US20160348368A1 - Modular building systems, components, and methods - Google Patents

Modular building systems, components, and methods Download PDF

Info

Publication number
US20160348368A1
US20160348368A1 US14/721,275 US201514721275A US2016348368A1 US 20160348368 A1 US20160348368 A1 US 20160348368A1 US 201514721275 A US201514721275 A US 201514721275A US 2016348368 A1 US2016348368 A1 US 2016348368A1
Authority
US
United States
Prior art keywords
registration
panel
roof
shear
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/721,275
Inventor
Nicholas C. Godfrey
Taylor Thompson
Brantley M. Green
William Bradford Boyd, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K & G Ip Holdings LLC
Original Assignee
Fine And Small Homes LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine And Small Homes LLC filed Critical Fine And Small Homes LLC
Priority to US14/721,275 priority Critical patent/US20160348368A1/en
Assigned to Fine and Small Homes LLC reassignment Fine and Small Homes LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMPSON, Taylor, BOYD, BRAD, GODFREY, NICHOLAS C., GREEN, BRANTLEY
Priority to US14/952,956 priority patent/US20160348369A1/en
Assigned to K & G IP HOLDINGS, LLC reassignment K & G IP HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Fine and Small Homes LLC
Assigned to STIPKALA LLC D.B.A. THRIVE IP reassignment STIPKALA LLC D.B.A. THRIVE IP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: K & G IP HOLDINGS, LLC
Priority to PCT/US2016/034206 priority patent/WO2016191510A1/en
Publication of US20160348368A1 publication Critical patent/US20160348368A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/14Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/10Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/262Connection node with interlocking of specially shaped wooden members, e.g. puzzle type connection
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded

Definitions

  • This invention relates to the construction of buildings from pre-fabricated components.
  • modular building components appear that are smaller than pre-fabricated components tried before. That smaller size facilitates transportation and construction, in some cases.
  • certain embodiments provide for the introduction of reinforcements that greatly enhance the structural integrity of the completed building far beyond that exhibited by buildings built by hand and required by conventional building codes.
  • pre-fabrication dramatically reduces material waste, and allows for significant scrap recycling that is not feasible for scrap produced on the construction site of a building built by hand.
  • the types of buildings that can be built in accordance with the present invention are not limited. Houses, garages, sheds, commercial buildings, warehouses, portable or quickly-constructed buildings useful in military and disaster relief efforts, office buildings, and multi-family dwelling structures may be mentioned.
  • some embodiments of the present invention relate to beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load.
  • beam nodes useful in modular construction comprising: a lower horizontal support member supporting at least two vertical support members, wherein the at least two vertical support members define at least two beam coupling elements; and at least one registration element.
  • Still other embodiments relate to floor panels useful in modular construction comprising: at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Additional embodiments relate to floor panels useful in modular construction comprising: at least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • an anchor comprises a single shear-stabilizing coupling element; in other embodiments, an anchor comprises more than one shear-stabilizing coupling element.
  • Yet additional embodiments relate to wall panels useful in modular construction comprising: a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface.
  • corner wall panels useful in modular construction comprising: two main outside surfaces comprising a first main outside surface joining a second main outside surface defining an outside corner; two main inside surfaces comprising a first main inside surface joining a second main inside surface defining an inside corner; a plurality of edge members that support and separate the main outside surfaces from the main inside surfaces; at least one shear block receiving port positioned at an edge of the first main outside surface distal from the outside corner; and at least one shear block receiving port positioned at an edge of the second main outside surface distal from the outside corner.
  • Additional embodiments relate to roof panels useful in modular construction comprising: at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Additional embodiments relate to roof panels useful in modular construction comprising: at least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • roof beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below.
  • Still further embodiments relate to buildings comprising at least one beam as described herein; at least one beam node as described herein; at least one floor panel as described herein; at least one wall panel as described herein; at least one corner wall panel as described herein; at least one roof panel as described herein; at least one gable wall panel as described herein; at least one roof beam as described herein; or a combination of any two or more of the foregoing.
  • Applicants have also invented methods of manufacturing each of the components described herein, the parts that make up those components, and buildings and parts of buildings that contain those components. For example, certain embodiments provide methods of constructing a building, comprising:
  • the beams comprise one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
  • Some embodiments provide methods of constructing a wall of a building, the method comprising:
  • the wall panels comprise a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface; and (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building.
  • roof panels comprise at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element; wherein the roof beams comprise one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall; affixing at least one upper surface to at least one upper support member; wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality via the at least one shear-stabilizing coupling element, to construct the roof of the building.
  • a beam comprising one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, thereby manufacturing the beam.
  • Still other embodiments relate to methods of manufacturing a floor panel useful in modular construction, comprising:
  • a floor panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Yet other embodiments provide methods of manufacturing a wall panel useful in modular construction, comprising:
  • a wall panel comprising a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface, thereby manufacturing the wall panel.
  • a roof panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element, thereby manufacturing the roof panel.
  • FIG. 1 depicts a perspective view of one embodiment of the invention comprising a partially-constructed house including several inventive components.
  • FIG. 2 depicts a perspective view of another embodiment comprising beams and beam nodes.
  • FIG. 3 depicts a perspective exploded view of the detail of beams 102 , 103 engaging beam node 503 .
  • FIGS. 4 and 5 depict alternating perspective views of wall panels 302 , 303 engaging beam 103 and floor panel 202 .
  • FIGS. 6 and 7 depicts a partially-exploded perspective view of floor panels, wall panels, a beam, and a roof panel coming together.
  • FIG. 8 depicts a perspective view of another embodiment of wall panels, gable wall panels, and floor panels coming together.
  • FIG. 9 depicts a perspective view of another embodiment of wall panels, a gable wall panel, roof panels, and floor panels coming together.
  • FIGS. 10-13 depict various views of another embodiment, namely, a beam 103 .
  • FIGS. 14-17 depict two further embodiments, namely, a linear two-way beam node 502 , and a 90-degree two-way beam node 509 .
  • FIGS. 18-19 depict various views of a further embodiment, namely, a three-way beam node 503 .
  • FIGS. 20-26 depict several views of a further embodiment, floor panel 208 .
  • FIGS. 27-31 depict several views of a further embodiment, wall panel 307 .
  • FIGS. 32-36 depict several views of a further embodiment, wall panel 621 comprising window opening 629 .
  • FIGS. 37-38 depict several views of another embodiment, wall panel 670 comprising utility access ports.
  • FIGS. 39-40 depict a perspective view of an additional embodiment, corner wall panel 612 in opaque ( FIG. 39 ) and wireframe ( FIG. 40 ) formats.
  • FIGS. 41-43 depict several views of one embodiment, wall panel 305 comprising ceiling beam registration element 385 .
  • FIG. 44 depicts a perspective view of another embodiment, gable wall panel 641 .
  • FIGS. 45-48 depict several views of an additional embodiment, roof panel 404 .
  • FIGS. 49-52 depict several views of a further embodiment, fascia 471 .
  • FIGS. 53-54 depict to views of a further embodiment, roof panel 412 .
  • FIG. 55 depicts another embodiment relating to roof beams, ceiling beam, and roof posts in a perspective, exploded view.
  • FIG. 56 depicts the embodiment of FIG. 55 as assembled.
  • FIG. 57 depicts a perspective view from above of another embodiment, namely, a plurality of beams (such as 101 , 102 ,) connected by beam nodes (such as 502 ) attached to helical piles (such as 1017 , 1024 ).
  • FIG. 58 depicts a perspective view from below of a portion of the embodiment shown in FIG. 57 .
  • floor panels (such as 201 , 209 , 210 ) have been added.
  • the various components of the present invention can comprise any suitable materials.
  • Wood, wood products such as plywood and other engineered wood products such as oriented strand board, plastic, metal, cement, and composite materials such as combinations of any of the foregoing can be suitable in one or more instances.
  • oriented strand board such as those comprising alternating layers of wood particles oriented in alternating perpendicular planes and held together with a suitable amount of polymer or adhesive, can be used in some embodiments.
  • certain instances of the present invention employ one or more types of insulation. Any suitable insulation can be used. For example, in some cases the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof.
  • the insulation can be in any suitable form as well, such as, for example, nonwoven fibers, woven fibers, rolls or batts of fiber insulation such as familiar fiber glass insulation, injectable foams, pellets, nuggets, and the like can be used. Individual pieces such as pellets or nuggets can be bound or free, or a combination thereof. Binding pellets of insulation together can be accomplished by any suitable methods. Thermal treatments, adhesives, and combinations thereof may be mentioned. Water-impermeable materials also appear in further embodiments of the present invention. Any suitable water-impermeable material can be used. In some cases, a thin film of polymer such as polyethylene or polyvinyl chloride can be glued to a surface. In other cases, a polymer is sprayed, painted on, polymerized, or otherwise applied to or formed on a surface to impart water impermeability to that surface.
  • the various components of the present invention can be manufactured according to any suitable method.
  • the various parts of a given component can be cut or formed into their desired shape according to any suitable method.
  • wood-containing parts saws, lasers, drills, routers, sanders, and the like can be directed by hand, by computer, or by a combination thereof.
  • Plastic or metal parts can be extruded, cut, molded, milled, or otherwise shaped as desired.
  • the various parts can be connected to each other according to any suitable means.
  • a piece of oriented strand board can be connected to another piece of oriented strand board with screws, nails, adhesive, or a combination thereof.
  • the various parts are engineered to fit together like the pieces of a puzzle.
  • Any suitable technique of wood joinery can be used. Structures such as finger joints, dovetail joints, tongue and groove joints, tongue and fork joints, dowel joints, miter joints of any suitable angle, and the like can be employed.
  • a wall panel is about 2′ wide by about 6′′ thick by about 8′ tall.
  • certain embodiments of the present invention exhibit improved structural integrity over modular components reported before, because of the smaller size of some of the embodiments of the present invention.
  • the apparent goal was to minimize installation effort by making structural insulated panels as large as possible. Those large panels were unwieldy to install, and structural support was sacrificed to reduce weight in some instances.
  • Certain embodiments of the present invention provide handy installation by using smaller-dimensioned components, yet structural integrity is not sacrificed, but rather enhanced, by the dimensions of those certain embodiments.
  • some cases provide a beam no longer than about 5 feet, no longer than about 6 feet, no longer than about 7 feet, no longer than about 8 feet, longer than about 9 feet, no longer than about 10 feet, no longer than about 15 feet, or no longer than about 20 feet.
  • Other cases provide a wall panel, floor panel, or roof panel no wider than about 1 foot, no wider than about 2 feet, no wider than about 3 feet, no wider than about 4 feet, no wider than about 5 feet, or no wider than about 10 feet.
  • floor beams and beam nodes such as those described herein can be used with floor panels such as those described herein.
  • certain embodiments of the present invention can be used with suitable non-inventive materials and construction techniques.
  • inventive floor beams and beam nodes can be deployed to create a foundation, and then conventional flooring techniques and materials can be applied.
  • inventive wall panels and ceiling panels can be combined with conventional roof infrastructure such as the ceiling beams ( 451 , 452 ) seen in FIG. 1 .
  • any suitable finishing material or materials can be added.
  • drywall and trim can be added to the interior side of the wall panels, while brick, vinyl, aluminum, wood-cement composite such as HardiPlankTM, and combinations thereof can be added to the exterior side of the wall panels.
  • Any suitable utilities can be added, such as plumbing for hot and cold water and wastewater and sewage removal; electrical power cables for illumination, fixtures such as fans and appliances, and electrical outlets; gas lines for heating and cooking, and duct work for air handling as well as heating and cooling appliances. Windows, doors, garage doors, fireplaces, steps, stairs, closets, pantries, attic access doors, and the like can be added and finished as needed.
  • Cabinets, counters, sinks, bathtubs, shower stalls, toilets, and the like can be added in any suitable fashion, such as, for example according to known techniques.
  • One advantage of some embodiments of the present invention is that they are made from wood or engineered wood products: that allows the facile attachment of finishing materials such as drywall, conventional flooring such as, for example hardwood, engineered hardwood, and polymer flooring, according to conventional techniques.
  • FIG. 1 shows, in one embodiment of the invention, the partial construction of house 10 .
  • Beams such as beam 101 , beam 102 connected to each other by a beam node 502 , and beam 106 connected to beam 107 by beam node 507 , rest on a subfoundation (not shown) to form a foundation.
  • any suitable subfoundation can be employed, such as, for example cinderblocks, poured cement, slab, crawlspace, a grid of helical piles such as depicted in FIG. 57 , or a combination thereof.
  • Floor panels such as floor panel 208 , are supported by and attached to beams such as beam 101 and beam 105 .
  • the beam 107 supports wall panel 621 having a window opening therein, wall panel 301 , and corner wall panel 611 .
  • Shear blocks 41 b and 41 c are positioned between wall panel 301 and corner wall panel 611 . Without wishing to be limited by theory, it is believed that shear blocks such as shear blocks 41 b and 41 c impart superior structural integrity to house 10 .
  • Floor panel 202 supports wall panel 302 .
  • Floor panel 202 partially supports wall panel 622 having a window opening therein.
  • Floor panel 202 partially supports wall panel 631 having a door opening therein.
  • the wall panel 631 having a door opening therein partially supports ceiling beam 451 , which in turn supports ceiling posts 455 , 456 , and roof beam 462 .
  • Those components in turn support numerous roof panels.
  • Wall panel 621 partially supports ceiling beam 452 and roof beam 461 .
  • Roof beam 461 partially supports roof panels 401 , 402 . Roof panels 401 , 402 engage, connect to, and support each other via shear-stabilizing coupling elements 45 a , 45 b .
  • shear-stabilizing coupling elements such as shear-stabilizing coupling elements 45 a and 45 b impart superior structural integrity to house 10 . Also visible is fascia 471 , which connects and supports roof panels 401 , 402 . Gable wall panel 641 is visible proximal to fascia 471 and roof panel 411 . As mentioned before, the various components can be constructed, on the one hand, and connected together, on the other hand, through any suitable means.
  • shear-stabilizing coupling elements for example, 45 a , 45 b
  • shear blocks for example, 41 b , 41 c
  • nails, screws, bolts, adhesive, wood joinery techniques, and combinations thereof can be employed.
  • FIG. 2 provides a perspective view, partially exploded, of several beams according to an embodiment of the invention, position to engage several beam nodes.
  • Beam node 505 is positioned to align and engage beam 105 to beam 104 .
  • Beam node 504 is positioned to engage beam 104 to beam 103 at a 90° angle.
  • Beam node 503 is positioned to engage beam 102 to beam 103 at a 90° angle.
  • Beam node 502 is positioned to align and engage beam 102 with beam 101 .
  • Beam node 501 is positioned to align and engage beam 101 with another beam (not shown).
  • One end of beam 101 comprises a beam node coupling element 121 , position to engage beam coupling element 571 of beam node 502 .
  • one end of beam 102 comprises a beam node coupling element 123 , position to engage beam coupling element 572 of beam node 502 .
  • the arrow indicates the direction of movement of the beams to engage the beam nodes.
  • FIG. 3 shows in detail how beam 102 and beam 103 engage beam node 503 .
  • Beam 102 comprises a beam coupling element that comprises tongue 132 a and groove 142 a , that slidingly engage beam coupling element 573 of beam node 503 .
  • a screw or bolt (not shown) can secure hole 543 a to hole 192 a .
  • Beam 103 comprises a beam coupling element that comprises tongue 133 b and groove 143 b , that slidingly engage beam coupling element 574 of beam node 503 .
  • FIGS. 4 and 5 show perspective views from outside ( FIG. 4 ) and inside ( FIG. 5 ) house 10 .
  • Wall panel 302 having first main surface 312 is coupled to beam 103 .
  • Wall panel 302 further comprises side member extension 352 a that is adapted to transfer load to ledger 115 of beam 103 .
  • Wall panel 302 also has a shear block receiving port 392 a positioned at a first edge of the first main surface 312 , and another shear block receiving port 392 e positioned at a second edge of the first main surface 312 .
  • Wall panel 303 comprises a first main surface 313 that has a shear block receiving port 393 a positioned at a first edge of its first main surface 313 , and another shear block receiving port 393 d positioned at a second edge of its first main surface 313 .
  • shear block receiving port 393 d will form with shear block receiving port 392 a to form a shear block receiving slot of dimensions adequate to receive a shear block (not shown).
  • Wall panel 302 also comprises second main surface 322 , roof registration tab 346 , second side member 351 , and floor attachment element 362 .
  • Wall panel 303 further comprises first side member 333 proximal to the first edge of the first main surface 313 , and a second main surface 323 facing the interior of house 10 .
  • the first side member 333 comprises roof registration tab 344 , side member extension 353 a , and floor registration tab 343 .
  • Side member extension 353 a will pass through registration slot 152 b on the upper horizontal support member of beam 103 to transfer load to ledger 115 .
  • side member extension 352 a has passed through registration slot 155 b on the upper horizontal support member of beam 103 to transfer load to ledger 115 .
  • Beam 103 coupled to beam node 503 also support floor panel 202 , which can be attached to beam 103 and beam node 503 in any suitable manner.
  • Floor panel 202 also comprises shear-stabilizing coupling element 211 , adapted to engage another floor panel (not shown).
  • registration elements can be any suitable registration element, such as registration tabs (for example, registration tab 343 ), registration slots (for example, registration slots 152 b , 155 b , and 252 ), and side member extensions (for example, side member extensions 352 a , 353 a ).
  • Registration slot 155 b is adapted to receive both the side member extension 352 a of wall panel 302 and the side member extension 353 b of wall panel 303 .
  • floor panel 202 comprises registration slots such as slot 252 in sufficient number to receive the corresponding registration elements of up to four wall panels, two wall panels on either side of wall panels 302 , 303 .
  • FIGS. 6 and 7 show how wall panels 305 , 306 , and 307 , together with corner wall panel 612 fit together with floor panels 203 and 204 and roof panel 412 .
  • the arrow in FIG. 6 shows how roof panel 412 would fit onto wall panels 305 , 306 , 307 , and corner wall panel 612 .
  • Roof panel 412 has wall engagement element 415 that comprises a plurality of wall registration elements such as wall registration tabs 421 and 422 , adapted to engage an upper edge of those wall panels.
  • Shear-stabilizing coupling element 432 c appears on roof panel 412 , adapted to engage an adjacent roof panel (not shown).
  • Roof registration tabs such as roof registration tabs 347 , 348 on wall panel 305 , and roof registration tab 349 on corner wall panel 612 , are adapted to engage with wall engagement member 415 .
  • Wall panel 305 comprises a ceiling beam registration element 385 , that can engage a ceiling beam (not shown).
  • Ceiling beam registration element 385 forms part of the first side member 335 of wall panel 305 , which also has second main surface 325 facing the interior of a building.
  • Floor attachment element 365 help secure to floor panel 203 and ultimately to beam 108 coupled to beam node 508 .
  • Floor panel 203 is coupled to floor panel 204 via shear-stabilizing coupling elements 213 a , 213 b .
  • Floor panel 204 comprises shear-stabilizing coupling elements 214 a , 214 c , adapted to couple to an adjacent floor panel (not shown).
  • the upper surface of the floor panel 204 comprises wall registration slot 254 , adapted to receive a floor registration tab (not shown) of a wall panel (also not shown) adjacent to corner wall panel 612 .
  • Floor attachment element 364 b helps secure corner wall panel 612 to floor panel 203 .
  • Edge member 336 of wall panel 612 can be seen, as can shear block receiving port 394 c of corner wall panel 612 .
  • FIG. 7 shows how wall panel 307 would slidingly engage wall registration slot 253 of the upper surface of floor panel 203 and registration slot 158 of the upper horizontal support member of beam 108 .
  • Registration tab 345 a near the bottom of first side member 337 a of wall panel 307 would pass through wall registration slot 253 and registration slot 158 .
  • Wall registration slot 255 also appears on the upper surface of floor panel 203 .
  • the beam 108 comprises a vertical support member 161 to which is affixed ledger 116 .
  • Wall panel 306 has a side member extension 356 that transfers load to ledger 116 .
  • the shear block receiving ports of the several wall panels aligned in final position to form shear block receiving slots.
  • wall panels 305 and 306 comprise shear block receiving ports that form shear block receiving slots 393 a , 393 b , 393 c .
  • Shear block receiving port 393 a is adapted to receive shear block 22 a ;
  • shear block receiving port 393 b is adapted to receive shear block 22 b ;
  • shear block receiving port 393 c is adapted to receive shear block 22 c.
  • Shear blocks such as shear block 22 a can be made out of any suitable material, such as wood, engineered wood products, metal, stone, plastic, and composite materials such as wood-cement composites. Moreover, shear blocks such as shear block 22 a can be placed in shear block receiving slots such as shear block receiving slot 393 a through any suitable means. For example, a shear block comprising a 3′′ ⁇ 3′′ ⁇ 11 ⁇ 2′′ block of wood or oriented strand board can be placed in a shear block receiving slot manually, and optionally with the assistance of a mallet or hammer. Friction may suffice to hold a shear block in a shear block receiving slot.
  • shear blocks such as shear blocks 22 a , 22 b , 22 c impart superior structural integrity to walls such as the wall comprising wall panels 305 , 306 .
  • FIG. 8 shows how, in a further embodiment, wall panels 308 , 309 , 310 fit together with floor panels 201 , 205 , 206 and gable wall panels 651 a , 651 b .
  • the arrow illustrates the direction in which gable wall panels 651 a , 651 b would move to engage and attach to wall panels 308 , 309 , 310 .
  • wall panel 308 has a first side member 338 comprising a registration tab 342 that would pass through registration slot 256 on the upper surface of the floor panel 201 to engage a registration element of a beam (not shown).
  • Shear block receiving ports on wall panels 308 , 309 , and 310 align to form shear block receiving slots 394 b , 395 b , which are adapted to receive shear blocks (not shown).
  • Floor panel 201 is connected to floor panel 205 via shear-stabilizing coupling elements 212 a , 212 b .
  • Gable coupling boxes 661 a , 661 b , and 651 c engage and couple to the upper edges of wall panels 308 , 309 , and 310 , respectively.
  • Gable wall panel 651 a can then slidingly engage gable coupling boxes 661 , 661 , 661 , which are optionally secured to gable wall panel 651 a and wall panels 308 , 309 , 310 with any suitable means such as screws, nails, bolts, adhesive, and combinations thereof.
  • Gable coupling boxes 662 a , 662 b , 662 c in turn engage and couple to the upper edge of gable box 651 a , whereupon gable wall panel 651 b can slidably engage. Again attachment is optionally provided by any suitable means.
  • Gable wall panel 651 b has registration tabs 655 a , 655 b , adapted to engage corresponding registration slots on either a further gable wall panel (not shown) or a wall engagement member of a roof panel (not shown).
  • FIG. 8 depicts an embodiment corresponding to that shown in FIGS. 6 and 7 , except that wall panel 305 in FIGS. 6 and 7 is replaced by wall panel 622 .
  • the embodiment shown in FIG. 9 depicts a portion of the embodiment shown in FIG. 1 .
  • Wall panels 306 , 307 , corner wall panel 612 , floor panels 203 , 204 , roof panel 412 , and beam node 508 appear as in FIGS. 6 and 7 .
  • Floor panel 204 is coupled to floor panel 207 via shear-stabilizing coupling element 214 a ; shear-stabilizing coupling element 215 b emerges from an edge of the floor panel 207 ready to engage an adjacent floor panel (not shown).
  • Wall panel 622 comprises window opening 628 adapted to receive any suitable window frame.
  • the window frame can be custom-built, or pre-fabricated, or a combination thereof.
  • the window frame can be any suitable size, and additional material can be added to secure the window frame in window opening 628 .
  • Floor attachment element 363 help secure wall panel 622 to the upper surface 222 of the floor panel 203 , via any suitable attachment means.
  • Wall panel 622 comprises edge member 339 that further comprises registration tab 341 and side member extension 351 adapted to transfer load to a ledger of a beam (not shown).
  • Wall panel 622 also comprises a ceiling beam registration slot 386 , which in FIG. 1 receives and supports ceiling beam 452 .
  • the corner wall panel 612 adjoins wall panel 313 , which in turn adjoins wall panel 314 .
  • Wall panels 313 , 314 engage and rest upon floor panels 204 , 207 , respectively, and together with corner wall panel 612 , couple to and support gable wall panel 642 .
  • the vertical arrow in FIG. 9 shows the relative movement of roof panels 403 , 412 , and 404 to engage wall panels 622 , 306 , 307 , corner wall panel 612 , and gable wall panel 642 .
  • Wall panel 412 can next to the upper edge of those wall panels via wall engagement element 415 , as explained above.
  • Roof panel 403 engages roof panel 412 via shear-stabilizing coupling element 432 a
  • roof panel 412 engages roof panel 404 via shear-stabilizing coupling element 433 a
  • Roof panel 404 further comprises shear-stabilizing coupling element 434 a and wall registration element 423 , which is adapted to engage the top edge of gable wall panel 642 .
  • the diagonal arrow in FIG. 9 shows the relevant movement of fascia 472 to engage and connect to roof panels 403 , 412 , and 404 .
  • some embodiments of the present invention relate to beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load.
  • “upper,” “lower,” “horizontal,” and “vertical” as used throughout this application are purely relative terms to aid the understanding of the invention, and are not to be construed strictly.
  • a beam can be rotated along its main axis by 90°, and its “vertical” support members are now horizontal.
  • FIGS. 10-13 relate to a beam 103 useful in modular construction.
  • FIG. 10 provides a perspective view;
  • FIG. 11 provides a right side elevation view;
  • FIG. 12 provides an end-on elevation view;
  • FIG. 13 provides a top-down plan view.
  • the right side elevation view in FIG. 11 is identical to the left side elevation view;
  • the end on view of FIG. 12 is identical to the view from the other end.
  • Those figures depict a beam 103 useful in modular construction comprising: a first vertical support member 162 and a second vertical support member 163 that together support and separate an upper horizontal support member 173 and a lower horizontal support member 174 .
  • a first ledger 115 adapted to support a vertical load is affixed to a vertical face of the first vertical support member 162 .
  • a second ledger 117 adapted to support a vertical load is affixed to a vertical face of the second vertical support member 163 .
  • the beam 103 has a first end 181 and a second end 182 .
  • first end 181 comprises a beam node coupling element that comprises tongue 134 b and groove 144 b .
  • Groove 144 b further comprises holes 193 a , 193 b that are adapted to each receive a screw, bolt, nail, rivet, or other suitable fastener to secure the first end 181 to the corresponding structure of a beam coupling element on a beam node (not shown).
  • Second end 182 comprises a beam node coupling element that comprises tongue 133 b and groove 143 b .
  • Groove 143 b further comprises holes 194 a , 194 b that are adapted to each receive a screw, bolt, nail, rivet, or other suitable fastener to secure the second end 182 to the corresponding structure of a beam coupling element on a beam node (not shown—see FIG. 3 ).
  • Registration elements that are registration slots 152 a , 152 b , 155 a , 155 b , 159 a have been cut into upper vertical support member 173 , and are adapted to receive registration tabs and side member extensions of up to four wall panels (not shown—see, for example, FIG. 7 ).
  • Beam 103 is suitable for use in any useful orientation, such as, horizontal, vertical, or at a diagonal, such as to support a roof.
  • registration slots 152 a , 152 b , 155 a , 155 b , 159 a are adapted to receive at least one corresponding registration element of a floor panel, wall panel, ceiling panel, or a combination thereof.
  • Beam 103 can be made of any suitable material.
  • beam 103 comprises an engineered wood product.
  • the engineered wood product comprises oriented strand board.
  • Beam 103 in still further cases, can comprise insulation.
  • beam 103 can receive insulation in any suitable form adhered to one or more surfaces of the beam 103 by any suitable means, such as, for example, adhesive, staples, tacks, nails, and combinations thereof.
  • the insulation comprises a spray-on foam insulation. Any suitable number of registration elements can appear on beam 103 . Further instances provide registration elements in sufficient number to receive the corresponding registration elements of at least two wall panels, of at least three wall panels, or of at least four wall panels.
  • FIGS. 14-19 depict several embodiments of beam nodes in various views.
  • FIG. 14 provides a perspective view of linear two-way beam node 502 .
  • FIG. 15 provides a perspective view of a 90-degree two-way beam node 509 .
  • FIG. 16 provides a right side elevation view of beam node 509 as seen from the direction of arrow C in FIG. 15 .
  • FIG. 17 provides a top-down plan view of beam node 509 as seen from the direction of arrow A in FIG. 15 .
  • FIG. 18 provides a perspective view of a three-way beam node 503
  • FIG. 19 shows a top-down plan view of beam node 503 , as seen from the direction of arrow A in FIG. 18 .
  • beam node 502 has a lower horizontal support member 512 that supports first vertical support member 515 a and second vertical support member 515 b .
  • Vertical support members 515 a , 515 b define a first beam coupling element 571 and a second beam coupling element 572 .
  • the second beam coupling element comprises tongs 522 a , 522 b , that are adapted to fit into a corresponding groove of a beam node coupling element of a beam (not shown).
  • first beam coupling element 571 is adapted to couple a first beam (not shown) in line with a second beam (also not shown) coupled to the second beam coupling element 572 .
  • First beam coupling element 571 also includes holes 542 a , 542 b that allow a bolt or other suitable connector to secure beam node 502 to a beam (not shown).
  • Beam node 502 further comprises two substantially parallel vertical supports 555 a , 555 b separated by a spacer element 563 , thereby defining two registration elements that are two registration element receivers 532 a , 532 b between the two substantially parallel vertical supports 555 a , 555 b .
  • the registration element receivers 532 a , 532 b are adapted to receive the corresponding registration tabs and side member extensions of one or two wall panels (not shown). So, for example, looking at FIG.
  • wall panel 621 and its beam node registration tab and side member extension would share registration element receivers of beam node 507 with an adjacent wall panel (not shown in FIG. 1 ).
  • registration element receivers By sharing registration element receivers, wall panels are stably connected and supported, in some embodiments of the present invention. Without wishing to be bound by theory, it is believed that the connection and support provided when two registration tabs share the same registration slot contribute to the improved structural integrity exhibited by some embodiments of the present invention.
  • FIGS. 15-17 show beam node 509 wherein first beam coupling element 575 is adapted to couple a first beam (not shown) perpendicular to a second beam (not shown) coupled to the second beam coupling element 576 .
  • Lower horizontal support member 513 supports first vertical support member 516 a , second vertical support member 516 b , third vertical support member 517 a and fourth vertical support member 517 b .
  • first beam coupling element 575 comprises tongue 523 b that is adapted to slidingly engage a corresponding groove of a beam node coupling element of a beam (not shown).
  • second beam coupling element 576 comprises tongue 524 b that is adapted to slidingly engage a corresponding groove of a beam node coupling element of a beam (not shown).
  • first beam coupling element 575 further comprises holes 549 a , 549 b each adapted to receive a bolt or other connector to secure corresponding holes on a beam node coupling element of a beam (not shown).
  • Second beam coupling element 576 further comprises holes 549 c , 549 d each adapted to receive a bolt or other connector to secure corresponding holes on a beam node coupling element of a beam (not shown).
  • the beam node 509 further comprises two substantially parallel vertical supports 556 a , 556 b separated by a spacer element 564 , thereby defining two registration element receivers 533 a , 533 b between vertical supports 556 a , 556 b .
  • Registration element receivers 533 a , 533 b are adapted to receive the corresponding registration elements of a corner wall panel.
  • FIGS. 18 and 19 show beam node 503 comprising a first beam coupling element 574 , a second beam coupling element 577 , and a third beam coupling element 573 .
  • first beam coupling element 574 is adapted to couple a first beam (not shown) in line with a second beam (not shown) coupled to the second beam coupling element 577 .
  • third beam coupling element 573 is adapted to couple a third beam (not shown) perpendicular to the first beam and second beam.
  • Lower horizontal support member 514 supports vertical support members 518 a , 518 b and vertical support members 519 a , 519 b .
  • first beam coupling element 574 comprises tongue 525 b that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a first beam (not shown).
  • Second beam coupling element 577 comprises tongue 527 b that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a second beam (not shown).
  • Third beam coupling element 573 comprises tongue 526 a that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a third beam (not shown).
  • Third beam coupling element 573 further comprises holes 543 a , 543 b that are adapted to receive a bolt or other suitable connector to secure holes on a corresponding beam node coupling element on the third beam.
  • a registration element comprising two substantially parallel vertical supports 557 a , 557 b separated by a spacer element 565 to define two registration element receivers 534 a , 534 b between the two vertical supports 557 a , 557 b.
  • FIGS. 20-26 depict one embodiment of the floor panel 208 in several views.
  • FIGS. 20-22 depict floor panel 208 in a perspective view.
  • FIG. 20 provides opaque surfaces.
  • FIG. 21 shows a wireframe view of an embodiment comprising anchors 224 a - 224 f
  • FIG. 22 shows a wireframe view of an alternative embodiment comprising ribs 224 g - 224 i .
  • FIG. 23 shows an end-on elevation view from the direction of arrow D in FIG. 20 . The end-on elevation view from the other end is a mirror image of FIG. 23 .
  • FIG. 24 is a left side elevation view from the direction of arrow B of FIG. 20 .
  • FIG. 25 is a bottom-up plan view from the direction of arrow C in FIG. 20 .
  • FIG. 26 is a top-down plan view from the direction of arrow A in FIG. 20 .
  • FIGS. 20 and 22-26 depict floor panel 208 comprising ribs 224 g , 224 h , and 224 i supporting and separating an upper surface 228 from the lower surface 229 .
  • Rib 224 g comprises shear-stabilizing coupling elements 218 a , 218 d that are adapted to engage the ribs or anchors of adjacent floor panels. Shear-stabilizing coupling elements 218 a and 218 d emerge from a first edge and a second edge on opposite sides of floor panel 208 .
  • rib 224 h comprises shear-stabilizing coupling elements 218 b and 218 e .
  • Rib 224 i comprises shear-stabilizing coupling elements 218 c and 218 f .
  • rib 224 g is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown).
  • rib 224 h is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown).
  • rib 224 i is adapted to receive and engage shear-stabilizing coupling elements from other floor panels (not shown).
  • FIGS. 20-21 and 23-26 depict floor panel 208 comprising anchors 224 b , 224 c , and 224 f supporting and separating an upper surface 228 from lower surface 229 .
  • Anchor 224 b comprises shear-stabilizing coupling element 218 b .
  • Anchor 224 c comprises shear-stabilizing coupling element 218 c .
  • Anchor 224 f comprises shear-stabilizing coupling element 218 f .
  • Through coupling port 268 b anchor 224 b is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown).
  • anchor 224 f is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown).
  • floor panel 208 comprises a plurality of edge members 238 a , 238 b , 248 a , and 248 b that partially enclose and define an interior volume with the upper surface 228 and the lower surface 229 .
  • Upper surface 228 is adapted to serve as a floor surface or floor subsurface.
  • the floor panel 208 comprises insulation, affixed to any surface, within the interior volume, or a combination thereof. Any suitable insulation can be used. In some cases, the insulation is of a type that is suitable to be blown or injected through insulation injection ports 298 a , 298 b that are found in edge members 248 a , 248 b , respectively.
  • Shear-stabilizing coupling element 218 a is proximal to upper surface 228
  • shear-stabilizing coupling element 218 d is proximal to the lower surface 229
  • Edge member 238 a further comprises beam registration slots 278 a and 278 b , which are adapted to slidingly engage an upper horizontal support member of a beam (not shown).
  • edge member 238 b further comprises beam registration slots 279 a and 279 b , which are adapted to slidingly engage an upper horizontal support member of a beam (not shown).
  • upper surface 228 can be nailed, screwed, or otherwise attached to the upper horizontal support member.
  • one of upper surface 228 in lower surface 229 comprise a water-impermeable material.
  • the floor panel 208 can comprise any suitable material, such as, for example, oriented strand board, among other materials.
  • FIGS. 27-31 provide different views of wall panel 307 useful in modular construction.
  • FIG. 27 is a perspective view from the inside of a building such as house 10 and shows wall panel 307 with opaque surfaces;
  • FIG. 28 is a perspective view from the exterior and shows wall panel 307 in wireframe format.
  • FIG. 29 provides an elevation view from the exterior.
  • FIG. 30 provides an elevation view from the interior.
  • FIG. 31 provides a top-down plan view.
  • Wall panel 307 has a first main surface 317 ; a second main surface 327 ; a plurality of edge members 331 a , 331 b , 337 a , 337 b that support and separate the first main surface 317 from the second main surface 327 , and at least partially enclose and define an interior volume with the first main surface 317 and the second main surface 327 ; shear block receiving ports 397 a , 397 b , 397 c positioned at a first edge of the first main surface 317 ; shear block receiving ports 397 d , 397 e , 397 f positioned at a second edge of the first main surface 317 ; wherein the first edge and the second edge are positioned on opposing sides of the first main surface 317 .
  • Wall panel 307 further comprises floor attachment element 367 between first side member 337 a and second side member 337 b below the lower edge defined by first main surface 317 and second main surface 327 .
  • First side member 337 a and second side member 337 b support and separate the upper edge member 331 a from lower edge member 331 b .
  • First side member 337 a further comprises insulation injection port 398 a , registration tab 345 a , utility conduit port 387 a , and side member extension 352 a .
  • Second side member 337 b further comprises insulation injection port 398 b , registration tab 345 b , utility conduit port 387 b , and side member extension 352 a .
  • wall panel 307 comprises insulation, affixed to any surface, within the interior volume, or a combination thereof. Any suitable insulation can be used; in some cases the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof. In some cases, wall panel 307 comprises a water-impermeable material on the first main surface 317 , the second main surface 327 , or both. Registration tabs 345 a , 345 b and side member extensions 352 a , 352 b are adapted to engage corresponding registration elements such as registration slots of a beam (not shown). Through side member extension 352 a , the first side member 337 a is adapted to transfer load to one or more ledgers of a beam (not shown).
  • Wall panel 307 can comprise any suitable material, such as, for example, an engineered wood product such as oriented strand board, among other materials.
  • FIGS. 32-36 provides several views of an embodiment of a wall panel 621 comprising window opening 629 .
  • FIGS. 32 and 33 provide a perspective view from the interior of a building comprising wall panel 621 , with FIG. 32 showing opaque surfaces and FIG. 33 in wireframe format.
  • FIG. 34 shows a top-down plan view of wall panel 621 .
  • FIG. 35 provides an elevation view from the interior, while FIG. 36 provides an elevation view from the exterior.
  • Wall panel 621 comprises a first main surface 624 a and a second main surface 624 b that are supported and separated by a plurality of edge members, namely, a first side member 625 b proximal to a first edge of the first main surface 624 a ; a second side member 625 c proximal to a second edge of the first main surface 624 a ; upper edge member 625 a and a lower edge member 625 d that are supported in separated by the first side member 625 b and the second side member 625 c .
  • First main surface 624 a comprises on its first edge three shear block receiving ports 635 a , 635 b , 635 c , and on its opposing side's second edge, three shear block receiving ports 635 j , 635 k , 635 m .
  • Wall panel 621 further comprises a plurality of window edge members 623 a , 623 b , 623 c , 623 d that define a window opening 629 in the first main surface and the second main surface.
  • the plurality of window edge members comprises an upper window edge member 623 a , a lower window edge member 623 d , a first side window member 623 b proximal to the first edge of the first main surface 624 a , and a second side window member 623 c proximal to the second edge of the first main surface 624 a , wherein the first side window member 623 b and the second side window member 623 c support and separate the upper window edge member 623 a from the lower window edge member 623 d .
  • the window edge members 623 a - 623 d comprise window frame registration elements in the form of window frame registration slots 627 .
  • first side window member 623 b comprises registration elements in the form of registration tab 634 b adapted to engage a registration slot of a beam (not shown) and side window member extension 633 b adapted to transfer load to a ledger of a beam (not shown).
  • second side window member 623 c comprises registration elements in the form of registration tab 634 c adapted to engage a registration slot of a beam (not shown) and side window member extension 633 c adapted to transfer load to a ledger of a beam (not shown).
  • Side member extensions 633 a , 633 d appearing on the first side member 625 b and second side member 625 c , respectively, are also adapted to transfer load to a ledger of the beam.
  • First side member 625 b further comprises utility conduit port 630 a and registration tab 634 a
  • second side member 625 c further comprises utility conduit port 630 d and registration tab 634 d
  • First side window member 623 b further comprises utility conduit port 630 b
  • second side window member 623 c further comprises utility conduit port 628 c
  • First side window member 623 b and second side window member 623 c further support floor attachment element 626 .
  • Any suitable, commercially available or custom-made window frame can be affixed to window opening 629 using the window frame registration slots 627 .
  • fasteners such as screws, bolts, or nails can be driven through window edge members 623 a - 623 d as desired.
  • Window frame registration slots 627 can be position to accommodate routine or customary sizes of window frames, and to allow relatively easy installation thereof.
  • FIGS. 37 and 38 provide two views of wall panel 670 utility access ports 676 , 677 .
  • FIG. 37 provides a perspective view
  • FIG. 38 provides an elevation view from the interior of the building.
  • Wall panel 670 comprises first main surface 671 a and second main surface 671 b , which are supported in separated by a plurality of edge members 672 a , 672 b , 672 c and 672 d .
  • First main surface 671 a comprises a plurality of shear block receiving ports, of which 673 d and 673 f are labeled.
  • Insulation injection port 674 b and utility conduit port 678 b appear in second side member 672 c .
  • Utility conduit port 678 a can be seen in first side member 672 b .
  • Floor attachment element 675 is adapted to help secure wall panel 672 a floor panel (not shown) upon installation.
  • Side member extensions 680 a , 680 b are adapted to transfer load to ledger of a beam (not shown).
  • Registration tab 679 b is adapted to engage a corresponding registration slot of the beam.
  • Electrical wires, data cables, and the like can be passed through a plurality of wall panels each comprising utility conduit ports such as appearing in the several wall panels disclosed herein.
  • a wall panel such as wall panel 670 comprising a plurality of utility access ports 676 , 677 can be included in a wall.
  • Utility access ports 676 are positioned higher on wall panel 670 to provide an adequate location for a light switch, for example.
  • Utility access ports 677 are positioned lower on wall panel 670 to provide an adequate location for electric wall sockets and data cable ports, for example.
  • any desired arrangement of switches, outlets, and ports can be installed.
  • FIGS. 39 and 40 provide a perspective view of corner wall panel 612 also seen in FIG. 9 .
  • FIG. 39 provides a view having opaque surfaces;
  • FIG. 40 provide the same view in wireframe format.
  • Corner wall panel 612 useful in modular construction, comprises two main outside surfaces comprising a first main outside surface 714 a joining a second main outside surface 714 b defining an outside corner 713 ; two main inside surfaces comprising a first main inside surface 712 a joining a second main inside surface 712 b defining an inside corner 715 ; a plurality of edge members 722 a , 722 b , 723 a , 723 d , 728 a , 728 b that support and separate the main outside surfaces from the main inside surfaces; at least one shear block receiving port 720 a , 720 c positioned at an edge of the first main outside surface 714 a distal from the outside corner 713 ; and at least one shear block receiving port 720 j , 720 k
  • Edge members 722 a , 723 a , and 728 a together with first corner edge member 723 b , at least partially enclose and define a first interior volume between the first main outside surface 714 a and the first main inside surface 712 a .
  • Edge members 722 b , 723 d , and 728 b together with second corner edge member 723 c , at least partially enclose and define a second interior volume between the second main outside surface 714 b and the second main inside surface 712 b .
  • Any surface of wall panel 612 , the first interior volume, and/or the second interior volume can comprise insulation.
  • Insulation injection ports 716 a , 716 b , 716 c , and 716 d allow insulation to be injected or blown into the interior volumes as wall panel 612 is being assembled.
  • Shear block receiving ports 720 e , 720 h are occluded by first main surface 714 a and second main outside surface 714 b .
  • Utility conduit ports 727 a , 727 b , 727 c , and 727 d allow the passage of electrical wires, data cables and the like through corner wall panel 612 .
  • Registration tabs 724 a , 724 b , 724 c and 724 d are adapted to engage corresponding registration slots on two or more beams and/or a 90° beam node (not shown).
  • Corner wall panel 612 comprises a water-impermeable material on one or both of the first main outside surface 714 a and the second main outside surface 714 b.
  • Corner wall panel 612 comprises a first upper edge member 722 a , a first lower edge member 728 a , a first edge member 723 a distal from the outside corner 713 , and a first corner edge member 723 b ; and adjacent to the second main outside surface 714 b , a second upper edge member 722 b , a second lower edge member 728 b , a second edge member 723 d distal from the outside corner 713 , and a second corner edge member 723 c.
  • FIGS. 41, 42, and 43 provides several views of wall panel 305 that comprises a ceiling beam registration element 385 , as seen in FIGS. 6 and 7 .
  • FIG. 41 shows a perspective view of wall panel 305 having opaque surfaces;
  • FIG. 42 provides a same perspective view in wireframe format.
  • FIG. 43 shows an elevation view from the interior of a building.
  • Wall panel 305 comprises a first main surface 730 had a second main surface 325 that are supported and separated by first side member 335 , second side member 736 , upper edge member 733 , and lower edge member 744 .
  • Shear block receiving ports 732 b , 732 c , 732 h appear in the first main surface 730 .
  • Roof registration tabs 347 , 348 , 743 are adapted to engage with a wall engagement member of a roof panel (not shown).
  • Vertical member 731 forms part of ceiling beam registration slot 385 , which is adapted to receive and support a ceiling beam (not shown).
  • the bottom and of vertical member 731 provides registration tabs 742 a and extension 738 a adapted to transfer load to the ledger of a beam (not shown).
  • Also adapted to support the weight of the ceiling beam is vertical support member 735 .
  • Second side member 736 comprises registration tab 742 b and side member extension 738 b adapted to transfer load to the ledger of a beam (not shown).
  • Utility conduit ports 750 a , 750 b , 750 c allow the passage of electrical wires, data cables, and the like through wall panel 305 .
  • Shear block receiving port 732 e in vertical support member 735 can be occluded by first main surface 730 or employed to receive a shear block, as desired.
  • Floor attachment member 365 assists in securing wall panel 305 to a floor panel (not shown). While vertical member 731 transfers load to the ledger of a beam via extension 738 a , load is transferred to the upper horizontal support member of the beam via first side member 335 and vertical support member 735 . In this way, the weight of a ceiling beam can be transferred directly to the foundation.
  • FIG. 44 provides a perspective view of gable wall panel 641 , also seen in FIG. 1 .
  • Gable wall panel 641 comprises a first main surface 750 b and a second main surface 750 a , which are supported and separated by a plurality of edge members such as edge member 751 a .
  • Edge member 751 a comprises a plurality of registration receiving slots such as 752 a , 752 c , which are adapted to receive the corresponding registration tabs of a plurality of roof panels (not shown).
  • Second main surface 750 a further comprises holes 753 a , 753 b , which are adapted to each receive a screw, a bolt, or other suitable connector to secure gable wall panel 641 to a suitable attachment site such as a gable coupling box such as those seen in FIG. 8 .
  • FIGS. 45-48 provide various views of roof panel 404 , also seen in FIG. 9 .
  • FIG. 45 provides a perspective view;
  • FIG. 46 provides an end-on elevation view from the direction of arrow A in FIG. 45 ; the end-on elevation view from the other end would be a mirror image of FIG. 46 .
  • FIG. 47 provides a right-side elevation view from the direction of arrow B in FIG. 45 .
  • FIG. 48 provides a top-down plan view from the direction of arrow C in FIG. 45 .
  • Roof panel 404 useful in modular construction, comprises at least one rib 442 a supporting and separating an upper surface 437 a and a lower surface 437 b ; wherein the upper surface 437 a is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib 442 a comprises two shear-stabilizing coupling elements 434 c , 434 f emerging from opposite sides of roof panel 404 , and opening 443 .
  • Shear-stabilizing coupling element 434 c is proximal to the upper surface 437 a ; while shear-stabilizing coupling element 434 f is proximal to lower service 437 b .
  • Two more ribs (not seen) support additional shear-stabilizing coupling elements.
  • each of shear-stabilizing coupling elements 434 a - 434 f is attached to an anchor (for a total of six anchors) that supports and separates upper surface 437 a and a lower surface 437 b .
  • roof panel 404 comprises a combination of one or more ribs and two or more anchors.
  • Roof panel 404 as shown comprises a plurality of edge members 438 a and 438 b that at least partially enclose and define an interior volume with the upper surface 437 a and the lower surface 437 b .
  • Roof panel 404 optionally comprises a water-impermeable material such as, for example, on upper surface 437 a and/or on lower surface 437 b .
  • Upper surface 437 a can further comprise any suitable roofing material, such as, for example, tarpaper (which also serves as a water-impermeable material), shingles including asphalt shingles, wooden shingles, slate, tile, photovoltaic “solar panel” shingles, and combinations thereof.
  • rib 442 a is adapted to receive and couple to the shear-stabilizing coupling elements of adjacent roof panels (not shown).
  • openings 436 a , 436 b , 436 d , and 436 e allow coupling to the shear-stabilizing coupling elements of those adjacent roof panels.
  • Edge member 438 b shows insulation injection ports 440 c , 440 d that allow insulation to be injected or blown into the interior volume of roof panel 440 . Any suitable insulation can be used.
  • roof panel 404 can engage roof beam registration elements 441 a and 441 b on edge members 438 a and 438 b , respectively, and assist in keeping the insulation within roof panel 404 .
  • a fascia (not shown—but see fascia 472 in FIG. 9 ) engages with fascia registration element 441 d on edge member 438 b to assist in keeping the insulation within roof panel 404 .
  • Wall registration element 423 which comprises wall registration tabs 423 a , 423 b , is adapted to engage the top edge of a gable wall panel (not shown).
  • Roof panel 404 can comprise any suitable material, such as an engineered wood product such as oriented strand board, among other possible materials.
  • FIGS. 49-52 shows several views of fascia 471 .
  • FIG. 49 shows a perspective view;
  • FIG. 50 shows a top-down plan view.
  • FIG. 51 shows a bottom-up plan view.
  • FIG. 52 shows an end-on elevation view; the end-on elevation view from the other end would be a mirror image of FIG. 52 .
  • Fascia 471 comprises a lower horizontal support member 474 supporting two vertical support members 473 a , 473 b .
  • Lower horizontal support member 474 comprises registration slots 475 a , 475 b , 475 c , 475 d , and 475 e , which are adapted to receive the corresponding fascia registration elements of roof panels (not shown) such as fascia registration element 441 d of roof panel 404 described above.
  • the fascia registration elements of two adjoining roof panels would slidingly engage a registration slot such as registration slot 475 d .
  • adjoining roof panels would adjoin and support each other. Without wishing to be bound by theory, it is believed that such support contributes to the enhanced structural integrity exhibited by some embodiments of the present invention.
  • FIGS. 53-54 show different views of roof panel 412 also seen in FIGS. 6 and 9 .
  • FIG. 53 provides a perspective view
  • FIG. 54 provides an end-on elevation view, with roof panel 412 oriented as it would be on a roof.
  • Roof panel 412 comprises an upper surface 447 a and two lower surfaces 447 b , 447 c that are supported and separated by rib 450 a .
  • Roof panel 412 further comprises two additional ribs (not seen) that have shear-stabilizing coupling elements such as shear-stabilizing coupling element 432 b .
  • Rib 450 a further comprises openings 448 a and 448 d , adapted to receive and couple to the shear-stabilizing coupling elements of adjacent roof panels (not shown).
  • the other ribs also comprise openings such as opening 448 c adapted to receive and couple to the shear-stabilizing coupling elements of those adjacent roof panels.
  • Edge members 445 a , 445 b support and separate the upper surface 447 a from lower surfaces 447 b , 447 c .
  • Edge member 445 b comprises insulation injection ports such as insulation injection port 446 d , through which insulation can be injected or blown, either before or after installation of roof panel 412 .
  • Roof panel 412 has wall engagement element 415 that comprises a plurality of wall registration elements such as wall registration tabs 421 and 422 .
  • Wall engagement element 415 comprises wall engagement supports 492 a , 492 b .
  • Wall engagement support 492 b comprises wall registration tabs 421 , 422 ; mortgage and support 492 a also comprises wall registration tabs (not seen). Load transfer from roof panel 412 to corresponding wall structures is aided by bird beak cuts 449 a and 449 b to rib 450 a .
  • Roof panel 412 optionally comprises a water-impermeable material such as, for example, on upper surface 447 a and/or on lower surfaces 447 b , 447 c .
  • Upper surface 447 a can further comprise any suitable roofing material, such as, for example, tarpaper (which also serves as a water-impermeable material), shingles including asphalt shingles, wooden shingles, slate, tile, photovoltaic “solar panel” shingles, and combinations thereof.
  • tarpaper which also serves as a water-impermeable material
  • shingles including asphalt shingles, wooden shingles, slate, tile, photovoltaic “solar panel” shingles, and combinations thereof.
  • FIGS. 55 and 56 depict further embodiments of the present invention relating to a structure to support a ceiling and a roof.
  • Roof beam 461 and ceiling beam 452 are also seen in FIG. 1 .
  • Ceiling beam 452 supports central ceiling post 756 and side ceiling posts 755 , 757 .
  • Ceiling post 755 terminates at its upper end with registration slot 758 , which is adapted to receive a corresponding registration element of roof beam 464 .
  • Ceiling post 757 terminates at its upper end with a registration slot 759 , which is adapted to receive registration tab 769 of roof beam 461 .
  • Ceiling post 756 terminates at its upper end with roof beam registration slot 760 , and roof panel registration slot 761 .
  • Roof beam registration slot 760 is adapted to receive the corresponding registration elements of two roof beams, such as, for example ceiling post registration tab 766 of roof beam 464 and ceiling post registration tab 765 of roof beam 461 .
  • receiving the registration tabs 765 , 766 , central ceiling post 756 connects and secures roof beams 461 , 464 in a manner that imparts improved structural integrity to certain embodiments of the present invention.
  • roof panel registration slot 761 is adapted to receive the corresponding registration elements of two adjoining roof panels (not shown). Roof beam 464 further comprises its own central roof panel registration slot 768 , while roof beam 461 comprises central roof panel registration slot 767 .
  • Central roof panel registration slots 767 , 768 likewise are adapted to receive the corresponding registration elements of two adjoining roof beams (not shown) at the highest point of the roof.
  • Ceiling post registration tab 765 and ceiling beam registration slot 771 are adapted to transfer load to structure below.
  • Roof panel 461 comprises two vertical support members 762 a , 762 b supporting and separating an upper support member 763 and a lower support member 764 .
  • Upper support member 763 comprises a plurality of registration elements, such as, for example roof panel registration slot 770 c and roof panel registration slot 770 g , which are adapted to receive the corresponding structure of roof panels (not shown).
  • registration slot 770 c receives a side member of roof panel 402 , as seen in FIG. 1 .
  • roof panel 402 can be attached by any suitable means, such as screws or nails, to the upper support member 763 of roof beam 461 .
  • registration slot 770 g receives the corresponding structure of roof panel 411 , as seen in FIG. 1 .
  • Lower support member 764 also comprises registration elements, some of which are integral with the vertical support members 762 a , 762 b .
  • ceiling beam registration slot 771 allows roof beam 461 to rest on registration tab 772 of ceiling beam 452 .
  • roof beam 461 comprises wall registration slot 773 , which allows roof beam 461 to connect with a wall panel (not shown) that supports ceiling beam 452 .
  • Roof beam 464 comprises wall registration slot 774 , which allows roof beam 464 to connect with a wall panel (not shown—for example, wall panel 622 in FIG. 1 ) that supports the other end of ceiling beam 452 .
  • Proof beams of the present invention can be made of any suitable material, such as, for example, engineered wood product such as oriented strand board, among other suitable materials.
  • Roof beams furthermore, can comprise insulation, such as, for example fiber insulation that is adhered to or nailed to the beam, or foam insulation that is sprayed on beam, either before or after installation.
  • FIG. 57 depicts a perspective view from above of another embodiment, namely, a plurality of beams (such as 101 , 102 ,) connected by beam nodes (such as 502 ) attached to helical piles (such as 1017 , 1024 ).
  • FIG. 58 depicts a perspective view from below of a portion of the embodiment shown in FIG. 57 .
  • floor panels such as 201 , 209 , 210
  • a grid of any suitable supports such as, for example cement-supported posts, cinderblocks, timber piles, or helical piles driven into soil, compacted soil, wet or setting cement, bedrock, or other suitable substrate can be used to form a subfoundation.
  • any suitable supports such as, for example cement-supported posts, cinderblocks, timber piles, or helical piles driven into soil, compacted soil, wet or setting cement, bedrock, or other suitable substrate can be used to form a subfoundation.
  • FIG. a grid of any suitable supports
  • helical piles such as helical piles 1001 , 1002 , 1003 , 1007 , 1008 , 1009 , 1010 , 1014 , 1017 , and 1024 have been driven into soil under an applied pressure, and only the portion of the piles remaining of above ground is depicted in FIG. 57 .
  • Any suitable applied pressure can be used. For example, a downward pressure on the order of 10.1 Kips (5.05 Tons) up to 11.6 Kips (5.8 Tons) can be applied to a helical pile being rotatably driven into undisturbed soil, in some cases.
  • beam nodes such as beam node 502 , 507 .
  • beams such as beams 101 , 102 , 105 , 106 , 107 , have been attached.
  • the beams and beam nodes in FIG. 58 have floor panels such as floor panels 201 , 209 , 210 installed thereon. Further discussion of FIGS. 57 and 58 appear in the examples below.
  • Seven beams similar to floor beams 102 and 103 were coupled to the nodes by engaging the beam node coupling elements at each end of a beam, and screws secured the beams to the nodes, such as by securing hole 543 a to hole 192 a in FIG. 3 .
  • Two perimeter floor panels similar to floor panels 202 and 203 were installed end-to-end over two beams and three piles, and six floor panels similar to floor panel 208 spanned the remaining distance to the second row of three piles supporting beams.
  • a near end of a beam was secured to a node and pile; floor panels were joined together by engaging the shear-stabilizing coupling elements of one floor panel to the ribs of the neighboring floor panel; then a far end of a beam was secured to the next node and pile. Upper surfaces of floor panels were screwed to floor beams every 4′′ where they overlapped.
  • FIGS. 57 and 58 to illustrate the eight-panel floor, the chain would have passed through floor panels 210 and 209 parallel to beam 107 , with the pressure plate near pile 1003 and the chain exiting floor panel 209 near pile 1001 .
  • Table 1 correlates the six piles of the test floor to the piles identified in FIG. 58 , to further illustrate the test floor.
  • the dynamometer has a maximum capacity of 5,000 lbs, but the excavator is rated in excess of 10,000 lbs, perhaps approximately 12,000 lbs. This maximum load was applied five times to seek the weakest components of the test floor. Extreme deflections of the piles were observed, including deflection in excess of 31 ⁇ 2′′ for pile 1. After five cycles of maximum load and release, each pile returned to its maximum deflection shown in Table 3. No buckling or failure was observed or found in any of the floor beam or floor panel members or connections, nor was any audible cracking or shearing of the glue-joint panel and beam connections noted during the maximum load testing.
  • test floor was disassembled and a 5,000 lbs load was applied to pile 5 in the same direction as the previous loads. At 5,000 lbs, pile 5 deflected laterally 1 5/16′′.
  • the International Building Code (2012) recommends a maximum allowable load of one-half of the load causing a 1′′ lateral deflection. From the foregoing tests, it is estimated that the lateral allowable design value is 2,000 lbs at 18′′ above grade. That far exceeds the expected shear load presented by a 149 mph Category 5 hurricane-force wind having a wind pressure of 29.7 PSF. Distributed over the 28 piles of FIG. 57 , that equates to a load of about 350 lbs per pile.
  • a home is constructed on 28 helical piles as shown in FIG. 57 , and completed in accordance with FIG. 1 .
  • a chain connected to a pressure plate affixed to the interior side of wall panel 301 is passed through wall panel 301 to a dynamometer and excavator as described in Example 1.
  • a tension load is applied as in Example 1.
  • the home is expected to sustain a load far exceeding that delivered by a Category 5 hurricane-force wind with minimal lateral deflection and no buckling or failure in any of the components or connections, nor any audible cracking or shearing of those components and connections.
  • a beam useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load.
  • the upper horizontal support member further comprises at least one registration element.
  • the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least two wall panels.
  • the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least three wall panels.
  • the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least four wall panels.
  • the at least one ledger adapted to support a vertical load comprises two ledgers, wherein the first ledger is attached to a first vertical face of the one or more vertical support members, and the second ledger is attached to a second vertical face of the one or more vertical support members.
  • a beam node useful in modular construction comprising:
  • a lower horizontal support member supporting at least two vertical support members, wherein the at least two vertical support members define at least two beam coupling elements; and at least one registration element.
  • the at least two beam coupling elements comprise a first beam coupling element and a second beam coupling element
  • first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element.
  • the at least two beam coupling elements comprise a first beam coupling element and a second beam coupling element
  • first beam coupling element is adapted to couple a first beam perpendicular to a second beam coupled to the second beam coupling element.
  • the at least two beam coupling elements comprise a first beam coupling element, a second beam coupling element, and a third beam coupling element; wherein the first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element, and the third beam coupling element is adapted to couple a third beam perpendicular to the first beam and the second beam.
  • the at least two beam coupling elements comprise a first beam coupling element, a second beam coupling element, a third beam coupling element, and a fourth beam coupling element; wherein the first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element, the third beam coupling element is adapted to couple a third beam perpendicular to the first beam and the second beam, and the fourth beam coupling element is adapted to couple a fourth beam in line with the third beam and perpendicular to the first beam and the second beam.
  • the at least one registration element comprises two substantially parallel vertical supports separated by a spacer element, thereby defining two registration element receivers between the two substantially parallel vertical supports.
  • a floor panel useful in modular construction comprising:
  • At least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • a floor panel useful in modular construction comprising:
  • At least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • the floor panel of embodiment 23, further comprising at least one rib supporting and separating the upper surface and the lower surface, wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • the floor panel of any one of embodiments 22-25 further comprising a plurality of edge members that at least partially enclose and define an interior volume with the upper surface and the lower surface.
  • the at least one shear-stabilizing coupling element comprises a first shear-stabilizing coupling element emerging from a first edge of the floor panel, and a second shear-stabilizing coupling element emerging from a second edge of the floor panel,
  • first edge and the second edge are positioned on opposing sides of the floor panel.
  • first shear-stabilizing coupling element is proximal to the upper surface
  • second shear-stabilizing coupling element is proximal to the lower surface
  • the floor panel of any one of embodiments 23-29 and 35-37 comprising a first anchor having a first shear-stabilizing coupling element, and a second anchor having a second shear-stabilizing coupling element;
  • first shear-stabilizing coupling element emerges from a first edge of the floor panel
  • second shear-stabilizing coupling element emerges from a second edge of the floor panel, wherein the first edge and the second edge are positioned on opposing sides of the floor panel.
  • first shear-stabilizing coupling element is proximal to the upper surface
  • second shear-stabilizing coupling element is proximal to the lower surface
  • a wall panel useful in modular construction comprising:
  • the wall panel of embodiment 50 wherein the plurality of edge members at least partially encloses and defines an interior volume with the first main surface and the second main surface.
  • first side member proximal to the first edge of the first main surface
  • second side member proximal to the second edge of the first main surface
  • first side member comprises a first registration element
  • second side member comprises a second registration element
  • first registration element is adapted to engage a first registration element of a beam
  • second registration element is adapted to engage a second registration element of a beam
  • the wall panel of any one of embodiments 50-61 wherein the first main surface and the second main surface define a lower edge, and the lower edge comprises at least one floor attachment element.
  • the wall panel of embodiment 66, wherein the engineered wood product comprises oriented strand board.
  • the wall panel of any one of embodiments 50-68 further comprising a plurality of window edge members that define a window opening in the first main surface and the second main surface.
  • first window edge member an upper window edge member, a lower window edge member, a first side window member proximal to the first edge of the first main surface, and a second side window member proximal to the second edge of the first main surface, wherein the first side window member and the second side window member support and separate the upper window edge member from the lower window edge member.
  • first side window member comprises a first registration element
  • second side window member comprises a second registration element
  • first registration element is adapted to engage a first registration element of a beam
  • second registration element is adapted to engage a second registration element of a beam
  • the at least one utility access port comprises at least one utility access port adapted to function as an electric wall socket port.
  • the at least one utility access port comprises at least one utility access port adapted to function as an electric light switch port.
  • a corner wall panel useful in modular construction comprising:
  • the corner wall panel of embodiment 83 wherein the plurality of edge members at least partially encloses and defines at least one interior volume between the outside main surfaces and the inside main surfaces.
  • corner wall panel of any one of embodiments 83-84 further comprising insulation.
  • the corner wall panel of embodiment 89 wherein at least one of the first edge member and the first corner edge member comprise at least one registration element.
  • corner wall panel of any one of embodiments 89-90 wherein at least one of the second edge member and the second corner edge member comprise at least one registration element.
  • corner wall panel of any one of embodiments 89-93 wherein at least one of the first edge member and first corner edge member is adapted to transfer load to one or more ledgers of a beam.
  • corner wall panel of any one of embodiments 89-94 wherein at least one of the second edge member and second corner edge member is adapted to transfer load to one or more ledgers of a beam.
  • corner wall panel of any one of embodiments 83-95 wherein at least two in the plurality of edge members each comprise at least one utility conduit port.
  • corner wall panel of any one of embodiments 83-96 wherein at least one in the plurality of edge members comprises at least one insulation injection port.
  • the corner wall panel of any one of embodiments 83-97 wherein the first main outside surface and first main inside surface define a first upper edge, wherein the first upper edge comprises at least one registration element.
  • corner wall panel of any one of embodiments 83-98 wherein the second main outside surface and the second main inside surface define a second upper edge, wherein the second upper edge comprises at least one registration element.
  • the corner wall panel of any one of embodiments 83-101 comprising at least three shear block receiving ports positioned at the edge of the first main outside surface distal from the outside corner.
  • the corner wall panel of any one of embodiments 83-102 comprising at least three shear block receiving ports positioned at the edge of the second main outside surface distal from the outside corner.
  • the corner wall panel of any one of embodiments 83-103 wherein the first main outside surface and the first main inside surface define a first lower edge, and the first lower edge comprises at least one first floor attachment element.
  • the corner wall panel of any one of embodiments 83-104 wherein the second main outside surface and the second main inside surface define a second lower edge, and the second lower edge comprises at least one second floor attachment element.
  • a roof panel useful in modular construction comprising:
  • At least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • a roof panel useful in modular construction comprising:
  • At least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • the roof panel of embodiment 107 further comprising at least one anchor supporting and separating the upper surface and the lower surface, wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • the roof panel of embodiment 108 further comprising at least one rib supporting and separating the upper surface and the lower surface, wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • the roof panel of any one of embodiments 107-110 further comprising a plurality of edge members that at least partially enclose and define an interior volume with the upper surface and the lower surface.
  • the roof panel of any one of embodiments 107-111 further comprising insulation.
  • first shear-stabilizing coupling element emerging from a first edge of the roof panel
  • second shear-stabilizing coupling element emerging from a second edge of the roof panel, wherein the first edge and the second edge are positioned on opposing sides of the roof panel.
  • first shear-stabilizing coupling element is proximal to the upper surface
  • second shear-stabilizing coupling element is proximal to the lower surface
  • the roof panel of any one of embodiments 108-114 and 120-122 comprising a first anchor having a first shear-stabilizing coupling element, and a second anchor having a second shear-stabilizing coupling element;
  • first shear-stabilizing coupling element emerges from a first edge of the roof panel
  • second shear-stabilizing coupling element emerges from a second edge of the roof panel, wherein the first edge and the second edge are positioned on opposing sides of the roof panel.
  • first shear-stabilizing coupling element is proximal to the upper surface
  • second shear-stabilizing coupling element is proximal to the lower surface
  • roof panel of any one of embodiments 107-125 wherein the roof panel comprises an engineered wood product.
  • the roof panel of embodiment 126, wherein the engineered wood product comprises oriented strand board.
  • the roof panel of any one of embodiments 107-129 further comprising a wall engagement member that comprises a plurality of wall registration elements adapted to engage an upper edge of at least one wall panel.
  • a roof beam useful in modular construction comprising:
  • one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below.
  • the roof beam of embodiment 131 comprising a first end and a second end, wherein the first registration element is proximal to the first end, and the second registration element is proximal to the second end.
  • the roof beam of embodiment 137 wherein the plurality of registration elements comprises one or more ceiling beam registration elements, one or more wall registration elements, and combinations thereof.
  • roof beam of any one of embodiments 131-140 wherein the roof beam further comprises insulation.
  • a building comprising
  • a method of constructing a building comprising:
  • the plurality of floor panels comprises at least one floor panel as claimed in any one of embodiments 22-49;
  • the plurality of wall panels comprises at least one wall panel as claimed in any one of embodiments 50-82;
  • the plurality of roof panels comprises at least one roof panel as claimed in any one of embodiments 107-130;
  • the plurality of roof beams comprise at least one roof beam as claimed in any one of embodiments 131-141; or a combination of any two or more of the foregoing.
  • a method of constructing a floor of a building comprising:
  • the beams comprise one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
  • the plurality of beams comprises at least one beam as claimed in any one of embodiments 1-13;
  • the plurality of floor panels comprises at least one floor panel as claimed in any one of embodiments 22-49; or a combination of any two or more of the foregoing.
  • a method of constructing a wall of a building comprising:
  • the wall panels comprise a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface; and (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building.
  • a method of constructing a roof of a building comprising:
  • roof panels comprise at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element; wherein the roof beams comprise one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall; affixing at least one upper surface to at least one upper support member; wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality via the at least one shear-stabilizing coupling element, to construct the roof of the building.
  • a method of manufacturing a beam useful in modular construction comprising:
  • a beam comprising one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, thereby manufacturing the beam.
  • a method of manufacturing a floor panel useful in modular construction comprising:
  • a floor panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • a method of manufacturing a wall panel useful in modular construction comprising:
  • a wall panel comprising a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface, thereby manufacturing the wall panel.
  • a method of manufacturing a roof panel useful in modular construction comprising:
  • a roof panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element, thereby manufacturing the roof panel.
  • a method of manufacturing a roof beam useful in modular construction comprising:
  • a roof beam comprising one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

Pre-fabricated components such as beams, beam nodes, floor panels, wall panels, and roof panels are useful for constructing buildings such as houses. In some cases, conservation of materials, ease of construction, and superior structural integrity appear.

Description

    COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • FIELD OF INVENTION
  • This invention relates to the construction of buildings from pre-fabricated components.
  • BACKGROUND OF THE INVENTION
  • Currently, most houses in North America are built by hand from raw materials one piece at a time. First, a foundation usually of concrete is framed, poured, and allowed to harden. Then, a wooden frame for the above-ground structure is added by nailing one 2″×4″ stud into place at a time. A roof, exterior wall materials such as bricks and siding, insulation, plumbing, wiring, duct work, and interior drywall surfaces come next. Each piece of wood is measured, cut, and attached on site, as are pieces of many other materials such as weatherproofing, insulation, and the like. This construction by hand requires a relatively enormous amount of skilled manpower employed on the construction site, and leads to a staggering amount of material waste and significant variability in the quality, fit, and finish from one house to the next.
  • Constructing a house from pre-fabricated components also has been tried. But building by hand remains the norm, because the use of pre-fabricated components raises its own set of difficulties. Transporting and installing bulky components that still require customization by hand have prevented pre-fabrication from replacing building by hand in a broad manner across the house-building industry. In addition, the relatively poor structural integrity and fit and finish of certain pre-fabrication-built houses have hindered wide-spread acceptance by house-buying consumers.
  • The industry needs an easier way to pre-fabricate components for new houses and buildings, and to assemble those components easily. Those new houses and buildings also need a structural integrity that the public will accept.
  • SUMMARY OF THE INVENTION
  • Unexpectedly, Applicants have invented modular building systems, components, and methods that address certain needs of industry. In some embodiments of the present invention, modular building components appear that are smaller than pre-fabricated components tried before. That smaller size facilitates transportation and construction, in some cases. In other cases, certain embodiments provide for the introduction of reinforcements that greatly enhance the structural integrity of the completed building far beyond that exhibited by buildings built by hand and required by conventional building codes. In still other cases, pre-fabrication dramatically reduces material waste, and allows for significant scrap recycling that is not feasible for scrap produced on the construction site of a building built by hand. The types of buildings that can be built in accordance with the present invention are not limited. Houses, garages, sheds, commercial buildings, warehouses, portable or quickly-constructed buildings useful in military and disaster relief efforts, office buildings, and multi-family dwelling structures may be mentioned.
  • Accordingly, some embodiments of the present invention relate to beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load.
  • Other embodiments relate to beam nodes useful in modular construction comprising: a lower horizontal support member supporting at least two vertical support members, wherein the at least two vertical support members define at least two beam coupling elements; and at least one registration element.
  • Still other embodiments relate to floor panels useful in modular construction comprising: at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Additional embodiments relate to floor panels useful in modular construction comprising: at least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element. In some embodiments, an anchor comprises a single shear-stabilizing coupling element; in other embodiments, an anchor comprises more than one shear-stabilizing coupling element.
  • Yet additional embodiments relate to wall panels useful in modular construction comprising: a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface.
  • Still further embodiments relate to corner wall panels useful in modular construction comprising: two main outside surfaces comprising a first main outside surface joining a second main outside surface defining an outside corner; two main inside surfaces comprising a first main inside surface joining a second main inside surface defining an inside corner; a plurality of edge members that support and separate the main outside surfaces from the main inside surfaces; at least one shear block receiving port positioned at an edge of the first main outside surface distal from the outside corner; and at least one shear block receiving port positioned at an edge of the second main outside surface distal from the outside corner.
  • Additional embodiments relate to roof panels useful in modular construction comprising: at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Additional embodiments relate to roof panels useful in modular construction comprising: at least one anchor supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • Other embodiments relate to roof beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below.
  • Still further embodiments relate to buildings comprising at least one beam as described herein; at least one beam node as described herein; at least one floor panel as described herein; at least one wall panel as described herein; at least one corner wall panel as described herein; at least one roof panel as described herein; at least one gable wall panel as described herein; at least one roof beam as described herein; or a combination of any two or more of the foregoing.
  • Applicants have also invented methods of manufacturing each of the components described herein, the parts that make up those components, and buildings and parts of buildings that contain those components. For example, certain embodiments provide methods of constructing a building, comprising:
  • (a) installing a plurality of helical piles in ground to establish a subfoundation for the building;
    (b) affixing a plurality of beams to the helical piles, wherein the beams comprise one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
    (c) affixing a plurality of floor panels to the foundation, wherein the floor panels comprise at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element, wherein at least some of the floor panels are coupled to adjoining floor panels in the plurality via the at least one shear-stabilizing coupling element, to form a floor of the building;
    (d) affixing a plurality of wall panels to the foundation, wherein the wall panels comprise a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface; wherein at least some of the wall panels engage registration elements of at least some of the beams of the foundation, and transfer vertical load to at least some of the ledgers of the beams of the foundation;
    (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building;
    (f) affixing a plurality of roof panels and a plurality of roof beams to the wall, wherein the roof panels comprise at least one rib supporting and separating an upper surface and
    a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface;
    wherein the roof beams comprise
    one or more vertical support members supporting and separating
    an upper support member and
    a lower support member; and
    a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall; and
    affixing at least one upper surface to at least one upper support member; and wherein the at least one rib comprises at least one shear-stabilizing coupling element; wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality of roof panels via the at least one shear-stabilizing coupling element, to form a roof of the building,
    thereby constructing the building.
  • Yet additional embodiments relate to methods of constructing a floor of a building comprising:
  • (b) affixing to a subfoundation a plurality of beams, wherein the beams comprise one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
    (c) affixing a plurality of floor panels to the foundation, wherein the floor panels comprise at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element, wherein at least some of the floor panels are coupled to adjoining floor panels in the plurality of floor panels via the at least one shear-stabilizing coupling element, to form a floor of the building.
  • Some embodiments provide methods of constructing a wall of a building, the method comprising:
  • (d) affixing a plurality of wall panels to a foundation of the building, wherein the wall panels comprise a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface; and
    (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building.
  • Other embodiments relate to methods of constructing a roof of a building, comprising:
  • (f) affixing a plurality of roof panels and a plurality of roof beams to a wall of the building, wherein the roof panels comprise at least one rib supporting and separating an upper surface and
    a lower surface; wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element;
    wherein the roof beams comprise one or more vertical support members supporting and separating an upper support member and a lower support member; and a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall;
    affixing at least one upper surface to at least one upper support member; wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality via the at least one shear-stabilizing coupling element, to construct the roof of the building.
  • Certain additional embodiments provide methods of manufacturing a beam useful in modular construction comprising:
  • constructing a beam comprising one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load, thereby manufacturing the beam.
  • Still other embodiments relate to methods of manufacturing a floor panel useful in modular construction, comprising:
  • constructing a floor panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a floor surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Yet other embodiments provide methods of manufacturing a wall panel useful in modular construction, comprising:
  • constructing a wall panel comprising a first main surface; a second main surface; a plurality of edge members that support and separate the first main surface from the second main surface; and at least one shear block receiving port positioned at a first edge of the first main surface; at least one shear block receiving port positioned at a second edge of the first main surface; wherein the first edge and the second edge are positioned on opposing sides of the first main surface, thereby manufacturing the wall panel.
  • Further embodiments relate to methods of manufacturing a roof panel useful in modular construction, comprising:
  • constructing a roof panel comprising at least one rib supporting and separating an upper surface and a lower surface; wherein the upper surface is adapted to serve as a roof surface or subsurface; and wherein the at least one rib comprises at least one shear-stabilizing coupling element, thereby manufacturing the roof panel.
  • While the disclosure provides certain specific embodiments, the invention is not limited to those embodiments. A person of ordinary skill will appreciate from the description herein that modifications can be made to the described embodiments and therefore that the specification is broader in scope than the described embodiments. All examples are therefore non-limiting.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a perspective view of one embodiment of the invention comprising a partially-constructed house including several inventive components.
  • FIG. 2 depicts a perspective view of another embodiment comprising beams and beam nodes.
  • FIG. 3 depicts a perspective exploded view of the detail of beams 102, 103 engaging beam node 503.
  • FIGS. 4 and 5 depict alternating perspective views of wall panels 302, 303 engaging beam 103 and floor panel 202.
  • FIGS. 6 and 7 depicts a partially-exploded perspective view of floor panels, wall panels, a beam, and a roof panel coming together.
  • FIG. 8 depicts a perspective view of another embodiment of wall panels, gable wall panels, and floor panels coming together.
  • FIG. 9 depicts a perspective view of another embodiment of wall panels, a gable wall panel, roof panels, and floor panels coming together.
  • FIGS. 10-13 depict various views of another embodiment, namely, a beam 103.
  • FIGS. 14-17 depict two further embodiments, namely, a linear two-way beam node 502, and a 90-degree two-way beam node 509.
  • FIGS. 18-19 depict various views of a further embodiment, namely, a three-way beam node 503.
  • FIGS. 20-26 depict several views of a further embodiment, floor panel 208.
  • FIGS. 27-31 depict several views of a further embodiment, wall panel 307.
  • FIGS. 32-36 depict several views of a further embodiment, wall panel 621 comprising window opening 629.
  • FIGS. 37-38 depict several views of another embodiment, wall panel 670 comprising utility access ports.
  • FIGS. 39-40 depict a perspective view of an additional embodiment, corner wall panel 612 in opaque (FIG. 39) and wireframe (FIG. 40) formats.
  • FIGS. 41-43 depict several views of one embodiment, wall panel 305 comprising ceiling beam registration element 385.
  • FIG. 44 depicts a perspective view of another embodiment, gable wall panel 641.
  • FIGS. 45-48 depict several views of an additional embodiment, roof panel 404.
  • FIGS. 49-52 depict several views of a further embodiment, fascia 471.
  • FIGS. 53-54 depict to views of a further embodiment, roof panel 412.
  • FIG. 55 depicts another embodiment relating to roof beams, ceiling beam, and roof posts in a perspective, exploded view.
  • FIG. 56 depicts the embodiment of FIG. 55 as assembled.
  • FIG. 57 depicts a perspective view from above of another embodiment, namely, a plurality of beams (such as 101, 102,) connected by beam nodes (such as 502) attached to helical piles (such as 1017, 1024).
  • FIG. 58 depicts a perspective view from below of a portion of the embodiment shown in FIG. 57. In addition, floor panels (such as 201, 209, 210) have been added.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various forms. The figures are not necessarily to scale, and some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
  • Where ever the phrase “for example,” “such as,” “including” and the like are used herein, the phrase “and without limitation” is understood to follow unless explicitly stated otherwise. Similarly “an example,” “exemplary” and the like are understood to be non-limiting.
  • The term “substantially” allows for deviations from the descriptor that don't negatively impact the intended purpose. Descriptive terms are understood to be modified by the term “substantially” even if the word “substantially” is not explicitly recited.
  • The term “about” when used in connection with a numerical value refers to the actual given value, and to the approximation to such given value that would reasonably be inferred by one of ordinary skill in the art, including approximations due to the experimental and or measurement conditions for such given value.
  • The terms “comprising” and “including” and “having” and “involving” (and similarly “comprises”, “includes,” “has,” and “involves”) and the like are used interchangeably and have the same meaning. Specifically, each of the terms is defined consistent with the common United States patent law definition of “comprising” and is therefore interpreted to be an open term meaning “at least the following,” and is also interpreted not to exclude additional features, limitations, aspects, etc. Thus, for example, “a device having components a, b, and c” means that the device includes at least components a, b and c. Similarly, the phrase: “a method involving steps a, b, and c” means that the method includes at least steps a, b, and c.
  • Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.
  • Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
  • It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
  • The various components of the present invention can comprise any suitable materials. Wood, wood products such as plywood and other engineered wood products such as oriented strand board, plastic, metal, cement, and composite materials such as combinations of any of the foregoing can be suitable in one or more instances. For example, oriented strand board such as those comprising alternating layers of wood particles oriented in alternating perpendicular planes and held together with a suitable amount of polymer or adhesive, can be used in some embodiments. In addition, certain instances of the present invention employ one or more types of insulation. Any suitable insulation can be used. For example, in some cases the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof. The insulation can be in any suitable form as well, such as, for example, nonwoven fibers, woven fibers, rolls or batts of fiber insulation such as familiar fiber glass insulation, injectable foams, pellets, nuggets, and the like can be used. Individual pieces such as pellets or nuggets can be bound or free, or a combination thereof. Binding pellets of insulation together can be accomplished by any suitable methods. Thermal treatments, adhesives, and combinations thereof may be mentioned. Water-impermeable materials also appear in further embodiments of the present invention. Any suitable water-impermeable material can be used. In some cases, a thin film of polymer such as polyethylene or polyvinyl chloride can be glued to a surface. In other cases, a polymer is sprayed, painted on, polymerized, or otherwise applied to or formed on a surface to impart water impermeability to that surface.
  • The various components of the present invention can be manufactured according to any suitable method. For example, the various parts of a given component can be cut or formed into their desired shape according to any suitable method. For wood-containing parts, saws, lasers, drills, routers, sanders, and the like can be directed by hand, by computer, or by a combination thereof. Plastic or metal parts can be extruded, cut, molded, milled, or otherwise shaped as desired. In addition, the various parts can be connected to each other according to any suitable means. For example, a piece of oriented strand board can be connected to another piece of oriented strand board with screws, nails, adhesive, or a combination thereof. In some cases, the various parts are engineered to fit together like the pieces of a puzzle. Any suitable technique of wood joinery can be used. Structures such as finger joints, dovetail joints, tongue and groove joints, tongue and fork joints, dowel joints, miter joints of any suitable angle, and the like can be employed.
  • The various components of the present invention can have any suitable dimensions. For example, in some cases, a wall panel is about 2′ wide by about 6″ thick by about 8′ tall. Without wishing to be bound by theory, it is believed that certain embodiments of the present invention exhibit improved structural integrity over modular components reported before, because of the smaller size of some of the embodiments of the present invention. Before, the apparent goal was to minimize installation effort by making structural insulated panels as large as possible. Those large panels were unwieldy to install, and structural support was sacrificed to reduce weight in some instances. Certain embodiments of the present invention provide handy installation by using smaller-dimensioned components, yet structural integrity is not sacrificed, but rather enhanced, by the dimensions of those certain embodiments. Thus, some cases provide a beam no longer than about 5 feet, no longer than about 6 feet, no longer than about 7 feet, no longer than about 8 feet, longer than about 9 feet, no longer than about 10 feet, no longer than about 15 feet, or no longer than about 20 feet. Other cases provide a wall panel, floor panel, or roof panel no wider than about 1 foot, no wider than about 2 feet, no wider than about 3 feet, no wider than about 4 feet, no wider than about 5 feet, or no wider than about 10 feet.
  • Various embodiments of the present invention can be used in combination with other embodiments of the present invention. For example, floor beams and beam nodes such as those described herein can be used with floor panels such as those described herein. Or, certain embodiments of the present invention can be used with suitable non-inventive materials and construction techniques. For example, inventive floor beams and beam nodes can be deployed to create a foundation, and then conventional flooring techniques and materials can be applied. In another example, inventive wall panels and ceiling panels can be combined with conventional roof infrastructure such as the ceiling beams (451, 452) seen in FIG. 1.
  • Once the various components are manufactured or installed, any suitable finishing material or materials can be added. For example, once one or more wall panels have been installed, drywall and trim can be added to the interior side of the wall panels, while brick, vinyl, aluminum, wood-cement composite such as HardiPlank™, and combinations thereof can be added to the exterior side of the wall panels. Any suitable utilities can be added, such as plumbing for hot and cold water and wastewater and sewage removal; electrical power cables for illumination, fixtures such as fans and appliances, and electrical outlets; gas lines for heating and cooking, and duct work for air handling as well as heating and cooling appliances. Windows, doors, garage doors, fireplaces, steps, stairs, closets, pantries, attic access doors, and the like can be added and finished as needed. Cabinets, counters, sinks, bathtubs, shower stalls, toilets, and the like can be added in any suitable fashion, such as, for example according to known techniques. One advantage of some embodiments of the present invention is that they are made from wood or engineered wood products: that allows the facile attachment of finishing materials such as drywall, conventional flooring such as, for example hardwood, engineered hardwood, and polymer flooring, according to conventional techniques.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Further embodiments of the present invention can be described by reference to the accompanying drawings, which are not necessarily to scale. In addition, not every element is labeled, so the figures can be viewed easily. Elements in different figures having the same label are intended to be the same element in each such figure. FIG. 1 shows, in one embodiment of the invention, the partial construction of house 10. Beams, such as beam 101, beam 102 connected to each other by a beam node 502, and beam 106 connected to beam 107 by beam node 507, rest on a subfoundation (not shown) to form a foundation. Any suitable subfoundation can be employed, such as, for example cinderblocks, poured cement, slab, crawlspace, a grid of helical piles such as depicted in FIG. 57, or a combination thereof. Floor panels, such as floor panel 208, are supported by and attached to beams such as beam 101 and beam 105. The beam 107 supports wall panel 621 having a window opening therein, wall panel 301, and corner wall panel 611. Shear blocks 41 b and 41 c are positioned between wall panel 301 and corner wall panel 611. Without wishing to be limited by theory, it is believed that shear blocks such as shear blocks 41 b and 41 c impart superior structural integrity to house 10. Floor panel 202 supports wall panel 302. Floor panel 202 partially supports wall panel 622 having a window opening therein. Floor panel 202 partially supports wall panel 631 having a door opening therein. The wall panel 631 having a door opening therein partially supports ceiling beam 451, which in turn supports ceiling posts 455, 456, and roof beam 462. Those components in turn support numerous roof panels. Wall panel 621 partially supports ceiling beam 452 and roof beam 461. Roof beam 461 partially supports roof panels 401, 402. Roof panels 401, 402 engage, connect to, and support each other via shear-stabilizing coupling elements 45 a, 45 b. Without wishing to be bound by theory, it is believed that shear-stabilizing coupling elements such as shear-stabilizing coupling elements 45 a and 45 b impart superior structural integrity to house 10. Also visible is fascia 471, which connects and supports roof panels 401, 402. Gable wall panel 641 is visible proximal to fascia 471 and roof panel 411. As mentioned before, the various components can be constructed, on the one hand, and connected together, on the other hand, through any suitable means. In addition to the coupling provided by shear-stabilizing coupling elements (for example, 45 a, 45 b) and shear blocks (for example, 41 b, 41 c), nails, screws, bolts, adhesive, wood joinery techniques, and combinations thereof can be employed.
  • FIG. 2 provides a perspective view, partially exploded, of several beams according to an embodiment of the invention, position to engage several beam nodes. Beam node 505 is positioned to align and engage beam 105 to beam 104. Beam node 504 is positioned to engage beam 104 to beam 103 at a 90° angle. Beam node 503 is positioned to engage beam 102 to beam 103 at a 90° angle. Beam node 502 is positioned to align and engage beam 102 with beam 101. Beam node 501 is positioned to align and engage beam 101 with another beam (not shown). One end of beam 101 comprises a beam node coupling element 121, position to engage beam coupling element 571 of beam node 502. Similarly, one end of beam 102 comprises a beam node coupling element 123, position to engage beam coupling element 572 of beam node 502. The arrow indicates the direction of movement of the beams to engage the beam nodes.
  • FIG. 3 shows in detail how beam 102 and beam 103 engage beam node 503. Beam 102 comprises a beam coupling element that comprises tongue 132 a and groove 142 a, that slidingly engage beam coupling element 573 of beam node 503. Once engaged, a screw or bolt (not shown) can secure hole 543 a to hole 192 a. Beam 103 comprises a beam coupling element that comprises tongue 133 b and groove 143 b, that slidingly engage beam coupling element 574 of beam node 503.
  • FIGS. 4 and 5 show perspective views from outside (FIG. 4) and inside (FIG. 5) house 10. Wall panel 302 having first main surface 312 is coupled to beam 103. Wall panel 302 further comprises side member extension 352 a that is adapted to transfer load to ledger 115 of beam 103. Wall panel 302 also has a shear block receiving port 392 a positioned at a first edge of the first main surface 312, and another shear block receiving port 392 e positioned at a second edge of the first main surface 312. Wall panel 303 comprises a first main surface 313 that has a shear block receiving port 393 a positioned at a first edge of its first main surface 313, and another shear block receiving port 393 d positioned at a second edge of its first main surface 313. When wall panel 303 is placed in its final position alongside panel 302, shear block receiving port 393 d will form with shear block receiving port 392 a to form a shear block receiving slot of dimensions adequate to receive a shear block (not shown). Wall panel 302 also comprises second main surface 322, roof registration tab 346, second side member 351, and floor attachment element 362. Nails, bolts, screws, adhesive, and combinations thereof can be used to secure floor attachment element 362 to the upper surface of floor panel 202. Wall panel 303 further comprises first side member 333 proximal to the first edge of the first main surface 313, and a second main surface 323 facing the interior of house 10. The first side member 333 comprises roof registration tab 344, side member extension 353 a, and floor registration tab 343. Side member extension 353 a will pass through registration slot 152 b on the upper horizontal support member of beam 103 to transfer load to ledger 115. Similarly, side member extension 352 a has passed through registration slot 155 b on the upper horizontal support member of beam 103 to transfer load to ledger 115. Beam 103 coupled to beam node 503 also support floor panel 202, which can be attached to beam 103 and beam node 503 in any suitable manner. Floor panel 202 also comprises shear-stabilizing coupling element 211, adapted to engage another floor panel (not shown). As illustrated in FIGS. 4 and 5, registration elements can be any suitable registration element, such as registration tabs (for example, registration tab 343), registration slots (for example, registration slots 152 b, 155 b, and 252), and side member extensions (for example, side member extensions 352 a, 353 a). Registration slot 155 b is adapted to receive both the side member extension 352 a of wall panel 302 and the side member extension 353 b of wall panel 303. In so doing, wall panel 302 and wall panel 303 are held together in support of each other. Without wishing to be bound by theory, it is believed that allowing one registration slot to receive 2 registration tabs from adjoining panels contribute to the improved structural integrity observed in some embodiments of the present invention. Floor panel 202 comprises registration slots such as slot 252 in sufficient number to receive the corresponding registration elements of up to four wall panels, two wall panels on either side of wall panels 302, 303.
  • FIGS. 6 and 7 show how wall panels 305, 306, and 307, together with corner wall panel 612 fit together with floor panels 203 and 204 and roof panel 412. The arrow in FIG. 6 shows how roof panel 412 would fit onto wall panels 305, 306, 307, and corner wall panel 612. Roof panel 412 has wall engagement element 415 that comprises a plurality of wall registration elements such as wall registration tabs 421 and 422, adapted to engage an upper edge of those wall panels. Shear-stabilizing coupling element 432 c appears on roof panel 412, adapted to engage an adjacent roof panel (not shown). Roof registration tabs such as roof registration tabs 347, 348 on wall panel 305, and roof registration tab 349 on corner wall panel 612, are adapted to engage with wall engagement member 415. Wall panel 305 comprises a ceiling beam registration element 385, that can engage a ceiling beam (not shown). Ceiling beam registration element 385 forms part of the first side member 335 of wall panel 305, which also has second main surface 325 facing the interior of a building. Floor attachment element 365 help secure to floor panel 203 and ultimately to beam 108 coupled to beam node 508. Floor panel 203 is coupled to floor panel 204 via shear-stabilizing coupling elements 213 a, 213 b. Floor panel 204 comprises shear-stabilizing coupling elements 214 a, 214 c, adapted to couple to an adjacent floor panel (not shown). The upper surface of the floor panel 204 comprises wall registration slot 254, adapted to receive a floor registration tab (not shown) of a wall panel (also not shown) adjacent to corner wall panel 612. Floor attachment element 364 b helps secure corner wall panel 612 to floor panel 203. Edge member 336 of wall panel 612 can be seen, as can shear block receiving port 394 c of corner wall panel 612.
  • The arrow in FIG. 7 shows how wall panel 307 would slidingly engage wall registration slot 253 of the upper surface of floor panel 203 and registration slot 158 of the upper horizontal support member of beam 108. Registration tab 345 a near the bottom of first side member 337 a of wall panel 307 would pass through wall registration slot 253 and registration slot 158. Wall registration slot 255 also appears on the upper surface of floor panel 203. The beam 108 comprises a vertical support member 161 to which is affixed ledger 116. Wall panel 306 has a side member extension 356 that transfers load to ledger 116. The shear block receiving ports of the several wall panels aligned in final position to form shear block receiving slots. For example, wall panels 305 and 306 comprise shear block receiving ports that form shear block receiving slots 393 a, 393 b, 393 c. Shear block receiving port 393 a is adapted to receive shear block 22 a; shear block receiving port 393 b is adapted to receive shear block 22 b; and shear block receiving port 393 c is adapted to receive shear block 22 c.
  • Shear blocks such as shear block 22 a can be made out of any suitable material, such as wood, engineered wood products, metal, stone, plastic, and composite materials such as wood-cement composites. Moreover, shear blocks such as shear block 22 a can be placed in shear block receiving slots such as shear block receiving slot 393 a through any suitable means. For example, a shear block comprising a 3″×3″×1½″ block of wood or oriented strand board can be placed in a shear block receiving slot manually, and optionally with the assistance of a mallet or hammer. Friction may suffice to hold a shear block in a shear block receiving slot. Or, some instances allow for the use of adhesive, wood putty, or one or more nails or screws, or combinations thereof, to ensure the shear block remains within the shear block receiving slot. Without wishing to be bound by theory, it is believed that the shear blocks such as shear blocks 22 a, 22 b, 22 c impart superior structural integrity to walls such as the wall comprising wall panels 305, 306.
  • FIG. 8 shows how, in a further embodiment, wall panels 308, 309, 310 fit together with floor panels 201, 205, 206 and gable wall panels 651 a, 651 b. The arrow illustrates the direction in which gable wall panels 651 a, 651 b would move to engage and attach to wall panels 308, 309, 310. Similar to previously-described embodiments, wall panel 308 has a first side member 338 comprising a registration tab 342 that would pass through registration slot 256 on the upper surface of the floor panel 201 to engage a registration element of a beam (not shown). Shear block receiving ports on wall panels 308, 309, and 310 align to form shear block receiving slots 394 b, 395 b, which are adapted to receive shear blocks (not shown). Floor panel 201 is connected to floor panel 205 via shear-stabilizing coupling elements 212 a, 212 b. Gable coupling boxes 661 a, 661 b, and 651 c engage and couple to the upper edges of wall panels 308, 309, and 310, respectively. Gable wall panel 651 a can then slidingly engage gable coupling boxes 661, 661, 661, which are optionally secured to gable wall panel 651 a and wall panels 308, 309, 310 with any suitable means such as screws, nails, bolts, adhesive, and combinations thereof. Gable coupling boxes 662 a, 662 b, 662 c in turn engage and couple to the upper edge of gable box 651 a, whereupon gable wall panel 651 b can slidably engage. Again attachment is optionally provided by any suitable means. Gable wall panel 651 b has registration tabs 655 a, 655 b, adapted to engage corresponding registration slots on either a further gable wall panel (not shown) or a wall engagement member of a roof panel (not shown).
  • FIG. 8 depicts an embodiment corresponding to that shown in FIGS. 6 and 7, except that wall panel 305 in FIGS. 6 and 7 is replaced by wall panel 622. As such, the embodiment shown in FIG. 9 depicts a portion of the embodiment shown in FIG. 1. Wall panels 306, 307, corner wall panel 612, floor panels 203, 204, roof panel 412, and beam node 508 appear as in FIGS. 6 and 7. Floor panel 204 is coupled to floor panel 207 via shear-stabilizing coupling element 214 a; shear-stabilizing coupling element 215 b emerges from an edge of the floor panel 207 ready to engage an adjacent floor panel (not shown).
  • Wall panel 622 comprises window opening 628 adapted to receive any suitable window frame. The window frame can be custom-built, or pre-fabricated, or a combination thereof. The window frame can be any suitable size, and additional material can be added to secure the window frame in window opening 628. Floor attachment element 363 help secure wall panel 622 to the upper surface 222 of the floor panel 203, via any suitable attachment means. Wall panel 622 comprises edge member 339 that further comprises registration tab 341 and side member extension 351 adapted to transfer load to a ledger of a beam (not shown). Wall panel 622 also comprises a ceiling beam registration slot 386, which in FIG. 1 receives and supports ceiling beam 452. The corner wall panel 612 adjoins wall panel 313, which in turn adjoins wall panel 314. Wall panels 313, 314 engage and rest upon floor panels 204, 207, respectively, and together with corner wall panel 612, couple to and support gable wall panel 642.
  • The vertical arrow in FIG. 9 shows the relative movement of roof panels 403, 412, and 404 to engage wall panels 622, 306, 307, corner wall panel 612, and gable wall panel 642. Wall panel 412 can next to the upper edge of those wall panels via wall engagement element 415, as explained above. Roof panel 403 engages roof panel 412 via shear-stabilizing coupling element 432 a, while roof panel 412 engages roof panel 404 via shear-stabilizing coupling element 433 a. Roof panel 404 further comprises shear-stabilizing coupling element 434 a and wall registration element 423, which is adapted to engage the top edge of gable wall panel 642. The diagonal arrow in FIG. 9 shows the relevant movement of fascia 472 to engage and connect to roof panels 403, 412, and 404.
  • A. Beams and Beam Nodes
  • As stated above, some embodiments of the present invention relate to beams useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load. As can be appreciated, “upper,” “lower,” “horizontal,” and “vertical” as used throughout this application are purely relative terms to aid the understanding of the invention, and are not to be construed strictly. In some instances, a beam can be rotated along its main axis by 90°, and its “vertical” support members are now horizontal.
  • FIGS. 10-13 relate to a beam 103 useful in modular construction. FIG. 10 provides a perspective view; FIG. 11 provides a right side elevation view; FIG. 12 provides an end-on elevation view; FIG. 13 provides a top-down plan view. The right side elevation view in FIG. 11 is identical to the left side elevation view; the end on view of FIG. 12 is identical to the view from the other end. Those figures depict a beam 103 useful in modular construction comprising: a first vertical support member 162 and a second vertical support member 163 that together support and separate an upper horizontal support member 173 and a lower horizontal support member 174. A first ledger 115 adapted to support a vertical load is affixed to a vertical face of the first vertical support member 162. A second ledger 117 adapted to support a vertical load is affixed to a vertical face of the second vertical support member 163. The beam 103 has a first end 181 and a second end 182. first end 181 comprises a beam node coupling element that comprises tongue 134 b and groove 144 b. Groove 144 b further comprises holes 193 a, 193 b that are adapted to each receive a screw, bolt, nail, rivet, or other suitable fastener to secure the first end 181 to the corresponding structure of a beam coupling element on a beam node (not shown). Second end 182 comprises a beam node coupling element that comprises tongue 133 b and groove 143 b. Groove 143 b further comprises holes 194 a, 194 b that are adapted to each receive a screw, bolt, nail, rivet, or other suitable fastener to secure the second end 182 to the corresponding structure of a beam coupling element on a beam node (not shown—see FIG. 3). Registration elements that are registration slots 152 a, 152 b, 155 a, 155 b, 159 a have been cut into upper vertical support member 173, and are adapted to receive registration tabs and side member extensions of up to four wall panels (not shown—see, for example, FIG. 7). Beam 103 is suitable for use in any useful orientation, such as, horizontal, vertical, or at a diagonal, such as to support a roof. Accordingly, registration slots 152 a, 152 b, 155 a, 155 b, 159 a are adapted to receive at least one corresponding registration element of a floor panel, wall panel, ceiling panel, or a combination thereof. Beam 103 can be made of any suitable material. In some cases, beam 103 comprises an engineered wood product. In further cases, the engineered wood product comprises oriented strand board. Beam 103, in still further cases, can comprise insulation. For example, before or after installation, beam 103 can receive insulation in any suitable form adhered to one or more surfaces of the beam 103 by any suitable means, such as, for example, adhesive, staples, tacks, nails, and combinations thereof. In some instances, the insulation comprises a spray-on foam insulation. Any suitable number of registration elements can appear on beam 103. Further instances provide registration elements in sufficient number to receive the corresponding registration elements of at least two wall panels, of at least three wall panels, or of at least four wall panels.
  • FIGS. 14-19 depict several embodiments of beam nodes in various views. FIG. 14 provides a perspective view of linear two-way beam node 502. FIG. 15 provides a perspective view of a 90-degree two-way beam node 509. FIG. 16 provides a right side elevation view of beam node 509 as seen from the direction of arrow C in FIG. 15. FIG. 17 provides a top-down plan view of beam node 509 as seen from the direction of arrow A in FIG. 15. FIG. 18 provides a perspective view of a three-way beam node 503, while FIG. 19 shows a top-down plan view of beam node 503, as seen from the direction of arrow A in FIG. 18.
  • In FIG. 14, beam node 502 has a lower horizontal support member 512 that supports first vertical support member 515 a and second vertical support member 515 b. Vertical support members 515 a, 515 b define a first beam coupling element 571 and a second beam coupling element 572. The second beam coupling element comprises tongs 522 a, 522 b, that are adapted to fit into a corresponding groove of a beam node coupling element of a beam (not shown). As can be appreciated from FIG. 14, first beam coupling element 571 is adapted to couple a first beam (not shown) in line with a second beam (also not shown) coupled to the second beam coupling element 572. First beam coupling element 571 also includes holes 542 a, 542 b that allow a bolt or other suitable connector to secure beam node 502 to a beam (not shown). Beam node 502 further comprises two substantially parallel vertical supports 555 a, 555 b separated by a spacer element 563, thereby defining two registration elements that are two registration element receivers 532 a, 532 b between the two substantially parallel vertical supports 555 a, 555 b. The registration element receivers 532 a, 532 b are adapted to receive the corresponding registration tabs and side member extensions of one or two wall panels (not shown). So, for example, looking at FIG. 1, wall panel 621 and its beam node registration tab and side member extension (not clearly seen in FIG. 1) would share registration element receivers of beam node 507 with an adjacent wall panel (not shown in FIG. 1). By sharing registration element receivers, wall panels are stably connected and supported, in some embodiments of the present invention. Without wishing to be bound by theory, it is believed that the connection and support provided when two registration tabs share the same registration slot contribute to the improved structural integrity exhibited by some embodiments of the present invention.
  • FIGS. 15-17 show beam node 509 wherein first beam coupling element 575 is adapted to couple a first beam (not shown) perpendicular to a second beam (not shown) coupled to the second beam coupling element 576. Lower horizontal support member 513 supports first vertical support member 516 a, second vertical support member 516 b, third vertical support member 517 a and fourth vertical support member 517 b. first beam coupling element 575 comprises tongue 523 b that is adapted to slidingly engage a corresponding groove of a beam node coupling element of a beam (not shown). second beam coupling element 576 comprises tongue 524 b that is adapted to slidingly engage a corresponding groove of a beam node coupling element of a beam (not shown). first beam coupling element 575 further comprises holes 549 a, 549 b each adapted to receive a bolt or other connector to secure corresponding holes on a beam node coupling element of a beam (not shown). Second beam coupling element 576 further comprises holes 549 c, 549 d each adapted to receive a bolt or other connector to secure corresponding holes on a beam node coupling element of a beam (not shown). The beam node 509 further comprises two substantially parallel vertical supports 556 a, 556 b separated by a spacer element 564, thereby defining two registration element receivers 533 a, 533 b between vertical supports 556 a, 556 b. Registration element receivers 533 a, 533 b are adapted to receive the corresponding registration elements of a corner wall panel.
  • FIGS. 18 and 19 show beam node 503 comprising a first beam coupling element 574, a second beam coupling element 577, and a third beam coupling element 573. first beam coupling element 574 is adapted to couple a first beam (not shown) in line with a second beam (not shown) coupled to the second beam coupling element 577. third beam coupling element 573 is adapted to couple a third beam (not shown) perpendicular to the first beam and second beam. Lower horizontal support member 514 supports vertical support members 518 a, 518 b and vertical support members 519 a, 519 b. first beam coupling element 574 comprises tongue 525 b that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a first beam (not shown). Second beam coupling element 577 comprises tongue 527 b that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a second beam (not shown). Third beam coupling element 573 comprises tongue 526 a that is adapted to slidingly engage a corresponding groove on a beam node coupling element of a third beam (not shown). Third beam coupling element 573 further comprises holes 543 a, 543 b that are adapted to receive a bolt or other suitable connector to secure holes on a corresponding beam node coupling element on the third beam. A registration element comprising two substantially parallel vertical supports 557 a, 557 b separated by a spacer element 565 to define two registration element receivers 534 a, 534 b between the two vertical supports 557 a, 557 b.
  • B. Floor Panels
  • FIGS. 20-26 depict one embodiment of the floor panel 208 in several views. FIGS. 20-22 depict floor panel 208 in a perspective view. FIG. 20 provides opaque surfaces. FIG. 21 shows a wireframe view of an embodiment comprising anchors 224 a-224 f, while FIG. 22 shows a wireframe view of an alternative embodiment comprising ribs 224 g-224 i. FIG. 23 shows an end-on elevation view from the direction of arrow D in FIG. 20. The end-on elevation view from the other end is a mirror image of FIG. 23. FIG. 24 is a left side elevation view from the direction of arrow B of FIG. 20. FIG. 25 is a bottom-up plan view from the direction of arrow C in FIG. 20. FIG. 26 is a top-down plan view from the direction of arrow A in FIG. 20.
  • FIGS. 20 and 22-26 depict floor panel 208 comprising ribs 224 g, 224 h, and 224 i supporting and separating an upper surface 228 from the lower surface 229. Rib 224 g comprises shear-stabilizing coupling elements 218 a, 218 d that are adapted to engage the ribs or anchors of adjacent floor panels. Shear-stabilizing coupling elements 218 a and 218 d emerge from a first edge and a second edge on opposite sides of floor panel 208. Similarly, rib 224 h comprises shear-stabilizing coupling elements 218 b and 218 e. Rib 224 i comprises shear-stabilizing coupling elements 218 c and 218 f. Through coupling port 268 d, rib 224 g is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown). Similarly, through coupling port 268 e, rib 224 h is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown). And, through coupling ports 268 c and 268 f, rib 224 i is adapted to receive and engage shear-stabilizing coupling elements from other floor panels (not shown).
  • Alternatively, FIGS. 20-21 and 23-26 depict floor panel 208 comprising anchors 224 b, 224 c, and 224 f supporting and separating an upper surface 228 from lower surface 229. Anchor 224 b comprises shear-stabilizing coupling element 218 b. Anchor 224 c comprises shear-stabilizing coupling element 218 c. Anchor 224 f comprises shear-stabilizing coupling element 218 f. Through coupling port 268 b, anchor 224 b is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown). Similarly, through coupling port 268 f, anchor 224 f is adapted to receive and engage a shear-stabilizing coupling element from another floor panel (not shown).
  • In FIGS. 20-26, floor panel 208 comprises a plurality of edge members 238 a, 238 b, 248 a, and 248 b that partially enclose and define an interior volume with the upper surface 228 and the lower surface 229. Upper surface 228 is adapted to serve as a floor surface or floor subsurface. Optionally, the floor panel 208 comprises insulation, affixed to any surface, within the interior volume, or a combination thereof. Any suitable insulation can be used. In some cases, the insulation is of a type that is suitable to be blown or injected through insulation injection ports 298 a, 298 b that are found in edge members 248 a, 248 b, respectively. Shear-stabilizing coupling element 218 a is proximal to upper surface 228, while shear-stabilizing coupling element 218 d is proximal to the lower surface 229. Edge member 238 a further comprises beam registration slots 278 a and 278 b, which are adapted to slidingly engage an upper horizontal support member of a beam (not shown). Similarly, edge member 238 b further comprises beam registration slots 279 a and 279 b, which are adapted to slidingly engage an upper horizontal support member of a beam (not shown). Once the registration slots 278 a, 278 b, 279 a, and 279 b engage the upper horizontal support member of the beam, upper surface 228 can be nailed, screwed, or otherwise attached to the upper horizontal support member. Optionally, one of upper surface 228 in lower surface 229 comprise a water-impermeable material. The floor panel 208 can comprise any suitable material, such as, for example, oriented strand board, among other materials.
  • C. Wall Panels
  • FIGS. 27-31 provide different views of wall panel 307 useful in modular construction. FIG. 27 is a perspective view from the inside of a building such as house 10 and shows wall panel 307 with opaque surfaces; FIG. 28 is a perspective view from the exterior and shows wall panel 307 in wireframe format. FIG. 29 provides an elevation view from the exterior. FIG. 30 provides an elevation view from the interior. FIG. 31 provides a top-down plan view.
  • Wall panel 307 has a first main surface 317; a second main surface 327; a plurality of edge members 331 a, 331 b, 337 a, 337 b that support and separate the first main surface 317 from the second main surface 327, and at least partially enclose and define an interior volume with the first main surface 317 and the second main surface 327; shear block receiving ports 397 a, 397 b, 397 c positioned at a first edge of the first main surface 317; shear block receiving ports 397 d, 397 e, 397 f positioned at a second edge of the first main surface 317; wherein the first edge and the second edge are positioned on opposing sides of the first main surface 317. Wall panel 307 further comprises floor attachment element 367 between first side member 337 a and second side member 337 b below the lower edge defined by first main surface 317 and second main surface 327. First side member 337 a and second side member 337 b support and separate the upper edge member 331 a from lower edge member 331 b. First side member 337 a further comprises insulation injection port 398 a, registration tab 345 a, utility conduit port 387 a, and side member extension 352 a. Second side member 337 b further comprises insulation injection port 398 b, registration tab 345 b, utility conduit port 387 b, and side member extension 352 a. Optionally, wall panel 307 comprises insulation, affixed to any surface, within the interior volume, or a combination thereof. Any suitable insulation can be used; in some cases the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof. In some cases, wall panel 307 comprises a water-impermeable material on the first main surface 317, the second main surface 327, or both. Registration tabs 345 a, 345 b and side member extensions 352 a, 352 b are adapted to engage corresponding registration elements such as registration slots of a beam (not shown). Through side member extension 352 a, the first side member 337 a is adapted to transfer load to one or more ledgers of a beam (not shown). Through side member extension 352 b, the second side member 337 b is adapted to transfer load to one or more ledgers of a beam (not shown). Wall panel 307 can comprise any suitable material, such as, for example, an engineered wood product such as oriented strand board, among other materials.
  • FIGS. 32-36 provides several views of an embodiment of a wall panel 621 comprising window opening 629. FIGS. 32 and 33 provide a perspective view from the interior of a building comprising wall panel 621, with FIG. 32 showing opaque surfaces and FIG. 33 in wireframe format. FIG. 34 shows a top-down plan view of wall panel 621. FIG. 35 provides an elevation view from the interior, while FIG. 36 provides an elevation view from the exterior. Wall panel 621 comprises a first main surface 624 a and a second main surface 624 b that are supported and separated by a plurality of edge members, namely, a first side member 625 b proximal to a first edge of the first main surface 624 a; a second side member 625 c proximal to a second edge of the first main surface 624 a; upper edge member 625 a and a lower edge member 625 d that are supported in separated by the first side member 625 b and the second side member 625 c. First main surface 624 a comprises on its first edge three shear block receiving ports 635 a, 635 b, 635 c, and on its opposing side's second edge, three shear block receiving ports 635 j, 635 k, 635 m. Wall panel 621 further comprises a plurality of window edge members 623 a, 623 b, 623 c, 623 d that define a window opening 629 in the first main surface and the second main surface. The plurality of window edge members comprises an upper window edge member 623 a, a lower window edge member 623 d, a first side window member 623 b proximal to the first edge of the first main surface 624 a, and a second side window member 623 c proximal to the second edge of the first main surface 624 a, wherein the first side window member 623 b and the second side window member 623 c support and separate the upper window edge member 623 a from the lower window edge member 623 d. The window edge members 623 a-623 d comprise window frame registration elements in the form of window frame registration slots 627. Further, the first side window member 623 b comprises registration elements in the form of registration tab 634 b adapted to engage a registration slot of a beam (not shown) and side window member extension 633 b adapted to transfer load to a ledger of a beam (not shown). And the second side window member 623 c comprises registration elements in the form of registration tab 634 c adapted to engage a registration slot of a beam (not shown) and side window member extension 633 c adapted to transfer load to a ledger of a beam (not shown). Side member extensions 633 a, 633 d, appearing on the first side member 625 b and second side member 625 c, respectively, are also adapted to transfer load to a ledger of the beam. First side member 625 b further comprises utility conduit port 630 a and registration tab 634 a, and second side member 625 c further comprises utility conduit port 630 d and registration tab 634 d. First side window member 623 b further comprises utility conduit port 630 b, and second side window member 623 c further comprises utility conduit port 628 c. First side window member 623 b and second side window member 623 c further support floor attachment element 626. Any suitable, commercially available or custom-made window frame can be affixed to window opening 629 using the window frame registration slots 627. Alternatively, or in addition, fasteners such as screws, bolts, or nails can be driven through window edge members 623 a-623 d as desired. Window frame registration slots 627 can be position to accommodate routine or customary sizes of window frames, and to allow relatively easy installation thereof.
  • FIGS. 37 and 38 provide two views of wall panel 670 utility access ports 676, 677. FIG. 37 provides a perspective view, while FIG. 38 provides an elevation view from the interior of the building. Wall panel 670 comprises first main surface 671 a and second main surface 671 b, which are supported in separated by a plurality of edge members 672 a, 672 b, 672 c and 672 d. First main surface 671 a comprises a plurality of shear block receiving ports, of which 673 d and 673 f are labeled. Insulation injection port 674 b and utility conduit port 678 b appear in second side member 672 c. Utility conduit port 678 a can be seen in first side member 672 b. Floor attachment element 675 is adapted to help secure wall panel 672 a floor panel (not shown) upon installation. Side member extensions 680 a, 680 b are adapted to transfer load to ledger of a beam (not shown). Registration tab 679 b is adapted to engage a corresponding registration slot of the beam. Electrical wires, data cables, and the like can be passed through a plurality of wall panels each comprising utility conduit ports such as appearing in the several wall panels disclosed herein. When desired, a wall panel such as wall panel 670 comprising a plurality of utility access ports 676, 677 can be included in a wall. Then the electrical wires or data cables can be conducted up through wall panel 670 to a desired utility access port among those utility access ports 676, 677, and a conventional light switch, electric wall socket, data cable port, or the like can be installed in that utility access port. Utility access ports 676 are positioned higher on wall panel 670 to provide an adequate location for a light switch, for example. Utility access ports 677 are positioned lower on wall panel 670 to provide an adequate location for electric wall sockets and data cable ports, for example. Of course, any desired arrangement of switches, outlets, and ports can be installed.
  • FIGS. 39 and 40 provide a perspective view of corner wall panel 612 also seen in FIG. 9. FIG. 39 provides a view having opaque surfaces; FIG. 40 provide the same view in wireframe format. Corner wall panel 612, useful in modular construction, comprises two main outside surfaces comprising a first main outside surface 714 a joining a second main outside surface 714 b defining an outside corner 713; two main inside surfaces comprising a first main inside surface 712 a joining a second main inside surface 712 b defining an inside corner 715; a plurality of edge members 722 a, 722 b, 723 a, 723 d, 728 a, 728 b that support and separate the main outside surfaces from the main inside surfaces; at least one shear block receiving port 720 a, 720 c positioned at an edge of the first main outside surface 714 a distal from the outside corner 713; and at least one shear block receiving port 720 j, 720 k positioned at an edge of the second main outside surface 714 b distal from the outside corner 713. Edge members 722 a, 723 a, and 728 a, together with first corner edge member 723 b, at least partially enclose and define a first interior volume between the first main outside surface 714 a and the first main inside surface 712 a. Edge members 722 b, 723 d, and 728 b, together with second corner edge member 723 c, at least partially enclose and define a second interior volume between the second main outside surface 714 b and the second main inside surface 712 b. Any surface of wall panel 612, the first interior volume, and/or the second interior volume can comprise insulation. Insulation injection ports 716 a, 716 b, 716 c, and 716 d allow insulation to be injected or blown into the interior volumes as wall panel 612 is being assembled. Shear block receiving ports 720 e, 720 h are occluded by first main surface 714 a and second main outside surface 714 b. Utility conduit ports 727 a, 727 b, 727 c, and 727 d allow the passage of electrical wires, data cables and the like through corner wall panel 612. Registration tabs 724 a, 724 b, 724 c and 724 d are adapted to engage corresponding registration slots on two or more beams and/or a 90° beam node (not shown). Side member extensions 725 a, 725 b, 725 c, and 725 d, are adapted to transfer load to two or more ledgers on the beams. Optionally, corner wall panel 612 comprises a water-impermeable material on one or both of the first main outside surface 714 a and the second main outside surface 714 b.
  • Corner wall panel 612 comprises a first upper edge member 722 a, a first lower edge member 728 a, a first edge member 723 a distal from the outside corner 713, and a first corner edge member 723 b; and adjacent to the second main outside surface 714 b, a second upper edge member 722 b, a second lower edge member 728 b, a second edge member 723 d distal from the outside corner 713, and a second corner edge member 723 c.
  • FIGS. 41, 42, and 43 provides several views of wall panel 305 that comprises a ceiling beam registration element 385, as seen in FIGS. 6 and 7. FIG. 41 shows a perspective view of wall panel 305 having opaque surfaces; FIG. 42 provides a same perspective view in wireframe format. FIG. 43 shows an elevation view from the interior of a building. Wall panel 305 comprises a first main surface 730 had a second main surface 325 that are supported and separated by first side member 335, second side member 736, upper edge member 733, and lower edge member 744. Shear block receiving ports 732 b, 732 c, 732 h appear in the first main surface 730. Roof registration tabs 347, 348, 743 are adapted to engage with a wall engagement member of a roof panel (not shown). Vertical member 731 forms part of ceiling beam registration slot 385, which is adapted to receive and support a ceiling beam (not shown). The bottom and of vertical member 731 provides registration tabs 742 a and extension 738 a adapted to transfer load to the ledger of a beam (not shown). Also adapted to support the weight of the ceiling beam is vertical support member 735. Second side member 736 comprises registration tab 742 b and side member extension 738 b adapted to transfer load to the ledger of a beam (not shown). Utility conduit ports 750 a, 750 b, 750 c allow the passage of electrical wires, data cables, and the like through wall panel 305. Shear block receiving port 732 e in vertical support member 735 can be occluded by first main surface 730 or employed to receive a shear block, as desired. Floor attachment member 365 assists in securing wall panel 305 to a floor panel (not shown). While vertical member 731 transfers load to the ledger of a beam via extension 738 a, load is transferred to the upper horizontal support member of the beam via first side member 335 and vertical support member 735. In this way, the weight of a ceiling beam can be transferred directly to the foundation.
  • FIG. 44 provides a perspective view of gable wall panel 641, also seen in FIG. 1. Gable wall panel 641 comprises a first main surface 750 b and a second main surface 750 a, which are supported and separated by a plurality of edge members such as edge member 751 a. Edge member 751 a comprises a plurality of registration receiving slots such as 752 a, 752 c, which are adapted to receive the corresponding registration tabs of a plurality of roof panels (not shown). Second main surface 750 a further comprises holes 753 a, 753 b, which are adapted to each receive a screw, a bolt, or other suitable connector to secure gable wall panel 641 to a suitable attachment site such as a gable coupling box such as those seen in FIG. 8.
  • D. Roof Panels and Roof Beams
  • FIGS. 45-48 provide various views of roof panel 404, also seen in FIG. 9. FIG. 45 provides a perspective view; FIG. 46 provides an end-on elevation view from the direction of arrow A in FIG. 45; the end-on elevation view from the other end would be a mirror image of FIG. 46. FIG. 47 provides a right-side elevation view from the direction of arrow B in FIG. 45. FIG. 48 provides a top-down plan view from the direction of arrow C in FIG. 45.
  • Roof panel 404, useful in modular construction, comprises at least one rib 442 a supporting and separating an upper surface 437 a and a lower surface 437 b; wherein the upper surface 437 a is adapted to serve as a roof surface or roof subsurface; and wherein the at least one rib 442 a comprises two shear-stabilizing coupling elements 434 c, 434 f emerging from opposite sides of roof panel 404, and opening 443. Shear-stabilizing coupling element 434 c is proximal to the upper surface 437 a; while shear-stabilizing coupling element 434 f is proximal to lower service 437 b. Two more ribs (not seen) support additional shear-stabilizing coupling elements. One of those ribs comprises shear-stabilizing coupling elements 434 b and 434 e; the other of those ribs comprises shear-stabilizing coupling elements 434 a and 434 d. In an alternative embodiment, each of shear-stabilizing coupling elements 434 a-434 f is attached to an anchor (for a total of six anchors) that supports and separates upper surface 437 a and a lower surface 437 b. In yet another alternative embodiment, roof panel 404 comprises a combination of one or more ribs and two or more anchors. Roof panel 404 as shown comprises a plurality of edge members 438 a and 438 b that at least partially enclose and define an interior volume with the upper surface 437 a and the lower surface 437 b. Roof panel 404 optionally comprises a water-impermeable material such as, for example, on upper surface 437 a and/or on lower surface 437 b. Upper surface 437 a can further comprise any suitable roofing material, such as, for example, tarpaper (which also serves as a water-impermeable material), shingles including asphalt shingles, wooden shingles, slate, tile, photovoltaic “solar panel” shingles, and combinations thereof. Through openings 436 c and 436 f, rib 442 a is adapted to receive and couple to the shear-stabilizing coupling elements of adjacent roof panels (not shown). Similarly, openings 436 a, 436 b, 436 d, and 436 e allow coupling to the shear-stabilizing coupling elements of those adjacent roof panels. Edge member 438 b shows insulation injection ports 440 c, 440 d that allow insulation to be injected or blown into the interior volume of roof panel 440. Any suitable insulation can be used. In some cases, that insulation is added after roof panel 404 is installed, so that a roof beam (not shown) can engage roof beam registration elements 441 a and 441 b on edge members 438 a and 438 b, respectively, and assist in keeping the insulation within roof panel 404. Similarly, a fascia (not shown—but see fascia 472 in FIG. 9) engages with fascia registration element 441 d on edge member 438 b to assist in keeping the insulation within roof panel 404. Wall registration element 423, which comprises wall registration tabs 423 a, 423 b, is adapted to engage the top edge of a gable wall panel (not shown). Roof panel 404 can comprise any suitable material, such as an engineered wood product such as oriented strand board, among other possible materials.
  • FIGS. 49-52 shows several views of fascia 471. FIG. 49 shows a perspective view; FIG. 50 shows a top-down plan view. FIG. 51 shows a bottom-up plan view. FIG. 52 shows an end-on elevation view; the end-on elevation view from the other end would be a mirror image of FIG. 52. Fascia 471 comprises a lower horizontal support member 474 supporting two vertical support members 473 a, 473 b. Lower horizontal support member 474 comprises registration slots 475 a, 475 b, 475 c, 475 d, and 475 e, which are adapted to receive the corresponding fascia registration elements of roof panels (not shown) such as fascia registration element 441 d of roof panel 404 described above. The fascia registration elements of two adjoining roof panels would slidingly engage a registration slot such as registration slot 475 d. In this way, adjoining roof panels would adjoin and support each other. Without wishing to be bound by theory, it is believed that such support contributes to the enhanced structural integrity exhibited by some embodiments of the present invention.
  • FIGS. 53-54 show different views of roof panel 412 also seen in FIGS. 6 and 9. FIG. 53 provides a perspective view, while FIG. 54 provides an end-on elevation view, with roof panel 412 oriented as it would be on a roof. Roof panel 412 comprises an upper surface 447 a and two lower surfaces 447 b, 447 c that are supported and separated by rib 450 a. Roof panel 412 further comprises two additional ribs (not seen) that have shear-stabilizing coupling elements such as shear-stabilizing coupling element 432 b. Rib 450 a further comprises openings 448 a and 448 d, adapted to receive and couple to the shear-stabilizing coupling elements of adjacent roof panels (not shown). The other ribs (not seen) also comprise openings such as opening 448 c adapted to receive and couple to the shear-stabilizing coupling elements of those adjacent roof panels. Edge members 445 a, 445 b support and separate the upper surface 447 a from lower surfaces 447 b, 447 c. Edge member 445 b comprises insulation injection ports such as insulation injection port 446 d, through which insulation can be injected or blown, either before or after installation of roof panel 412. Roof panel 412 has wall engagement element 415 that comprises a plurality of wall registration elements such as wall registration tabs 421 and 422. Wall engagement element 415 comprises wall engagement supports 492 a, 492 b. Wall engagement support 492 b comprises wall registration tabs 421, 422; mortgage and support 492 a also comprises wall registration tabs (not seen). Load transfer from roof panel 412 to corresponding wall structures is aided by bird beak cuts 449 a and 449 b to rib 450 a. Roof panel 412 optionally comprises a water-impermeable material such as, for example, on upper surface 447 a and/or on lower surfaces 447 b, 447 c. Upper surface 447 a can further comprise any suitable roofing material, such as, for example, tarpaper (which also serves as a water-impermeable material), shingles including asphalt shingles, wooden shingles, slate, tile, photovoltaic “solar panel” shingles, and combinations thereof.
  • FIGS. 55 and 56 depict further embodiments of the present invention relating to a structure to support a ceiling and a roof. Roof beam 461 and ceiling beam 452 are also seen in FIG. 1. Ceiling beam 452 supports central ceiling post 756 and side ceiling posts 755, 757. Ceiling post 755 terminates at its upper end with registration slot 758, which is adapted to receive a corresponding registration element of roof beam 464. Ceiling post 757 terminates at its upper end with a registration slot 759, which is adapted to receive registration tab 769 of roof beam 461. Ceiling post 756 terminates at its upper end with roof beam registration slot 760, and roof panel registration slot 761. Roof beam registration slot 760 is adapted to receive the corresponding registration elements of two roof beams, such as, for example ceiling post registration tab 766 of roof beam 464 and ceiling post registration tab 765 of roof beam 461. Without wishing to be bound by theory, it is believed that receiving the registration tabs 765, 766, central ceiling post 756 connects and secures roof beams 461, 464 in a manner that imparts improved structural integrity to certain embodiments of the present invention. Similarly, roof panel registration slot 761 is adapted to receive the corresponding registration elements of two adjoining roof panels (not shown). Roof beam 464 further comprises its own central roof panel registration slot 768, while roof beam 461 comprises central roof panel registration slot 767. Central roof panel registration slots 767, 768 likewise are adapted to receive the corresponding registration elements of two adjoining roof beams (not shown) at the highest point of the roof. Ceiling post registration tab 765 and ceiling beam registration slot 771 are adapted to transfer load to structure below. Roof panel 461 comprises two vertical support members 762 a, 762 b supporting and separating an upper support member 763 and a lower support member 764. Upper support member 763 comprises a plurality of registration elements, such as, for example roof panel registration slot 770 c and roof panel registration slot 770 g, which are adapted to receive the corresponding structure of roof panels (not shown). For example, registration slot 770 c receives a side member of roof panel 402, as seen in FIG. 1. The upper surface of roof panel 402 can be attached by any suitable means, such as screws or nails, to the upper support member 763 of roof beam 461. Similarly, registration slot 770 g receives the corresponding structure of roof panel 411, as seen in FIG. 1. Lower support member 764 also comprises registration elements, some of which are integral with the vertical support members 762 a, 762 b. For example, ceiling beam registration slot 771 allows roof beam 461 to rest on registration tab 772 of ceiling beam 452. In addition, roof beam 461 comprises wall registration slot 773, which allows roof beam 461 to connect with a wall panel (not shown) that supports ceiling beam 452. Roof beam 464 comprises wall registration slot 774, which allows roof beam 464 to connect with a wall panel (not shown—for example, wall panel 622 in FIG. 1) that supports the other end of ceiling beam 452. Proof beams of the present invention can be made of any suitable material, such as, for example, engineered wood product such as oriented strand board, among other suitable materials. Roof beams, furthermore, can comprise insulation, such as, for example fiber insulation that is adhered to or nailed to the beam, or foam insulation that is sprayed on beam, either before or after installation.
  • E. Subfoundation and Floor
  • FIG. 57 depicts a perspective view from above of another embodiment, namely, a plurality of beams (such as 101, 102,) connected by beam nodes (such as 502) attached to helical piles (such as 1017, 1024). FIG. 58 depicts a perspective view from below of a portion of the embodiment shown in FIG. 57. In addition, floor panels (such as 201, 209, 210) have been added. A grid of any suitable supports such as, for example cement-supported posts, cinderblocks, timber piles, or helical piles driven into soil, compacted soil, wet or setting cement, bedrock, or other suitable substrate can be used to form a subfoundation. In FIG. 57, 28 helical piles such as helical piles 1001, 1002, 1003, 1007, 1008, 1009, 1010, 1014, 1017, and 1024 have been driven into soil under an applied pressure, and only the portion of the piles remaining of above ground is depicted in FIG. 57. Any suitable applied pressure can be used. For example, a downward pressure on the order of 10.1 Kips (5.05 Tons) up to 11.6 Kips (5.8 Tons) can be applied to a helical pile being rotatably driven into undisturbed soil, in some cases. To those helical piles are attached beam nodes such as beam node 502, 507. To those beam nodes, beams such as beams 101, 102, 105, 106, 107, have been attached. The beams and beam nodes in FIG. 58 have floor panels such as floor panels 201, 209, 210 installed thereon. Further discussion of FIGS. 57 and 58 appear in the examples below.
  • EXAMPLES Example 1 Performance of Beams and Floor Panels
  • Six helical piles having a 2-⅞″ tubular shaft manufactured by Goliath Tech were obtained. The helical piles were driven into soil in two rows of three piles each, with 18″ of the 7′ long pile remaining above ground, and each pile being 7′−8″ apart from its neighbor. Each pile was installed with a high torque drill attachment on a Kubota KX057-4 Compact Excavator. Downward pressure on the order of 10.1 Kips (5.05 Tons) up to 11.6 Kips (5.8 Tons) was applied by the excavator during pile insulation to avoid plowing the soil. A 5″×5″ steel plate capped each pile, to which beam nodes similar to three-way beam node 503 and two-way beam node 509 were affixed with structural wood screws through four holes in the plate. Seven beams similar to floor beams 102 and 103 were coupled to the nodes by engaging the beam node coupling elements at each end of a beam, and screws secured the beams to the nodes, such as by securing hole 543 a to hole 192 a in FIG. 3. Two perimeter floor panels similar to floor panels 202 and 203 were installed end-to-end over two beams and three piles, and six floor panels similar to floor panel 208 spanned the remaining distance to the second row of three piles supporting beams. A near end of a beam was secured to a node and pile; floor panels were joined together by engaging the shear-stabilizing coupling elements of one floor panel to the ribs of the neighboring floor panel; then a far end of a beam was secured to the next node and pile. Upper surfaces of floor panels were screwed to floor beams every 4″ where they overlapped.
  • To test the shear strength of the eight-panel floor, a ⅜″ heavy chain was passed through the perimeter floor panels end-to-end, and secured to a 6″×6″ steel plate over a 2-ply ¾″ Advantech 24″×8″ board to form a pressure plate. Using FIGS. 57 and 58 to illustrate the eight-panel floor, the chain would have passed through floor panels 210 and 209 parallel to beam 107, with the pressure plate near pile 1003 and the chain exiting floor panel 209 near pile 1001. Table 1 correlates the six piles of the test floor to the piles identified in FIG. 58, to further illustrate the test floor.
  • TABLE 1
    Test Pile Number Corresponding Pile in FIGS. 57 and 58
    1 1001
    2 1008
    3 1002
    4 1009
    5 1003
    6 1010

    A Dillon Mechanical Dynamometer connected the chain to the Excavator, to apply a tension load simulating a base shear from wind or seismic loading.
  • The excavator applied a load, and the deflection of each pile was measured at the top of each pile under load. The results appear in Table 2.
  • TABLE 2
    Deflection Measurements
    Load Pile 1 Pile 2 Pile 3 Pile 4 Pile 5 Pile 6
    1,000 lbs ⅜″ ¼″ 3/32″ 0″ 5/16″ 0″
    2,000 lbs ½″ ¼″ 5/16″ 0″ ½″ 1/16″
    3,400 lbs 1 3/16″ 7/16″ 1 7/32″ 0″ 1 3/16″ 3/16″
    5,400 lbs 1 3/16″ ½″ 1 5/16″ 1/16″ 1⅛″ 5/16″
  • After the initial round of incremental load testing, the residual deformation was measured with no load applied. Then, a first cyclic loading of four cycles of 5,000 lbs and release were applied, and residual deformation measured with no load applied. A second cyclic loading of five cycles of 5,000 lbs and release were applied, and residual deformation was measured with no load applied. These residual deformation results appear in Table 3.
  • TABLE 3
    Deformation Measurements
    Load Pile
    1 Pile 2 Pile 3 Pile 4 Pile 5 Pile 6
    Incremental Loads 3/16″ ⅛″ 0″ 0″ ⅛″ 1/16″
    Cyclic Loading # 1 ¼″ ⅛″ 0″ 0″ ¼″ 1/16″
    Cyclic Loading # 2 ¼″ 3/16″ 0″ 0″ ½″ 1/16″
  • The dynamometer has a maximum capacity of 5,000 lbs, but the excavator is rated in excess of 10,000 lbs, perhaps approximately 12,000 lbs. This maximum load was applied five times to seek the weakest components of the test floor. Extreme deflections of the piles were observed, including deflection in excess of 3½″ for pile 1. After five cycles of maximum load and release, each pile returned to its maximum deflection shown in Table 3. No buckling or failure was observed or found in any of the floor beam or floor panel members or connections, nor was any audible cracking or shearing of the glue-joint panel and beam connections noted during the maximum load testing.
  • After the foregoing tests, the test floor was disassembled and a 5,000 lbs load was applied to pile 5 in the same direction as the previous loads. At 5,000 lbs, pile 5 deflected laterally 1 5/16″.
  • The International Building Code (2012) recommends a maximum allowable load of one-half of the load causing a 1″ lateral deflection. From the foregoing tests, it is estimated that the lateral allowable design value is 2,000 lbs at 18″ above grade. That far exceeds the expected shear load presented by a 149 mph Category 5 hurricane-force wind having a wind pressure of 29.7 PSF. Distributed over the 28 piles of FIG. 57, that equates to a load of about 350 lbs per pile.
  • Example 2 Performance of a Completed Home
  • A home is constructed on 28 helical piles as shown in FIG. 57, and completed in accordance with FIG. 1. A chain connected to a pressure plate affixed to the interior side of wall panel 301 is passed through wall panel 301 to a dynamometer and excavator as described in Example 1. A tension load is applied as in Example 1. The home is expected to sustain a load far exceeding that delivered by a Category 5 hurricane-force wind with minimal lateral deflection and no buckling or failure in any of the components or connections, nor any audible cracking or shearing of those components and connections.
  • EMBODIMENTS A. Beams and Beam Nodes Embodiment 1
  • A beam useful in modular construction comprising: one or more vertical support members supporting and separating an upper horizontal support member and a lower horizontal support member; and at least one ledger adapted to support a vertical load.
  • Embodiment 2
  • The beam of embodiment 1, wherein the upper horizontal support member further comprises at least one registration element.
  • Embodiment 3
  • The beam of embodiment 2, wherein the at least one registration element is adapted to receive at least one corresponding registration element of a floor panel, wall panel, ceiling panel, or a combination thereof.
  • Embodiment 4
  • The beam of any one of embodiments 2-3, wherein the beam has a first end and a second end, and the first end comprises a first beam node coupling element.
  • Embodiment 5
  • The beam of embodiment 4, wherein the second end comprises a second beam node coupling element.
  • Embodiment 6
  • The beam of any one of embodiments 1-5, wherein the beam comprises an engineered wood product.
  • Embodiment 7
  • The beam of embodiment 6, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 8
  • The beam of any one of embodiments 1-7, further comprising insulation.
  • Embodiment 9
  • The beam of any one of embodiments 2-8, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least two wall panels.
  • Embodiment 10
  • The beam of any one of embodiments 2-9, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least three wall panels.
  • Embodiment 11
  • The beam of any one of embodiments 2-10, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least four wall panels.
  • Embodiment 12
  • The beam of any one of embodiments 1-11, wherein the at least one ledger adapted to support a vertical load is attached to a first vertical face of the one or more vertical support members.
  • Embodiment 13
  • The beam of any one of embodiments 1-12, wherein the at least one ledger adapted to support a vertical load comprises two ledgers, wherein the first ledger is attached to a first vertical face of the one or more vertical support members, and the second ledger is attached to a second vertical face of the one or more vertical support members.
  • Embodiment 14
  • A beam node useful in modular construction comprising:
  • a lower horizontal support member supporting
    at least two vertical support members,
    wherein the at least two vertical support members define at least two beam coupling elements; and
    at least one registration element.
  • Embodiment 15
  • The beam node of embodiment 14, wherein the at least two beam coupling elements comprise a first beam coupling element and a second beam coupling element,
  • wherein the first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element.
  • Embodiment 16
  • The beam node of embodiment 14, wherein the at least two beam coupling elements comprise a first beam coupling element and a second beam coupling element,
  • wherein the first beam coupling element is adapted to couple a first beam perpendicular to a second beam coupled to the second beam coupling element.
  • Embodiment 17
  • The beam node of embodiment 14,
  • wherein the at least two beam coupling elements comprise
    a first beam coupling element,
    a second beam coupling element, and
    a third beam coupling element;
    wherein the first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element, and the third beam coupling element is adapted to couple a third beam perpendicular to the first beam and the second beam.
  • Embodiment 18
  • The beam node of embodiment 14,
  • wherein the at least two beam coupling elements comprise
    a first beam coupling element,
    a second beam coupling element,
    a third beam coupling element, and
    a fourth beam coupling element;
    wherein the first beam coupling element is adapted to couple a first beam in line with a second beam coupled to the second beam coupling element,
    the third beam coupling element is adapted to couple a third beam perpendicular to the first beam and the second beam, and
    the fourth beam coupling element is adapted to couple a fourth beam in line with the third beam and perpendicular to the first beam and the second beam.
  • Embodiment 19
  • The beam node of any one of embodiments 14-18, wherein the at least one registration element comprises two substantially parallel vertical supports separated by a spacer element, thereby defining two registration element receivers between the two substantially parallel vertical supports.
  • Embodiment 20
  • The beam node of any one of embodiments 14-19, wherein the at least one registration element is adapted to receive at least one corresponding registration element of a floor panel, wall panel, ceiling panel, or a combination thereof.
  • Embodiment 21
  • The beam node of any one of embodiments 14-20, wherein the at least one registration element is adapted to receive at least one corresponding registration element of at least one wall panel.
  • B. Floor Panels Embodiment 22
  • A floor panel useful in modular construction comprising:
  • at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Embodiment 23
  • A floor panel useful in modular construction comprising:
  • at least one anchor supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and
    wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • Embodiment 24
  • The floor panel of embodiment 22, further comprising at least one anchor supporting and separating the upper surface and the lower surface, wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • Embodiment 25
  • The floor panel of embodiment 23, further comprising at least one rib supporting and separating the upper surface and the lower surface, wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Embodiment 26
  • The floor panel of any one of embodiments 22-25, further comprising a plurality of edge members that at least partially enclose and define an interior volume with the upper surface and the lower surface.
  • Embodiment 27
  • The floor panel of any one of embodiments 22-26, further comprising insulation.
  • Embodiment 28
  • The floor panel of any one of embodiments 26-27, wherein the interior volume comprises insulation.
  • Embodiment 29
  • The floor panel of any one of embodiments 27-28, wherein the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof.
  • Embodiment 30
  • The floor panel of any one of embodiments 22 and 24-29, wherein the at least one rib comprises at least three ribs.
  • Embodiment 31
  • The floor panel of any one of embodiments 22 and 24-30, wherein the at least one rib comprises at least two shear-stabilizing coupling elements.
  • Embodiment 32
  • The floor panel of any one of embodiments 22 and 24-31, wherein the at least one rib is adapted to engage at least one shear-stabilizing coupling element from another floor panel.
  • Embodiment 33
  • The floor panel of any one of embodiments 22 and 24-32, wherein the at least one shear-stabilizing coupling element comprises a first shear-stabilizing coupling element emerging from a first edge of the floor panel, and a second shear-stabilizing coupling element emerging from a second edge of the floor panel,
  • wherein the first edge and the second edge are positioned on opposing sides of the floor panel.
  • Embodiment 34
  • The floor panel of embodiment 33,
  • wherein the first shear-stabilizing coupling element is proximal to the upper surface, and the second shear-stabilizing coupling element is proximal to the lower surface.
  • Embodiment 35
  • The floor panel of any one of embodiments 23-29, wherein the at least one anchor comprises at least two anchors.
  • Embodiment 36
  • The floor panel of any one of embodiments 23-29 and 35, wherein the at least one anchor comprises at least six anchors.
  • Embodiment 37
  • The floor panel of any one of embodiments 23-29 and 35-36, wherein the at least one anchor is adapted to engage at least one shear-stabilizing coupling element from another floor panel.
  • Embodiment 38
  • The floor panel of any one of embodiments 23-29 and 35-37, comprising a first anchor having a first shear-stabilizing coupling element, and a second anchor having a second shear-stabilizing coupling element;
  • wherein the first shear-stabilizing coupling element emerges from a first edge of the floor panel, and the second shear-stabilizing coupling element emerges from a second edge of the floor panel,
    wherein the first edge and the second edge are positioned on opposing sides of the floor panel.
  • Embodiment 39
  • The floor panel of embodiment 38,
  • wherein the first shear-stabilizing coupling element is proximal to the upper surface, and the second shear-stabilizing coupling element is proximal to the lower surface.
  • Embodiment 40
  • The floor panel of any one of embodiments 22-39, wherein at least one of the upper surface and the lower surface comprise a water-impermeable material.
  • Embodiment 41
  • The floor panel of any one of embodiments 22-40, wherein the floor panel comprises an engineered wood product.
  • Embodiment 42
  • The floor panel of embodiment 41, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 43
  • The floor panel of any one of embodiments 26-42, wherein at least one in the plurality of edge members comprise at least one insulation injection port.
  • Embodiment 44
  • The floor panel of any one of embodiments 22-43, further comprising at least one registration element positioned on at least one edge of the floor panel.
  • Embodiment 45
  • The floor panel of embodiment 44, wherein the at least one registration element is present in sufficient number to receive the corresponding registration elements of at least two wall panels.
  • Embodiment 46
  • The floor panel of any one of embodiments 44-45, wherein the at least one registration element is present in sufficient number to receive the corresponding registration elements of at least three wall panels.
  • Embodiment 47
  • The floor panel of any one of embodiments 44-46, wherein the at least one registration element is present in sufficient number to receive the corresponding registration elements of at least four wall panels.
  • Embodiment 48
  • The floor panel of any one of embodiments 26-47, wherein at least one in the plurality of edge members is adapted to engage a ledger of a beam.
  • Embodiment 49
  • The floor panel of any one of embodiments 22-48, wherein the upper surface is adapted to engage an upper horizontal support member of a beam.
  • C. Wall Panels Embodiment 50
  • A wall panel useful in modular construction comprising:
      • a first main surface;
      • a second main surface;
      • a plurality of edge members that support and separate the first main surface from the second main surface; and
      • at least one shear block receiving port positioned at a first edge of the first main surface;
      • at least one shear block receiving port positioned at a second edge of the first main surface;
      • wherein the first edge and the second edge are positioned on opposing sides of the first main surface.
    Embodiment 51
  • The wall panel of embodiment 50, wherein the plurality of edge members at least partially encloses and defines an interior volume with the first main surface and the second main surface.
  • Embodiment 52
  • The wall panel of any one of embodiments 50-51, further comprising insulation.
  • Embodiment 53
  • The wall panel of any one of embodiments 50-52, wherein the interior volume comprises insulation.
  • Embodiment 54
  • The wall panel of any one of embodiments 52-53, wherein the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof.
  • Embodiment 55
  • The wall panel of any one of embodiments 50-54, wherein at least one of the first main surface and the second main surface comprise a water-impermeable material.
  • Embodiment 56
  • The wall panel of any one of embodiments 50-55, wherein the plurality of edge members comprise
  • an upper edge member,
    a lower edge member,
    a first side member proximal to the first edge of the first main surface, and
    a second side member proximal to the second edge of the first main surface,
    wherein the first side member and the second side member support and separate the upper edge member from the lower edge member.
  • Embodiment 57
  • The wall panel of embodiment 56, wherein at least one of the first side member and the second side member comprise at least one registration element.
  • Embodiment 58
  • The wall panel of any one of embodiments 56-57, wherein the first side member comprises a first registration element, and the second side member comprises a second registration element.
  • Embodiment 59
  • The wall panel of embodiment 57, wherein the at least one registration element is adapted to engage a registration element of a beam.
  • Embodiment 60
  • The wall panel of embodiment 58, wherein the first registration element is adapted to engage a first registration element of a beam, and the second registration element is adapted to engage a second registration element of a beam.
  • Embodiment 61
  • The wall panel of any one of embodiments 56-60, wherein at least one of the first side member and the second side member is adapted to transfer load to one or more ledgers of a beam.
  • Embodiment 62
  • The wall panel of any one of embodiments 50-61, wherein the first main surface and the second main surface define a lower edge, and the lower edge comprises at least one floor attachment element.
  • Embodiment 63
  • The wall panel of any one of embodiments 50-62, wherein at least two in the plurality of edge members each comprise at least one utility conduit port.
  • Embodiment 64
  • The wall panel of any one of embodiments 50-63, wherein at least one in the plurality of edge members comprises at least one insulation injection port.
  • Embodiment 65
  • The wall panel of any one of embodiments 50-64, wherein the first main surface and the second main surface define an upper edge, wherein the upper edge comprises at least one registration element.
  • Embodiment 66
  • The wall panel of any one of embodiments 50-65, wherein the wall panel comprises an engineered wood product.
  • Embodiment 67
  • The wall panel of embodiment 66, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 68
  • The wall panel of any one of embodiments 50-67, wherein the first edge of the main surface comprises at least three shear block receiving ports, and the second edge of the main surface comprises at least three shear block receiving ports.
  • Embodiment 69
  • The wall panel of any one of embodiments 50-68, further comprising a plurality of window edge members that define a window opening in the first main surface and the second main surface.
  • Embodiment 70
  • The wall panel of embodiment 69, wherein the plurality of window edge members comprises
  • an upper window edge member,
    a lower window edge member,
    a first side window member proximal to the first edge of the first main surface, and a second side window member proximal to the second edge of the first main surface,
    wherein the first side window member and the second side window member support and separate the upper window edge member from the lower window edge member.
  • Embodiment 71
  • The wall panel of any one of embodiments 69-70, wherein at least some window edge members in the plurality of window edge members comprise window frame registration elements.
  • Embodiment 72
  • The wall panel of any one of embodiments 70-71, wherein at least one of the first side window member and the second side window member comprise at least one registration element.
  • Embodiment 73
  • The wall panel of any one of embodiments 70-72, wherein the first side window member comprises a first registration element, and the second side window member comprises a second registration element.
  • Embodiment 74
  • The wall panel of embodiment 72, wherein the at least one registration element is adapted to engage a registration element of a beam.
  • Embodiment 75
  • The wall panel of embodiment 73, wherein the first registration element is adapted to engage a first registration element of a beam, and the second registration element is adapted to engage a second registration element of a beam.
  • Embodiment 76
  • The wall panel of any one of embodiments 70-75, wherein at least one of the first side member and the second side member is adapted to transfer load to one or more ledgers of a beam.
  • Embodiment 77
  • The wall panel of any one of embodiments 69-76, wherein at least two in the plurality of window edge members each comprise at least one utility conduit port.
  • Embodiment 78
  • The wall panel of any one of embodiments 50-69, wherein the second main surface comprises at least one utility access port.
  • Embodiment 79
  • The wall panel of embodiment 78, wherein the second main surface comprises at least three utility access ports.
  • Embodiment 80
  • The wall panel of any one of embodiments 78-79, wherein the second main surface comprises six utility access ports.
  • Embodiment 81
  • The wall panel of any one of embodiments 78-80, wherein the at least one utility access port comprises at least one utility access port adapted to function as an electric wall socket port.
  • Embodiment 82
  • The wall panel of any one of embodiments 78-81, wherein the at least one utility access port comprises at least one utility access port adapted to function as an electric light switch port.
  • Embodiment 83
  • A corner wall panel useful in modular construction comprising:
  • two main outside surfaces comprising
      • a first main outside surface joining
      • a second main outside surface defining an outside corner;
        two main inside surfaces comprising
      • a first main inside surface joining
      • a second main inside surface defining an inside corner;
        a plurality of edge members that support and separate the main outside surfaces from the main inside surfaces;
        at least one shear block receiving port positioned at an edge of the first main outside surface distal from the outside corner; and
        at least one shear block receiving port positioned at an edge of the second main outside surface distal from the outside corner.
    Embodiment 84
  • The corner wall panel of embodiment 83, wherein the plurality of edge members at least partially encloses and defines at least one interior volume between the outside main surfaces and the inside main surfaces.
  • Embodiment 85
  • The corner wall panel of any one of embodiments 83-84, further comprising insulation.
  • Embodiment 86
  • The corner wall panel of embodiment 84, wherein the at least one interior volume comprises insulation.
  • Embodiment 87
  • The corner wall panel of any one of embodiments 85-86, wherein the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof.
  • Embodiment 88
  • The corner wall panel of any one of embodiments 83-87, wherein the first main outside surface and the second main outside surface comprise a water-impermeable material.
  • Embodiment 89
  • The corner wall panel of any one of embodiments 83-88, wherein the plurality of edge members comprises adjacent to the first main outside surface,
      • a first upper edge member,
      • a first lower edge member,
      • a first edge member distal from the outside corner, and
      • a first corner edge member; and
        adjacent to the second main outside surface,
      • a second upper edge member,
      • a second lower edge member,
      • a second edge member distal from the outside corner, and
      • a second corner edge member.
    Embodiment 90
  • The corner wall panel of embodiment 89, wherein at least one of the first edge member and the first corner edge member comprise at least one registration element.
  • Embodiment 91
  • The corner wall panel of any one of embodiments 89-90, wherein at least one of the second edge member and the second corner edge member comprise at least one registration element.
  • Embodiment 92
  • The corner wall panel of embodiment 90, wherein the at least one registration element is adapted to engage a registration element of a beam.
  • Embodiment 93
  • The corner wall panel of embodiment 91, wherein the at least one registration element is adapted to engage a registration element of a beam.
  • Embodiment 94
  • The corner wall panel of any one of embodiments 89-93, wherein at least one of the first edge member and first corner edge member is adapted to transfer load to one or more ledgers of a beam.
  • Embodiment 95
  • The corner wall panel of any one of embodiments 89-94, wherein at least one of the second edge member and second corner edge member is adapted to transfer load to one or more ledgers of a beam.
  • Embodiment 96
  • The corner wall panel of any one of embodiments 83-95, wherein at least two in the plurality of edge members each comprise at least one utility conduit port.
  • Embodiment 97
  • The corner wall panel of any one of embodiments 83-96, wherein at least one in the plurality of edge members comprises at least one insulation injection port.
  • Embodiment 98
  • The corner wall panel of any one of embodiments 83-97, wherein the first main outside surface and first main inside surface define a first upper edge, wherein the first upper edge comprises at least one registration element.
  • Embodiment 99
  • The corner wall panel of any one of embodiments 83-98, wherein the second main outside surface and the second main inside surface define a second upper edge, wherein the second upper edge comprises at least one registration element.
  • Embodiment 100
  • The corner wall panel of any one of embodiments 83-99, wherein the corner wall panel comprises an engineered wood product.
  • Embodiment 101
  • The corner wall panel of embodiment 100, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 102
  • The corner wall panel of any one of embodiments 83-101, comprising at least three shear block receiving ports positioned at the edge of the first main outside surface distal from the outside corner.
  • Embodiment 103
  • The corner wall panel of any one of embodiments 83-102, comprising at least three shear block receiving ports positioned at the edge of the second main outside surface distal from the outside corner.
  • Embodiment 104
  • The corner wall panel of any one of embodiments 83-103, wherein the first main outside surface and the first main inside surface define a first lower edge, and the first lower edge comprises at least one first floor attachment element.
  • Embodiment 105
  • The corner wall panel of any one of embodiments 83-104, wherein the second main outside surface and the second main inside surface define a second lower edge, and the second lower edge comprises at least one second floor attachment element.
  • Embodiment 106
  • The wall panel of any one of embodiments 50-82, further comprising a ceiling beam registration element.
  • D. Roof Panels and Roof Beams Embodiment 107
  • A roof panel useful in modular construction comprising:
  • at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Embodiment 108
  • A roof panel useful in modular construction comprising:
  • at least one anchor supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and
    wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • Embodiment 109
  • The roof panel of embodiment 107, further comprising at least one anchor supporting and separating the upper surface and the lower surface, wherein the at least one anchor comprises at least one shear-stabilizing coupling element.
  • Embodiment 110
  • The roof panel of embodiment 108, further comprising at least one rib supporting and separating the upper surface and the lower surface, wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Embodiment 111
  • The roof panel of any one of embodiments 107-110, further comprising a plurality of edge members that at least partially enclose and define an interior volume with the upper surface and the lower surface.
  • Embodiment 112
  • The roof panel of any one of embodiments 107-111 further comprising insulation.
  • Embodiment 113
  • The roof panel of any one of embodiments 111-112, wherein the interior volume comprises insulation.
  • Embodiment 114
  • The roof panel of any one of embodiments 112-113, wherein the insulation is chosen from open cell foams, closed cell foams, fibers, pellets, and combinations thereof.
  • Embodiment 115
  • The roof panel of any one of embodiments 107 and 109-114, wherein the at least one rib comprises at least three ribs.
  • Embodiment 116
  • The roof panel of any one of embodiments 107 and 109-115, wherein the at least one rib comprises at least two shear-stabilizing coupling elements.
  • Embodiment 117
  • The roof panel of any one of embodiments 107 and 109-116, wherein the at least one rib is adapted to engage at least one shear-stabilizing coupling element from another roof panel.
  • Embodiment 118
  • The roof panel of any one of embodiments 107 and 109-117, wherein the at least one shear-stabilizing coupling element comprises
  • a first shear-stabilizing coupling element emerging from a first edge of the roof panel, and a second shear-stabilizing coupling element emerging from a second edge of the roof panel,
    wherein the first edge and the second edge are positioned on opposing sides of the roof panel.
  • Embodiment 119
  • The roof panel of embodiment 118, wherein the first shear-stabilizing coupling element is proximal to the upper surface, and the second shear-stabilizing coupling element is proximal to the lower surface.
  • Embodiment 120
  • The roof panel of any one of embodiments 108-114, wherein the at least one anchor comprises at least two anchors.
  • Embodiment 121
  • The roof panel of any one of embodiments 108-114 and 120, wherein the at least one anchor comprises at least six anchors.
  • Embodiment 122
  • The roof panel of any one of embodiments 108-114 and 120-121, wherein the at least one anchor is adapted to engage at least one shear-stabilizing coupling element from another roof panel.
  • Embodiment 123
  • The roof panel of any one of embodiments 108-114 and 120-122, comprising a first anchor having a first shear-stabilizing coupling element, and a second anchor having a second shear-stabilizing coupling element;
  • wherein the first shear-stabilizing coupling element emerges from a first edge of the roof panel, and the second shear-stabilizing coupling element emerges from a second edge of the roof panel,
    wherein the first edge and the second edge are positioned on opposing sides of the roof panel.
  • Embodiment 124
  • The roof panel of embodiment 123, wherein the first shear-stabilizing coupling element is proximal to the upper surface, and the second shear-stabilizing coupling element is proximal to the lower surface.
  • Embodiment 125
  • The roof panel of any one of embodiments 107-124, wherein at least one of the upper surface and the lower surface comprises a water-impermeable material.
  • Embodiment 126
  • The roof panel of any one of embodiments 107-125, wherein the roof panel comprises an engineered wood product.
  • Embodiment 127
  • The roof panel of embodiment 126, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 128
  • The roof panel of any one of embodiments 111-127, wherein at least one in the plurality of edge members comprise at least one insulation injection port.
  • Embodiment 129
  • The roof panel of any one of embodiments 107-128, wherein the lower surface further comprises at least one registration element adapted to engage at least one gable wall panel.
  • Embodiment 130
  • The roof panel of any one of embodiments 107-129, further comprising a wall engagement member that comprises a plurality of wall registration elements adapted to engage an upper edge of at least one wall panel.
  • Embodiment 131
  • A roof beam useful in modular construction comprising:
  • one or more vertical support members supporting and separating
    an upper support member and
    a lower support member; and
    a first registration element and a second registration element adapted to transfer load to structure below.
  • Embodiment 132
  • The roof beam of embodiment 131, comprising a first end and a second end, wherein the first registration element is proximal to the first end, and the second registration element is proximal to the second end.
  • Embodiment 133
  • The roof beam of any one of embodiments 131-132, wherein the first registration element comprises a ceiling post registration tab.
  • Embodiment 134
  • The roof beam of any one of embodiments 131-133, wherein the second registration element comprises a ceiling beam registration slot.
  • Embodiment 135
  • The roof beam of any one of embodiments 131-134, wherein the upper support member comprises a plurality of roof panel registration elements.
  • Embodiment 136
  • The roof beam of embodiment 135, wherein the plurality of roof panel registration elements comprises registration slots.
  • Embodiment 137
  • The roof beam of any one of embodiments 131-136, wherein the lower support member comprises a plurality of registration elements.
  • Embodiment 138
  • The roof beam of embodiment 137, wherein the plurality of registration elements comprises one or more ceiling beam registration elements, one or more wall registration elements, and combinations thereof.
  • Embodiment 139
  • The roof beam of any one of embodiments 131-137, wherein the roof beam comprises an engineered wood product.
  • Embodiment 140
  • The roof beam of embodiment 139, wherein the engineered wood product comprises oriented strand board.
  • Embodiment 141
  • The roof beam of any one of embodiments 131-140, wherein the roof beam further comprises insulation.
  • E. Entire Building Embodiment 142
  • A building comprising
  • at least one beam as claimed in any one of embodiments 1-13;
    at least one beam node as claimed in any one of embodiments 14-21;
    at least one floor panel as claimed in any one of embodiments 22-49;
    at least one wall panel as claimed in any one of embodiments 50-68;
    at least one roof panel as claimed in any one of embodiments 107-130;
    at least one roof beam as claimed in any one of embodiments 131-141; or
    a combination of any two or more of the foregoing.
  • Embodiment 143
  • The building of embodiment 131, further comprising:
  • at least one wall panel as claimed in any one of embodiments 69-77;
    at least one wall panel as claimed in any one of embodiments 78-82;
    at least one corner wall panel as claimed in any one of embodiments 83-106;
    or a combination of two or more of the foregoing.
  • F. Methods
  • Embodiment 144
  • A method of constructing a building, comprising:
  • (a) installing a plurality of helical piles in ground to establish a subfoundation for the building;
    (b) affixing a plurality of beams to the helical piles, wherein the beams comprise one or more vertical support members supporting and separating
    an upper horizontal support member and
    a lower horizontal support member; and
    at least one ledger adapted to support a vertical load,
    wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
    (c) affixing a plurality of floor panels to the foundation, wherein the floor panels comprise
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a floor surface or subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element,
    wherein at least some of the floor panels are coupled to adjoining floor panels in the plurality via the at least one shear-stabilizing coupling element, to form a floor of the building;
    (d) affixing a plurality of wall panels to the foundation, wherein the wall panels comprise
    a first main surface;
    a second main surface;
    a plurality of edge members that support and separate the first main surface from the second main surface; and
    at least one shear block receiving port positioned at a first edge of the first main surface;
    at least one shear block receiving port positioned at a second edge of the first main surface;
    wherein the first edge and the second edge are positioned on opposing sides of the first main surface;
    wherein at least some of the wall panels engage registration elements of at least some of the beams of the foundation, and transfer vertical load to at least some of the ledgers of the beams of the foundation;
    (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building;
    (f) affixing a plurality of roof panels and a plurality of roof beams to the wall, wherein the roof panels comprise
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element;
    wherein the roof beams comprise
    one or more vertical support members supporting and separating
    an upper support member and
    a lower support member; and
    a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall;
    affixing at least one upper surface to at least one upper support member;
    wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality of roof panels via the at least one shear-stabilizing coupling element, to form a roof of the building,
    thereby constructing the building.
  • Embodiment 145
  • The method of embodiment 144, wherein the plurality of beams comprises at least one beam as claimed in any one of embodiments 1-13;
  • the plurality of floor panels comprises at least one floor panel as claimed in any one of embodiments 22-49;
    the plurality of wall panels comprises at least one wall panel as claimed in any one of embodiments 50-82;
    the plurality of roof panels comprises at least one roof panel as claimed in any one of embodiments 107-130;
    the plurality of roof beams comprise at least one roof beam as claimed in any one of embodiments 131-141; or
    a combination of any two or more of the foregoing.
  • Embodiment 146
  • A method of constructing a floor of a building comprising:
  • (b) affixing to a subfoundation a plurality of beams, wherein the beams comprise one or more vertical support members supporting and separating
    an upper horizontal support member and
    a lower horizontal support member; and
    at least one ledger adapted to support a vertical load,
    wherein at least some of the beams are coupled to other beams in the plurality of beams, to form a foundation for the building;
    (c) affixing a plurality of floor panels to the foundation, wherein the floor panels comprise
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a floor surface or floor subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element,
    wherein at least some of the floor panels are coupled to adjoining floor panels in the plurality of floor panels via the at least one shear-stabilizing coupling element, to form a floor of the building.
  • Embodiment 147
  • The method of embodiment 146, wherein
  • the plurality of beams comprises at least one beam as claimed in any one of embodiments 1-13;
    the plurality of floor panels comprises at least one floor panel as claimed in any one of embodiments 22-49;
    or a combination of any two or more of the foregoing.
  • Embodiment 148
  • A method of constructing a wall of a building, the method comprising:
  • (d) affixing a plurality of wall panels to a foundation of the building, wherein the wall panels comprise
    a first main surface;
    a second main surface;
    a plurality of edge members that support and separate the first main surface from the second main surface; and
    at least one shear block receiving port positioned at a first edge of the first main surface;
    at least one shear block receiving port positioned at a second edge of the first main surface;
    wherein the first edge and the second edge are positioned on opposing sides of the first main surface; and
    (e) inserting a plurality of shear blocks into at least some of the shear block receiving ports of adjacent wall panels, thereby stabilizing the wall panels, and thereby forming a wall of the building.
  • Embodiment 149
  • The method of embodiment 148, wherein the plurality of wall panels comprises at least one wall panel as claimed in any one of embodiments 50-82.
  • Embodiment 150
  • A method of constructing a roof of a building, comprising:
  • (f) affixing a plurality of roof panels and a plurality of roof beams to a wall of the building, wherein the roof panels comprise
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a roof surface or roof subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element;
    wherein the roof beams comprise
    one or more vertical support members supporting and separating
    an upper support member and
    a lower support member; and
    a first registration element and a second registration element adapted to transfer load to structure below, wherein the structure below comprises the wall;
    affixing at least one upper surface to at least one upper support member; wherein at least some of the roof panels are coupled to adjoining roof panels in the plurality via the at least one shear-stabilizing coupling element, to construct the roof of the building.
  • Embodiment 151
  • The method of embodiment 150, wherein the plurality of roof panels comprises at least one roof panel as claimed in any one of embodiments 107-130.
  • Embodiment 152
  • A method of manufacturing a beam useful in modular construction comprising:
  • constructing a beam comprising
    one or more vertical support members supporting and separating
    an upper horizontal support member and
    a lower horizontal support member; and
    at least one ledger adapted to support a vertical load,
    thereby manufacturing the beam.
  • Embodiment 153
  • The method of embodiment 152, wherein the beam comprises a beam as claimed in any one of embodiments 1-13.
  • Embodiment 154
  • A method of manufacturing a floor panel useful in modular construction, comprising:
  • constructing a floor panel comprising
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a floor surface or subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element.
  • Embodiment 155
  • The method of embodiment 154, wherein the floor panel comprises a floor panel as claimed in any one of embodiments 22-49.
  • Embodiment 156
  • A method of manufacturing a wall panel useful in modular construction, comprising:
  • constructing a wall panel comprising
    a first main surface;
    a second main surface;
    a plurality of edge members that support and separate the first main surface from the second main surface; and
    at least one shear block receiving port positioned at a first edge of the first main surface;
    at least one shear block receiving port positioned at a second edge of the first main surface;
    wherein the first edge and the second edge are positioned on opposing sides of the first main surface,
    thereby manufacturing the wall panel.
  • Embodiment 157
  • The method of embodiment 156, wherein the wall panel comprises a wall panel as claimed in any one of embodiments 50-82.
  • Embodiment 158
  • A method of manufacturing a roof panel useful in modular construction, comprising:
  • constructing a roof panel comprising
    at least one rib supporting and separating
    an upper surface and
    a lower surface;
    wherein the upper surface is adapted to serve as a roof surface or subsurface; and
    wherein the at least one rib comprises at least one shear-stabilizing coupling element,
    thereby manufacturing the roof panel.
  • Embodiment 159
  • The method of embodiment 158, wherein the roof panel comprises a roof panel as claimed in any one of embodiments 107-130.
  • Embodiment 160
  • A method of manufacturing a roof beam useful in modular construction comprising:
  • constructing a roof beam comprising
    one or more vertical support members supporting and separating
    an upper support member and
    a lower support member; and
    a first registration element and a second registration element adapted to transfer load to structure below.
  • Embodiment 161
  • The method of embodiment 160, wherein the roof beam comprises a roof beam as claimed in any one of embodiments 131-141.
  • As previously stated, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various forms. It will be appreciated that many modifications and other variations stand within the intended scope of this invention as claimed below. Furthermore, the foregoing description of various embodiments does not necessarily imply exclusion. For example, “some” embodiments may include all or part of “other” and “further” embodiments within the scope of this invention. In addition, “a” does not mean “one and only one;” “a” can mean “one and more than one.”

Claims (20)

I claim:
1. A beam useful in modular construction comprising:
one or more vertical support members supporting and separating
an upper horizontal support member and
a lower horizontal support member; and
at least one ledger adapted to support a vertical load.
2. The beam of claim 1, wherein the upper horizontal support member further comprises at least one registration element.
3. The beam of claim 2, wherein the at least one registration element is adapted to receive at least one corresponding registration element of a floor panel, wall panel, ceiling panel, or a combination thereof.
4. The beam of claim 2,
wherein the beam has a first end and a second end, and the first end comprises a first beam node coupling element.
5. The beam of claim 4, wherein the second end comprises a second beam node coupling element.
6. The beam of claim 1, wherein the beam comprises an engineered wood product.
7. The beam of claim 6, wherein the engineered wood product comprises oriented strand board.
8. The beam of claim 1, further comprising insulation.
9. The beam of claim 2, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least two wall panels.
10. The beam of claim 2, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least three wall panels.
11. The beam of claim 2, wherein the upper support member comprises the at least one registration element in sufficient number to receive the corresponding registration elements of at least four wall panels.
12. The beam of claim 1, wherein the at least one ledger adapted to support a vertical load is attached to a first vertical face of the one or more vertical support members.
13. The beam of claim 1, wherein the at least one ledger adapted to support a vertical load comprises two ledgers, wherein the first ledger is attached to a first vertical face of the one or more vertical support members, and the second ledger is attached to a second vertical face of the one or more vertical support members.
14. A method of manufacturing a beam useful in modular construction comprising:
constructing a beam comprising
one or more vertical support members supporting and separating
an upper horizontal support member and
a lower horizontal support member; and
at least one ledger adapted to support a vertical load,
thereby manufacturing the beam.
15. The method of claim 14, wherein constructing the beam comprises:
joining together two vertical support members;
affixing the upper horizontal support member to the two vertical support members; affixing the lower horizontal support member to the two vertical support members; and affixing a first ledger to one of the two vertical support members.
16. The method of claim 15, further comprising a second ledger to another of the two vertical support members.
17. The method of claim 15, further comprising:
before the affixing the upper horizontal support member, creating one or more registration elements in the upper horizontal support member.
18. The method of claim 15, further comprising:
creating a beam node coupling element in a first end of the beam.
19. The method of claim 15, further comprising:
creating a beam node coupling element in a second end of the beam.
20. The method of claim 15, wherein the beam comprises an engineered wood product.
US14/721,275 2015-05-26 2015-05-26 Modular building systems, components, and methods Abandoned US20160348368A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/721,275 US20160348368A1 (en) 2015-05-26 2015-05-26 Modular building systems, components, and methods
US14/952,956 US20160348369A1 (en) 2015-05-26 2015-11-26 Modular building systems, components, and methods
PCT/US2016/034206 WO2016191510A1 (en) 2015-05-26 2016-05-26 Sectional building systems, components, and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/721,275 US20160348368A1 (en) 2015-05-26 2015-05-26 Modular building systems, components, and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/952,956 Continuation-In-Part US20160348369A1 (en) 2015-05-26 2015-11-26 Modular building systems, components, and methods

Publications (1)

Publication Number Publication Date
US20160348368A1 true US20160348368A1 (en) 2016-12-01

Family

ID=57399599

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/721,275 Abandoned US20160348368A1 (en) 2015-05-26 2015-05-26 Modular building systems, components, and methods

Country Status (1)

Country Link
US (1) US20160348368A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132088B2 (en) * 2016-08-26 2018-11-20 Quickstyle Industries Inc. Stone plastic composite (SPC) tile with imitation grout line
US20180340330A1 (en) * 2015-09-07 2018-11-29 T3 Building Solutions Limited A building system and material
US10233656B2 (en) * 2016-08-26 2019-03-19 Quickstyle Industries Inc. Densified foam core (DFC) tile with imitation grout line
US20190169858A1 (en) * 2016-08-26 2019-06-06 Stephen Courey Tile with protected imitation grout line
US11149442B2 (en) 2016-08-26 2021-10-19 Quickstyle Industries Inc. Tile with imitation grout line
EP3919698A1 (en) * 2020-06-05 2021-12-08 Phylem Structures, Sl Engineered wood structural system
CN113982171A (en) * 2021-11-01 2022-01-28 曹良朵 Prefabricated house and construction method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340330A1 (en) * 2015-09-07 2018-11-29 T3 Building Solutions Limited A building system and material
US10683663B2 (en) * 2015-09-07 2020-06-16 T3 Building Solutions Limited Building system and material
US10132088B2 (en) * 2016-08-26 2018-11-20 Quickstyle Industries Inc. Stone plastic composite (SPC) tile with imitation grout line
US10233656B2 (en) * 2016-08-26 2019-03-19 Quickstyle Industries Inc. Densified foam core (DFC) tile with imitation grout line
US20190169858A1 (en) * 2016-08-26 2019-06-06 Stephen Courey Tile with protected imitation grout line
US10544595B2 (en) * 2016-08-26 2020-01-28 Quickstyle Industries Inc. Tile with protected imitation grout line
US11149442B2 (en) 2016-08-26 2021-10-19 Quickstyle Industries Inc. Tile with imitation grout line
EP3919698A1 (en) * 2020-06-05 2021-12-08 Phylem Structures, Sl Engineered wood structural system
WO2021245177A1 (en) * 2020-06-05 2021-12-09 Phylem Structures S.L. Engineered wood structural system
US11846100B2 (en) 2020-06-05 2023-12-19 Phylem Structures, S.L. Engineered wood structural system
CN113982171A (en) * 2021-11-01 2022-01-28 曹良朵 Prefabricated house and construction method thereof

Similar Documents

Publication Publication Date Title
US20160348369A1 (en) Modular building systems, components, and methods
US20160348368A1 (en) Modular building systems, components, and methods
US8997424B1 (en) Structural wall panel for use in light-frame construction and method of construction employing structural wall panels
US10156073B2 (en) Modular building system
US8359808B2 (en) Polystyrene wall, system, and method for use in an insulated foam building
US7028440B2 (en) Modular homes
US6588161B2 (en) Laminated construction elements and method for constructing an earthquake-resistant building
US20070125042A1 (en) Structural insulated panel construction for building structures
GB2040337A (en) Building system
JP2012241482A (en) Built-up house and method for building up the sane
US20080115455A1 (en) Foam core panel for prefabricated buildings
US3498014A (en) Construction of building wall panels
US9453332B2 (en) Building system, particularly a residential building
GB2065740A (en) Modular building system and components therefor
WO2013114271A2 (en) Building method and system
WO2011137478A1 (en) Elongate building panel improvement
WO1998048124A1 (en) Building system and components of this system for modular do-it yourself houses
AU2014265071B2 (en) A building and methods of constructing the building
US8511017B2 (en) Interlocking building system
WO2017100854A1 (en) Connection system
CA2310880C (en) Modular construction system
WO2003004786A2 (en) Structural apparatus and method
AU2015100472A4 (en) Constructions having solid load bearing walls
WO2005007983A1 (en) A building connector , joist hanger, ventilation packer and method of building construction
AU2016231373B2 (en) Wall structure and ceiling structure for a building system, in particular a residential building

Legal Events

Date Code Title Description
AS Assignment

Owner name: FINE AND SMALL HOMES LLC, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GODFREY, NICHOLAS C.;THOMPSON, TAYLOR;GREEN, BRANTLEY;AND OTHERS;SIGNING DATES FROM 20150714 TO 20150717;REEL/FRAME:036123/0905

AS Assignment

Owner name: STIPKALA LLC D.B.A. THRIVE IP, SOUTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:K & G IP HOLDINGS, LLC;REEL/FRAME:038048/0159

Effective date: 20160316

Owner name: K & G IP HOLDINGS, LLC, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FINE AND SMALL HOMES LLC;REEL/FRAME:038048/0080

Effective date: 20160316

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION