JP5458497B2 - State quantity measuring device for rolling bearing units - Google Patents

State quantity measuring device for rolling bearing units Download PDF

Info

Publication number
JP5458497B2
JP5458497B2 JP2008028474A JP2008028474A JP5458497B2 JP 5458497 B2 JP5458497 B2 JP 5458497B2 JP 2008028474 A JP2008028474 A JP 2008028474A JP 2008028474 A JP2008028474 A JP 2008028474A JP 5458497 B2 JP5458497 B2 JP 5458497B2
Authority
JP
Japan
Prior art keywords
sensor
leads
hub
outer ring
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008028474A
Other languages
Japanese (ja)
Other versions
JP2009186392A (en
Inventor
稔 窪川
康寛 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008028474A priority Critical patent/JP5458497B2/en
Publication of JP2009186392A publication Critical patent/JP2009186392A/en
Application granted granted Critical
Publication of JP5458497B2 publication Critical patent/JP5458497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Description

この発明に係る転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットを構成する外輪とハブとの間に作用する外力等の状態量を測定する為に利用する。更に、この求めた状態量を、自動車等の車両の走行安定性確保を図る為に利用する。   The state quantity measuring device for a rolling bearing unit according to the present invention is used for measuring a state quantity such as an external force acting between an outer ring and a hub constituting the rolling bearing unit. Further, the obtained state quantity is used for ensuring the running stability of a vehicle such as an automobile.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are rotatably supported by a suspension device by a double-row angular type rolling bearing unit. In order to ensure the running stability of automobiles, for example, anti-lock braking system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図6は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の1例を示している。この従来構造は、使用時にも回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIG. 6 shows an example of a conventional structure relating to a state quantity measuring device for a rolling bearing unit that employs the same load measurement principle as the structure described in Patent Document 1. In this conventional structure, a hub 2 that rotates together with a wheel in a state in which the wheel is supported and fixed at the time of use on an inner diameter side of the outer ring 1 that does not rotate at the time of use is rotatable via a plurality of rolling elements 3 and 3. I support it. A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy, tapered rollers may be used instead of balls.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組付け状態で車両の幅方向中央側を言い、図1、2、5、6の右側。反対に、車両の幅方向外側となる、図1、2、5、6の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の軸方向内端開口を塞ぐ有底円筒状のカバー5の内側に、合成樹脂製のセンサホルダ9を介して1対のセンサ6a、6bを支持固定すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。このエンコーダ4は、芯金7とエンコーダ本体8とを組み合わせて成る。このうちの芯金7は、軟鋼板等の磁性金属板により、断面クランク形で全体を段付円筒状に構成している。又、上記エンコーダ本体8は、上記芯金7のうちで大径側部分の外周面の全周に円筒状の未着磁の磁性部材を添着固定した後、この磁性部材に着磁する事により構成している。   Further, the inner end of the hub 2 in the axial direction (“inner” with respect to the axial direction refers to the center side in the width direction of the vehicle in the assembled state in the automobile, and is the right side of FIGS. The left side of FIGS. 1, 2, 5 and 6, which is the outer side in the width direction of the vehicle, is referred to as “outside” in the axial direction. The same applies to the entire specification). 2 is supported and fixed concentrically. A pair of sensors 6a and 6b are supported and fixed inside a bottomed cylindrical cover 5 that closes the axially inner end opening of the outer ring 1 via a sensor holder 9 made of synthetic resin. The detection units 6a and 6b are placed close to and opposed to the outer peripheral surface which is the detection surface of the encoder 4. The encoder 4 is formed by combining a metal core 7 and an encoder body 8. Of these, the cored bar 7 is composed of a magnetic metal plate such as a mild steel plate, and has a stepped cylindrical shape as a whole with a crank-shaped cross section. The encoder body 8 is formed by attaching and fixing a cylindrical unmagnetized magnetic member to the entire circumference of the outer peripheral surface of the large-diameter side portion of the cored bar 7, and then magnetizing the magnetic member. It is composed.

被検出面である、上記エンコーダ本体8の外周面には、S極とN極とを、円周方向に関して交互に且つ等間隔で配置している。円周方向に隣り合うS極とN極との境界は、上記外周面の軸方向に対して所定方向に所定角度で漸次変化している。又、変化する方向は、この外周面の軸方向片半部と他半部とで、互いに逆にしている。従って、上記S極と上記N極とは、軸方向中央部が円周方向に関して最も突出した、「く」字形となっている。   On the outer peripheral surface of the encoder body 8, which is the detected surface, S poles and N poles are alternately arranged at equal intervals in the circumferential direction. The boundary between the S pole and the N pole adjacent to each other in the circumferential direction gradually changes at a predetermined angle in a predetermined direction with respect to the axial direction of the outer peripheral surface. Further, the changing directions are opposite to each other in one half and the other half in the axial direction of the outer peripheral surface. Therefore, the S pole and the N pole have a “<” shape with the central portion in the axial direction protruding most in the circumferential direction.

又、上記両センサ6a、6bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。そして、これら両センサ6a、6bのうち、一方のセンサ6aの検出部を上記エンコーダ本体8の外周面の軸方向片半部に、他方のセンサ6bの検出部を同じく軸方向他半部に、それぞれ近接対向させている。上記外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記S極と上記N極との軸方向中央部で円周方向に関して最も突出した部分が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の軸方向の設置位置を規制している。同じ状態で、上記両センサ6a、6bの検出部と、上記エンコーダ本体8の外周面の変化の位相との関係が所定通りになる様に、上記両センサ6a、6bの円周方向の設置位置を規制している。   Further, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of the sensors 6a and 6b. Of these two sensors 6a and 6b, the detection part of one sensor 6a is in the axial half of the outer peripheral surface of the encoder body 8, and the detection part of the other sensor 6b is in the other axial half. They are close to each other. In a state where an axial load is not applied between the outer ring 1 and the hub 2, the most projecting portion in the circumferential direction at the center portion in the axial direction between the S pole and the N pole is the position of the sensors 6 a and 6 b. The installation position of each member in the axial direction is regulated so that it exists just at the center position between the detection units. In the same state, both sensors 6a and 6b are installed in the circumferential direction so that the relationship between the detection portions of the sensors 6a and 6b and the phase of change of the outer peripheral surface of the encoder body 8 is as specified. Is regulated.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、上記外輪1とハブ2との間にアキシアル荷重が作用すると、上記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とが相対変位していない、中立状態では、上記両センサ6a、6bの検出部は、上記エンコーダ4の外周面で、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a、6bの出力信号の位相は、上記所定の関係により定まる通り、一致若しくは所定値だけずれる。これに対し、上記エンコーダ4を固定したハブ2にアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、このアキシアル荷重の作用方向に応じた方向に、このアキシアル荷重の大きさに応じた分だけずれた部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、上記アキシアル荷重の作用方向に応じた方向に、このアキシアル荷重の大きさに応じた分だけずれる。   In the state quantity measuring device of the rolling bearing unit configured as described above, when an axial load is applied between the outer ring 1 and the hub 2, the phase in which the output signals of the sensors 6a and 6b change is shifted. That is, in the neutral state in which an axial load is not acting between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced, the detection units of the sensors 6a and 6b are The outer peripheral surface of the encoder 4 is opposed to a portion shifted in the axial direction by the same amount from the most protruding portion. Accordingly, the phases of the output signals of the sensors 6a and 6b are coincident or shifted by a predetermined value as determined by the predetermined relationship. On the other hand, when an axial load is applied to the hub 2 to which the encoder 4 is fixed, the detecting portions of both the sensors 6a and 6b increase the magnitude of the axial load in a direction corresponding to the direction in which the axial load is applied. It faces the part shifted by the amount corresponding to it. In this state, the phases of the output signals of both the sensors 6a and 6b are shifted in the direction corresponding to the acting direction of the axial load by an amount corresponding to the magnitude of the axial load.

この様に、上述した従来構造の場合には、上記両センサ6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2とのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ6a、6bの出力信号の位相ずれ(位相差)の有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2とのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、上記両センサ6a、6bの出力信号同士の間に存在する位相差(位相差比=位相差/1周期)に基づいて上記アキシアル方向の相対変位及び荷重を算出する処理は、図示しない演算器により行なう。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差(比)と、上記アキシアル方向の相対変位又は荷重との関係(零点及びゲイン)を表す、式やマップを記憶させておく。   Thus, in the case of the above-described conventional structure, the phase of the output signals of the two sensors 6a and 6b is such that the acting direction of the axial load applied between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 In the direction of the relative displacement in the axial direction). Further, the degree of the phase shift of the output signals of the sensors 6a and 6b due to the axial load (relative displacement) increases as the axial load (relative displacement) increases. Accordingly, the relative displacement in the axial direction between the outer ring 1 and the hub 2 is determined based on the direction and size of the output signal from the sensors 6a and 6b. And the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 are obtained. The processing for calculating the relative displacement and the load in the axial direction based on the phase difference (phase difference ratio = phase difference / 1 period) existing between the output signals of the sensors 6a and 6b is an operation not shown. Use a vessel. For this reason, in the memory of this computing unit, the relationship (zero point and gain) between the phase difference (ratio) and the relative displacement or load in the axial direction, which have been examined in advance by theoretical calculation or experiment, Remember formulas and maps.

尚、上述した従来構造の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜3及び特願2006−345849には、当該センサの数を3個以上とする事で、多方向の変位或は外力を求められる構造が記載されている。   In the case of the above-described conventional structure, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown in the drawings, Patent Documents 2 to 3 and Japanese Patent Application No. 2006-345849 describe a structure in which multi-directional displacement or external force is obtained by setting the number of sensors to three or more. Has been.

ところで、上述の図6に示した従来構造で、1対のセンサ6a、6bはそれぞれ、図7に示す様に、複数本(図示の例では4本)のセンサリード(導体)10、10を備える。これら各センサリード10、10はそれぞれ、上記センサ6a(6b)の出力信号を取り出したり、このセンサ6a(6b)に電力を供給する役目を有する。この為に、上記各センサリード10、10の端部には、上記センサ6a(6b)の出力信号を上記演算器に送ったり、このセンサ6a(6b)に電力を供給する為の複数本の導体の端部を、ハンダ付、ろう付け等により接続する。そして、この様に接続した状態で、上記各センサリード10、10を上記センサ6a(6b)と共に、合成樹脂製のセンサホルダ9内の所定位置に包埋する。   By the way, in the conventional structure shown in FIG. 6 described above, each of the pair of sensors 6a and 6b has a plurality of (four in the illustrated example) sensor leads (conductors) 10 and 10 as shown in FIG. Prepare. Each of the sensor leads 10 and 10 has a function of taking out an output signal of the sensor 6a (6b) and supplying electric power to the sensor 6a (6b). For this purpose, the output of the sensor 6a (6b) is sent to the arithmetic unit at the end of each sensor lead 10, 10, and a plurality of wires are used to supply power to the sensor 6a (6b). The ends of the conductors are connected by soldering or brazing. And in the state connected in this way, each said sensor lead 10 and 10 is embedded in the predetermined position in the sensor holder 9 made from a synthetic resin with the said sensors 6a (6b).

この様に、上記センサ6a(6b)及び各センサリード10、10を、上記センサホルダ9内に包埋する作業は、これらセンサ6a(6b)及び各センサリード10、10を、射出成形装置のキャビティ内の所定位置に保持した状態で、このキャビティ内に合成樹脂を射出成形する事により行なう。この際に、上記各センサリード10、10の端部と上記各導体の端部とは、予めハンダ付け、ろう付け等により接続しておく。そして、完成した上記センサホルダ9を、前記カバー5の内側に組み付ける。尚、このセンサホルダ9は、このカバー5に対し、インサート成形する事もできる。この場合には、このカバー5を、上記センサ6a(6b)及び各センサリード10、10と共に、上記キャビティ内の所定位置に保持した状態で、このキャビティ内に合成樹脂を射出成形する。   As described above, the operation of embedding the sensor 6a (6b) and the sensor leads 10 and 10 in the sensor holder 9 is performed using the sensor 6a (6b) and the sensor leads 10 and 10 of the injection molding apparatus. A synthetic resin is injection-molded into the cavity while being held at a predetermined position in the cavity. At this time, the end portions of the sensor leads 10 and 10 and the end portions of the conductors are connected in advance by soldering, brazing, or the like. Then, the completed sensor holder 9 is assembled inside the cover 5. The sensor holder 9 can be insert-molded with respect to the cover 5. In this case, the synthetic resin is injection-molded into the cavity while the cover 5 is held at a predetermined position in the cavity together with the sensor 6a (6b) and the sensor leads 10 and 10.

何れにしても、上述の様にしてセンサホルダ9を射出成形する際に、上記センサ6a(6b)から導出した複数本のセンサリード10、10は、上記キャビティ内に送り込まれた溶融樹脂の熱と圧力とを受けて変形し、互いに接触する(短絡が起こる)可能性がある。この様な短絡が起こると、上記センサ6a(6b)が機能不良となって、演算器による状態量の算出を行なえなくなる。従って、上記短絡が起こったセンサリード10、10及びセンサ6a(6b)を包埋したユニットは、不良品として廃棄しなければならず、歩留悪化によるコスト上昇の原因となる為、改良が望まれる。   In any case, when the sensor holder 9 is injection-molded as described above, the plurality of sensor leads 10 and 10 derived from the sensor 6a (6b) are heated by the molten resin fed into the cavity. May be deformed under pressure and contact with each other (short circuit occurs). When such a short circuit occurs, the sensor 6a (6b) malfunctions and the state quantity cannot be calculated by the arithmetic unit. Therefore, the unit embedding the sensor leads 10 and 10 and the sensor 6a (6b) in which the short circuit has occurred must be discarded as a defective product, which causes an increase in cost due to a deterioration in yield. It is.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A

本発明の転がり軸受ユニットの状態量測定装置は、上述の様な事情に鑑み、センサ及び複数本のセンサリードを包埋した、合成樹脂製のセンサホルダの射出成形時に、これら各センサリードと、これら各センサリードの先端部に接続された各中継リードとの接続部同士が、射出成形装置のキャビティ内に送り込まれた溶融樹脂の熱と圧力とを受けて変形し、互いに接触する(短絡が起こる)と言った不都合が生じる事を防止できる構造を実現すべく発明したものである。 In view of the circumstances as described above, the state measuring device of the rolling bearing unit of the present invention includes a sensor and a plurality of sensor leads embedded in a synthetic resin sensor holder during injection molding , The connection parts of the relay leads connected to the tip parts of the sensor leads are deformed by the heat and pressure of the molten resin fed into the cavity of the injection molding apparatus and come into contact with each other (short circuit is caused). It was invented to realize a structure that can prevent the inconvenience that occurs.

本発明の転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、内周面に複列の外輪軌道を有し、使用時にも回転しない外輪と、外周面に複列の内輪軌道を有し、使用時に回転するハブと、これら両列の内輪軌道と上記両列の外輪軌道との間に、両列毎に複数個ずつ転動自在に設けられた転動体とを備える。
又、上記状態量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備える。
このうちのエンコーダは、上記ハブの端部にこのハブと同心に支持固定されたものであって、このハブと同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させている。
又、上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、上記外輪の端部開口を塞ぐ為にこの端部に固定した有底円筒状のカバー内に保持したセンサホルダ内に包埋支持されていて、上記被検出面の特性変化に対応して出力信号を変化させる。
又、上記演算器は、上記センサの出力信号に基づいて、上記ハブの回転速度と、上記外輪と上記ハブとの間の相対変位と、これら外輪とハブとの間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有する。
又、上記センサから導出した複数本のセンサリードを、このセンサと共に上記センサホルダに包埋している。
The rolling bearing unit state quantity measuring apparatus of the present invention includes a rolling bearing unit and a state quantity measuring apparatus.
Of these, the rolling bearing unit has an outer ring that has a double row outer ring raceway on its inner peripheral surface and does not rotate during use, a hub that has a double row inner ring raceway on its outer peripheral surface and rotates during use, A plurality of rolling elements are provided between the inner ring raceway in the row and the outer ring raceway in the both rows so as to be capable of rolling plurally for each row.
The state quantity measuring device includes an encoder, at least one sensor, and a calculator.
Of these, the encoder is supported and fixed concentrically with the hub at the end of the hub, and includes a detected surface concentric with the hub, and the characteristics of the detected surface are alternately set in the circumferential direction. It is changing.
The sensor is a sensor holder held in a bottomed cylindrical cover fixed to the end of the outer ring in order to close the end opening of the outer ring in a state where the detection unit faces the detection surface of the encoder. The output signal is changed corresponding to the change in the characteristics of the surface to be detected.
Further, the computing unit is based on an output signal of the sensor, and includes a rotation speed of the hub, a relative displacement between the outer ring and the hub, and an external force acting between the outer ring and the hub. It has a function of calculating at least one kind of state quantity.
A plurality of sensor leads derived from the sensor are embedded in the sensor holder together with the sensor.

特に、本発明の転がり軸受ユニットの状態量測定装置に於いては、上記各センサリードの先端部に、これら各センサリードと同数の中継リードの一端部をそれぞれ接続すると共に、これら各センサリードの先端部とこれら各中継リードの一端部との各接続部に、これら各接続部同士が互いに接触するのを防止する為の絶縁体製の保護部材を、上記センサに対して上記各センサリードの導出方向に離隔した状態で組み付けており、この保護部材を上記各センサリード及び上記各中継リードと共に上記センサホルダに包埋している。
この様な特徴を有する本発明を実施する場合には、例えば請求項2に記載した様に、上記保護部材として、側面に複数本の保持溝を有し、これら各保持溝内に上記各センサリードの先端部と上記各中継リードの一端部との各接続部を1本ずつ保持可能な部材を採用できる。
In particular, in the state quantity measuring device for a rolling bearing unit according to the present invention, one end of each relay lead is connected to the tip of each of the sensor leads. A protective member made of an insulator for preventing the connection parts from contacting each other is connected to the connection part between the tip part and one end part of each relay lead. The protective member is assembled in a separated state in the lead-out direction, and the protective member is embedded in the sensor holder together with the sensor leads and the relay leads .
When carrying out the present invention having such characteristics, for example, as described in claim 2, as the protection member, a plurality of holding grooves are provided on the side surface, and the sensors are provided in the holding grooves. A member capable of holding one connection portion between the leading end portion of the lead and one end portion of each relay lead can be employed.

上述の様に構成する本発明の転がり軸受ユニットの状態量測定装置によれば、合成樹脂製のセンサホルダの射出成形時に、各センサリードと、これら各センサリードの先端部に接続された各中継リードとの接続部が、射出成形装置のキャビティ内に送り込まれた溶融樹脂の熱と圧力とを受けて変形し、互いに接触する(短絡が起こる)と言った不都合が生じる事を防止できる。この為、歩留まりを良好にして、コストの低減を図れる。
According to the state quantity measuring apparatus of the rolling bearing unit of the present invention configured as described above, each sensor lead and each relay connected to the tip of each sensor lead at the time of injection molding of the sensor holder made of synthetic resin. It is possible to prevent the inconvenience that the connecting portion with the lead is deformed by the heat and pressure of the molten resin sent into the cavity of the injection molding apparatus and comes into contact with each other (short circuit occurs). For this reason, the yield can be improved and the cost can be reduced.

図1〜5は、本発明の実施の形態の1例を示している。尚、本例の特徴は、1対のセンサ6a(6b)から、それぞれセンサリード(導体)10a、10aを4本ずつ導出した構造で、これら各4本ずつのセンサリード10a、10aに対し、保護部材11を1個ずつ組み付けた点にある。その他の部分の構造及び作用は、前述の図6に示した従来構造の場合とほぼ同様である。この為、同等部分には同一符号を付して、重複する説明は省略若しくは簡略にし、以下、本例の特徴部分、並びに、上記従来構造と異なる部分を中心に説明する。   1 to 5 show an example of an embodiment of the present invention. The feature of this example is a structure in which four sensor leads (conductors) 10a and 10a are led out from a pair of sensors 6a (6b), respectively. For each of these four sensor leads 10a and 10a, The protection member 11 is assembled one by one. The structure and operation of the other parts are almost the same as those of the conventional structure shown in FIG. For this reason, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified. Hereinafter, the characteristic parts of this example and parts different from the conventional structure will be mainly described.

本例の場合、金属板製で有底円筒状のカバー5aの内側に保持固定した、合成樹脂製のセンサホルダ9aは、このカバー5aに対し、インサート成形(射出成形)したものである。この様なセンサホルダ9aは、軸方向中間部に存在する円板部12と、この円板部12の外周縁部分から軸方向外方に突出する円筒状部13と、上記円板部12の中央部分から軸方向内方に突出するコネクタ部14とを備える。このうちのコネクタ部14の先端側部分は、上記カバー5aを構成する底板部15の中央部に設けた通孔16を通じて、このカバー5aの外部に突出させている。又、上記通孔16の周囲に存在する円筒部17の外周面の全周に、熱硬化性のシール剤(シール用樹脂)18を塗布し、更に硬化させている。即ち、上記円筒部17の外周面を、上記シール剤18ごと、全周に亙り、上記センサホルダ9aの一部により覆って、上記円筒部17の外周面と上記センサホルダ9aとの間の水密を保持している。   In the case of this example, the sensor holder 9a made of a synthetic resin, which is made of a metal plate and held and fixed inside the bottomed cylindrical cover 5a, is formed by insert molding (injection molding) on the cover 5a. Such a sensor holder 9a includes a disc portion 12 that exists in the middle portion in the axial direction, a cylindrical portion 13 that protrudes outward in the axial direction from the outer peripheral edge portion of the disc portion 12, and the disc portion 12 And a connector portion 14 protruding inward in the axial direction from the center portion. Of these, the front end portion of the connector portion 14 is projected to the outside of the cover 5a through a through hole 16 provided in the central portion of the bottom plate portion 15 constituting the cover 5a. Further, a thermosetting sealing agent (sealing resin) 18 is applied to the entire circumference of the outer peripheral surface of the cylindrical portion 17 existing around the through hole 16 and further cured. That is, the outer peripheral surface of the cylindrical portion 17 is covered with the sealant 18 over the entire periphery and covered with a part of the sensor holder 9a, so that the watertightness between the outer peripheral surface of the cylindrical portion 17 and the sensor holder 9a is covered. Holding.

又、上記センサホルダ9aを構成する円筒状部13及び円板部12の径方向外端部には、それぞれが4本ずつのクランク形のセンサリード10a、10aを備えた1対のセンサ6a、6bと、これら各センサリード10a、10aと同数のコ字形の中継リード(導体)19と、1対の保護部材11とを、それぞれ包埋している。本例の場合、上記両センサ6a、6bは、軸方向及び円周方向に関して互いにずれた位置に配置している。又、上記各センサリード10a、10aはそれぞれ、上記両センサ6a、6bから軸方向内方に向け、互いに間隔をあけて平行に導出している。尚、本例の場合には、上記両センサ6a、6b同士で、上記各センサリード10a、10aの長さを互いに異ならせる事により、上記両センサ6a、6bを軸方向に関して互いに異なる位置に配置できる様にしている。又、上記各中継リード19の一端部は、上記各センサリード10a、10aの先端部に、ハンダ付け、ろう付け等により接続している。これに対し、上記各中継リード19の他端部は、上記円板部12の軸方向外側面の径方向外端部から、軸方向内方に向け突出させている。   Also, a pair of sensors 6a each having four crank-shaped sensor leads 10a and 10a at the radially outer ends of the cylindrical portion 13 and the disc portion 12 constituting the sensor holder 9a, 6b, the same number of U-shaped relay leads (conductors) 19 as the sensor leads 10a and 10a, and a pair of protective members 11 are embedded. In the case of this example, the two sensors 6a and 6b are arranged at positions shifted from each other with respect to the axial direction and the circumferential direction. The sensor leads 10a and 10a are led out in parallel from the sensors 6a and 6b inward in the axial direction. In the case of this example, the sensors 6a and 6b are arranged at different positions in the axial direction by making the lengths of the sensor leads 10a and 10a different from each other. I am trying to do it. One end of each relay lead 19 is connected to the tip of each sensor lead 10a, 10a by soldering, brazing or the like. On the other hand, the other end portion of each relay lead 19 protrudes inward in the axial direction from the radially outer end portion of the outer side surface of the disc portion 12 in the axial direction.

又、上記1対の保護部材11はそれぞれ、図4に示す様に、上記センサホルダ9aを構成する合成樹脂よりも融点の高い合成樹脂、或いはセラミックス等の絶縁材により、全体を矩形板状に形成したもので、片側面に互いに平行な4本の保持溝24、24を有する。この様な1対の保護部材11は、上記4本ずつのセンサリード10a、10aに対し、それぞれ1個ずつ組み付けている。具体的には、上記各保護部材11の4本の保持溝24、24内に、それぞれ上記各センサ6a(6b)から導出した4本のセンサリード10a、10aの先半部と、上記各中継リード19の一端部との各接続部を、それぞれ1本ずつ保持した状態で組み付けている。又、上記センサホルダ9aを構成するコネクタ部14及び円板部12の径方向中央寄り部分には、複数本のコネクタリード(導体端子)20、20の中間部を包埋している。この状態で、これら各コネクタリード20、20の一端部は、それぞれ上記円板部12の軸方向外側面の径方向中央寄り部分から、軸方向内方に向け突出させている。   Further, as shown in FIG. 4, each of the pair of protective members 11 is formed into a rectangular plate shape by a synthetic resin having a melting point higher than that of the synthetic resin constituting the sensor holder 9a or an insulating material such as ceramics. It is formed and has four holding grooves 24, 24 parallel to each other on one side. One pair of such protective members 11 is assembled to each of the four sensor leads 10a and 10a. Specifically, in the four holding grooves 24, 24 of each protection member 11, the first half portions of the four sensor leads 10 a, 10 a led out from the respective sensors 6 a (6 b), and the respective relays Each connection portion with one end portion of the lead 19 is assembled in a state where one connection portion is held. Further, intermediate portions of a plurality of connector leads (conductor terminals) 20 and 20 are embedded in the radially central portion of the connector portion 14 and the disc portion 12 constituting the sensor holder 9a. In this state, one end of each of the connector leads 20, 20 is protruded inward in the axial direction from the radially central portion of the outer side surface of the disk portion 12.

又、上記カバー5aの内側には、センサ基板、演算器基板等の電子回路基板21を設置している。具体的には、この電子回路基板21を、上記センサホルダ9aを構成する円板部12の軸方向外側面に対し、ねじ止め、接着、モールド等により固定している。又、この状態で、上記電子回路基板21に、上記各中継リード19の他端部と、上記各コネクタリード20、20の一端部とを、それぞれハンダ付け等により接続している。これにより、上記各センサリード10a、10a及び上記各中継リード19のうちの一部のリードを通じて、上記両センサ6a、6bから上記電子回路基板21に向け、これら両センサ6a、6bの出力信号を送信可能としている。これと共に、上記各コネクタリード20、20のうちの一部のリードを通じて、上記電子回路基板21から車体側のABSコントローラ等に向け、この電子回路基板21で処理取得された各種信号{例えば、波形成形された上記両センサ6a、6bの出力信号や位相差(比)を表す信号、この位相差(比)に基づいて算出した外輪1とハブ2との間の状態量(相対変位、外力)を表す信号等}を送信可能としている。更には、上記各コネクタリード20、20のうちの他の一部のリード、並びに、上記各中継リード19及び上記各センサリード10a、10aのうちの他の一部のリードを通じて、それぞれ上記電子回路基板21及び上記各センサ6a、6bに対し、必要な電力の供給を可能としている。   In addition, an electronic circuit board 21 such as a sensor board or a calculator board is installed inside the cover 5a. Specifically, the electronic circuit board 21 is fixed to the outer surface in the axial direction of the disk portion 12 constituting the sensor holder 9a by screwing, bonding, molding, or the like. In this state, the other end of each relay lead 19 and one end of each connector lead 20, 20 are connected to the electronic circuit board 21 by soldering or the like. Accordingly, the output signals of both the sensors 6a and 6b are directed from the sensors 6a and 6b to the electronic circuit board 21 through some of the sensor leads 10a and 10a and the relay leads 19. Sending is possible. At the same time, various signals {for example, waveforms] processed and acquired by the electronic circuit board 21 from the electronic circuit board 21 to the ABS controller or the like on the vehicle body side through a part of the connector leads 20 and 20. The output signals of the formed sensors 6a and 6b, signals indicating the phase difference (ratio), and the state quantity (relative displacement, external force) between the outer ring 1 and the hub 2 calculated based on the phase difference (ratio). Can be transmitted. Further, the electronic circuit is connected through the other part of the connector leads 20 and 20 and the other part of the relay leads 19 and the sensor leads 10a and 10a. Necessary electric power can be supplied to the substrate 21 and the sensors 6a and 6b.

尚、本例の場合、転がり軸受ユニットを構成するハブ2aの中心部に、この中心部を軸方向に貫通する中心孔22を設けている。この為、この中心孔22を通じて上記カバー5aの内側に異物が侵入する事を防止すべく、この中心孔22の軸方向外端部にキャップ23を装着して、この軸方向外端開口を塞いでいる。   In the case of this example, a central hole 22 is provided in the central portion of the hub 2a constituting the rolling bearing unit so as to penetrate the central portion in the axial direction. For this reason, in order to prevent foreign matter from entering the inside of the cover 5a through the central hole 22, a cap 23 is attached to the axially outer end of the central hole 22 to close the axially outer end opening. It is out.

上述の様に構成する本例の場合、金属板製のカバー5aに対して合成樹脂製のセンサホルダ9aをインサート成形する際には、先ず、図5の(A)に示す様に、センサ6b{図示しないセンサ6a(図1参照)に就いても同様}から導出した4本のセンサリード10aの先半部と、4本の中継リード19の一端部との各接続部に、保護部材11を組み付ける。具体的には、これら4本の接続部を、この保護部材11に設けた4本の保持溝24内に、それぞれ1本ずつ保持する。次いで、同図の(B)に示す様に、上記カバー5a(予め円筒部17の外周面にシール剤18を塗布し、更に硬化させたもの)と、上述の様に保護部材11を組み付けたセンサ6b(6a)及び各リード10a、19と、各コネクタリード20とを、射出成形装置のキャビティ(図示せず)内の所定位置に保持する。そして、この状態で、同図の(C)に示す様に、上記キャビティ内に合成樹脂を射出成形する事により、上記センサホルダ9aを完成させる。この状態で上記シール剤18が、射出成形後の冷却固化に伴って収縮した上記センサホルダ9aと上記円筒部17とに密着する。   In the case of this example configured as described above, when the synthetic resin sensor holder 9a is insert-molded into the metal plate cover 5a, first, as shown in FIG. {The same applies to the sensor 6a (not shown) (see FIG. 1)}, the protective member 11 is connected to each connecting portion between the first half of the four sensor leads 10a and one end of the four relay leads 19 derived from Assemble. Specifically, each of the four connection portions is held in four holding grooves 24 provided in the protection member 11 one by one. Next, as shown in FIG. 5B, the cover 5a (preliminarily coated with the sealing agent 18 on the outer peripheral surface of the cylindrical portion 17 and further cured) and the protective member 11 are assembled as described above. The sensor 6b (6a), each lead 10a, 19 and each connector lead 20 are held at predetermined positions in a cavity (not shown) of the injection molding apparatus. In this state, the sensor holder 9a is completed by injection molding synthetic resin into the cavity as shown in FIG. In this state, the sealing agent 18 comes into close contact with the sensor holder 9a and the cylindrical portion 17 that have shrunk with cooling and solidification after injection molding.

上述の様に、本例の転がり軸受ユニットの状態量測定装置の場合には、センサ6b(6a)から導出した4本のセンサリード10a、10aの先半部と、4本の中継リード19の一端部との各接続部を、保護部材11に設けた4本の保持溝24、24内に、それぞれ1本ずつ保持した状態で、上記センサホルダ9aの射出成形を行なう。この為、この射出成形時に、上記各リード10a、19が、射出成形装置のキャビティ内に送り込まれた溶融樹脂の熱と圧力とを受けて変形し、互いに接触する(短絡が起こる)と言った不都合が生じる事を、有効に防止できる。この為、歩留まりを良好にして、コストの低減を図れる。   As described above, in the case of the state measuring device of the rolling bearing unit of this example, the first half of the four sensor leads 10a and 10a derived from the sensor 6b (6a) and the four relay leads 19 are provided. The sensor holder 9a is injection-molded in a state where each connection portion with one end portion is held in each of the four holding grooves 24, 24 provided in the protection member 11. For this reason, at the time of this injection molding, the respective leads 10a, 19 are deformed by the heat and pressure of the molten resin fed into the cavity of the injection molding apparatus and contact each other (short circuit occurs). Inconvenience can be effectively prevented. For this reason, the yield can be improved and the cost can be reduced.

尚、上述した実施の形態では、複数本のセンサリード(及び中継リード)の一部分(これら両リード同士の接続部)に保護部材を組み付ける構造を採用したが、これに代えて、複数本のセンサリード(及び中継リード)の全体(これら両リード同士の接続部及びこの接続部から外れた部分、又は、接続部を含む複数部分)に保護部材を組み付ける構造を採用すれば、センサホルダの射出成形時に、上記各センサリード(及び各中継リード)同士が接触するのを、より有効に防止できる。   In the above-described embodiment, the structure in which the protective member is assembled to a part of the plurality of sensor leads (and the relay leads) (the connection portion between the two leads) is used. If a structure in which a protective member is assembled to the entire lead (and relay lead) (the connection part between these two leads and the part removed from this connection part or a plurality of parts including the connection part) is adopted, the injection molding of the sensor holder is performed. Sometimes, the sensor leads (and the relay leads) can be more effectively prevented from contacting each other.

本発明の実施の形態の1例を示す断面図。Sectional drawing which shows one example of embodiment of this invention. 図1のA部拡大図。The A section enlarged view of FIG. 複数本のセンサリードを備えたセンサの平面図。The top view of a sensor provided with a plurality of sensor leads. 保護部材の斜視図。The perspective view of a protection member. 合成樹脂製のセンサホルダを射出成形する工程を順番に示す部分断面図。The fragmentary sectional view which shows the process of injection-molding the sensor holder made from a synthetic resin in order. 転がり軸受ユニットの状態量測定装置の従来構造の1例を示す断面図。Sectional drawing which shows an example of the conventional structure of the state quantity measuring apparatus of a rolling bearing unit. 複数本のセンサリードを備えたセンサの平面図。The top view of a sensor provided with a plurality of sensor leads.

符号の説明Explanation of symbols

1 外輪
2、2a ハブ
3 転動体
4 エンコーダ
5、5a カバー
6a、6b センサ
7 芯金
8 エンコーダ本体
9、9a センサホルダ
10、10a センサリード
11 保護部材
12 円板部
13 円筒状部
14 コネクタ部
15 底板部
16 通孔
17 円筒部
18 シール剤
19 中継リード
20 コネクタリード
21 電子回路基板
22 中心孔
23 キャップ
24 保持溝
DESCRIPTION OF SYMBOLS 1 Outer ring 2, 2a Hub 3 Rolling element 4 Encoder 5, 5a Cover 6a, 6b Sensor 7 Core metal 8 Encoder main body 9, 9a Sensor holder 10, 10a Sensor lead 11 Protection member 12 Disc part 13 Cylindrical part 14 Connector part 15 Bottom plate portion 16 Through hole 17 Cylindrical portion 18 Sealing agent 19 Relay lead 20 Connector lead 21 Electronic circuit board 22 Center hole 23 Cap 24 Holding groove

Claims (2)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、内周面に複列の外輪軌道を有し、使用時にも回転しない外輪と、外周面に複列の内輪軌道を有し、使用時に回転するハブと、これら両列の内輪軌道と上記両列の外輪軌道との間に、両列毎に複数個ずつ転動自在に設けられた転動体とを備えたものであり、
上記状態量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備えたものであって、
このうちのエンコーダは、上記ハブの端部にこのハブと同心に支持固定されたものであって、このハブと同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させたものであり、
上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、上記外輪の端部開口を塞ぐ為にこの端部に固定した有底円筒状のカバー内に保持したセンサホルダ内に包埋支持されていて、上記被検出面の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記センサの出力信号に基づいて、上記ハブの回転速度と、上記外輪と上記ハブとの間の相対変位と、これら外輪とハブとの間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有するものであり、
上記センサから導出した複数本のセンサリードを、このセンサと共に上記センサホルダに包埋している
転がり軸受ユニットの状態量測定装置に於いて、
上記各センサリードの先端部に、これら各センサリードと同数の中継リードの一端部をそれぞれ接続すると共に、これら各センサリードの先端部とこれら各中継リードの一端部との各接続部に、これら各接続部同士が互いに接触するのを防止する為の絶縁材製の保護部材を、上記センサに対して上記各センサリードの導出方向に離隔した状態で組み付けており、この保護部材を上記各センサリード及び上記各中継リードと共に上記センサホルダに包埋している事を特徴とする転がり軸受ユニットの状態量測定装置。
A rolling bearing unit and a state quantity measuring device;
Of these, the rolling bearing unit has an outer ring that has a double row outer ring raceway on its inner peripheral surface and does not rotate during use, a hub that has a double row inner ring raceway on its outer peripheral surface and rotates during use, Between the inner ring raceway of the row and the outer ring raceway of the two rows, a plurality of rolling elements provided so as to be freely rollable for each row are provided.
The state quantity measuring device includes an encoder, at least one sensor, and a computing unit,
Of these, the encoder is supported and fixed concentrically with the hub at the end of the hub, and includes a detected surface concentric with the hub, and the characteristics of the detected surface are alternately set in the circumferential direction. Is a change,
The sensor is placed in a sensor holder held in a bottomed cylindrical cover fixed to the end of the outer ring in order to close the end opening of the outer ring with the detection unit facing the detection surface of the encoder. It is embedded and supported, and changes the output signal in response to the change in characteristics of the detected surface.
The computing unit is based on the output signal of the sensor, among the rotational speed of the hub, the relative displacement between the outer ring and the hub, and the external force acting between the outer ring and the hub, It has a function to calculate at least one kind of state quantity,
In the state quantity measuring device for a rolling bearing unit in which a plurality of sensor leads derived from the sensor are embedded in the sensor holder together with the sensor,
One end of the same number of relay leads as that of each of the sensor leads is connected to the tip of each of the sensor leads, and the connection between the tip of each of the sensor leads and one end of each of the relay leads A protective member made of an insulating material for preventing the connecting portions from contacting each other is assembled to the sensor in a state of being separated in the lead-out direction of the sensor leads. An apparatus for measuring a state quantity of a rolling bearing unit, wherein the sensor holder is embedded together with a lead and each relay lead .
保護部材が、側面に複数本の保持溝を有し、これら各保持溝内にセンサリードの先端部と各中継リードの一端部との各接続部を1本ずつ保持可能な部材である、請求項1に記載した転がり軸受ユニットの状態量測定装置。 The protection member is a member having a plurality of holding grooves on the side surface and capable of holding one connection portion between the tip portion of the sensor lead and one end portion of each relay lead in each holding groove. A state quantity measuring device for a rolling bearing unit according to Item 1.
JP2008028474A 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units Expired - Fee Related JP5458497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028474A JP5458497B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028474A JP5458497B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Publications (2)

Publication Number Publication Date
JP2009186392A JP2009186392A (en) 2009-08-20
JP5458497B2 true JP5458497B2 (en) 2014-04-02

Family

ID=41069776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028474A Expired - Fee Related JP5458497B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP5458497B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243976B2 (en) * 2012-11-15 2016-01-26 Aktiebolaget Skf Sensor bearing assembly with cover mounted sensor
US20160244040A1 (en) * 2015-02-23 2016-08-25 Nakanishi Metal Works Co., Ltd. Insert molded article, manufacturing method for protective cover having sensor holder part, and manufacturing method for bearing device including the protective cover
CN112524164B (en) * 2020-11-13 2022-03-29 安徽万宝玻璃有限公司 Bearing protection mechanism for glass tempering furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095345A (en) * 1995-06-23 1997-01-10 Sumitomo Electric Ind Ltd Electromagnetic pickup for rotation sensor and bearing fixed with pickup
JP3959250B2 (en) * 2001-08-28 2007-08-15 日信工業株式会社 Wheel speed sensor
JP2003307522A (en) * 2002-04-16 2003-10-31 Sumitomo Electric Ind Ltd Magnetic variable sensor
JP2004076751A (en) * 2002-08-09 2004-03-11 Koyo Seiko Co Ltd Rolling bearing device
JP2005091081A (en) * 2003-09-16 2005-04-07 Nsk Ltd Load measuring device for rolling bearing unit
JP2005227095A (en) * 2004-02-12 2005-08-25 Sumiden Electronics Kk Magnetic variable sensor
JP4085078B2 (en) * 2004-07-20 2008-04-30 住電エレクトロニクス株式会社 Rotation detection sensor
JP4781073B2 (en) * 2005-09-30 2011-09-28 住電エレクトロニクス株式会社 Rotation detection sensor
JP2008026041A (en) * 2006-07-19 2008-02-07 Nsk Ltd Ball bearing unit with load measuring apparatus

Also Published As

Publication number Publication date
JP2009186392A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR100752999B1 (en) Rolling bearing unit with sensor
US8176799B2 (en) State measuring apparatus for rolling bearing unit and method of manufacturing the same
WO2007029512A1 (en) Sensor-equipped bearing for wheel
JP4850078B2 (en) Wheel bearing with sensor
EP2208034A1 (en) Drive torque sensing wheel end
JP5458497B2 (en) State quantity measuring device for rolling bearing units
JP2007057302A (en) Wheel bearing with sensor
JP3988640B2 (en) Hub unit with sensor
JP2006057814A (en) Bearing device for wheel
JP5424731B2 (en) Tire pressure monitoring system
US20210221172A1 (en) Sensing device for vehicle, wheel bearing assembly and method for manufacturing sensing device for vehicle
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP2007064778A (en) Bearing for wheel with sensor
KR102536972B1 (en) Wheel bearing provided with wheel speed sensor having a plurality of sensing units
JP5228512B2 (en) State quantity measuring device for rolling bearing units
JP4182763B2 (en) Hub unit with sensor
JP4218361B2 (en) Rolling bearing unit with sensor
JP2006226477A (en) Rolling bearing device with sensor
JP5453718B2 (en) State quantity measuring device for rolling bearing units
KR20210009735A (en) Wheel speed sensor having a plurality of sensing units and wheel bearing provided therewith
JP2006300251A (en) Retainer with encoder
JP5194879B2 (en) Rolling bearing unit with physical quantity measuring device
JP2009186412A (en) Apparatus for measuring quantity of state of rolling bearing unit,and manufacturing method therefor
JP4872799B2 (en) State quantity measuring device for rolling bearing units
JP4107094B2 (en) Rolling bearing unit with sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees