US20160246470A1 - Display device and image transforming method - Google Patents
Display device and image transforming method Download PDFInfo
- Publication number
- US20160246470A1 US20160246470A1 US15/027,574 US201415027574A US2016246470A1 US 20160246470 A1 US20160246470 A1 US 20160246470A1 US 201415027574 A US201415027574 A US 201415027574A US 2016246470 A1 US2016246470 A1 US 2016246470A1
- Authority
- US
- United States
- Prior art keywords
- images
- cases
- display device
- image
- displays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/0485—Scrolling or panning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
- G06F1/1616—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1643—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1675—Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
- G06F1/1677—Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/1423—Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0232—Special driving of display border areas
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0492—Change of orientation of the displayed image, e.g. upside-down, mirrored
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/14—Solving problems related to the presentation of information to be displayed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2356/00—Detection of the display position w.r.t. other display screens
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2380/00—Specific applications
- G09G2380/14—Electronic books and readers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
- G09G3/3426—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
Definitions
- the present invention relates to a display device with multiple displays and in particular to an image correcting method for correcting images sequentially displayed on multiple displays.
- Patent Literature Document 1 displays an “information terminal device”, i.e. a folding mobile information terminal configured to process image information depending on an open-close angle between multiple displays.
- Patent Literature Document 2 discloses a “display device”, i.e. an electronic book able to change expansion/reduction ratios of images and directions of displaying images depending on any variation in an open-close angle between two displays.
- Patent Literature Document 3 discloses a “display device”, i.e.
- Patent Literature Document 4 discloses an “information processing device”, i.e. an information processing device implementing face recognition processing of images captured using a camera, which displays images according to a rotation angle to a reference axis.
- Patent Literature Document 5 discloses a “folding mobile terminal” configured to sequentially display images with a line of two displays.
- Patent Literature Document 6 discloses a “display device” which aims to prevent any shift of a display panel to a casing when a flexible display panel is transformed from a folded condition to an expanded condition.
- Patent Literature Document 1 Japanese Patent Application Publication No. H11-85108
- Patent Literature Document 2 Japanese Patent Application Publication No. 2009-222951
- Patent Literature Document 3 Japanese Patent Application Publication No. 2011-107711
- Patent Literature Document 4 Japanese Patent Application Publication No. 2012-4798
- Patent Literature Document 5 Japanese Patent Application Publication No. 2012-114739
- Patent Literature Document 6 Japanese Patent Application Publication No. 2013-50547
- the display device of Patent Literature Document 1 displays images being expanded or reduced in a vertical direction or a horizontal direction depending on an open-close angle in order to prevent difficulty of viewing display screens due to a small open-close angle between two casings.
- the display device of Patent Literature Document 1 is designed to implement image transformation for each screen, which in turn causes a problem of reducing visibility.
- a certain open-close angle may cause bending between screens on the border of a hinge connecting two casings. This situation may cause motion sickness for each user scrolling images with screens.
- the present invention is made to solve the above problem, and therefore the present invention aims to provide a display device and an image correcting method for correcting images sequentially displayed with multiple displays, thus improving visibility.
- a first aspect of the present invention is directed to a display device including a plurality of cases having an opening/closing mechanism, a plurality of displays installed in a plurality of cases, an open-close angle detector configured to detect an open-close angle between a plurality of cases, and a controller configured to carry out a transforming process on a plurality of images, displayed on a plurality of displays, based on the open-close angle detected by the open-close angle detector such that a plurality of images can be visually recognized as a continuous plane image.
- a second aspect of the present invention is directed to an image transforming method adapted to a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, including a step of detecting an open-close angle between a plurality of cases, and a step of carrying out a transforming process on a plurality of images displayed on a plurality of displays based on the open-close angle such that a plurality of images can be visually recognized as a continuous plane image.
- a third aspect of the present invention is directed to a program executing a transforming process on a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, implementing a step of detecting an open-close angle between the plurality of cases, and a step of carrying out the transforming process on a plurality of images displayed on a plurality of displays based on the open-close angle such that a plurality of images can be visually recognized as a continuous plane image.
- the present invention carries out an image transforming process depending on an open-close angle between two displays such that a user can visually recognize a plane image sequentially connecting two images displayed with two displays having an opening/closing mechanism. Additionally, it is possible to automatically correct displayed images subjected to bending at a user's viewing position relative to two displays such that a user can visually recognize a plane image sequentially connecting two images, thus improving user's visibility.
- FIG. 1 is a block diagram showing the configuration of a display device according to one embodiment of the present invention.
- FIG. 2 is a side view showing an external appearance of the display device according to one embodiment of the present invention.
- FIG. 3 is a side view showing an external appearance of the display device having two cases being opened at 180°.
- FIG. 4 is a side view showing an external appearance of the display devices having two cases being opened at 225°.
- FIG. 5 schematically shows an external appearance and displayed images of the display device having an open-close angle of 180° or more in a portrait orientation.
- FIG. 6 shows images displayed with the display device before a transforming process.
- FIG. 7 shows images displayed with the display device having an open-close angle of 180° in a portrait orientation.
- FIG. 8 schematically shows an external appearance and displayed images of the display device having an open-close angle of 180° or more in a landscape orientation.
- FIG. 9 shows images displayed with the display device before a transforming process.
- FIG. 10 shows images displayed with the display device having an open-close angle of 180° in a landscape orientation.
- FIG. 11 schematically shows positions of a user moving in a right-left direction viewed by a camera of the display device in the portrait orientation shown in FIG. 5 .
- FIG. 12 schematically shows images of a user, moving in a right-left direction, captured by a camera of the display device in the portrait orientation shown in FIG. 5 .
- FIG. 13 is an explanatory diagram used to explain a correcting process of images, depending on a user moving in a horizontal direction, displayed with the display device in the portrait orientation shown in FIG. 5 .
- FIG. 14 schematically shows positions of a user moving in a vertical direction viewed by a camera of the display device in the landscape orientation shown in FIG. 8 .
- FIG. 15 schematically shows images of a user, moving in a vertical direction, captured by a camera of the display device in the landscape orientation shown in FIG. 8 .
- FIG. 16 is an explanatory diagram used to explain a correcting process of images, depending on a user moving in a vertical direction, displayed with the display device in the landscape orientation shown in FIG. 8 .
- FIG. 1 is a block diagram showing the configuration of a display device 1 according to one embodiment of the present invention.
- FIGS. 2 to 4 are side views showing the external appearance of the display device 1 .
- the display device 1 includes a case 11 , a display 12 , a case 13 , a display 14 , an open-close angle detector 15 , and a controller 16 .
- FIGS. 2 to 4 the cases 11 and 13 are connected using a hinge 17 in a free open-close manner.
- FIG. 2 shows the display device 1 when the cases 11 and 13 are closed;
- FIG. 3 shows the display device 1 when the cases 11 and 13 are opened at 180°; and
- FIG. 4 shows the display device 1 when the cases 11 and 13 are opened at 225°.
- the case 11 includes the display 12 while the case 13 includes the display 14 .
- the open-close angle detector 15 and the controller 16 are installed in one of or both of the cases 11 and 13 .
- the displays 12 and 14 are display devices having liquid crystal panels.
- the displays 12 and 14 display images according to control signals supplied from the controller 16 . As shown in FIG. 2 , it is possible to turn the displays 12 and 14 to the exterior of the display device 1 when the cases 11 and 13 are closed.
- the open-close angle detector 15 detects an open-close angle between two cases 11 and 13 .
- the open-close angle detector 15 can be configured using two geomagnetic sensors. That is, geomagnetic sensors are installed in the cases 11 and 13 . Each geomagnetic sensor detects an angle formed about the hinge 17 .
- the controller 16 calculates an angle between the cases 11 and 13 based on two angles detected by two geomagnetic sensors. For example, it is possible to detect an angle between the cases 11 and 13 in units of five degrees.
- the method of detecting an angle between the cases 11 and 13 is not necessarily limited to the above method using geomagnetic sensor; hence, it is possible to employ any angle detecting technology already known.
- the controller 16 can be configured using a CPU (i.e. a central processing unit) and a volatile or non-volatile storage device.
- the controller 16 controls the displays 12 and 14 to display images based on image information stored in a non-volatile storage device.
- the controller 16 transforms images displayed on the displays 12 and 14 depending on an open-close angle between the cases 11 and 13 , which is detected by the open-close angle detector 15 , such that a user can visually recognize a plane image sequentially connecting two images displayed on the displays 12 and 14 .
- both the display face of the display 12 installed in the case 11 and the display face of the display 14 installed in the case 13 are disposed in the same plane when the cases 11 and 13 are opened at 180°.
- the display face of the display 12 and the display face of the display 14 are bent on the border of the hinge 17 when an angle between the cases 11 and 13 exceeds 180°.
- a user may visually recognize images being scrolled in different directions on the border of the hinge 17 in view of a user's eye 31 .
- a difference may occur between a user's manipulating sensation of scrolling images in the same direction and a user's visual sensation, thus causing motion sickness for a user.
- the controller 16 transforms an image on the display 12 such that a user can visually recognize the display 12 being disposed at a dashed-line position (i.e. a virtual position of a display 12 i) in view of a user's eye 31 . That is, the controller 16 transforms at least one of images on the displays 12 and 14 depending on an open-close angle detected by the open-close angle detector 15 such that a user can visually recognize the display face of the display 12 and the display face of the display 14 being disposed in the same plane.
- the display device 1 causes a user to visually recognize images on the displays 12 and 14 being subsequent to each other in the same plane (i.e. a single large screen).
- the controller 16 carries out an image transforming process by executing a predetermined program. The details of the image transforming process will be described later with reference to FIGS. 5 to 16 .
- the display device 1 of the present embodiment is not necessarily limited to the configuration shown in FIGS. 1 to 4 .
- a camera serving as a position detector configured to detect a user's position and having a function of capturing a user's face or the like, in the hinge 17 of the display 1 .
- the display device 1 it is possible for the display device 1 to change the image transforming process depending on a user's position (or a user's eye position) based on an image captured by a camera.
- the display device 1 it is possible to provide a touch panel integrally connecting the displays 12 and 14 as an input device of inputting a user's operation on screen, or it is possible to provide another input device, such as a switch and a cursor key, independently of the displays 12 and 14 .
- an acceleration sensor in the display device 1 so as to implement a function (or an orientation detector) of detecting an orientation of the display device 1 .
- a wired or wireless communication device in the display device 1 so as to implement a function of obtaining desired information from an external device.
- FIG. 5 schematically shows an external appearance and displayed images of the display device 1 in view of a user's eye 32 a disposed at a reference position P 1 a (i.e. the front side of the display device 1 ).
- FIG. 6 shows an image 41 before transformation.
- FIG. 7 shows displayed images, directly corresponding to the displayed images shown in FIG. 5 , when an angle between the cases 11 and 13 is set to 180°.
- An image 41 shown in FIG. 5 includes a plane image 42 and an image of a scroll bar (hereinafter, referred to as a scroll bar 43 ).
- the image 41 includes an arrow image 44 , indicating the scrolling direction, being superposed on the plane image 42 .
- the scroll bar 43 includes a scroll shaft 431 and a scroll box 432 . In this connection, images (not shown) subsequent to each other in the upper or lower direction toward the drawing sheet will be prepared for the plane image 42 .
- FIG. 5 shows an image after transformation which is rendered such that the display face of the upper case 13 will be disposed approximately perpendicular to the sight line of a user 32 a when the display device 1 is opened at an angle of 180° or more between the cases 11 and 13 on the condition that the lower case 11 is placed on a stand.
- the user 32 a may manually adjust the inclination of the upper case 13 in line with his/her sight line.
- the controller 16 transform images by switching the image processing process between the portrait orientation and the landscape orientation of the display device 1 .
- the following description refers to the displayed image of the display device 1 in the portrait orientation; hence, the displayed image in the landscape orientation will be described later.
- the controller 16 may detect the portrait orientation with the cases 11 and 13 by use of an orientation detector (not shown) configured of an acceleration sensor.
- the user 32 a may set the portrait orientation by carrying out a predetermined operation on the display device 1 .
- the controller 16 displays an image 41 a, i.e. an appropriately upper half of the plane image 41 of FIG. 6 , on the display 14 of the upper case 13 without using a transforming process. Additionally, the controller 16 displays an image 41 b, which is produced by transforming an approximately lower half of the plane image 41 , on the display 12 of the lower case 11 such that a user can visually recognize the image 41 b being subsequent to the displayed image 41 a of the upper case 13 in the same plane.
- the image 41 b after transformation is encompassed by bold dotted lines in the displayed image shown in FIGS. 5 and 7 . In the image displayed on the screen of the display 12 of the lower case 11 , as shown in FIG.
- pixel positions will be inwardly transformed (i.e. compressed) as they depart from the hinge 17 in the lower direction. That is, the controller 16 increases horizontally-compressed ratios at pixel positions which depart from the hinge 17 (i.e. the center of an open/close operation of the cases 11 and 13 ) in the upper direction or the lower direction. Additionally, the controller 16 controls image data using software so as to change an image-compressed ratio depending on an open-close angle between the cases 11 and 13 .
- the controller 16 changes a scrolling direction depending on transformed images, which a user can visually recognize as a continuous plane image, (i.e. along an image transforming direction).
- an arrow 51 indicates a scrolling direction after an image transforming process while an arrow 52 indicates a scrolling direction before an image transforming process.
- the controller 16 scrolls and displays the images 41 a and 41 b by way of a predetermined user's operation applied to a predetermined operator installed in the display device 1 .
- the display device of the present embodiment includes an operator such as a touch panel integrally formed with the displays 12 and 14 . In this case, a scroll operation should be made in a direction, indicated by the arrow 51 in FIGS.
- the scroll bar 43 and the arrow 44 included in the images 41 a or 41 b serve as the information visually notifying a user of a scrolling direction.
- the notification information allows a user to easily recognize a scrolling direction within a screen of displaying images after transformation.
- the controller 16 may control the display 12 to display any gadget (e.g. images representing dates and weathers) in the displayable spaces 45 and 46 .
- gadgets are small-size applications, e.g. software applications for updating and displaying any information such as dates and weathers in a predetermined time interval.
- the controller 16 may control the display 12 to turn off the backlight directly under the displayable spaces 45 and 46 .
- the controller 16 may display gadgets while turning off the backlight.
- the controller 16 may set displayable spaces, which occurs due to an image transforming process, to display areas of displaying predetermined applications, or the controller 16 may inhibit displayable spaces from being shown on screens.
- FIG. 8 schematically shows an external appearance and displayed images of the display device 1 in view of a user's eye 32 .
- FIG. 9 shows an image before transformation.
- FIG. 10 shows a displayed image, directly corresponding to the displayed image shown in FIG. 8 , on the display device 1 in which the cases 11 and 13 are opened at an angle of 180°.
- the display device 1 shown in FIGS. 8 to 10 is equipped with the camera 18 , which is not shown in the display device 1 of FIGS.
- FIG. 9 shows an image 61 including a plane image 62 and a scroll-bar image 63 (hereinafter, referred to as a scroll bar 63 ).
- the image 61 includes an arrow image 64 , indicating a scrolling direction, being superposed on the plane image 62 . Additionally, images (not shown) subsequent to the left or right of the image of FIG. 9 are prepared for the plane image 62 .
- FIG. 8 shows a displayed image on the display device 1 , in which the cases 11 and 13 are opened at an angle of 180° or more, when the user 32 holds the display device 1 to locate the hinge 17 at the center in front of the user 32 .
- the user 32 holds the display device 1 to locate the hinge 17 approximately perpendicular to his/her sight line.
- the controller 16 uses an orientation detector (not shown), configured of an acceleration sensor, to detect the landscape orientation of the cases 11 and 13 so as to transform images according to an image transforming process which is switched from the portrait orientation to the landscape orientation.
- the controller 16 controls the display 14 of the left-side case 13 to display an image 61 a which is produced by transforming an approximately left half of the plane image 41 shown in FIG. 9 . Additionally, the controller 16 controls the display 12 of the right-side case 11 to display an image 61 b which is produced by transforming an approximately right half of the plane image 41 such that the user 32 can visually recognize the image 61 b subsequent to the image 61 a.
- the images 61 a and 61 b after transformation are encompassed by bold dotted lines.
- the controller 16 transforms the left image 61 a and the right image 61 b by the same angle. That is, the controller 16 transforms and displays the images 61 a and 61 b with the display 14 of the case 13 and the display 12 of the case 11 such that the user 32 can visually recognize a plane image sequentially connecting the left image 61 a and the right image 61 b.
- the left image 61 a and the right image 61 b are transformed (or compressed) inwardly of the image 61 before transformation at pixel positions which depart from the hinge 17 . That is, the controller 16 increases vertically-compressed ratios at pixel positions which depart from the hinge 17 in a horizontal direction. Additionally, the controller 16 controls an image-compressed ratio depending on an open-close angle between the cases 11 and 13 by way of software.
- the controller 16 changes a scrolling direction depending on transformed images which a user can visually recognize as a plane image continuing in a left-right direction.
- a scroll operation should be made in a direction with an angle by which the touch position of a user's finger on the touch panel will be changed inwardly of the touch position (i.e. a direction of an arrow 54 ) applied to an image before transformation as the user's touch position departs from the hinge 17 in the left-right direction. This angle increase as the angle between the cases 11 and 13 becomes larger.
- the controller 16 displays the information notifying a user of a scrolling direction (i.e.
- the scroll bar 63 and the arrow 64 This makes it possible for a user to recognize a scrolling direction on the screen displaying an image after transformation.
- a set of displayable spaces 65 to 68 is formed in upper and lower vacant areas.
- the controller 16 may display gadgets (e.g. images representing dates and weathers) in the displayable spaces 65 to 68 , or the controller 16 may turn off the backlight.
- FIG. 5 a study will be made with respect to the case where a user's eye or a user's face moves in a direction perpendicular to a scrolling direction (i.e. a direction of the arrow 51 ) so as to move from the reference position P 1 a to the position P 1 b or the position P 1 c.
- the left-side illustration of FIG. 13 shows images 41 c and 41 d (i.e. images before correction) displayed on the displays 12 and 14 of the display device 1 in view of the user 32 b at the position P 1 b.
- the right-side illustration of FIG. 13 shows images 41 e and 41 f (i.e. images after correction) displayed on the displays 12 and 14 of the display device 1 in view of the user 32 b at the position P 1 b.
- the image 41 c of the display 14 is an image corresponding to the image 41 a of FIG.
- the controller 16 generates the images 41 e and 41 f which can be visually recognized as a continuous plane image based on the captured information of the camera 18 .
- the controller 16 may generates the images 41 e and 41 f by correcting the images 41 c and 41 d, or the controller 16 may generates the images 41 e and 41 f by transforming the original image 41 .
- the controller 16 uses the camera 18 attached to the hinge 17 calculates the position of a user's face (or a user's eye) based on the angle information supplied by the camera 18 . That is, the camera 18 carries out face recognition or eye recognition based on the captured image so as to supply an electric signal, representing the position of a user's face or a user's eye, to the controller 16 .
- the controller 16 carries out a transforming process (or a correcting process) on image data in conformity with the angle information.
- the predetermined setting information indicates an initial value of a distance from the display device 1 to a user or information used to calculate a distance to a user based on information of the captured user's face or the like.
- FIGS. 11 and 12 schematically shows the positions of the users 33 a to 33 c in view of the camera 18 .
- FIG. 12 schematically shows an image 71 corresponding to the users 33 a to 33 c captured by the camera 18 .
- the positions of the users 33 a to 33 c correspond to the positions of the users 33 a to 33 c shown in FIG. 5 .
- an angular range (i.e. an angle of view) which can be captured by the camera 18 in a horizontal direction is set to 80°.
- the image 71 captured by the camera 18 is an image covering a range of 40° in the left and right of the center position, i.e. “0°”.
- FIG. 12 shows an angle of view of the camera 18 along with a number line; hence, the camera 18 detects the position of the captured eyes or face of the user 33 in units of ten degrees in a range from 40° left to 40° right. That is, the positions of nine points are set to the number line.
- FIG. 12 shows an angle of view of the camera 18 along with a number line; hence, the camera 18 detects the position of the captured eyes or face of the user 33 in units of ten degrees in a range from 40° left to 40° right. That is, the positions of nine points are set to the number line.
- the position of the eyes or face of the user 33 is set to second, fifth, and eighth points from the left along with the number line. That is, the camera 18 detects the position of the user 33 c as “30° left”, the position of the user 33 a as “0°”, and the position of the user 33 b as “30° right”. The camera 18 supplies an electric signal, representing the angle information, to the controller 16 .
- the controller 16 carries out software control to correct the images 41 c and 41 d to the images 41 e and 41 f based on the angle information.
- FIG. 8 a correcting process for an image transforming process, which the controller 16 carries out in response to the position of the user 32 detected by the camera 18 when the user 32 disposed at a reference position P 2 a moves to a position P 2 b or a position P 2 c, will be described with reference to FIG. 8 and FIGS. 14 to 16 .
- the controller 16 Similar to the portrait orientation of the display device 1 shown in FIG. 5 which is described with reference to FIGS. 11 to 13 , the landscape orientation of the display device 1 shown in FIG. 8 will be described with reference to FIGS. 14 to 16 .
- FIG. 8 a study will be made with respect to the case where the eyes or face of the user 32 moves in a direction perpendicular to a scrolling direction (i.e. a direction of the arrow 53 ) so as to move from the reference position P 2 a to the position P 2 b or the position P 2 c.
- a scrolling direction i.e. a direction of the arrow 53
- the user 32 after movement cannot visually recognize a continuous plane image since the images displayed on the displays 12 and 14 are bent in a vertical direction.
- the left-side illustration of FIG. 16 schematically shows images 61 c and 61 d (i.e. images before correction) in view of a user 35 b moved to the position Pb 2 .
- the image 61 c corresponds to the image 61 a of the display 14 viewed by the user 35 b at the position Pb 2
- the image 61 d corresponds to the image 61 b of the display 12 viewed by the user 35 b.
- the user 35 b may visually recognize a discontinuous plane image as the images 61 c and 61 d before correction.
- the right-side illustration of FIG. 16 shows images 61 e and 61 f, which are produced by correcting the images 61 c and 61 d, in view of the user 35 b.
- the controller 16 corrects the images 61 c and 61 d based on the captured information of the camera 18 so as to produce the images 61 e and 61 f which the user 35 b can visually recognize a continuous plane image.
- the controller 16 uses the camera 18 attached to the hinge 17 obtains the angle information representing the position of the user's eyes or face. That is, the camera 18 carries out face recognition or eye recognition based on the captured image so as to supply an electric signal, i.e. the angle information representing the position of the user's face or eyes, to the controller 16 .
- the controller 16 corrects or transforms images based on the angle information.
- a method of detecting the angle information, representing the position of eyes of users 34 a to 34 c, by use of the camera 18 will be described with reference to FIGS. 14 and 15 .
- FIG. 14 schematically shows the positions of the users 34 a to 34 c in view of the camera 18 .
- FIG. 14 schematically shows the positions of the users 34 a to 34 c in view of the camera 18 .
- FIG. 15 schematically shows an image 72 representing the users 34 a to 34 c captured by the camera 18 .
- the positions of the users 34 a, 34 b, and 34 c correspond to the positions P 2 a, P 2 b, and P 2 c shown in FIG. 8 .
- an angular range i.e. an angle of view which the camera 18 can capture images in a vertical direction is set to 40°.
- the image 72 captured by the camera 18 covers a range of 20° in the upper and lower side of the center, i.e. “0°”.
- the position of the user's eyes or face is set to the number line in units of ten degrees from 20° up to 20° down. That is, five points are set to the number line.
- the camera 18 detects the position of the user's eyes or face, which is set to second, third, and fourth points along with the number line, as 10° up, 0°, and 10° down.
- the camera 18 supplies an electric signal, representing the angle information, to the controller 16 .
- the controller 16 implements software control to correct the images 61 c and 61 d to the images 61 e and 61 f.
- the display device 1 of the present embodiment is designed to produce a single plane image by use of the displays 12 and 14 by transforming two images such that a user can visually recognize a continuous plane image.
- the display device 1 of the present embodiment it is possible for the display device 1 of the present embodiment to prevent user's motion sickness when a user concurrently carries out a scrolling operation on two screens.
- the present invention is not necessarily limited to the foregoing embodiment.
- the display device of the present invention can be configured using one or multiple computers and programs, wherein those programs can be provided using computer-readable storage media or through communication lines.
- the present invention is applied to a display device which combines multiple screens to display a single continuous plane image; hence, the present invention is able to combine multiple images such that users can naturally and visually recognize images depending on open-close angles or viewing positions of electronic books and folding information terminals.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Controls And Circuits For Display Device (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
A display device includes a plurality of cases having an opening/closing mechanism, a plurality of displays installed in a plurality of cases, and an open-close angle detector configured to detect an open-close angle between a plurality of cases. The display devices carries out a transforming process on a plurality of images based on the open-close angle between the cases such that a plurality of images can be visually recognized as a continuous plane image. Additionally, the display device changes the transforming process depending on a portrait orientation and a landscape orientation. Moreover, it is possible to correct a plurality of images based on a user's position concerning a user's specific part relative to the display device.
Description
- The present invention relates to a display device with multiple displays and in particular to an image correcting method for correcting images sequentially displayed on multiple displays.
- The present application claims priority on Japanese Patent Application No. 2013-212834 filed Oct. 10, 2013, the entire content of which is incorporated herein by reference.
- Conventionally, engineer have developed display devices with multiple displays configured to sequentially display images. For example, display devices having a two-screen configuration installing displays in two cases having an opening/closing mechanism have been developed.
Patent Literature Document 1 displays an “information terminal device”, i.e. a folding mobile information terminal configured to process image information depending on an open-close angle between multiple displays.Patent Literature Document 2 discloses a “display device”, i.e. an electronic book able to change expansion/reduction ratios of images and directions of displaying images depending on any variation in an open-close angle between two displays. Patent Literature Document 3 discloses a “display device”, i.e. a mobile communication device implementing 3D display operations using two screens, which calculates visions depending on opening angles in upper-lower and right-left directions so as to change parameters used for 3D display operations. Patent Literature Document 4 discloses an “information processing device”, i.e. an information processing device implementing face recognition processing of images captured using a camera, which displays images according to a rotation angle to a reference axis. Patent Literature Document 5 discloses a “folding mobile terminal” configured to sequentially display images with a line of two displays. Patent Literature Document 6 discloses a “display device” which aims to prevent any shift of a display panel to a casing when a flexible display panel is transformed from a folded condition to an expanded condition. - Patent Literature Document 1: Japanese Patent Application Publication No. H11-85108
- Patent Literature Document 2: Japanese Patent Application Publication No. 2009-222951
- Patent Literature Document 3: Japanese Patent Application Publication No. 2011-107711
- Patent Literature Document 4: Japanese Patent Application Publication No. 2012-4798
- Patent Literature Document 5: Japanese Patent Application Publication No. 2012-114739
- Patent Literature Document 6: Japanese Patent Application Publication No. 2013-50547
- The display device of
Patent Literature Document 1 displays images being expanded or reduced in a vertical direction or a horizontal direction depending on an open-close angle in order to prevent difficulty of viewing display screens due to a small open-close angle between two casings. Thus, it is possible to prevent difficulty of viewing due to strained aspect ratios for displaying characters and images when a user slantingly views display screens. However, the display device ofPatent Literature Document 1 is designed to implement image transformation for each screen, which in turn causes a problem of reducing visibility. When a single image is displayed using two screens, for example, a certain open-close angle may cause bending between screens on the border of a hinge connecting two casings. This situation may cause motion sickness for each user scrolling images with screens. In short, it is difficult to secure good visibility for images displayed with multiple displays. - The present invention is made to solve the above problem, and therefore the present invention aims to provide a display device and an image correcting method for correcting images sequentially displayed with multiple displays, thus improving visibility.
- A first aspect of the present invention is directed to a display device including a plurality of cases having an opening/closing mechanism, a plurality of displays installed in a plurality of cases, an open-close angle detector configured to detect an open-close angle between a plurality of cases, and a controller configured to carry out a transforming process on a plurality of images, displayed on a plurality of displays, based on the open-close angle detected by the open-close angle detector such that a plurality of images can be visually recognized as a continuous plane image.
- A second aspect of the present invention is directed to an image transforming method adapted to a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, including a step of detecting an open-close angle between a plurality of cases, and a step of carrying out a transforming process on a plurality of images displayed on a plurality of displays based on the open-close angle such that a plurality of images can be visually recognized as a continuous plane image.
- A third aspect of the present invention is directed to a program executing a transforming process on a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, implementing a step of detecting an open-close angle between the plurality of cases, and a step of carrying out the transforming process on a plurality of images displayed on a plurality of displays based on the open-close angle such that a plurality of images can be visually recognized as a continuous plane image.
- The present invention carries out an image transforming process depending on an open-close angle between two displays such that a user can visually recognize a plane image sequentially connecting two images displayed with two displays having an opening/closing mechanism. Additionally, it is possible to automatically correct displayed images subjected to bending at a user's viewing position relative to two displays such that a user can visually recognize a plane image sequentially connecting two images, thus improving user's visibility.
-
FIG. 1 is a block diagram showing the configuration of a display device according to one embodiment of the present invention. -
FIG. 2 is a side view showing an external appearance of the display device according to one embodiment of the present invention. -
FIG. 3 is a side view showing an external appearance of the display device having two cases being opened at 180°. -
FIG. 4 is a side view showing an external appearance of the display devices having two cases being opened at 225°. -
FIG. 5 schematically shows an external appearance and displayed images of the display device having an open-close angle of 180° or more in a portrait orientation. -
FIG. 6 shows images displayed with the display device before a transforming process. -
FIG. 7 shows images displayed with the display device having an open-close angle of 180° in a portrait orientation. -
FIG. 8 schematically shows an external appearance and displayed images of the display device having an open-close angle of 180° or more in a landscape orientation. -
FIG. 9 shows images displayed with the display device before a transforming process. -
FIG. 10 shows images displayed with the display device having an open-close angle of 180° in a landscape orientation. -
FIG. 11 schematically shows positions of a user moving in a right-left direction viewed by a camera of the display device in the portrait orientation shown inFIG. 5 . -
FIG. 12 schematically shows images of a user, moving in a right-left direction, captured by a camera of the display device in the portrait orientation shown inFIG. 5 . -
FIG. 13 is an explanatory diagram used to explain a correcting process of images, depending on a user moving in a horizontal direction, displayed with the display device in the portrait orientation shown inFIG. 5 . -
FIG. 14 schematically shows positions of a user moving in a vertical direction viewed by a camera of the display device in the landscape orientation shown inFIG. 8 . -
FIG. 15 schematically shows images of a user, moving in a vertical direction, captured by a camera of the display device in the landscape orientation shown inFIG. 8 . -
FIG. 16 is an explanatory diagram used to explain a correcting process of images, depending on a user moving in a vertical direction, displayed with the display device in the landscape orientation shown inFIG. 8 . - The present invention will be described in detail by way of examples with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the configuration of adisplay device 1 according to one embodiment of the present invention.FIGS. 2 to 4 are side views showing the external appearance of thedisplay device 1. Thedisplay device 1 includes acase 11, adisplay 12, acase 13, adisplay 14, an open-close angle detector 15, and acontroller 16. - As shown in
FIGS. 2 to 4 , thecases hinge 17 in a free open-close manner.FIG. 2 shows thedisplay device 1 when thecases FIG. 3 shows thedisplay device 1 when thecases FIG. 4 shows thedisplay device 1 when thecases case 11 includes thedisplay 12 while thecase 13 includes thedisplay 14. Additionally, the open-close angle detector 15 and thecontroller 16 are installed in one of or both of thecases - The
displays displays controller 16. As shown inFIG. 2 , it is possible to turn thedisplays display device 1 when thecases - The open-
close angle detector 15 detects an open-close angle between twocases close angle detector 15 can be configured using two geomagnetic sensors. That is, geomagnetic sensors are installed in thecases hinge 17. Thecontroller 16 calculates an angle between thecases cases cases - The
controller 16 can be configured using a CPU (i.e. a central processing unit) and a volatile or non-volatile storage device. For example, thecontroller 16 controls thedisplays controller 16 transforms images displayed on thedisplays cases close angle detector 15, such that a user can visually recognize a plane image sequentially connecting two images displayed on thedisplays - As shown in
FIG. 3 , both the display face of thedisplay 12 installed in thecase 11 and the display face of thedisplay 14 installed in thecase 13 are disposed in the same plane when thecases FIG. 4 , the display face of thedisplay 12 and the display face of thedisplay 14 are bent on the border of thehinge 17 when an angle between thecases displays hinge 17 in view of a user'seye 31. In this case, a difference may occur between a user's manipulating sensation of scrolling images in the same direction and a user's visual sensation, thus causing motion sickness for a user. - For this reason, the
controller 16 transforms an image on thedisplay 12 such that a user can visually recognize thedisplay 12 being disposed at a dashed-line position (i.e. a virtual position of a display 12i) in view of a user'seye 31. That is, thecontroller 16 transforms at least one of images on thedisplays close angle detector 15 such that a user can visually recognize the display face of thedisplay 12 and the display face of thedisplay 14 being disposed in the same plane. - Owing to the image transforming process, the
display device 1 causes a user to visually recognize images on thedisplays controller 16 carries out an image transforming process by executing a predetermined program. The details of the image transforming process will be described later with reference toFIGS. 5 to 16 . - The
display device 1 of the present embodiment is not necessarily limited to the configuration shown inFIGS. 1 to 4 . For example, it is possible to install three or more cases in thedisplay 1. Alternatively, it is possible to install a camera, serving as a position detector configured to detect a user's position and having a function of capturing a user's face or the like, in thehinge 17 of thedisplay 1. Additionally, it is possible for thedisplay device 1 to change the image transforming process depending on a user's position (or a user's eye position) based on an image captured by a camera. - In the
display device 1, it is possible to provide a touch panel integrally connecting thedisplays displays display device 1 so as to implement a function (or an orientation detector) of detecting an orientation of thedisplay device 1. Additionally, it is possible to install a wired or wireless communication device in thedisplay device 1 so as to implement a function of obtaining desired information from an external device. Moreover, it is possible to employ flexible displays, serving as thedisplays - Next, a transforming process of transforming images displayed on two screens in the
display device 1 shown inFIGS. 1 to 4 in a portrait orientation, in which thecases FIGS. 5 to 7 .FIG. 5 schematically shows an external appearance and displayed images of thedisplay device 1 in view of a user'seye 32 a disposed at a reference position P1 a (i.e. the front side of the display device 1).FIG. 6 shows animage 41 before transformation.FIG. 7 shows displayed images, directly corresponding to the displayed images shown inFIG. 5 , when an angle between thecases display device 1 shown inFIGS. 5 and 7 is further equipped with acamera 18, which is not shown inFIGS. 1 to 4 , which is attached to thehinge 17 in the vicinity of the center position. Animage 41 shown inFIG. 5 includes aplane image 42 and an image of a scroll bar (hereinafter, referred to as a scroll bar 43). Theimage 41 includes anarrow image 44, indicating the scrolling direction, being superposed on theplane image 42. Thescroll bar 43 includes ascroll shaft 431 and ascroll box 432. In this connection, images (not shown) subsequent to each other in the upper or lower direction toward the drawing sheet will be prepared for theplane image 42. -
FIG. 5 shows an image after transformation which is rendered such that the display face of theupper case 13 will be disposed approximately perpendicular to the sight line of auser 32 a when thedisplay device 1 is opened at an angle of 180° or more between thecases lower case 11 is placed on a stand. In this case, theuser 32 a may manually adjust the inclination of theupper case 13 in line with his/her sight line. Thecontroller 16 transform images by switching the image processing process between the portrait orientation and the landscape orientation of thedisplay device 1. The following description refers to the displayed image of thedisplay device 1 in the portrait orientation; hence, the displayed image in the landscape orientation will be described later. To switch the image transforming process, thecontroller 16 may detect the portrait orientation with thecases user 32 a may set the portrait orientation by carrying out a predetermined operation on thedisplay device 1. - In
FIG. 5 , thecontroller 16 displays animage 41 a, i.e. an appropriately upper half of theplane image 41 ofFIG. 6 , on thedisplay 14 of theupper case 13 without using a transforming process. Additionally, thecontroller 16 displays animage 41 b, which is produced by transforming an approximately lower half of theplane image 41, on thedisplay 12 of thelower case 11 such that a user can visually recognize theimage 41 b being subsequent to the displayedimage 41 a of theupper case 13 in the same plane. Theimage 41 b after transformation is encompassed by bold dotted lines in the displayed image shown inFIGS. 5 and 7 . In the image displayed on the screen of thedisplay 12 of thelower case 11, as shown inFIG. 7 , pixel positions will be inwardly transformed (i.e. compressed) as they depart from thehinge 17 in the lower direction. That is, thecontroller 16 increases horizontally-compressed ratios at pixel positions which depart from the hinge 17 (i.e. the center of an open/close operation of thecases 11 and 13) in the upper direction or the lower direction. Additionally, thecontroller 16 controls image data using software so as to change an image-compressed ratio depending on an open-close angle between thecases - The
controller 16 changes a scrolling direction depending on transformed images, which a user can visually recognize as a continuous plane image, (i.e. along an image transforming direction). InFIGS. 5 and 7 , anarrow 51 indicates a scrolling direction after an image transforming process while anarrow 52 indicates a scrolling direction before an image transforming process. Thecontroller 16 scrolls and displays theimages display device 1. The display device of the present embodiment includes an operator such as a touch panel integrally formed with thedisplays arrow 51 inFIGS. 5 and 7 , with an angle by which the touch position of a user's finger on the touch panel will be changed inwardly of the touch position applied to an image before transformation as the user's touch position departs from thehinge 17 in the upper or lower direction. This angle increases as the angle between thecases scroll bar 43 and thearrow 44 included in theimages - When displaying the
image 41 b after transformation on thedisplay 12, a pair ofdisplayable spaces 45 and 46 (see hatching areas inFIGS. 5 and 7 ) is formed on both sides of thecompressed image 41 b. Thecontroller 16 may control thedisplay 12 to display any gadget (e.g. images representing dates and weathers) in thedisplayable spaces displays controller 16 may control thedisplay 12 to turn off the backlight directly under thedisplayable spaces controller 16 may display gadgets while turning off the backlight. Alternatively, it is possible to reduce light without completely turning off the backlight. That is, thecontroller 16 may set displayable spaces, which occurs due to an image transforming process, to display areas of displaying predetermined applications, or thecontroller 16 may inhibit displayable spaces from being shown on screens. - Next, examples of transformed images displayed on the
display device 1 shown inFIGS. 1 to 4 in a landscape orientation, in which thecases FIGS. 8 to 10 .FIG. 8 schematically shows an external appearance and displayed images of thedisplay device 1 in view of a user'seye 32.FIG. 9 shows an image before transformation.FIG. 10 shows a displayed image, directly corresponding to the displayed image shown inFIG. 8 , on thedisplay device 1 in which thecases display device 1 shown inFIGS. 8 to 10 is equipped with thecamera 18, which is not shown in thedisplay device 1 ofFIGS. 1 to 4 , which is attached to thehinge 17 in the vicinity of the center area.FIG. 9 shows animage 61 including aplane image 62 and a scroll-bar image 63 (hereinafter, referred to as a scroll bar 63). Theimage 61 includes anarrow image 64, indicating a scrolling direction, being superposed on theplane image 62. Additionally, images (not shown) subsequent to the left or right of the image ofFIG. 9 are prepared for theplane image 62. -
FIG. 8 shows a displayed image on thedisplay device 1, in which thecases user 32 holds thedisplay device 1 to locate thehinge 17 at the center in front of theuser 32. Herein, theuser 32 holds thedisplay device 1 to locate thehinge 17 approximately perpendicular to his/her sight line. For example, thecontroller 16 uses an orientation detector (not shown), configured of an acceleration sensor, to detect the landscape orientation of thecases - In
FIG. 8 , thecontroller 16 controls thedisplay 14 of the left-side case 13 to display animage 61 a which is produced by transforming an approximately left half of theplane image 41 shown inFIG. 9 . Additionally, thecontroller 16 controls thedisplay 12 of the right-side case 11 to display animage 61 b which is produced by transforming an approximately right half of theplane image 41 such that theuser 32 can visually recognize theimage 61 b subsequent to theimage 61 a. InFIGS. 8 and 10 , theimages - In the landscape orientation of the
display device 1, as shown inFIG. 8 , thecontroller 16 transforms theleft image 61 a and theright image 61 b by the same angle. That is, thecontroller 16 transforms and displays theimages display 14 of thecase 13 and thedisplay 12 of thecase 11 such that theuser 32 can visually recognize a plane image sequentially connecting theleft image 61 a and theright image 61 b. As shown inFIGS. 8 and 10 , theleft image 61 a and theright image 61 b are transformed (or compressed) inwardly of theimage 61 before transformation at pixel positions which depart from thehinge 17. That is, thecontroller 16 increases vertically-compressed ratios at pixel positions which depart from thehinge 17 in a horizontal direction. Additionally, thecontroller 16 controls an image-compressed ratio depending on an open-close angle between thecases - In the landscape orientation similar to the portrait orientation of the
display device 1, thecontroller 16 changes a scrolling direction depending on transformed images which a user can visually recognize as a plane image continuing in a left-right direction. As shown by anarrow 53 inFIGS. 8 and 10 , a scroll operation should be made in a direction with an angle by which the touch position of a user's finger on the touch panel will be changed inwardly of the touch position (i.e. a direction of an arrow 54) applied to an image before transformation as the user's touch position departs from thehinge 17 in the left-right direction. This angle increase as the angle between thecases controller 16 displays the information notifying a user of a scrolling direction (i.e. thescroll bar 63 and the arrow 64). This makes it possible for a user to recognize a scrolling direction on the screen displaying an image after transformation. Upon displaying theimages displayable spaces 65 to 68 is formed in upper and lower vacant areas. At this time, thecontroller 16 may display gadgets (e.g. images representing dates and weathers) in thedisplayable spaces 65 to 68, or thecontroller 16 may turn off the backlight. - Next, a correcting process for an image transforming process, which the
controller 16 carries out in response to a user's position detected by thecamera 18 when theuser 32 a disposed at a reference position P1 a moves to a position Pb1 or a position Pbc, will be described with reference toFIG. 5 andFIGS. 11 to 13 . As shown inFIG. 5 , a study will be made with respect to the case where a user's eye or a user's face moves in a direction perpendicular to a scrolling direction (i.e. a direction of the arrow 51) so as to move from the reference position P1 a to the position P1 b or the position P1 c. In this case, auser displays hinge 17 in a horizontal direction. The left-side illustration ofFIG. 13 showsimages displays display device 1 in view of theuser 32 b at the position P1 b. The right-side illustration ofFIG. 13 showsimages displays display device 1 in view of theuser 32 b at the position P1 b. Theimage 41 c of thedisplay 14 is an image corresponding to theimage 41 a ofFIG. 5 viewed by theuser 32 b, while theimage 41 d is an image corresponding to theimage 41 a ofFIG. 5 viewed by theuser 32 b. Theuser 32 b after movement may visually recognize that theimages user 32 a moves from the reference position P1 a to the position P1 b. Thus, thecontroller 16 generates theimages camera 18. In this case, thecontroller 16 may generates theimages images controller 16 may generates theimages original image 41. - Upon implementing the correcting process shown in
FIG. 13 , thecontroller 16 using thecamera 18 attached to thehinge 17 calculates the position of a user's face (or a user's eye) based on the angle information supplied by thecamera 18. That is, thecamera 18 carries out face recognition or eye recognition based on the captured image so as to supply an electric signal, representing the position of a user's face or a user's eye, to thecontroller 16. Using the predetermined setting information which is prepared in advance, thecontroller 16 carries out a transforming process (or a correcting process) on image data in conformity with the angle information. Herein, the predetermined setting information indicates an initial value of a distance from thedisplay device 1 to a user or information used to calculate a distance to a user based on information of the captured user's face or the like. Next, a method of detecting the angle information representing the positions of eyes ofusers 33 a to 33 c by use of thecamera 18 will be described with reference toFIGS. 11 and 12 .FIG. 11 schematically shows the positions of theusers 33 a to 33 c in view of thecamera 18.FIG. 12 schematically shows animage 71 corresponding to theusers 33 a to 33 c captured by thecamera 18. InFIGS. 11 and 12 , the positions of theusers 33 a to 33 c correspond to the positions of theusers 33 a to 33 c shown inFIG. 5 . - In
FIG. 11 , an angular range (i.e. an angle of view) which can be captured by thecamera 18 in a horizontal direction is set to 80°. In this case, as shown inFIG. 12 , theimage 71 captured by thecamera 18 is an image covering a range of 40° in the left and right of the center position, i.e. “0°”.FIG. 12 shows an angle of view of thecamera 18 along with a number line; hence, thecamera 18 detects the position of the captured eyes or face of the user 33 in units of ten degrees in a range from 40° left to 40° right. That is, the positions of nine points are set to the number line. InFIG. 12 , the position of the eyes or face of the user 33 is set to second, fifth, and eighth points from the left along with the number line. That is, thecamera 18 detects the position of theuser 33 c as “30° left”, the position of theuser 33 a as “0°”, and the position of theuser 33 b as “30° right”. Thecamera 18 supplies an electric signal, representing the angle information, to thecontroller 16. Thecontroller 16 carries out software control to correct theimages images - Next, a correcting process for an image transforming process, which the
controller 16 carries out in response to the position of theuser 32 detected by thecamera 18 when theuser 32 disposed at a reference position P2 a moves to a position P2 b or a position P2 c, will be described with reference toFIG. 8 andFIGS. 14 to 16 . Similar to the portrait orientation of thedisplay device 1 shown inFIG. 5 which is described with reference toFIGS. 11 to 13 , the landscape orientation of thedisplay device 1 shown inFIG. 8 will be described with reference toFIGS. 14 to 16 . - As shown in
FIG. 8 , a study will be made with respect to the case where the eyes or face of theuser 32 moves in a direction perpendicular to a scrolling direction (i.e. a direction of the arrow 53) so as to move from the reference position P2 a to the position P2 b or the position P2 c. In this case, theuser 32 after movement cannot visually recognize a continuous plane image since the images displayed on thedisplays FIG. 16 schematically showsimages user 35 b moved to the position Pb2. Theimage 61 c corresponds to theimage 61 a of thedisplay 14 viewed by theuser 35 b at the position Pb2, while theimage 61 d corresponds to theimage 61 b of thedisplay 12 viewed by theuser 35 b. Theuser 35 b may visually recognize a discontinuous plane image as theimages FIG. 16 showsimages images user 35 b. Thecontroller 16 corrects theimages camera 18 so as to produce theimages user 35 b can visually recognize a continuous plane image. - Upon implementing the correcting process shown in
FIG. 16 , thecontroller 16 using thecamera 18 attached to thehinge 17 obtains the angle information representing the position of the user's eyes or face. That is, thecamera 18 carries out face recognition or eye recognition based on the captured image so as to supply an electric signal, i.e. the angle information representing the position of the user's face or eyes, to thecontroller 16. Thecontroller 16 corrects or transforms images based on the angle information. A method of detecting the angle information, representing the position of eyes ofusers 34 a to 34 c, by use of thecamera 18 will be described with reference toFIGS. 14 and 15 .FIG. 14 schematically shows the positions of theusers 34 a to 34 c in view of thecamera 18.FIG. 15 schematically shows animage 72 representing theusers 34 a to 34 c captured by thecamera 18. InFIGS. 14 and 15 , the positions of theusers FIG. 8 . - In
FIG. 14 , an angular range (i.e. an angle of view) which thecamera 18 can capture images in a vertical direction is set to 40°. In this case, as shown inFIG. 15 , theimage 72 captured by thecamera 18 covers a range of 20° in the upper and lower side of the center, i.e. “0°”. InFIG. 15 , the position of the user's eyes or face is set to the number line in units of ten degrees from 20° up to 20° down. That is, five points are set to the number line. InFIG. 15 , thecamera 18 detects the position of the user's eyes or face, which is set to second, third, and fourth points along with the number line, as 10° up, 0°, and 10° down. Thecamera 18 supplies an electric signal, representing the angle information, to thecontroller 16. As shown inFIG. 16 , thecontroller 16 implements software control to correct theimages images - As described above, the
display device 1 of the present embodiment is designed to produce a single plane image by use of thedisplays display device 1 of the present embodiment to prevent user's motion sickness when a user concurrently carries out a scrolling operation on two screens. - The present invention is not necessarily limited to the foregoing embodiment. For example, it is possible to install a plurality of cameras or a distance-measuring device using sound waves or infrared rays in a display device so as to detect a user's position based on an angle and a distance, thus transforming images depending on the detected position. Additionally, it is possible to carry out an image correction according to positional shifting in a slanting direction, combining user's movements in horizontal and vertical directions relative to a display device, compared to a scrolling direction. In this connection, the display device of the present invention can be configured using one or multiple computers and programs, wherein those programs can be provided using computer-readable storage media or through communication lines.
- The present invention is applied to a display device which combines multiple screens to display a single continuous plane image; hence, the present invention is able to combine multiple images such that users can naturally and visually recognize images depending on open-close angles or viewing positions of electronic books and folding information terminals.
-
- 1 display device
- 11, 13 case
- 12, 14 display
- 15 open-close angle detector
- 16 controller
- 17 hinge
- 18 camera
Claims (10)
1. A display device comprising:
a plurality of cases having an opening/closing mechanism;
a plurality of displays installed in the plurality of cases;
an open-close angle detector configured to detect an open-close angle between the plurality of cases; and
a controller configured to carry out a transforming process on the plurality of images, displayed on the plurality of displays, based on the open-close angle detected by the open-close angle detector such that the plurality of images is visually recognized as a continuous plane image.
2. The display device according to claim 1 , wherein the controller changes a transforming ratio, applied to the plurality of images, based on a distance from a center of an open-close operation applied to the plurality of cases.
3. The display device according to claim 1 , wherein the plurality of displays is positioned on exteriors when the plurality of cases is closed.
4. The display device according to claim 1 , wherein the controller displays a predetermined application in a displayable space which is produced due to the transforming process of at least one image among the plurality of images, or the controller sets the displayable space to a non-display area.
5. The display device according to claim 1 , further comprising a position detector configured to detect a user's position concerning a user's specific part, wherein the controller carries out a correcting process such that the plurality of images displayed on the plurality of displays is visually recognized as a continuous plane image at the user's position detected by the position detector.
6. The display device according to claim 1 , further comprising an orientation detector configured to detect an orientation of the plurality of cases, wherein the controller switches the transforming process of the plurality of images between a portrait orientation of aligning the plurality of cases in a vertical direction and a landscape orientation of aligning the plurality of cases in a horizontal direction.
7. The display device according to claim 1 , wherein the controller changes a scrolling direction applied to the plurality of images displayed on the plurality of displays in accordance with the transforming process.
8. The display device according to claim 7 , wherein the controller displays and superpose information used to notify the scrolling direction applied to the plurality of images displayed on the plurality of displays.
9. An image transforming method adapted to a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, comprising:
detecting an open-close angle between the plurality of cases; and
carrying out a transforming process on the plurality of images displayed on the plurality of displays based on the open-close angle such that the plurality of images is visually recognized as a continuous plane image.
10. A non-transient computer-readable storage medium storing an image transforming process on a plurality of images displayed on a plurality of displays installed in a plurality of cases having an opening/closing mechanism, implementing:
detecting an open-close angle between the plurality of cases; and
carrying out the image transforming process on the plurality of images displayed on the plurality of displays based on the open-close angle such that the plurality of images is visually recognized as a continuous plane image.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-212834 | 2013-10-10 | ||
JP2013212834 | 2013-10-10 | ||
PCT/JP2014/076545 WO2015053188A1 (en) | 2013-10-10 | 2014-10-03 | Display device and image deformation method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160246470A1 true US20160246470A1 (en) | 2016-08-25 |
US9851887B2 US9851887B2 (en) | 2017-12-26 |
Family
ID=52813004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/027,574 Active US9851887B2 (en) | 2013-10-10 | 2014-10-03 | Display device and image transforming method |
Country Status (5)
Country | Link |
---|---|
US (1) | US9851887B2 (en) |
EP (1) | EP3057088A4 (en) |
JP (1) | JPWO2015053188A1 (en) |
CN (1) | CN105830145B (en) |
WO (1) | WO2015053188A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10339700B2 (en) | 2017-05-15 | 2019-07-02 | Microsoft Technology Licensing, Llc | Manipulating virtual objects on hinged multi-screen device |
US20190235577A1 (en) * | 2018-01-31 | 2019-08-01 | Boe Technology Group Co., Ltd. | Display device and display method |
CN112086022A (en) * | 2019-06-12 | 2020-12-15 | 乐金显示有限公司 | Foldable display and driving method thereof |
WO2021206298A1 (en) * | 2020-04-08 | 2021-10-14 | 삼성전자 주식회사 | Biometric authentication system and electronic device for same |
WO2022005004A1 (en) * | 2020-06-30 | 2022-01-06 | 삼성전자 주식회사 | Method for monitoring users and providing information, and device thereof |
US20220230569A1 (en) * | 2021-01-20 | 2022-07-21 | Salesforce Com, Inc. | Multiple viewport flexible screen |
US20220368786A1 (en) * | 2019-06-24 | 2022-11-17 | Samsung Electronics Co., Ltd. | Electronic device comprising flexible display |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019111609A1 (en) * | 2017-12-06 | 2019-06-13 | ソニー株式会社 | Display device |
JP6959184B2 (en) * | 2018-06-20 | 2021-11-02 | ヤフー株式会社 | Display control device, display control method, and display control program |
CN113287078A (en) * | 2018-09-21 | 2021-08-20 | 深圳市柔宇科技股份有限公司 | Hinge device, shell and electronic device |
JP7132859B2 (en) * | 2019-01-21 | 2022-09-07 | 株式会社Nttドコモ | Display device |
JP7255202B2 (en) * | 2019-01-29 | 2023-04-11 | セイコーエプソン株式会社 | Display method and display device |
JP2021052397A (en) * | 2019-09-24 | 2021-04-01 | 中松 義郎 | Super smartphone and smartphone system |
WO2023026333A1 (en) * | 2021-08-23 | 2023-03-02 | マクセル株式会社 | Folding type electronic device and display method |
WO2023162799A1 (en) * | 2022-02-28 | 2023-08-31 | ソニーグループ株式会社 | Image processing device and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110126141A1 (en) * | 2008-09-08 | 2011-05-26 | Qualcomm Incorporated | Multi-panel electronic device |
US20110267291A1 (en) * | 2010-04-28 | 2011-11-03 | Jinyoung Choi | Image display apparatus and method for operating the same |
US20120115422A1 (en) * | 2010-11-09 | 2012-05-10 | Research In Motion Limited | Image magnification based on display flexing |
US20130154971A1 (en) * | 2011-12-15 | 2013-06-20 | Samsung Electronics Co., Ltd. | Display apparatus and method of changing screen mode using the same |
US20140009449A1 (en) * | 2012-07-03 | 2014-01-09 | Samsung Electronics Co., Ltd. | Display method and apparatus in terminal having flexible display panel |
US20140055429A1 (en) * | 2012-08-23 | 2014-02-27 | Samsung Electronics Co., Ltd. | Flexible display apparatus and controlling method thereof |
US20140176296A1 (en) * | 2012-12-19 | 2014-06-26 | HeadsUp Technologies, Inc. | Methods and systems for managing motion sickness |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3447525B2 (en) * | 1997-09-03 | 2003-09-16 | 株式会社東芝 | Information terminal equipment |
JP3169915B2 (en) * | 1998-11-25 | 2001-05-28 | 新潟日本電気株式会社 | Screen scroll control method and recording medium |
GB2345227B (en) * | 1998-12-22 | 2001-02-14 | Motorola Inc | Enhanced graphic user interface for mobile radiotelephones |
JP3542563B2 (en) * | 2001-02-16 | 2004-07-14 | キヤノン株式会社 | Image playback method |
JP4333309B2 (en) * | 2003-09-29 | 2009-09-16 | セイコーエプソン株式会社 | Multi-screen image display system, multi-image display device relative position detection method, multi-image display device relative position detection program, and multi-image display device relative position detection program |
JP2005115069A (en) * | 2003-10-08 | 2005-04-28 | Seiko Epson Corp | Display device |
JP2006243621A (en) * | 2005-03-07 | 2006-09-14 | Canon Inc | Display device |
CN100590589C (en) | 2006-11-13 | 2010-02-17 | 联想(北京)有限公司 | Multi-screen display process and system |
CN101393514A (en) * | 2007-09-21 | 2009-03-25 | 乐金电子(昆山)电脑有限公司 | Control method for double-display notebook computer |
JP2009222951A (en) | 2008-03-17 | 2009-10-01 | Sanyo Electric Co Ltd | Display |
JP2010091764A (en) * | 2008-10-08 | 2010-04-22 | Toshiba Corp | Image display device, method and program |
KR101521219B1 (en) * | 2008-11-10 | 2015-05-18 | 엘지전자 주식회사 | Mobile terminal using flexible display and operation method thereof |
US8417297B2 (en) * | 2009-05-22 | 2013-04-09 | Lg Electronics Inc. | Mobile terminal and method of providing graphic user interface using the same |
CN201541318U (en) * | 2009-06-19 | 2010-08-04 | 康佳集团股份有限公司 | Two-screen television |
US8605006B2 (en) | 2009-12-23 | 2013-12-10 | Nokia Corporation | Method and apparatus for determining information for display |
JP2012004798A (en) | 2010-06-16 | 2012-01-05 | Sharp Corp | Information processor, program for information display and control method of information processor |
JP5621407B2 (en) * | 2010-08-20 | 2014-11-12 | 日本電気株式会社 | Operation input device, program and method |
JP5172935B2 (en) | 2010-11-25 | 2013-03-27 | シャープ株式会社 | Foldable mobile terminal |
JP2011107711A (en) | 2010-12-06 | 2011-06-02 | Nec Casio Mobile Communications Ltd | Display device |
US9812074B2 (en) | 2011-03-18 | 2017-11-07 | Blackberry Limited | System and method for foldable display |
TWI438740B (en) | 2011-04-13 | 2014-05-21 | Wistron Corp | Flexible electronic device |
JP5805428B2 (en) * | 2011-04-26 | 2015-11-04 | 京セラ株式会社 | Portable terminal device and program |
KR101832958B1 (en) * | 2011-06-01 | 2018-02-28 | 엘지전자 주식회사 | Mobile terminal and 3d image displaying method thereof |
JP5772289B2 (en) | 2011-06-24 | 2015-09-02 | カシオ計算機株式会社 | Information display device and program |
US8754961B2 (en) * | 2011-08-17 | 2014-06-17 | Nokia Corporation | Apparatus and method for generating image data from overlapping regions of images |
JP5818583B2 (en) | 2011-08-30 | 2015-11-18 | キヤノン株式会社 | Display device |
-
2014
- 2014-10-03 US US15/027,574 patent/US9851887B2/en active Active
- 2014-10-03 JP JP2015541552A patent/JPWO2015053188A1/en active Pending
- 2014-10-03 CN CN201480055115.9A patent/CN105830145B/en active Active
- 2014-10-03 EP EP14853107.2A patent/EP3057088A4/en active Pending
- 2014-10-03 WO PCT/JP2014/076545 patent/WO2015053188A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110126141A1 (en) * | 2008-09-08 | 2011-05-26 | Qualcomm Incorporated | Multi-panel electronic device |
US20110267291A1 (en) * | 2010-04-28 | 2011-11-03 | Jinyoung Choi | Image display apparatus and method for operating the same |
US20120115422A1 (en) * | 2010-11-09 | 2012-05-10 | Research In Motion Limited | Image magnification based on display flexing |
US20130154971A1 (en) * | 2011-12-15 | 2013-06-20 | Samsung Electronics Co., Ltd. | Display apparatus and method of changing screen mode using the same |
US20140009449A1 (en) * | 2012-07-03 | 2014-01-09 | Samsung Electronics Co., Ltd. | Display method and apparatus in terminal having flexible display panel |
US20140055429A1 (en) * | 2012-08-23 | 2014-02-27 | Samsung Electronics Co., Ltd. | Flexible display apparatus and controlling method thereof |
US20140176296A1 (en) * | 2012-12-19 | 2014-06-26 | HeadsUp Technologies, Inc. | Methods and systems for managing motion sickness |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10339700B2 (en) | 2017-05-15 | 2019-07-02 | Microsoft Technology Licensing, Llc | Manipulating virtual objects on hinged multi-screen device |
US20190235577A1 (en) * | 2018-01-31 | 2019-08-01 | Boe Technology Group Co., Ltd. | Display device and display method |
US11073867B2 (en) * | 2018-01-31 | 2021-07-27 | Boe Technology Group Co., Ltd. | Display device and display method |
CN112086022A (en) * | 2019-06-12 | 2020-12-15 | 乐金显示有限公司 | Foldable display and driving method thereof |
US20220368786A1 (en) * | 2019-06-24 | 2022-11-17 | Samsung Electronics Co., Ltd. | Electronic device comprising flexible display |
US11997225B2 (en) * | 2019-06-24 | 2024-05-28 | Samsung Electronics Co., Ltd. | Electronic device comprising flexible display |
WO2021206298A1 (en) * | 2020-04-08 | 2021-10-14 | 삼성전자 주식회사 | Biometric authentication system and electronic device for same |
WO2022005004A1 (en) * | 2020-06-30 | 2022-01-06 | 삼성전자 주식회사 | Method for monitoring users and providing information, and device thereof |
US20220230569A1 (en) * | 2021-01-20 | 2022-07-21 | Salesforce Com, Inc. | Multiple viewport flexible screen |
US11574569B2 (en) * | 2021-01-20 | 2023-02-07 | Salesforce.Com, Inc. | Multiple viewport flexible screen |
Also Published As
Publication number | Publication date |
---|---|
EP3057088A4 (en) | 2017-11-01 |
EP3057088A1 (en) | 2016-08-17 |
CN105830145B (en) | 2018-08-10 |
JPWO2015053188A1 (en) | 2017-03-09 |
CN105830145A (en) | 2016-08-03 |
US9851887B2 (en) | 2017-12-26 |
WO2015053188A1 (en) | 2015-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9851887B2 (en) | Display device and image transforming method | |
EP3680750B1 (en) | Flexible device and interfacing method thereof | |
AU2013306644B2 (en) | Flexible apparatus and control method thereof | |
US9013368B1 (en) | Foldable mobile device and method of controlling the same | |
JP5944150B2 (en) | Portable information terminal, program for controlling portable information terminal, and distance learning method | |
US20110001762A1 (en) | Method for adjusting displayed frame, electronic device, and computer readable medium thereof | |
US11487368B2 (en) | Operation processing device and operation processing method for controlling display unit based on change in output direction of display unit | |
CN107589836B (en) | A kind of on-screen display (osd) area method of adjustment and mobile terminal | |
US9411449B2 (en) | Mobile terminal and operation method therefor | |
JP7005161B2 (en) | Electronic devices and their control methods | |
AU2015297281A1 (en) | Flexible device and interfacing method thereof | |
US20130135178A1 (en) | Information processing terminal and control method thereof | |
US20150186009A1 (en) | Electronic device, method and storage medium | |
KR20130127842A (en) | Display device and control method thereof | |
US9632655B2 (en) | No-touch cursor for item selection | |
CN107168632B (en) | Processing method of user interface of electronic equipment and electronic equipment | |
US10054987B2 (en) | Display module and method of controlling same | |
KR20160103602A (en) | Foldable display apparatus | |
US20170127535A1 (en) | System and method for controlling curvature of viewer adaptive type flexible display in order to increase immersive feeling | |
CN103167263A (en) | Collected image processing method and electronic equipment | |
US11100903B2 (en) | Electronic device and control method for controlling a display range on a display | |
JP5695347B2 (en) | Display device | |
JP2018180050A (en) | Electronic device and control method thereof | |
JP2013246658A (en) | Display control device and display control method | |
KR20180090627A (en) | Cylinderical display apparatus for enabling interaction on 360-degree and method for displaying using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOI, RYOTA;KIYOTA, ATSUSHI;REEL/FRAME:038207/0837 Effective date: 20160401 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |