US20160177718A1 - Multiple-point anchored rock bolt - Google Patents
Multiple-point anchored rock bolt Download PDFInfo
- Publication number
- US20160177718A1 US20160177718A1 US14/908,198 US201414908198A US2016177718A1 US 20160177718 A1 US20160177718 A1 US 20160177718A1 US 201414908198 A US201414908198 A US 201414908198A US 2016177718 A1 US2016177718 A1 US 2016177718A1
- Authority
- US
- United States
- Prior art keywords
- anchor
- rock
- mechanical
- rock bolt
- resistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011435 rock Substances 0.000 title claims abstract description 112
- 239000002131 composite material Substances 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000011440 grout Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000004873 anchoring Methods 0.000 description 4
- 230000010339 dilation Effects 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 230000000916 dilatatory effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D20/00—Setting anchoring-bolts
- E21D20/02—Setting anchoring-bolts with provisions for grouting
- E21D20/021—Grouting with inorganic components, e.g. cement
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D20/00—Setting anchoring-bolts
- E21D20/02—Setting anchoring-bolts with provisions for grouting
- E21D20/021—Grouting with inorganic components, e.g. cement
- E21D20/023—Cartridges; Grouting charges
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D20/00—Setting anchoring-bolts
- E21D20/02—Setting anchoring-bolts with provisions for grouting
- E21D20/028—Devices or accesories for injecting a grouting liquid in a bore-hole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0006—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by the bolt material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
- E21D21/004—Bolts held in the borehole by friction all along their length, without additional fixing means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
- E21D21/0046—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts formed by a plurality of elements arranged longitudinally
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/008—Anchoring or tensioning means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0086—Bearing plates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D20/00—Setting anchoring-bolts
- E21D20/02—Setting anchoring-bolts with provisions for grouting
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
Definitions
- This invention relates generally to bolting for reinforcement of rock subject to deformation and dilation and, more specifically, to a rock bolt anchor with two anchor types that provide active and passive loading.
- the prior art teaches a deformable rock anchor that is deformation tolerant, which is used in highly stressed rock masses to achieve reinforcement of these stressed rock masses and prevent large, sudden or catastrophic deformation, movement, dilation or failure of this rock mass.
- This rock bolt includes an elongate cylindrical stem, with a threaded portion at a borehole surface portion of the stem, to which a nut and washer or bearing plate may be attached, and three or more stem portions serially extending along the length of the stem with each stem portion followed by an integral anchor, being of shorter extend than the stem portions.
- Each integral anchor is capable of locally anchoring the rock bolt in a grouted borehole and each stem portion is adapted to elongate, move and slip relatively to the grouted borehole surround and, by the work done by this movement, absorb energy from the surrounding rock and constrain local rock deformation movement, whilst the rock bolt remains locally anchored by each integral anchor.
- the rock bolt of the earlier invention is therefore principally defined by having at least three integral anchors and therefore, in situ, is capable of being locally anchored at three discrete localities along the length of the borehole. These anchor points exclude anchoring, by the bolt and bearing plate, at an entrance of the borehole.
- the invention provides a rock bolt for being grouted in a borehole in a rock which includes:
- a mechanical anchor or a composite anchor at, or at least partially located on, a first end portion of the body
- first and second stem portions have a smooth cylindrical surface; and wherein the second anchor is adapted to exceed the diameter of the body in at least one radial direction to be locally anchored in a grouted borehole and is adapted to be harder than the stem portions.
- the mechanical anchor may be an expansion shell-type mechanical anchor which is actuated to radially expand into frictional engagement with the walls of the borehole.
- the composite anchor may comprise an expansion shell type mechanical anchor component and an integrally formed anchor component which is adapted to exceed the diameter of the body in at least one radial direction, wherein the mechanical anchor component and the integral anchor component are consecutively serially positioned on the rock bolt body.
- the second anchor may be positioned on the body between 400 and 700 mm from the second end.
- the second anchor is positioned 600 mm from the second end.
- a “mechanical anchor” means an anchor engaged with a rock bolt and which is actively actuated to anchor the rock bolt in a rock hole or, in other words, an anchor that is actively loaded.
- a “resistive anchor” means an anchor engaged, or integrally formed, with a rock bolt which is passively actuated to anchor the rock bolt within a rock hole by resistive contact with grout or resin within the hole.
- the invention provides a rock bolt which includes an elongate metallic body having a first end and an opposed second end, a threaded portion at the second end, for attaching thereto and locating thereon, a nut and a bearing plate, a mechanical anchor at, or at least partially located on, a first end portion of the body and a first resistive anchor, located between the threaded portion and the mechanical anchor.
- the mechanical anchor may be an expansion shell-type anchor.
- the first resistive anchor may be integral with the body, formed by adapting a section of the body, between 400 mm and 700 mm from the second end, to exceed the diametric dimension of the cylindrical body at least in one radial direction.
- the rock bolt may include a second resistive anchor, located between the mechanical anchor and the first resistive anchor, preferably consecutively serially positioned relatively to the mechanical anchor.
- first and second stem portions are defined, each of which are adapted to elongate under a tensile load.
- the invention extends to a method of supporting a wall of an excavation which uses a rock bolt having an elongate metallic body with opposed first and second ends, a threaded end portion towards the second end, a mechanical anchor located on the body towards the first end and at least two spaced resistive anchors between the mechanical anchor and the threaded portion, the method including the steps of:
- FIG. 1 is a view in elevation of a rock bolt, in a first embodiment of the invention, inserted into a borehole;
- FIG. 2 is a view in perspective of an integral anchor part of the rock bolt
- FIGS. 3A and 3B are isometric illustrations of one end of the rock bolt with a mechanical anchor located thereon;
- FIG. 4 is a view in elevation of a rock bolt, in a second embodiment of the invention, inserted into a borehole;
- FIGS. 5A to 5C illustrate, in chronological sequence, the rock bolt of the second embodiment in use.
- FIG. 1 of the accompanying drawings illustrates a rock bolt 10 , in accordance with a first embodiment of the invention, which is adapted to be inserted into a rock hole 12 , anchored within the rock hole 12 by a mechanical anchor 14 , and then, after grout is introduced into the rock hole 12 , to be additionally anchored, at a second locality, by an integral anchor 16 which is designed to resist passage through the grouted rock hole.
- the rock bolt 10 has a solid cylindrical steel body 18 , which extends between a first distal end 20 and a second proximal end 22 , which projects out of the rock hole 12 .
- a section of the rock bolt body 18 , extending from the second end 22 is threaded, to define a threaded portion 24 .
- the mechanical anchor 14 of an expansion shell-type, is located at the distal end 20 .
- This expansion shell-type mechanical anchor can be of any suitable configuration known to the art. However a specific preferred expansion shell anchor is described below as a non-limiting example.
- the integral anchor 16 is located between the threaded end section 24 and the mechanical anchor 14 .
- This anchor 16 is integral with the body in that it is formed from the same blank as the body 18 .
- the integral anchor in a preferred embodiment, comprises a pair of end-to-end paddle formations, respectively designated 26 A and 26 B.
- Each paddle formation 26 A and 26 B lies in a plane which is perpendicular to its counterpart.
- Each paddle formation 26 A and 26 B is formed by flattening the rod such that the rock bolt body 18 expands in opposed directions which are orthogonal to the direction of the flattening force (these directions of expansion are designated X and Y respectively).
- This flattening process is a cold forming process that strain hardens the steel material along the length of the anchor 16 .
- This process also adapts the cylindrical rock bolt body 18 to locally exceed its diameter in radial directions X and Y respectively providing extensions which are resistive to pull through a grouted borehole.
- the integral anchor 16 is optimally and preferably positioned on the rock bolt body 18 about 500 mm from the second end 22 .
- first and second, smooth surfaced, stem portions 30 and 32 are respectively defined.
- the expansion shell-type mechanical anchor 14 includes a tapered nut 28 attached to the first end 20 , an expansion shell 34 that abuts the tapered nut 28 , in a dis-engaged position illustrated in FIG. 3A , at its leading end 36 and a spring 38 , located between a trailing end 40 of the shell 34 and a collar formation 42 .
- the spring 38 biases the shell 34 towards the tapered nut 28 to ride over the tapered nut 28 , and radially expand, in an engaged position illustrated in FIG. 3B .
- the advantage of the mechanical anchor 14 as described above is that mere insertion of the rock bolt 10 into the rock hole 12 , and axial retraction, will actuate the anchor 14 into the engaged position. There is no need to spin the rock bolt 10 to actuate the mechanical anchor 14 to radially expand as is typically with many mechanical anchors known in the art.
- a nut 46 and bearing plate 48 are provided, located on the threaded section 24 of the rock bolt body 18 .
- a tapered formation provided by the nut 28 in the embodiment described above, can be integrally forged with rock bolt body 18 at the first end 20 .
- FIG. 4 illustrates a second embodiment of the invention, a rock bolt 10 A.
- This embodiment differs, in essence, from the rock bolt 10 of the first embodiment in that it includes a composite anchor 50 which replaces the mechanical anchor 14 and the collar formation 42 of the first embodiment.
- the composite anchor includes a mechanical anchor component 52 , of the expansion shell-type as described above particularly with reference to FIGS. 3A and 3B , located at the distal end 20 and an integral anchor component 54 consecutively serially positioned with respect to the anchor component 52 , back from the component 52 .
- the integral anchor component 54 in the preferred embodiment, is structurally equivalent to the integral anchor 16 of the rock bolt 10 .
- the integral anchor component 54 not only provides an additional passively loaded anchor to the rock bolt 10 A, it also performs the function provided by the collar formation 42 of the earlier embodiment in that it provides an abutment surface to one end of the spring 38 , located between the trailing end 40 of the shell 34 and one end of the anchor component 54 .
- the rock bolt 10 A is inserted into a rock hole 12 , first end 20 leading, to a point where the threaded portion 24 , at least, is projecting from the rock hole 12 .
- the rock bolt 10 A in this preferred embodiment, includes a bung 56 , located on the body 18 , through which a grout pipe and breather tube (not shown) pass.
- the bung 56 is located between the threaded portion 24 and the integral anchor 16 and is totally inserted in the rock hole 12 .
- a holed bearing plate 44 is passed over the second end 22 followed by the threaded engagement of a nut 46 to the threaded portion 24 .
- the bearing plate 48 can be provided with a pair of holes (not shown) on either side of central aperture, to provide respective passage to a grout or resin filler tube and a breather tube.
- the rock bolt body 18 is pulled axially outwardly. This action causes the expansion shell 34 , which is held in place relatively to the rock bolt body by frictional engagement with the walls of the rockhole 12 , to ride over the tapered nut 28 , radially dilating in the process into loaded contact with the walls of the rock hole 12 .
- the rock bolt 10 A is now locked in the rock hole 12 at this location, a first anchor location (illustrated as a dotted line 60 ).
- the rock bolt body 18 is pre-tensioned (the opposed forces directionally illustrated by arrows in FIG. 4B ), prior to the grouting of the rock hole 12 , between the first and the second anchor locations ( 60 , 62 ) thus actively providing reactive load support to the rock mass between the two locations 60 and 62 .
- the bung 56 seals the rock hole 12 from egress of the grout out of the rock hole 12 once introduced.
- FIG. 5C illustrates the highly fractured layer of the rock mass described above, dilating about surface parallel stress fractures 70 , forces are imparted on the bearing plate 48 which is translates into a pulling force on the rock bolt 10 A out of the rock hole 12 .
- This pulling force is resisted by the integral anchor 16 , which is adapted, due to it exceeding the diametric dimension of the cylindrical rock bolt body 18 in at this point, to resist passage through the now hardened grout, thus providing a third anchor location (illustrated by a dotted line designated 72 ).
- a fourth anchor location (illustrated by a dotted line designated 74 ) is defined. Ahead of this anchor location 74 , the initial anchor location 60 , about the mechanical anchor component 52 , is rendered transparent as reactive load support is now provided between anchor locations 74 and 72 and between 72 and 62 .
- rock bolt 10 A of the invention is that, between the anchor locations 62 , 72 and 74 , the rock bolt body 18 can stretch along respective first and the second stem portions ( 30 and 32 ) to accommodate any dynamic loading movement.
- the stem portions 30 and 32 's ability to stretch is uninterrupted along their lengths due to their smooth surface which allows relative movement within the grouted confines of the rock hole 12 .
- the second stem portion 32 is further passively pre-loaded, between the second 62 and third 72 anchor locations to provide support to this layer effectively by clamping this layer of rock 70 between the bearing plate 44 and the integral anchor 16 .
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Piles And Underground Anchors (AREA)
- Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
- Joining Of Building Structures In Genera (AREA)
- Dowels (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA201309368 | 2013-12-12 | ||
ZA2013/09368 | 2013-12-12 | ||
PCT/ZA2014/000076 WO2015089525A2 (fr) | 2013-12-12 | 2014-12-11 | Boulon à roche à multiples points d'ancrage |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ZA2014/000076 A-371-Of-International WO2015089525A2 (fr) | 2013-12-12 | 2014-12-11 | Boulon à roche à multiples points d'ancrage |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/680,640 Division US9982537B2 (en) | 2013-12-12 | 2017-08-18 | Method of supporting a rock wall |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160177718A1 true US20160177718A1 (en) | 2016-06-23 |
Family
ID=52388248
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/908,198 Abandoned US20160177718A1 (en) | 2013-12-12 | 2014-12-11 | Multiple-point anchored rock bolt |
US15/680,640 Active US9982537B2 (en) | 2013-12-12 | 2017-08-18 | Method of supporting a rock wall |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/680,640 Active US9982537B2 (en) | 2013-12-12 | 2017-08-18 | Method of supporting a rock wall |
Country Status (10)
Country | Link |
---|---|
US (2) | US20160177718A1 (fr) |
EP (1) | EP3080396A2 (fr) |
AP (1) | AP2016009256A0 (fr) |
AU (2) | AU2014101640A4 (fr) |
CA (1) | CA2919261C (fr) |
CL (1) | CL2014001002A1 (fr) |
MX (1) | MX2016007454A (fr) |
PE (1) | PE20142006A1 (fr) |
WO (1) | WO2015089525A2 (fr) |
ZA (1) | ZA201409101B (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9890511B1 (en) | 2017-02-13 | 2018-02-13 | Lyle Kenneth Adams | Rock bolt seal |
USD835977S1 (en) * | 2016-02-08 | 2018-12-18 | Ncm Innovation (Pty) Ltd. | Grout anchored rock bolt |
CN109162660A (zh) * | 2018-10-30 | 2019-01-08 | 中国电建集团成都勘测设计研究院有限公司 | 内锚式孔口封闭装置 |
CN109441507A (zh) * | 2018-11-26 | 2019-03-08 | 山东科技大学 | 一种具有自适应功能的二次支护注浆锚杆 |
CN109723479A (zh) * | 2017-10-31 | 2019-05-07 | 王运来 | 防断裂能量吸收锚杆 |
US20200173281A1 (en) * | 2017-05-30 | 2020-06-04 | Epiroc Holdings South Africa (Pty) Ltd. | Rock bolt with releaseably fixable bung |
US10858937B2 (en) | 2017-07-26 | 2020-12-08 | Epiroc Drilling Tools Ab | Adapted rock bolt with improved installation properties |
US10982542B2 (en) * | 2017-09-15 | 2021-04-20 | Rand York Castings (Pty) Limited | Rock bolt |
CN115095365A (zh) * | 2022-06-23 | 2022-09-23 | 中山大学 | 一种中性点强化型可伸缩抗拉锚杆 |
US20230374904A1 (en) * | 2022-05-20 | 2023-11-23 | F. M. Locotos Co., Inc. | Mine roof reinforcing system as load indicator |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019153045A1 (fr) * | 2018-02-08 | 2019-08-15 | Dywidag-Systems International Pty Limited | Boulon d'ancrage |
CN109578036B (zh) * | 2018-11-12 | 2020-05-26 | 山东科技大学 | 一种用于松散体全部充填的注浆锚索及充填方法 |
CN112177638B (zh) * | 2020-10-13 | 2024-08-30 | 安徽理工大学 | 动水大通道突水钻孔网架、气囊、注浆一体化封堵装置及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194858A (en) * | 1978-09-25 | 1980-03-25 | The Eastern Company | Mine roof bolt anchor installation |
US5919006A (en) * | 1997-02-14 | 1999-07-06 | Jennmar Corporation | Tensionable cable bolt with mixing assembly |
US20070269274A1 (en) * | 2003-06-03 | 2007-11-22 | Ross Seedsman | Rock Bolt |
US8337120B2 (en) * | 2006-12-22 | 2012-12-25 | Dynamic Rock Support As | Deformable rock bolt |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH405204A (it) * | 1964-10-15 | 1966-01-15 | Belloli Riccardo | Dispositivo interamente ricuperabile e senza parti staccabili per la armatura di gallerie e usi analoghi |
US3837258A (en) * | 1970-02-03 | 1974-09-24 | C Williams | Rock bolts |
CA948899A (en) * | 1970-02-18 | 1974-06-11 | Chester I. Williams | Rock bolt |
US6270290B1 (en) * | 1997-02-14 | 2001-08-07 | Jennmar Corporation | Tensionable cable bolt |
AU2005286869B2 (en) * | 2004-09-20 | 2008-04-17 | Atlas Copco Mai Gmbh | An elongate element tensioning member |
AU2007214341B8 (en) * | 2007-08-31 | 2015-02-19 | Sandvik Intellectual Property Ab | Rock Bolt |
NO332912B1 (no) * | 2008-12-23 | 2013-01-28 | Dynamic Rock Support As | Forbedret bergbolt med plogende ankere |
-
2014
- 2014-04-17 CL CL2014001002A patent/CL2014001002A1/es unknown
- 2014-04-21 PE PE2014000556A patent/PE20142006A1/es unknown
- 2014-12-11 EP EP14865001.3A patent/EP3080396A2/fr not_active Withdrawn
- 2014-12-11 AP AP2016009256A patent/AP2016009256A0/en unknown
- 2014-12-11 US US14/908,198 patent/US20160177718A1/en not_active Abandoned
- 2014-12-11 CA CA2919261A patent/CA2919261C/fr active Active
- 2014-12-11 AU AU2014101640A patent/AU2014101640A4/en not_active Expired
- 2014-12-11 ZA ZA2014/09101A patent/ZA201409101B/en unknown
- 2014-12-11 WO PCT/ZA2014/000076 patent/WO2015089525A2/fr active Application Filing
- 2014-12-11 MX MX2016007454A patent/MX2016007454A/es unknown
- 2014-12-11 AU AU2014361778A patent/AU2014361778A1/en active Pending
-
2017
- 2017-08-18 US US15/680,640 patent/US9982537B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194858A (en) * | 1978-09-25 | 1980-03-25 | The Eastern Company | Mine roof bolt anchor installation |
US5919006A (en) * | 1997-02-14 | 1999-07-06 | Jennmar Corporation | Tensionable cable bolt with mixing assembly |
US20070269274A1 (en) * | 2003-06-03 | 2007-11-22 | Ross Seedsman | Rock Bolt |
US8337120B2 (en) * | 2006-12-22 | 2012-12-25 | Dynamic Rock Support As | Deformable rock bolt |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD835977S1 (en) * | 2016-02-08 | 2018-12-18 | Ncm Innovation (Pty) Ltd. | Grout anchored rock bolt |
US9890511B1 (en) | 2017-02-13 | 2018-02-13 | Lyle Kenneth Adams | Rock bolt seal |
US20200173281A1 (en) * | 2017-05-30 | 2020-06-04 | Epiroc Holdings South Africa (Pty) Ltd. | Rock bolt with releaseably fixable bung |
US10858937B2 (en) | 2017-07-26 | 2020-12-08 | Epiroc Drilling Tools Ab | Adapted rock bolt with improved installation properties |
US10982542B2 (en) * | 2017-09-15 | 2021-04-20 | Rand York Castings (Pty) Limited | Rock bolt |
CN109723479A (zh) * | 2017-10-31 | 2019-05-07 | 王运来 | 防断裂能量吸收锚杆 |
CN109162660A (zh) * | 2018-10-30 | 2019-01-08 | 中国电建集团成都勘测设计研究院有限公司 | 内锚式孔口封闭装置 |
CN109441507A (zh) * | 2018-11-26 | 2019-03-08 | 山东科技大学 | 一种具有自适应功能的二次支护注浆锚杆 |
US20230374904A1 (en) * | 2022-05-20 | 2023-11-23 | F. M. Locotos Co., Inc. | Mine roof reinforcing system as load indicator |
CN115095365A (zh) * | 2022-06-23 | 2022-09-23 | 中山大学 | 一种中性点强化型可伸缩抗拉锚杆 |
Also Published As
Publication number | Publication date |
---|---|
US20170342836A1 (en) | 2017-11-30 |
PE20142006A1 (es) | 2014-12-06 |
WO2015089525A3 (fr) | 2016-01-14 |
WO2015089525A2 (fr) | 2015-06-18 |
EP3080396A2 (fr) | 2016-10-19 |
CL2014001002A1 (es) | 2014-11-28 |
MX2016007454A (es) | 2017-01-16 |
AP2016009256A0 (en) | 2016-06-30 |
AU2014101640A4 (en) | 2019-05-09 |
CA2919261C (fr) | 2021-06-15 |
ZA201409101B (en) | 2019-06-26 |
US9982537B2 (en) | 2018-05-29 |
CA2919261A1 (fr) | 2015-06-18 |
AU2014361778A1 (en) | 2016-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9982537B2 (en) | Method of supporting a rock wall | |
EP3294991B1 (fr) | Boulon d'ancrage creux autoforeur ancré localement | |
US8899883B2 (en) | Anchor tendon with selectively deformable portions | |
AU2014361729B2 (en) | Ground support apparatus and method | |
US11215053B2 (en) | Adapted grout delivery sleeve | |
PL198200B1 (pl) | Kotwa do skał i sposób jej użycia | |
AU2016100070A4 (en) | Grout Anchored Rock Bolt | |
EP3000963B1 (fr) | Ensemble de support de mine pour l'ancrage dans un trou de forage sous la forme d'un boulon de roche amélioré | |
RU2592083C2 (ru) | Расширяемый анкерный болт | |
AU2023202198A1 (en) | Rock Bolt | |
WO2008134798A1 (fr) | Accessoire de boulon d'ancrage absorbant l'énergie, ensemble de boulon d'ancrage, et procédé d'installation d'un boulon d'ancrage | |
AU2015337840B2 (en) | Ground support apparatus | |
CA2891647C (fr) | Ensemble de support de mine | |
AU2008202980A1 (en) | Yielding rock bolt | |
US20180171800A1 (en) | Shear and tensile reinforcement for inflatable bolt | |
AU2016202889A1 (en) | Friction bolt assembly | |
AU2012100366A4 (en) | Improved Friction Stabilisers and Method Therefor | |
AU2014203600A1 (en) | Rock bolt assembly | |
JP2016037777A (ja) | 固定具、トンネル覆工用型枠の支持構造 | |
AU2012231763A1 (en) | Inflatable friction bolt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NCM INNOVATIONS (PVT) LTD, SOUTH AFRICA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAWOOD, MARTIN;PASTORINO, PAOLO ETTORE;VAN DER MERWE, PHILLIPUS;SIGNING DATES FROM 20160303 TO 20160307;REEL/FRAME:038772/0845 |
|
AS | Assignment |
Owner name: NCM INNOVATIONS (PVT) LTD, SOUTH AFRICA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DU PLESSIS, SAMUEL;REEL/FRAME:038856/0343 Effective date: 20141211 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |