US20160282154A1 - Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation - Google Patents

Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation Download PDF

Info

Publication number
US20160282154A1
US20160282154A1 US15/034,631 US201415034631A US2016282154A1 US 20160282154 A1 US20160282154 A1 US 20160282154A1 US 201415034631 A US201415034631 A US 201415034631A US 2016282154 A1 US2016282154 A1 US 2016282154A1
Authority
US
United States
Prior art keywords
sensor
housing
data line
measurement pickup
installation housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/034,631
Other versions
US10060770B2 (en
Inventor
Manfred Goll
Ulrich Schrader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Assigned to CONTINENTAL TEVES AG & CO. OHG reassignment CONTINENTAL TEVES AG & CO. OHG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLL, MANFRED, SCHRADER, ULRICH
Publication of US20160282154A1 publication Critical patent/US20160282154A1/en
Application granted granted Critical
Publication of US10060770B2 publication Critical patent/US10060770B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors

Definitions

  • the invention relates to a sensor for outputting a sensor signal which is dependent on a variable which is to be measured, and to a vehicle comprising the sensor.
  • WO 2010/037 810 A1 which is incorporated by reference discloses a sensor for outputting a sensor signal which is dependent on a variable which is to be measured.
  • the sensor comprises a measurement pickup which is electrically connected to a data line at a connection point and is designed to feed the sensor signal which is dependent on the variable which is to be measured into the data line, so that the sensor signal can be output via the data line.
  • an installation housing which houses the measurement pickup and the data line at least at a connection point can be formed within the scope of a plastic injection-molding process, known as “transfer molding”
  • An aspect of the invention aims to improve the known sensor.
  • a sensor for outputting a sensor signal which is dependent on a variable which is to be measured comprises a measurement pickup which is electrically connected to a data line at a connection point, is housed in a measurement pickup housing and is designed to feed the sensor signal which is dependent on the variable which is to be measured into the data line, so that the sensor signal can be output via the data line, an installation housing which houses the measurement pickup housing and the data line at least at a connection point and is produced from a flexible material, and a fastening element, which is fixedly connected to the installation housing, for fastening the installation housing to a sensor receptacle, wherein the measurement pickup housing and the fastening element are arranged on two opposite sides of the installation housing.
  • the flexible material can be a material with a specific modulus of elasticity.
  • the flexibility of the material can also be prespecified by means of a compression set. This is the remaining deformation of the material which remains after deformation with a specific loading over a specific period of time and at a prespecified temperature.
  • the test method used can be, for example, ASTM D395.
  • the specified sensor is based on the consideration that the sensor has to be fastened to such a rigid installation housing with a predetermined installation tolerance in relation to a wheel bearing in the axle body that the measurement pickup housing does not overlap with the wheel bearing and therefore mechanical stresses are applied to the installation housing, these mechanical stresses then acting on the measurement pickup.
  • Mechanical stresses of this kind can be produced, for example, by temperature fluctuations in the other components and subject the installation housing to changes in load which can reach a number of up to two million over the service life of the housing.
  • an air gap between the measurement pickup and a transmitter element is increased owing to the installation tolerance, this however increasing the tolerance range of the sensor signal and restricting a reading range of the measurement pickup at the same time.
  • the specified sensor starts with the consideration that the measurement pickup housing itself is generally produced from a rigid material.
  • This rigid material protects the measurement pickup against the abovementioned mechanical loads. Therefore, the installation housing can be produced from a flexible material which absorbs all mechanical loads which may occur owing to the installed state of the specified sensor, for example in a vehicle, and keeps said mechanical loads away from the measurement pickup housing and therefore from the measurement pickup. Therefore, the sensor can be installed without installation tolerances, so that the abovementioned air gap can be reduced and therefore the reading range of the measurement pickup can be increased and the tolerance range of the sensor signal can be lowered.
  • the flexible material is an elastomer which can be obtained at low cost and can be mass-processed.
  • the elastomer has a Shore A hardness of at least 80 and is therefore suitable for providing, in addition to the abovementioned elasticity, a sufficient degree of resistance in relation to other mechanical loads.
  • the elastomers used can particularly preferably be thermoplastic elastomers which can be plastically processed starting from a specific temperature to form the installation housing.
  • the installation housing extends from the measurement pickup housing in a direction of the data line around the data line in the manner of a rod. If the sensor is fastened, for example, to the abovementioned axle body of the vehicle, the sensor can be fastened to an outer side of the axle body of the vehicle and, owing to its rod-like design of the installation housing, can be inserted into an interior space in the axle body via an opening.
  • At least one bending groove is formed on the installation housing.
  • the bending groove can be arranged in such a way that the installation housing has a preferred bending direction.
  • the preferred bending direction should be defined such that the installation housing can absorb mechanical loads between two mounting points of the specified sensor which are situated on the fastening element and the measurement pickup housing. In this way, the preferred mechanical load absorption by the installation housing in relation to the measurement pickup housing can be further increased, as a result of which the mechanical loads on the measurement pickup housing and therefore the measurement pickup can be further reduced.
  • two or more bending grooves are particularly preferably formed on the installation housing.
  • At least two crushing ribs which are placed in an axially symmetrical manner around the data line and can be deformed by the sensor receptacle are formed on the installation housing.
  • the elastic material on the sensor receptacle can be stiffened by pinching the sensor receptacle, as a result of which the sensor is held in a stable manner on the sensor receptacle by means of the pinched and stiffened installation housing.
  • the crushing rib is formed between the bending groove and the fastening element, so that it is ensured that the abovementioned mechanical loads also act on the bending groove and are kept away from the measurement pickup housing and therefore from the measurement pickup.
  • the data line can be flexible at least in the region of the connection point in the specified sensor.
  • the measurement pickup housing which is expediently designed to be rigid in the abovementioned manner, can be produced from a synthetic resin, in particular from an epoxy resin.
  • a vehicle comprises an axle body which is fastened to a chassis, a wheel which is fastened in a rotatable manner to the axle body by means of a wheel bearing, and one of the specified sensors, the fastening element and the measurement pickup housing of said sensor correspondingly being fastened to the axle body or to an element of the wheel bearing, said element being fixed in position in relation to the axle body.
  • FIG. 1 shows a schematic view of a vehicle having driving dynamics control
  • FIG. 2 shows a schematic sectional view through a wheel suspension arrangement in the vehicle of FIG. 1 ,
  • FIG. 3 shows a schematic sectional view through a rotation speed sensor in an installed state on the wheel suspension arrangement of FIG. 2 ,
  • FIG. 4 shows a schematic view of an alternative rotation speed sensor
  • FIG. 5 shows a schematic view of a further alternative rotation speed sensor.
  • FIG. 1 shows a schematic view of a vehicle 2 having driving dynamics control which is known per se. Details of this driving dynamics control can be found in DE 10 2011 080 789 A1, which is incorporated by reference, for example.
  • the vehicle 2 comprises a chassis 4 and four wheels 6 which are each held in a rotatable manner on the chassis 4 by means of a wheel suspension arrangement 5 .
  • Each wheel 6 can be decelerated with respect to the chassis 4 by means of a brake 8 which is fastened to the chassis 4 in a fixed position, in order to decelerate a movement of the vehicle 2 on a road, not illustrated any further.
  • the wheels 6 of the vehicle 2 may lose their grip on the road and the vehicle 2 may even move away from a trajectory which is prespecified, for example, by means of a steering wheel, not shown any further, as a result of understeering or oversteering.
  • control circuits such as ABS (anti-lock braking system) and ESP (electronic stability program) which are known per se.
  • the vehicle 2 has rotation speed sensors 10 on the wheels 6 for this purpose, said rotation speed sensors detecting a rotation speed 12 of the wheels 6 .
  • the vehicle 2 also has an inertia sensor 14 which detects driving dynamics data 16 relating to the vehicle 2 , from amongst which data a pitch rate, a roll rate, a yaw rate, a lateral acceleration, a longitudinal acceleration and/or a vertical acceleration, for example, can be output in a manner known per se to a person skilled in the art.
  • a controller 18 can determine, in a manner known to a person skilled in the art, whether the vehicle 2 is sliding on the road or even deviates from the abovementioned prespecified trajectory and can accordingly react thereto with a controller output signal 20 which is known per se.
  • the controller output signal 20 can then be used by an actuating device 22 to control actuating elements, such as the brakes 8 , which react to the sliding and the deviation from the prespecified trajectory in a manner which is known per se, by means of actuating signals 24 .
  • the controller 18 may be integrated, for example, in an engine controller of the vehicle 2 which is known per se.
  • the controller 18 and the actuating device 22 can also be in the form of a common control device and can be optionally integrated in the abovementioned engine controller.
  • the present invention is intended to be explained in more detail using the wheel rotation speed sensor 10 shown in FIG. 1 , even though the present invention can be implemented in any desired electronic apparatuses and in particular in any desired sensors, such as magnetic field sensors, acceleration sensors, rate-of-rotation sensors, structure-borne sound sensors or temperature sensors.
  • FIG. 2 shows a schematic sectional view through one of the wheel suspension arrangements 5 in the vehicle 2 of FIG. 1 .
  • the axle body 26 has an inner bore 34 which runs concentrically around a rotation axis 32 and in which a wheel bearing 36 is held.
  • the wheel bearing 36 is designed as a second-generation wheel bearing in the present embodiment. Wheel bearings of this kind are known in a technically relevant manner, for example, from DE 195 37 808 A1, which is incorporated by reference and for this reason the functioning of said wheel bearings does not need to be discussed further in the text which follows.
  • the wheel bearing 36 comprises an outer ring 38 which is held in the inner bore 34 of the axle body 26 in a rotationally fixed manner and comprises an inner ring 40 which is held in a rotatable manner in relation to the inner ring by means of roller elements 42 .
  • a wheel flange 44 extends axially on the inner ring 40 , it being possible for the wheel 6 to be held on said wheel flange in a manner fastened by means of screws 30 .
  • the rotation speed sensor 10 can be routed axially very close to the inner ring 40 which is generally fitted with an encoder 52 , shown in FIG. 3 , which excites a magnetic transmitter field which can be evaluated for the rotation speed sensor 10 .
  • the encoder 52 can optionally be added to the rotation speed sensor 10 .
  • FIG. 3 shows a schematic sectional view of the rotation speed sensor 10 in an installed state on the wheel suspension arrangement 5 of FIG. 2 .
  • the rotation speed sensor 10 has a measurement pickup 54 and a data line 56 which, in the present embodiment, is designed as pins 58 and as a data cable 60 which is connected to the pins 58 .
  • the data cable 60 can be connected to the controller 18 , while the pins 58 are terminated at the measurement pickup 54 , so that a rotation speed signal 62 which carries the rotation speed 12 can be conducted from the measurement pickup 54 , via the pins 58 and the data cable 60 , to the controller 18 for the abovementioned processing of the rotation speed 12 .
  • This installation housing 68 has a support plate 70 through which a fastening element 72 is routed, it being possible for the screw 30 to be routed through said fastening element.
  • the support plate 70 can be supported on the outer side of the axle body 28 as seen from the space 50 , so that the rotation speed sensor 10 is held securely on the axle body 28 after the screw 30 has been screwed in.
  • the rotation speed sensor 10 is primarily deformed at the bending grooves 76 of the rod-like projection 74 owing to the thermal movements.
  • the measurement pickup 54 remains largely free of mechanical stress owing to the rigid measurement pickup housing 64 .
  • a collar 77 is formed on the rod-like projection 74 in the region of attachment to the connection plate 70 , said collar being axially adjoined by a plurality of crushing ribs 78 which are placed around the periphery of the rod-like projection 74 .
  • the rotation speed sensor 10 is initially radially centered by the collar 77 . If the rod-like projection 74 is inserted further into the receiving opening 28 , the crushing ribs 78 are deformed by pinching, so that the rotation speed sensor 10 is firmly supported on the axle body 26 within the receiving opening 28 too.
  • the crushing ribs 78 can absorb mechanical stresses from the axle body 26 , as can occur, for example, due to thermal movements of the axle body 26 , so that the overall elastic effect of the rotation speed sensor 10 is further increased.
  • the crushing ribs 78 are routed axially on the rod-like projection 74 and can be placed around the periphery of said rod-like projection
  • the bending grooves 76 can be formed, for example, in a direction 80 which is directed toward the inner ring 38 and in the opposite direction in the rod-like projection 74 in order firstly to ensure a high degree of stability of the rod-like projection 74 but also to provide the rod-like projection 74 with a high degree of flexibility.
  • FIG. 4 shows a schematic view of a rotation speed sensor 10 , which is an alternative to the rotation speed sensor 10 of FIG. 3 , in a state in which it is not installed in the vehicle 2 .
  • the rotation speed sensor of FIG. 4 has six bending grooves 76 instead of four bending grooves 76 .
  • the flexibility of the rod-like projection can be further increased in this way.
  • FIG. 5 shows a schematic view of a further alternative rotation speed sensor 10 .
  • the rotation speed sensor 10 of FIG. 5 corresponds substantially to the rotation speed sensor 10 of FIG. 4 , wherein electrical contact is made with the pins 58 by a plug receptacle 80 instead of by a cable, it being possible for a plug, which is not illustrated further, to be accommodated in said plug receptacle. Said plug can then, in turn, be connected to a corresponding data cable which leads to the controller 18 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

A sensor for outputting a sensor signal which is dependent on a variable to be measured, including:—a measuring pickup which is connected electrically to a data line at a connecting point, is housed in a measuring pickup housing and is set up to feed the sensor signal which is dependent on the variable to be measured into the data line, with the result that the sensor signal can be output via the data line, an installation housing which houses the measuring pickup housing and the data line at least at the connecting point and is manufactured from a flexible material, and—a fastening element which is connected fixedly to the installation housing for fastening the installation housing to a sensor holder, wherein the measuring pickup housing; and the fastening element are arranged on two sides of the installation housing which lie opposite one another.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is the U.S. National Phase Application of PCT International Application No. PCT/EP2014/071587, filed Oct. 8, 2014, which claims priority to German Patent Application No. 10 2013 226 045.8, filed Dec. 16, 2013, the contents of such applications being incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The invention relates to a sensor for outputting a sensor signal which is dependent on a variable which is to be measured, and to a vehicle comprising the sensor.
  • BACKGROUND OF THE INVENTION
  • WO 2010/037 810 A1, which is incorporated by reference discloses a sensor for outputting a sensor signal which is dependent on a variable which is to be measured. The sensor comprises a measurement pickup which is electrically connected to a data line at a connection point and is designed to feed the sensor signal which is dependent on the variable which is to be measured into the data line, so that the sensor signal can be output via the data line. Furthermore, an installation housing which houses the measurement pickup and the data line at least at a connection point can be formed within the scope of a plastic injection-molding process, known as “transfer molding”
  • SUMMARY OF THE INVENTION
  • An aspect of the invention aims to improve the known sensor.
  • According to one aspect of the invention, a sensor for outputting a sensor signal which is dependent on a variable which is to be measured comprises a measurement pickup which is electrically connected to a data line at a connection point, is housed in a measurement pickup housing and is designed to feed the sensor signal which is dependent on the variable which is to be measured into the data line, so that the sensor signal can be output via the data line, an installation housing which houses the measurement pickup housing and the data line at least at a connection point and is produced from a flexible material, and a fastening element, which is fixedly connected to the installation housing, for fastening the installation housing to a sensor receptacle, wherein the measurement pickup housing and the fastening element are arranged on two opposite sides of the installation housing.
  • In this case, the flexible material can be a material with a specific modulus of elasticity. The flexibility of the material can also be prespecified by means of a compression set. This is the remaining deformation of the material which remains after deformation with a specific loading over a specific period of time and at a prespecified temperature. The test method used can be, for example, ASTM D395.
  • The specified sensor is based on the consideration that the sensor, as a wheel rotation speed sensor, could be fastened to an axle body of a vehicle by means of the fastening element and the installation housing in order to measure the wheel rotation speed of a wheel which is mounted in a rotatable manner on the axle body. In this case, the material used for the installation housing could be a rigid material, such as a polyamide for example, in order to prevent the measurement pickup housing and therefore the measurement pickup from being subjected to mechanical loading and therefore outputting a sensor signal, which is incorrectly dependent on the variable which is to be measured, on account of the mechanical load.
  • Furthermore, the specified sensor is based on the consideration that the sensor has to be fastened to such a rigid installation housing with a predetermined installation tolerance in relation to a wheel bearing in the axle body that the measurement pickup housing does not overlap with the wheel bearing and therefore mechanical stresses are applied to the installation housing, these mechanical stresses then acting on the measurement pickup. Mechanical stresses of this kind can be produced, for example, by temperature fluctuations in the other components and subject the installation housing to changes in load which can reach a number of up to two million over the service life of the housing. However, an air gap between the measurement pickup and a transmitter element is increased owing to the installation tolerance, this however increasing the tolerance range of the sensor signal and restricting a reading range of the measurement pickup at the same time.
  • Here, the specified sensor starts with the consideration that the measurement pickup housing itself is generally produced from a rigid material. This rigid material protects the measurement pickup against the abovementioned mechanical loads. Therefore, the installation housing can be produced from a flexible material which absorbs all mechanical loads which may occur owing to the installed state of the specified sensor, for example in a vehicle, and keeps said mechanical loads away from the measurement pickup housing and therefore from the measurement pickup. Therefore, the sensor can be installed without installation tolerances, so that the abovementioned air gap can be reduced and therefore the reading range of the measurement pickup can be increased and the tolerance range of the sensor signal can be lowered.
  • In one development of the specified sensor, the flexible material is an elastomer which can be obtained at low cost and can be mass-processed.
  • In a particular development of the specified sensor, the elastomer has a Shore A hardness of at least 80 and is therefore suitable for providing, in addition to the abovementioned elasticity, a sufficient degree of resistance in relation to other mechanical loads. In this case, the elastomers used can particularly preferably be thermoplastic elastomers which can be plastically processed starting from a specific temperature to form the installation housing.
  • In another development of the specified sensor, the installation housing extends from the measurement pickup housing in a direction of the data line around the data line in the manner of a rod. If the sensor is fastened, for example, to the abovementioned axle body of the vehicle, the sensor can be fastened to an outer side of the axle body of the vehicle and, owing to its rod-like design of the installation housing, can be inserted into an interior space in the axle body via an opening.
  • In an additional development of the specified sensor, at least one bending groove is formed on the installation housing. In this case, the bending groove can be arranged in such a way that the installation housing has a preferred bending direction. In this case, the preferred bending direction should be defined such that the installation housing can absorb mechanical loads between two mounting points of the specified sensor which are situated on the fastening element and the measurement pickup housing. In this way, the preferred mechanical load absorption by the installation housing in relation to the measurement pickup housing can be further increased, as a result of which the mechanical loads on the measurement pickup housing and therefore the measurement pickup can be further reduced. In this case, two or more bending grooves are particularly preferably formed on the installation housing.
  • In a preferred development of the specified sensor, at least two crushing ribs which are placed in an axially symmetrical manner around the data line and can be deformed by the sensor receptacle are formed on the installation housing. In this way, the elastic material on the sensor receptacle can be stiffened by pinching the sensor receptacle, as a result of which the sensor is held in a stable manner on the sensor receptacle by means of the pinched and stiffened installation housing.
  • In a particularly preferred development of the specified sensor, the crushing rib is formed between the bending groove and the fastening element, so that it is ensured that the abovementioned mechanical loads also act on the bending groove and are kept away from the measurement pickup housing and therefore from the measurement pickup.
  • In order to further improve the process of diverting the abovementioned mechanical loads away from the measurement pickup housing and therefore from the measurement pickup, the data line can be flexible at least in the region of the connection point in the specified sensor.
  • In a particularly preferred development of the specified sensor, the measurement pickup housing, which is expediently designed to be rigid in the abovementioned manner, can be produced from a synthetic resin, in particular from an epoxy resin.
  • According to a further aspect of the invention, a vehicle comprises an axle body which is fastened to a chassis, a wheel which is fastened in a rotatable manner to the axle body by means of a wheel bearing, and one of the specified sensors, the fastening element and the measurement pickup housing of said sensor correspondingly being fastened to the axle body or to an element of the wheel bearing, said element being fixed in position in relation to the axle body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above-described properties, features and advantages of this invention and the way in which they are achieved will become clearer and more clearly understood in connection with the following description of the exemplary embodiments which are explained in more detail in connection with the drawings, in which:
  • FIG. 1 shows a schematic view of a vehicle having driving dynamics control,
  • FIG. 2 shows a schematic sectional view through a wheel suspension arrangement in the vehicle of FIG. 1,
  • FIG. 3 shows a schematic sectional view through a rotation speed sensor in an installed state on the wheel suspension arrangement of FIG. 2,
  • FIG. 4 shows a schematic view of an alternative rotation speed sensor, and
  • FIG. 5 shows a schematic view of a further alternative rotation speed sensor.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the figures, identical technical elements are provided with identical reference symbols and are described only once.
  • Reference is made to FIG. 1 which shows a schematic view of a vehicle 2 having driving dynamics control which is known per se. Details of this driving dynamics control can be found in DE 10 2011 080 789 A1, which is incorporated by reference, for example.
  • The vehicle 2 comprises a chassis 4 and four wheels 6 which are each held in a rotatable manner on the chassis 4 by means of a wheel suspension arrangement 5. Each wheel 6 can be decelerated with respect to the chassis 4 by means of a brake 8 which is fastened to the chassis 4 in a fixed position, in order to decelerate a movement of the vehicle 2 on a road, not illustrated any further.
  • In this case, in a manner known to a person skilled in the art, the wheels 6 of the vehicle 2 may lose their grip on the road and the vehicle 2 may even move away from a trajectory which is prespecified, for example, by means of a steering wheel, not shown any further, as a result of understeering or oversteering. This is avoided using control circuits such as ABS (anti-lock braking system) and ESP (electronic stability program) which are known per se.
  • In the present embodiment, the vehicle 2 has rotation speed sensors 10 on the wheels 6 for this purpose, said rotation speed sensors detecting a rotation speed 12 of the wheels 6. The vehicle 2 also has an inertia sensor 14 which detects driving dynamics data 16 relating to the vehicle 2, from amongst which data a pitch rate, a roll rate, a yaw rate, a lateral acceleration, a longitudinal acceleration and/or a vertical acceleration, for example, can be output in a manner known per se to a person skilled in the art.
  • On the basis of the detected rotation speeds 12 and driving dynamics data 16, a controller 18 can determine, in a manner known to a person skilled in the art, whether the vehicle 2 is sliding on the road or even deviates from the abovementioned prespecified trajectory and can accordingly react thereto with a controller output signal 20 which is known per se. The controller output signal 20 can then be used by an actuating device 22 to control actuating elements, such as the brakes 8, which react to the sliding and the deviation from the prespecified trajectory in a manner which is known per se, by means of actuating signals 24.
  • The controller 18 may be integrated, for example, in an engine controller of the vehicle 2 which is known per se. The controller 18 and the actuating device 22 can also be in the form of a common control device and can be optionally integrated in the abovementioned engine controller.
  • The present invention is intended to be explained in more detail using the wheel rotation speed sensor 10 shown in FIG. 1, even though the present invention can be implemented in any desired electronic apparatuses and in particular in any desired sensors, such as magnetic field sensors, acceleration sensors, rate-of-rotation sensors, structure-borne sound sensors or temperature sensors.
  • Reference is made to FIG. 2 which shows a schematic sectional view through one of the wheel suspension arrangements 5 in the vehicle 2 of FIG. 1.
  • The wheel suspension arrangement 5 has an axle body 26 which is fastened to the chassis 4 such that it is rotationally fixed in relation to the wheel 6 and possibly can be deflected by means of a steering arrangement. A receiving opening 28 is formed through the axle body 26, the rotation speed sensor 10 which is correspondingly arranged on the wheel suspension arrangement 5 being routed through said receiving opening. Said rotation speed sensor 10 will be discussed in detail at a later point. The rotation speed sensor 10 is fastened to the axle body 26 by means of a screw 30.
  • The axle body 26 has an inner bore 34 which runs concentrically around a rotation axis 32 and in which a wheel bearing 36 is held. The wheel bearing 36 is designed as a second-generation wheel bearing in the present embodiment. Wheel bearings of this kind are known in a technically relevant manner, for example, from DE 195 37 808 A1, which is incorporated by reference and for this reason the functioning of said wheel bearings does not need to be discussed further in the text which follows.
  • The wheel bearing 36 comprises an outer ring 38 which is held in the inner bore 34 of the axle body 26 in a rotationally fixed manner and comprises an inner ring 40 which is held in a rotatable manner in relation to the inner ring by means of roller elements 42. A wheel flange 44 extends axially on the inner ring 40, it being possible for the wheel 6 to be held on said wheel flange in a manner fastened by means of screws 30.
  • On that side of the wheel bearing 36 which is situated axially opposite the wheel flange 44, the inner bore 34 of the axle body 26 is covered by a cap 48, so that a space 50 into which the sensor 10 is inserted is formed. In the process, the rotation speed sensor 10 can be routed axially very close to the inner ring 40 which is generally fitted with an encoder 52, shown in FIG. 3, which excites a magnetic transmitter field which can be evaluated for the rotation speed sensor 10. In this case, the encoder 52 can optionally be added to the rotation speed sensor 10.
  • Reference is made to FIG. 3 which shows a schematic sectional view of the rotation speed sensor 10 in an installed state on the wheel suspension arrangement 5 of FIG. 2.
  • The rotation speed sensor 10 has a measurement pickup 54 and a data line 56 which, in the present embodiment, is designed as pins 58 and as a data cable 60 which is connected to the pins 58. The data cable 60 can be connected to the controller 18, while the pins 58 are terminated at the measurement pickup 54, so that a rotation speed signal 62 which carries the rotation speed 12 can be conducted from the measurement pickup 54, via the pins 58 and the data cable 60, to the controller 18 for the abovementioned processing of the rotation speed 12.
  • In the present embodiment, the measurement pickup 54 is accommodated in a rigid measurement pickup housing 64 which can be produced, for example, from an epoxy resin. The pins 58 are routed out of this measurement pickup housing 64. The pins 58, the data cable 60 and the measurement pickup housing 64 are enclosed by an installation housing 68 at an electrical connection point 66 at which the data cable 60 is electrically connected to the pins 58. The installation housing can be produced, for example, from a thermoplastic material by injection molding around the data cable 60 and the measurement pickup housing 64.
  • The thermoplastic material should have a Shore A hardness of at least 80.
  • This installation housing 68 has a support plate 70 through which a fastening element 72 is routed, it being possible for the screw 30 to be routed through said fastening element. At the same time, the support plate 70 can be supported on the outer side of the axle body 28 as seen from the space 50, so that the rotation speed sensor 10 is held securely on the axle body 28 after the screw 30 has been screwed in.
  • A rod-like projection 74 through which the data line 56 is routed extends from the connection plate 70, through the receiving opening 28, in the direction of the data line 56. This rod-like projection 74 also partially encloses the measurement pickup housing 64. In this case, the rod-like projection 74 can also extend from the connection plate 70 on a side which is situated opposite the receiving opening 28.
  • Bending grooves 76 are formed in the rod-like projection 74 on the side of the receiving opening 28, said bending grooves weakening the rod-like projection 74 at this point, so that it can be bent more easily at these points. In the installed state shown in FIGS. 2 and 3, the rotation speed sensor 10 has two mechanical fastening points in the vehicle 2. Firstly, the rotation speed sensor 10 is fastened to the axle body 26 by way of its connection plate 70. Furthermore, the rotation speed sensor 10 is firmly supported on the outer ring 38 of the wheel bearing 36 by way of the measurement pickup housing 64. If the outer ring 38 of the wheel bearing 36 moves, for example owing to thermal movements, the rotation speed sensor 10 is primarily deformed at the bending grooves 76 of the rod-like projection 74 owing to the thermal movements. The measurement pickup 54 remains largely free of mechanical stress owing to the rigid measurement pickup housing 64.
  • In order to firmly hold the rotation speed sensor 10 in the receiving opening 28 on the rod-like projection 74, a collar 77 is formed on the rod-like projection 74 in the region of attachment to the connection plate 70, said collar being axially adjoined by a plurality of crushing ribs 78 which are placed around the periphery of the rod-like projection 74. When the rod-like projection 74 is inserted into the receiving opening 28, the rotation speed sensor 10 is initially radially centered by the collar 77. If the rod-like projection 74 is inserted further into the receiving opening 28, the crushing ribs 78 are deformed by pinching, so that the rotation speed sensor 10 is firmly supported on the axle body 26 within the receiving opening 28 too. Furthermore, the crushing ribs 78 can absorb mechanical stresses from the axle body 26, as can occur, for example, due to thermal movements of the axle body 26, so that the overall elastic effect of the rotation speed sensor 10 is further increased.
  • Whereas the crushing ribs 78 are routed axially on the rod-like projection 74 and can be placed around the periphery of said rod-like projection, the bending grooves 76 can be formed, for example, in a direction 80 which is directed toward the inner ring 38 and in the opposite direction in the rod-like projection 74 in order firstly to ensure a high degree of stability of the rod-like projection 74 but also to provide the rod-like projection 74 with a high degree of flexibility.
  • By virtue of the abovementioned embodiment of the rotation speed sensor 10, said rotation speed sensor can be fastened at different points in the vehicle 2 without thermal movements of the elements in the vehicle 2 and a resulting change in load on the rotation speed sensor 10 leading to mechanical loads on the measurement pickup 54 and corrupting the measured rotation speed 12 in the rotation speed signal 62.
  • Reference is made to FIG. 4 which shows a schematic view of a rotation speed sensor 10, which is an alternative to the rotation speed sensor 10 of FIG. 3, in a state in which it is not installed in the vehicle 2.
  • The rotation speed sensor of FIG. 4 has six bending grooves 76 instead of four bending grooves 76. The flexibility of the rod-like projection can be further increased in this way.
  • Reference is made to FIG. 5 which shows a schematic view of a further alternative rotation speed sensor 10.
  • The rotation speed sensor 10 of FIG. 5 corresponds substantially to the rotation speed sensor 10 of FIG. 4, wherein electrical contact is made with the pins 58 by a plug receptacle 80 instead of by a cable, it being possible for a plug, which is not illustrated further, to be accommodated in said plug receptacle. Said plug can then, in turn, be connected to a corresponding data cable which leads to the controller 18.

Claims (12)

1. A sensor for outputting a sensor signal which is dependent on a variable which is to be measured, comprising:
a measurement pickup which is electrically connected to a data line at a connection point, is housed in a measurement pickup housing and is designed to feed the sensor signal which is dependent on the variable which is to be measured into the data line, so that the sensor signal can be output via the data line,
an installation housing which houses the measurement pickup housing and the data line at least at the connection point and is produced from a flexible material, and
a fastening element, which is fixedly connected to the installation housing, for fastening the installation housing to a sensor receptacle, wherein the measurement pickup housing and the fastening element are arranged on two opposite sides of the installation housing.
2. The sensor as claimed in claim 1, wherein the flexible material is an elastomer.
3. The sensor as claimed in claim 2, wherein the elastomer has a Shore A hardness of at least 80.
4. The sensor as claimed in claim 1, wherein the installation housing extends from the measurement pickup housing in a direction of the data line around the data line in the manner of a rod.
5. The sensor as claimed in claim 4, wherein at least one bending groove is formed on the installation housing.
6. The sensor as claimed in claim 4, wherein at least two crushing ribs which are placed in an axially symmetrical manner around the data line and can be deformed by the sensor receptacle are formed on the installation housing.
7. The sensor as claimed in claim 6, wherein the crushing rib is formed between the bending groove and the fastening element.
8. The sensor as claimed in claim 1, wherein the data line is flexible at least in the region of the connection point.
9. The sensor as claimed in claim 1, wherein the measurement pickup housing is formed from a synthetic resin.
10. A vehicle comprising an axle body which is fastened to a chassis, a wheel which is fastened in a rotatable manner to the axle body by of a wheel bearing, and a sensor as claimed in claim 1, the fastening element and the measurement pickup housing of said sensor correspondingly being fastened to the axle body or to an element of the wheel bearing, said element being fixed in position in relation to the axle body.
11. The sensor as claimed in claim 5, wherein at least two crushing ribs which are placed in an axially symmetrical manner around the data line and can be deformed by the sensor receptacle are formed on the installation housing.
12. The sensor as claimed in claim 1, wherein the measurement pickup housing is formed from an epoxy resin.
US15/034,631 2013-12-16 2014-10-08 Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation Expired - Fee Related US10060770B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102013226045.8 2013-12-16
DE102013226045.8A DE102013226045A1 (en) 2013-12-16 2013-12-16 Mechanically over-determined built-in speed sensor with elastic encapsulation
DE102013226045 2013-12-16
PCT/EP2014/071587 WO2015090664A1 (en) 2013-12-16 2014-10-08 Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation

Publications (2)

Publication Number Publication Date
US20160282154A1 true US20160282154A1 (en) 2016-09-29
US10060770B2 US10060770B2 (en) 2018-08-28

Family

ID=51690375

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/034,631 Expired - Fee Related US10060770B2 (en) 2013-12-16 2014-10-08 Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation

Country Status (6)

Country Link
US (1) US10060770B2 (en)
EP (1) EP3084354B1 (en)
KR (1) KR20160100305A (en)
CN (1) CN106030252B (en)
DE (1) DE102013226045A1 (en)
WO (1) WO2015090664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884119A (en) * 2021-11-01 2022-01-04 五度智能科技(徐州)有限公司 Protective equipment can be observed to intelligent instrument and meter self-adaptation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7028067B2 (en) * 2018-05-31 2022-03-02 日立金属株式会社 Magnetic detection sensor, rotation detection sensor and cable with sensor
KR20230003975A (en) * 2021-06-30 2023-01-06 에이치엘만도 주식회사 Device for sensing wheel speed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118227A1 (en) * 2002-12-18 2004-06-24 Masatoshi Tokunaga Sensor having resin mold casing and method of manufacturing the same
US20040134555A1 (en) * 2002-11-26 2004-07-15 Powell Steven M. Tubular polymeric composites for tubing and hose constructions
US6844719B2 (en) * 2001-06-29 2005-01-18 Denso Corporation Rotational speed detector having elongate detecting surface and method of manufacturing the same
US20110277570A1 (en) * 2009-01-13 2011-11-17 Lattron Co. Ltd. Sensor Device Protected by a Film Layer and a Resin Layer
US20120198933A1 (en) * 2009-08-28 2012-08-09 Robert Bosch Gmbh Connection Assembly for a Sensor Assembly and Sensor Assembly
US20120306484A1 (en) * 2011-06-03 2012-12-06 Denso Corporation Magnetic detection apparatus
US20140053646A1 (en) * 2012-08-24 2014-02-27 Denso Corporation Rotation sensing apparatus and manufacturing method thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2137351A (en) * 1983-03-18 1984-10-03 Muriel Millicent Alexander Proximity detector
DE3642770C2 (en) 1986-12-15 1997-01-09 Teves Gmbh Alfred Inductive encoder
DE4405438C2 (en) * 1994-02-21 2002-02-07 Mannesmann Vdo Ag Tachometer
DE4436523B4 (en) * 1994-10-13 2007-04-26 Siemens Ag Method for producing an electronic device and speed sensor with an electronic circuit
DE19515622C2 (en) * 1995-04-28 2000-06-08 Telefunken Microelectron Control module of motor vehicles
DE19537808C2 (en) 1995-10-11 2002-04-25 Fag Automobiltechnik Ag Wheel bearing
JP3433051B2 (en) 1997-06-26 2003-08-04 株式会社日立ユニシアオートモティブ Rotation detection device
FR2837926B1 (en) * 2002-03-27 2004-05-28 Siemens Vdo Automotive METHOD OF MANUFACTURING A WHEEL SPEED SENSOR AND CORRESPONDING SENSOR
EP1443331A3 (en) * 2003-02-03 2005-10-12 Denso Corporation Sensor device and ceramic package for mounting electronic components
DE102004011100A1 (en) 2004-03-06 2005-09-22 Robert Bosch Gmbh Motion sensor and method of making a motion sensor
DE102005027767A1 (en) * 2005-06-15 2006-12-28 Infineon Technologies Ag Integrated magnetic sensor component for e.g. measuring magnetic field intensity, has contact surfaces electrically connected with flat conductors by flip-chip-contacts and homogenization disk attached between semiconductor chip and magnet
DE102007050988A1 (en) * 2007-10-25 2009-04-30 Robert Bosch Gmbh Sensor, in particular for speed detection, and method for producing the same
DE202008004908U1 (en) * 2008-04-09 2008-09-04 Pepperl + Fuchs Gmbh sensor
DE102008064047A1 (en) * 2008-10-02 2010-04-08 Continental Teves Ag & Co. Ohg Sensor element and carrier element for producing a sensor
DE102008064046A1 (en) 2008-10-02 2010-04-08 Continental Teves Ag & Co. Ohg Method for producing a speed sensor element
DE102009000428A1 (en) * 2009-01-27 2010-07-29 Robert Bosch Gmbh Method for producing a sensor
US9014921B2 (en) 2010-08-10 2015-04-21 Continental Teves Ag & Co. Ohg Method and system for regulating driving stability
DE102010063614B4 (en) * 2010-12-21 2024-05-08 Zf Friedrichshafen Ag Method for manufacturing a sensor assembly
DE102011002741A1 (en) * 2011-01-17 2012-07-19 Zf Friedrichshafen Ag Sensor module i.e. rotation speed sensor module, for detecting rotation speed of gear box for use in vehicle, has conductor comprising electrical contacts arranged in terminal portion and sensor carrier receiving regions
DE102011003239B4 (en) * 2011-01-27 2023-06-07 Zf Friedrichshafen Ag Sensor module, mounting element and method for manufacturing a sensor module
JP5765974B2 (en) * 2011-03-04 2015-08-19 株式会社ミツバ Starter
DE102011081012A1 (en) * 2011-08-16 2013-03-07 Endress + Hauser Gmbh + Co. Kg System for determining and / or monitoring at least one process variable
DE102011081016A1 (en) * 2011-08-16 2013-02-21 Robert Bosch Gmbh Sensor module and method for producing a sensor module
DE102012216563A1 (en) 2012-09-17 2014-03-20 Robert Bosch Gmbh Sensor device and method for producing a sensor device for accommodating in a galvanic cell
CN103175598B (en) * 2013-03-18 2015-09-09 梅特勒-托利多(常州)精密仪器有限公司 Column type elastomer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844719B2 (en) * 2001-06-29 2005-01-18 Denso Corporation Rotational speed detector having elongate detecting surface and method of manufacturing the same
US20040134555A1 (en) * 2002-11-26 2004-07-15 Powell Steven M. Tubular polymeric composites for tubing and hose constructions
US20040118227A1 (en) * 2002-12-18 2004-06-24 Masatoshi Tokunaga Sensor having resin mold casing and method of manufacturing the same
US20110277570A1 (en) * 2009-01-13 2011-11-17 Lattron Co. Ltd. Sensor Device Protected by a Film Layer and a Resin Layer
US20120198933A1 (en) * 2009-08-28 2012-08-09 Robert Bosch Gmbh Connection Assembly for a Sensor Assembly and Sensor Assembly
US20120306484A1 (en) * 2011-06-03 2012-12-06 Denso Corporation Magnetic detection apparatus
US20140053646A1 (en) * 2012-08-24 2014-02-27 Denso Corporation Rotation sensing apparatus and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884119A (en) * 2021-11-01 2022-01-04 五度智能科技(徐州)有限公司 Protective equipment can be observed to intelligent instrument and meter self-adaptation

Also Published As

Publication number Publication date
WO2015090664A1 (en) 2015-06-25
US10060770B2 (en) 2018-08-28
KR20160100305A (en) 2016-08-23
CN106030252A (en) 2016-10-12
EP3084354A1 (en) 2016-10-26
DE102013226045A1 (en) 2015-06-18
CN106030252B (en) 2019-02-19
EP3084354B1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6239760B2 (en) Sensor manufacturing by holding intermediate injection molded parts
US10060770B2 (en) Rotational speed sensor which is installed in a mechanically overdetermined manner with an elastic injection-moulded encapsulation
EP3258128B1 (en) Bearing cap having sensor unit, and rolling bearing unit
US9921237B2 (en) Vehicle wheel speed detection system and method
CN101965271A (en) Housing fastener on a snap-in valve
US10890597B2 (en) Wheel rotational-speed sensor and fastening system for mounting a wheel rotational-speed sensor
US7320258B2 (en) Structure of attaching a rotation-detecting sensor
EP3489648A1 (en) Wheel equipped with sensing device
US20210221172A1 (en) Sensing device for vehicle, wheel bearing assembly and method for manufacturing sensing device for vehicle
JP2008241627A (en) Cover with rotation sensor, manufacturing method thereof, and bearing unit for supporting wheel
KR102528251B1 (en) Overload detection device on chassis components
JP5458497B2 (en) State quantity measuring device for rolling bearing units
CN203637813U (en) Wheel speed sensing device, induction unit thereof and vehicle with wheel speed sensing device
JP4471745B2 (en) Load sensor built-in wheel bearing
WO2010147004A1 (en) System for monitoring tire air pressure
US20240141956A1 (en) Wheel bearing provided with wheel speed sensor having plurality of sensing units
CN113939437B (en) Wheel revolution sensor for commercial vehicle
JP2006226477A (en) Rolling bearing device with sensor
CN101646947B (en) Rotation sensor
CN113924232B (en) Wheel revolution sensor for a commercial vehicle
JP2012108025A (en) Load sensor
JP2010043889A (en) Rotation detection sensor
KR101039034B1 (en) Apparatus for acquiring stability and speed of vehicle
JP2008275490A (en) Rotation detection sensor
KR20090078970A (en) Wheel speed sensor for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL TEVES AG & CO. OHG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLL, MANFRED;SCHRADER, ULRICH;REEL/FRAME:038984/0615

Effective date: 20160429

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220828