US20160173781A1 - Camera system and shake correction method thereof - Google Patents

Camera system and shake correction method thereof Download PDF

Info

Publication number
US20160173781A1
US20160173781A1 US14/950,377 US201514950377A US2016173781A1 US 20160173781 A1 US20160173781 A1 US 20160173781A1 US 201514950377 A US201514950377 A US 201514950377A US 2016173781 A1 US2016173781 A1 US 2016173781A1
Authority
US
United States
Prior art keywords
reference value
shake
shake correction
amount
shaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/950,377
Other versions
US9613430B2 (en
Inventor
Hitoshi Tsuchiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OM Digital Solutions Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSUCHIYA, HITOSHI
Publication of US20160173781A1 publication Critical patent/US20160173781A1/en
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION CHANGE OF ADDRESS Assignors: OLYMPUS CORPORATION
Application granted granted Critical
Publication of US9613430B2 publication Critical patent/US9613430B2/en
Assigned to OM DIGITAL SOLUTIONS CORPORATION reassignment OM DIGITAL SOLUTIONS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLYMPUS CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • H04N5/23264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • G06T7/2053
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • H04N5/2254
    • H04N5/23258
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20201Motion blur correction

Definitions

  • the present invention relates to a camera system in which both an interchangeable lens and a camera body have a shake correction function, and to a shake correction method thereof.
  • an interchangeable lens or a camera body is provided with a hand shake correction function depending on circumstances.
  • a sensor for detecting a movement applied to a camera is mounted in the interchangeable lens, and part of a group of shooting lenses is moved in a direction for canceling a detected shaking on a plane orthogonal to an optical axis, so that the shaking is corrected.
  • a sensor for detecting a movement applied to the camera is mounted in the camera body, and an imaging element is moved in a direction for canceling a detected shaking, so that the shaking is corrected.
  • a hand shake correction function is provided in either the interchangeable lens or the camera body, there are advantages and disadvantages. Accordingly, in a camera system in which an interchangeable lens and a camera body have a connection compatibility, there may be cases where both the interchangeable lens and the camera body have the hand shake correction function and the camera system is used by combining the functions of the lens and the camera body, although this varies depending on a camera system or a camera maker.
  • a camera system described in Patent Document 1 Japanese Laid-open Patent Publication No. 2006-126668
  • This camera system includes a camera having first shake correction means, and a lens device that is attached to the camera and has second shake correction means.
  • the camera system further includes shake detection means provided in either of the camera and the lens device, and control means for obtaining a first amount of shake correction on the basis of a result of detection of the shake detection means.
  • control means obtains a second amount of shake correction on the basis of the first amount of shake correction, and on the basis of the amount of movement of the first shake correction means or the second shake correction means that is driven in accordance with the first amount of the shake correction, so that an image blurring correction can be accurately made even if a plurality of image blurring correction functions are combined.
  • the first shake correction unit includes a first shake amount detector for detecting the amount of shaking, a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector, and a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value.
  • the second shake correction unit includes a second shake amount detector for detecting the amount of shaking, a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector, and a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value.
  • the camera body further includes a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit.
  • the first shake correction unit includes a first shake amount detector for detecting the amount of shaking, and a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector.
  • the second shake correction unit includes a second shake amount detector for detecting the amount of shaking, and a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector.
  • the camera body further includes a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value, a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value, and a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit.
  • a further aspect of the present invention provides a shake correction method of a camera system including an interchangeable lens having a first shake correction unit for subtracting a first reference value corresponding to an output value of a first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the first reference value has been subtracted, and a camera body having a second shake correction unit for subtracting a second reference value corresponding to an output value of a second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the second reference value has been subtracted.
  • the method includes: calculating a first average value that is an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value is subtracted; calculating a second average value that is an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value is subtracted; and correcting the first reference value or the second reference value on the basis of a difference between the first average value and the second average value.
  • FIG. 1 is an explanatory diagram of definitions of directions in a camera system according to an embodiment.
  • FIG. 2 is an explanatory diagram of a basic idea of a shake correction made in the camera system according to the embodiment, and illustrates one example of temporal changes in angular velocities detected by angular velocity sensors respectively provided in a camera body and an interchangeable lens.
  • FIG. 3 illustrates a configuration example of the camera system according to the embodiment.
  • FIG. 4 illustrates details of a configuration example of a shake correction microcomputer.
  • FIG. 5 illustrates details of a configuration example of an LCU.
  • FIG. 6 is an example of a flowchart illustrating content of a reference value correction process executed by a system controller of the camera body.
  • FIG. 7 is one example of a flowchart illustrating content of a reference value correction process executed by the shake correction microcomputer of the camera body.
  • FIG. 8 is one example of a flowchart illustrating content of a reference value correction process executed by the LCU of the interchangeable lens.
  • FIG. 9 is one example of a flowchart illustrating details of content of a reference value correction process that the system controller of the camera body executes while respectively communicating with the shake correction microcomputer of the camera body and the LCU of the interchangeable lens.
  • FIG. 1 is an explanatory diagram of the definitions of the directions in the camera system according to the embodiment.
  • the camera system is a camera system of an interchangeable-lens type in which an interchangeable lens 2 is attached to a camera body 1 .
  • An X direction, a Y direction, a Z direction, a pitch direction, a yaw direction and a roll direction in the camera system are defined as follows.
  • a horizontal direction of the camera body 1 is defined as the X direction.
  • a rightward direction when the front side of the camera body 1 is viewed in the X direction is defined as a +X direction, while a leftward direction when the front side of the camera body 1 is viewed in the X direction is defined as a ⁇ X direction.
  • the X direction also corresponds to a horizontal direction of an imaging surface of an imaging element to be described later.
  • a vertical direction of the camera body 1 is defined as the Y direction.
  • An upward direction in the Y direction is defined as a +Y direction, while a downward direction in the Y direction is defined as a ⁇ Y direction. Note that the Y direction also corresponds to a vertical direction of the imaging surface of the imaging element to be described later.
  • An optical axis direction of the interchangeable lens 2 is defined as the Z direction. Moreover, a direction from a back side to the front side of the camera body 1 in the Z direction is defined as a +Z direction, while a direction from the front side to the back side of the camera body 1 is defined as a ⁇ Z direction.
  • a rotational direction in which an axis in the X direction is a rotational axis is defined as the pitch direction. Moreover, in the pitch direction, a direction of a left rotation in the +X direction is defined as a +pitch direction, while a direction of a right rotation in the +X direction is defined as a ⁇ pitch direction.
  • a rotational direction in which an axis in the Y direction is a rotational axis is defined as the yaw direction. Moreover, in the yaw direction, a direction of a right rotation in the +Y direction is defined as a +yaw direction, while a direction of a left rotation in the +Y direction is defined as a ⁇ yaw direction.
  • a rotational direction in which an axis in the Z direction is a rotational axis is defined as the roll direction. Moreover, a direction of a left rotation in the +Z direction is defined as a +roll direction, while a direction of a right rotation in the +Z direction is defined as a ⁇ roll direction.
  • FIG. 2 is an explanatory diagram of a basic idea of a shake correction made in the camera system according to this embodiment, and illustrates one example of temporal changes in angular velocities detected by angular velocity sensors that are respectively provided in the camera body 1 and the interchangeable lens 2 , and will be described later.
  • horizontal and vertical axes indicate a time t and an angular velocity co, respectively.
  • a curve indicated by a dotted line represents one example of the temporal change in the angular velocity detected by the angular velocity sensor on the camera body 1 side
  • a curve indicated by a solid line represents one example of the temporal change in the angular velocity detected by the angular velocity sensor on the interchangeable lens 2 side. Note that, however, the temporal changes in both of the angular velocities are those in the angular velocities in the same direction (the yaw direction or the pitch direction).
  • Offset noise caused by a deviation of a reference value (an angular velocity detected by the angular velocity sensor kept in a stationary state) among the types of noise is noise that strongly affects a shake correction performance.
  • a detected angular velocity includes an error due to an occurrence of the offset noise, a shake correction cannot be properly made even if the shaking is corrected on the basis of the angular velocity.
  • a main factor in the offset noise is a temperature drift (a change of a reference value caused by a temperature characteristic) of an angular velocity sensor.
  • the detection accuracy of the angular velocity sensor on the interchangeable lens 2 side is higher than the detection accuracy of the angular velocity sensor on the camera body 1 side in the example illustrated in FIG. 2 .
  • the angular velocity on the interchangeable lens 2 side can be recognized as a true value, and that on the camera body 1 side can be considered to be a value including a constant error with respect to the true value.
  • average values of the angular velocities in a certain duration are obtained in the changes in the angular velocities both on the camera body 1 side and the interchangeable lens 2 side, and a difference between the average values of both of the angular velocities is obtained, so that offset noise included in the angular velocity on the camera body 1 side can be obtained.
  • the offset noise is subtracted from the angular velocity on the camera body 1 side, whereby the detection accuracy of the angular velocity sensor on the camera body 1 side can be improved to a degree equivalent to the detection accuracy of the angular velocity sensor on the interchangeable lens 2 side.
  • the detection accuracy of one of the angular velocity sensors is improved to a degree equivalent to the detection accuracy of the other (an angular velocity sensor having a higher detection accuracy).
  • a shake correction is made by combining both of the shake correction functions, whereby the performance of the shake correction can be made higher than that in a case where the shake correction is made by using only one of the angular velocity sensors.
  • FIG. 3 illustrates a configuration example of the camera system according to this embodiment.
  • the camera system has a configuration where the interchangeable lens 2 is attached to the camera body 1 .
  • the camera body 1 is configured so that the interchangeable lens 2 can be freely attached and detached.
  • the interchangeable lens 2 is attached to the camera body 1 in such a way that a lens mount connection part that is provided in the interchangeable lens 2 and not illustrated and a body mount connection part that is provided in the camera body 1 and not illustrated are engaged with each other.
  • the interchangeable lens 2 is secured to the camera body 1 , and also terminals respectively provided in the mount connection parts are electrically connected, so that a communication between the camera body 1 and the interchangeable lens 2 can be performed via a connection point 3 .
  • the camera body 1 includes a focal plane shutter 11 , an imaging element 12 , an imaging element driving actuator 13 , a system controller 14 , a shake correction microcomputer 15 , a yaw angular velocity sensor 16 a , a pitch angular velocity sensor 16 b , and a ROM (Read Only Memory) 17 .
  • the focal plane shutter 11 is arranged on the front side of the imaging element 12 .
  • the focal plane shutter 11 is opened and closed under the control of the system controller 14 , so that the imaging surface of the imaging element 12 is exposed to or shielded from light.
  • the imaging element 12 is an image sensor such as a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor) or the like.
  • the imaging element 12 converts a subject image formed on the imaging surface into an electric signal (photo-electrically converts the image) under the control of the system controller 14 .
  • the converted electric signal is read by the system controller 14 as an image signal.
  • the imaging element driving actuator 13 has a configuration that supports the imaging element 12 , and moves the imaging element 12 in a direction of a plane vertical to an optical axis of an optical system 21 under the control of the shake correction microcomputer 15 . With this movement, the position of the subject image formed on the imaging surface of the imaging element 12 changes.
  • the system controller 14 communicates with an LCU (Lens Control Unit) 22 via the connection point 3 , and the shake correction microcomputer 15 , and controls operations of the entire camera system (the camera body 1 and the interchangeable lens 2 ). For example, the system controller 14 controls focusing, zooming, an aperture not illustrated and the like by controlling the LCU 22 . Moreover, the system controller 14 controls, for example, the focal plane shutter 11 and the imaging element 12 . The system controller 14 also controls, for example, the focal plane shutter 11 and the imaging element 12 . Moreover, the system controller 14 reads, for example, an image signal from the imaging element 12 , and converts the read signal into image data having a specified form. Furthermore, the system controller 14 , for example, executes a reference value correction process to be described later with reference to FIG. 6 , and various types of processes to be described later with reference to FIG. 9 .
  • LCU Local Control Unit
  • the shake correction microcomputer 15 makes a shake correction under the control of the system controller 14 .
  • the shake correction microcomputer 15 controls, for example, the imaging element driving actuator 13 on the basis of the output of the yaw angular velocity sensor 16 a , the output of the pitch angular velocity sensor 16 b , and information about a shake correction sharing ratio to be described later (hereinafter referred to as “shake correction sharing ratio information”) so that the imaging element 12 can be moved in a direction for canceling an image blurring caused by shaking.
  • the shake correction microcomputer 15 executes, for example, a reference value correction process to be described later with reference to FIG. 7 , and the various types of processes to be described later with reference to FIG. 9 . Details of the shake correction microcomputer 15 will be described later with reference to FIG. 4 .
  • the yaw angular velocity sensor 16 a detects a rotational movement (a posture change) of the camera body 1 in the yaw direction as an angular velocity (hereinafter referred to as a “yaw angular velocity”).
  • the pitch angular velocity sensor 16 b detects a rotational movement (a posture change) of the camera body 1 in the pitch direction as an angular velocity (hereinafter referred to as a “pitch angular velocity”).
  • the ROM 17 is a nonvolatile memory in which information about shake detection accuracy on the camera body 1 side (hereinafter referred to as “body side shake detection accuracy information”) or the like is stored.
  • the body side shake detection accuracy information includes, for example, accuracy information of a reference value of the yaw angular velocity sensor 16 a (hereinafter referred to as a “body side yaw reference value”), and accuracy information of a reference value of the pitch angular velocity sensor 16 b (hereinafter referred to as a “body side pitch reference value”).
  • the accuracy information of the body side yaw reference value and the body side pitch reference value are represented, for example, by a value in a unit system such as dps (degrees per second). The accuracy increases as this value becomes smaller.
  • the interchangeable lens 2 includes the optical system 21 , the LCU 22 , an optical system driving actuator 23 , a yaw angular velocity sensor 24 a , a pitch angular velocity sensor 24 b and a thermistor 25 .
  • the interchangeable lens 2 also includes the aperture not illustrated.
  • the optical system 21 forms a light flux from a subject as a subject image on the imaging surface of the imaging element 12 .
  • the optical system 21 includes a focusing lens, a zoom lens, and a shake correction lens that are not illustrated.
  • the LCU 22 communicates with the system controller 14 via the connection point 3 , and controls operations (including a shake correction operation) of the entire interchangeable lens 2 .
  • the LCU 22 controls, for example, focusing, zooming, the aperture and the like under the control of the system controller 14 .
  • the LCU 22 controls, for example, the optical system driving actuator 23 on the basis of the output of the yaw angular velocity sensor 16 a , the output of the pitch angular velocity sensor 16 b , and the shake correction sharing ratio information to be described later so that the shake correction lens can be moved in a direction for canceling an image blurring caused by shaking.
  • the LCU 22 executes, for example, a reference value correction process to be described later with reference to FIG. 8 , and the various types of processes to be described later with reference to FIG. 9 . Details of the LCU 22 will be described later with reference to FIG. 5 .
  • the LCU 22 further includes a ROM 22 a .
  • the ROM 22 a is a nonvolatile memory that stores information about the shake detection accuracy on the interchangeable lens 2 side (hereinafter referred to as “lens side shake detection accuracy information”), and the like.
  • the lens side shake detection accuracy information includes, for example, accuracy information of a reference value of the yaw angular velocity sensor 24 a (hereinafter referred to as a “lens side yaw reference value”), and accuracy information of a reference value of the pitch angular velocity sensor 24 b (hereinafter referred to as a “lens side pitch reference value”).
  • the accuracy information of the lens side yaw reference value and the lens side pitch reference value are represented, for example, with a value in a unit system such as dps. The accuracy increases as this value becomes smaller.
  • the optical system driving actuator 23 moves the shake correction lens included in the optical system 21 in a direction of a plane vertical to the optical axis of the optical system 21 under the control of the LCU 22 . With this movement, the position of a subject image formed on the imaging surface of the imaging element 12 changes.
  • the yaw angular velocity sensor 24 a detects a rotational movement (a posture change) of the interchangeable lens 2 in the yaw direction as an angular velocity (hereinafter referred to as a “yaw angular velocity”).
  • the pitch angular velocity sensor 24 b detects a rotational movement (a posture change) of the interchangeable lens 2 in the pitch direction as an angular velocity (hereinafter referred to as a “pitch angular velocity”).
  • the thermistor 25 detects temperatures in the vicinities of the yaw angular velocity sensor 24 a and the pitch angular velocity sensor 24 b.
  • the interchangeable lens 2 includes the thermistor 25 , and the LCU 22 uses reference values (a lens side yaw reference value and a lens side pitch reference value) according to temperatures detected by the thermistor 25 .
  • the camera body 1 does not have such a configuration. Therefore, the accuracy of the lens side yaw reference value is higher than the accuracy of the body side yaw reference value, and the accuracy of the lens side pitch reference value is higher than the accuracy of the body side pitch reference value.
  • FIG. 4 illustrates details of a configuration example of the shake correction microcomputer 15 .
  • the shake correction microcomputer 15 includes ADCs (Analog-to-Digital Converters) 151 ( 151 a , 151 b ), reference value subtraction units 152 ( 152 a , 152 b ), a yaw angular shake amount calculation unit 153 a , a pitch angular shake amount calculation unit 153 b , a correction amount calculation unit 154 , drivers 155 ( 155 a , 155 b ), integration units 156 ( 156 a , 156 b ), and a communication unit 157 .
  • ADCs Analog-to-Digital Converters
  • the ADC 151 a converts an analog signal that is the output signal of the yaw angular velocity sensor 16 a into a digital signal.
  • the ADC 151 b converts an analog signal that is the output signal of the pitch angular velocity sensor 16 b into a digital signal.
  • the reference value subtraction unit 152 a subtracts the body side yaw reference value from the yaw angular velocity, which is the output signal (digital signal) of the ADC 151 a .
  • the body side yaw reference value is, for example, an average value of the yaw angular velocity obtained via the yaw angular velocity sensor 16 a and the ADC 151 a for a specified duration in the camera body 1 kept in a stationary state.
  • the reference value subtraction unit 152 a updates the body side yaw reference value by adding, to the body side yaw reference value, an offset value in the yaw direction on the body side (hereinafter referred to as a “body side yaw offset value”) transmitted from the system controller 14 via the communication unit 157 .
  • the body side yaw reference value is corrected, and offset noise caused by a deviation of the body side yaw reference value is removed. Details of the body side yaw offset value will be described later.
  • the reference value subtraction unit 152 b subtracts the body side pitch reference value from the pitch angular velocity, which is the output signal (digital signal) of the ADC 151 b .
  • the body side pitch reference value is, for example, an average value of the pitch angular velocity obtained via the pitch angular velocity sensor 16 b and the ADC 151 b for the specified duration in the camera body 1 kept in a stationary state.
  • the reference value subtraction unit 152 b updates the body side pitch reference value by adding, to the body side pitch reference value, an offset value in the pitch direction on the body side (hereinafter referred to as a “body side pitch offset value”) transmitted from the system controller 14 via the communication unit 157 .
  • the body side pitch reference value is corrected, and offset noise caused by a deviation of the body side pitch reference value is removed. Details of the body side pitch offset value will be described later.
  • the output values of the reference value subtraction unit 152 a and the reference value subtraction unit 152 b become a value having a positive or negative sign that indicates a rotational direction, and become 0 when the camera body 1 is kept in a stationary state.
  • the body side yaw reference value and the body side pitch reference value before being updated are not limited to those obtained on the basis of an average of the angular velocity as described above, and may be values obtained with another method.
  • the yaw angular shake amount calculation unit 153 a calculates the amount of an angular change in the yaw direction by temporally integrating the yaw angular velocity from which the reference value subtraction unit 152 a subtracts the body side yaw reference value.
  • the pitch angular shake amount calculation unit 153 b calculates the amount of an angular change in the pitch direction by temporally integrating the pitch angular velocity from which the reference value subtraction unit 152 b subtracts the body side pitch reference value.
  • the correction amount calculation unit 154 calculates the amount of a move (the amount of an image blurring) of a subject image in the X direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the yaw direction calculated by the yaw angular shake amount calculation unit 153 a , and focal distance information of the optical system 21 . Then, the correction amount calculation unit 154 calculates the amount of a correction in the X direction for canceling the amount of a move of the subject image in the X direction on the basis of the amount of a move in the X direction, and shake correction sharing ratio information.
  • the correction amount calculation unit 154 calculates the amount of a move (the amount of an image blurring) of the subject image in the Y direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the pitch direction calculated by the pitch angular shake amount calculation unit 153 b , and the focal distance information of the optical system 21 . Then, the correction amount calculation unit 154 calculates the amount of a correction in the Y direction for canceling the amount of a move of the subject image in the Y direction on the basis of the calculated amount of a move in the Y direction, and the shake correction sharing ratio information. Note that the focal distance information of the optical system 21 and the shake correction sharing ratio information are transmitted from the system controller 14 via the communication unit 157 .
  • the driver 155 a outputs, to the imaging element driving actuator 13 , a driving pulse according to the amount of a correction in the X direction calculated by the correction amount calculation unit 154 .
  • the imaging element driving actuator 13 moves the imaging element 12 in the X direction by a distance according to the amount of a correction in the X direction.
  • the driver 155 b outputs, to the imaging element driving actuator 13 , a driving pulse according to the amount of a correction in the Y direction calculated by the correction amount calculation unit 154 .
  • the imaging element driving actuator 13 moves the imaging element 12 in the Y direction by a distance according to the amount of a correction in the Y direction.
  • the integration unit 156 a accumulates the yaw angular velocity obtained via the yaw angular velocity sensor 16 a , the ADC 151 a , and the reference value subtraction unit 152 a . Moreover, the integration unit 156 a obtains an average value of the yaw angular velocity accumulated so far in response to the reception of an average value obtainment request command transmitted from the system controller 14 via the communication unit 157 , transmits the obtained average value to the system controller 14 via the communication unit 157 , and clears the yaw angular velocity accumulated so far.
  • the average value of the yaw angular velocity that is accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14 . Accordingly, a duration during which the integration unit 156 a accumulates the yaw angular velocity is controllable by the system controller 14 . The calculation of the body side yaw offset value becomes more accurate as this accumulation duration increases.
  • the integration unit 156 b accumulates the pitch angular velocity obtained via the pitch angular velocity sensor 16 b , the ADC 151 b , and the reference value subtraction unit 152 b . Moreover, the integration unit 156 b obtains an average value of the pitch angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 157 , transmits the obtained average value to the system controller 14 via the communication unit 157 , and clears the pitch angular velocity accumulated so far.
  • the average value of the pitch angular velocity that is accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14 . Accordingly, a duration during which the integration unit 156 b accumulates the pitch angular velocity is controllable by the system controller 14 . The calculation of the body side pitch offset value becomes more accurate as this accumulation duration increases.
  • the communication unit 157 communicates with the system controller 14 .
  • FIG. 5 illustrates details of a configuration example of the LCU 22 .
  • the LCU 22 includes ADCs 221 ( 221 a , 221 b , 221 c ), reference value subtraction units 222 ( 222 a , 222 b ), a reference value output unit 223 , a yaw angular shake amount calculation unit 224 a , a pitch angular shake amount calculation unit 224 b , a correction amount calculation unit 225 , drivers 226 ( 226 a , 226 b ), integration units 227 ( 227 a , 227 b ), a communication unit 228 , a lens control unit 229 , and the above described ROM 22 a.
  • the ADC 221 a converts an analog signal that is the output signal of the yaw angular velocity sensor 24 a into a digital signal.
  • the ADC 221 b converts an analog signal that is the output signal of the pitch angular velocity sensor 24 b into a digital signal.
  • the ADC 221 c converts an analog signal that is the output signal of the thermistor 25 into a digital signal.
  • the reference value subtraction unit 222 a subtracts a lens side yaw reference value from the yaw angular velocity, which is the output signal (digital signal) of the ADC 221 a .
  • the lens side yaw reference value is that output from the reference value output unit 223 .
  • the reference value subtraction unit 222 a updates the lens side yaw reference value by adding, to the lens side yaw reference value, an offset value in the yaw direction on the lens side (hereinafter referred to as a “lens side yaw offset value”) transmitted from the system controller 14 via the communication unit 228 .
  • the lens side yaw reference value is corrected, and offset noise caused by a deviation of the lens side yaw reference value is removed. Details of the lens side yaw offset value will be described later.
  • the reference value subtraction unit 222 b subtracts the lens side pitch reference value from the pitch angular velocity, which is the output signal (digital signal) of the ADC 221 b .
  • the lens side pitch reference value is that output from the reference value output unit 223 .
  • the reference value subtraction unit 222 b updates the lens side pitch reference value by adding, to the lens side pitch reference value, an offset value in the pitch direction on the lens side (hereinafter referred to as a “lens side pitch offset value”) transmitted from the system controller 14 via the communication unit 228 .
  • the lens side pitch reference value is corrected, and the offset noise caused by a deviation of the lens side pitch reference value is removed. Details of the lens side pitch offset value will be described later.
  • the output values of the reference value subtraction unit 222 a and the reference value subtraction unit 222 b become a value having a positive or negative sign that indicates a rotational direction, and become 0 when the interchangeable lens 2 is kept in a stationary state.
  • the reference value output unit 223 includes a table that indicates an association among a temperature, a lens side yaw reference value and a lens side pitch reference value.
  • the reference value output unit 223 outputs, to the reference value subtraction unit 222 a , a lens side yaw reference value according to a temperature, which is the output signal (digital signal) of the ADC 221 c , on the basis of the table, and also outputs, to the reference value subtraction unit 222 b , a lens side pitch reference value according to the temperature.
  • the lens side yaw reference value according to the temperature is an average value of the yaw angular velocity obtained via the yaw angular velocity sensor 24 a and the ADC 221 a during a specified duration, for example, when the interchangeable lens 2 is kept in a stationary state and an ambient temperature of the yaw angular velocity sensor 24 a is equal to the temperature.
  • the lens side pitch reference value according to the temperature is an average value of the pitch angular velocity obtained via the pitch angular velocity sensor 24 b and the ADC 221 b for a specified duration, for example, when the interchangeable lens 2 is kept in a stationary state and an ambient temperature of the pitch angular velocity sensor 24 b is equal to the temperature.
  • the lens side yaw reference value and the lens side pitch reference value according to the temperature are not limited to those obtained by averaging the angular velocity in this way.
  • the lens side yaw reference value and the lens side pitch reference value may be those obtained with another method.
  • the reference value subtraction unit 222 ( 222 a , 222 b ) subtracts a reference value according to a temperature detected by the thermistor 25 , whereby a deviation of the reference value caused by a temperature drift of the angular velocity sensor ( 24 a , 24 b ) can be reduced, and shake detection can be performed with higher accuracy.
  • the yaw angular shake amount calculation unit 224 a calculates the amount of an angular change in the yaw direction by temporally integrating the yaw angular velocity from which the reference value subtraction unit 222 a subtracts the lens side yaw reference value.
  • the pitch angular shake amount calculation unit 224 b calculates the amount of an angular change in the pitch direction by temporally integrating the pitch angular velocity from which the reference value subtraction unit 222 b subtracts the lens side pitch reference value.
  • the correction amount calculation unit 225 calculates the amount of a move (the amount of an image blurring) of a subject image in the X direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the yaw direction calculated by the yaw angular shake amount calculation unit 224 a , and the focal distance information of the optical system 21 . Then, the correction amount calculation unit 225 calculates the amount of a correction in the X direction for canceling the amount of a move of the subject image in the X direction on the basis of the amount of a move in the X direction, and shake correction sharing ratio information.
  • the correction amount calculation unit 225 calculates the amount of a move (the amount of an image blurring) of the subject image in the Y direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the pitch direction calculated by the pitch angular shake amount calculation unit 222 b , and the focal distance information of the optical system 21 . Then, the correction amount calculation unit 225 calculates the amount of a correction in the Y direction for canceling the amount of a move of the subject image in the Y direction on the basis of the amount of a move in the Y direction, and the shake correction sharing ratio information. Note that the focal distance information of the optical system 21 is transmitted from the lens control unit 229 and the shake correction sharing ratio information is transmitted from the system controller 14 via the communication unit 228 .
  • the driver 226 a outputs, to the optical system driving actuator 23 , a driving pulse according to the amount of a correction in the X direction calculated by the correction amount calculation unit 225 .
  • the optical system driving actuator 23 moves the shake correction lens in the X direction by a distance according to the amount of a correction in the X direction.
  • the driver 226 b outputs, to the optical system driving actuator 23 , a driving pulse according to the amount of a correction in the Y direction calculated by the correction amount calculation unit 225 .
  • the optical system driving actuator 23 moves the shake correction lens in the Y direction by a distance according to the amount of a correction in the Y direction.
  • the integration unit 227 a accumulates the yaw angular velocity obtained via the yaw angular velocity sensor 24 a , the ADC 221 a , and the reference value subtraction unit 222 a . Moreover, the integration unit 227 a obtains an average value of the yaw angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 228 , transmits the obtained average value to the system controller 14 via the communication unit 228 , and clears the yaw angular velocity accumulated so far.
  • the average value of the yaw angular velocity accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14 . Accordingly, a duration during which the integration unit 227 a accumulates the yaw angular velocity is controllable by the system controller 14 . The calculation of the lens side yaw offset value becomes more accurate as this accumulation period increases.
  • the integration unit 227 b accumulates the pitch angular velocity obtained via the pitch angular velocity sensor 24 b , the ADC 221 b , and the reference value subtraction unit 222 b . Moreover, the integration unit 227 b obtains an average value of the pitch angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 228 , transmits the obtained average value to the system controller 14 via the communication unit 228 , and clears the pitch angular velocity accumulated so far.
  • the average value of the pitch angular velocity accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14 . Accordingly, a duration during which the integration unit 227 b accumulates the pitch angular velocity is controllable by the system controller 14 . The calculation of the lens side pitch offset value becomes more accurate as this accumulation duration increases.
  • the communication unit 228 communicates with the system controller 14 .
  • the lens control unit 229 controls focusing, zooming, the aperture and the like under the control of the system controller 14 . Moreover, the lens control unit 229 monitors the state of the optical system 21 , and transmits information about the state of the optical system 21 (hereinafter referred to as “status information of the optical system 21 ”) to the system controller 14 via the communication unit 228 in response to a lens status information obtainment request command transmitted from the system controller 14 via the communication unit 228 .
  • the status information of the optical system 21 includes information such as the focal distance of the optical system 21 , the position of the focusing lens, a shake correction range of the LCU 22 , and the like.
  • the shake correction range of the LCU 22 indicates an image blurring correction range correctable by a shake correction made by the LCU 22 , and is decided in accordance with the focal distance of the optical system 21 .
  • the lens control unit 229 transmits the focal distance information of the optical system 21 to the correction amount calculation unit 225 .
  • the ROM 22 a stores lens side shake detection accuracy information as described above.
  • the lens side shake detection accuracy information is read in response to an accuracy information obtainment request command transmitted from the system controller 14 via the communication unit 228 , and is transmitted to the system controller 14 via the communication unit 228 .
  • the configuration that is related to the shake correction and included in the interchangeable lens 2 in the camera system according to this embodiment having the above described configuration is one example of a first shake correction unit for correcting an image blurring caused by shaking.
  • the configuration that is related to the shake correction and included in the camera body 1 is one example of a second shake correction unit for correcting an image blurring caused by shaking.
  • the angular velocity sensors 24 ( 24 a , 24 b ) of the interchangeable lens 2 are one example of a first shake amount detector for detecting the amount of shaking.
  • the reference value subtraction units 222 ( 222 a , 222 b ) of the LCU 22 of the interchangeable lens 2 are one example of a first reference value subtraction unit for subtracting a first reference value corresponding to the output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector.
  • the angular velocity sensors 16 ( 16 a , 16 b ) of the camera body 1 are one example of a second shake amount detector for detecting the amount of shaking.
  • the reference value subtraction units 152 ( 152 a , 152 b ) of the shake correction microcomputer 15 of the camera body 1 are one example of a second reference value subtraction unit for subtracting a second reference value corresponding to the output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector.
  • the integration units 227 ( 227 a , 227 b ) of the LCU 22 of the interchangeable lens 2 are one example of a first average value calculation unit for calculating the average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value.
  • the integration units 156 ( 156 a , 156 b ) of the shake correction microcomputer 15 of the camera body 1 are one example of the second average value calculation unit for calculating the average value of the amount of shaking which is detected by the second shake amount detector for a specified duration and from which the second reference value subtraction unit subtracts the second reference value.
  • Some of the functions of the system controller 14 of the camera body 1 are one example of a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit.
  • the ROM 22 a that stores lens side shake detection accuracy information is one example of a first memory that stores first shake detection accuracy information about the shake detection accuracy of the first shake correction unit.
  • the ROM 17 that stores the body side shake detection accuracy information is one example of a second memory that stores second shake detection accuracy information about the shake detection accuracy of the second shake correction unit.
  • Some of the other functions of the system controller 14 of the camera body 1 are one example of a determination unit for determining which of the shake detection accuracies of the first shake correction unit and the second shake correction unit is higher on the basis of the first shake detection accuracy information stored in the first memory and the second shake detection accuracy information stored in the second memory.
  • the optical system driving actuator 23 is one example of a first shake correction mechanism.
  • the imaging element driving actuator 13 is one example of a second shake correction driving actuator.
  • the configuration for driving the optical system driving actuator 23 on the basis of the output of the reference value subtraction unit 222 ( 222 a , 222 b ) and the shake correction sharing ratio information in the LCU 22 is one example of a first shake correction driving actuator for driving the first shake correction mechanism on the basis of the amount of shaking from which the first reference value subtraction unit subtracts the first reference value, and the shake correction sharing ratio of the first shake correction unit to the second shake correction unit.
  • the configuration for driving the imaging element driving actuator 13 on the basis of the output of the reference value subtraction unit 152 ( 152 , 152 b ) and the shake correction sharing ratio information in the shake correction microcomputer 15 is one example of a second shake correction driving actuator for driving a second shake correction mechanism on the basis of the amount of shaking from which the second reference value subtraction unit subtracts the second reference value and the shake correction sharing ratio.
  • FIG. 6 is one example of a flowchart illustrating content of the reference value correction process executed by the system controller 14 of the camera body 1 .
  • the process of the flowchart illustrated in FIG. 6 is, for example, a periodically executed process.
  • the periodically executed process is, for example, a process executed at intervals of one second.
  • the system controller 14 transmits an average value obtainment request command to the LCU 22 , and obtains the average values of the yaw angular velocity and the pitch angular velocity from the LCU 22 (the integration units 227 a , 227 b ) (S 100 ).
  • the system controller 14 transmits an average value obtainment request command to the shake correction microcomputer 15 , and obtains the average values of the yaw angular velocity and the pitch angular velocity from the shake correction microcomputer 15 (the integration units 156 a , 156 b ) (S 102 ).
  • Either of S 100 and S 102 may be executed first.
  • the system controller 14 executes a process for calculating an offset value of a reference value (S 104 ). More specifically, the system controller 14 calculates, as a body side yaw offset value or a lens side yaw offset value, a difference between the average value of the yaw angular velocity on the interchangeable lens 2 side obtained in S 100 and the average value of the yaw angular velocity on the camera body 1 side obtained in S 102 on the basis of the lens side shake detection accuracy information and the body side shake detection accuracy information.
  • the system controller 14 calculates, as a body side pitch offset value or a lens side pitch offset value, a difference between the average value of the pitch angular velocity on the interchangeable lens 2 side obtained in S 100 and the average value of the pitch angular velocity on the camera body 1 side obtained in S 102 .
  • the lens side shake detection accuracy information is obtained from the LCU 22 as a response to an accuracy information obtainment request command that the system controller 14 transmits to the LCU 22 .
  • the body side shake detection accuracy information is read from the ROM 17 .
  • the system controller 14 executes a process for correcting a reference value (S 106 ). More specifically, the system controller 14 transmits the body side yaw offset value or the lens side yaw offset value calculated in S 104 to the camera body 1 or the interchangeable lens 2 . The system controller 14 also transmits the body side pitch offset value or the lens side pitch offset value calculated in S 104 to the camera body 1 or the interchangeable lens 2 . Thus, the body side yaw reference value or the lens side yaw reference value is corrected, and the body side pitch reference value or the lens side pitch reference value is corrected.
  • FIG. 7 is one example of a flowchart illustrating content of the reference value correction process executed by the shake correction microcomputer 15 of the camera body 1 .
  • the shake correction microcomputer 15 initially determines whether a detection period has elapsed (S 200 ).
  • the detection period is a period in which the ADC 151 ( 151 a , 151 b ) performs an AD (Analog-to-Digital) conversion in order to detect an angular velocity.
  • the detection period is 1 ms.
  • this detection period is a shorter period than a repetitive period in which the process of the flowchart illustrated in FIG. 6 is periodically executed.
  • the integration unit 156 a of the shake correction microcomputer 15 adds, to a value of the yaw angular velocity accumulated so far, the yaw angular velocity for which the ADC 151 a performs an AD conversion and from which the reference value subtraction unit 152 a subtracts the body side yaw reference value, while the integration unit 156 b of the shake correction microcomputer 15 adds, to a value of the pitch angular velocity accumulated so far, a pitch angular velocity for which the ADC 151 b performs an AD conversion and from which the reference value subtraction unit 152 b subtracts the body side pitch reference value (S 202 ).
  • the shake correction microcomputer 15 determines whether an average value obtainment request command has been received from the system controller (S 204 ).
  • the integration unit 156 a of the shake correction microcomputer 15 obtains the average value of the yaw angular velocity accumulated so far, and transmits the obtained average value to the system controller 14 , while the integration unit 156 b of the shake correction microcomputer 15 obtains the average value of the pitch angular velocity accumulated so far, and transmits the obtained average value to the system controller (S 206 ).
  • the integration unit 156 a of the shake correction microcomputer 15 clears the yaw angular velocity accumulated so far (the accumulated value of the yaw angular velocity), while the integration unit 156 b of the shake correction microcomputer 15 clears the pitch angular velocity accumulated so far (the accumulated value of the pitch angular velocity) (S 208 ).
  • FIG. 8 is one example of a flowchart illustrating content of the reference value correction process executed by the LCU 22 of the interchangeable lens 2 .
  • the LCU 22 initially determines whether the detection period has elapsed (S 300 ).
  • the detection period is a period in which the ADC 221 ( 221 a , 221 b ) performs an AD conversion in order to detect an angular velocity.
  • the sampling rate of the ADC 221 is 1 kHz
  • the detection period is 1 ms.
  • this detection period is a shorter period than a repetitive period in a case where the process of the flowchart illustrated in FIG. 6 is periodically executed.
  • the integration unit 227 a of the LCU 22 adds, to the value of the yaw angular velocity accumulated so far, the yaw angular velocity for which the ADC 221 a performs an AD conversion and from which the reference value subtraction unit 222 a subtracts the lens side yaw reference value, while the integration unit 227 b of the LCU 22 adds, to the value of the pitch angular velocity accumulated so far, the pitch angular velocity for which the ADC 221 b performs an AD conversion and from which the reference value subtraction unit 222 b subtracts the lens side pitch reference value (S 302 ).
  • the LCU 22 determines whether an average value obtainment request command has been received from the system controller 14 (S 304 ).
  • the integration unit 227 a of the LCU 22 obtains the average value of the yaw angular velocity accumulated so far, and transmits the obtained average value to the system controller 14 , while the integration unit 227 b of the LCU 22 obtains the average value of the pitch angular velocity accumulated so far, and transmits the obtained average value to the system controller 14 (S 306 ).
  • the integration unit 227 a of the LCU 22 clears the yaw angular velocity accumulated so far (the accumulated value of the yaw angular velocity), while the integration unit 227 b of the LCU 22 clears the pitch angular velocity accumulated so far (the accumulated value of the pitch angular velocity) (S 308 ).
  • FIG. 9 is one example of a flowchart illustrating details of content of the reference value correction process that the system controller 14 of the camera body 1 executes while respectively communicating with the shake correction microcomputer 15 of the camera body 1 and the LCU 22 of the interchangeable lens 2 .
  • the flowchart illustrated in FIG. 9 also includes the processes of the flowcharts illustrated in FIGS. 6 to 8 .
  • the system controller 14 initially transmits an accuracy information obtainment request command to the LCU 22 , and receives (obtains) lens side shake detection accuracy information from the LCU 22 as a response to the command (S 400 , S 500 ).
  • the system controller 14 determines which of the shake detection accuracies is higher on the basis of the lens side shake detection accuracy information obtained in S 400 , and the body side shake detection accuracy information read from the ROM 17 (S 402 ). More specifically, the system controller 14 determines which of the accuracies of the lens side yaw reference value and the body side yaw reference value is higher on the basis of accuracy information of the lens side yaw reference value included in the lens side shake detection accuracy information, and accuracy information of the body side yaw reference value included in the body side shake detection accuracy information.
  • the system controller 14 also determines which of the accuracies of the lens side pitch reference value and the body side pitch reference value is higher on the basis of the accuracy information of the lens side pitch reference value included in the lens side shake detection accuracy information, and the accuracy information of the body side pitch reference value included in the body side shake detection accuracy information.
  • the process may return to S 404 to be described later subsequently to S 408 to be described later without executing the process in and after step S 410 to be described later.
  • the system controller 14 transmits a lens status information obtainment request command to the LCU 22 , and receives (obtains) status information of the optical system 21 (including information of the focal distance, the position of the focusing lens, and the shake correction range of the LCU 22 ) from the LCU 22 as a response to the command (S 404 , S 502 ).
  • the system controller 14 calculates a shake correction sharing ratio of the shake correction microcomputer 15 to the LCU 22 when the shake correction microcomputer 15 and the LCU 22 share and make a shake correction (when the shake correction is made by combining the shake correction made by the shake correction microcomputer 15 and that by the LCU 22 ) (S 406 ).
  • the system controller 14 calculates the shake correction sharing ratio information, for example, in accordance with the ratio of the shake correction range of the shake correction microcomputer 15 to the shake correction range of the LCU 22 .
  • the shake correction range of the shake correction microcomputer 15 is a correction range in which the shake correction microcomputer 15 can correct an image blurring, and information of the range is stored, for example, in the ROM 17 .
  • the shake correction range of the LCU 22 is a range according to information that is included in the status information of the optical system 21 obtained in S 404 and is pursuant to the information about the shake correction range of the LCU 22 .
  • the shake correction sharing ratio is calculated in this way.
  • the shake correction sharing ratio may be calculated with another method, or may be defined as a fixed ratio of 1 to 1.
  • the system controller 14 transmits the shake correction sharing ratio calculated in S 406 respectively to the LCU 22 and the shake correction microcomputer 15 (notifies the LCU 22 and the shake correction microcomputer 15 of the shake correction sharing ratio), so that the LCU 22 and the shake correction microcomputer 15 respectively receive (obtain) the shake correction sharing ratio (S 408 , S 504 , S 600 ).
  • the system controller 14 determines whether an average value obtainment period has elapsed (S 410 ).
  • the average value obtainment period is a period in which the system controller 14 transmits an average value obtainment request command respectively to the LCU 22 and the shake correction microcomputer 15 .
  • the system controller 14 transmits the average value obtainment request command respectively to the LCU 22 and the shake correction microcomputer 15 , and receives (obtains) the average values of the yaw angular velocity and the pitch angular velocity respectively from the LCU 22 and the shake correction microcomputer 15 (S 412 , S 506 , S 602 ).
  • a deviation of the accumulation period of the angular velocity can be reduced to one detection period at a maximum.
  • the difference between the transmission timings may be set to a shorter period than 1 ms.
  • the system controller 14 executes a process for calculating the offset value of the reference value (S 414 ). More specifically, the system controller 14 calculates, as a body side yaw offset value or a lens side yaw offset value, a difference between the average value of the yaw angular velocity obtained from the LCU 22 in S 412 and the average value of the yaw angular velocity obtained from the shake correction microcomputer 15 in S 412 in accordance with the result of the determination made in S 402 .
  • the system controller 14 calculates, as the lens side yaw offset value, the difference between the average values of the yaw angular velocities.
  • the system controller 14 calculates the difference as the body side yaw offset value.
  • the system controller 14 also calculates, as the body side pitch offset value or the lens side pitch offset value, the difference between the average value of the pitch angular velocity obtained from the LCU 22 in S 412 and the average value of the pitch angular velocity obtained from the shake correction microcomputer 15 in S 412 in accordance with the result of the determination made in S 402 . Namely, when the result of the determination made in S 402 is a result such that the accuracy of the body side pitch reference value is higher than the accuracy of the lens side pitch reference value, the system controller 14 calculates the difference between the average values of the pitch angular velocities as the lens side pitch offset value.
  • the system controller 14 calculates the difference between the accuracies as the body side pitch offset value.
  • the system controller 14 determines whether the shake detection accuracies in both the yaw direction and the pitch direction on the camera body 1 side are higher than those on the interchangeable lens side 2 , on the basis of the determination made in S 402 (S 416 ). This determination is also a determination of whether a condition that the accuracy of the body side yaw reference value be higher than the accuracy of the lens side yaw reference value and that the accuracy of the body side pitch reference value be higher than the accuracy of the lens side pitch reference value is satisfied on the basis of the result of the determination made in S 402 .
  • the system controller 14 transmits, to the shake correction microcomputer 15 , the body side yaw offset value calculated in S 414 if the result of the determination made in S 402 is a result such that the accuracy of the lens side yaw reference value is higher than the accuracy of the body side yaw reference value, or transmits, to the shake correction microcomputer 15 , the body side pitch offset value calculated in S 414 if the result of the determination made in S 402 is a result such that the accuracy of the lens side pitch reference value is higher than the accuracy of the body side pitch reference value (S 418 ).
  • the shake correction microcomputer 15 receives either or both of the offset values, and updates either or both of the body side yaw reference value and the body side pitch reference value on the basis of the received value or values (S 604 ).
  • the body side yaw reference value and the body side pitch reference value are corrected, whereby either or both of the shake detection accuracies in the yaw direction and the pitch direction on the camera body 1 side can be improved.
  • the system controller 14 determines whether the shake detection accuracies in both the yaw direction and the pitch direction on the interchangeable lens 2 side are higher than those on the camera body 1 side, on the basis of the result of the determination made in S 402 (S 420 ).
  • This determination is a determination of whether a condition that the accuracy of the lens side yaw reference value be higher than the accuracy of the body side yaw reference value and that the accuracy of the lens side pitch reference value be higher than the accuracy of the body side pitch reference value is satisfied on the basis of the result of the determination made in S 402 .
  • the system controller 14 transmits, to the LCU 22 , the lens side yaw offset value calculated in S 414 if the accuracy of the body side yaw reference value is higher than the accuracy of the lens side yaw reference value, or transmits, to the LCU 22 , the lens side pitch offset value calculated in S 414 if the accuracy of the body side pitch reference value is higher than the accuracy of the lens side pitch reference value in the determination made in S 402 (S 422 ).
  • the LCU 22 receives either or both of the offset values, and updates either or both of the lens side yaw reference value and the lens side pitch reference value on the basis of the received offset value or values (S 508 ).
  • the lens side yaw reference value and the lens side pitch reference value are corrected, so that either or both of the shake detection accuracies in the yaw direction and the pitch direction on the interchangeable lens 2 side can be improved.
  • the shake detection accuracy on the interchangeable lens 2 side is higher than that on the camera body 1 side in both the yaw direction and the pitch direction as described above.
  • the aforementioned processes of the flowcharts illustrated in FIGS. 6 to 9 are executed, so that the reference values (the body side yaw reference value and the body side pitch reference value) on the camera body 1 side are corrected, and the shake detection accuracy on the camera body 1 side is improved to a degree equivalent to that on the interchangeable lens 2 side.
  • the LCU 22 and the shake correction microcomputer 15 share and make a shake correction in accordance with the above described shake correction sharing ratio, so that a shake correction is implemented by combining the shake correction made by the LCU 22 and that made by the shake correction microcomputer 15 .
  • both the camera body 1 and the interchangeable lens 2 have the shake correction function.
  • a difference exists between the shake detection accuracies of the shake correction functions of both the camera body 1 and the interchangeable lens 2 a lower shake detection accuracy can be improved to a degree equivalent to the higher shake detection accuracy.
  • both of the shake correction functions are operated to share a shake correction when being made, so that a shake correction range can be expanded more than that in a case where only either of the shake correction functions is operated.
  • the performance of the shake correction can be improved more than that in a case where only either of the shake correction functions is used.
  • the camera system according to this embodiment eliminates the need to convey a result of a shake detection made by one of the shake correction functions to the other when a shake correction is made by combining both of the shake correction functions of the camera body 1 and the interchangeable lens 2 .
  • the camera system according to this embodiment also eliminates the need to convey information yet to be corrected by one of the shake correction functions to the other. Accordingly, the camera system according to this embodiment does not pose a problem such that a response of a shake correction operation is delayed by a signal delay caused by the conveyance, and a shake correction performance is deteriorated due to a shake detection signal degradation caused by signal wiring needed for the conveyance.
  • the camera system according to this embodiment can be modified in various ways.
  • the interchangeable lens 2 is configured so that a reference value according to a temperature detected by the thermistor 25 can be used.
  • the camera body 1 side may have such a configuration instead of the interchangeable lens 2 side.
  • the camera body 1 may have the thermistor, and may use a reference value according to a temperature detected by the thermistor.
  • the reference value output unit 223 of the LCU 22 of the interchangeable lens 2 may output a reference value according to a detected temperature by using a primary approximate expression that represents a relationship between a temperature and a reference value as a replacement for the temperature table.
  • the system controller 14 of the camera body 1 may calculate the average values of angular velocities that are calculated by the integration units 156 of the shake correction microcomputer 15 of the camera body 1 , and by the integration units 227 of the LCU 22 of the interchangeable lens 2 .
  • the system controller 14 may transmit an accumulated value obtainment request command to the shake correction microcomputer 15 and the LCU 22 as a replacement for an average value obtainment request command, may obtain accumulated values (accumulated values of the angular velocities) respectively from the shake correction microcomputer 15 and the LCU 22 as a response to the command, and may calculate an average value of each of the accumulated values.
  • the system controller 14 of the camera body 1 may obtain shake detection accuracy information on the interchangeable lens 2 side as follows.
  • information about an association between identification information of an interchangeable lens and shake detection accuracy information of the interchangeable lens may be prestored in the ROM 17 of the camera body 1 .
  • the system controller 14 may obtain identification information from an interchangeable lens when the interchangeable lens is attached to the camera body 1 , and may obtain shake detection accuracy information according to the identification information on the basis of the above described information about an association.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

A camera system includes a lens having a first shake correction unit for correcting shaking on the basis of the amount of shaking which is detected by a first shake amount detector and from which a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state is subtracted, and a body having a second shake correction unit for correcting shaking on the basis of the amount of shaking which is detected by a second shake amount detector and from which a second reference value corresponding to an output value of the second shake correction unit in a stationary state is subtracted. The camera system corrects a first reference value or a second reference value.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2014-253508, filed on Dec. 15, 2014, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The present invention relates to a camera system in which both an interchangeable lens and a camera body have a shake correction function, and to a shake correction method thereof.
  • BACKGROUND
  • In recent years, cameras provided with a hand shake correction function have become popular, and it has become possible to take a satisfactory image without blurring even if particular attention is not paid when the image is shot with a camera held by hand.
  • In an interchangeable-lens camera in which a shooting lens is interchangeable in accordance with a shooting purpose, an interchangeable lens or a camera body is provided with a hand shake correction function depending on circumstances.
  • When an interchangeable lens is provided with a hand shake correction function, a sensor for detecting a movement applied to a camera is mounted in the interchangeable lens, and part of a group of shooting lenses is moved in a direction for canceling a detected shaking on a plane orthogonal to an optical axis, so that the shaking is corrected.
  • In the meantime, when the camera body is provided with a hand shake correction function, a sensor for detecting a movement applied to the camera is mounted in the camera body, and an imaging element is moved in a direction for canceling a detected shaking, so that the shaking is corrected.
  • Regardless of whether a hand shake correction function is provided in either the interchangeable lens or the camera body, there are advantages and disadvantages. Accordingly, in a camera system in which an interchangeable lens and a camera body have a connection compatibility, there may be cases where both the interchangeable lens and the camera body have the hand shake correction function and the camera system is used by combining the functions of the lens and the camera body, although this varies depending on a camera system or a camera maker.
  • In such a case, when both of the hand shake correction functions operate at the same time, an image blurring caused by shaking is excessively corrected, so that the resolution of a shot image is degraded due to the image blurring caused by the excessive correction. As a result, the effect of a hand shake correction cannot be produced.
  • Accordingly, when an image is shot by attaching an interchangeable lens provided with a hand shake correction function to a camera body also provided with a hand shake correction function, it is necessary to take measures to suspend either of the hand shake correction functions, or to apportion operation of both of the hand shake correction functions at a specified ratio.
  • As a solution that focuses on the above described problem, for example, a camera system described in Patent Document 1 (Japanese Laid-open Patent Publication No. 2006-126668) is presented. This camera system includes a camera having first shake correction means, and a lens device that is attached to the camera and has second shake correction means. The camera system further includes shake detection means provided in either of the camera and the lens device, and control means for obtaining a first amount of shake correction on the basis of a result of detection of the shake detection means. Then, the control means obtains a second amount of shake correction on the basis of the first amount of shake correction, and on the basis of the amount of movement of the first shake correction means or the second shake correction means that is driven in accordance with the first amount of the shake correction, so that an image blurring correction can be accurately made even if a plurality of image blurring correction functions are combined.
  • SUMMARY
  • One aspect of the present invention provides a camera system including an interchangeable lens having a first shake correction unit for correcting an image blurring caused by shaking, and a camera body having a second shake correction unit for correcting an image blurring caused by shaking. In the camera system, the first shake correction unit includes a first shake amount detector for detecting the amount of shaking, a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector, and a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value. The second shake correction unit includes a second shake amount detector for detecting the amount of shaking, a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector, and a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value. The camera body further includes a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit.
  • Another aspect of the present invention provides a camera system including an interchangeable lens having a first shake correction unit for correcting an image blurring caused by shaking, and a camera body having a second shake correction unit for correcting an image blurring caused by shaking. In the camera system, the first shake correction unit includes a first shake amount detector for detecting the amount of shaking, and a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector. The second shake correction unit includes a second shake amount detector for detecting the amount of shaking, and a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector. The camera body further includes a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value, a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value, and a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit.
  • A further aspect of the present invention provides a shake correction method of a camera system including an interchangeable lens having a first shake correction unit for subtracting a first reference value corresponding to an output value of a first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the first reference value has been subtracted, and a camera body having a second shake correction unit for subtracting a second reference value corresponding to an output value of a second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the second reference value has been subtracted. The method includes: calculating a first average value that is an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value is subtracted; calculating a second average value that is an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value is subtracted; and correcting the first reference value or the second reference value on the basis of a difference between the first average value and the second average value.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an explanatory diagram of definitions of directions in a camera system according to an embodiment.
  • FIG. 2 is an explanatory diagram of a basic idea of a shake correction made in the camera system according to the embodiment, and illustrates one example of temporal changes in angular velocities detected by angular velocity sensors respectively provided in a camera body and an interchangeable lens.
  • FIG. 3 illustrates a configuration example of the camera system according to the embodiment.
  • FIG. 4 illustrates details of a configuration example of a shake correction microcomputer.
  • FIG. 5 illustrates details of a configuration example of an LCU.
  • FIG. 6 is an example of a flowchart illustrating content of a reference value correction process executed by a system controller of the camera body.
  • FIG. 7 is one example of a flowchart illustrating content of a reference value correction process executed by the shake correction microcomputer of the camera body.
  • FIG. 8 is one example of a flowchart illustrating content of a reference value correction process executed by the LCU of the interchangeable lens.
  • FIG. 9 is one example of a flowchart illustrating details of content of a reference value correction process that the system controller of the camera body executes while respectively communicating with the shake correction microcomputer of the camera body and the LCU of the interchangeable lens.
  • DESCRIPTION OF EMBODIMENT
  • An embodiment according to the present invention is described below with reference to the drawings.
  • Definitions of directions in a camera system according to the embodiment are initially described below with reference to FIG. 1, and a basic idea of a shake correction made in the camera system according to this embodiment is described with reference to FIG. 2. Thereafter, a configuration and operations of the camera system according to the embodiment are described in detail with reference to FIGS. 3 to 9.
  • FIG. 1 is an explanatory diagram of the definitions of the directions in the camera system according to the embodiment.
  • As illustrated in FIG. 1, the camera system according to the embodiment is a camera system of an interchangeable-lens type in which an interchangeable lens 2 is attached to a camera body 1. An X direction, a Y direction, a Z direction, a pitch direction, a yaw direction and a roll direction in the camera system are defined as follows.
  • A horizontal direction of the camera body 1 is defined as the X direction. A rightward direction when the front side of the camera body 1 is viewed in the X direction is defined as a +X direction, while a leftward direction when the front side of the camera body 1 is viewed in the X direction is defined as a −X direction. Note that the X direction also corresponds to a horizontal direction of an imaging surface of an imaging element to be described later.
  • A vertical direction of the camera body 1 is defined as the Y direction. An upward direction in the Y direction is defined as a +Y direction, while a downward direction in the Y direction is defined as a −Y direction. Note that the Y direction also corresponds to a vertical direction of the imaging surface of the imaging element to be described later.
  • An optical axis direction of the interchangeable lens 2 is defined as the Z direction. Moreover, a direction from a back side to the front side of the camera body 1 in the Z direction is defined as a +Z direction, while a direction from the front side to the back side of the camera body 1 is defined as a −Z direction.
  • A rotational direction in which an axis in the X direction is a rotational axis is defined as the pitch direction. Moreover, in the pitch direction, a direction of a left rotation in the +X direction is defined as a +pitch direction, while a direction of a right rotation in the +X direction is defined as a −pitch direction.
  • A rotational direction in which an axis in the Y direction is a rotational axis is defined as the yaw direction. Moreover, in the yaw direction, a direction of a right rotation in the +Y direction is defined as a +yaw direction, while a direction of a left rotation in the +Y direction is defined as a −yaw direction.
  • A rotational direction in which an axis in the Z direction is a rotational axis is defined as the roll direction. Moreover, a direction of a left rotation in the +Z direction is defined as a +roll direction, while a direction of a right rotation in the +Z direction is defined as a −roll direction.
  • Plus and minus (+, −) of thus defined directions depend on a direction in which an angular velocity sensor to be described later is mounted, and are not limited to the above described ones as a matter of course.
  • FIG. 2 is an explanatory diagram of a basic idea of a shake correction made in the camera system according to this embodiment, and illustrates one example of temporal changes in angular velocities detected by angular velocity sensors that are respectively provided in the camera body 1 and the interchangeable lens 2, and will be described later.
  • In FIG. 2, horizontal and vertical axes indicate a time t and an angular velocity co, respectively. Moreover, a curve indicated by a dotted line represents one example of the temporal change in the angular velocity detected by the angular velocity sensor on the camera body 1 side, while a curve indicated by a solid line represents one example of the temporal change in the angular velocity detected by the angular velocity sensor on the interchangeable lens 2 side. Note that, however, the temporal changes in both of the angular velocities are those in the angular velocities in the same direction (the yaw direction or the pitch direction).
  • When the camera body 1 and the interchangeable lens 2 are combined into one body by attaching the interchangeable lens 2 to the camera body 1, ideally, the angular velocities of both the camera body 1 and the interchangeable lens 2 would match. In reality, however, both of the angular velocities do not match and become different as illustrated in FIG. 2 due to a difference between detection accuracies of both of the angular velocity sensors.
  • Various types of noise are superposed on an angular velocity detected by the angular velocity sensor. Offset noise caused by a deviation of a reference value (an angular velocity detected by the angular velocity sensor kept in a stationary state) among the types of noise is noise that strongly affects a shake correction performance. When a detected angular velocity includes an error due to an occurrence of the offset noise, a shake correction cannot be properly made even if the shaking is corrected on the basis of the angular velocity. A main factor in the offset noise is a temperature drift (a change of a reference value caused by a temperature characteristic) of an angular velocity sensor.
  • Assume that the detection accuracy of the angular velocity sensor on the interchangeable lens 2 side is higher than the detection accuracy of the angular velocity sensor on the camera body 1 side in the example illustrated in FIG. 2. In this case, the angular velocity on the interchangeable lens 2 side can be recognized as a true value, and that on the camera body 1 side can be considered to be a value including a constant error with respect to the true value.
  • In this case, average values of the angular velocities in a certain duration (an accumulation duration (such as a duration from t1 to t2, or a duration from t2 to t3 illustrated in FIG. 2)) are obtained in the changes in the angular velocities both on the camera body 1 side and the interchangeable lens 2 side, and a difference between the average values of both of the angular velocities is obtained, so that offset noise included in the angular velocity on the camera body 1 side can be obtained. Then, the offset noise is subtracted from the angular velocity on the camera body 1 side, whereby the detection accuracy of the angular velocity sensor on the camera body 1 side can be improved to a degree equivalent to the detection accuracy of the angular velocity sensor on the interchangeable lens 2 side.
  • In the camera system according to this embodiment, the detection accuracy of one of the angular velocity sensors (an angular velocity sensor having a lower detection accuracy) is improved to a degree equivalent to the detection accuracy of the other (an angular velocity sensor having a higher detection accuracy). Then, a shake correction is made by combining both of the shake correction functions, whereby the performance of the shake correction can be made higher than that in a case where the shake correction is made by using only one of the angular velocity sensors.
  • FIG. 3 illustrates a configuration example of the camera system according to this embodiment.
  • As illustrated in FIG. 3, the camera system according to this embodiment has a configuration where the interchangeable lens 2 is attached to the camera body 1. The camera body 1 is configured so that the interchangeable lens 2 can be freely attached and detached. The interchangeable lens 2 is attached to the camera body 1 in such a way that a lens mount connection part that is provided in the interchangeable lens 2 and not illustrated and a body mount connection part that is provided in the camera body 1 and not illustrated are engaged with each other. Thus, the interchangeable lens 2 is secured to the camera body 1, and also terminals respectively provided in the mount connection parts are electrically connected, so that a communication between the camera body 1 and the interchangeable lens 2 can be performed via a connection point 3.
  • The camera body 1 includes a focal plane shutter 11, an imaging element 12, an imaging element driving actuator 13, a system controller 14, a shake correction microcomputer 15, a yaw angular velocity sensor 16 a, a pitch angular velocity sensor 16 b, and a ROM (Read Only Memory) 17.
  • The focal plane shutter 11 is arranged on the front side of the imaging element 12. The focal plane shutter 11 is opened and closed under the control of the system controller 14, so that the imaging surface of the imaging element 12 is exposed to or shielded from light.
  • The imaging element 12 is an image sensor such as a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor) or the like. The imaging element 12 converts a subject image formed on the imaging surface into an electric signal (photo-electrically converts the image) under the control of the system controller 14. The converted electric signal is read by the system controller 14 as an image signal.
  • The imaging element driving actuator 13 has a configuration that supports the imaging element 12, and moves the imaging element 12 in a direction of a plane vertical to an optical axis of an optical system 21 under the control of the shake correction microcomputer 15. With this movement, the position of the subject image formed on the imaging surface of the imaging element 12 changes.
  • The system controller 14 communicates with an LCU (Lens Control Unit) 22 via the connection point 3, and the shake correction microcomputer 15, and controls operations of the entire camera system (the camera body 1 and the interchangeable lens 2). For example, the system controller 14 controls focusing, zooming, an aperture not illustrated and the like by controlling the LCU 22. Moreover, the system controller 14 controls, for example, the focal plane shutter 11 and the imaging element 12. The system controller 14 also controls, for example, the focal plane shutter 11 and the imaging element 12. Moreover, the system controller 14 reads, for example, an image signal from the imaging element 12, and converts the read signal into image data having a specified form. Furthermore, the system controller 14, for example, executes a reference value correction process to be described later with reference to FIG. 6, and various types of processes to be described later with reference to FIG. 9.
  • The shake correction microcomputer 15 makes a shake correction under the control of the system controller 14. The shake correction microcomputer 15 controls, for example, the imaging element driving actuator 13 on the basis of the output of the yaw angular velocity sensor 16 a, the output of the pitch angular velocity sensor 16 b, and information about a shake correction sharing ratio to be described later (hereinafter referred to as “shake correction sharing ratio information”) so that the imaging element 12 can be moved in a direction for canceling an image blurring caused by shaking. Moreover, the shake correction microcomputer 15 executes, for example, a reference value correction process to be described later with reference to FIG. 7, and the various types of processes to be described later with reference to FIG. 9. Details of the shake correction microcomputer 15 will be described later with reference to FIG. 4.
  • The yaw angular velocity sensor 16 a detects a rotational movement (a posture change) of the camera body 1 in the yaw direction as an angular velocity (hereinafter referred to as a “yaw angular velocity”).
  • The pitch angular velocity sensor 16 b detects a rotational movement (a posture change) of the camera body 1 in the pitch direction as an angular velocity (hereinafter referred to as a “pitch angular velocity”).
  • The ROM 17 is a nonvolatile memory in which information about shake detection accuracy on the camera body 1 side (hereinafter referred to as “body side shake detection accuracy information”) or the like is stored. The body side shake detection accuracy information includes, for example, accuracy information of a reference value of the yaw angular velocity sensor 16 a (hereinafter referred to as a “body side yaw reference value”), and accuracy information of a reference value of the pitch angular velocity sensor 16 b (hereinafter referred to as a “body side pitch reference value”). The accuracy information of the body side yaw reference value and the body side pitch reference value are represented, for example, by a value in a unit system such as dps (degrees per second). The accuracy increases as this value becomes smaller.
  • The interchangeable lens 2 includes the optical system 21, the LCU 22, an optical system driving actuator 23, a yaw angular velocity sensor 24 a, a pitch angular velocity sensor 24 b and a thermistor 25. The interchangeable lens 2 also includes the aperture not illustrated.
  • The optical system 21 forms a light flux from a subject as a subject image on the imaging surface of the imaging element 12. The optical system 21 includes a focusing lens, a zoom lens, and a shake correction lens that are not illustrated.
  • The LCU 22 communicates with the system controller 14 via the connection point 3, and controls operations (including a shake correction operation) of the entire interchangeable lens 2. The LCU 22 controls, for example, focusing, zooming, the aperture and the like under the control of the system controller 14. Moreover, the LCU 22 controls, for example, the optical system driving actuator 23 on the basis of the output of the yaw angular velocity sensor 16 a, the output of the pitch angular velocity sensor 16 b, and the shake correction sharing ratio information to be described later so that the shake correction lens can be moved in a direction for canceling an image blurring caused by shaking. Additionally, the LCU 22 executes, for example, a reference value correction process to be described later with reference to FIG. 8, and the various types of processes to be described later with reference to FIG. 9. Details of the LCU 22 will be described later with reference to FIG. 5.
  • The LCU 22 further includes a ROM 22 a. The ROM 22 a is a nonvolatile memory that stores information about the shake detection accuracy on the interchangeable lens 2 side (hereinafter referred to as “lens side shake detection accuracy information”), and the like. The lens side shake detection accuracy information includes, for example, accuracy information of a reference value of the yaw angular velocity sensor 24 a (hereinafter referred to as a “lens side yaw reference value”), and accuracy information of a reference value of the pitch angular velocity sensor 24 b (hereinafter referred to as a “lens side pitch reference value”). The accuracy information of the lens side yaw reference value and the lens side pitch reference value are represented, for example, with a value in a unit system such as dps. The accuracy increases as this value becomes smaller.
  • The optical system driving actuator 23 moves the shake correction lens included in the optical system 21 in a direction of a plane vertical to the optical axis of the optical system 21 under the control of the LCU 22. With this movement, the position of a subject image formed on the imaging surface of the imaging element 12 changes.
  • The yaw angular velocity sensor 24 a detects a rotational movement (a posture change) of the interchangeable lens 2 in the yaw direction as an angular velocity (hereinafter referred to as a “yaw angular velocity”).
  • The pitch angular velocity sensor 24 b detects a rotational movement (a posture change) of the interchangeable lens 2 in the pitch direction as an angular velocity (hereinafter referred to as a “pitch angular velocity”).
  • The thermistor 25 detects temperatures in the vicinities of the yaw angular velocity sensor 24 a and the pitch angular velocity sensor 24 b.
  • In the camera system according to this embodiment, the interchangeable lens 2 includes the thermistor 25, and the LCU 22 uses reference values (a lens side yaw reference value and a lens side pitch reference value) according to temperatures detected by the thermistor 25. In the meantime, the camera body 1 does not have such a configuration. Therefore, the accuracy of the lens side yaw reference value is higher than the accuracy of the body side yaw reference value, and the accuracy of the lens side pitch reference value is higher than the accuracy of the body side pitch reference value.
  • FIG. 4 illustrates details of a configuration example of the shake correction microcomputer 15.
  • As illustrated in FIG. 4, the shake correction microcomputer 15 includes ADCs (Analog-to-Digital Converters) 151 (151 a, 151 b), reference value subtraction units 152 (152 a, 152 b), a yaw angular shake amount calculation unit 153 a, a pitch angular shake amount calculation unit 153 b, a correction amount calculation unit 154, drivers 155 (155 a, 155 b), integration units 156 (156 a, 156 b), and a communication unit 157.
  • The ADC 151 a converts an analog signal that is the output signal of the yaw angular velocity sensor 16 a into a digital signal. The ADC 151 b converts an analog signal that is the output signal of the pitch angular velocity sensor 16 b into a digital signal.
  • The reference value subtraction unit 152 a subtracts the body side yaw reference value from the yaw angular velocity, which is the output signal (digital signal) of the ADC 151 a. The body side yaw reference value is, for example, an average value of the yaw angular velocity obtained via the yaw angular velocity sensor 16 a and the ADC 151 a for a specified duration in the camera body 1 kept in a stationary state. Moreover, the reference value subtraction unit 152 a updates the body side yaw reference value by adding, to the body side yaw reference value, an offset value in the yaw direction on the body side (hereinafter referred to as a “body side yaw offset value”) transmitted from the system controller 14 via the communication unit 157. Thus, the body side yaw reference value is corrected, and offset noise caused by a deviation of the body side yaw reference value is removed. Details of the body side yaw offset value will be described later.
  • The reference value subtraction unit 152 b subtracts the body side pitch reference value from the pitch angular velocity, which is the output signal (digital signal) of the ADC 151 b. Note that the body side pitch reference value is, for example, an average value of the pitch angular velocity obtained via the pitch angular velocity sensor 16 b and the ADC 151 b for the specified duration in the camera body 1 kept in a stationary state. Moreover, the reference value subtraction unit 152 b updates the body side pitch reference value by adding, to the body side pitch reference value, an offset value in the pitch direction on the body side (hereinafter referred to as a “body side pitch offset value”) transmitted from the system controller 14 via the communication unit 157. Thus, the body side pitch reference value is corrected, and offset noise caused by a deviation of the body side pitch reference value is removed. Details of the body side pitch offset value will be described later.
  • With such operations of the reference value subtraction unit 152 a and the reference value subtraction unit 152 b, the output values of the reference value subtraction unit 152 a and the reference value subtraction unit 152 b become a value having a positive or negative sign that indicates a rotational direction, and become 0 when the camera body 1 is kept in a stationary state. The body side yaw reference value and the body side pitch reference value before being updated are not limited to those obtained on the basis of an average of the angular velocity as described above, and may be values obtained with another method.
  • The yaw angular shake amount calculation unit 153 a calculates the amount of an angular change in the yaw direction by temporally integrating the yaw angular velocity from which the reference value subtraction unit 152 a subtracts the body side yaw reference value.
  • The pitch angular shake amount calculation unit 153 b calculates the amount of an angular change in the pitch direction by temporally integrating the pitch angular velocity from which the reference value subtraction unit 152 b subtracts the body side pitch reference value.
  • The correction amount calculation unit 154 calculates the amount of a move (the amount of an image blurring) of a subject image in the X direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the yaw direction calculated by the yaw angular shake amount calculation unit 153 a, and focal distance information of the optical system 21. Then, the correction amount calculation unit 154 calculates the amount of a correction in the X direction for canceling the amount of a move of the subject image in the X direction on the basis of the amount of a move in the X direction, and shake correction sharing ratio information. Moreover, the correction amount calculation unit 154 calculates the amount of a move (the amount of an image blurring) of the subject image in the Y direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the pitch direction calculated by the pitch angular shake amount calculation unit 153 b, and the focal distance information of the optical system 21. Then, the correction amount calculation unit 154 calculates the amount of a correction in the Y direction for canceling the amount of a move of the subject image in the Y direction on the basis of the calculated amount of a move in the Y direction, and the shake correction sharing ratio information. Note that the focal distance information of the optical system 21 and the shake correction sharing ratio information are transmitted from the system controller 14 via the communication unit 157.
  • The driver 155 a outputs, to the imaging element driving actuator 13, a driving pulse according to the amount of a correction in the X direction calculated by the correction amount calculation unit 154. Thus, the imaging element driving actuator 13 moves the imaging element 12 in the X direction by a distance according to the amount of a correction in the X direction.
  • The driver 155 b outputs, to the imaging element driving actuator 13, a driving pulse according to the amount of a correction in the Y direction calculated by the correction amount calculation unit 154. Thus, the imaging element driving actuator 13 moves the imaging element 12 in the Y direction by a distance according to the amount of a correction in the Y direction.
  • The integration unit 156 a accumulates the yaw angular velocity obtained via the yaw angular velocity sensor 16 a, the ADC 151 a, and the reference value subtraction unit 152 a. Moreover, the integration unit 156 a obtains an average value of the yaw angular velocity accumulated so far in response to the reception of an average value obtainment request command transmitted from the system controller 14 via the communication unit 157, transmits the obtained average value to the system controller 14 via the communication unit 157, and clears the yaw angular velocity accumulated so far. Thus, the average value of the yaw angular velocity that is accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14. Accordingly, a duration during which the integration unit 156 a accumulates the yaw angular velocity is controllable by the system controller 14. The calculation of the body side yaw offset value becomes more accurate as this accumulation duration increases.
  • The integration unit 156 b accumulates the pitch angular velocity obtained via the pitch angular velocity sensor 16 b, the ADC 151 b, and the reference value subtraction unit 152 b. Moreover, the integration unit 156 b obtains an average value of the pitch angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 157, transmits the obtained average value to the system controller 14 via the communication unit 157, and clears the pitch angular velocity accumulated so far. Thus, the average value of the pitch angular velocity that is accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14. Accordingly, a duration during which the integration unit 156 b accumulates the pitch angular velocity is controllable by the system controller 14. The calculation of the body side pitch offset value becomes more accurate as this accumulation duration increases.
  • The communication unit 157 communicates with the system controller 14.
  • FIG. 5 illustrates details of a configuration example of the LCU 22.
  • As illustrated in FIG. 5, the LCU 22 includes ADCs 221 (221 a, 221 b, 221 c), reference value subtraction units 222 (222 a, 222 b), a reference value output unit 223, a yaw angular shake amount calculation unit 224 a, a pitch angular shake amount calculation unit 224 b, a correction amount calculation unit 225, drivers 226 (226 a, 226 b), integration units 227 (227 a, 227 b), a communication unit 228, a lens control unit 229, and the above described ROM 22 a.
  • The ADC 221 a converts an analog signal that is the output signal of the yaw angular velocity sensor 24 a into a digital signal. The ADC 221 b converts an analog signal that is the output signal of the pitch angular velocity sensor 24 b into a digital signal. The ADC 221 c converts an analog signal that is the output signal of the thermistor 25 into a digital signal.
  • The reference value subtraction unit 222 a subtracts a lens side yaw reference value from the yaw angular velocity, which is the output signal (digital signal) of the ADC 221 a. The lens side yaw reference value is that output from the reference value output unit 223. Moreover, the reference value subtraction unit 222 a updates the lens side yaw reference value by adding, to the lens side yaw reference value, an offset value in the yaw direction on the lens side (hereinafter referred to as a “lens side yaw offset value”) transmitted from the system controller 14 via the communication unit 228. Thus, the lens side yaw reference value is corrected, and offset noise caused by a deviation of the lens side yaw reference value is removed. Details of the lens side yaw offset value will be described later.
  • The reference value subtraction unit 222 b subtracts the lens side pitch reference value from the pitch angular velocity, which is the output signal (digital signal) of the ADC 221 b. Note that the lens side pitch reference value is that output from the reference value output unit 223. Moreover, the reference value subtraction unit 222 b updates the lens side pitch reference value by adding, to the lens side pitch reference value, an offset value in the pitch direction on the lens side (hereinafter referred to as a “lens side pitch offset value”) transmitted from the system controller 14 via the communication unit 228. Thus, the lens side pitch reference value is corrected, and the offset noise caused by a deviation of the lens side pitch reference value is removed. Details of the lens side pitch offset value will be described later.
  • With such processes of the reference value subtraction unit 222 a and the reference value subtraction unit 222 b, the output values of the reference value subtraction unit 222 a and the reference value subtraction unit 222 b become a value having a positive or negative sign that indicates a rotational direction, and become 0 when the interchangeable lens 2 is kept in a stationary state.
  • The reference value output unit 223 includes a table that indicates an association among a temperature, a lens side yaw reference value and a lens side pitch reference value. The reference value output unit 223 outputs, to the reference value subtraction unit 222 a, a lens side yaw reference value according to a temperature, which is the output signal (digital signal) of the ADC 221 c, on the basis of the table, and also outputs, to the reference value subtraction unit 222 b, a lens side pitch reference value according to the temperature. Here, the lens side yaw reference value according to the temperature is an average value of the yaw angular velocity obtained via the yaw angular velocity sensor 24 a and the ADC 221 a during a specified duration, for example, when the interchangeable lens 2 is kept in a stationary state and an ambient temperature of the yaw angular velocity sensor 24 a is equal to the temperature. Moreover, the lens side pitch reference value according to the temperature is an average value of the pitch angular velocity obtained via the pitch angular velocity sensor 24 b and the ADC 221 b for a specified duration, for example, when the interchangeable lens 2 is kept in a stationary state and an ambient temperature of the pitch angular velocity sensor 24 b is equal to the temperature. The lens side yaw reference value and the lens side pitch reference value according to the temperature are not limited to those obtained by averaging the angular velocity in this way. The lens side yaw reference value and the lens side pitch reference value may be those obtained with another method.
  • With these operations of the reference value output unit 223, the reference value subtraction unit 222 (222 a, 222 b) subtracts a reference value according to a temperature detected by the thermistor 25, whereby a deviation of the reference value caused by a temperature drift of the angular velocity sensor (24 a, 24 b) can be reduced, and shake detection can be performed with higher accuracy.
  • The yaw angular shake amount calculation unit 224 a calculates the amount of an angular change in the yaw direction by temporally integrating the yaw angular velocity from which the reference value subtraction unit 222 a subtracts the lens side yaw reference value.
  • The pitch angular shake amount calculation unit 224 b calculates the amount of an angular change in the pitch direction by temporally integrating the pitch angular velocity from which the reference value subtraction unit 222 b subtracts the lens side pitch reference value.
  • The correction amount calculation unit 225 calculates the amount of a move (the amount of an image blurring) of a subject image in the X direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the yaw direction calculated by the yaw angular shake amount calculation unit 224 a, and the focal distance information of the optical system 21. Then, the correction amount calculation unit 225 calculates the amount of a correction in the X direction for canceling the amount of a move of the subject image in the X direction on the basis of the amount of a move in the X direction, and shake correction sharing ratio information. Moreover, the correction amount calculation unit 225 calculates the amount of a move (the amount of an image blurring) of the subject image in the Y direction on the imaging surface of the imaging element 12 on the basis of the amount of an angular change in the pitch direction calculated by the pitch angular shake amount calculation unit 222 b, and the focal distance information of the optical system 21. Then, the correction amount calculation unit 225 calculates the amount of a correction in the Y direction for canceling the amount of a move of the subject image in the Y direction on the basis of the amount of a move in the Y direction, and the shake correction sharing ratio information. Note that the focal distance information of the optical system 21 is transmitted from the lens control unit 229 and the shake correction sharing ratio information is transmitted from the system controller 14 via the communication unit 228.
  • The driver 226 a outputs, to the optical system driving actuator 23, a driving pulse according to the amount of a correction in the X direction calculated by the correction amount calculation unit 225. Thus, the optical system driving actuator 23 moves the shake correction lens in the X direction by a distance according to the amount of a correction in the X direction.
  • The driver 226 b outputs, to the optical system driving actuator 23, a driving pulse according to the amount of a correction in the Y direction calculated by the correction amount calculation unit 225. Thus, the optical system driving actuator 23 moves the shake correction lens in the Y direction by a distance according to the amount of a correction in the Y direction.
  • The integration unit 227 a accumulates the yaw angular velocity obtained via the yaw angular velocity sensor 24 a, the ADC 221 a, and the reference value subtraction unit 222 a. Moreover, the integration unit 227 a obtains an average value of the yaw angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 228, transmits the obtained average value to the system controller 14 via the communication unit 228, and clears the yaw angular velocity accumulated so far. Thus, the average value of the yaw angular velocity accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14. Accordingly, a duration during which the integration unit 227 a accumulates the yaw angular velocity is controllable by the system controller 14. The calculation of the lens side yaw offset value becomes more accurate as this accumulation period increases.
  • The integration unit 227 b accumulates the pitch angular velocity obtained via the pitch angular velocity sensor 24 b, the ADC 221 b, and the reference value subtraction unit 222 b. Moreover, the integration unit 227 b obtains an average value of the pitch angular velocity accumulated so far in response to the reception of the average value obtainment request command transmitted from the system controller 14 via the communication unit 228, transmits the obtained average value to the system controller 14 via the communication unit 228, and clears the pitch angular velocity accumulated so far. Thus, the average value of the pitch angular velocity accumulated from the reception of the preceding average value obtainment request command up to the reception of the current average value obtainment request command is transmitted to the system controller 14 each time the average value obtainment request command is received from the system controller 14. Accordingly, a duration during which the integration unit 227 b accumulates the pitch angular velocity is controllable by the system controller 14. The calculation of the lens side pitch offset value becomes more accurate as this accumulation duration increases.
  • The communication unit 228 communicates with the system controller 14.
  • The lens control unit 229 controls focusing, zooming, the aperture and the like under the control of the system controller 14. Moreover, the lens control unit 229 monitors the state of the optical system 21, and transmits information about the state of the optical system 21 (hereinafter referred to as “status information of the optical system 21”) to the system controller 14 via the communication unit 228 in response to a lens status information obtainment request command transmitted from the system controller 14 via the communication unit 228. The status information of the optical system 21 includes information such as the focal distance of the optical system 21, the position of the focusing lens, a shake correction range of the LCU 22, and the like. Here, the shake correction range of the LCU 22 indicates an image blurring correction range correctable by a shake correction made by the LCU 22, and is decided in accordance with the focal distance of the optical system 21. Moreover, the lens control unit 229 transmits the focal distance information of the optical system 21 to the correction amount calculation unit 225.
  • The ROM 22 a stores lens side shake detection accuracy information as described above. The lens side shake detection accuracy information is read in response to an accuracy information obtainment request command transmitted from the system controller 14 via the communication unit 228, and is transmitted to the system controller 14 via the communication unit 228.
  • The configuration that is related to the shake correction and included in the interchangeable lens 2 in the camera system according to this embodiment having the above described configuration is one example of a first shake correction unit for correcting an image blurring caused by shaking. The configuration that is related to the shake correction and included in the camera body 1 is one example of a second shake correction unit for correcting an image blurring caused by shaking. The angular velocity sensors 24 (24 a, 24 b) of the interchangeable lens 2 are one example of a first shake amount detector for detecting the amount of shaking. The reference value subtraction units 222 (222 a, 222 b) of the LCU 22 of the interchangeable lens 2 are one example of a first reference value subtraction unit for subtracting a first reference value corresponding to the output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector. The angular velocity sensors 16 (16 a, 16 b) of the camera body 1 are one example of a second shake amount detector for detecting the amount of shaking. The reference value subtraction units 152 (152 a, 152 b) of the shake correction microcomputer 15 of the camera body 1 are one example of a second reference value subtraction unit for subtracting a second reference value corresponding to the output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector. The integration units 227 (227 a, 227 b) of the LCU 22 of the interchangeable lens 2 are one example of a first average value calculation unit for calculating the average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value. The integration units 156 (156 a, 156 b) of the shake correction microcomputer 15 of the camera body 1 are one example of the second average value calculation unit for calculating the average value of the amount of shaking which is detected by the second shake amount detector for a specified duration and from which the second reference value subtraction unit subtracts the second reference value. Some of the functions of the system controller 14 of the camera body 1 are one example of a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and that calculated by the second average value calculation unit. The ROM 22 a that stores lens side shake detection accuracy information is one example of a first memory that stores first shake detection accuracy information about the shake detection accuracy of the first shake correction unit. The ROM 17 that stores the body side shake detection accuracy information is one example of a second memory that stores second shake detection accuracy information about the shake detection accuracy of the second shake correction unit. Some of the other functions of the system controller 14 of the camera body 1 are one example of a determination unit for determining which of the shake detection accuracies of the first shake correction unit and the second shake correction unit is higher on the basis of the first shake detection accuracy information stored in the first memory and the second shake detection accuracy information stored in the second memory. The optical system driving actuator 23 is one example of a first shake correction mechanism. The imaging element driving actuator 13 is one example of a second shake correction driving actuator. The configuration for driving the optical system driving actuator 23 on the basis of the output of the reference value subtraction unit 222 (222 a, 222 b) and the shake correction sharing ratio information in the LCU 22 is one example of a first shake correction driving actuator for driving the first shake correction mechanism on the basis of the amount of shaking from which the first reference value subtraction unit subtracts the first reference value, and the shake correction sharing ratio of the first shake correction unit to the second shake correction unit. The configuration for driving the imaging element driving actuator 13 on the basis of the output of the reference value subtraction unit 152 (152, 152 b) and the shake correction sharing ratio information in the shake correction microcomputer 15 is one example of a second shake correction driving actuator for driving a second shake correction mechanism on the basis of the amount of shaking from which the second reference value subtraction unit subtracts the second reference value and the shake correction sharing ratio.
  • FIG. 6 is one example of a flowchart illustrating content of the reference value correction process executed by the system controller 14 of the camera body 1. The process of the flowchart illustrated in FIG. 6 is, for example, a periodically executed process. Here, the periodically executed process is, for example, a process executed at intervals of one second.
  • As illustrated in FIG. 6, once this process has been started, the system controller 14 transmits an average value obtainment request command to the LCU 22, and obtains the average values of the yaw angular velocity and the pitch angular velocity from the LCU 22 (the integration units 227 a, 227 b) (S100).
  • Then, the system controller 14 transmits an average value obtainment request command to the shake correction microcomputer 15, and obtains the average values of the yaw angular velocity and the pitch angular velocity from the shake correction microcomputer 15 (the integration units 156 a, 156 b) (S102).
  • Either of S100 and S102 may be executed first.
  • Then, the system controller 14 executes a process for calculating an offset value of a reference value (S104). More specifically, the system controller 14 calculates, as a body side yaw offset value or a lens side yaw offset value, a difference between the average value of the yaw angular velocity on the interchangeable lens 2 side obtained in S100 and the average value of the yaw angular velocity on the camera body 1 side obtained in S102 on the basis of the lens side shake detection accuracy information and the body side shake detection accuracy information. Moreover, the system controller 14 calculates, as a body side pitch offset value or a lens side pitch offset value, a difference between the average value of the pitch angular velocity on the interchangeable lens 2 side obtained in S100 and the average value of the pitch angular velocity on the camera body 1 side obtained in S102. Note that the lens side shake detection accuracy information is obtained from the LCU 22 as a response to an accuracy information obtainment request command that the system controller 14 transmits to the LCU 22. Moreover, the body side shake detection accuracy information is read from the ROM 17.
  • Next, the system controller 14 executes a process for correcting a reference value (S106). More specifically, the system controller 14 transmits the body side yaw offset value or the lens side yaw offset value calculated in S104 to the camera body 1 or the interchangeable lens 2. The system controller 14 also transmits the body side pitch offset value or the lens side pitch offset value calculated in S104 to the camera body 1 or the interchangeable lens 2. Thus, the body side yaw reference value or the lens side yaw reference value is corrected, and the body side pitch reference value or the lens side pitch reference value is corrected.
  • The process of the flowchart illustrated in FIG. 6 will also be referred to in the process of the system controller 14 illustrated in FIG. 9 to be described later.
  • FIG. 7 is one example of a flowchart illustrating content of the reference value correction process executed by the shake correction microcomputer 15 of the camera body 1.
  • As illustrated in FIG. 7, once this process is started, the shake correction microcomputer 15 initially determines whether a detection period has elapsed (S200). Note that the detection period is a period in which the ADC 151 (151 a, 151 b) performs an AD (Analog-to-Digital) conversion in order to detect an angular velocity. For example, when a sampling rate of the ADC 151 (an AD conversion rate) is 1 kHz, the detection period is 1 ms. Moreover, this detection period is a shorter period than a repetitive period in which the process of the flowchart illustrated in FIG. 6 is periodically executed.
  • When a result of the determination made in S200 is “YES”, the integration unit 156 a of the shake correction microcomputer 15 adds, to a value of the yaw angular velocity accumulated so far, the yaw angular velocity for which the ADC 151 a performs an AD conversion and from which the reference value subtraction unit 152 a subtracts the body side yaw reference value, while the integration unit 156 b of the shake correction microcomputer 15 adds, to a value of the pitch angular velocity accumulated so far, a pitch angular velocity for which the ADC 151 b performs an AD conversion and from which the reference value subtraction unit 152 b subtracts the body side pitch reference value (S202).
  • In the meantime, when the result of the determination made in S200 is “NO” or after S202, the shake correction microcomputer 15 determines whether an average value obtainment request command has been received from the system controller (S204).
  • When a result of the determination made in S204 is “YES”, the integration unit 156 a of the shake correction microcomputer 15 obtains the average value of the yaw angular velocity accumulated so far, and transmits the obtained average value to the system controller 14, while the integration unit 156 b of the shake correction microcomputer 15 obtains the average value of the pitch angular velocity accumulated so far, and transmits the obtained average value to the system controller (S206).
  • After S206, the integration unit 156 a of the shake correction microcomputer 15 clears the yaw angular velocity accumulated so far (the accumulated value of the yaw angular velocity), while the integration unit 156 b of the shake correction microcomputer 15 clears the pitch angular velocity accumulated so far (the accumulated value of the pitch angular velocity) (S208).
  • In the meantime, when the result of the determination made in S204 is “NO” or after S208, the process returns to S200, although this is not illustrated.
  • The process of the flowchart illustrated in FIG. 7 will also be referred to in the process of the shake correction microcomputer 15 illustrated in FIG. 9 to be described later.
  • FIG. 8 is one example of a flowchart illustrating content of the reference value correction process executed by the LCU 22 of the interchangeable lens 2.
  • As illustrated in FIG. 8, once this process is started, the LCU 22 initially determines whether the detection period has elapsed (S300). Note that the detection period is a period in which the ADC 221 (221 a, 221 b) performs an AD conversion in order to detect an angular velocity. For example, when the sampling rate of the ADC 221 is 1 kHz, the detection period is 1 ms. Moreover, this detection period is a shorter period than a repetitive period in a case where the process of the flowchart illustrated in FIG. 6 is periodically executed.
  • When a result of the determination made in S300 is “YES”, the integration unit 227 a of the LCU 22 adds, to the value of the yaw angular velocity accumulated so far, the yaw angular velocity for which the ADC 221 a performs an AD conversion and from which the reference value subtraction unit 222 a subtracts the lens side yaw reference value, while the integration unit 227 b of the LCU 22 adds, to the value of the pitch angular velocity accumulated so far, the pitch angular velocity for which the ADC 221 b performs an AD conversion and from which the reference value subtraction unit 222 b subtracts the lens side pitch reference value (S302).
  • In the meantime, when the result of the determination made in S300 is “NO” or after S302, the LCU 22 determines whether an average value obtainment request command has been received from the system controller 14 (S304).
  • When a result of the determination made in S304 is “YES”, the integration unit 227 a of the LCU 22 obtains the average value of the yaw angular velocity accumulated so far, and transmits the obtained average value to the system controller 14, while the integration unit 227 b of the LCU 22 obtains the average value of the pitch angular velocity accumulated so far, and transmits the obtained average value to the system controller 14 (S306).
  • After S306, the integration unit 227 a of the LCU 22 clears the yaw angular velocity accumulated so far (the accumulated value of the yaw angular velocity), while the integration unit 227 b of the LCU 22 clears the pitch angular velocity accumulated so far (the accumulated value of the pitch angular velocity) (S308).
  • In the meantime, when the result of the determination made in S304 is “NO” or after S308, the process returns to S300, although this is not illustrated.
  • The process of the flowchart illustrated in FIG. 8 is also referred to in the process of the LCU 22 illustrated in FIG. 9 to be described later.
  • FIG. 9 is one example of a flowchart illustrating details of content of the reference value correction process that the system controller 14 of the camera body 1 executes while respectively communicating with the shake correction microcomputer 15 of the camera body 1 and the LCU 22 of the interchangeable lens 2. The flowchart illustrated in FIG. 9 also includes the processes of the flowcharts illustrated in FIGS. 6 to 8.
  • As illustrated in FIG. 9, once the camera system according to this embodiment is activated to invoke this process, the system controller 14 initially transmits an accuracy information obtainment request command to the LCU 22, and receives (obtains) lens side shake detection accuracy information from the LCU 22 as a response to the command (S400, S500).
  • Then, the system controller 14 determines which of the shake detection accuracies is higher on the basis of the lens side shake detection accuracy information obtained in S400, and the body side shake detection accuracy information read from the ROM 17 (S402). More specifically, the system controller 14 determines which of the accuracies of the lens side yaw reference value and the body side yaw reference value is higher on the basis of accuracy information of the lens side yaw reference value included in the lens side shake detection accuracy information, and accuracy information of the body side yaw reference value included in the body side shake detection accuracy information. The system controller 14 also determines which of the accuracies of the lens side pitch reference value and the body side pitch reference value is higher on the basis of the accuracy information of the lens side pitch reference value included in the lens side shake detection accuracy information, and the accuracy information of the body side pitch reference value included in the body side shake detection accuracy information.
  • In the determination made in S402, when the accuracies of the lens side yaw reference value and the body side yaw reference value are equal and also the accuracies of the lens side pitch reference value and the body side pitch reference value are equal, the process may return to S404 to be described later subsequently to S408 to be described later without executing the process in and after step S410 to be described later.
  • After S402, the system controller 14 transmits a lens status information obtainment request command to the LCU 22, and receives (obtains) status information of the optical system 21 (including information of the focal distance, the position of the focusing lens, and the shake correction range of the LCU 22) from the LCU 22 as a response to the command (S404, S502).
  • Then, the system controller 14 calculates a shake correction sharing ratio of the shake correction microcomputer 15 to the LCU 22 when the shake correction microcomputer 15 and the LCU 22 share and make a shake correction (when the shake correction is made by combining the shake correction made by the shake correction microcomputer 15 and that by the LCU 22) (S406). The system controller 14 calculates the shake correction sharing ratio information, for example, in accordance with the ratio of the shake correction range of the shake correction microcomputer 15 to the shake correction range of the LCU 22. Note that the shake correction range of the shake correction microcomputer 15 is a correction range in which the shake correction microcomputer 15 can correct an image blurring, and information of the range is stored, for example, in the ROM 17. Moreover, the shake correction range of the LCU 22 is a range according to information that is included in the status information of the optical system 21 obtained in S404 and is pursuant to the information about the shake correction range of the LCU 22. In this example, the shake correction sharing ratio is calculated in this way. However, the shake correction sharing ratio may be calculated with another method, or may be defined as a fixed ratio of 1 to 1.
  • Next, the system controller 14 transmits the shake correction sharing ratio calculated in S406 respectively to the LCU 22 and the shake correction microcomputer 15 (notifies the LCU 22 and the shake correction microcomputer 15 of the shake correction sharing ratio), so that the LCU 22 and the shake correction microcomputer 15 respectively receive (obtain) the shake correction sharing ratio (S408, S504, S600).
  • Then, the system controller 14 determines whether an average value obtainment period has elapsed (S410). The average value obtainment period is a period in which the system controller 14 transmits an average value obtainment request command respectively to the LCU 22 and the shake correction microcomputer 15.
  • When a result of the determination made in S410 is “NO”, the process returns to S404.
  • In the meantime, when the result of the determination made in S410 is “YES”, the system controller 14 transmits the average value obtainment request command respectively to the LCU 22 and the shake correction microcomputer 15, and receives (obtains) the average values of the yaw angular velocity and the pitch angular velocity respectively from the LCU 22 and the shake correction microcomputer 15 (S412, S506, S602). Here, by setting, to a shorter period than the detection period of the angular velocity, a difference between the transmission timing of the average value obtainment request command to the LCU 22 and the transmission timing of the average value obtainment request command to the shake correction microcomputer 15, a deviation of the accumulation period of the angular velocity can be reduced to one detection period at a maximum. For example, when the sampling rate of the angular velocity is 1 kHz, the difference between the transmission timings may be set to a shorter period than 1 ms.
  • Then, the system controller 14 executes a process for calculating the offset value of the reference value (S414). More specifically, the system controller 14 calculates, as a body side yaw offset value or a lens side yaw offset value, a difference between the average value of the yaw angular velocity obtained from the LCU 22 in S412 and the average value of the yaw angular velocity obtained from the shake correction microcomputer 15 in S412 in accordance with the result of the determination made in S402. Namely, when the result of the determination made in S402 is a result such that the accuracy of the body side yaw reference value is higher than the accuracy of the lens side yaw reference value, the system controller 14 calculates, as the lens side yaw offset value, the difference between the average values of the yaw angular velocities. In contrast, when the result of the determination is a result such that the accuracy of the lens side yaw reference value is higher than the accuracy of the body side yaw reference value, the system controller 14 calculates the difference as the body side yaw offset value. The system controller 14 also calculates, as the body side pitch offset value or the lens side pitch offset value, the difference between the average value of the pitch angular velocity obtained from the LCU 22 in S412 and the average value of the pitch angular velocity obtained from the shake correction microcomputer 15 in S412 in accordance with the result of the determination made in S402. Namely, when the result of the determination made in S402 is a result such that the accuracy of the body side pitch reference value is higher than the accuracy of the lens side pitch reference value, the system controller 14 calculates the difference between the average values of the pitch angular velocities as the lens side pitch offset value. In contrast, when the result of the determination made in S402 is a result such that the accuracy of the lens side pitch reference value is higher than the accuracy of the body side pitch reference value, the system controller 14 calculates the difference between the accuracies as the body side pitch offset value.
  • Next, the system controller 14 determines whether the shake detection accuracies in both the yaw direction and the pitch direction on the camera body 1 side are higher than those on the interchangeable lens side 2, on the basis of the determination made in S402 (S416). This determination is also a determination of whether a condition that the accuracy of the body side yaw reference value be higher than the accuracy of the lens side yaw reference value and that the accuracy of the body side pitch reference value be higher than the accuracy of the lens side pitch reference value is satisfied on the basis of the result of the determination made in S402.
  • When a result of the determination made in S416 is “NO”, the system controller 14 transmits, to the shake correction microcomputer 15, the body side yaw offset value calculated in S414 if the result of the determination made in S402 is a result such that the accuracy of the lens side yaw reference value is higher than the accuracy of the body side yaw reference value, or transmits, to the shake correction microcomputer 15, the body side pitch offset value calculated in S414 if the result of the determination made in S402 is a result such that the accuracy of the lens side pitch reference value is higher than the accuracy of the body side pitch reference value (S418).
  • When either or both of the body side yaw offset value and the body side pitch offset value have been transmitted in S418, the shake correction microcomputer 15 receives either or both of the offset values, and updates either or both of the body side yaw reference value and the body side pitch reference value on the basis of the received value or values (S604). Thus, either or both of the body side yaw reference value and the body side pitch reference value are corrected, whereby either or both of the shake detection accuracies in the yaw direction and the pitch direction on the camera body 1 side can be improved.
  • In contrast, when the result of the determination made in S416 is “YES” or after S418, the system controller 14 also determines whether the shake detection accuracies in both the yaw direction and the pitch direction on the interchangeable lens 2 side are higher than those on the camera body 1 side, on the basis of the result of the determination made in S402 (S420). This determination is a determination of whether a condition that the accuracy of the lens side yaw reference value be higher than the accuracy of the body side yaw reference value and that the accuracy of the lens side pitch reference value be higher than the accuracy of the body side pitch reference value is satisfied on the basis of the result of the determination made in S402.
  • When the result of the determination made in S420 is “NO”, the system controller 14 transmits, to the LCU 22, the lens side yaw offset value calculated in S414 if the accuracy of the body side yaw reference value is higher than the accuracy of the lens side yaw reference value, or transmits, to the LCU 22, the lens side pitch offset value calculated in S414 if the accuracy of the body side pitch reference value is higher than the accuracy of the lens side pitch reference value in the determination made in S402 (S422).
  • When either or both of the lens side yaw offset value and the lens side pitch offset value have been transmitted in S422, the LCU 22 receives either or both of the offset values, and updates either or both of the lens side yaw reference value and the lens side pitch reference value on the basis of the received offset value or values (S508). Thus, either or both of the lens side yaw reference value and the lens side pitch reference value are corrected, so that either or both of the shake detection accuracies in the yaw direction and the pitch direction on the interchangeable lens 2 side can be improved.
  • In contrast, when the result of the determination made in S420 is “YES” or after S422, the process returns to S404.
  • In the camera system according to this embodiment, the shake detection accuracy on the interchangeable lens 2 side is higher than that on the camera body 1 side in both the yaw direction and the pitch direction as described above. Thus, the aforementioned processes of the flowcharts illustrated in FIGS. 6 to 9 are executed, so that the reference values (the body side yaw reference value and the body side pitch reference value) on the camera body 1 side are corrected, and the shake detection accuracy on the camera body 1 side is improved to a degree equivalent to that on the interchangeable lens 2 side.
  • Additionally, in the camera system according to this embodiment, the LCU 22 and the shake correction microcomputer 15 share and make a shake correction in accordance with the above described shake correction sharing ratio, so that a shake correction is implemented by combining the shake correction made by the LCU 22 and that made by the shake correction microcomputer 15.
  • As described above, with the camera system according to this embodiment, both the camera body 1 and the interchangeable lens 2 have the shake correction function. When a difference exists between the shake detection accuracies of the shake correction functions of both the camera body 1 and the interchangeable lens 2, a lower shake detection accuracy can be improved to a degree equivalent to the higher shake detection accuracy. Moreover, both of the shake correction functions are operated to share a shake correction when being made, so that a shake correction range can be expanded more than that in a case where only either of the shake correction functions is operated. Therefore, in the camera system according to this embodiment, even if a difference exists between the shake detection accuracies of both of the shake correction functions when a shake correction is made by combining the shake correction functions of both the camera body 1 and the interchangeable lens 2, the performance of the shake correction can be improved more than that in a case where only either of the shake correction functions is used.
  • The camera system according to this embodiment eliminates the need to convey a result of a shake detection made by one of the shake correction functions to the other when a shake correction is made by combining both of the shake correction functions of the camera body 1 and the interchangeable lens 2. The camera system according to this embodiment also eliminates the need to convey information yet to be corrected by one of the shake correction functions to the other. Accordingly, the camera system according to this embodiment does not pose a problem such that a response of a shake correction operation is delayed by a signal delay caused by the conveyance, and a shake correction performance is deteriorated due to a shake detection signal degradation caused by signal wiring needed for the conveyance.
  • The camera system according to this embodiment can be modified in various ways.
  • For example, in the camera system according to this embodiment, the interchangeable lens 2 is configured so that a reference value according to a temperature detected by the thermistor 25 can be used. However, the camera body 1 side may have such a configuration instead of the interchangeable lens 2 side. Namely, the camera body 1 may have the thermistor, and may use a reference value according to a temperature detected by the thermistor.
  • Additionally, in the camera system according to this embodiment, for example, the reference value output unit 223 of the LCU 22 of the interchangeable lens 2 may output a reference value according to a detected temperature by using a primary approximate expression that represents a relationship between a temperature and a reference value as a replacement for the temperature table.
  • Furthermore, in the camera system according to this embodiment, for example, the system controller 14 of the camera body 1 may calculate the average values of angular velocities that are calculated by the integration units 156 of the shake correction microcomputer 15 of the camera body 1, and by the integration units 227 of the LCU 22 of the interchangeable lens 2. Namely, the system controller 14 may transmit an accumulated value obtainment request command to the shake correction microcomputer 15 and the LCU 22 as a replacement for an average value obtainment request command, may obtain accumulated values (accumulated values of the angular velocities) respectively from the shake correction microcomputer 15 and the LCU 22 as a response to the command, and may calculate an average value of each of the accumulated values.
  • Still further, in the camera system according to this embodiment, for example, the system controller 14 of the camera body 1 may obtain shake detection accuracy information on the interchangeable lens 2 side as follows. By way of example, information about an association between identification information of an interchangeable lens and shake detection accuracy information of the interchangeable lens may be prestored in the ROM 17 of the camera body 1. Then, the system controller 14 may obtain identification information from an interchangeable lens when the interchangeable lens is attached to the camera body 1, and may obtain shake detection accuracy information according to the identification information on the basis of the above described information about an association.
  • The aforementioned embodiment refers to the specific example of the present invention for ease of understanding of the invention. The present invention, however, is not limited to the above described embodiment. The present invention can be diversely modified and changed within a scope that does not depart from the concept of the present invention stipulated by the claims.

Claims (13)

What is claimed is:
1. A camera system including an interchangeable lens having a first shake correction unit for correcting an image blurring caused by shaking, and a camera body having a second shake correction unit for correcting an image blurring caused by shaking, wherein:
the first shake correction unit comprises
a first shake amount detector configured to detect the amount of shaking,
a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector, and
a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value;
the second shake correction unit comprises
a second shake amount detector configured to detect the amount of shaking,
a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector, and
a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value; and
the camera body further comprises a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and the average value calculated by the second average value calculation unit.
2. A camera system including an interchangeable lens having a first shake correction unit for correcting an image blurring caused by shaking, and a camera body having a second shake correction unit for correcting an image blurring caused by shaking, wherein:
the first shake correction unit comprises
a first shake amount detector configured to detect the amount of shaking, and
a first reference value subtraction unit for subtracting a first reference value corresponding to an output value of the first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector;
the second shake correction unit comprises
a second shake amount detector configured to detect the amount of shaking, and
a second reference value subtraction unit for subtracting a second reference value corresponding to an output value of the second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector; and
the camera body further comprises
a first average value calculation unit for calculating an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value subtraction unit subtracts the first reference value,
a second average value calculation unit for calculating an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value subtraction unit subtracts the second reference value, and
a reference value correction unit for correcting the first reference value or the second reference value on the basis of a difference between the average value calculated by the first average value calculation unit and the average value calculated by the second average value calculation unit.
3. The camera system according to claim 1, wherein:
the interchangeable lens further comprises
a first memory that stores first shake detection accuracy information about a shake detection accuracy of the first shake correction unit;
the camera body further comprises
a second memory that stores second shake detection accuracy information about a shake detection accuracy of the second shake correction unit, and
a determination unit for determining which of the shake detection accuracies of the first shake correction unit and the second shake correction unit is higher on the basis of the first shake detection accuracy information stored in the first memory and the second shake detection accuracy information stored in the second memory; and
the reference value correction unit corrects the second reference value when the determination unit determines that the shake correction accuracy of the first shake correction unit is higher than the shake detection accuracy of the second shake correction unit, or corrects the first reference value when the determination unit determines that the shake detection accuracy of the second shake correction unit is higher than the shake detection accuracy of the first shake correction unit.
4. The camera system according to claim 2, wherein:
the interchangeable lens further comprises
a first memory that stores first shake detection accuracy information about a shake detection accuracy of the first shake correction unit;
the camera body further comprises
a second memory that stores second shake detection accuracy information about a shake detection accuracy of the second shake correction unit, and
a determination unit for determining which of the shake detection accuracies of the first shake correction unit and the second shake correction unit is higher on the basis of first shake detection accuracy information stored in the first memory and second shake detection accuracy information stored in the second memory; and
the reference value correction unit corrects the second reference value when the determination unit determines that the shake detection accuracy of the first shake correction unit is higher than the shake detection accuracy of the second shake correction unit, or corrects the first reference value when the determination unit determines that the shake detection accuracy of the second shake correction unit is higher than the shake detection accuracy of the first shake correction unit.
5. The camera system according to claim 1, wherein
the camera body transmits, to the interchangeable lens, a command for obtaining, from the interchangeable lens, an average value of the amount of shaking which is detected by the first shake amount detector for the specified duration and from which the first reference value subtraction unit subtracts the first reference value, and
the camera body transmits an offset value of the first reference value to the interchangeable lens.
6. The camera system according to claim 2, wherein
the camera body transmits, to the interchangeable lens, a command for obtaining, from the interchangeable lens, an accumulated value of the amount of shaking which is detected by the first shake amount detector for the specified duration and from which the first reference value subtraction unit subtracts the first reference value, and
the camera body transmits an offset value of the first reference value to the interchangeable lens.
7. The camera system according to claim 3, wherein
the camera body transmits, to the interchangeable lens, a command for obtaining, from the interchangeable lens, first shake detection accuracy information stored in the first memory.
8. The camera system according to claim 4, wherein
the camera body transmits, to the interchangeable lens, a command for obtaining, from the interchangeable lens, first shake detection accuracy information stored in the first memory.
9. The camera system according to claim 1, wherein:
the first shake correction unit further comprises
a first shake correction driving actuator that drives a first shake correction mechanism on the basis of the amount of shaking from which the first reference value subtraction unit subtracts the first reference value, and a shake correction sharing ratio of the first shake correction unit to the second shake correction unit; and
the second shake correction unit further comprises
a second shake correction driving actuator that drives a second shake correction mechanism on the basis of the amount of shaking from which the second reference value subtraction unit subtracts the second reference value, and the shake correction sharing ratio.
10. The camera system according to claim 2, wherein:
the first shake correction unit further comprises
a first shake correction driving actuator that drives a first shake correction mechanism on the basis of the amount of shaking from which the first reference value subtraction unit subtracts the first reference value, and a shake correction sharing ratio of the first shake correction unit to the second shake correction unit; and
the second shake correction unit further comprises
a second shake correction driving actuator that drives a second shake correction mechanism on the basis of the amount of shaking from which the second reference value subtraction unit subtracts the second reference value, and the shake correction sharing ratio.
11. The camera system according to claim 9, wherein
the shake correction sharing ratio is decided on the basis of optical system status information about a state of an optical system included in the interchangeable lens.
12. The camera system according to claim 10, wherein
the shake correction sharing ratio is decided on the basis of optical system status information about a state of an optical system included in the interchangeable lens.
13. A shake correction method of a camera system including an interchangeable lens having a first shake correction unit for subtracting a first reference value corresponding to an output value of a first shake amount detector kept in a stationary state from the amount of shaking detected by the first shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the first reference value has been subtracted, and a camera body having a second shake correction unit for subtracting a second reference value corresponding to an output value of a second shake amount detector kept in a stationary state from the amount of shaking detected by the second shake amount detector and for correcting an image blurring caused by shaking on the basis of the amount of shaking from which the second reference value has been subtracted, the method comprising:
calculating a first average value that is an average value of the amount of shaking which is detected by the first shake amount detector for a specified duration and from which the first reference value is subtracted;
calculating a second average value that is an average value of the amount of shaking which is detected by the second shake amount detector for the specified duration and from which the second reference value is subtracted; and
correcting the first reference value or the second reference value on the basis of a difference between the first average value and the second average value.
US14/950,377 2014-12-15 2015-11-24 Camera system and shake correction method thereof Active US9613430B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-253508 2014-12-15
JP2014253508A JP6381433B2 (en) 2014-12-15 2014-12-15 Camera system and blur correction method thereof

Publications (2)

Publication Number Publication Date
US20160173781A1 true US20160173781A1 (en) 2016-06-16
US9613430B2 US9613430B2 (en) 2017-04-04

Family

ID=56112414

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/950,377 Active US9613430B2 (en) 2014-12-15 2015-11-24 Camera system and shake correction method thereof

Country Status (3)

Country Link
US (1) US9613430B2 (en)
JP (1) JP6381433B2 (en)
CN (1) CN105704364B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD771731S1 (en) * 2015-07-15 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Interchangeable lens for camera
US20170019600A1 (en) * 2015-07-13 2017-01-19 Olympus Corporation Camera system, blur correction method therefor, camera body and interchangeable lens
US20180027187A1 (en) * 2016-07-25 2018-01-25 Canon Kabushiki Kaisha Control apparatus, image capturing apparatus, lens apparatus, image capturing system, control method, and storage medium
JP2018105938A (en) * 2016-12-22 2018-07-05 キヤノン株式会社 Imaging device, interchangeable lens, and method for controlling these
US10244174B2 (en) * 2017-01-31 2019-03-26 Canon Kabushiki Kaisha Image shake correction apparatus, lens apparatus, imaging apparatus, and control method
US20200154051A1 (en) * 2018-11-08 2020-05-14 Canon Kabushiki Kaisha Lens unit, imaging device, control methods thereof, and storage medium
EP3664434A1 (en) * 2018-12-04 2020-06-10 Canon Kabushiki Kaisha Signal processing device and control method therefor
US20210294181A1 (en) * 2018-07-20 2021-09-23 Nikon Corporation Camera body, camera accessory, and information transmission method
US11153490B2 (en) 2018-08-30 2021-10-19 Fujifilm Corporation Image capturing device, image capturing method, and program
US20210337127A1 (en) * 2020-04-23 2021-10-28 Canon Kabushiki Kaisha Shake detection apparatus, shake detection method, and image blur correction apparatus
US11178328B2 (en) 2017-03-31 2021-11-16 Nikon Corporation Blur correction device, interchangeable lens and image-capturing device
US11553133B2 (en) 2018-07-20 2023-01-10 Nikon Corporation Camera body, camera accessory, and sharing ratio transmission method
EP4181519A1 (en) * 2021-11-10 2023-05-17 Canon Kabushiki Kaisha Control apparatus, image pickup apparatus, lens apparatus, control method, and program

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803953B (en) * 2017-02-21 2018-10-16 上海集成电路研发中心有限公司 A kind of device and method whether assessment camera focal plane is parallel
JP7058945B2 (en) * 2017-04-24 2022-04-25 キヤノン株式会社 Image stabilization device and its control method, image pickup device
JP6960238B2 (en) * 2017-04-28 2021-11-05 キヤノン株式会社 Image stabilization device and its control method, program, storage medium
CN107995413B (en) * 2017-10-31 2020-09-29 维沃移动通信有限公司 Photographing control method and mobile terminal
JP6967463B2 (en) * 2018-01-23 2021-11-17 Omデジタルソリューションズ株式会社 Image pickup device, image stabilization method, lens unit, and body unit
JP2018173632A (en) * 2018-03-22 2018-11-08 株式会社ニコン Imaging device
JP7080118B2 (en) * 2018-07-09 2022-06-03 キヤノン株式会社 Image pickup device and its control method, shooting lens, program, storage medium
JP7119678B2 (en) * 2018-07-13 2022-08-17 株式会社ニコン Interchangeable lens and camera body
JP7172214B2 (en) * 2018-07-13 2022-11-16 株式会社ニコン Interchangeable lenses, camera bodies and camera systems
WO2020017462A1 (en) * 2018-07-20 2020-01-23 株式会社ニコン Camera accessory and information transmission method
JP7266480B2 (en) * 2019-07-17 2023-04-28 キヤノン株式会社 Imaging device, lens device, imaging system, imaging device control method, lens device control method
JP7451294B2 (en) 2020-05-15 2024-03-18 キヤノン株式会社 Control device, imaging device, lens device, camera system, control method, and program
WO2022143509A1 (en) * 2020-12-28 2022-07-07 宁波舜宇光电信息有限公司 Photographic module, optical adjustment method therefor, and circuit board unit, driving apparatus and photosensitive assembly thereof
CN114755873B (en) * 2020-12-28 2023-10-24 宁波舜宇光电信息有限公司 Image pickup module, optical adjustment method thereof and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615397A (en) * 1993-12-28 1997-03-25 Canon Kabushiki Kaisha Apparatus used for blur suppression or blur prevention
US20090021589A1 (en) * 2005-12-28 2009-01-22 Sony Corporation Deviation detector, deviation corrector and imaging device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772098B2 (en) * 1990-02-26 1998-07-02 オリンパス光学工業株式会社 Camera image blur detection device
JPH07104338A (en) 1993-10-07 1995-04-21 Canon Inc Image blur correcting device
JP4666787B2 (en) * 2001-02-09 2011-04-06 キヤノン株式会社 Vibration detection apparatus and image shake correction apparatus
JP4311013B2 (en) * 2002-12-25 2009-08-12 株式会社ニコン Blur correction camera system and camera
JP2004301939A (en) * 2003-03-28 2004-10-28 Sony Corp Camera system, camera, and interchangeable lens
JP2006126668A (en) 2004-10-29 2006-05-18 Canon Inc Camera system
JP2007010895A (en) * 2005-06-29 2007-01-18 Olympus Imaging Corp Camera system with camera shake correcting function
JP2007025298A (en) * 2005-07-15 2007-02-01 Olympus Imaging Corp Camera system
US8040381B2 (en) * 2005-12-07 2011-10-18 Panasonic Corporation Image blur correction for a camera system and display of comparison of camera and lens blur correction specifications
JP5101506B2 (en) * 2006-07-21 2012-12-19 パナソニック株式会社 Camera system and camera body
JP2008040085A (en) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd Camera system, camera main body and control method for camera system
KR100819301B1 (en) * 2006-12-20 2008-04-03 삼성전자주식회사 Method and apparatus for optical image stabilizer on mobile camera module
JP5274130B2 (en) * 2008-07-15 2013-08-28 キヤノン株式会社 Image blur correction apparatus, optical apparatus, image pickup apparatus, and image blur correction apparatus control method
JP2010091792A (en) * 2008-10-08 2010-04-22 Nikon Corp Camera body, lens barrel and camera system
CN102457675B (en) * 2010-10-27 2014-08-06 展讯通信(上海)有限公司 Image shooting anti-shaking manner for handheld camera equipment
WO2013114896A1 (en) * 2012-02-03 2013-08-08 パナソニック株式会社 Evaluation method, evaluation device, computer program, and recording medium
JP6171575B2 (en) * 2013-05-29 2017-08-02 株式会社ニコン Blur correction device and optical apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615397A (en) * 1993-12-28 1997-03-25 Canon Kabushiki Kaisha Apparatus used for blur suppression or blur prevention
US20090021589A1 (en) * 2005-12-28 2009-01-22 Sony Corporation Deviation detector, deviation corrector and imaging device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019600A1 (en) * 2015-07-13 2017-01-19 Olympus Corporation Camera system, blur correction method therefor, camera body and interchangeable lens
US9930259B2 (en) * 2015-07-13 2018-03-27 Olympus Corporation Camera system with image blur correction, blur correction method therefor, and camera body with image blur correction
USD771731S1 (en) * 2015-07-15 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Interchangeable lens for camera
CN113691728A (en) * 2016-07-25 2021-11-23 佳能株式会社 Accessory apparatus, control apparatus, and control method thereof
US20180027187A1 (en) * 2016-07-25 2018-01-25 Canon Kabushiki Kaisha Control apparatus, image capturing apparatus, lens apparatus, image capturing system, control method, and storage medium
US11202011B2 (en) * 2016-07-25 2021-12-14 Canon Kabushiki Kaisha Control apparatus, image capturing apparatus, lens apparatus, image capturing system, control method, and storage medium
JP2018105938A (en) * 2016-12-22 2018-07-05 キヤノン株式会社 Imaging device, interchangeable lens, and method for controlling these
US10244174B2 (en) * 2017-01-31 2019-03-26 Canon Kabushiki Kaisha Image shake correction apparatus, lens apparatus, imaging apparatus, and control method
US11178328B2 (en) 2017-03-31 2021-11-16 Nikon Corporation Blur correction device, interchangeable lens and image-capturing device
US11696028B2 (en) 2017-03-31 2023-07-04 Nikon Corporation Blur correction device, interchangeable lens and image-capturing device
US20210294181A1 (en) * 2018-07-20 2021-09-23 Nikon Corporation Camera body, camera accessory, and information transmission method
US11553133B2 (en) 2018-07-20 2023-01-10 Nikon Corporation Camera body, camera accessory, and sharing ratio transmission method
US11805318B2 (en) 2018-07-20 2023-10-31 Nikon Corporation Camera body, camera accessory, and sharing ratio transmission method
US12007683B2 (en) * 2018-07-20 2024-06-11 Nikon Corporation Camera body, camera accessory, and information transmission method
US11153490B2 (en) 2018-08-30 2021-10-19 Fujifilm Corporation Image capturing device, image capturing method, and program
US11418712B2 (en) 2018-08-30 2022-08-16 Fujifilm Corporation Image capturing device, image capturing method, and program
US20200154051A1 (en) * 2018-11-08 2020-05-14 Canon Kabushiki Kaisha Lens unit, imaging device, control methods thereof, and storage medium
US11570361B2 (en) * 2018-11-08 2023-01-31 Canon Kabushiki Kaisha Lens unit, imaging device, control methods thereof, and storage medium
JP7257774B2 (en) 2018-11-08 2023-04-14 キヤノン株式会社 IMAGING SYSTEM AND CONTROL METHOD THEREOF, LENS UNIT, IMAGING DEVICE, PROGRAM, STORAGE MEDIUM
JP2020076897A (en) * 2018-11-08 2020-05-21 キヤノン株式会社 Imaging system, control method of the same, lens unit, imaging apparatus, program, and storage medium
EP3664434A1 (en) * 2018-12-04 2020-06-10 Canon Kabushiki Kaisha Signal processing device and control method therefor
US20210337127A1 (en) * 2020-04-23 2021-10-28 Canon Kabushiki Kaisha Shake detection apparatus, shake detection method, and image blur correction apparatus
US11770611B2 (en) * 2020-04-23 2023-09-26 Canon Kabushiki Kaisha Shake detection apparatus, shake detection method, and image blur correction apparatus
EP4181519A1 (en) * 2021-11-10 2023-05-17 Canon Kabushiki Kaisha Control apparatus, image pickup apparatus, lens apparatus, control method, and program

Also Published As

Publication number Publication date
CN105704364A (en) 2016-06-22
CN105704364B (en) 2018-11-27
JP2016114792A (en) 2016-06-23
JP6381433B2 (en) 2018-08-29
US9613430B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
US9613430B2 (en) Camera system and shake correction method thereof
US9838605B2 (en) Camera system
US9800789B2 (en) Camera system with image blur correction
US9930259B2 (en) Camera system with image blur correction, blur correction method therefor, and camera body with image blur correction
JP3661367B2 (en) Camera with shake correction function
US10812722B2 (en) Imaging apparatus, shake correction method, lens unit, and body unit
CN107135338B (en) Image pickup system, control method thereof, image pickup apparatus, and lens device
KR102393775B1 (en) Camera controller, image processing module, and semiconductor system
US9432578B2 (en) Imaging apparatus having image stabilization mechanisms
JP6873716B2 (en) Image blur correction device and its control method, image pickup device, lens device
JP2016035543A (en) Imaging device and method for correcting image blur using the device
KR20160107098A (en) Image capturing apparatus, control method thereof and computer program therefor
US9507170B2 (en) Optical apparatus, interchangeable lens, and method for correcting image blurring
JP6543946B2 (en) Shake correction device, camera and electronic device
US8384786B2 (en) Method for compensating for vibration and imaging apparatus using the same
JP2018146663A5 (en)
US9955078B2 (en) Image shake correction device, control method, and image pickup apparatus
CN102998878A (en) Interchangeable lens and camera system having the same
JP2006343639A (en) Digital camera
CN107659766B (en) Control apparatus and method, image pickup apparatus and system, lens apparatus, and storage medium
JP6268981B2 (en) Blur correction device, interchangeable lens and camera
CN111953891A (en) Control apparatus, lens apparatus, image pickup apparatus, control method, and storage medium
JP3731310B2 (en) camera
WO2020012960A1 (en) Imaging device
JP6318502B2 (en) Blur correction device and optical apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSUCHIYA, HITOSHI;REEL/FRAME:037211/0248

Effective date: 20151106

AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:OLYMPUS CORPORATION;REEL/FRAME:041675/0269

Effective date: 20160401

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: OM DIGITAL SOLUTIONS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLYMPUS CORPORATION;REEL/FRAME:058901/0912

Effective date: 20210730