JP6590386B1 - Image processing apparatus, image processing system, and image processing program - Google Patents

Image processing apparatus, image processing system, and image processing program Download PDF

Info

Publication number
JP6590386B1
JP6590386B1 JP2018217104A JP2018217104A JP6590386B1 JP 6590386 B1 JP6590386 B1 JP 6590386B1 JP 2018217104 A JP2018217104 A JP 2018217104A JP 2018217104 A JP2018217104 A JP 2018217104A JP 6590386 B1 JP6590386 B1 JP 6590386B1
Authority
JP
Japan
Prior art keywords
image
abnormal
medical image
medical
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018217104A
Other languages
Japanese (ja)
Other versions
JP2020086698A (en
Inventor
クワイ ベン フェルナンド ハビエル ウォン
クワイ ベン フェルナンド ハビエル ウォン
ヒラルド ホラシオ サンソン
ヒラルド ホラシオ サンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allm Inc
Original Assignee
Allm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allm Inc filed Critical Allm Inc
Priority to JP2018217104A priority Critical patent/JP6590386B1/en
Application granted granted Critical
Publication of JP6590386B1 publication Critical patent/JP6590386B1/en
Publication of JP2020086698A publication Critical patent/JP2020086698A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Image Analysis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

【課題】医用画像から異常部を抽出した診断結果画像を生成する画像処理装置を提供すること。【解決手段】画像処理装置は、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成し、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成し、異常部抽出画像生成手段によって生成された異常部抽出画像と特有部推定画像生成手段によって生成された特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成する。【選択図】図9An image processing apparatus for generating a diagnosis result image obtained by extracting an abnormal part from a medical image is provided. An image processing apparatus generates an abnormal part extraction image obtained by extracting a difference part from a medical image obtained by photographing a healthy person as an abnormal part from an input target medical image, and the image processing apparatus is included in the target medical image. A special part estimation image is generated by estimating a difference part peculiar to an image that is different from a medical image obtained by photographing a healthy person but is not medically abnormal, and is generated by an abnormal part extraction image generation unit. A difference between the abnormal portion extracted image and the specific portion estimated image generated by the specific portion estimated image generating means is calculated, and a diagnosis result image is generated by removing the specific portion from the abnormal portion extracted image. [Selection] Figure 9

Description

本発明は、画像処理装置、画像処理システム、および画像処理プログラムに関する。   The present invention relates to an image processing apparatus, an image processing system, and an image processing program.

次のような生体画像処理装置が知られている。この生体画像処理装置では、目的物を含む生体画像である入力用訓練画像、目的物を含まない生体画像である出力用訓練画像、及び目的物を含む生体画像である入力画像を受け付け、入力用訓練画像及び出力用訓練画像を用いて、目的物を含む生体画像から目的物を含まない生体画像を生成する画像処理を行うニューラルネットワークを学習し、学習結果であるニューラルネットワークの画像処理を用いて、入力画像から目的物を除去した出力画像を生成する(例えば、特許文献1)。   The following biological image processing apparatuses are known. In this biological image processing apparatus, an input training image that is a biological image including a target object, an output training image that is a biological image not including the target object, and an input image that is a biological image including the target object are received and input Using a training image and an output training image, learn a neural network that performs image processing to generate a biological image that does not include an object from a biological image that includes the object, and use the image processing of the neural network that is the learning result Then, an output image is generated by removing the object from the input image (for example, Patent Document 1).

特開2018−89301号公報JP-A-2018-89301

従来の生体画像処理装置では、目的物を含む生体画像から目的物を含まない生体画像を生成する画像処理を行うニューラルネットワークを学習し、学習結果であるニューラルネットワークの画像処理を用いて、入力画像から目的物を除去した出力画像を生成していた。しかしながら、画像を用いた診断では、医用画像の中から異常がある可能性がある部位を見つけ出すことが求められることも多く、その精度も求められる。しかしながら、従来の技術では、医用画像から精度高く異常部を抽出して、診断者による診断を支援する仕組みについては、何ら検討されていなかった。   In a conventional biological image processing apparatus, a neural network that performs image processing for generating a biological image that does not include a target object from a biological image that includes a target object is learned, and an input image is obtained using the neural network image processing that is a learning result. An output image in which the target object is removed from is generated. However, in diagnosis using an image, it is often required to find a part that may be abnormal from a medical image, and the accuracy is also required. However, in the conventional technique, no investigation has been made on a mechanism for extracting an abnormal part with high accuracy from a medical image and supporting diagnosis by a diagnostician.

本発明による画像処理装置は、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手段と、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成する特有部推定画像生成手段と、異常部抽出画像生成手段によって生成された異常部抽出画像と特有部推定画像生成手段によって生成された特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成する診断結果画像生成手段とを備え、異常部抽出画像生成手段は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに対象医用画像を入力し、オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、異常部抽出画像を生成し、特有部推定画像生成手段は、特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに対象医用画像を入力し、ニューラルネットワークからの出力画像を前記特有部推定画像とすることを特徴とする。
本発明による画像処理システムは、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手段と、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成する特有部推定画像生成手段と、異常部抽出画像生成手段によって生成された異常部抽出画像と特有部推定画像生成手段によって生成された特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成する診断結果画像生成手段とを備え、異常部抽出画像生成手段は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに対象医用画像を入力し、オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、異常部抽出画像を生成し、特有部推定画像生成手段は、特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに対象医用画像を入力し、ニューラルネットワークからの出力画像を特有部推定画像とすることを特徴とする。
本発明による画像処理プログラムは、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手順と、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成する特有部推定画像生成手順と、異常部抽出画像生成手順で生成した異常部抽出画像と特有部推定画像生成手順で生成した特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成する診断結果画像生成手順とをコンピュータに実行させるためのプログラムであって、異常部抽出画像生成手順は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに対象医用画像を入力し、オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、異常部抽出画像を生成し、特有部推定画像生成手順は、特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに対象医用画像を入力し、ニューラルネットワークからの出力画像を特有部推定画像とすることを特徴とする。
An image processing apparatus according to the present invention includes an abnormal part extraction image generation unit that generates an abnormal part extraction image obtained by extracting a difference part from a medical image obtained by photographing a healthy person as an abnormal part from an input target medical image; A unique part estimation that generates a unique part estimation image that is a difference part from a medical image obtained by photographing a healthy person, but that is not medically abnormal and that is estimated as a unique part. Calculating a difference between the abnormal part extracted image generated by the image generating means and the abnormal part extracted image generating means and the specific part estimated image generated by the specific part estimated image generating means, and a diagnosis result image generation means for generating a diagnosis result image rejection, abnormal portion extracted image generating means, to learn the image pattern there is no abnormality medical image, abnormality I on the input medical image An abnormal part extraction image is obtained based on a difference image obtained by inputting a target medical image to an auto encoder configured to restore and output a medical image and calculating a difference between the input image and the output image to the auto encoder. When the medical image including the specific part and having no abnormality is input, the specific part estimation image generating unit inputs the medical image including the specific part and having no abnormality to the abnormal part extraction image generating unit. A target medical image is input to a neural network learned to restore and output an extracted image, and an output image from the neural network is used as the characteristic portion estimation image .
An image processing system according to the present invention includes an abnormal part extraction image generation unit that generates an abnormal part extraction image obtained by extracting a difference part from a medical image obtained by photographing a healthy person as an abnormal part from an input target medical image; A unique part estimation that generates a unique part estimation image that is a difference part from a medical image obtained by photographing a healthy person, but that is not medically abnormal and that is estimated as a unique part. Calculating a difference between the abnormal part extracted image generated by the image generating means and the abnormal part extracted image generating means and the specific part estimated image generated by the specific part estimated image generating means, and a diagnosis result image generation means for generating a diagnosis result image rejection, abnormal portion extracted image generating means, to learn the image pattern there is no abnormality medical images, abnormal on the input medical image Extract the abnormal part based on the difference image obtained by calculating the difference between the input image and the output image to the auto encoder by inputting the target medical image to the auto encoder configured to restore and output the non-medical image An image is generated, and the unique part estimation image generation unit inputs a medical image including the specific part and having no abnormality to the abnormal part extraction image generation unit when a medical image including the specific part and having no abnormality is input. The target medical image is input to the neural network learned to restore and output the image extracted in this manner, and the output image from the neural network is used as the characteristic part estimation image .
An image processing program according to the present invention includes an abnormal part extraction image generation procedure for generating an abnormal part extraction image obtained by extracting a difference part from a medical image obtained by photographing a healthy person as an abnormal part from an input target medical image, and a target A unique part estimation that generates a unique part estimation image that is a difference part from a medical image obtained by photographing a healthy person, but that is not medically abnormal and that is estimated as a unique part. The difference between the abnormal part extraction image generated in the image generation procedure and the abnormal part extraction image generation procedure and the special part estimation image generated in the special part estimation image generation procedure is calculated, and the special part is excluded from the abnormal part extraction image a diagnosis image generation step of generating a diagnostic result image a program for causing a computer to execute the abnormal portion extracted image generation procedures, train the image pattern there is no abnormality medical image, Obtained by calculating the difference between the input image and the output image to the auto encoder by inputting the target medical image to the auto encoder configured to restore and output the medical image that is normal to the input medical image The abnormal part extraction image is generated based on the difference image, and the unique part estimation image generation procedure is performed when the medical image including the specific part is input and the medical image including the specific part is not included. The target medical image is input to the neural network learned to restore and output the extracted image by inputting to the abnormal part extracted image generating means, and the output image from the neural network is used as the characteristic part estimation image It is characterized by.

本発明によれば、対象医用画像内から異常部を抽出した異常部抽出画像を生成するとともに、異常部抽出画像内から特有部を排除した診断結果画像を生成することができるため、診断者が精度高く異常部の特定することができる画像を提供することができる。   According to the present invention, it is possible to generate an abnormal part extracted image obtained by extracting an abnormal part from the target medical image and to generate a diagnosis result image excluding the specific part from the abnormal part extracted image. It is possible to provide an image that can identify an abnormal portion with high accuracy.

画像処理装置100の一実施の形態の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an embodiment of an image processing apparatus 100. FIG. 異常部検出器による処理の流れを模式的に示した第一の図である。It is the 1st figure showing typically the flow of processing by an abnormal part detector. 異常部検出器による処理の流れを模式的に示した第二の図である。It is the 2nd figure which showed typically the flow of processing by an abnormal part detector. 特有部推定器による処理の流れを模式的に示した第一の図である。It is the 1st figure showing typically the flow of processing by the peculiar part estimator. 特有部推定器による処理の流れを模式的に示した第二の図である。It is the 2nd figure which showed typically the flow of the process by the specific part estimator. 異常部抽出画と特有部推定画像を用いて診断結果画像を生成する方法を模式的に示した図である。It is the figure which showed typically the method of producing | generating a diagnostic result image using an abnormal part extraction image and a characteristic part estimation image. トレーニングステップと診断結果画像を生成するステップの流れを一つにまとめて模式的に示した図である。It is the figure which put together the flow of a training step and the step which produces | generates a diagnostic result image together, and was shown typically. トレーニングステップの流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a training step. 診断結果画像生成処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a diagnostic result image generation process.

図1は、本実施の形態における画像処理装置100の一実施の形態の構成を示すブロック図である。画像処理装置100は、あらかじめ撮影された医用画像、例えば、MRI画像、CT画像、X線画像を用いて、医用画像内から医学的に異常と認められる部位を抽出し、視覚化するための処理を実行する。画像処理装置100としては、例えばサーバ装置やパソコンなどが用いられる。図1は、本実施の形態における画像処理装置100として、パソコンを用いた場合の一実施の形態の構成を示すブロック図である。   FIG. 1 is a block diagram illustrating a configuration of an embodiment of an image processing apparatus 100 according to the present embodiment. The image processing apparatus 100 uses a medical image taken in advance, for example, an MRI image, a CT image, or an X-ray image, to extract a part that is medically abnormal from the medical image and visualize it. Execute. As the image processing apparatus 100, for example, a server apparatus or a personal computer is used. FIG. 1 is a block diagram showing a configuration of an embodiment when a personal computer is used as the image processing apparatus 100 in the present embodiment.

画像処理装置100は、操作部材101と、制御装置102と、記憶媒体103と、表示装置104とを備えている。   The image processing apparatus 100 includes an operation member 101, a control device 102, a storage medium 103, and a display device 104.

操作部材101は、画像処理装置100の操作者によって操作される種々の装置、例えばキーボードやマウスを含む。   The operation member 101 includes various devices that are operated by an operator of the image processing apparatus 100, such as a keyboard and a mouse.

制御装置102は、CPU、メモリ、およびその他の周辺回路によって構成され、画像処理装置100の全体を制御する。なお、制御装置102を構成するメモリは、例えばSDRAM等の揮発性のメモリである。このメモリは、CPUがプログラム実行時にプログラムを展開するためのワークメモリや、データを一時的に記録するためのバッファメモリとして使用される。例えば、接続インターフェース102を介して読み込まれたデータは、バッファメモリに一時的に記録される。   The control device 102 includes a CPU, a memory, and other peripheral circuits, and controls the entire image processing device 100. In addition, the memory which comprises the control apparatus 102 is volatile memories, such as SDRAM, for example. This memory is used as a work memory for the CPU to expand the program when the program is executed and a buffer memory for temporarily recording data. For example, data read via the connection interface 102 is temporarily recorded in the buffer memory.

記憶媒体103は、画像処理装置100が蓄える種々のデータや、制御装置102が実行するためのプログラムのデータ等を記録するための記憶媒体であり、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)等が用いられる。なお、記憶媒体103に記録されるプログラムのデータは、CD−ROMやDVD−ROMなどの記録媒体に記録されて提供されたり、ネットワークを介して提供され、操作者が取得したプログラムのデータを記憶媒体103にインストールすることによって、制御装置102がプログラムを実行できるようになる。本実施の形態では、以下に説明する処理で用いるプログラムや種々のデータは、記憶媒体103に記録されている。   The storage medium 103 is a storage medium for recording various data stored by the image processing apparatus 100, data of a program to be executed by the control apparatus 102, and the like, for example, HDD (Hard Disk Drive) or SSD (Solid State). Drive) or the like is used. The program data recorded in the storage medium 103 is provided by being recorded on a recording medium such as a CD-ROM or DVD-ROM, or provided via a network, and stores the program data acquired by the operator. By installing in the medium 103, the control device 102 can execute the program. In the present embodiment, programs and various data used in the processing described below are recorded in the storage medium 103.

表示装置104は、例えば液晶モニタであって、制御装置102から出力される種々の表示用データが表示される。   The display device 104 is a liquid crystal monitor, for example, and displays various display data output from the control device 102.

本実施の形態では、制御装置102は、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成し、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成し、異常部抽出画像と特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成するための処理を実行する。   In the present embodiment, the control device 102 generates an abnormal part extraction image obtained by extracting, as an abnormal part, a difference part from a medical image obtained by photographing a healthy person from the input target medical image, and includes the abnormal medical image in the target medical image. Generates a unique part estimation image that is a difference part from a medical image obtained by photographing a healthy person, but is estimated as a unique part that is unique to an image that is not medically abnormal. A process for calculating a difference between the part estimation images and generating a diagnosis result image in which the unique part is excluded from the abnormal part extraction image is executed.

まず、対象医用画像内から異常部を抽出した異常部抽出画像を生成するための処理について説明する。本実施の形態では、対象医用画像内から異常部を抽出した異常部抽出画像を出力することができる異常部検出器をあらかじめ用意しておき、制御装置102は、この異常部検出器に対象医用画像を入力することにより、対象医用画像内から健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する。   First, a process for generating an abnormal part extracted image obtained by extracting an abnormal part from the target medical image will be described. In the present embodiment, an abnormal part detector capable of outputting an abnormal part extracted image obtained by extracting an abnormal part from the target medical image is prepared in advance, and the control device 102 includes the target medical part in the target medical image. By inputting an image, an abnormal part extraction image is generated by extracting a difference part from the medical image obtained by photographing a healthy person from the target medical image as an abnormal part.

図2に示すように、異常部検出器D(Xh)は、対象医用画像Xhを入力すると、対象医用画像Xh内から医学的に異常がみられない正常な患者との相違部が異常部として抽出された異常部抽出画像Ahが出力されるように構成されている。   As shown in FIG. 2, when the abnormal part detector D (Xh) receives the target medical image Xh, the abnormal part is defined as an abnormal part from a normal patient in which no medical abnormality is observed in the target medical image Xh. The extracted abnormal part extracted image Ah is configured to be output.

異常部検出器の構成は特に限定されないが、本実施の形態では、健康者を撮影した異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダを用い、このオートエンコーダに対象医用画像を入力すると、オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像を異常部抽出画像として出力するように構成されている。なお、異常部検出器で用いるオートエンコーダは、入力と出力が同じになるようにニューラルネットワークを学習させることができるもの、例えば公知のディープ・オートエンコーダとすればよい。   The configuration of the abnormal part detector is not particularly limited, but in this embodiment, the image pattern of a medical image having no abnormality taken by a healthy person is learned, and the medical image having no abnormality with respect to the input medical image is restored. When the target medical image is input to the auto encoder and the difference image obtained by calculating the difference between the input image and the output image to the auto encoder is used as the abnormal part extracted image It is configured to output. Note that the auto encoder used in the abnormal part detector may be a known deep auto encoder that can learn the neural network so that the input and output are the same.

これによって、対象医用画像に医学的に異常と認められる部分が現れている場合、オートエンコーダへの入力画像には異常部が含まれている一方で、出力画像は異常がない画像、すなわち異常部が表示されていない画像となるため、オートエンコーダへの入力画像と出力画像の差分をとれば、対象医用画像内から異常部を抽出した異常部抽出画像を出力することができる。   As a result, when a medically abnormal portion appears in the target medical image, the input image to the auto encoder includes an abnormal portion, while the output image is an image having no abnormality, that is, an abnormal portion. Therefore, if the difference between the input image to the auto encoder and the output image is taken, an abnormal part extracted image in which the abnormal part is extracted from the target medical image can be output.

なお、上述した異常がない医用画像は、画像内に医学的に異常と認められる部位を含まない画像であって、例えば、医学的に異常がみられない人物の診断対象部位を撮影した画像、すなわち健康者な患者の特定部位を撮影した画像を用いればよい。   The above-described medical image having no abnormality is an image that does not include a part that is recognized as being medically abnormal in the image, and is an image obtained by photographing a part to be diagnosed of a person who is not medically abnormal, for example, That is, an image obtained by photographing a specific part of a healthy patient may be used.

上述したように、異常部検出器から出力される異常部抽出画像は、対象医用画像内から異常部検出器が学習した異常がない医用画像との相違部を抽出した画像となる。このため、異常部検出器から出力される異常部抽出画像には、医学的に異常と認められる箇所以外にも、対象医用画像とオートエンコーダが学習した画像パターンとの差異が抽出されてしまう可能性がある。この場合、異常部位抽出画像には、医学的に異常と認められる部分と、医学的に異常とは認められないが、個人差や画像の特性などによって生じる対象医用画像に特有な部分とが含まれることになる。   As described above, the abnormal part extracted image output from the abnormal part detector is an image obtained by extracting a different part from the medical image having no abnormality learned by the abnormal part detector from the target medical image. For this reason, in the abnormal part extraction image output from the abnormal part detector, the difference between the target medical image and the image pattern learned by the auto encoder may be extracted in addition to the part that is recognized as medically abnormal. There is sex. In this case, the abnormal part extraction image includes a part that is recognized as medically abnormal and a part that is not recognized as medically abnormal but is specific to the target medical image caused by individual differences or image characteristics. Will be.

例えば、図2においては、健康な患者の異常部がない医用画像を対象医用画像Xhとして入力した結果を示している。この場合、異常部検出器D(Xh)から出力される異常部抽出画像Ahには、医学的に異常と認められる部分は現れていないが、医学的な異常ではない対象医用画像に特有な部分が現れてしまっている。   For example, FIG. 2 shows a result of inputting a medical image having no abnormal portion of a healthy patient as the target medical image Xh. In this case, in the abnormal part extraction image Ah output from the abnormal part detector D (Xh), a part that is recognized as medically abnormal does not appear, but a part that is unique to the target medical image that is not medically abnormal Has appeared.

また、図3に示すように、異常部検出器D(Xa)に、医学的に異常とみとめられる異常部3aを含む脳画像が対象医用画像Xaとして入力された場合には、出力される異常部抽出画像Aaには、医学的な異常部3a以外にも、医学的な異常ではない対象医用画像に特有な箇所も画像上に現れてしまっている。   Further, as shown in FIG. 3, when a brain image including an abnormal portion 3a that is regarded as abnormal medically is input to the abnormal portion detector D (Xa) as the target medical image Xa, an abnormality that is output In the part-extracted image Aa, in addition to the medically abnormal part 3a, a part peculiar to the target medical image that is not medically abnormal appears on the image.

本実施の形態では、このように本来は異常部ではないのに、異常部抽出画像上に現れてしまう特有部を削除するために、対象医用画像内に含まれる特有部を推定した特有部推定画像を生成し、異常部抽出画像と特有部推定画像の差分をとる。これによって、本来は異常部ではないのに、異常部抽出画像上に現れてしまう特有部を排除して、本来の医学的に異常な部分を精度高く抽出した診断結果画像を生成することができる。   In this embodiment, in order to delete a specific part that appears on the abnormal part extracted image even though it is not an abnormal part in this way, the specific part estimation that estimates the specific part included in the target medical image is performed. An image is generated, and a difference between the abnormal part extracted image and the unique part estimated image is obtained. As a result, it is possible to generate a diagnostic result image in which the original medically abnormal portion is extracted with high accuracy by eliminating the unique portion that appears on the abnormal portion extracted image even though it is not an abnormal portion. .

このために、本実施の形態では、対象医用画像内から特有部を推定した特有部推定画像を出力することができる特有部推定器をあらかじめ用意しておき、制御装置102は、この特有部推定器に対象医用画像を入力することにより、対象医用画像内から特有部を推定した特有部推定画像を生成する。以下、本実施の形態で用いる特有部推定器について説明する。   For this reason, in the present embodiment, a unique part estimator capable of outputting a unique part estimation image obtained by estimating a unique part from the target medical image is prepared in advance, and the control device 102 estimates the unique part estimation. By inputting the target medical image into the device, a specific part estimation image in which the specific part is estimated from the target medical image is generated. Hereinafter, the unique part estimator used in the present embodiment will be described.

本実施の形態では、事前に、異常がない患者の特定部位を撮影した医用画像を取り込んで、異常がない医用画像における特有部の画像パターンを学習するためのトレーニングステップが実行される。   In the present embodiment, a training step for capturing a medical image obtained by capturing a specific part of a patient having no abnormality in advance and learning an image pattern of a specific part in the medical image having no abnormality is executed.

トレーニングステップでは、上述したように、異常がない医用画像が入力画像として用いられる。制御装置102は、医用画像Xhが入力されると、上述した異常部検出器D(Xh)に医用画像Xhを入力して、異常部抽出画像Ahを生成する。   In the training step, as described above, a medical image having no abnormality is used as the input image. When the medical image Xh is input, the control device 102 inputs the medical image Xh to the above-described abnormal part detector D (Xh) and generates an abnormal part extracted image Ah.

また、制御装置102は、図4に示すように、異常がない医用画像Xhをニューラルネットワークである特有部推定器Q(Xh)に入力して、異常がない医用画像Xhを上述した異常部検出器に入力したときに出力される異常部抽出画像Ahに近似する特有部画像A´hを予測する。このとき、制御装置102は、損失L=d(A´h,Ah)が最小になるまでネットワーク重みを調整しながら処理を繰り返す。制御装置102は、損失Lが最小になったときに設定されていた重み値を特有部推定器の重みとして設定する。これによって、特有部推定器に、異常部抽出画像Ahに近似する特有部画像A´hを出力するように学習させることができる。   Further, as shown in FIG. 4, the control device 102 inputs the medical image Xh having no abnormality to the specific part estimator Q (Xh) that is a neural network, and detects the abnormal part medical image Xh described above. A unique part image A′h that approximates the abnormal part extracted image Ah output when the image is input to the device is predicted. At this time, the control device 102 repeats the process while adjusting the network weight until the loss L = d (A′h, Ah) is minimized. The control device 102 sets the weight value set when the loss L is minimized as the weight of the specific part estimator. Thus, the unique part estimator can be trained to output the unique part image A′h that approximates the abnormal part extracted image Ah.

これによって、特有部推定器は、対象医用画像が入力されると、異常がない医用画像Xhを異常部検出器に入力したときに出力される異常部抽出画像Ahに近似する画像パターンを出力するように訓練されることになる。トレーニングステップで入力画像として用いられる異常がない医用画像Xhは、医学的な異常部は含まないが、医学的には異常ではない医用画像に特有な特有部を含んでいる。このため、トレーニングステップを完了した特有部推定器を用いることにより、特有部推定器に対象医用画像を入力すると特有部が推定された特有部推定画像を出力することができる。   Thus, when the target medical image is input, the unique part estimator outputs an image pattern that approximates the abnormal part extracted image Ah that is output when the medical image Xh having no abnormality is input to the abnormal part detector. Will be trained to be. The medical image Xh having no abnormality used as an input image in the training step does not include a medical abnormal part, but includes a specific part unique to a medical image that is not medically abnormal. Therefore, by using the unique part estimator that has completed the training step, it is possible to output a unique part estimated image in which the unique part is estimated when the target medical image is input to the unique part estimator.

例えば、図5に示すように、図3に示したような医学的に異常とみとめられる異常部3aを含む脳画像を対象医用画像Xaとして特有部推定器Q(Xa)に入力すると、異常部3aは含まずに特有部のみを推定した特有部推定画像A´aが出力される。   For example, as shown in FIG. 5, when a brain image including the abnormal part 3a that is regarded as medically abnormal as shown in FIG. 3 is input to the specific part estimator Q (Xa) as the target medical image Xa, A unique part estimation image A′a in which only the unique part is estimated without including 3a is output.

制御装置102は、図6に示すように、次式(1)により、対象医用画像Xaを入力した結果、異常部検出器D(Xa)から出力された異常部抽出画像Aaと特有部推定器Q(Xa)から出力された特有部推定画像A´aとの差分を算出することによって、対象医用画像Xa内から異常部3aを抽出するとともに、医学的な異常部ではない特有部を排除した診断結果画像を生成することができる。
診断結果画像=Aa−A´a ・・・(1)
As shown in FIG. 6, the control device 102 receives the target medical image Xa according to the following equation (1), and as a result, the abnormal part extracted image Aa output from the abnormal part detector D (Xa) and the specific part estimator. By calculating the difference from the specific part estimation image A′a output from Q (Xa), the abnormal part 3a is extracted from the target medical image Xa, and the special part that is not a medical abnormal part is excluded. A diagnostic result image can be generated.
Diagnosis result image = Aa−A′a (1)

図7は、上述したトレーニングステップと診断結果画像を生成するステップの流れを一つにまとめて模式的に示した図である。なお、図7に示した処理の流れは、図2〜図6を用いて説明した内容と同一のため説明を省略する。   FIG. 7 is a diagram schematically showing the flow of the above-described training step and the step of generating a diagnosis result image in one. 7 is the same as that described with reference to FIGS. 2 to 6, and thus the description thereof is omitted.

図8は、本実施の形態におけるトレーニングステップの流れを示すフローチャートである。図8に示す処理は、異常部がない正常状態の医用画像、例えば健康な人物の脳画像が入力されると起動するプログラムとして、制御装置102によって実行される。   FIG. 8 is a flowchart showing a flow of training steps in the present embodiment. The processing shown in FIG. 8 is executed by the control device 102 as a program that starts when a normal medical image without an abnormal part, for example, a brain image of a healthy person, is input.

ステップS10において、制御装置102は、異常がない医用画像Xhを異常部検出器D(Xh)に入力して異常部抽出画像Ahを生成する。その後、ステップS20へ進む。   In step S10, the control apparatus 102 inputs the medical image Xh having no abnormality to the abnormal part detector D (Xh) and generates an abnormal part extraction image Ah. Then, it progresses to step S20.

ステップS20では、異常がない医用画像Xhを特有部推定器Q(Xh)に入力して、異常がない医用画像Xhを上述した異常部検出器に入力したときに出力される異常部抽出画像Ahに近似する特有部画像A´hを予測する。その後、ステップS30へ進む。   In step S20, the abnormal part extracted image Ah output when the medical image Xh having no abnormality is input to the specific part estimator Q (Xh) and the medical image Xh having no abnormality is input to the above-described abnormal part detector. A special part image A′h approximating to is predicted. Then, it progresses to step S30.

ステップS30では、制御装置102は、上述した損失L=d(A´h,Ah)を算出する。その後、ステップS40へ進む。   In step S30, the control device 102 calculates the above-described loss L = d (A′h, Ah). Thereafter, the process proceeds to step S40.

ステップS40では、制御装置102は、ステップS40で算出した損失Lが最小になったか否かを判断する。ステップS40で肯定判断した場合には、そのときの重みを採用して処理を終了する。これに対して、ステップS40で否定判断した場合には、ステップS50へ進む。   In step S40, the control device 102 determines whether or not the loss L calculated in step S40 has been minimized. If an affirmative decision is made in step S40, the weight at that time is adopted and the process is terminated. On the other hand, if a negative determination is made in step S40, the process proceeds to step S50.

ステップS50では、制御装置102は、上述したように、特有部推定器のネットワーク重みを調整して、ステップS10へ戻る。   In step S50, as described above, the control apparatus 102 adjusts the network weight of the unique part estimator and returns to step S10.

図9は、本実施の形態における診断結果画像生成処理の流れを示すフローチャートである。図9に示す処理は、診断対象患者の医用画像、すなわち上述した対象医用画像が入力されると起動するプログラムとして、制御装置102によって実行される。   FIG. 9 is a flowchart showing the flow of diagnostic result image generation processing in the present embodiment. The process shown in FIG. 9 is executed by the control device 102 as a program that is activated when a medical image of a patient to be diagnosed, that is, the above-described target medical image is input.

ステップS110において、制御装置102は、対象医用画像Xaを異常部検出器D(Xa)に入力して異常部抽出画像Aaを生成する。その後、ステップS120へ進む。   In step S110, the control device 102 inputs the target medical image Xa to the abnormal part detector D (Xa) and generates an abnormal part extracted image Aa. Then, it progresses to step S120.

ステップS120では、制御装置102は、対象医用画像Xaを特有部推定器Q(Xa)に入力して特有部推定画像A´aを生成する。その後、ステップS130へ進む。   In step S120, the control device 102 inputs the target medical image Xa to the unique part estimator Q (Xa) to generate a unique part estimated image A′a. Thereafter, the process proceeds to step S130.

ステップS130では、制御装置102は、式(1)を用いて異常部抽出画像Aaと特有部推定画像A´aの差分画像を得る。その後、ステップS140へ進む。   In step S130, the control device 102 obtains a difference image between the abnormal part extracted image Aa and the unique part estimated image A′a using the equation (1). Thereafter, the process proceeds to step S140.

ステップS140では、制御装置102は、ステップS130で生成した差分画像を診断結果画像として表示装置104へ出力することにより、表示装置104に診断結果画像を表示する。その後、処理を終了する。   In step S140, the control device 102 displays the diagnosis result image on the display device 104 by outputting the difference image generated in step S130 to the display device 104 as a diagnosis result image. Thereafter, the process ends.

以上説明した実施の形態によれば、以下のような作用効果を得ることができる。
(1)制御装置102は、入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成し、対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成し、異常部抽出画像と特有部推定画像の差分を算出して、異常部抽出画像内から特有部を排除した診断結果画像を生成するようにした。これによって、対象医用画像内から医学的な異常部のみを抽出した診断結果画像を生成して、画像を用いた診断を支援することができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The control device 102 generates an abnormal part extraction image obtained by extracting a difference part from a medical image obtained by photographing a healthy person as an abnormal part from the input target medical image, and is included in the target medical image. Generates a unique part estimation image that is a difference part from a medical image obtained by photographing a healthy person but estimates a unique part of the image that is not medically abnormal as a unique part, and extracts the abnormal part extracted image and the unique part estimation image. The diagnosis result image is generated by excluding the specific part from the abnormal part extracted image. Thereby, it is possible to generate a diagnosis result image in which only a medically abnormal part is extracted from the target medical image, and to support diagnosis using the image.

(2)制御装置102は、生成した診断結果画像を表示装置104に表示するようにした。これによって、医師等の操作者は、診断結果画像を表示装置104上で確認することができる。 (2) The control device 102 displays the generated diagnosis result image on the display device 104. Accordingly, an operator such as a doctor can check the diagnosis result image on the display device 104.

(3)制御装置102は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに対象医用画像を入力し、オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて異常部抽出画像を生成するようにした。これによって、あらかじめオートエンコーダに異常がない医用画像の画像パターンを学習させておけば、対象医用画像を入力するだけで異常部抽出画像を生成することができる。 (3) The control device 102 learns the image pattern of the medical image having no abnormality, and restores and outputs the medical image having no abnormality with respect to the input medical image, and outputs the target medical image to the auto encoder. And an abnormal part extraction image is generated based on the difference image obtained by calculating the difference between the input image to the auto encoder and the output image. Thus, if an image pattern of a medical image having no abnormality is learned in advance in the auto encoder, an abnormal part extracted image can be generated only by inputting the target medical image.

(4)制御装置102は、異常がない医用画像における特有部の画像パターンを学習させ、入力された医用画像に対して、異常がない医用画像における特有部を含んだ医用画像を復元して出力するように構成されたニューラルネットワークに対象医用画像を入力し、ニューラルネットワークからの出力画像を特有部推定画像とするようにした。これによって、あらかじめニューラルネットワークに異常がない医用画像における特有部の画像パターンを学習させておけば、対象医用画像を入力するだけで特有部推定画像を生成することができる。 (4) The control device 102 learns the image pattern of the unique portion in the medical image having no abnormality, and restores and outputs the medical image including the unique portion in the medical image having no abnormality with respect to the input medical image. The target medical image is input to the neural network configured as described above, and the output image from the neural network is used as the characteristic part estimation image. As a result, if the image pattern of the specific part in the medical image having no abnormality in the neural network is learned in advance, the specific part estimation image can be generated only by inputting the target medical image.

―変形例―
なお、上述した実施の形態の画像処理装置は、以下のように変形することもできる。
(1)上述した実施の形態では、画像処理装置100はパソコンであって、制御装置102が上述した処理を実行する例について説明した。しかしながら、操作者が操作する端末からインターネットなどの通信回線を介して画像処理装置100へ接続できるようにし、上述した入力画像XhやXaは、操作端末から画像処理装置100へ送信されることにより入力されてもよい。また、その場合は、診断結果画像は、操作端末に送信して、操作端末上で表示されるようにしてもよい。これによって、操作端末と画像処理装置100とを通信回線を介して接続することで、クライアントサーバー型やクラウド型の画像処理システムを構築することができる一方で、画像処理装置100を単体で用いることにより、スタンドアロン型の装置として利用することもできる。
-Modification-
The image processing apparatus according to the above-described embodiment can be modified as follows.
(1) In the above-described embodiment, the example in which the image processing apparatus 100 is a personal computer and the control apparatus 102 executes the above-described processing has been described. However, the terminal operated by the operator can be connected to the image processing apparatus 100 via a communication line such as the Internet, and the input images Xh and Xa described above are input by being transmitted from the operating terminal to the image processing apparatus 100. May be. In that case, the diagnosis result image may be transmitted to the operation terminal and displayed on the operation terminal. As a result, a client server type or cloud type image processing system can be constructed by connecting the operation terminal and the image processing apparatus 100 via a communication line, while the image processing apparatus 100 is used alone. Therefore, it can be used as a stand-alone device.

(2)上述した実施の形態では、トレーニングステップのための処理は、画像処理装置100で制御装置102が実行する例について説明した。しかしながら、トレーニングステップのための処理は他の装置で実行するようにして、トレーニングステップによって得られたデータを記憶媒体103に記録しておくようにしてもよい。この場合は、画像処理装置100でのトレーニングステップのための処理は不要となる。 (2) In the above-described embodiment, the example in which the processing for the training step is executed by the control apparatus 102 in the image processing apparatus 100 has been described. However, the processing for the training step may be executed by another device, and the data obtained by the training step may be recorded in the storage medium 103. In this case, processing for the training step in the image processing apparatus 100 is not necessary.

なお、本発明の特徴的な機能を損なわない限り、本発明は、上述した実施の形態における構成に何ら限定されない。また、上述の実施の形態と複数の変形例を組み合わせた構成としてもよい。   Note that the present invention is not limited to the configurations in the above-described embodiments as long as the characteristic functions of the present invention are not impaired. Moreover, it is good also as a structure which combined the above-mentioned embodiment and a some modification.

100 画像処理装置
101 操作部材
102 制御装置
103 記憶媒体
104 表示装置
DESCRIPTION OF SYMBOLS 100 Image processing apparatus 101 Operation member 102 Control apparatus 103 Storage medium 104 Display apparatus

Claims (6)

入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手段と、
前記対象医用画像内に含まれる、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として推定した特有部推定画像を生成する特有部推定画像生成手段と、
前記異常部抽出画像生成手段によって生成された前記異常部抽出画像と前記特有部推定画像生成手段によって生成された前記特有部推定画像の差分を算出して、前記異常部抽出画像内から前記特有部を排除した診断結果画像を生成する診断結果画像生成手段とを備え
前記異常部抽出画像生成手段は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに前記対象医用画像を入力し、前記オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、前記異常部抽出画像を生成し、
前記特有部推定画像生成手段は、前記特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を前記異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに前記対象医用画像を入力し、前記ニューラルネットワークからの出力画像を前記特有部推定画像とすることを特徴とする画像処理装置。
An abnormal part extraction image generating means for generating an abnormal part extraction image obtained by extracting, as an abnormal part, a difference part from a medical image obtained by photographing a healthy person from within the input target medical image;
A unique part that generates a unique part estimated image that is included in the target medical image and that is a different part from a medical image obtained by photographing a healthy person but that is a medically abnormal image-specific different part. Part estimation image generation means;
A difference between the abnormal part extracted image generated by the abnormal part extracted image generating unit and the specific part estimated image generated by the unique part estimated image generating unit is calculated, and the unique part is extracted from within the abnormal part extracted image. and a diagnosis result image generation means for generating a diagnosis result image which eliminated the,
The abnormal part extracted image generation means learns an image pattern of a medical image having no abnormality, and restores and outputs a medical image having no abnormality with respect to the input medical image to the target. Based on the difference image obtained by inputting the medical image and calculating the difference between the input image and the output image to the auto encoder, the abnormal part extraction image is generated,
When the medical image including the specific part and having no abnormality is input, the specific part estimation image generating unit inputs and extracts the medical image including the specific part and having no abnormality to the abnormal part extraction image generating unit. An image processing apparatus , wherein the target medical image is input to a neural network that has been trained to restore and output the generated image, and the output image from the neural network is used as the characteristic portion estimation image .
請求項1に記載の画像処理装置において、
前記診断結果画像生成手段によって生成された前記診断結果画像を表示装置に表示する画像表示手段をさらに備えることを特徴とする画像処理装置。
The image processing apparatus according to claim 1.
An image processing apparatus, further comprising an image display means for displaying the diagnosis result image generated by the diagnosis result image generation means on a display device.
入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手段と、
前記対象医用画像内から、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として抽出した特有部推定画像を生成する特有部推定画像生成手段と、
前記異常部抽出画像生成手段によって生成された前記異常部抽出画像と前記特有部推定画像生成手段によって生成された前記特有部推定画像の差分を算出して、前記異常部抽出画像内から前記特有部を排除した診断結果画像を生成する診断結果画像生成手段とを備え
前記異常部抽出画像生成手段は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに前記対象医用画像を入力し、前記オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、前記異常部抽出画像を生成し、
前記特有部推定画像生成手段は、前記特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を前記異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに前記対象医用画像を入力し、前記ニューラルネットワークからの出力画像を前記特有部推定画像とすることを特徴とする画像処理システム。
An abnormal part extraction image generating means for generating an abnormal part extraction image obtained by extracting, as an abnormal part, a difference part from a medical image obtained by photographing a healthy person from within the input target medical image;
From the target medical image, a unique part estimation that generates a unique part estimation image obtained by extracting a unique part of an image that is different from a medical image obtained by photographing a healthy person but is not medically abnormal. Image generating means;
A difference between the abnormal part extracted image generated by the abnormal part extracted image generating unit and the specific part estimated image generated by the unique part estimated image generating unit is calculated, and the unique part is extracted from within the abnormal part extracted image. and a diagnosis result image generation means for generating a diagnosis result image which eliminated the,
The abnormal part extracted image generation means learns an image pattern of a medical image having no abnormality, and restores and outputs a medical image having no abnormality with respect to the input medical image to the target. Based on the difference image obtained by inputting the medical image and calculating the difference between the input image and the output image to the auto encoder, the abnormal part extraction image is generated,
When the medical image including the specific part and having no abnormality is input, the specific part estimation image generating unit inputs and extracts the medical image including the specific part and having no abnormality to the abnormal part extraction image generating unit. An image processing system , wherein the target medical image is input to a neural network that has been trained to restore and output the generated image, and the output image from the neural network is used as the characteristic portion estimation image .
請求項に記載の画像処理システムにおいて、
前記診断結果画像生成手段によって生成された前記診断結果画像を表示装置に表示する画像表示手段をさらに備えることを特徴とする画像処理システム。
The image processing system according to claim 3 .
An image processing system, further comprising: an image display unit that displays the diagnostic result image generated by the diagnostic result image generation unit on a display device.
入力された対象医用画像内から、健康者を撮影した医用画像との差異部を異常部として抽出した異常部抽出画像を生成する異常部抽出画像生成手順と、
前記対象医用画像内から、健康者を撮影した医用画像との差異部ではあるが、医学的には異常ではない画像特有の差異部を特有部として抽出した特有部推定画像を生成する特有部推定画像生成手順と、
前記異常部抽出画像生成手順で生成した前記異常部抽出画像と前記特有部推定画像生成手順で生成した前記特有部推定画像の差分を算出して、前記異常部抽出画像内から前記特有部を排除した診断結果画像を生成する診断結果画像生成手順とをコンピュータに実行させるための画像処理プログラムであって、
前記異常部抽出画像生成手順は、異常がない医用画像の画像パターンを学習させ、入力された医用画像に対して異常がない医用画像を復元して出力するように構成されたオートエンコーダに前記対象医用画像を入力し、前記オートエンコーダへの入力画像と出力画像の差分を算出して得た差分画像に基づいて、前記異常部抽出画像を生成し、
前記特有部推定画像生成手順は、前記特有部を含んだ異常がない医用画像を入力したときに、該特有部を含んだ異常がない医用画像を前記異常部抽出画像生成手段に入力して抽出された画像を復元して出力するように学習させたニューラルネットワークに前記対象医用画像を入力し、前記ニューラルネットワークからの出力画像を前記特有部推定画像とすることを特徴とする画像処理プログラム。
An abnormal part extraction image generation procedure for generating an abnormal part extraction image obtained by extracting, as an abnormal part, a difference part from a medical image obtained by photographing a healthy person from within the input target medical image;
From the target medical image, a unique part estimation that generates a unique part estimation image obtained by extracting a unique part of an image that is different from a medical image obtained by photographing a healthy person but is not medically abnormal. Image generation procedure;
The difference between the abnormal part extracted image generated in the abnormal part extracted image generation procedure and the specific part estimated image generated in the specific part estimated image generation procedure is calculated, and the unique part is excluded from the abnormal part extracted image. An image processing program for causing a computer to execute a diagnostic result image generation procedure for generating a diagnostic result image ,
The abnormal part extraction image generation procedure includes learning the image pattern of a medical image having no abnormality, restoring the medical image having no abnormality with respect to the input medical image, and outputting the target to the auto encoder Based on the difference image obtained by inputting the medical image and calculating the difference between the input image and the output image to the auto encoder, the abnormal part extraction image is generated,
In the specific part estimated image generation procedure, when a medical image having no abnormality including the specific part is input, a medical image having no abnormality including the specific part is input to the abnormal part extraction image generation unit and extracted. An image processing program, wherein the target medical image is input to a neural network that has been trained to restore and output the generated image, and the output image from the neural network is used as the characteristic portion estimation image.
請求項に記載の画像処理プログラムにおいて、
前記診断結果画像生成手順で生成した前記診断結果画像を表示装置に表示する画像表示手順をさらに有することを特徴とする画像処理プログラム。
The image processing program according to claim 5 ,
An image processing program further comprising an image display procedure for displaying the diagnostic result image generated in the diagnostic result image generation procedure on a display device.
JP2018217104A 2018-11-20 2018-11-20 Image processing apparatus, image processing system, and image processing program Active JP6590386B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217104A JP6590386B1 (en) 2018-11-20 2018-11-20 Image processing apparatus, image processing system, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217104A JP6590386B1 (en) 2018-11-20 2018-11-20 Image processing apparatus, image processing system, and image processing program

Publications (2)

Publication Number Publication Date
JP6590386B1 true JP6590386B1 (en) 2019-10-16
JP2020086698A JP2020086698A (en) 2020-06-04

Family

ID=68234824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217104A Active JP6590386B1 (en) 2018-11-20 2018-11-20 Image processing apparatus, image processing system, and image processing program

Country Status (1)

Country Link
JP (1) JP6590386B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188839A (en) * 2019-05-20 2020-11-26 株式会社アルム Image processing device, image processing system, and image processing program
WO2021186962A1 (en) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, signal processing method, parameter search method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7520439B1 (en) 2024-04-05 2024-07-23 コアテック株式会社 Differential detection system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581088B2 (en) * 2005-05-17 2010-11-17 国立大学法人 筑波大学 Computer-aided diagnosis apparatus and method
JP2008259710A (en) * 2007-04-12 2008-10-30 Fujifilm Corp Image processing method, system and program
WO2012169344A1 (en) * 2011-06-10 2012-12-13 株式会社日立メディコ Image diagnosis assisting apparatus, and method
JP5989354B2 (en) * 2012-02-14 2016-09-07 東芝メディカルシステムズ株式会社 Image diagnosis support apparatus and method of operating image diagnosis support apparatus
JP2016023640A (en) * 2014-07-16 2016-02-08 信二 光延 Small-sized wind power generator assembly container unit type wind power generator
JP6301277B2 (en) * 2015-03-20 2018-03-28 富士フイルム株式会社 Diagnostic auxiliary image generation apparatus, diagnostic auxiliary image generation method, and diagnostic auxiliary image generation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188839A (en) * 2019-05-20 2020-11-26 株式会社アルム Image processing device, image processing system, and image processing program
WO2021186962A1 (en) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, signal processing method, parameter search method
US11785340B2 (en) 2020-03-16 2023-10-10 Sony Semiconductor Solutions Corporation Signal processing device, signal processing method, and parameter search method

Also Published As

Publication number Publication date
JP2020086698A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6590386B1 (en) Image processing apparatus, image processing system, and image processing program
JP5665903B2 (en) Image processing apparatus and method, image processing system, and program
CN110599421B (en) Model training method, video fuzzy frame conversion method, device and storage medium
JP7143862B2 (en) Diagnosis support device, learning device, diagnosis support method, learning method and program
US9361580B2 (en) Medical diagnosis support apparatus and method of controlling the same
JP6621117B1 (en) Image processing apparatus, image processing system, and image processing program
JP2015116319A (en) Diagnosis support device, diagnosis support method, and diagnosis support program
JP6071338B2 (en) Medical diagnosis support apparatus, medical diagnosis support method and program
JP6995535B2 (en) Image processing equipment, image processing methods and programs
JP6362061B2 (en) Diagnosis support system, operation method thereof, and program
US20180315131A1 (en) User-aware interview engine
JP6573416B1 (en) Blood pressure estimation device, blood pressure estimation system, and blood pressure estimation program
JP7349425B2 (en) Diagnosis support system, diagnosis support method, and diagnosis support program
JP6737487B1 (en) Image processing device, image processing system, and image processing program
JP6628258B2 (en) Driving aptitude determining device and driving aptitude determining system
JP2020010823A (en) Medical information processing apparatus, medical information processing system, and medical information processing program
JP7507025B2 (en) DIAGNOSIS SUPPORT SYSTEM, DIAGNOSIS SUPPORT METHOD, AND DIAGNOSIS SUPPORT PROGRAM
JP6683960B1 (en) Image processing device, image processing system, and image processing program
JP6862286B2 (en) Information processing equipment, information processing methods, information processing systems and programs
JP5201785B2 (en) MEDICAL IMAGE DATA PROCESSING DEVICE AND METHOD, PROGRAM, AND STORAGE MEDIUM
JP2009193148A (en) Medical information processing method, medical information processing program, and medical information processor
US20230386177A1 (en) Medical image processing system, medical image processing method, and program
WO2024150379A1 (en) Information processing device, information processing method, and program
US20240023812A1 (en) Photographing system that enables efficient medical examination, photographing control method, and storage medium
US20220181026A1 (en) Information processing apparatus, information processing system, information processing method, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190409

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6590386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250