US20160270753A1 - Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program - Google Patents

Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program Download PDF

Info

Publication number
US20160270753A1
US20160270753A1 US15/070,663 US201615070663A US2016270753A1 US 20160270753 A1 US20160270753 A1 US 20160270753A1 US 201615070663 A US201615070663 A US 201615070663A US 2016270753 A1 US2016270753 A1 US 2016270753A1
Authority
US
United States
Prior art keywords
image
past
diagnostic
radiation
radiation image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/070,663
Other versions
US11278257B2 (en
Inventor
Takahiro Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Assigned to FUJIFILM CORPORATION reassignment FUJIFILM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWAMURA, TAKAHIRO
Publication of US20160270753A1 publication Critical patent/US20160270753A1/en
Application granted granted Critical
Publication of US11278257B2 publication Critical patent/US11278257B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • the present invention relates to a diagnostic auxiliary image generation apparatus, a diagnostic auxiliary image generation method, and a non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program for generating an image to assist the interpretation of a radiation image.
  • an image obtained by imaging the patient in the past is not always present. Therefore, a method has been proposed in which an image of a normal example having a normal structure, which is similar to a front chest image of a certain patient, is selected from front chest images of other patients and a similar difference image is generated by subtracting the selected image from the front chest image of the patient (for example, JP2005-269214A or “Development of Computerized System for Selection of Similar Images from Different Patients for Image Subtraction of Chest Radiographs”, Oda Nobuhiro et al., Biomedical Engineering Vol. 44 (2006) No. 3 pp. 435-444).
  • a tomographic image obtained by imaging the same patient with a CT apparatus it is also possible to generate a two-dimensional chest captured image from the tomographic image (for example, JP2007-14435A).
  • a temporal difference image As described above, as an application to assist temporal comparison, a temporal difference image is known. In this method, however, an image captured in the past is required. In addition, if a current image of a diagnostic target and an image captured in the past are not captured in the close positioning, image subtraction occurs in a state in which the ribs, pulmonary vessels, or the like are shifted from each other. As a result, artifacts appear in the difference image, and these are obstacles to specifying a lesion.
  • U.S. Pat. No. 7,545,965B discloses a method of estimating a bone component from one chest image in order to generate an auxiliary image for interpretation diagnosis.
  • this method no past image is required, but it is difficult to accurately extract only the bone component from the chest image having a large number of shape patterns.
  • the contrast enhancement is limited.
  • a slight change in concentration may have an effect on a wide range. If the contrast of the soft tissue including the lung field is emphasized, an observation area becomes narrow. As a result, it may be difficult to understand the concentration change due to the disease.
  • a diagnostic auxiliary image generation apparatus for generating an image to assist the interpretation of a radiation image that efficiently generates an optimal diagnostic auxiliary image for interpretation.
  • a diagnostic auxiliary image generation apparatus of the invention includes: a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is found by
  • a diagnostic auxiliary image generation method of the invention is a diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus including the past image search unit, the temporal difference image generation unit, the bone-suppressed image generation unit, and the display control unit.
  • the diagnostic auxiliary image generation method includes: a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a bone-s
  • a non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program of the invention causes a computer to function as the diagnostic auxiliary image generation apparatus including: the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; the bone-suppressed image generation unit that estimates the bone component from the diagnostic target radiation image and generates the bone-suppressed image as the diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in
  • a diagnostic auxiliary image generation apparatus of the invention includes: a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared; a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a similar image search unit that searches for the normal radiation image, which is determined to have the same organ shape
  • a diagnostic auxiliary image generation method of the invention is a diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus including the past image search unit, the temporal difference image generation unit, the similar image search unit, the similar difference image generation unit, the display control unit, and the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared.
  • the diagnostic auxiliary image generation method includes: a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a similar image search step in which the similar image search unit searches for the normal radiation image, which is determined to have the same organ shape by comparing the shape of the organ of the chest appearing on the normal radiation image with the shape of the organ appearing on the diagnostic target radiation image, as the similar case image
  • a non-transitory computer readable recording medium recorded with the diagnostic auxiliary image generation program of the invention causes a computer to function as the diagnostic auxiliary image generation apparatus including: the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared; the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; the similar image search unit that searches for the normal
  • “Comparing the shape of the organ of the chest appearing on the diagnostic target radiation image with the shape of the organ appearing on the past radiation image” refers to comparing the same organs appearing in the diagnostic target radiation image and the past radiation image. For example, this refers to comparing the ribs between the diagnostic target radiation image and the past radiation image and comparing the lung fields between the diagnostic target radiation image and the past radiation image.
  • the organ include ribs, heart, blood vessels, bronchi, and a lung field.
  • Determining that the shapes of the organs match each other may refer to determining that the shapes of the organs to be compared with each other approximately match each other as well as determining that the shapes of the organs completely match each other. For example, the degree of matching between the shapes of the organs overlapping each other in the images may be calculated using a method determined in advance, and it may be determined whether or not the shapes of the organs match each other according to whether or not the calculated degree of matching is greater than a threshold value or less than the threshold value. “Determining that the shapes of the organs do not match each other” refers to a case in which it is not determined that the shapes of the organs match each other.
  • the “subject to be diagnosed” is not included in the “subject to be compared”.
  • the display control unit may display the diagnostic auxiliary image distinguishably displaying whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
  • the diagnostic auxiliary image is displayed in characters, or may be displayed using specific figures, colors, or the like matched with various types in advance. Any display may be applied as long as it is displayed on the display device so that it can be recognized which image the currently displayed diagnostic auxiliary image is.
  • the diagnostic auxiliary image generation apparatus of the invention may further include: a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is not found by the past image search unit and the similar case image is not found by the similar image search unit.
  • the display control unit may display the diagnostic auxiliary image generated by the bone-suppressed image generation unit on the display device.
  • a contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image may be provided, and the display control unit may display a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit. It is preferable that the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
  • the contrast conversion section performs contrast conversion processing for increasing all pixel values multiple times in a case where the diagnostic auxiliary image is the temporal difference image or the similar difference image and performs contrast conversion processing for emphasizing pixel values in a low frequency band lower than a specific frequency in a case where the diagnostic auxiliary image is the bone-suppressed image.
  • the specific frequency is determined in advance according to a size of a blood vessel included in the chest.
  • the temporal difference image generation unit may determine whether or not the shapes of the organs match each other by determining whether or not lung field shapes and/or rib shapes match each other. That is, the temporal difference image generation unit may determine whether or not the shapes of the organs match each other by determining whether or not either lung field shapes or rib shapes match each other.
  • the similar image search unit includes: a first selection section that selects normal radiation images in which the subject to be compared with a subject to be diagnosed has the same sex and age range as the subject to be diagnosed; a second selection section that selects, from the normal radiation images selected by the first selection section, normal radiation images including lung field shapes that match a lung field shape of the diagnostic target radiation image; a third selection section that selects, from the normal radiation images selected by the second selection section, normal radiation images including positions of bones overlapping a lung field that matches positions of bones overlapping a lung field in the diagnostic target radiation image; and a fourth selection section that selects, from the normal radiation images selected by the third selection section, a normal radiation image including a soft structure similar to a soft structure of the diagnostic target radiation image.
  • the similar image search unit selects the normal radiation image having the organ shape that matches the organ shape in the diagnostic target radiation image using the first to fourth selection sections, and the similar image search unit further includes a specification section that specifies the normal radiation image selected by the fourth selection section as a similar case image.
  • the bone shape may be a shape of a rib or a clavicle.
  • the soft structure may be a shape of a heart or a pulmonary vessel.
  • a temporal difference image is generated and set as a diagnostic auxiliary image only in a case where the shapes of the organs of the chests of the diagnostic target radiation image and the past radiation image match each other.
  • a bone-suppressed image is generated and set as a diagnostic auxiliary image.
  • FIG. 1 is a diagram showing the schematic configuration of an interpretation diagnostic system to which a diagnostic auxiliary image generation apparatus according to a first embodiment of the invention is applied.
  • FIG. 2 is a functional block diagram of the diagnostic auxiliary image generation apparatus according to the first embodiment of the invention.
  • FIG. 3 is a diagram for explaining a method of calculating the similarity between pulmonary vessels.
  • FIG. 4 is a diagram for explaining the tissue of the bone and the profile of the concentration appearing in the shape of a radiation image.
  • FIG. 5 is a detailed functional block diagram of a similar image search section.
  • FIG. 6 is a flowchart illustrating the operation of the diagnostic auxiliary image generation apparatus according to the first embodiment.
  • FIG. 7 is an example in which a diagnostic auxiliary image is displayed together with its kind.
  • FIG. 8 is a functional block diagram showing a diagnostic auxiliary image generation processing unit in a second embodiment of the invention.
  • FIG. 9 is a flowchart illustrating the operation of a diagnostic auxiliary image generation apparatus according to the second embodiment of the invention.
  • FIG. 10 is a functional block diagram showing a diagnostic auxiliary image generation processing unit in a third embodiment.
  • a diagnostic auxiliary image generation apparatus according to a first embodiment of the invention will be described with reference to the accompanying diagrams.
  • FIG. 1 is a diagram of the hardware configuration schematically showing the interpretation diagnostic system. As shown in FIG. 1 , in this system, a modality 1 , an image storage server 2 , and an image processing workstation 3 are communicably connected to each other through a network 4 .
  • An apparatus that generates image data showing a diagnosis target part of a patient by imaging the part, adds supplementary information defined by the digital imaging and communications in medicine (DICOM) standards to the image data, and outputs the result as image information is included in the modality 1 .
  • the modality 1 will be described below as a simple X-ray imaging apparatus, for example.
  • the image storage server (radiation image storage unit) 2 is a computer that stores image data acquired in various modalities in an image database and manages the image data, and includes a large-capacity external storage device or database management software (for example, object relational database (ORDB) management software).
  • database management software for example, object relational database (ORDB) management software.
  • Image data that is present in each medical institution and is obtained by imaging a number of patients in various modalities is stored in the image storage server 2 .
  • the modality is a simple X-ray imaging apparatus and the image data is a simple X-ray image.
  • the image processing workstation 3 is a computer that performs image processing on the image data obtained from the modality 1 or the image storage server 2 in response to a request from the user, and has a known hardware configuration including a central processing unit (CPU), a main storage device, an auxiliary storage device, an input and output interface, a communication interface, an input device (a mouse, a keyboard, and the like), a display device (display monitor), and a data bus.
  • a known operating system or the like is installed in the image processing workstation 3 . Diagnostic auxiliary image generation processing of the invention is performed by the image processing workstation 3 , and this processing is realized by executing an installed program from the recording medium, such as a CD-ROM.
  • the program may be installed after being downloaded from the storage device of a server connected through a network, such as the Internet.
  • FIG. 2 is a block diagram showing a diagnostic auxiliary image generation processing unit in the first embodiment of the invention among the functions of the image processing workstation 3 .
  • the diagnostic auxiliary image generation processing unit in the first embodiment of the invention includes a diagnostic target image storage section 30 , a past image search section 31 , a temporal difference image generation section 32 , a similar image search section 33 , a similar difference image generation section 34 , a bone-suppressed image generation section 35 , a display control section 36 , and a contrast conversion section 37 .
  • a case image storage unit 21 is provided in the image storage server 2 , and the diagnostic auxiliary image generation processing unit of the image processing workstation 3 and the case image storage unit 21 function as an auxiliary image generation apparatus of the invention.
  • a diagnostic target radiation image P of a subject to be diagnosed is stored in the diagnostic target image storage section 30 .
  • the past image search section 31 searches for a past radiation image Q, which has been obtained by imaging a subject (patient) to be diagnosed with a simple X-ray imaging apparatus, from the image storage server 2 before the imaging time of a diagnostic target radiation image at which the same subject has been imaged by the modality 1 .
  • the past image search section 31 searches for a radiation image, which has the same patient ID and the same imaging part and has been captured before the imaging time of the diagnostic target radiation image P, based on the supplementary information defined by the DICOM standards.
  • DICOM standards a case in which a diagnostic target part is a chest will be described.
  • the subject When imaging the chest of a subject to be diagnosed, the subject is irradiated for the imaging. However, depending on a direction in which the subject is irradiated, that is, depending on a projection direction in which the chest is projected, the shape of the lung field appearing on the radiation image, the shape of the ribs or clavicles appearing on the radiation image, or the traveling direction of the blood vessels of a soft portion appearing on the radiation image is different. Even if the same subject is imaged, the projection direction when capturing the diagnostic target radiation image P is different from the projection direction when the past radiation image Q was captured, in many cases, depending on the standing position of the subject with respect to the modality 1 and/or the posture of the subject.
  • the shape of the lung field of the chest appearing on the radiation image is different.
  • the shape of the ribs or clavicles appearing on the radiation image or the traveling direction of the blood vessels of a soft portion appearing on the radiation image is different.
  • the breathing state at the time of imaging is different, the shape of the lung field is different.
  • the difference between the projected images of the organ appearing on the radiation images appears as an artifact when generating a difference image.
  • the temporal difference image generation section 32 compares the shape of the organ of the past radiation image Q, which has been found by the past image search section 31 , with the shape of the organ of the projected image appearing on the diagnostic target radiation image P to determine whether or not the two projected images match each other. Specifically, in order to determine whether or not the lung field shapes and/or the rib shapes of projected images appearing on the past radiation image Q and the diagnostic target radiation image P, the temporal difference image generation section 32 calculates the degree of matching between the lung field shapes and/or the rib shapes. Then, when the degree of matching is equal to or greater than a predetermined threshold value, the temporal difference image generation section 32 determines that the lung field shapes and/or the rib shapes match each other.
  • a lung field region is first detected from the diagnostic target radiation image P and the past radiation image Q.
  • a binary image for a radiation image obtained by imaging the chest is generated by performing binarization with a predetermined threshold value as a boundary, a region in contact with the image end is set as a region other than the lung field by performing labeling on the generated binary image, and a region that is not in contact with the image end is extracted as a lung field region (for the details of the extraction of the lung field region, refer to JP1999-151232A (JP-H11-151232A) and the like).
  • the degree of matching between the lung field shapes may be obtained by detecting the lung field contour in each image using the density pattern characteristic of pixels (for the details of the detection of the lung field contour, refer to JP1988-240832A (JP-S63-240832A) and the like).
  • the difference between the lung field shapes can be determined even in quite small images, it is possible to reduce the determination cost by using the reduced images of the diagnostic target radiation image P and the past radiation image Q when extracting the lung field shapes.
  • the degree of reduction may be determined according to the determination accuracy to be required.
  • the degree of matching between the rib shapes is calculated by extracting rib regions from the diagnostic target radiation image P and the past radiation image Q.
  • a rib region is extracted from the edge of the contour of the ribs appearing in the lung field in a radiation image and the pattern of the pixel value of the radiation having passed through the ribs (for details, refer to US2013/0108135A1 and the like).
  • the degree of matching between the ribs can be determined from the area ratio of a product set region of the rib regions to a sum set region of the rib regions.
  • a method of determining whether or not the shapes of the organs match each other by extracting the lung field shapes to determine whether or not the lung field shapes match each other and then determining that the shapes of the organs do not match each other without determining the matching between the rib shapes when the lung field shapes do not match each other and further determining whether or not the rib shapes match each other when the lung field shapes match each other may be used since the accuracy is high if the degree of matching between the rib shapes is determined but the high calculation cost is required for the extraction of the rib shapes. If there is no problem in calculation cost, determination using only the rib shapes is also possible.
  • the temporal difference image generation section 32 determines whether or not the projected images of the diagnostic target radiation image P and the past radiation image Q match each other from the degree of matching between the lung field shapes and the degree of matching between the rib shapes. When it is determined that the projected image of the chest appearing on the diagnostic target radiation image P approximately matches the projected image of the chest appearing on the past radiation image Q, the temporal difference image generation section 32 generates a temporal difference image between the past radiation image Q and the diagnostic target radiation image P as a diagnostic auxiliary image S. On the other hand, when the projected image of the past radiation image Q and the diagnostic target radiation image P do not match each other, a temporal difference image is not generated.
  • Normal radiation images which are obtained by imaging the chests of a number of subjects (subjects to be compared) and in which no abnormal shade appears, are stored in the case image storage unit 21 .
  • Normal radiation images may be selected from the radiation images stored in the image storage server 2 .
  • the stored normal radiation images are radiation images obtained by imaging only subjects for which it is determined that there is no disease in the chests of the imaged subjects. It is preferable to store normal radiation images that are captured over the wide range of age groups so that images, which are obtained by imaging the lung fields of various sizes, are included.
  • Supplementary information defined by the DICOM standards is added to the normal radiation image, and the sex and age of each subject, imaged modalities, imaging conditions, and the like are included in the supplementary information.
  • the similar image search section 33 compares the size of the chest of each normal radiation image with the size of the chest of the diagnostic target radiation image P and compares the shape of the organ projected on each normal radiation image with the shape of the organ of the diagnostic target radiation image P, searches for a normal radiation image, which is determined to be almost the same by this comparison, from the case image storage unit 21 , and sets the normal radiation image as a similar case image R.
  • the similar image search section 33 includes a first selection section 331 , a second selection section 332 , a third selection section 333 , a fourth selection section 334 , and a specification section 335 .
  • the specification section 335 specifies a normal radiation image, which is the most similar to the diagnostic target radiation image P, as the similar case image R after selecting normal radiation images by the first selection section 331 , the second selection section 332 , the third selection section 333 , and the fourth selection section 334 .
  • the first selection section 331 selects a normal radiation image, in which a subject to be compared with a subject to be diagnosed has the same sex and age range as the subject to be diagnosed, based on the supplementary information. For example, in the case of a woman, a breast is reflected in the radiation image. That is, the way in which a breast is reflected differs depending on the sex, and the rib shape also differs depending on the sex. Therefore, a normal radiation image is selected from the matching of sex. In addition, the size of the rib cage significantly changes until the adult in accordance with the growth, and the shape or size of the lung or ribs changes greatly depending on the age range (any of neonates, infants, young children, children, and adults). Then, a normal radiation image is selected from the same age range.
  • the second selection section 332 selects, from the normal radiation images selected by the first selection section 331 , a normal radiation image including a lung field shape that matches the lung field shape appearing in the diagnostic target radiation image P. For the determination of the similarity between the lung field shapes, it is possible to use the above method described when comparing the projected images using the temporal difference image generation section 32 .
  • the third selection section 333 selects, from the normal radiation images selected by the second selection section 332 , a normal radiation image having a positional relationship between the lung field and the bones overlapping the lung field that is similar to that in the diagnostic target radiation image P.
  • a normal radiation image having a similar positional relationship is left as a candidate.
  • the degree of matching is calculated according to how much of the information of a high frequency band, which is higher than a predetermined band considered to include image components of the bone, match each other, and an image having a high degree of matching is selected. Specifically, an image of high frequency components higher than a predetermined band is generated, and the degree of matching is determined using any of the average of pixel value differences, cross-correlation, mutual information, and the like. Alternatively, it is also possible to use the method of extracting the shape of the bone that has been described when comparing the projected images using the temporal difference image generation section 32 for the determination of the similarity between the rib shapes or between the clavicle shapes.
  • the fourth selection section 334 selects, from the normal radiation images selected by the third selection section 333 , a normal radiation image including a soft structure similar to the soft structure appearing in the diagnostic target radiation image P.
  • a normal radiation image having a similar positional relationship is left as a candidate.
  • the pulmonary vessels are extracted from the blood vessel likeness pixel value, but the individual difference is very large in the shape of the pulmonary vessels. Since the blood vessels are divided along the bronchus from the hilar portion, the similarity is calculated with an emphasis on the hilar portion. For example, as shown in FIG.
  • the position of the hilar portion is detected first, and the weight in the calculation of the degree of matching is reduced as the position moves from the hilar portion to the peripheral part of the bronchus.
  • the degree of matching between the shapes of recognized organs, such as the heart is determined by measuring the similarity of the pixel values using any of the average of pixel value differences, cross-correlation, mutual information, and the like and comparing the similarity with a threshold value.
  • the specification section 335 specifies a normal radiation image narrowed down by the four selection sections described above most similar to the diagnostic target radiation image P, as the similar case image R.
  • the similar difference image generation section 34 When the similar case image R is found by the similar image search section 33 , the similar difference image generation section 34 generates a similar difference image as the diagnostic auxiliary image S by performing differential processing between the found similar case image R and the diagnostic target radiation image P.
  • the bone-suppressed image generation section 35 estimates bone components from the diagnostic target radiation image P and generates a bone-suppressed image as the diagnostic auxiliary image S by removing the estimated bone components from the diagnostic target radiation image P.
  • a feature quantity obtained by quantifying the characteristics of the bone is learned in advance using the bone of a normal example as a teacher image. Then, based on the bone likeness for each pixel in the diagnostic target radiation image P, the pixel value of the bone component for each pixel is estimated.
  • a bone appears as a low-concentration portion since the X-ray absorption is large compared with the surrounding tissue, and the imaging portion of the bone appears as a region surrounded by the edge structure.
  • a boundary portion of the bone with respect to the surrounding tissue is covered with a cortical bone (white portion), and is drawn with a low concentration.
  • the center of the bone has a higher concentration than the cortical bone since a portion in which the X-ray absorption is slightly small, such as bone marrow (hatched portion), is present.
  • a bone-suppressed image in which bone components are suppressed can be generated by subtracting the estimated bone components from the inspection image according to the feature of the profile (for example, refer to US2013/0108135A1 and the like). This bone-suppressed image is set as the diagnostic auxiliary image S.
  • the abnormal shade appearing in the chest radiation image is light shade in many cases.
  • the shade since the difference between the shade, which appears in a temporal difference image, a similar difference image, or a bone-suppressed image, and the surrounding image is small, the shade cannot be understood well in many cases.
  • the contrast conversion section 37 performs contrast conversion processing on the diagnostic auxiliary image S.
  • the temporal difference image or the similar difference image not only bones but also blood vessels and organs, such as the lung and the heart, disappear by the difference, and only a portion where there has been a change, such as a tumor, remains.
  • the contrast conversion section 37 performs different contrast conversion processing according to whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image.
  • the contrast conversion section 37 performs contrast conversion processing for emphasis by increasing all the pixel values multiple times (for example, two or three times), for example.
  • the contrast conversion section 37 performs contrast conversion processing for emphasizing the pixel values in a low frequency band lower than a specific frequency.
  • bones, blood vessels, and organs, such as the lung and the heart disappear. Accordingly, it is possible to emphasize the light shade just by enlarging all images two or three times.
  • the diagnostic auxiliary image S is a bone-suppressed image, bones disappear, but blood vessels remain.
  • Blood vessels are scattered in the lung field, and blood vessels other than blood vessels near the hilar portion appear as the thin and light shade.
  • contrast conversion processing for emphasizing the pixel values of the low frequency band lower than a specific frequency is performed.
  • the specific frequency is determined so that the shade, which is round and has a certain size (for example, 1 cm or more) like a tumor, can be emphasized without emphasizing the thin and light shade appearing in a place slightly away from the hilar portion.
  • the display control section 36 displays the diagnostic auxiliary image S on a display device.
  • the diagnostic auxiliary image S is used to assist the diagnosis, and the final diagnosis is performed by interpreting the original diagnostic target radiation image P. Understanding what kind of image the diagnostic auxiliary image S is becomes important in performing interpretation.
  • the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image may be displayed so as to be distinguishable, or a specific mark may be displayed.
  • the diagnostic auxiliary image S may be displayed on the display device as it is, it is desirable to display the processed diagnostic auxiliary image S after contrast conversion by the contrast conversion section 37 on the display device.
  • the chest of the subject to be diagnosed is imaged using a simple X-ray imaging apparatus 1 .
  • Supplementary information according to the DICOM standards is added to the captured diagnostic target radiation image P, and the result is transmitted to the image processing workstation 3 .
  • the image processing workstation 3 stores the received diagnostic target radiation image P in the diagnostic target image storage section 30 (S 1 ).
  • the past image search section 31 searches for the past radiation image Q of the same patient ID as the diagnostic target radiation image P, which has been captured in the past, from the image storage server 2 (S 2 ).
  • the temporal difference image generation section 32 compares the shape of the organ of the chest appearing on the diagnostic target radiation image P with the shape of the organ appearing on the past radiation image Q (S 4 ). When it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image P matches the shape of the organ appearing on the past radiation image Q (S 5 YES), the temporal difference image generation section 32 generates a temporal difference image by performing differential processing between the diagnostic target radiation image P and the past radiation image Q, and sets the temporal difference image as a diagnostic auxiliary image (S 6 ).
  • the size of the chest and the shape of the organ in the diagnostic target radiation image P are compared with the size of the chest and the shape of the organ in a normal radiation image (S 7 ). From the normal radiation images stored in the case image storage unit 21 that are determined to almost match the diagnostic target radiation image P by this comparison, an image that best matches the diagnostic target radiation image P is searched for as the similar case image R.
  • the similar case image R is found (S 8 YES)
  • a similar difference image is generated by performing differential processing between the diagnostic target radiation image P and the similar case image R (S 9 ), and the similar difference image is set as the diagnostic auxiliary image S (S 9 ).
  • the generated diagnostic auxiliary image is a temporal difference image or a similar difference image or a bone-suppressed image
  • contrast conversion processing is performed by the contrast conversion section 37 (S 11 ).
  • a diagnostic auxiliary image after the contrast conversion processing is displayed on the display device by the display control section 36 (S 12 ).
  • the diagnostic auxiliary image as shown in FIG. 7 , whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image is displayed below the diagnostic auxiliary image S.
  • a temporal difference image is generated and set as a diagnostic auxiliary image only when the projected images of the diagnostic target radiation image and the past radiation image almost match each other.
  • a past image is not present or when the projected images of the diagnostic target radiation image and the past radiation image do not match each other even if a past radiation image is present, a similar case image is searched for to generate a similar difference image, and the similar difference image is set as a diagnostic auxiliary image.
  • the similar difference image is not present either, a bone-suppressed image is generated and set as a diagnostic auxiliary image.
  • FIG. 8 is a block diagram showing a diagnostic auxiliary image generation processing unit in the second embodiment.
  • the diagnostic auxiliary image generation processing unit in the embodiment of the invention includes a diagnostic target image storage section 30 , a past image search section 31 , a temporal difference image generation section 32 , a bone-suppressed image generation section 35 , a display control section 36 , and a contrast conversion section 37 .
  • the chest of the subject to be diagnosed is imaged using a simple X-ray imaging apparatus 1 .
  • Supplementary information is added to the captured diagnostic target radiation image P, and the result is transmitted to the image processing workstation 3 .
  • the image processing workstation 3 stores the received diagnostic target radiation image P in the diagnostic target image storage section 30 (S 1 ).
  • the past image search section 31 searches for the past radiation image Q of the same patient ID as the diagnostic target radiation image P, which has been captured in the past, from the image storage server 2 (S 2 ).
  • the temporal difference image generation section 32 compares the shape of the organ of the chest appearing on the diagnostic target radiation image P with the shape of the organ appearing on the past radiation image Q (S 4 ). Only when it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image P matches the shape of the organ appearing on the past radiation image Q (S 5 YES), the temporal difference image generation section 32 generates a temporal difference image by performing differential processing between the diagnostic target radiation image P and the past radiation image Q, and sets the temporal difference image as a diagnostic auxiliary image (S 6 ).
  • the generated diagnostic auxiliary image is a temporal difference image or a bone-suppressed image
  • contrast conversion processing is performed by the contrast conversion section 37 (S 11 ).
  • a diagnostic auxiliary image after the contrast conversion processing is displayed on the display device by the display control section 36 (S 12 ).
  • the case image storage unit 21 that stores normal radiation images which are obtained by imaging the chests of a number of subjects and in which no abnormal shade appears.
  • a bone-suppressed image may be generated from the diagnostic target radiation image.
  • a diagnostic auxiliary image is generated without preparing the case image storage unit 21 , it is possible to improve the diagnostic accuracy.
  • a diagnostic auxiliary image generation apparatus according to a third embodiment will be described.
  • a case will be described in which a bone-suppressed image is not generated.
  • the same components as in the first and second embodiments are denoted by the same reference numerals, and the detailed explanation thereof will be omitted.
  • FIG. 10 is a block diagram showing a diagnostic auxiliary image generation processing unit in the third embodiment.
  • the diagnostic auxiliary image generation processing unit in the embodiment of the invention includes a diagnostic target image storage section 30 , a past image search section 31 , a temporal difference image generation section 32 , a similar image search section 33 , a similar difference image generation section 34 , a display control section 36 , and a contrast conversion section 37 A.
  • a case image storage unit 21 is provided in the image storage server 2 , and the diagnostic auxiliary image generation processing unit of the image processing workstation 3 and the case image storage unit 21 function as an auxiliary image generation apparatus of the invention.
  • step S 10 in the flowchart of FIG. 6 is not performed.
  • the diagnostic auxiliary image S is only a temporal difference image or a similar difference image
  • the contrast conversion section 37 A performs only processing for converting the contrast by increasing all the pixel values two or three times.
  • the invention is not limited to the present embodiment, and some or all of the components of the diagnostic auxiliary image generation apparatus may be formed by one computer, or may be formed by one or more computers, servers, and storage devices that are connected to each other through a network.

Abstract

In order to assist the interpretation of a radiation image in which an abnormality appears, the invention provides a diagnostic auxiliary image generation apparatus, a diagnostic auxiliary image generation method, and a non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program for generating a diagnostic auxiliary image. In a case where a past radiation image is present, a temporal difference image generation unit generates and sets a temporal difference image as a diagnostic auxiliary image only in a case where the projected images of a diagnostic target radiation image and the past radiation image match each other. In a case where a past radiation image is not present or the projected images of a diagnostic target radiation image and a past radiation image do not match each other, a bone-suppressed image generation unit generates and sets a bone-suppressed image as a diagnostic auxiliary image.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2015-057329, filed on Mar. 20, 2015. Each of the above application(s) is hereby expressly incorporated by reference, in its entirety, into the present application.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a diagnostic auxiliary image generation apparatus, a diagnostic auxiliary image generation method, and a non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program for generating an image to assist the interpretation of a radiation image.
  • 2. Description of the Related Art
  • In the case of front chest imaging that is the most common in the inspection using a radiation image, interpretation is difficult since a wide range of diseases are the target (for example, refer to Complete Medical Examination and Determination Guidelines. “Chest X-ray Screening Decision Manual” issued by Japan Society of Ningen Dock), and the front chest imaging is known as a field where computer aided detection (CAD) to assist interpretation using a computer is effective. Disease type and shade pattern correspondence is not easy even to an experienced doctor. Accordingly, an interpretation method of specifying a changed portion as a lesion through temporal comparison between a normal image obtained by imaging a patient in the past and a current image is effective.
  • However, an image obtained by imaging the patient in the past is not always present. Therefore, a method has been proposed in which an image of a normal example having a normal structure, which is similar to a front chest image of a certain patient, is selected from front chest images of other patients and a similar difference image is generated by subtracting the selected image from the front chest image of the patient (for example, JP2005-269214A or “Development of Computerized System for Selection of Similar Images from Different Patients for Image Subtraction of Chest Radiographs”, Oda Nobuhiro et al., Biomedical Engineering Vol. 44 (2006) No. 3 pp. 435-444). In addition, when a tomographic image obtained by imaging the same patient with a CT apparatus is present, it is also possible to generate a two-dimensional chest captured image from the tomographic image (for example, JP2007-14435A).
  • Alternatively, attempts to see the disease easily by estimating a bone component from one image obtained by imaging the patient and removing the bone have been performed. For example, in the method disclosed in U.S. Pat. No. 7,545,965B, normal bones are learned in advance as a teacher image, bones of the input captured image are recognized, and a bone image is estimated and is subtracted from the original chest image. Therefore, since the shade of ribs overlapping the lung field is not visible, a lesion overlapping the ribs can be easily observed.
  • SUMMARY OF THE INVENTION
  • As described above, as an application to assist temporal comparison, a temporal difference image is known. In this method, however, an image captured in the past is required. In addition, if a current image of a diagnostic target and an image captured in the past are not captured in the close positioning, image subtraction occurs in a state in which the ribs, pulmonary vessels, or the like are shifted from each other. As a result, artifacts appear in the difference image, and these are obstacles to specifying a lesion.
  • Therefore, in order to solve the problem, a method of building a large-scale image database of only subjects determined to include no disease, searching for and selecting a case of a similar lung field shape, and obtaining a difference image (referred to as a similar difference image) using a selected image instead of a past image has been proposed in “Development of Computerized System for Selection of Similar Images from Different Patients for Image Subtraction of Chest Radiographs”. Oda Nobuhiro et al., Biomedical Engineering Vol. 44 (2006) No. 3 pp. 435-444. This method is effective when there is no image captured in the past. However, there are many artifacts due to pulmonary vessels, heart, and the like having large individual differences in a difference image between an image of a diagnostic target and an image having a lung field shape similar thereto. For this reason, it has been reported that about 30% of all images are not appropriate as auxiliary images for interpretation diagnosis.
  • In addition, U.S. Pat. No. 7,545,965B discloses a method of estimating a bone component from one chest image in order to generate an auxiliary image for interpretation diagnosis. In this method, no past image is required, but it is difficult to accurately extract only the bone component from the chest image having a large number of shape patterns. In general, in a temporal difference image, there is an effect of increasing the interpretation efficiency by clearly visualizing a lesion by the contrast enhancement of the difference image. However, since the image obtained by subtracting the bone component is an image that is mainly configured to include soft tissues, the contrast enhancement is limited. In particular, in the case of a lung disease, a slight change in concentration may have an effect on a wide range. If the contrast of the soft tissue including the lung field is emphasized, an observation area becomes narrow. As a result, it may be difficult to understand the concentration change due to the disease.
  • Therefore, in order to solve the aforementioned problems, it is an object of the invention to provide a diagnostic auxiliary image generation apparatus, a diagnostic auxiliary image generation method, and a non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program for generating an image to assist the interpretation of a radiation image that efficiently generates an optimal diagnostic auxiliary image for interpretation.
  • A diagnostic auxiliary image generation apparatus of the invention includes: a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other or in a case where the past radiation image is not found by the past image search unit; and a display control unit that displays the diagnostic auxiliary image on a display device.
  • A diagnostic auxiliary image generation method of the invention is a diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus including the past image search unit, the temporal difference image generation unit, the bone-suppressed image generation unit, and the display control unit. The diagnostic auxiliary image generation method includes: a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a bone-suppressed image generation step in which the bone-suppressed image generation unit estimates the bone component from the diagnostic target radiation image and generates the bone-suppressed image as the diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other through the comparison or in the case where the past radiation image is not found by the past image search unit; and a display step in which the display control unit displays the diagnostic auxiliary image on the display device.
  • A non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program of the invention causes a computer to function as the diagnostic auxiliary image generation apparatus including: the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; the bone-suppressed image generation unit that estimates the bone component from the diagnostic target radiation image and generates the bone-suppressed image as the diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other through the comparison or in the case where the past radiation image is not found by the past image search unit; and the display control unit that displays the diagnostic auxiliary image on the display device.
  • In addition, a diagnostic auxiliary image generation apparatus of the invention includes: a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared; a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a similar image search unit that searches for the normal radiation image, which is determined to have the same organ shape by comparing a shape of an organ of a chest appearing on the normal radiation image with a shape of the organ appearing on the diagnostic target radiation image, as a similar case image from the case image storage unit in a case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other by the temporal difference image generation unit or in a case where the past radiation image is not found by the past image search unit; a similar difference image generation unit that generates a similar difference image as a diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in a case where the similar case image is found by the similar image search unit; and a display control unit that displays the diagnostic auxiliary image on a display device.
  • In addition, a diagnostic auxiliary image generation method of the invention is a diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus including the past image search unit, the temporal difference image generation unit, the similar image search unit, the similar difference image generation unit, the display control unit, and the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared. The diagnostic auxiliary image generation method includes: a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; a similar image search step in which the similar image search unit searches for the normal radiation image, which is determined to have the same organ shape by comparing the shape of the organ of the chest appearing on the normal radiation image with the shape of the organ appearing on the diagnostic target radiation image, as the similar case image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other in the temporal difference image generation unit or in the case where the past radiation image is not found by the past image search unit; a similar difference image generation step in which the similar difference image generation unit generates the similar difference image as the diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in the case where the similar case image is found by the similar image search unit; and a display step in which the display control unit displays the diagnostic auxiliary image on the display device.
  • In addition, a non-transitory computer readable recording medium recorded with the diagnostic auxiliary image generation program of the invention causes a computer to function as the diagnostic auxiliary image generation apparatus including: the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed; the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared; the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs; the similar image search unit that searches for the normal radiation image, which is determined to have the same organ shape by comparing the shape of the organ of the chest appearing on the normal radiation image with the shape of the organ appearing on the diagnostic target radiation image, as the similar case image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other by the temporal difference image generation unit or in the case where the past radiation image is not found by the past image search unit; the similar difference image generation unit that generates the similar difference image as the diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in the case where the similar case image is found by the similar image search unit; and the display control unit that displays the diagnostic auxiliary image on the display device.
  • “Comparing the shape of the organ of the chest appearing on the diagnostic target radiation image with the shape of the organ appearing on the past radiation image” refers to comparing the same organs appearing in the diagnostic target radiation image and the past radiation image. For example, this refers to comparing the ribs between the diagnostic target radiation image and the past radiation image and comparing the lung fields between the diagnostic target radiation image and the past radiation image. Examples of the organ include ribs, heart, blood vessels, bronchi, and a lung field.
  • “Determining that the shapes of the organs match each other” may refer to determining that the shapes of the organs to be compared with each other approximately match each other as well as determining that the shapes of the organs completely match each other. For example, the degree of matching between the shapes of the organs overlapping each other in the images may be calculated using a method determined in advance, and it may be determined whether or not the shapes of the organs match each other according to whether or not the calculated degree of matching is greater than a threshold value or less than the threshold value. “Determining that the shapes of the organs do not match each other” refers to a case in which it is not determined that the shapes of the organs match each other.
  • In addition, the “subject to be diagnosed” is not included in the “subject to be compared”.
  • The display control unit may display the diagnostic auxiliary image distinguishably displaying whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
  • For the “distinguishable display”, which type of image among the temporal difference image, the similar difference image, and the bone-suppressed image the diagnostic auxiliary image is may be displayed in characters, or may be displayed using specific figures, colors, or the like matched with various types in advance. Any display may be applied as long as it is displayed on the display device so that it can be recognized which image the currently displayed diagnostic auxiliary image is.
  • The diagnostic auxiliary image generation apparatus of the invention may further include: a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is not found by the past image search unit and the similar case image is not found by the similar image search unit. The display control unit may display the diagnostic auxiliary image generated by the bone-suppressed image generation unit on the display device.
  • A contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image may be provided, and the display control unit may display a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit. It is preferable that the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
  • It is preferable that the contrast conversion section performs contrast conversion processing for increasing all pixel values multiple times in a case where the diagnostic auxiliary image is the temporal difference image or the similar difference image and performs contrast conversion processing for emphasizing pixel values in a low frequency band lower than a specific frequency in a case where the diagnostic auxiliary image is the bone-suppressed image.
  • In addition, it is preferable that the specific frequency is determined in advance according to a size of a blood vessel included in the chest.
  • The temporal difference image generation unit may determine whether or not the shapes of the organs match each other by determining whether or not lung field shapes and/or rib shapes match each other. That is, the temporal difference image generation unit may determine whether or not the shapes of the organs match each other by determining whether or not either lung field shapes or rib shapes match each other.
  • Preferably, the similar image search unit includes: a first selection section that selects normal radiation images in which the subject to be compared with a subject to be diagnosed has the same sex and age range as the subject to be diagnosed; a second selection section that selects, from the normal radiation images selected by the first selection section, normal radiation images including lung field shapes that match a lung field shape of the diagnostic target radiation image; a third selection section that selects, from the normal radiation images selected by the second selection section, normal radiation images including positions of bones overlapping a lung field that matches positions of bones overlapping a lung field in the diagnostic target radiation image; and a fourth selection section that selects, from the normal radiation images selected by the third selection section, a normal radiation image including a soft structure similar to a soft structure of the diagnostic target radiation image. Preferably, the similar image search unit selects the normal radiation image having the organ shape that matches the organ shape in the diagnostic target radiation image using the first to fourth selection sections, and the similar image search unit further includes a specification section that specifies the normal radiation image selected by the fourth selection section as a similar case image.
  • The bone shape may be a shape of a rib or a clavicle.
  • The soft structure may be a shape of a heart or a pulmonary vessel.
  • According to the invention, in a case where a past radiation image is present, a temporal difference image is generated and set as a diagnostic auxiliary image only in a case where the shapes of the organs of the chests of the diagnostic target radiation image and the past radiation image match each other. In a case where a past image is not present or in a case where the shapes of the organs of the chests of the diagnostic target radiation image and the past radiation image do not match each other, a bone-suppressed image is generated and set as a diagnostic auxiliary image. Thus, it is possible to improve the diagnostic accuracy by generating a diagnostic auxiliary image for any diagnostic target radiation image.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing the schematic configuration of an interpretation diagnostic system to which a diagnostic auxiliary image generation apparatus according to a first embodiment of the invention is applied.
  • FIG. 2 is a functional block diagram of the diagnostic auxiliary image generation apparatus according to the first embodiment of the invention.
  • FIG. 3 is a diagram for explaining a method of calculating the similarity between pulmonary vessels.
  • FIG. 4 is a diagram for explaining the tissue of the bone and the profile of the concentration appearing in the shape of a radiation image.
  • FIG. 5 is a detailed functional block diagram of a similar image search section.
  • FIG. 6 is a flowchart illustrating the operation of the diagnostic auxiliary image generation apparatus according to the first embodiment.
  • FIG. 7 is an example in which a diagnostic auxiliary image is displayed together with its kind.
  • FIG. 8 is a functional block diagram showing a diagnostic auxiliary image generation processing unit in a second embodiment of the invention.
  • FIG. 9 is a flowchart illustrating the operation of a diagnostic auxiliary image generation apparatus according to the second embodiment of the invention.
  • FIG. 10 is a functional block diagram showing a diagnostic auxiliary image generation processing unit in a third embodiment.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A diagnostic auxiliary image generation apparatus according to a first embodiment of the invention will be described with reference to the accompanying diagrams.
  • FIG. 1 is a diagram of the hardware configuration schematically showing the interpretation diagnostic system. As shown in FIG. 1, in this system, a modality 1, an image storage server 2, and an image processing workstation 3 are communicably connected to each other through a network 4.
  • An apparatus that generates image data showing a diagnosis target part of a patient by imaging the part, adds supplementary information defined by the digital imaging and communications in medicine (DICOM) standards to the image data, and outputs the result as image information is included in the modality 1. Specifically, the modality 1 will be described below as a simple X-ray imaging apparatus, for example.
  • The image storage server (radiation image storage unit) 2 is a computer that stores image data acquired in various modalities in an image database and manages the image data, and includes a large-capacity external storage device or database management software (for example, object relational database (ORDB) management software). Image data that is present in each medical institution and is obtained by imaging a number of patients in various modalities is stored in the image storage server 2. In the present embodiment, a case will be described in which the modality is a simple X-ray imaging apparatus and the image data is a simple X-ray image.
  • The image processing workstation 3 is a computer that performs image processing on the image data obtained from the modality 1 or the image storage server 2 in response to a request from the user, and has a known hardware configuration including a central processing unit (CPU), a main storage device, an auxiliary storage device, an input and output interface, a communication interface, an input device (a mouse, a keyboard, and the like), a display device (display monitor), and a data bus. A known operating system or the like is installed in the image processing workstation 3. Diagnostic auxiliary image generation processing of the invention is performed by the image processing workstation 3, and this processing is realized by executing an installed program from the recording medium, such as a CD-ROM. In addition, the program may be installed after being downloaded from the storage device of a server connected through a network, such as the Internet.
  • FIG. 2 is a block diagram showing a diagnostic auxiliary image generation processing unit in the first embodiment of the invention among the functions of the image processing workstation 3. As shown in FIG. 2, the diagnostic auxiliary image generation processing unit in the first embodiment of the invention includes a diagnostic target image storage section 30, a past image search section 31, a temporal difference image generation section 32, a similar image search section 33, a similar difference image generation section 34, a bone-suppressed image generation section 35, a display control section 36, and a contrast conversion section 37. A case image storage unit 21 is provided in the image storage server 2, and the diagnostic auxiliary image generation processing unit of the image processing workstation 3 and the case image storage unit 21 function as an auxiliary image generation apparatus of the invention.
  • A diagnostic target radiation image P of a subject to be diagnosed is stored in the diagnostic target image storage section 30.
  • The past image search section 31 searches for a past radiation image Q, which has been obtained by imaging a subject (patient) to be diagnosed with a simple X-ray imaging apparatus, from the image storage server 2 before the imaging time of a diagnostic target radiation image at which the same subject has been imaged by the modality 1. Specifically, the past image search section 31 searches for a radiation image, which has the same patient ID and the same imaging part and has been captured before the imaging time of the diagnostic target radiation image P, based on the supplementary information defined by the DICOM standards. Hereinafter, a case in which a diagnostic target part is a chest will be described.
  • When imaging the chest of a subject to be diagnosed, the subject is irradiated for the imaging. However, depending on a direction in which the subject is irradiated, that is, depending on a projection direction in which the chest is projected, the shape of the lung field appearing on the radiation image, the shape of the ribs or clavicles appearing on the radiation image, or the traveling direction of the blood vessels of a soft portion appearing on the radiation image is different. Even if the same subject is imaged, the projection direction when capturing the diagnostic target radiation image P is different from the projection direction when the past radiation image Q was captured, in many cases, depending on the standing position of the subject with respect to the modality 1 and/or the posture of the subject. When the projection directions are greatly different, the shape of the lung field of the chest appearing on the radiation image, the shape of the ribs or clavicles appearing on the radiation image, or the traveling direction of the blood vessels of a soft portion appearing on the radiation image is different. In addition, when the breathing state at the time of imaging is different, the shape of the lung field is different. The difference between the projected images of the organ appearing on the radiation images appears as an artifact when generating a difference image.
  • Therefore, the temporal difference image generation section 32 compares the shape of the organ of the past radiation image Q, which has been found by the past image search section 31, with the shape of the organ of the projected image appearing on the diagnostic target radiation image P to determine whether or not the two projected images match each other. Specifically, in order to determine whether or not the lung field shapes and/or the rib shapes of projected images appearing on the past radiation image Q and the diagnostic target radiation image P, the temporal difference image generation section 32 calculates the degree of matching between the lung field shapes and/or the rib shapes. Then, when the degree of matching is equal to or greater than a predetermined threshold value, the temporal difference image generation section 32 determines that the lung field shapes and/or the rib shapes match each other.
  • For example, in order to calculate the degree of matching between the lung field shapes, a lung field region is first detected from the diagnostic target radiation image P and the past radiation image Q. For the extraction of a lung field region, a binary image for a radiation image obtained by imaging the chest is generated by performing binarization with a predetermined threshold value as a boundary, a region in contact with the image end is set as a region other than the lung field by performing labeling on the generated binary image, and a region that is not in contact with the image end is extracted as a lung field region (for the details of the extraction of the lung field region, refer to JP1999-151232A (JP-H11-151232A) and the like). For example, it is possible to superimpose lung field regions of the diagnostic target radiation image P and the past radiation image Q and determine the degree of matching from the ratio of the area of a product set region of the lung field regions to a sum set region of the lung field regions. Alternatively, the degree of matching between the lung field shapes may be obtained by detecting the lung field contour in each image using the density pattern characteristic of pixels (for the details of the detection of the lung field contour, refer to JP1988-240832A (JP-S63-240832A) and the like).
  • Since the difference between the lung field shapes can be determined even in quite small images, it is possible to reduce the determination cost by using the reduced images of the diagnostic target radiation image P and the past radiation image Q when extracting the lung field shapes. The degree of reduction may be determined according to the determination accuracy to be required.
  • In addition, the degree of matching between the rib shapes is calculated by extracting rib regions from the diagnostic target radiation image P and the past radiation image Q. For example, a rib region is extracted from the edge of the contour of the ribs appearing in the lung field in a radiation image and the pattern of the pixel value of the radiation having passed through the ribs (for details, refer to US2013/0108135A1 and the like). Similar to the degree of matching between the lung field shapes, the degree of matching between the ribs can be determined from the area ratio of a product set region of the rib regions to a sum set region of the rib regions.
  • In order to determine whether or not the shapes of the organs of the diagnostic target radiation image P and the past radiation image Q match each other, a method of determining whether or not the shapes of the organs match each other by extracting the lung field shapes to determine whether or not the lung field shapes match each other and then determining that the shapes of the organs do not match each other without determining the matching between the rib shapes when the lung field shapes do not match each other and further determining whether or not the rib shapes match each other when the lung field shapes match each other may be used since the accuracy is high if the degree of matching between the rib shapes is determined but the high calculation cost is required for the extraction of the rib shapes. If there is no problem in calculation cost, determination using only the rib shapes is also possible.
  • As described above, the temporal difference image generation section 32 determines whether or not the projected images of the diagnostic target radiation image P and the past radiation image Q match each other from the degree of matching between the lung field shapes and the degree of matching between the rib shapes. When it is determined that the projected image of the chest appearing on the diagnostic target radiation image P approximately matches the projected image of the chest appearing on the past radiation image Q, the temporal difference image generation section 32 generates a temporal difference image between the past radiation image Q and the diagnostic target radiation image P as a diagnostic auxiliary image S. On the other hand, when the projected image of the past radiation image Q and the diagnostic target radiation image P do not match each other, a temporal difference image is not generated.
  • Normal radiation images, which are obtained by imaging the chests of a number of subjects (subjects to be compared) and in which no abnormal shade appears, are stored in the case image storage unit 21. Normal radiation images may be selected from the radiation images stored in the image storage server 2. The stored normal radiation images are radiation images obtained by imaging only subjects for which it is determined that there is no disease in the chests of the imaged subjects. It is preferable to store normal radiation images that are captured over the wide range of age groups so that images, which are obtained by imaging the lung fields of various sizes, are included. Supplementary information defined by the DICOM standards is added to the normal radiation image, and the sex and age of each subject, imaged modalities, imaging conditions, and the like are included in the supplementary information.
  • When it is determined that the projected images of the diagnostic target radiation image P and the past radiation image Q do not match each other even if the past radiation image Q of the patient to be diagnosed is found by the past image search section 31 or when the past radiation image Q is not found by the past image search section 31, the similar image search section 33 compares the size of the chest of each normal radiation image with the size of the chest of the diagnostic target radiation image P and compares the shape of the organ projected on each normal radiation image with the shape of the organ of the diagnostic target radiation image P, searches for a normal radiation image, which is determined to be almost the same by this comparison, from the case image storage unit 21, and sets the normal radiation image as a similar case image R.
  • As shown in FIG. 5, the similar image search section 33 includes a first selection section 331, a second selection section 332, a third selection section 333, a fourth selection section 334, and a specification section 335. In order to determine whether or not the sizes of the chests and the shapes of the organs are similar, the specification section 335 specifies a normal radiation image, which is the most similar to the diagnostic target radiation image P, as the similar case image R after selecting normal radiation images by the first selection section 331, the second selection section 332, the third selection section 333, and the fourth selection section 334.
  • First, the first selection section 331 selects a normal radiation image, in which a subject to be compared with a subject to be diagnosed has the same sex and age range as the subject to be diagnosed, based on the supplementary information. For example, in the case of a woman, a breast is reflected in the radiation image. That is, the way in which a breast is reflected differs depending on the sex, and the rib shape also differs depending on the sex. Therefore, a normal radiation image is selected from the matching of sex. In addition, the size of the rib cage significantly changes until the adult in accordance with the growth, and the shape or size of the lung or ribs changes greatly depending on the age range (any of neonates, infants, young children, children, and adults). Then, a normal radiation image is selected from the same age range.
  • Then, the second selection section 332 selects, from the normal radiation images selected by the first selection section 331, a normal radiation image including a lung field shape that matches the lung field shape appearing in the diagnostic target radiation image P. For the determination of the similarity between the lung field shapes, it is possible to use the above method described when comparing the projected images using the temporal difference image generation section 32.
  • Then, the third selection section 333 selects, from the normal radiation images selected by the second selection section 332, a normal radiation image having a positional relationship between the lung field and the bones overlapping the lung field that is similar to that in the diagnostic target radiation image P. In particular, since there are individual differences in the positional relationship between the lung and the bones, such as the ribs and/or clavicles overlapping the lung, a normal radiation image having a similar positional relationship is left as a candidate. For the determination of the similarity between the rib shapes or between the clavicle shapes, the degree of matching is calculated according to how much of the information of a high frequency band, which is higher than a predetermined band considered to include image components of the bone, match each other, and an image having a high degree of matching is selected. Specifically, an image of high frequency components higher than a predetermined band is generated, and the degree of matching is determined using any of the average of pixel value differences, cross-correlation, mutual information, and the like. Alternatively, it is also possible to use the method of extracting the shape of the bone that has been described when comparing the projected images using the temporal difference image generation section 32 for the determination of the similarity between the rib shapes or between the clavicle shapes.
  • Finally, the fourth selection section 334 selects, from the normal radiation images selected by the third selection section 333, a normal radiation image including a soft structure similar to the soft structure appearing in the diagnostic target radiation image P. In particular, since there are individual differences in the positional relationship between the lung and the heart and the pulmonary vessels that are soft structures, a normal radiation image having a similar positional relationship is left as a candidate. The pulmonary vessels are extracted from the blood vessel likeness pixel value, but the individual difference is very large in the shape of the pulmonary vessels. Since the blood vessels are divided along the bronchus from the hilar portion, the similarity is calculated with an emphasis on the hilar portion. For example, as shown in FIG. 3, the position of the hilar portion is detected first, and the weight in the calculation of the degree of matching is reduced as the position moves from the hilar portion to the peripheral part of the bronchus. Alternatively, the degree of matching between the shapes of recognized organs, such as the heart, is determined by measuring the similarity of the pixel values using any of the average of pixel value differences, cross-correlation, mutual information, and the like and comparing the similarity with a threshold value.
  • The specification section 335 specifies a normal radiation image narrowed down by the four selection sections described above most similar to the diagnostic target radiation image P, as the similar case image R.
  • When the similar case image R is found by the similar image search section 33, the similar difference image generation section 34 generates a similar difference image as the diagnostic auxiliary image S by performing differential processing between the found similar case image R and the diagnostic target radiation image P.
  • When the past radiation image Q is not found by the past image search section 31 and the similar case image R is not found by the similar image search section 33, the bone-suppressed image generation section 35 estimates bone components from the diagnostic target radiation image P and generates a bone-suppressed image as the diagnostic auxiliary image S by removing the estimated bone components from the diagnostic target radiation image P. For the estimation of bone components, a feature quantity obtained by quantifying the characteristics of the bone is learned in advance using the bone of a normal example as a teacher image. Then, based on the bone likeness for each pixel in the diagnostic target radiation image P, the pixel value of the bone component for each pixel is estimated. A bone appears as a low-concentration portion since the X-ray absorption is large compared with the surrounding tissue, and the imaging portion of the bone appears as a region surrounded by the edge structure. As shown in the upper portion of FIG. 4, a boundary portion of the bone with respect to the surrounding tissue is covered with a cortical bone (white portion), and is drawn with a low concentration. In addition, the center of the bone has a higher concentration than the cortical bone since a portion in which the X-ray absorption is slightly small, such as bone marrow (hatched portion), is present. For example, when the bone is irradiated with X-rays from the direction of V, a profile of a pixel value that is determined to some extent according to the part of the bone is obtained, as shown in a lower portion of FIG. 4. A bone-suppressed image in which bone components are suppressed can be generated by subtracting the estimated bone components from the inspection image according to the feature of the profile (for example, refer to US2013/0108135A1 and the like). This bone-suppressed image is set as the diagnostic auxiliary image S.
  • The abnormal shade appearing in the chest radiation image is light shade in many cases. In addition, since the difference between the shade, which appears in a temporal difference image, a similar difference image, or a bone-suppressed image, and the surrounding image is small, the shade cannot be understood well in many cases.
  • Therefore, the contrast conversion section 37 performs contrast conversion processing on the diagnostic auxiliary image S. In the temporal difference image or the similar difference image, not only bones but also blood vessels and organs, such as the lung and the heart, disappear by the difference, and only a portion where there has been a change, such as a tumor, remains. However, in the bone-suppressed image, blood vessels and organs, such as the lung and the heart, other than bones remain without disappearing. Therefore, the contrast conversion section 37 performs different contrast conversion processing according to whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image.
  • Specifically, when the diagnostic auxiliary image S is a temporal difference image or a similar difference image, the contrast conversion section 37 performs contrast conversion processing for emphasis by increasing all the pixel values multiple times (for example, two or three times), for example. When the diagnostic auxiliary image S is a bone-suppressed image, the contrast conversion section 37 performs contrast conversion processing for emphasizing the pixel values in a low frequency band lower than a specific frequency. In the temporal difference image, bones, blood vessels, and organs, such as the lung and the heart, disappear. Accordingly, it is possible to emphasize the light shade just by enlarging all images two or three times. On the other hand, when the diagnostic auxiliary image S is a bone-suppressed image, bones disappear, but blood vessels remain. Blood vessels are scattered in the lung field, and blood vessels other than blood vessels near the hilar portion appear as the thin and light shade. In order to suppress the shade of the blood vessels, contrast conversion processing for emphasizing the pixel values of the low frequency band lower than a specific frequency is performed. The specific frequency is determined so that the shade, which is round and has a certain size (for example, 1 cm or more) like a tumor, can be emphasized without emphasizing the thin and light shade appearing in a place slightly away from the hilar portion.
  • The display control section 36 displays the diagnostic auxiliary image S on a display device. When displaying the diagnostic auxiliary image S on the display device, whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image is displayed near the diagnostic auxiliary image S (refer to FIG. 7). The diagnostic auxiliary image S is used to assist the diagnosis, and the final diagnosis is performed by interpreting the original diagnostic target radiation image P. Understanding what kind of image the diagnostic auxiliary image S is becomes important in performing interpretation. Whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image may be displayed so as to be distinguishable, or a specific mark may be displayed. Although the diagnostic auxiliary image S may be displayed on the display device as it is, it is desirable to display the processed diagnostic auxiliary image S after contrast conversion by the contrast conversion section 37 on the display device.
  • Next, the operation of the diagnostic auxiliary image generation apparatus according to the first embodiment will be described with reference to the flowchart of FIG. 6.
  • The chest of the subject to be diagnosed is imaged using a simple X-ray imaging apparatus 1. Supplementary information according to the DICOM standards is added to the captured diagnostic target radiation image P, and the result is transmitted to the image processing workstation 3. The image processing workstation 3 stores the received diagnostic target radiation image P in the diagnostic target image storage section 30 (S1).
  • The past image search section 31 searches for the past radiation image Q of the same patient ID as the diagnostic target radiation image P, which has been captured in the past, from the image storage server 2 (S2).
  • When the past radiation image Q is found (S3 YES), the temporal difference image generation section 32 compares the shape of the organ of the chest appearing on the diagnostic target radiation image P with the shape of the organ appearing on the past radiation image Q (S4). When it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image P matches the shape of the organ appearing on the past radiation image Q (S5 YES), the temporal difference image generation section 32 generates a temporal difference image by performing differential processing between the diagnostic target radiation image P and the past radiation image Q, and sets the temporal difference image as a diagnostic auxiliary image (S6).
  • When the past radiation image Q is not found (S3 NO) or when it is determined that the shape of the organ in the diagnostic target radiation image P does not match the shape of the organ in the past radiation image Q even if the past radiation image Q is found (S5 NO), the size of the chest and the shape of the organ in the diagnostic target radiation image P are compared with the size of the chest and the shape of the organ in a normal radiation image (S7). From the normal radiation images stored in the case image storage unit 21 that are determined to almost match the diagnostic target radiation image P by this comparison, an image that best matches the diagnostic target radiation image P is searched for as the similar case image R. When the similar case image R is found (S8 YES), a similar difference image is generated by performing differential processing between the diagnostic target radiation image P and the similar case image R (S9), and the similar difference image is set as the diagnostic auxiliary image S (S9).
  • When the past radiation image Q is not found (S3 NO) and the similar case image R suitable for generating a difference image is not found from the normal radiation images (S8 NO), a bone-suppressed image is generated from the diagnostic target radiation image P (S10), and the bone-suppressed image is set as the diagnostic auxiliary image S.
  • Then, according to whether the generated diagnostic auxiliary image is a temporal difference image or a similar difference image or a bone-suppressed image, contrast conversion processing is performed by the contrast conversion section 37 (S11). A diagnostic auxiliary image after the contrast conversion processing is displayed on the display device by the display control section 36 (S12). When displaying the diagnostic auxiliary image, as shown in FIG. 7, whether the diagnostic auxiliary image S is a temporal difference image or a similar difference image or a bone-suppressed image is displayed below the diagnostic auxiliary image S.
  • As described above, when a past radiation image is present, a temporal difference image is generated and set as a diagnostic auxiliary image only when the projected images of the diagnostic target radiation image and the past radiation image almost match each other. When a past image is not present or when the projected images of the diagnostic target radiation image and the past radiation image do not match each other even if a past radiation image is present, a similar case image is searched for to generate a similar difference image, and the similar difference image is set as a diagnostic auxiliary image. When the similar difference image is not present either, a bone-suppressed image is generated and set as a diagnostic auxiliary image. Thus, it is possible to improve the diagnostic accuracy by generating a diagnostic auxiliary image for any diagnostic target radiation image.
  • Next, a diagnostic auxiliary image generation apparatus according to a second embodiment will be described. In the second embodiment, a case will be described in which a similar difference image is not generated. The same components as in the first embodiment are denoted by the same reference numerals, and the detailed explanation thereof will be omitted.
  • FIG. 8 is a block diagram showing a diagnostic auxiliary image generation processing unit in the second embodiment. As shown in FIG. 8, the diagnostic auxiliary image generation processing unit in the embodiment of the invention includes a diagnostic target image storage section 30, a past image search section 31, a temporal difference image generation section 32, a bone-suppressed image generation section 35, a display control section 36, and a contrast conversion section 37.
  • Next, the operation of the diagnostic auxiliary image generation apparatus according to the second embodiment will be described with reference to the flowchart of FIG. 9.
  • The chest of the subject to be diagnosed is imaged using a simple X-ray imaging apparatus 1. Supplementary information is added to the captured diagnostic target radiation image P, and the result is transmitted to the image processing workstation 3. The image processing workstation 3 stores the received diagnostic target radiation image P in the diagnostic target image storage section 30 (S1).
  • The past image search section 31 searches for the past radiation image Q of the same patient ID as the diagnostic target radiation image P, which has been captured in the past, from the image storage server 2 (S2).
  • When the past radiation image Q is found (S3 YES), the temporal difference image generation section 32 compares the shape of the organ of the chest appearing on the diagnostic target radiation image P with the shape of the organ appearing on the past radiation image Q (S4). Only when it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image P matches the shape of the organ appearing on the past radiation image Q (S5 YES), the temporal difference image generation section 32 generates a temporal difference image by performing differential processing between the diagnostic target radiation image P and the past radiation image Q, and sets the temporal difference image as a diagnostic auxiliary image (S6).
  • When the past radiation image Q is not found (S3 NO) or when it is determined that the shapes of the organs do not match each other even if the past radiation image Q is found (S5 NO), a bone-suppressed image is generated from the diagnostic target radiation image P (S10), and is set as the diagnostic auxiliary image S.
  • Then, according to whether the generated diagnostic auxiliary image is a temporal difference image or a bone-suppressed image, contrast conversion processing is performed by the contrast conversion section 37 (S11). A diagnostic auxiliary image after the contrast conversion processing is displayed on the display device by the display control section 36 (S12). When displaying the diagnostic auxiliary image, as shown in FIG. 7, whether the diagnostic auxiliary image S is a temporal difference image or a bone-suppressed image is displayed next to the diagnostic auxiliary image S.
  • In order to generate a similar difference image as in the first embodiment, it is necessary to prepare the case image storage unit 21 that stores normal radiation images which are obtained by imaging the chests of a number of subjects and in which no abnormal shade appears. However, it is necessary to store a large number of normal radiation images in order to correspond to many types of subjects. When a past radiation image cannot be found, a bone-suppressed image may be generated from the diagnostic target radiation image. In this case, since a diagnostic auxiliary image is generated without preparing the case image storage unit 21, it is possible to improve the diagnostic accuracy.
  • Next, a diagnostic auxiliary image generation apparatus according to a third embodiment will be described. In the third embodiment, a case will be described in which a bone-suppressed image is not generated. The same components as in the first and second embodiments are denoted by the same reference numerals, and the detailed explanation thereof will be omitted.
  • FIG. 10 is a block diagram showing a diagnostic auxiliary image generation processing unit in the third embodiment. As shown in FIG. 10, the diagnostic auxiliary image generation processing unit in the embodiment of the invention includes a diagnostic target image storage section 30, a past image search section 31, a temporal difference image generation section 32, a similar image search section 33, a similar difference image generation section 34, a display control section 36, and a contrast conversion section 37A. A case image storage unit 21 is provided in the image storage server 2, and the diagnostic auxiliary image generation processing unit of the image processing workstation 3 and the case image storage unit 21 function as an auxiliary image generation apparatus of the invention.
  • Although the operation flow of the diagnostic auxiliary image generation apparatus according to the third embodiment is almost the same as the operation flow in the first embodiment, step S10 in the flowchart of FIG. 6 is not performed. In addition, since the diagnostic auxiliary image S is only a temporal difference image or a similar difference image, the contrast conversion section 37A performs only processing for converting the contrast by increasing all the pixel values two or three times.
  • When the case image storage unit 21 that stores normal radiation images, which are obtained by imaging the chests of a number of subjects and in which no abnormal shade appears, is prepared, a similar difference image is generated and set as a diagnostic auxiliary image even if a past radiation image cannot be found. Therefore, it is possible to improve the diagnostic accuracy.
  • The invention is not limited to the present embodiment, and some or all of the components of the diagnostic auxiliary image generation apparatus may be formed by one computer, or may be formed by one or more computers, servers, and storage devices that are connected to each other through a network.

Claims (20)

What is claimed is:
1. A diagnostic auxiliary image generation apparatus, comprising:
a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other or in a case where the past radiation image is not found by the past image search unit; and
a display control unit that displays the diagnostic auxiliary image on a display device.
2. The diagnostic auxiliary image generation apparatus according to claim 1,
wherein the display control unit displays the diagnostic auxiliary image distinguishably displaying whether the displayed diagnostic auxiliary image is the temporal difference image or the bone-suppressed image.
3. The diagnostic auxiliary image generation apparatus according to claim 1, further comprising:
a contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image,
wherein the display control unit displays a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit, and the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the bone-suppressed image.
4. The diagnostic auxiliary image generation apparatus according to claim 2, further comprising:
a contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image,
wherein the display control unit displays a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit, and the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the bone-suppressed image.
5. A diagnostic auxiliary image generation apparatus, comprising:
a past image search unit that searches for a past radiation image obtained by irradiating a chest of a subject to be diagnosed, from a radiation image storage unit that stores a plurality of radiation images, before an imaging time of a diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
a case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared;
a temporal difference image generation unit that generates a temporal difference image as a diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in a case where the past radiation image is found by the past image search unit and it is determined that a shape of an organ of a chest appearing on the diagnostic target radiation image matches a shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
a similar image search unit that searches for the normal radiation image, which is determined to have the same organ shape by comparing a shape of an organ of a chest appearing on the normal radiation image with a shape of the organ appearing on the diagnostic target radiation image, as a similar case image from the case image storage unit in a case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other by the temporal difference image generation unit or in a case where the past radiation image is not found by the past image search unit;
a similar difference image generation unit that generates a similar difference image as a diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in a case where the similar case image is found by the similar image search unit; and
a display control unit that displays the diagnostic auxiliary image on a display device.
6. The diagnostic auxiliary image generation apparatus according to claim 5,
wherein the display control unit displays the diagnostic auxiliary image distinguishably displaying whether the displayed diagnostic auxiliary image is the temporal difference image or the similar difference image.
7. The diagnostic auxiliary image generation apparatus according to claim 5, further comprising:
a bone-suppressed image generation unit that estimates a bone component from the diagnostic target radiation image and generates a bone-suppressed image as a diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in a case where the past radiation image is not found by the past image search unit and the similar case image is not found by the similar image search unit,
wherein the display control unit displays the diagnostic auxiliary image generated by the bone-suppressed image generation unit on the display device.
8. The diagnostic auxiliary image generation apparatus according to claim 7,
wherein the display control unit displays the diagnostic auxiliary image distinguishably displaying whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
9. The diagnostic auxiliary image generation apparatus according to claim 7, further comprising:
a contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image,
wherein the display control unit displays a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit, and the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
10. The diagnostic auxiliary image generation apparatus according to claim 8, further comprising:
a contrast conversion unit that performs contrast conversion processing on the diagnostic auxiliary image,
wherein the display control unit displays a diagnostic auxiliary image obtained after contrast conversion of the diagnostic auxiliary image by the contrast conversion unit, and the contrast conversion unit performs different contrast conversion processing according to whether the diagnostic auxiliary image is the temporal difference image or the similar difference image or the bone-suppressed image.
11. The diagnostic auxiliary image generation apparatus according to claim 1,
wherein the temporal difference image generation unit determines whether or not the shapes of the organs match each other by determining whether or not lung field shapes and/or rib shapes match each other.
12. The diagnostic auxiliary image generation apparatus according to claim 5,
wherein the similar image search unit includes: a first selection section that selects normal radiation images in which the subject to be compared with the subject to be diagnosed has the same sex and age range as the subject to be diagnosed;
a second selection section that selects, from the normal radiation images selected by the first selection section, normal radiation images including lung field shapes that match a lung field shape of the diagnostic target radiation image;
a third selection section that selects, from the normal radiation images selected by the second selection section, normal radiation images including positions of bones overlapping a lung field that matches positions of bones overlapping a lung field in the diagnostic target radiation image; and
a fourth selection section that selects, from the normal radiation images selected by the third selection section, a normal radiation image including a soft structure similar to a soft structure of the diagnostic target radiation image,
the similar image search unit selects the normal radiation image having the organ shape that matches the organ shape in the diagnostic target radiation image using the first to fourth selection sections, and
the similar image search unit further includes a specification section that specifies the normal radiation image selected by the fourth selection section as a similar case image.
13. The diagnostic auxiliary image generation apparatus according to claim 12,
wherein the bone shape is a shape of a rib or a clavicle.
14. The diagnostic auxiliary image generation apparatus according to claim 12,
wherein the soft structure is a shape of a heart or a pulmonary vessel.
15. The diagnostic auxiliary image generation apparatus according to claim 3,
wherein the contrast conversion section performs contrast conversion processing for increasing all pixel values multiple times in a case where the diagnostic auxiliary image is the temporal difference image or the similar difference image, and performs contrast conversion processing for emphasizing pixel values in a low frequency band lower than a specific frequency in a case where the diagnostic auxiliary image is the bone-suppressed image.
16. The diagnostic auxiliary image generation apparatus according to claim 15,
wherein the specific frequency is determined in advance according to a size of a blood vessel included in the chest.
17. A diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus according to claim 1 including the past image search unit, the temporal difference image generation unit, the bone-suppressed image generation unit, and the display control unit, the method comprising:
a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
a bone-suppressed image generation step in which the bone-suppressed image generation unit estimates the bone component from the diagnostic target radiation image and generates the bone-suppressed image as the diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other through the comparison or in the case where the past radiation image is not found by the past image search unit; and
a display step in which the display control unit displays the diagnostic auxiliary image on the display device.
18. A diagnostic auxiliary image generation method in the diagnostic auxiliary image generation apparatus according to claim 5 including the past image search unit, the temporal difference image generation unit, the similar image search unit, the similar difference image generation unit, the display control unit, and the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared, the method comprising:
a past image search step in which the past image search unit searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
a temporal difference image generation step in which the temporal difference image generation unit generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
a similar image search step in which the similar image search unit searches for the normal radiation image, which is determined to have the same organ shape by comparing the shape of the organ of the chest appearing on the normal radiation image with the shape of the organ appearing on the diagnostic target radiation image, as the similar case image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other in the temporal difference image generation step or in the case where the past radiation image is not found by the past image search unit;
a similar difference image generation step in which the similar difference image generation unit generates the similar difference image as the diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in the case where the similar case image is found by the similar image search unit; and
a display step in which the display control unit displays the diagnostic auxiliary image on the display device.
19. A non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program causing a computer to function as the diagnostic auxiliary image generation apparatus according to claim 1 comprising:
the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
the bone-suppressed image generation unit that estimates the bone component from the diagnostic target radiation image and generates the bone-suppressed image as the diagnostic auxiliary image by removing the estimated bone component from the diagnostic target radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other through the comparison or in the case where the past radiation image is not found by the past image search unit; and
the display control unit that displays the diagnostic auxiliary image on the display device.
20. A non-transitory computer readable recording medium recorded with a diagnostic auxiliary image generation program causing a computer to function as the diagnostic auxiliary image generation apparatus according to claim 5 comprising:
the past image search unit that searches for the past radiation image obtained by irradiating the chest of the subject to be diagnosed, from the radiation image storage unit that stores a plurality of radiation images, before the imaging time of the diagnostic target radiation image obtained by irradiating the chest of the subject to be diagnosed;
the case image storage unit that stores normal radiation images with no abnormalities among radiation images obtained by irradiating chests of a plurality of subjects to be compared;
the temporal difference image generation unit that generates the temporal difference image as the diagnostic auxiliary image by performing differential processing between the diagnostic target radiation image and the past radiation image in the case where the past radiation image is found by the past image search unit and it is determined that the shape of the organ of the chest appearing on the diagnostic target radiation image matches the shape of the organ appearing on the past radiation image by comparing the shapes of the organs;
the similar image search unit that searches for the normal radiation image, which is determined to have the same organ shape by comparing the shape of the organ of the chest appearing on the normal radiation image with the shape of the organ appearing on the diagnostic target radiation image, as the similar case image in the case where the past radiation image is found by the past image search unit and it is determined that the shapes of the organs do not match each other by the temporal difference image generation unit or in the case where the past radiation image is not found by the past image search unit;
the similar difference image generation unit that generates the similar difference image as the diagnostic auxiliary image by performing differential processing between the found similar case image and the diagnostic target radiation image in the case where the similar case image is found by the similar image search unit; and
the display control unit that displays the diagnostic auxiliary image on the display device.
US15/070,663 2015-03-20 2016-03-15 Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program Active 2040-02-03 US11278257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-057329 2015-03-20
JPJP2015-057329 2015-03-20
JP2015057329A JP6301277B2 (en) 2015-03-20 2015-03-20 Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program

Publications (2)

Publication Number Publication Date
US20160270753A1 true US20160270753A1 (en) 2016-09-22
US11278257B2 US11278257B2 (en) 2022-03-22

Family

ID=56924437

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/070,663 Active 2040-02-03 US11278257B2 (en) 2015-03-20 2016-03-15 Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program

Country Status (2)

Country Link
US (1) US11278257B2 (en)
JP (1) JP6301277B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170004384A1 (en) * 2015-07-01 2017-01-05 Amadeus S.A.S. Image based baggage tracking system
CN109978015A (en) * 2019-03-06 2019-07-05 重庆金山医疗器械有限公司 A kind of image processing method, device and endoscopic system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6914233B2 (en) * 2018-08-31 2021-08-04 富士フイルム株式会社 Similarity determination device, method and program
JP6590386B1 (en) * 2018-11-20 2019-10-16 株式会社アルム Image processing apparatus, image processing system, and image processing program
CN112991101A (en) * 2021-04-16 2021-06-18 拉扎斯网络科技(上海)有限公司 Ordering method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982953A (en) * 1994-09-02 1999-11-09 Konica Corporation Image displaying apparatus of a processed image from temporally sequential images
US20090028403A1 (en) * 2006-03-03 2009-01-29 Medic Vision - Brain Technologies Ltd. System and Method of Automatic Prioritization and Analysis of Medical Images
US20140015830A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd. Image processing apparatus and method
US20150110380A1 (en) * 2013-10-22 2015-04-23 Konica Minolta, Inc. Medical Image Processing Apparatus And Computer-Readable Storage Medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219123A (en) * 2001-01-26 2002-08-06 Mitsubishi Space Software Kk Projection conversion system and device and method for producing fractional images depending on the difference over time
US7545965B2 (en) * 2003-11-10 2009-06-09 The University Of Chicago Image modification and detection using massive training artificial neural networks (MTANN)
JP2005269214A (en) 2004-03-18 2005-09-29 Mitsubishi Space Software Kk Image diagnosis support apparatus, image diagnosis support method, image diagnosis support program, and computer-readable recording medium with image diagnosis support program recorded thereon
JP2005277558A (en) * 2004-03-23 2005-10-06 Canon Inc Image processing method, image processor, computer program, and recording medium
JP2006055368A (en) * 2004-08-20 2006-03-02 Fuji Photo Film Co Ltd Time-series subtraction processing apparatus and method
JP4564387B2 (en) * 2005-03-28 2010-10-20 株式会社東芝 Medical image generation device
JP2007014435A (en) 2005-07-06 2007-01-25 Fujifilm Holdings Corp Image processing device, method and program
US7454965B2 (en) 2005-09-19 2008-11-25 Trw Automotive U.S. Llc Method and apparatus for mounting a tire pressure monitoring device
JP5159242B2 (en) * 2007-10-18 2013-03-06 キヤノン株式会社 Diagnosis support device, diagnosis support device control method, and program thereof
US20100266188A1 (en) * 2009-04-17 2010-10-21 Riverain Medical Group, Llc Chest x-ray registration, subtraction and display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982953A (en) * 1994-09-02 1999-11-09 Konica Corporation Image displaying apparatus of a processed image from temporally sequential images
US20090028403A1 (en) * 2006-03-03 2009-01-29 Medic Vision - Brain Technologies Ltd. System and Method of Automatic Prioritization and Analysis of Medical Images
US20140015830A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd. Image processing apparatus and method
US20150110380A1 (en) * 2013-10-22 2015-04-23 Konica Minolta, Inc. Medical Image Processing Apparatus And Computer-Readable Storage Medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170004384A1 (en) * 2015-07-01 2017-01-05 Amadeus S.A.S. Image based baggage tracking system
CN109978015A (en) * 2019-03-06 2019-07-05 重庆金山医疗器械有限公司 A kind of image processing method, device and endoscopic system

Also Published As

Publication number Publication date
JP6301277B2 (en) 2018-03-28
US11278257B2 (en) 2022-03-22
JP2016174735A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6058093B2 (en) Computer-aided analysis device for medical images and computer program for medical image analysis
US10083515B2 (en) Method and system for segmenting medical imaging data according to a skeletal atlas
US11278257B2 (en) Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program
JP5643304B2 (en) Computer-aided lung nodule detection system and method and chest image segmentation system and method in chest tomosynthesis imaging
US8953856B2 (en) Method and system for registering a medical image
US8483467B2 (en) Medical image diagnosis assisting apparatus and method, and computer readable recording medium on which is recorded program for the same
US7315639B2 (en) Method of lung lobe segmentation and computer system
JP2018011958A (en) Medical image processing apparatus and medical image processing program
US9471987B2 (en) Automatic planning for medical imaging
Kigka et al. 3D reconstruction of coronary arteries and atherosclerotic plaques based on computed tomography angiography images
JP6656910B2 (en) Medical image processing device, medical image diagnostic device, and medical image processing program
US20130108133A1 (en) Medical image processing apparatus, method and program
US9295442B2 (en) Medical image conversion apparatus, method and program
JP2015093192A (en) Medical image processing apparatus and medical image processing method
US10628963B2 (en) Automatic detection of an artifact in patient image
JP6253085B2 (en) X-ray moving image analysis apparatus, X-ray moving image analysis program, and X-ray moving image imaging apparatus
Sakellarios et al. Novel methodology for 3D reconstruction of carotid arteries and plaque characterization based upon magnetic resonance imaging carotid angiography data
Akkoul et al. 3D Reconstruction of the proximal femur shape from few pairs of x-ray radiographs
JP6458166B2 (en) MEDICAL IMAGE PROCESSING METHOD, DEVICE, SYSTEM, AND PROGRAM
JP2016041245A (en) Medical image processor and medical image processing method
Hussain et al. Automatic hip geometric feature extraction in DXA imaging using regional random forest
JP2015136480A (en) Three-dimensional medical image display control device and operation method for the same, and three-dimensional medical image display control program
Inoue et al. Patient-specific left atrial wall-thickness measurement and visualization for radiofrequency ablation
Akkoul et al. 3D reconstruction method of the proximal femur and shape correction
Peter et al. Novel registration-based framework for CT angiography in lower legs

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJIFILM CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAWAMURA, TAKAHIRO;REEL/FRAME:037989/0913

Effective date: 20151216

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE