multimode call. If a soft failure occurs during the voice over multimode MO call, the UE may increment a counter (e.g., Count_soft_failure). The MO call may be re-attempted over the current LTE system as long as both:
  • a non-restricted MO call may be re-attempted over the current LTE system in response to a soft failure when both the count of soft failures is less than or equal to a maximum number of soft failure retry attempts and the time since call origination is less than a maximum time since call origination (e.g., 20 seconds).
  • a hard failure may be declared in a voice over multimode MO call, if either:
  • the UE may abandon the call over the current LTE system and may attempt to find an alternative system for retrying the call.
  • the alternative system may be found in one of several ways. For example, if the hard failure is of type HF-RAN, the UE may attempt acquisition on inter-frequency LTE neighbor frequencies, if any, advertised by the current LTE system.
  • the UE may attempt to find an alternative system for retrying the call in response to a hard failure using parameters advertised in, for example, a system information block on a cell on which the MO call originated.
  • the UE may use inter-frequency and/or inter-RAT reselection parameters advertised in the SIB. Such parameters may assist the UE in determining the inter-frequency neighbors to scan for and prioritizing the frequencies to be used while scanning for the CS RAT. In certain scenarios, the UE may skip one or more inter-frequency neighbors.
  • the UE may not attempt the retry the call on that specific inter-frequency neighbor (the inter-frequency neighbor may be skipped).
  • the UE may attempt acquisition on circuit-switched (CS) RATs (e.g., lx, GSM, WCDMA).
  • CS circuit-switched
  • the UE may begin to attempt to retry the MO call on CS neighbor frequencies received in an inter-RAT neighbor list advertised on the current LTE system.
  • the UE may scan for the most recently used (MRU) channels and other CS frequencies based on a multi-mode system selection (MMSS) algorithm.
  • MRU most recently used
  • MMSS multi-mode system selection
  • a UE may have a mechanism to remember LTE frequencies on which hard failures occurred and may avoid moving back to such frequency for reattempting the failed MO call.
  • LTE Frequency 1 may advertise LTE Frequency 2 in its inter-frequency neighbor list.
  • LTE Frequency 2 may advertise LTE Frequency 1 in its inter-frequency neighbor list. If a hard failure occurs on Frequency 1, the UE may attempt to retry the call on Frequency 2. If a hard failure occurs on Frequency 2, according to aspects of the present disclosure, the UE may not try to move back to Frequency 1. Instead, the UE may attempt to place the call on CS RATs. If acquisition fails on all CS RATs and time remains in the silent redial period, the UE may re-attempt the CS RAT frequencies again.
  • the UE may attempt to retry the call on a CS RAT (e.g., 1 ⁇ , GSM, WCDMA).
  • a CS RAT e.g., 1 ⁇ , GSM, WCDMA
  • the UE may begin with CS neighbor frequencies received in the inter-RAT neighbor list advertised on the current LTE system. Following this, the UE may scan the MRU channels and other CS frequencies based on a multimode system selection (MMSS) algorithm.
  • MMSS multimode system selection
  • a UE may place a MO VoLTE restricted call, where the UI has placed a restriction that the call may only be attempted over LTE. If a soft failure occurs during a restricted MO call, the UE may increment a counter (e.g., Count_soft_failure). The MO call may be re-attempted over the current LTE system as long as both:
  • a MO call may be re-attempted over the current LTE system in response to a soft failure when both the count of soft failures is less than or equal to a maximum number of soft failure retry attempts and the time since call origination is less than a maximum time since call origination (e.g., 20 seconds). If no inter-frequency LTE neighbors exist, the call may be re-attempted over the current LTE system until a silent redial timer (e.g., T_silent_redial) expires.
  • T_silent_redial e.g., a silent redial timer
  • a hard failure may be declared and the steps for hard failure behavior may be followed if either:
  • the UE may abandon the call over the current LTE system.
  • the UE may attempt to find an alternate system by attempting acquisition on the frequencies listed in inter-frequency neighbor lists, if any. If no inter-frequency neighbors exist or if there is an acquisition failure (e.g., hard failure) on all of the inter-frequency neighbors, the UE may end the call.
  • acquisition failure e.g., hard failure
  • a UE may attempt to retry a VoLTE restricted call on inter-frequency neighbors and roaming LTE systems.
  • Tables 1, 2, and 3 map example failures to desired error handling, according to aspects of the present disclosure. Failures may be handled based, at least in part, on a restriction status of the MO call, as indicated below.
  • HF-RAN Hard Failure
  • HF1 LTE - RRC connection setup If there is no inter-frequency not possible neighbor, treat it as soft failure If there is inter-freq neighbor, treat it as hard failure
  • HF-RAN Hard failure response to Service Request T3417 timeout after sending Hard Failure.
  • HF-Network HF1 service request Lower layer failure (RLF) RLF procedure should RLF procedure should restrict scans after sending Service perform one scan on all to LTE only until silent redial timer Request but before call LTE bands and end expires. establishment procedure. If LTE is re-acquired, IMS If LTE is re-acquired, IMS client/CM take no action. SIP timers client/CM take no action. to recover from any failure. SIP timers to recover from any failure. If LTE is not re-acquired, then UE should scan only for CS RATs during silent redial period.
  • RAT 1x or Call failed. No retry.
  • HF-RAN Detach request with reattach Hard failure
  • HF-Network Soft failure. Re-attach over LTE required is received from the Skipping LTE neighbor and retry after IMS registration. network after Service frequency after hard failure No retry if soft failure is difficult to Request is sent may help here. implement. Detach request without Hard failure (HF-Network) No retry reattach required Skipping LTE neighbor frequency after hard failure may help here.
  • PS HO takes UE to No action from IMS No action from IMS another LTE eNB on client/CM.
  • LTE level same frequency or retransmissions and retransmissions and different frequency SIP timers used to SIP timers used to recover from any recover from any failure. failure.
  • Unsuccessful IMS client will session establish- retry ment with the following SIP response codes: 422
  • Count_soft_failure ⁇ N_soft_retry AND Time frequency neighbors, since call origination is ⁇ T_max_VoLTE, retry on retry on current LTE current LTE system after T_min_spacing system Else, treat it as HF-RAN If there are inter- frequency neighbors: 1. Increment Count_soft_failure. 2.
  • silent redial may take the UE to another RAT.
  • the UE may use mechanisms known by those skilled in the art to move back to LTE. For example, the UE may move back to LTE through better service reselection (BSR) scans or high priority public land mobile network (HP-PLMN) scans. The UE may also move back to LTE through inter-RAT procedures, such as reselection, redirection, handover, etc.
  • BSR service reselection
  • HP-PLMN high priority public land mobile network
  • FIG. 3 illustrates example operations 300 for attempting to retry a mobile originated call, according to aspects of the present disclosure.
  • the operations 300 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2 .
  • the UE may detect a failure that occurs during a mobile originated call.
  • the UE may determine how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT).
  • RAT radio access technology
  • the UE may attempt to retry to call.
  • the detected failure may be one of a soft failure, a hard failure, and a no retry failure. If the failure is hard failure and if the call is not restricted, determining how to attempt retrying the call may include first attempting acquisition on inter-frequency neighbors and attempting acquisition on another RAT if there is an acquisition failure on all of the inter-frequency neighbors. If the failure is a hard failure, and the call is restricted, determining how to attempt retrying the call may include ending the call if no inter-frequency neighbors exist or when there is an acquisition failure on all of the inter-frequency neighbors.
  • determining how to attempt retrying the call may include re-attempting the call over the current system until a timer expires.
  • FIG. 4 illustrates example operations 400 for selecting a subsequent system for attempting a MO call, according to aspects of the present disclosure.
  • the operations 400 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2 .
  • the UE may detect a failure that occurs during a mobile originated call in a current system.
  • the UE may select a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure.
  • the UE may attempt the call based on the selected subsequent system.
  • RAT radio access technology
  • the subsequent system selected for attempting the call may be the same as the current system when the failure is a soft failure or when the call is restricted and the failure is a hard failure.
  • the subsequent system may be different than the current system when the failure is hard failure, the call is not restricted, and acquisition failures occur on all neighbor frequencies.
  • FIG. 5 illustrates an example call flow 500 to salvage a VoLTE MO call if the resource reservation fails at the local eNB.
  • a local eNB eNodeB 1 of FIG. 5
  • it may use the quantized channel information (QCI) in the dedicated bearer set up request to determine if the bearer set up request was for a VoLTE call.
  • QCI quantized channel information
  • the local eNodeB 1 may not have enough resources.
  • the local eNodeB 1 may redirect or handover the UE to another LTE frequency or CS RAT in an effort to speed up the silent redial procedure.
  • FIG. 6 illustrates example operations 600 that may be performed to improve a silent redial procedure, in accordance with aspects of the present disclosure.
  • the operations 600 may be performed, for example, by controller/processor 240 and memory 242 of BS 110 of FIG. 2 .
  • the BS may detect a failure that occurs during setup of a mobile originated call from a UE due to lack of sufficient resources at the BS.
  • the BS may determine quantized channel information (QCI) in a dedicated bearer set up to establish the call over a first radio access technology (RAT).
  • QCI quantized channel information
  • RAT radio access technology
  • the BS may redirect the UE to another system in an effort to speed up a silent redial procedure.
  • FIG. 7 illustrates an example call flow 700 to improve recovery when system limitations at a destination eNB cause a silent redial failure.
  • a UE placing a VoLTE call may check if a dedicated bearer with a required quality of service (QoS) has been set up locally, after receiving a 503 QoS. If a local bearer with the required QoS has been set up locally, the UE may determine that the failure may be due to the destination side (e.g., at terminating eNB, eNodeB of FIG. 7 ). Thus, the UE may have a high chance of successfully re-attempting the call if the UE retires the call after T_settle_time. T_settle_time may be used to allow the destination eNB to complete redirection and/or handoff procedures and update registration context.
  • QoS quality of service
  • a UE placing a VoLTE call may receive a 503 QoS.
  • the UE may reattempt the call after T_settle_time, if the UE determines that the dedicated EPS bearer with the required QoS was created locally.
  • FIG. 8 illustrates example operations 800 that may be performed to improve a silent redial procedure, in accordance with aspects of the present disclosure.
  • the operations 800 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2 .
  • the UE may attempt a mobile original call.
  • the UE may receive a quality of service (QoS) failure message in response to attempting the call.
  • QoS quality of service
  • the UE may determine that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally.
  • the UE may re-attempt the call in an effort to save the call after a predetermined amount of time.
  • a UE may determine how to attempt retrying a MO call and procedures for selecting a subsequent system for attempting the call based, at least in part, on a restriction status of the call and a detected failure.
  • a local eNB may salvage a call due to resource reservation failure at the local eNB by redirecting the UE to another LTE frequency or CS RAT if the bearer set up request was for a VoLTE call.
  • a UE may retry a MO call after a predetermined amount of time lapses, if the UE has determined that a QoS failure occurred at the destination eNB.
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • any suitable means capable of performing the operations such as various hardware and/or software component(s), circuits, and/or module(s).
  • any operations illustrated in the Figures may be performed by corresponding functional means capable of performing the operations.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array signal
  • PLD programmable logic device
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in any form of storage medium that is known in the art. Some examples of storage media that may be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM and so forth.
  • RAM random access memory
  • ROM read only memory
  • flash memory EPROM memory
  • EEPROM memory EEPROM memory
  • registers a hard disk, a removable disk, a CD-ROM and so forth.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • a storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • Disk and disc include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • the computer program product may include packaging material.
  • Software or instructions may also be transmitted over a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of transmission medium.
  • DSL digital subscriber line
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

Aspects of the present disclosure provide techniques to speed up and improve silent redial success rates in wireless communications. A user equipment (UE) may determine how to attempt retrying a mobile originated (MO) call and procedures for selecting a subsequent system for attempting the call based, at least in part, on a restriction status of the call and a detected failure.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 14/802,793, filed on Jul. 17, 2015, which is a divisional of U.S. patent application Ser. No. 13/551,535, filed on Jul. 17, 2012, now U.S. Pat. No. 9,161,380, which claims benefit of priority from U.S. Provisional Application Ser. No. 61/509,470, filed on Jul. 19, 2011, each of which are incorporated herein by reference.
  • BACKGROUND
  • Field
  • Aspects of the present disclosure relate generally to wireless communications, and more particularly, to techniques for improving silent redial during a mobile originated (MO) call.
  • Background
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, data, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., bandwidth and transmit power). Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems and orthogonal frequency division multiple access (OFDMA) systems.
  • Generally, a wireless multiple-access communication system can simultaneously support communication for multiple wireless terminals. Each terminal communicates with one or more base stations via transmissions on the forward and reverse links. The forward link (or downlink) refers to the communication link from the base stations to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the base stations. This communication link may be established via a single-input single-output, multiple-input single-output or a multiple-input multiple-output (MIMO) system.
  • A MIMO system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. A MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, which are also referred to as spatial channels. Each of the NS independent channels corresponds to a dimension. The MIMO system can provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • SUMMARY
  • In an aspect of the disclosure, a method for wireless communications is provided. The method generally includes detecting a failure that occurs during a mobile originated call, determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempting to retry the call.
  • In an aspect of the disclosure, a method for wireless communications is provided. The method generally includes detecting a failure that occurs during a mobile originated call in a current system, selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempting the call based on the selected subsequent system.
  • In an aspect of the disclosure, a method for wireless communications is provided. The method generally includes detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • In an aspect of the disclosure, a method for wireless communications is provided. The method generally includes attempting a mobile original call, receiving a quality of service (QoS) failure message in response to attempting the call, determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempting the call in an effort to save the call after a predetermined amount of time.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes means for detecting a failure that occurs during a mobile originated call, means for determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and means for attempting to retry the call.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes means for detecting a failure that occurs during a mobile originated call in a current system, means for selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and means for attempting the call based on the selected subsequent system.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes means for detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), means for determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and means for redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes means for attempting a mobile original call, means for receiving a quality of service (QoS) failure message in response to attempting the call, means for determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and means for re-attempting the call in an effort to save the call after a predetermined amount of time.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least on processor is generally configured to detect a failure that occurs during a mobile originated call, determine how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempt to retry the call.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least on processor is generally configured to detect a failure that occurs during a mobile originated call in a current system, select a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempt the call based on the selected subsequent system.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least on processor is generally configured to detect a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS), determine quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirect the UE to another system in an effort to speed up a silent redial procedure.
  • In an aspect of the disclosure, an apparatus for wireless communications is provided. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least on processor is generally configured to attempt a mobile original call, receive a quality of service (QoS) failure message in response to attempting the call, determine that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempt the call in an effort to save the call after a predetermined amount of time.
  • In an aspect of the disclosure, a computer-program product for wireless communications is provided. The computer-program product generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during a mobile originated call, determining how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT), and attempting to retry the call.
  • In an aspect of the disclosure, a computer-program product for wireless communications is provided. The computer-program product generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during a mobile originated call in a current system, selecting a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure, and attempting the call based on the selected subsequent system.
  • In an aspect of the disclosure, a computer-program product for wireless communications is provided. The computer-program product generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for detecting a failure that occurs during setup of a mobile originated call from a user equipment (UE) due to lack of sufficient resources at a base station (BS). determining quantized channel information (QCI) in a dedicated bearer set up to establish a call over a first radio access technology (RAT), and redirecting the UE to another system in an effort to speed up a silent redial procedure.
  • In an aspect of the disclosure, a computer-program product for wireless communications is provided. The computer-program product generally comprises a non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for attempting a mobile original call, receiving a quality of service (QoS) failure message in response to attempting the call, determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally, and re-attempting the call in an effort to save the call after a predetermined amount of time.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
  • FIG. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with certain aspects of the present disclosure.
  • FIG. 2 shows a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communications network, in accordance with certain aspects of the present disclosure.
  • FIG. 3 illustrates example operations for attempting to retry a MO call, according to aspects of the present disclosure.
  • FIG. 4 illustrates example operations for attempting a MO call based on a selected subsequent system, according to aspects of the present disclosure.
  • FIG. 5 illustrates an example call-flow diagram, which may improve a silent redial success rate when resource reservation fails at a local eNB, according to aspects of the present disclosure.
  • FIG. 6 illustrates example operations for redirecting a UE to another system when, for example, a resource reservation failure occurs at a local eNB, according to aspects of the present disclosure.
  • FIG. 7 illustrates an example call-flow diagram, which may improve a silent redial success rate when resource reservation fails at a destination eNB, according to aspects of the present disclosure.
  • FIG. 8 illustrates example operations for attempting to salvage a MO call when, for example, a resource reservation failure occurs at a destination eNB, according to aspects of the present disclosure.
  • DETAILED DESCRIPTION
  • The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
  • The techniques described herein may be used for various wireless communication networks such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA), cdma2000, etc. UTRA includes wideband CDMA (WCDMA), time division synchronous CDMA (TD-SCDMA), and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as global system for mobile communications (GSM). An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, etc. UTRA and E-UTRA are part of universal mobile telecommunication system (UMTS). 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A), in both frequency division duplex (FDD) and time division duplex (TDD), are new releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2). The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
  • FIG. 1 shows a wireless communication network 100, which may be an LTE network or some other wireless network. Wireless network 100 may include a number of evolved Node Bs (eNBs) 110 and other network entities. An eNB is an entity that communicates with user equipments (UEs) and may also be referred to as a base station, a Node B, an access point, etc. Each eNB may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of an eNB and/or an eNB subsystem serving this coverage area, depending on the context in which the term is used.
  • As described in greater detail below, in some embodiments, the Node Bs 110 may implement the functionality described herein for improving silent redial in mobile originated calls. For example, a Node B may detect failures during mobile originated calls from a UE and may redirect the UE to another system in an effort to speed up a silent redial procedure.
  • An eNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG)). An eNB for a macro cell may be referred to as a macro eNB. An eNB for a pico cell may be referred to as a pico eNB. An eNB for a femto cell may be referred to as a femto eNB or a home eNB (HeNB). In the example shown in FIG. 1, an eNB 110 a may be a macro eNB for a macro cell 102 a, an eNB 110 b may be a pico eNB for a pico cell 102 b, and an eNB 110 c may be a femto eNB for a femto cell 102 c. An eNB may support one or multiple (e.g., three) cells. The terms “eNB”, “base station” and “cell” may be used interchangeably herein.
  • Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., an eNB or a UE) and send a transmission of the data to a downstream station (e.g., a UE or an eNB). A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIG. 1, a relay station 110 d may communicate with macro eNB 110 a and a UE 120 d in order to facilitate communication between eNB 110 a and UE 120 d. A relay station may also be referred to as a relay eNB, a relay base station, a relay, etc.
  • Wireless network 100 may be a heterogeneous network that includes eNBs of different types, e.g., macro eNBs, pico eNBs, femto eNBs, relay eNBs, etc. These different types of eNBs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100. For example, macro eNBs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico eNBs, femto eNBs, and relay eNBs may have lower transmit power levels (e.g., 0.1 to 2 Watts).
  • A network controller 130 may couple to a set of eNBs and may provide coordination and control for these eNBs. Network controller 130 may communicate with the eNBs via a backhaul. The eNBs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a smart phone, a netbook, a smartbook, etc.
  • As described in greater detail below, in some embodiments, the UEs 120 may implement the functionality described herein for improving silent redial in mobile originated calls. For example, the UEs may maintain timers, counts, and thresholds for use in silent redial. UEs 120 may also detect a failure during mobile originated call, determine how to attempt retrying the call, select a subsequent system for attempting the call, and attempt to retry the call as described herein.
  • FIG. 2 shows a block diagram of a design of base station/eNB 110 and UE 120, which may be one of the base stations/eNBs and one of the UEs in FIG. 1. Base station 110 may be equipped with T antennas 234 a through 234 t, and UE 120 may be equipped with R antennas 252 a through 252 r, where in general T≧1 and R≧1.
  • At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based on CQIs received from the UE, process (e.g., encode and modulate) the data for each UE based on the MCS(s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for SRPI, etc.) and control information (e.g., CQI requests, grants, upper layer signaling, etc.) and provide overhead symbols and control symbols. Processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the PSS and SSS). A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232 a through 232 t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232 a through 232 t may be transmitted via T antennas 234 a through 234 t, respectively.
  • At UE 120, antennas 252 a through 252 r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254 a through 254 r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) its received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254 a through 254 r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor 284 may determine RSRP, RSSI, RSRQ, CQI, etc., as described below.
  • On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, etc.) from controller/processor 280. Processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254 a through 254 r (e.g., for SC-FDM, OFDM, etc.), and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/ processors 240 and 280 may direct operations at base station 110 and UE 120, respectively. Processors 240 and 280 and/or other processors and modules at base station 110 and UE 120 may perform or direct processes for the techniques described herein. For example, according to aspects of the present disclosure, processors 240 and 280 may implement the functionality described herein for improving silent redial in mobile originated calls. Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • Silent Redial During MO VoLTE Call
  • Various failures may occur when a voice over IP over LTE (VoLTE) enabled UE places a mobile originated (MO) call. Silent redial refers to the autonomous redialing of a call by a UE without user intervention when failures occur. Silent redial may improve a user's experience, for example, by hiding recoverable failures from the user. Aspects of the present disclosure provide a framework for improving silent redial during a MO VoLTE call.
  • As will be described in more detail below, aspects of the present disclosure include detecting a failure that occurs during a MO call in a current system and determining how to attempt to retry the call based, at least in part, on a restriction status of the call. For example, a UE may select a subsequent system for attempting the call based, in part, on a feature of the detected failure and whether or not the MO call is restricted to a particular radio access technology (RAT). Aspects provide improvements that may speed up recovery when resource limitations at a local eNB or destination eNB cause MO call failures.
  • If a failure occurs during MO call establishment, the UE may attempt to perform silent redial for up to T_silent_redial seconds (e.g., 30 seconds). When a call is originated, a counter, Count_soft_failure may be initialized to 0. According to aspects, the time between silent redial attempts may not be less than T_min_spacing seconds (e.g., 4 seconds). A T_min_spacing of, for example, 4 seconds may restrict the number of call originations and may allow conditions to improve before retrying the call.
  • Each failure during a MO call may be classified into three categories: soft failures, hard failures, or no retry failures. As described below, a UE may select a subsequent system for attempting the call and attempt to retry the call based, in part, on the detected failure.
  • Soft failures occur when there is a sufficiently high probability of success if the call is re-originated over the current LTE system. Thus, in the case of a soft failure, it may be preferable to retry the MO call over the current LTE system, since acquiring another system to place the call may result in a long call setup delay.
  • Hard failures occur when call origination may not be performed for a long time over the current LTE system or when the probability of success of placing the MO call over the current LTE system is low. Accordingly, in the case of a hard failure, it may be preferable to retry the MO call over another system.
  • No retry failures occur when re-originating the call may not result in success of the MO call (e.g., SIP: 402 response received). No retry failures may also occur when the MO call is restricted to LTE and the failure is such that a call attempt may not be retried over LTE.
  • A MO call may be a voice over multimode call or a VoLTE restricted call. In the case of a voice over multimode call, the user interface (UI) may not have restricted the radio access technologies (RATs) over which the call may be attempted. In the case of a VoLTE restricted call, the UI may have placed a restriction that the MO call may be attempted only over LTE.
  • According to aspects of the present disclosure, a UE may place a voice over multimode call. If a soft failure occurs during the voice over multimode MO call, the UE may increment a counter (e.g., Count_soft_failure). The MO call may be re-attempted over the current LTE system as long as both:
      • Count_soft_failure≦N_soft_retry, and
      • Time since call origination<T_max_VoLTE.
  • In other words, a non-restricted MO call may be re-attempted over the current LTE system in response to a soft failure when both the count of soft failures is less than or equal to a maximum number of soft failure retry attempts and the time since call origination is less than a maximum time since call origination (e.g., 20 seconds).
  • A hard failure may be declared in a voice over multimode MO call, if either:
      • Count_soft_failure>N_soft_retry, or
      • Time since call origination≧T_max_VoLTE.
  • In response to a hard failure during a MO voice over multimode call, the UE may abandon the call over the current LTE system and may attempt to find an alternative system for retrying the call. The alternative system may be found in one of several ways. For example, if the hard failure is of type HF-RAN, the UE may attempt acquisition on inter-frequency LTE neighbor frequencies, if any, advertised by the current LTE system.
  • According to aspects, the UE may attempt to find an alternative system for retrying the call in response to a hard failure using parameters advertised in, for example, a system information block on a cell on which the MO call originated. For example, the UE may use inter-frequency and/or inter-RAT reselection parameters advertised in the SIB. Such parameters may assist the UE in determining the inter-frequency neighbors to scan for and prioritizing the frequencies to be used while scanning for the CS RAT. In certain scenarios, the UE may skip one or more inter-frequency neighbors. If the hard failure observed by the UE is classified as a failure that is caused, at least in part, by issues in a core network associated with the inter-frequency neighbors, the UE may not attempt the retry the call on that specific inter-frequency neighbor (the inter-frequency neighbor may be skipped).
  • If acquisition failures (e.g., hard failures) occur on all of the LTE neighbor frequencies, or if there no LTE inter-frequency neighbors exist, the UE may attempt acquisition on circuit-switched (CS) RATs (e.g., lx, GSM, WCDMA). According to aspects, the UE may begin to attempt to retry the MO call on CS neighbor frequencies received in an inter-RAT neighbor list advertised on the current LTE system. Following this, the UE may scan for the most recently used (MRU) channels and other CS frequencies based on a multi-mode system selection (MMSS) algorithm.
  • In an effort to improve silent redial procedures, a UE may have a mechanism to remember LTE frequencies on which hard failures occurred and may avoid moving back to such frequency for reattempting the failed MO call. For example, LTE Frequency 1 may advertise LTE Frequency 2 in its inter-frequency neighbor list. Similarly, LTE Frequency 2 may advertise LTE Frequency 1 in its inter-frequency neighbor list. If a hard failure occurs on Frequency 1, the UE may attempt to retry the call on Frequency 2. If a hard failure occurs on Frequency 2, according to aspects of the present disclosure, the UE may not try to move back to Frequency 1. Instead, the UE may attempt to place the call on CS RATs. If acquisition fails on all CS RATs and time remains in the silent redial period, the UE may re-attempt the CS RAT frequencies again.
  • If the hard failure is of type HF-Network, the UE may attempt to retry the call on a CS RAT (e.g., 1×, GSM, WCDMA). The UE may begin with CS neighbor frequencies received in the inter-RAT neighbor list advertised on the current LTE system. Following this, the UE may scan the MRU channels and other CS frequencies based on a multimode system selection (MMSS) algorithm.
  • According to aspects of the present disclosure, a UE may place a MO VoLTE restricted call, where the UI has placed a restriction that the call may only be attempted over LTE. If a soft failure occurs during a restricted MO call, the UE may increment a counter (e.g., Count_soft_failure). The MO call may be re-attempted over the current LTE system as long as both:
      • Count_soft_failure≦N_soft_retry, and
      • Time since call origination<T_max_VoLTE.
  • In other words, a MO call may be re-attempted over the current LTE system in response to a soft failure when both the count of soft failures is less than or equal to a maximum number of soft failure retry attempts and the time since call origination is less than a maximum time since call origination (e.g., 20 seconds). If no inter-frequency LTE neighbors exist, the call may be re-attempted over the current LTE system until a silent redial timer (e.g., T_silent_redial) expires.
  • A hard failure may be declared and the steps for hard failure behavior may be followed if either:
      • Count_soft_failure>N_soft_retry, or
      • Time since call origination≧T_max_VoLTE.
  • If a hard failure occurs during a VoLTE restricted MO call, the UE may abandon the call over the current LTE system. The UE may attempt to find an alternate system by attempting acquisition on the frequencies listed in inter-frequency neighbor lists, if any. If no inter-frequency neighbors exist or if there is an acquisition failure (e.g., hard failure) on all of the inter-frequency neighbors, the UE may end the call.
  • When a UE places a VoLTE restricted call, silent redial success rates may improve if the presence of other LTE systems (e.g., roaming LTE systems) are taken into account. Thus, according to aspects of the present disclosure, a UE may attempt to retry a VoLTE restricted call on inter-frequency neighbors and roaming LTE systems.
  • Tables 1, 2, and 3 map example failures to desired error handling, according to aspects of the present disclosure. Failures may be handled based, at least in part, on a restriction status of the MO call, as indicated below.
  • TABLE 1
    Mapping Failure to Desired Error Handling
    Failure handling forVoice over Failure handling fo VoLTE
    Description multimode call restricted call
    Access bar check fails on Hard Failure (HF-RAN). HF1.
    LTE - RRC connection setup If there is no inter-frequency
    not possible neighbor, treat it as soft failure
    If there is inter-freq neighbor, treat it
    as hard failure
    RRC Connection Hard Failure (HF-RAN) HF1
    establishment not possible
    because T302 and T305 are
    running
    RACH attempt max count is Soft failure. Soft failure
    reached. UE does not receive
    Random Access Response.
    RRC connection Soft failure. Soft failure
    establishment timeout; T300
    timer expiry
    RRC connection reject Hard Failure. (HF-RAN) HF1
    Service reject received in Hard Failure. (HF-RAN) Hard failure
    response to Service Request
    T3417 timeout after sending Hard Failure. (HF-Network) HF1
    service request
    Lower layer failure (RLF) RLF procedure should RLF procedure should restrict scans
    after sending Service perform one scan on all to LTE only until silent redial timer
    Request but before call LTE bands and end expires.
    establishment procedure. If LTE is re-acquired, IMS
    If LTE is re-acquired, IMS client/CM take no action. SIP timers
    client/CM take no action. to recover from any failure.
    SIP timers to recover from
    any failure.
    If LTE is not re-acquired,
    then UE should scan only
    for CS RATs during silent
    redial period.
    Redirection/HO to another If RAT = 1x or Call failed. No retry.
    RAT GSM/WCDMA, honor
    Redirection/HO & place call
    on CS RAT using legacy CS
    procedures
    If RAT = DO, Ignore
    redirection/HO and declare
    hard failure. (HF-RAN)
    Detach request with reattach Hard failure (HF-Network) Soft failure. Re-attach over LTE
    required is received from the Skipping LTE neighbor and retry after IMS registration.
    network after Service frequency after hard failure No retry if soft failure is difficult to
    Request is sent may help here. implement.
    Detach request without Hard failure (HF-Network) No retry
    reattach required Skipping LTE neighbor
    frequency after hard failure
    may help here.
    TAU procedure triggered OR Soft failure Soft Failure
    Transmission failure of Retry call after TAU with
    Service Request with TA the LTE network
    change
    SIP: 503 (Service Hard Failure. (HF-RAN) HF1
    Unavailable). Source P-
    CSCF is expected to send
    this when QoS establishment
    fails.
    Unsuccessful session Hard Failure. (HF-Network) HF1
    establishment with the
    following SIP response
    codes:
    400, 401, 404~408, 410,
    413~416, 420, 421, 423,
    481~485, 488, 489, 491,
    493, 494, 500~505, 513,
    604, 606.
    Unsuccessful session No retry No retry
    establishment with the
    following SIP response
    codes:
    402, 403, 412, 429, 480, 486,
    487, 600, 603.
    580 (QoS setup failed on Soft failure. Retry after Soft failure. Retry after
    destination side) longer timer longer timer
  • TABLE 2
    Alternative Scenarios
    Handling for Voice over Handling for VoLTE
    Description multimode call restricted call
    PS HO takes UE to No action from IMS No action from IMS
    another LTE eNB on client/CM. LTE level client/CM. LTE level
    same frequency or retransmissions and retransmissions and
    different frequency SIP timers used to SIP timers used to
    recover from any recover from any
    failure. failure.
    Unsuccessful IMS client will
    session establish- retry
    ment with the
    following SIP
    response codes:
    422
  • TABLE 3
    UE behavior during each type of failure
    Failure handling for Voice over Failure handling for VoLTE
    Failure Type multimode call restricted call
    HF-RAN Leave current LTE system and retry on other N/A
    systems starting with inter-frequency neighbors in
    SIBs
    HF-network Leave current LTE system and retry on CS RATs N/A
    starting with inter-RAT neighbors in SIBs
    Soft Failure Increment Count_soft_failure. If there are no inter-
    If Count_soft_failure <= N_soft_retry AND Time frequency neighbors,
    since call origination is < T_max_VoLTE, retry on retry on current LTE
    current LTE system after T_min_spacing system
    Else, treat it as HF-RAN If there are inter-
    frequency neighbors:
    1. Increment
    Count_soft_failure.
    2. If
    Count_soft_failure <=
    N_soft_retry AND
    Time since call
    origination is <
    T_max_VoLTE, retry
    on current LTE system
    after T_min_spacing
    Else, retry on LTE
    neighbor-frequency
    No retry End the call End the call
    Hard failure N/A If there are inter-
    frequency neighbors,
    retry on them
    Else end the call
    HF1 N/A If there is no inter-
    frequency neighbor,
    treat it as soft failure
    If there is inter-freq
    neighbor, treat it as
    hard failure
  • In certain situations, silent redial may take the UE to another RAT. After the call ends, the UE may use mechanisms known by those skilled in the art to move back to LTE. For example, the UE may move back to LTE through better service reselection (BSR) scans or high priority public land mobile network (HP-PLMN) scans. The UE may also move back to LTE through inter-RAT procedures, such as reselection, redirection, handover, etc.
  • FIG. 3 illustrates example operations 300 for attempting to retry a mobile originated call, according to aspects of the present disclosure. The operations 300 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2.
  • At 302, the UE may detect a failure that occurs during a mobile originated call. At 304, the UE may determine how to attempt retrying the call based, at least in part, on whether or not the call is restricted to a particular radio access technology (RAT). At 306, the UE may attempt to retry to call.
  • As described above, the detected failure may be one of a soft failure, a hard failure, and a no retry failure. If the failure is hard failure and if the call is not restricted, determining how to attempt retrying the call may include first attempting acquisition on inter-frequency neighbors and attempting acquisition on another RAT if there is an acquisition failure on all of the inter-frequency neighbors. If the failure is a hard failure, and the call is restricted, determining how to attempt retrying the call may include ending the call if no inter-frequency neighbors exist or when there is an acquisition failure on all of the inter-frequency neighbors.
  • If the failure is a soft failure and no inter-frequency neighbors exist, determining how to attempt retrying the call may include re-attempting the call over the current system until a timer expires.
  • FIG. 4 illustrates example operations 400 for selecting a subsequent system for attempting a MO call, according to aspects of the present disclosure. The operations 400 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2.
  • At 402, the UE may detect a failure that occurs during a mobile originated call in a current system. At 404, the UE may select a subsequent system for attempting the call based, at least in part, on whether or not the mobile originated call is restricted to a particular radio access technology (RAT) and a feature of the failure. At 406, the UE may attempt the call based on the selected subsequent system.
  • As described above, the subsequent system selected for attempting the call may be the same as the current system when the failure is a soft failure or when the call is restricted and the failure is a hard failure. The subsequent system may be different than the current system when the failure is hard failure, the call is not restricted, and acquisition failures occur on all neighbor frequencies.
  • Aspects of the present disclosure provide improvements that may speed up recovery when resource limitations at a local eNB or destination eNB cause a silent redial failure. FIG. 5 illustrates an example call flow 500 to salvage a VoLTE MO call if the resource reservation fails at the local eNB. When a local eNB (eNodeB1 of FIG. 5) does not have sufficient resources to grant a requested dedicated bearer, it may use the quantized channel information (QCI) in the dedicated bearer set up request to determine if the bearer set up request was for a VoLTE call.
  • For example, at 502, the local eNodeB1 may not have enough resources. At 504, upon determining that bearer setup request for was a VoLTE call, the local eNodeB1 may redirect or handover the UE to another LTE frequency or CS RAT in an effort to speed up the silent redial procedure.
  • FIG. 6 illustrates example operations 600 that may be performed to improve a silent redial procedure, in accordance with aspects of the present disclosure. The operations 600 may be performed, for example, by controller/processor 240 and memory 242 of BS 110 of FIG. 2.
  • At 602, the BS may detect a failure that occurs during setup of a mobile originated call from a UE due to lack of sufficient resources at the BS. At 604, the BS may determine quantized channel information (QCI) in a dedicated bearer set up to establish the call over a first radio access technology (RAT). At 606, the BS may redirect the UE to another system in an effort to speed up a silent redial procedure.
  • FIG. 7 illustrates an example call flow 700 to improve recovery when system limitations at a destination eNB cause a silent redial failure. A UE placing a VoLTE call may check if a dedicated bearer with a required quality of service (QoS) has been set up locally, after receiving a 503 QoS. If a local bearer with the required QoS has been set up locally, the UE may determine that the failure may be due to the destination side (e.g., at terminating eNB, eNodeB of FIG. 7). Thus, the UE may have a high chance of successfully re-attempting the call if the UE retires the call after T_settle_time. T_settle_time may be used to allow the destination eNB to complete redirection and/or handoff procedures and update registration context.
  • As illustrated in FIG. 7, lack of resources at terminating eNodeB may cause a VoLTE failure. At 702, a UE placing a VoLTE call may receive a 503 QoS. At 704, the UE may reattempt the call after T_settle_time, if the UE determines that the dedicated EPS bearer with the required QoS was created locally.
  • FIG. 8 illustrates example operations 800 that may be performed to improve a silent redial procedure, in accordance with aspects of the present disclosure. The operations 800 may be performed, for example, by controller/processor 280 and memory 282 of UE 120 of FIG. 2.
  • At 802, the UE may attempt a mobile original call. At 804, the UE may receive a quality of service (QoS) failure message in response to attempting the call. At 806, the UE may determine that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally. At 808, the UE may re-attempt the call in an effort to save the call after a predetermined amount of time.
  • Aspects of the present disclosure provide techniques to speed up and improve silent redial success rates. As described above, a UE may determine how to attempt retrying a MO call and procedures for selecting a subsequent system for attempting the call based, at least in part, on a restriction status of the call and a detected failure.
  • Aspects provide improvements for silent redial implemented by a local eNB or a UE. A local eNB may salvage a call due to resource reservation failure at the local eNB by redirecting the UE to another LTE frequency or CS RAT if the bearer set up request was for a VoLTE call. A UE may retry a MO call after a predetermined amount of time lapses, if the UE has determined that a QoS failure occurred at the destination eNB.
  • As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • The various operations of methods described above may be performed by any suitable means capable of performing the operations, such as various hardware and/or software component(s), circuits, and/or module(s). Generally, any operations illustrated in the Figures may be performed by corresponding functional means capable of performing the operations.
  • The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other programmable logic device (PLD), discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • The steps of a method or algorithm described in connection with the present disclosure may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in any form of storage medium that is known in the art. Some examples of storage media that may be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM and so forth. A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. A storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • The functions described may be implemented in hardware, software, firmware or any combination thereof. If implemented in software, the functions may be stored as one or more instructions on a computer-readable medium. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For certain aspects, the computer program product may include packaging material.
  • Software or instructions may also be transmitted over a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of transmission medium.
  • Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
  • It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.
  • While the foregoing is directed to aspects of the present disclosure, other and further aspects of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims (4)

What is claimed is:
1. A method for wireless communications, comprising:
attempting a mobile original call;
receiving a quality of service (QoS) failure message in response to attempting the mobile originated call;
determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally; and
re-attempting the mobile originated call in an effort to save the mobile originated call after a predetermined amount of time.
2. An apparatus for wireless communications, comprising:
means for attempting a mobile original call;
means for receiving a quality of service (QoS) failure message in response to attempting the mobile originated call;
means for determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally; and
means for re-attempting the mobile originated call in an effort to save the mobile originated call after a predetermined amount of time.
3. An apparatus for wireless communications, comprising:
at least one processor configured to:
attempt a mobile original call;
receive a quality of service (QoS) failure message in response to attempting the mobile originated call;
determine that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally; and
re-attempt the mobile originated call in an effort to save the mobile originated call after a predetermined amount of time; and
a memory coupled to the at least one processor.
4. A non-transitory computer-readable medium having code stored thereon, the code executable by one or more processors for:
attempting a mobile original call;
receiving a quality of service (QoS) failure message in response to attempting the mobile originated call;
determining that the QoS set up failure is due to lack of resources at a destination if a dedicated bearer with required QoS has been set up locally; and
re-attempting the mobile originated call in an effort to save the mobile originated call after a predetermined amount of time.
US15/245,408 2011-07-19 2016-08-24 Silent redial during mobile-originated call Abandoned US20160366603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/245,408 US20160366603A1 (en) 2011-07-19 2016-08-24 Silent redial during mobile-originated call

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161509470P 2011-07-19 2011-07-19
US13/551,535 US9161380B2 (en) 2011-07-19 2012-07-17 Silent redial during mobile-originated call
US14/802,793 US9456465B2 (en) 2011-07-19 2015-07-17 Silent redial during mobile-originated call
US15/245,408 US20160366603A1 (en) 2011-07-19 2016-08-24 Silent redial during mobile-originated call

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/802,793 Division US9456465B2 (en) 2011-07-19 2015-07-17 Silent redial during mobile-originated call

Publications (1)

Publication Number Publication Date
US20160366603A1 true US20160366603A1 (en) 2016-12-15

Family

ID=47556113

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/551,535 Active 2033-08-08 US9161380B2 (en) 2011-07-19 2012-07-17 Silent redial during mobile-originated call
US14/802,793 Expired - Fee Related US9456465B2 (en) 2011-07-19 2015-07-17 Silent redial during mobile-originated call
US15/245,408 Abandoned US20160366603A1 (en) 2011-07-19 2016-08-24 Silent redial during mobile-originated call

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/551,535 Active 2033-08-08 US9161380B2 (en) 2011-07-19 2012-07-17 Silent redial during mobile-originated call
US14/802,793 Expired - Fee Related US9456465B2 (en) 2011-07-19 2015-07-17 Silent redial during mobile-originated call

Country Status (11)

Country Link
US (3) US9161380B2 (en)
EP (1) EP2735208B1 (en)
JP (3) JP6009562B2 (en)
KR (4) KR20150115958A (en)
CN (2) CN103688589A (en)
BR (1) BR112014001040A2 (en)
CA (1) CA2841958A1 (en)
IN (1) IN2014MN00127A (en)
RU (2) RU2595753C2 (en)
TW (1) TWI488539B (en)
WO (1) WO2013013044A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161380B2 (en) * 2011-07-19 2015-10-13 Qualcomm Incorporated Silent redial during mobile-originated call
KR101399244B1 (en) * 2012-03-07 2014-05-29 주식회사 팬택 Method for controlling mobile communication terminal to improve receiving/sending voice call and mobile communication terminal using the same
US9257744B2 (en) 2012-05-21 2016-02-09 Qualcomm Incorporated Devices, systems, and methods for adjusting probing distances
US9287953B2 (en) 2012-05-21 2016-03-15 Qualcomm Incorporated Systems, apparatus, and methods for antenna selection
WO2014148782A1 (en) * 2013-03-18 2014-09-25 에스케이텔레콤 주식회사 Method for operating terminal in multi carrier system
US9584553B2 (en) * 2013-06-28 2017-02-28 Qualcomm Incorporated User experience of a voice call associated with a device
CN105409290A (en) * 2013-07-18 2016-03-16 Lg电子株式会社 PLMN selection method, and user equipment
US9363844B2 (en) 2013-08-30 2016-06-07 Qualcomm Incorporated Enhance performance of making an emergency call during radio link failure over radio access technology
US9420556B2 (en) 2013-10-09 2016-08-16 Blackberry Limited Method and apparatus for handling circuit switched calls at a user equipment
US9615300B1 (en) * 2013-11-26 2017-04-04 Sprint Communications Company L.P. Wireless access node and hand-off method for handing-off a WCD to a relay node
CN106031248B (en) 2014-03-03 2019-12-13 瑞典爱立信有限公司 Method for selecting access network and user equipment
AU2014384897A1 (en) * 2014-03-04 2016-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods, wireless device, radio base station and second network node for managing EPS bearer
JP6280439B2 (en) * 2014-05-13 2018-02-14 株式会社Nttドコモ Radio control apparatus, connection destination switching method, and radio communication control system
US10080163B2 (en) 2014-07-15 2018-09-18 T-Mobile Usa, Inc. Telecommunication network pre-establishment service interruption response
US10039019B2 (en) * 2014-07-24 2018-07-31 T-Mobile Usa, Inc. Telecommunications network non-establishment response
US10594741B2 (en) 2014-08-04 2020-03-17 T-Mobile Usa, Inc. Suppressing third party registration and third party deregistration actions
WO2017018662A1 (en) 2015-07-24 2017-02-02 엘지전자 주식회사 Pdn connection establishment method and user equipment
US9769647B2 (en) * 2016-02-22 2017-09-19 General Motors Llc Managing remote provisioning at a wireless device
US10044553B2 (en) * 2016-05-19 2018-08-07 United States Cellular Corporation Media resource reservation request failure handling for voice over mobile wireless network
CN105915736B (en) * 2016-06-29 2020-03-17 宇龙计算机通信科技(深圳)有限公司 Voice call initiating method and device based on VOLTE terminal
JP6516392B2 (en) * 2018-01-04 2019-05-22 インテル・コーポレーション User equipment (UE), program, method, and computer readable recording medium
WO2023272707A1 (en) * 2021-07-02 2023-01-05 Qualcomm Incorporated Silent redial for video telephony calls

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023265A1 (en) * 2011-07-19 2013-01-24 Qualcomm Incorporated Silent Redial During Mobile-Originated Call

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826718B1 (en) * 1999-07-15 2004-11-30 Sbc Holdings Properties, L.P. Method and apparatus for tracking call processing failure data in a radiotelephone system
US6631270B1 (en) * 2000-04-05 2003-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for call completion in congested cells
US6845245B2 (en) 2000-12-22 2005-01-18 Denso Corporation Access parameter adaptation and packet data resource management using detailed mobile status information
US7330452B2 (en) 2003-06-13 2008-02-12 Qualcomm Incorporated Inter-frequency neighbor list searching
CA2574578A1 (en) * 2004-07-20 2006-02-02 Qualcomm Incorporated Handoff between a sip network and a cellular communication system
US8660527B2 (en) * 2005-02-17 2014-02-25 Qualcomm Incorporated Control of data call origination based on prior origination attempts
CN101346906B (en) * 2005-12-23 2013-10-16 Lg电子株式会社 Random access procedure processing method
US20070183394A1 (en) 2006-02-03 2007-08-09 Deepak Khandelwal Automatic call origination for multiple wireless networks
US20070232294A1 (en) 2006-03-28 2007-10-04 Welnick William E Silent redial method in a wireless communication system
JP4806336B2 (en) * 2006-11-29 2011-11-02 京セラ株式会社 Wireless communication terminal and wireless communication method
US20080248795A1 (en) 2007-04-09 2008-10-09 Telephia Incorporation Call results failure classifications
CN101325535B (en) * 2007-06-15 2013-03-13 上海贝尔阿尔卡特股份有限公司 Method and apparatus for rerouting call in communication network
US20090005085A1 (en) * 2007-06-28 2009-01-01 Motorola, Inc. Selective retry system for a code division multiple access stack for call setup failures
ES2595058T3 (en) 2008-01-25 2016-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for frequency access restriction in cellular communications
CN101651899B (en) 2008-08-12 2012-12-05 中兴通讯股份有限公司 Method for requesting reestablishment of LTE RRC connection, method for setting cause value and terminal
JP2010103829A (en) * 2008-10-24 2010-05-06 Ntt Docomo Inc Call control system, call control device, terminal device, and call control method
JP4574710B2 (en) * 2008-11-20 2010-11-04 キヤノン株式会社 Wireless communication apparatus, control method therefor, and computer program
CN102224750B (en) * 2008-12-10 2014-08-27 日本电气株式会社 Data communication system, radio base station and data communication method
US8817600B2 (en) 2009-01-13 2014-08-26 Qualcomm Incorporated Protocol fallback technique for wireless data communications
GB2472596A (en) 2009-08-11 2011-02-16 Nec Corp A system to coordinate the changing of handover/cell reselection parameters between e-utran and non e-utran rats to reduce repeated handover /cell reselection
KR101446028B1 (en) * 2009-10-28 2014-10-01 알까뗄 루슨트 Method and device for handing over video call from packet switched domain to circuit switched domain
US8699323B2 (en) 2009-12-21 2014-04-15 Qualcomm Incorporated Optimized data retry mechanisms for evolved high rate packet data (EHRPD)
ES2535361T3 (en) * 2010-04-27 2015-05-08 Nec Corporation Acceleration of the establishment of communication services after the restart of a mobility management node
US9584988B2 (en) * 2013-03-07 2017-02-28 Intel Deutschland Gmbh Communication terminal, communication device, method for processing a paging message and method for controlling a communication terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023265A1 (en) * 2011-07-19 2013-01-24 Qualcomm Incorporated Silent Redial During Mobile-Originated Call
US20150327318A1 (en) * 2011-07-19 2015-11-12 Qualcomm Incorporated Silent redial during mobile-originated call

Also Published As

Publication number Publication date
WO2013013044A1 (en) 2013-01-24
CN108712785A (en) 2018-10-26
TW201309080A (en) 2013-02-16
JP2016129370A (en) 2016-07-14
US20130023265A1 (en) 2013-01-24
KR20150115958A (en) 2015-10-14
US9456465B2 (en) 2016-09-27
US9161380B2 (en) 2015-10-13
RU2595753C2 (en) 2016-08-27
JP6254202B2 (en) 2017-12-27
KR20140032496A (en) 2014-03-14
EP2735208B1 (en) 2019-08-21
EP2735208A1 (en) 2014-05-28
JP2015180076A (en) 2015-10-08
RU2014104581A (en) 2015-08-27
CA2841958A1 (en) 2013-01-24
CN103688589A (en) 2014-03-26
IN2014MN00127A (en) 2015-06-12
KR20160054016A (en) 2016-05-13
US20150327318A1 (en) 2015-11-12
JP2014521282A (en) 2014-08-25
TWI488539B (en) 2015-06-11
JP6009562B2 (en) 2016-10-19
KR20150115957A (en) 2015-10-14
RU2016125854A (en) 2018-01-09
JP6224026B2 (en) 2017-11-01
BR112014001040A2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
US9456465B2 (en) Silent redial during mobile-originated call
US9504082B2 (en) Method of enhanced connection recovery and loss-less data recovery
US9026112B2 (en) Transitioning of mobile devices within a wireless communication network between multiple radio access technologies
US20160192261A1 (en) Low latency and/or enhanced component carrier discovery for services and handover
KR20210118838A (en) Voice Fallback in 5G NR
US10356675B2 (en) Handover candidate cell identification and radio link failure (RLF) mitigation in coverage areas
EP2928251A1 (en) Method for acquiring system frame number by terminal, terminal, and mobile communication system
AU2016307741B2 (en) Mobility design for EMTC
EP3476177B1 (en) Improving reliability of volte/vilte calls
WO2017180471A1 (en) Method and apparatus for cell change management during voice call establishment
WO2018164824A1 (en) Roaming out-of-service (oos) recovery for long term evolution (lte)-only networks
US9462565B2 (en) Evolution-data optimized (EVDO) session handling during mobility with support for S101 signaling interface

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SWAMINATHAN, ARVIND;BALASUBRAMANIAN, SRINIVASAN;GINDE, SAMIR V.;SIGNING DATES FROM 20120716 TO 20120717;REEL/FRAME:039521/0788

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION