US20160136247A1 - PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS - Google Patents

PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS Download PDF

Info

Publication number
US20160136247A1
US20160136247A1 US15/005,808 US201615005808A US2016136247A1 US 20160136247 A1 US20160136247 A1 US 20160136247A1 US 201615005808 A US201615005808 A US 201615005808A US 2016136247 A1 US2016136247 A1 US 2016136247A1
Authority
US
United States
Prior art keywords
mrna
pharmaceutical composition
sequence
insulin
codon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/005,808
Inventor
Florian Von Der Mülbe
Ingmar Hoerr
Steve Pascolo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curevac SE
Original Assignee
Curevac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7687266&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160136247(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Curevac AG filed Critical Curevac AG
Priority to US15/005,808 priority Critical patent/US20160136247A1/en
Publication of US20160136247A1 publication Critical patent/US20160136247A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1735Mucins, e.g. human intestinal mucin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001106Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001152Transcription factors, e.g. SOX or c-MYC
    • A61K39/001153Wilms tumor 1 [WT1]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001156Tyrosinase and tyrosinase related proteinases [TRP-1 or TRP-2]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001169Tumor associated carbohydrates
    • A61K39/00117Mucins, e.g. MUC-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001186MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001188NY-ESO
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001189PRAME
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00119Melanoma antigens
    • A61K39/001191Melan-A/MART
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00119Melanoma antigens
    • A61K39/001192Glycoprotein 100 [Gp100]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001193Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
    • A61K39/001194Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001196Fusion proteins originating from gene translocation in cancer cells
    • A61K39/001197Breakpoint cluster region-abelson tyrosine kinase [BCR-ABL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • A61K47/6455Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0066Manipulation of the nucleic acid to modify its expression pattern, e.g. enhance its duration of expression, achieved by the presence of particular introns in the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4727Mucins, e.g. human intestinal mucin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/50Mutagenesis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/14011Filoviridae
    • C12N2760/14111Ebolavirus, e.g. Zaire ebolavirus
    • C12N2760/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/14011Filoviridae
    • C12N2760/14111Ebolavirus, e.g. Zaire ebolavirus
    • C12N2760/14134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16071Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a pharmaceutical composition containing an mRNA that is stabilised by sequence modifications in the translated region and is optimised for translation.
  • the pharmaceutical composition according to the invention is suitable in particular as an inoculating agent and also as a therapeutic agent for tissue regeneration. Furthermore, a process for determining sequence modifications that stabilise mRNA and optimise mRNA translation is disclosed.
  • Gene therapy and genetic vaccination are tools of molecular medicine whose use in the treatment and prevention of diseases has considerable potential. Both of these approaches are based on the incorporation of nucleic acids into a patient's cells or tissue as well as on the subsequent processing of the information encoded by the incorporated nucleic acids, i.e. the expression of the desired polypeptides.
  • a further process that has been suggested in particular for the case of genetic vaccination involves the use of DNA viruses as DNA vehicles. Because such viruses are infectious, a very high transfection rate can be achieved when using DNA viruses as vehicles. The viruses used are genetically altered so that no functional infectious particles are formed in the transfected cell. Despite this precautionary measure, however, the risk of uncontrolled propagation of the introduced therapeutic gene as well as viral genes remains due to the possibility of recombination events.
  • the corresponding DNA vehicles comprise a strong promoter, for example the viral CMV promoter.
  • the integration of such promoters into the genome of the treated cell may, however, lead to undesirable changes in the regulation of the gene expression in the cell.
  • a further disadvantage of the use of DNA as a therapeutic agent or vaccine is the induction of pathogenic anti-DNA antibodies in the patient, resulting in a potentially fatal immune response.
  • RNA In contrast to DNA, the use of RNA as a therapeutic agent or vaccine is regarded as significantly safer. In particular, use of RNA is not associated with a risk of stable integration into the genome of the transfected cell. In addition, no viral sequences such as promoters are necessary for effective transcription of RNA. Beyond this, RNA is degraded rapidly in vivo. Indeed, the relatively short half-life of RNA in circulating blood, as compared to that of DNA, reduces the risks associated with developing pathogenic anti-RNA antibodies. Indeed, anti-RNA antibodies have not been detected to date. For these reasons RNA may be regarded as the molecule of choice for molecular medicine therapeutic applications.
  • RNA expression systems Some basic problems still have to be solved before medical applications based on RNA expression systems can be widely employed.
  • One of the problems in the use of RNA is the reliable, cell-specific and tissue-specific efficient transfer of the nucleic acid. Since RNA is normally found to be very unstable in solution, up to now RNA could not be used or used only very inefficiently as a therapeutic agent or inoculating agent in the conventional applications designed for DNA use.
  • RNA Enzymes that break down RNA so-called RNases (ribonucleases) are responsible in part for the instability. Even minute contamination by ribonucleases is sufficient to degrade down RNA completely in solution.
  • RNases ribonucleases
  • the natural decomposition of mRNA in the cytoplasm of cells is extraordinare importance.
  • the so-called “cap structure” a modified guanosine nucleotide
  • a sequence of up to 200 adenosine nucleotides (the so-called poly-A tail) is located at the 3′ end.
  • RNA is recognised as mRNA by virtue of these structures and these structures contribute to the regulatory machinery controlling mRNA degradation.
  • stabilise or destabilise RNA There are further mechanisms that stabilise or destabilise RNA.
  • Many of these mechanisims are still unknown, although often an interaction between the RNA and proteins appears to be important in this regard.
  • an mRNA surveillance system has been described (Hellerin and Parker, Annu. Rev. Genet. 1999, 33: 229 to 260), in which incomplete or nonsense mRNA is recognised by specific feedback protein interactions in the cytosol and is made accessible to decomposition. Exonucleases appear to contribute in large measure to this process.
  • RNA in particular mRNA
  • EP-A-1083232 a process for the incorporation of RNA, in particular mRNA, into cells and organisms has been proposed in order to solve the aforementioned problem of the instability of RNA ex vivo.
  • the RNA is present in the form of a complex with a cationic peptide or protein.
  • WO 99/14346 describes further processes for stabilising mRNA.
  • modifications of the mRNA are proposed that stabilise the mRNA species against decomposition by RNases. Such modifications may involve stabilisation by sequence modifications, in particular reduction of the C content and/or U content by base elimination or base substitution.
  • chemical modifications may be used, in particular the use of nucleotide analogues, as well as 5′ and 3′ blocking groups, an increased length of the poly-A tail as well as the complexing of the mRNA with stabilising agents, and combinations of the aforementioned measures.
  • mRNA vaccines and mRNA therapeutic agents are disclosed inter alia within the scope of “transient gene therapy” (TGT).
  • TGT transient gene therapy
  • Various measures are described therein for enhancing the translation efficiency and mRNA stability that relate in particular to the composition of the non-translated sequence regions.
  • codons that contain A and/or U nucleotides are altered by substituting other codons that code for the same amino acids, but do not contain A and/or U.
  • Examples include: the codons for Pro, which may be changed from CCU or CCA to CCC or CCG; the codons for Arg, which may be changed from CGU or CGA or AGA or AGG to CGC or CGG; the codons for Ala, which may be changed from GCU or GCA to GCC or GCG; the codons for Gly, which may be changed from GGU or GGA to GGC or GGG.
  • the codons for Phe which may be changed from UUU to UUC
  • the codons for Leu which may be changed from UUA, CUU or CUA to CUC or CUG
  • the codons for Ser which may be changed from UCU or UCA or AGU to UCC, UCG or AGC
  • the codon for Tyr which may be changed from UAU to UAC
  • the stop codon UAA which may be changed to UAG or UGA
  • the codon for Cys which may be changed from UGU to UGC
  • the codon for His which may be changed from CAU to CAC
  • the codon for Gln which may be changed from CAA to CAG
  • the codons for Ile which may be changed from AUU or AUA to AUC
  • the codons for Phe which may be changed from UUU to UUC
  • the codons for Leu which may be changed from UUA, CUU or CUA to CUC or CUG
  • the codons for Ser which may be changed from UCU or
  • substitutions listed above may be used individually and in all possible combinations in order to increase the G/C content of a modified mRNA compared to the original sequence.
  • all codons for Thr occurring in the original (wild type) sequence can be altered to ACC (or ACG).
  • a further modification of the mRNA comprised in the pharmaceutical composition of the present invention is based on an understanding that the translational efficiency is also affected by the relative abundance of different tRNAs in various cells.
  • a high frequency of so-called “rare” codons in an RNA sequence, which are recognized by relatively rare tRNAs, tends to decrease the translational efficiency of the corresponding mRNA, whereas a high frequency of codons recognized by relatively abundant tRNAs tends to enhance the translational efficiency of a corresponding mRNA.
  • RNA sequences are modified so that codons are inserted/substituted that are recognized by abundantly expressed cellular tRNAs.
  • Modifications directed to altering codon usage in a nucleic acid sequence to optimise expression levels of polypeptides encoded therefrom are generally referred to in the art as “codon optimisation”.
  • tRNAs which are abundant or rare in a particular cell are known to a person skilled in the art; see for example Akashi, Curr. Opin. Genet. Dev. 2001, 11(6): 660-666.
  • Each organism has a preferred choice of nucleotide or codon usage to encode any particular amino acid.
  • Different species vary in their codon preferences for translating mRNA into protein.
  • the codon preferences of a particular species in which a modified mRNA of the present invention is to be expressed will, therefore, at least in part dictate the parameters of codon optimisation for a nucleic acid sequence.
  • all codons of the wild type sequence that are recognized by a relatively rare tRNA in a cell may in each case be replaced by a codon that is recognized by a relatively abundant tRNA.
  • the coding sequence of the peptide or polypeptide is preserved. That is, a relatively abundant tRNA species, which replaces a relatively rare tRNA species in a modified mRNA of the invention, recognizes an amino acid identical to that recognized by the rare tRNA species.
  • Such destabilising sequences are for example AU-rich sequences (“AURES”) that occur in 3′-UTR regions of a number of unstable mRNAs (Caput et al., Proc. Natl. Acad. Sci. USA 1986, 83: 1670-1674).
  • the RNA molecules contained in the pharmaceutical composition according to the invention are therefore preferably altered as compared to the wild type mRNA so as to reduce the number of or eliminate these destabilising sequences.
  • Such an approach also applies to those sequence motifs recognised by potential endonucleases.
  • sequences include, for example, GAACAAG, which is found in the 3′UTR of the gene encoding the transferring receptor (Binder et al., EMBO J. 1994, 13: 1969-1980).
  • Sequence motifs recognized by endonucleases are also preferably reduced in number or eliminated in the modified mRNA of the pharmaceutical composition according to the invention.
  • FMDV pest viruses
  • CFFV pest viruses
  • PV polio viruses
  • ECMV encephalomyocarditis viruses
  • FMDV foot-and-mouth disease viruses
  • HCV hepatitis C viruses
  • CSFV classical swine fever viruses
  • MLV murine leukemia virus
  • SIV simian immune deficiency viruses
  • CrPV cricket paralysis viruses
  • nucleotide analogues that can be used in accordance with the invention: phosphorus amidates, phosphorus thioates, peptide nucleotides, methylphosphonates, 7-deazaguanosine, 5-methylcytosine and inosine.
  • the preparation of such analogues is known to the person skilled in the art, for example from U.S. Pat. No. 4,373,071, U.S. Pat. No. 4,401,796, U.S. Pat. No. 4,415,732, U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 4,668,777, U.S. Pat. No.
  • the effective transfer of the modified mRNA into the cells to be treated or into the organism to be treated may be improved if the modified mRNA is associated with a cationic peptide or protein, or is bound thereto.
  • the use of protamine as polycationic, nucleic acid-binding protein is particularly effective. It is also possible to use other cationic peptides or proteins such as poly-L-lysine or histones. Procedures for stabilising mRNA are described in EP-A-1083232, whose relevant disclosure is incorporated herein in its entirety.
  • examples of polypeptides coded by a modified mRNA of the invention include, without limitation, dystrophin, the chloride channel, which is defectively altered in cystic fibrosis; enzymes that are lacking or defective in metabolic disorders such as phenylketonuria, galactosaemia, homocystinuria, adenosine deaminase deficiency, etc.; enzymes that are involved in the synthesis of neurotransmitters such as dopamine, norepinephrine and GABA, in particular tyrosine hydroxylase and DOPA decarboxylase, and ⁇ -1-antitrypsin, etc.
  • dystrophin the chloride channel, which is defectively altered in cystic fibrosis
  • enzymes that are lacking or defective in metabolic disorders such as phenylketonuria, galactosaemia, homocystinuria, adenosine deaminase deficiency, etc.
  • such measures could be used to vaccinate a cancer patient with a modified mRNA encoding a tumour antigen(s) expressed on the patient's cancer cells so as to stimulate the cancer patient's immune response to attack any cancer cells expressing the encoded antigen.
  • the pharmaceutical composition according to the invention is suitable in particular for the treatment of cancers (in which the modified mRNA codes for a tumour-specific surface antigen (TSSA), for example for treating malignant melanoma, colon carcinoma, lymphomas, sarcomas, small-cell lung carcinomas, blastomas, etc.
  • TSSA tumour-specific surface antigen
  • polypeptides preferably coding for polypeptides are employed, because polypeptides generally comprise multiple epitopes (polyepitopes).
  • Polypeptides comprising polyepitopes include but are not limited to, surface antigens of pathogenic vectors or organisms, or of tumour cells, preferably secreted protein forms.
  • any agent which is recognized as a potential “danger signal” by the immune system may be used as an adjuvant.
  • Co-administration of an adjuvant enhances an immune response generated against an antigen encoded by the modified mRNA.
  • the aforementioned cytokines are particularly preferred in this aspect.
  • Other known adjuvants include aluminium hydroxide, and Freund's adjuvant, as well as the aforementioned stabilising cationic peptides or polypeptides such as protamine.
  • lipopeptides such as Pam3Cys are also particularly suitable for use as adjuvants in the pharmaceutical composition of the present invention; see Deres et al, Nature 1989, 342: 561-564.
  • the concentration of the modified mRNA in such formulations may therefore vary within a wide range from 1 ⁇ g to 100 mg/ml.
  • the pharmaceutical composition according to the invention is preferably administered parenterally, for example intravenously, intraarterially, subcutaneously or intramuscularly to the patient. It is also possible to administer the pharmaceutical composition topically or orally.
  • the invention thus also provides a method for the treatment of the aforementioned medical conditions or an inoculation method for the prevention of the aforementioned conditions, which comprises the administration of the pharmaceutical composition according to the invention to a subject or patient, in particular a human patient.
  • the present invention relates to the use of genetic material (e.g., nucleic acid sequences) as immunizing agents.
  • the present invention relates to the introduction of exogenous or foreign modified DNA or RNA molecules into an individual's tissues or cells, wherein these molecules encode an exogenous protein capable of eliciting an immune response to the protein.
  • the exogenous nucleic acid sequences may be introduced alone or in the context of an expression vector wherein the sequences are operably linked to promoters and/or enhancers capable of regulating the expression of the encoded proteins.
  • the introduction of exogenous nucleic acid sequences may be performed in the presence of a cell stimulating agent capable of enhancing the uptake or incorporation of the nucleic acid sequences into a cell.
  • Such exogenous nucleic acid sequences may be administered in a composition comprising a biologically compatible or pharmaceutically acceptable carrier.
  • the exogenous nucleic acid sequences may be administered by a variety of means, as described herein, and well known in the art.
  • the present invention relates to methods for eliciting immune responses in an individual or subject which can protect the individual from pathogen infection. Accordingly, genetic material that encodes an immunogenic protein is introduced into a subject's cells either in vivo or ex vivo. The genetic material is expressed by these cells, thereby producing immunogenic target proteins capable of eliciting an immune response. The resulting immune response is broad based and involves activation of the humoral immune response and both arms of the cellular immune response.
  • the immune response elicited by a target protein produced by vaccinated cells in a subject is a broad-based immune response which includes B cell and T cell responses, including CTL responses. It has been observed that target antigen produced within the cells of the host are processed intracellularly into small peptides, which are bound by Class I MHC molecules and presented in the context of Class I on the cell surface.
  • the Class I MHC-target antigen complexes are capable of stimulating CD8 + T cells, which are predominantly CTLs.
  • genetic immunization according to the present invention is capable of eliciting CTL responses (killer cell responses).
  • the term “genetic construct” refers to the modified DNA or mRNA molecule that comprises a nucleotide sequence which encodes the target protein and which may include initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal (for modified DNA) capable of directing expression in the cells of the vaccinated individual.
  • the term “expressible form” refers to gene constructs which contain the necessary regulatory elements operably linked to a coding sequence of a target protein, such that when present in the cell of the individual, the coding sequence is expressed.
  • the term “genetic vaccine” refers to a pharmaceutical preparation that comprises a genetic construct.
  • genetic constructs can be tested for expression levels in vitro using cells maintained in culture, which are of the same type as those to be vaccinated.
  • cells maintained in culture which are of the same type as those to be vaccinated.
  • muscle cells grown in culture such as solid muscle tumor cells of rhabdomyosarcoma may be used as an in vitro model for measuring expression levels.
  • One of ordinary skill in the art could readily identify a model in vitro system which may be used to measure expression levels of an encoded target protein.
  • a method for immunizing or vaccinating includes both methods of protecting an individual from pathogen challenge, as well as methods for treating an individual suffering from pathogen infection.
  • the present invention may be used as a vaccine for prophylactic protection or in a therapeutic manner; that is, as a reagent for immunotherapeutic methods and preparations.
  • the amount of a modified nucleic acid sequence generated using the methods of the invention which provides a therapeutically effective dose in the treatment of a patient with, for example, cancer or a pathogen-related disorder can be determined by standard clinical techniques based on the present description.
  • in vitro assays may optionally be employed to help identify optimal dosage ranges.
  • the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances.
  • suitable dosage ranges for intravenous administration are generally directed to achieve a concentration of about 20-500 micrograms of polypeptide encoded by the modified nucleic acid per kilogram body weight.
  • compositions comprising the modified nucleic acid molecules of the invention can be administered for prophylactic and/or therapeutic treatments.
  • compositions are administered to a patient already suffering from a hyperproliferative disorder (such as, e.g., cancer) in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications.
  • a hyperproliferative disorder such as, e.g., cancer
  • An amount adequate to accomplish this is defined as a “therapeutically effective amount or dose.” Amounts effective for this use will depend on the severity of the disease and the weight and general state of the patient.
  • compositions comprising modified nucleic acid molecules of the invention can be administered alone, or in combination, and/or in conjunction with known therapeutic agents/compounds used for the treatment of a patient with a particular disorder.
  • a composition comprising at least one modified nucleic acid of the invention which encodes a tumour antigen may be used in conjunction with one or more known cancer therapeutics, such as those described in the Physicians' Desk Reference, 54 th Edition (2000) or in Cancer: Principles & Practice of Oncology , DeVita, Jr., Hellman, and Rosenberg (eds.) 2nd edition, Philadelphia, Pa.: J.B. Lippincott Co., 1985, wherein standard treatment protocols and dosage formulations are presented.
  • modified nucleic acid sequences generated using the above computer-based method include SEQ ID NOs: 3-7, 10 and 11.
  • the present invention also includes pharmaceutical compositions of modified nucleic acid sequences of the invention, including SEQ ID NOs: 3-7, 10 and 11.
  • FIGS. 1A-G show wild type sequences and modified sequences for the influenza matrix protein.
  • FIG. 1A shows the wild type gene and FIG. 1B (SEQ ID NO: 2) shows the amino acid sequence derived therefrom (1-letter code).
  • FIG. 1C shows a gene sequence coding for the influenza matrix protein, whose G/C content is increased as compared to that of the wild type sequence.
  • FIG. 1D shows the sequence of a gene that codes for a secreted form of the influenza matrix protein (including an N-terminal signal sequence), wherein the G/C content of the sequence is increased relative to that of the wild type sequence.
  • FIG. 1A shows the wild type gene
  • FIG. 1B shows the amino acid sequence derived therefrom (1-letter code).
  • FIG. 1C shows a gene sequence coding for the influenza matrix protein, whose G/C content is increased as compared to that of the wild type sequence.
  • FIG. 1D shows the sequence of a gene that codes for a secreted form of the influenza matrix protein (including an N-terminal signal sequence), wherein the G/C content of the sequence is increased relative to that of the
  • FIG. 1E shows an mRNA coding for the influenza matrix protein, wherein the mRNA comprises stabilising sequences not present in the corresponding wild type mRNA.
  • FIG. 1F shows an mRNA coding for the influenza matrix protein that in addition to stabilising sequences also contains an increased G/C content.
  • FIG. 1G (SEQ ID NO: 7) likewise shows a modified mRNA that codes for a secreted form of the influenza matrix protein and comprises, as compared to the wild type, stabilising sequences and an elevated G/C content.
  • the start and stop codons are shown in bold type. Nucleotides that are changed relative to the wild type sequence of FIG. 1A are shown in capital letters in 1 C to 1 G.
  • FIGS. 2A-D show wild type sequences and modified sequences according to the invention that encode for the tumour antigen MAGE1.
  • a computer program modifies the nucleotide sequence of an arbitrary mRNA in such a way as to maximise the G/C content of the nucleic acid, and maximise the presence of codons recognized by abundant tRNAs present in a particular cell(s).
  • the computer program is based on an understanding of the genetic code and exploits the degenerative nature of the genetic code.
  • a modified mRNA having desirable properties is obtained, wherein the amino acid sequence encoded by the modified mRNA is identical to that of the unmodified mRNA sequence.
  • the invention may encompass alterations in either the G/C content or codon usage of an mRNA to produce a modified mRNA.
  • Visual Basic 6.0 program development environment employed: Microsoft Visual Studio Enterprise 6.0 with Servicepack 3
  • Appendix I The source code in Visual Basic 6.0 (program development environment employed: Microsoft Visual Studio Enterprise 6.0 with Servicepack 3) is given in the Appendix I.
  • RNA construct with a sequence of the lac-Z gene from E. coli optimised with regard to stabilisation and translational efficiency was produced with the aid of the computer program of Example 1.
  • a G/C content of 69% (compared to the wild type sequence of 51%; C. F. Kalnins et al., EMBO J. 1983, 2(4): 593-597) was achieved in this manner.
  • the optimised sequence was produced according to methods known in the art.
  • the terminal oligonucleotides have the following restriction cleavage sites: at the 5′ end an EcoRV cleavage site, and at the 3′ end a BglII cleavage site.
  • the pT7 Ts-lac-Z construct was propagated in bacteria and purified by phenol-chloroform extraction. 2 ⁇ g of the construct were transcribed in vitro using methods known to a skilled artisan and the modified mRNA was produced.
  • mRNA molecules were designed starting from the optimised sequences.
  • the mRNA for the influenza matrix protein optimised with regard to G/C content and codon usage, was additionally provided with stabilising sequences in the 5′ region and 3′ region (the stabilisation sequences derive from the 5′-UTRs and 3′-UTRs of the ⁇ -globin-mRNA of Xenopus laevis ; pT7 Ts-Vektor in C. F. Lai et al., see above). See also FIG. 1E ; SEQ ID NO: 5, which includes only stabilising sequences and 1 F; SEQ ID NO: 6, which includes both increased G/C content and stabilising sequences.
  • the mRNA coding for the secreted form of the influenza matrix protein was likewise also sequence optimised in the translated region and provided with the aforementioned stabilising sequences (see FIG. 1G ; SEQ ID NO: 7).
  • the mRNA encoding the tumour antigen MAGE1 was modified with the aid of the computer program of Example 1.
  • the sequence shown in FIG. 2C (SEQ ID NO: 10) was generated in this way, and has a 24% higher G/C content (351 G, 291 C) as compared to the wild type sequence (275 G, 244 G).
  • the wild type sequence was improved with regard to translational efficiency by substituting codons corresponding to tRNAs that are more abundant in a target cell (see FIG. 2D ; SEQ ID NO: 11).
  • the G/C content was likewise raised by 24% by the alternative codon usage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Communicable Diseases (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Pulmonology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

The present invention relates to a pharmaceutical composition comprising a modified mRNA that is stabilised by sequence modifications and optimised for translation. The pharmaceutical composition according to the invention is particularly well suited for use as an inoculating agent, as well as a therapeutic agent for tissue regeneration. In addition, a process is described for determining sequence modifications that promote stabilisation and translational efficiency of modified mRNA of the invention.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 14/487,425, filed Sep. 16, 2014, which is a divisional of U.S. application Ser. No. 10/729,830, filed Dec. 5, 2003, which is a Continuation-In-Part of PCT Application No. PCT/EP02/06180 filed Jun. 5, 2002, which in turn, claims priority from German Application No. DE 101 27 283.9, filed Jun. 5, 2001. Applicants claim the benefits of 35 U.S.C. §120 as to the U.S. applications and PCT application and priority under 35 U.S.C. §119 as to the said German application, and the disclosures of all of the above-referenced applications are incorporated herein in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a pharmaceutical composition containing an mRNA that is stabilised by sequence modifications in the translated region and is optimised for translation. The pharmaceutical composition according to the invention is suitable in particular as an inoculating agent and also as a therapeutic agent for tissue regeneration. Furthermore, a process for determining sequence modifications that stabilise mRNA and optimise mRNA translation is disclosed.
  • 2. Description of the Prior Art
  • Gene therapy and genetic vaccination are tools of molecular medicine whose use in the treatment and prevention of diseases has considerable potential. Both of these approaches are based on the incorporation of nucleic acids into a patient's cells or tissue as well as on the subsequent processing of the information encoded by the incorporated nucleic acids, i.e. the expression of the desired polypeptides.
  • Conventional procedures involved in previous applications of gene therapy and genetic vaccination involved the use of DNA in order to incorporate the required genetic information into a cell. In this connection various processes for the incorporation of DNA into cells have been developed, such as for example calcium phosphate transfection, polyprene transfection, protoplast fusion, electroporation, microinjection and lipofection, in which connection lipofection in particular has proved to be a suitable process.
  • A further process that has been suggested in particular for the case of genetic vaccination involves the use of DNA viruses as DNA vehicles. Because such viruses are infectious, a very high transfection rate can be achieved when using DNA viruses as vehicles. The viruses used are genetically altered so that no functional infectious particles are formed in the transfected cell. Despite this precautionary measure, however, the risk of uncontrolled propagation of the introduced therapeutic gene as well as viral genes remains due to the possibility of recombination events.
  • Normally DNA incorporated into a cell is integrated to a certain extent into the genome of the transfected cell. On the one hand this phenomenon can exert a desirable effect, since in this way a long-lasting action of the introduced DNA can be achieved. On the other hand the integration into the genome brings with it a significant risk for gene therapy. Such integration events may, for example, involve an insertion of the incorporated DNA into an intact gene, which produces a mutation that interferes with or completely ablates the function of the endogenous gene. As a result of such integration events, enzyme systems that are important for cellular viability may be switched off. Alternatively, there is also the risk of inducing transformation of the transfected cell if the integration site occurs in a gene that is critical for regulating cell growth. Accordingly, when using DNA viruses as therapeutic agents and vaccines, a carcinogenic risk cannot be excluded. In this connection it should also be borne in mind that, in order to achieve effective expression of the genes incorporated into the cell, the corresponding DNA vehicles comprise a strong promoter, for example the viral CMV promoter. The integration of such promoters into the genome of the treated cell may, however, lead to undesirable changes in the regulation of the gene expression in the cell.
  • A further disadvantage of the use of DNA as a therapeutic agent or vaccine is the induction of pathogenic anti-DNA antibodies in the patient, resulting in a potentially fatal immune response.
  • In contrast to DNA, the use of RNA as a therapeutic agent or vaccine is regarded as significantly safer. In particular, use of RNA is not associated with a risk of stable integration into the genome of the transfected cell. In addition, no viral sequences such as promoters are necessary for effective transcription of RNA. Beyond this, RNA is degraded rapidly in vivo. Indeed, the relatively short half-life of RNA in circulating blood, as compared to that of DNA, reduces the risks associated with developing pathogenic anti-RNA antibodies. Indeed, anti-RNA antibodies have not been detected to date. For these reasons RNA may be regarded as the molecule of choice for molecular medicine therapeutic applications.
  • However, some basic problems still have to be solved before medical applications based on RNA expression systems can be widely employed. One of the problems in the use of RNA is the reliable, cell-specific and tissue-specific efficient transfer of the nucleic acid. Since RNA is normally found to be very unstable in solution, up to now RNA could not be used or used only very inefficiently as a therapeutic agent or inoculating agent in the conventional applications designed for DNA use.
  • Enzymes that break down RNA, so-called RNases (ribonucleases), are responsible in part for the instability. Even minute contamination by ribonucleases is sufficient to degrade down RNA completely in solution. Moreover, the natural decomposition of mRNA in the cytoplasm of cells is exquisitely regulated. Several mechanisms are known which contribute to this regulation. The terminal structure of a functional mRNA, for example, is of decisive importance. The so-called “cap structure” (a modified guanosine nucleotide) is located at the 5′ end and a sequence of up to 200 adenosine nucleotides (the so-called poly-A tail) is located at the 3′ end. The RNA is recognised as mRNA by virtue of these structures and these structures contribute to the regulatory machinery controlling mRNA degradation. In addition there are further mechanisms that stabilise or destabilise RNA. Many of these mechanisims are still unknown, although often an interaction between the RNA and proteins appears to be important in this regard. For example, an mRNA surveillance system has been described (Hellerin and Parker, Annu. Rev. Genet. 1999, 33: 229 to 260), in which incomplete or nonsense mRNA is recognised by specific feedback protein interactions in the cytosol and is made accessible to decomposition. Exonucleases appear to contribute in large measure to this process.
  • Certain measures have been proposed in the prior art to improve the stability of RNA and thereby enable its use as a therapeutic agent or RNA vaccine.
  • In EP-A-1083232 a process for the incorporation of RNA, in particular mRNA, into cells and organisms has been proposed in order to solve the aforementioned problem of the instability of RNA ex vivo. As described therein, the RNA is present in the form of a complex with a cationic peptide or protein.
  • WO 99/14346 describes further processes for stabilising mRNA. In particular, modifications of the mRNA are proposed that stabilise the mRNA species against decomposition by RNases. Such modifications may involve stabilisation by sequence modifications, in particular reduction of the C content and/or U content by base elimination or base substitution. Alternatively, chemical modifications may be used, in particular the use of nucleotide analogues, as well as 5′ and 3′ blocking groups, an increased length of the poly-A tail as well as the complexing of the mRNA with stabilising agents, and combinations of the aforementioned measures.
  • In U.S. Pat. No. 5,580,859 and U.S. Pat. No. 6,214,804 mRNA vaccines and mRNA therapeutic agents are disclosed inter alia within the scope of “transient gene therapy” (TGT). Various measures are described therein for enhancing the translation efficiency and mRNA stability that relate in particular to the composition of the non-translated sequence regions.
  • Bieler and Wagner (in: Schleef (Ed.), Plasmids for Therapy and Vaccination, Chapter 9, pp. 147 to 168, Wiley-VCH, Weinheim, 2001) report on the use of synthetic genes in combination with gene therapy methods employing DNA vaccines and lentiviral vectors. The construction of a synthetic gag-gene derived from HIV-1 is described, in which the codons have been modified with respect to the wild type sequence (alternative codon usage) in such a way as to correspond to frequently used codons found in highly expressed mammalian genes. In this way, in particular, the A/T content compared to the wild type sequence was reduced. Moreover, the authors found an increased rate of expression of the synthetic gag gene in transfected cells. Furthermore, increased antibody formation against the gag protein was observed in mice immunised with the synthetic DNA construct. An increase in cytokine release in vitro from transfected spleen cells of such mice was also observed. Finally, an induction of a cytotoxic immune response in mice immunised with the gag expression plasmid was also found. The authors of this article attribute the improved properties of their DNA vaccine to a change in the nucleocytoplasmic transport of the mRNA expressed by the DNA vaccine, which was due to the optimised codon usage. The authors maintain that the effect of the altered codon usage on the translation efficiency was only slight.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to provide a new system for gene therapy and genetic vaccination that overcomes the disadvantages associated with the properties of DNA therapeutic agents and DNA vaccines and increases the effectiveness of therapeutic agents based on RNA species.
  • This object is achieved by the embodiments of the present invention characterised in the claims.
  • In particular, a modified mRNA, as well as a pharmaceutical composition comprising at least one modified mRNA of the present invention and a pharmaceutically compatible carrier and/or vehicle are provided. The modified mRNA encodes at least one biologically active or antigenic peptide or polypeptide, wherein the sequence of the mRNA comprises at least one modification as set forth herein below as compared to the wild type mRNA. Such modifications may be located in the region coding for the at least one peptide or polypeptide, or in untranslated regions.
  • In one aspect, the G/C content of the region of the modified mRNA coding for the peptide or polypeptide is increased relative to that of the G/C content of the coding region of the wild type mRNA coding for the peptide or polypeptide. The encoded amino acid sequence, however, remains unchanged compared to the wild type. (i.e. silent with respect to the encoded amino acid sequence).
  • This modification is based on the fact that, for efficient translation of an mRNA, the sequence of the region of the mRNA to be translated is essential. In this connection the composition and the sequence of the various nucleotides play an important role. In particular sequences with an increased G (guanosine)/C (cytosine) content are more stable than sequences with an increased A (adenosine)/U (uracil) content. In accordance with the invention, the codons are varied compared to the wild type mRNA, while maintaining the translated amino acid sequence, so that they contain increased amounts of G/C nucleotides. Since several different codons can encode the same amino acid, due to degeneracy of the genetic code, the codons most favourable for the stability of the modified mRNA can be determined and incorporated (alternative codon usage).
  • Depending on the amino acid encoded by the modified mRNA, various possibilities for modifying the mRNA sequence compared to the wild type sequence are feasible. In the case of amino acids that are encoded by codons that contain exclusively G or C nucleotides, no modification of the codon is necessary. Thus, the codons for Pro (CCC or CCG), Arg (CGC or CGG), Ala (GCC or GCG) and Gly (GGC or GGG) do not require any alteration since no A or U is present.
  • In the following cases the codons that contain A and/or U nucleotides are altered by substituting other codons that code for the same amino acids, but do not contain A and/or U. Examples include: the codons for Pro, which may be changed from CCU or CCA to CCC or CCG; the codons for Arg, which may be changed from CGU or CGA or AGA or AGG to CGC or CGG; the codons for Ala, which may be changed from GCU or GCA to GCC or GCG; the codons for Gly, which may be changed from GGU or GGA to GGC or GGG.
  • In other cases, wherein A and/or U nucleotides may not be eliminated from the codons, it is however possible to reduce the A and U content by using codons that contain fewer A and/or U nucleotides. For example: the codons for Phe, which may be changed from UUU to UUC; the codons for Leu, which may be changed from UUA, CUU or CUA to CUC or CUG; the codons for Ser, which may be changed from UCU or UCA or AGU to UCC, UCG or AGC; the codon for Tyr, which may be changed from UAU to UAC; the stop codon UAA, which may be changed to UAG or UGA; the codon for Cys, which may be changed from UGU to UGC; the codon for His, which may be changed from CAU to CAC; the codon for Gln, which may be changed from CAA to CAG; the codons for Ile, which may be changed from AUU or AUA to AUC; the codons for Thr, which may be changed from ACU or ACA to ACC or ACG; the codon for Asn, which may be changed from AAU to AAC; the codon for Lys, which may be changed from AAA to AAG; the codons for Val, which may be changed from GUU or GUA to GUC or GUG; the codon for Asp, which may be changed from GAU to GAC; the codon for Glu, which may be changed from GAA to GAG.
  • In the case of the codons for Met (AUG) and Trp (UGG) there is however no possibility of modifying the sequence.
  • The substitutions listed above may be used individually and in all possible combinations in order to increase the G/C content of a modified mRNA compared to the original sequence. Thus, for example all codons for Thr occurring in the original (wild type) sequence can be altered to ACC (or ACG). Preferably, however, combinations of the substitution possibilities given above are employed, for example: substitution of all codons coding in the original sequence for Thr to ACC (or ACG) and substitution of all codons coding for Ser to UCC (or UCG or AGC); substitution of all codons coding in the original sequence for Ile to AUC and substitution of all codons coding for Lys to AAG and substitution of all codons coding originally for Tyr to UAC; substitution of all codons coding in the original sequence for Val to GUC (or GUG) and substitution of all codons coding for Glu to GAG and substitution of all codons coding for Ala to GCC (or GCG) and substitution of all codons coding for Arg to CGC (or CGG); substitution of all codons coding in the original sequence for Val to GUC (or GUG) and substitution of all codons coding for Glu to GAG and substitution of all codons coding for Ala to GCC (or GCG) and substitution of all codons coding for Gly to GGC (or GGG) and substitution of all codons coding for Asn to AAC; substitution of all codons coding in the original sequence for Val to GUC (or GUG) and substitution of all codons coding for Phe to UUC and substitution of all codons coding for Cys to UGC and substitution of all codons coding for Leu to CUG (or CUC) and substitution of all codons coding for Gln to CAG and substitution of all codons encoding Pro to CCC (or CCG); etc.
  • Preferably the G/C content of the region of the modified mRNA coding for the peptide or polypeptide is increased by at least 7%, more preferably by at least 15%, and particularly preferably by at least 20% compared to the G/C content of the coded region of the wild type mRNA encoding for the polypeptide.
  • In this connection it is particularly preferred to maximise the G/C content of the modified mRNA as compared to that of the wild type sequence. For some applications, it may be particularly advantageous to maximise the G/C content of the modified mRNA in the region encoding the at least one peptide or polypeptide.
  • In accordance with the invention, a further modification of the mRNA comprised in the pharmaceutical composition of the present invention is based on an understanding that the translational efficiency is also affected by the relative abundance of different tRNAs in various cells. A high frequency of so-called “rare” codons in an RNA sequence, which are recognized by relatively rare tRNAs, tends to decrease the translational efficiency of the corresponding mRNA, whereas a high frequency of codons recognized by relatively abundant tRNAs tends to enhance the translational efficiency of a corresponding mRNA.
  • Thus, according to the invention, the modified mRNA (which is contained in the pharmaceutical composition) comprises a region coding for the peptide or polypeptide which is changed compared to the corresponding region of the wild type mRNA so as to replace at least one codon of the wild type sequence that is recognized by a rare cellular tRNA with a codon recognized by an abundant cellular tRNA, wherein the abundant and rare cellular tRNAs recognize the same amino acid. In other words, the substituted codon in the modified mRNA, which is recognized by a relatively frequent tRNA, encodes the same amino acid as the wild type (unmodified) codon.
  • Through such modifications, the RNA sequences are modified so that codons are inserted/substituted that are recognized by abundantly expressed cellular tRNAs. Modifications directed to altering codon usage in a nucleic acid sequence to optimise expression levels of polypeptides encoded therefrom are generally referred to in the art as “codon optimisation”.
  • Those tRNAs which are abundant or rare in a particular cell are known to a person skilled in the art; see for example Akashi, Curr. Opin. Genet. Dev. 2001, 11(6): 660-666. Each organism has a preferred choice of nucleotide or codon usage to encode any particular amino acid. Different species vary in their codon preferences for translating mRNA into protein. The codon preferences of a particular species in which a modified mRNA of the present invention is to be expressed will, therefore, at least in part dictate the parameters of codon optimisation for a nucleic acid sequence.
  • By means of this modification, according to the invention all codons of the wild type sequence that are recognized by a relatively rare tRNA in a cell may in each case be replaced by a codon that is recognized by a relatively abundant tRNA. As described herein, however, the coding sequence of the peptide or polypeptide is preserved. That is, a relatively abundant tRNA species, which replaces a relatively rare tRNA species in a modified mRNA of the invention, recognizes an amino acid identical to that recognized by the rare tRNA species.
  • According to the invention, it is particularly preferred to couple the sequential increase in the G/C fraction of a modified mRNA (particularly, for example, a maximally modified G/C content), with an increase in the number of codons recognized by abundant tRNAs, wherein the amino acid sequence of the peptide or polypeptide (one or more) encoded by the mRNA remains unaltered. This preferred embodiment provides a particularly preferred mRNA species, possessing properties of efficient translation and improved stability. Such preferred mRNA species are well suited, for example, for the pharmaceutical compositions of the present invention.
  • Sequences of eukaryotic mRNAs frequently include destabilising sequence elements (DSE) to which signal proteins can bind and thereby regulate the enzymatic degradation of the mRNA in vivo. Accordingly, for the further stabilisation of a modified mRNA of the invention, which may be a component of a pharmaceutical composition of the invention, one or more changes may be made in the wild type mRNA sequence encoding the at least one peptide or polypeptide, so as to reduce the number of destabilising sequence elements present. In accordance with the invention, DSEs located anywhere in an mRNA, including the coding region and in the non-translated regions (3′ and/or 5′ UTR), may be mutated or changed to generate a modified mRNA having improved properties.
  • Such destabilising sequences are for example AU-rich sequences (“AURES”) that occur in 3′-UTR regions of a number of unstable mRNAs (Caput et al., Proc. Natl. Acad. Sci. USA 1986, 83: 1670-1674). The RNA molecules contained in the pharmaceutical composition according to the invention are therefore preferably altered as compared to the wild type mRNA so as to reduce the number of or eliminate these destabilising sequences. Such an approach also applies to those sequence motifs recognised by potential endonucleases. Such sequences include, for example, GAACAAG, which is found in the 3′UTR of the gene encoding the transferring receptor (Binder et al., EMBO J. 1994, 13: 1969-1980). Sequence motifs recognized by endonucleases are also preferably reduced in number or eliminated in the modified mRNA of the pharmaceutical composition according to the invention.
  • Various methods are known to the person skilled in the art that are suitable for the substitution of codons in the modified mRNA according to the invention. In the case of relatively short coding regions (that code for biologically active or antigenic peptides), the whole mRNA may, for example, be chemically synthesised using standard techniques.
  • Preferably, however, base substitutions are introduced using a DNA matrix for the production of modified mRNA with the aid of techniques routinely employed in targeted mutagenesis; see Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd Edition, Cold Spring Harbor, N. Y., 2001.
  • In this method, a corresponding DNA molecule is therefore transcribed in vitro for the production of the mRNA. This DNA matrix has a suitable promoter, for example a T7 or SP6 promoter, for in vitro transcription, followed by the desired nucleotide sequence for the mRNA to be produced and a termination signal for the in vitro transcription. According to the invention the DNA molecule that forms the matrix of the RNA construct to be produced is prepared as part of a plasmid replicable in bacteria, wherein the plasmid is replicated or amplified during the course of bacterial replication and subsequently isolated by standard techniques. Plasmids suitable for use in the present invention include, but are not limited to pT7 Ts (GenBank Accession No. U26404; Lai et al., Development 1995, 121: 2349-2360), the pGEM® series, for example pGEM®-1 (GenBank Accession No. X65300; from Promega) and pSP64 (GenBank-Accession No. X65327); see also Mezei and Storts, Purification of PCR Products, in: Griffin and Griffin (Eds.), PCR Technology: Current Innovation, CRC Press, Boca Raton, Fla., 2001.
  • Thus, by using short synthetic DNA oligonucleotides that comprise short single-strand transitions at the corresponding cleavage sites, or by means of genes produced by chemical synthesis, the desired nucleotide sequence can be cloned into a suitable plasmid by molecular biology methods known to the person skilled in the art (see Maniatis et al., above). The DNA molecule is then excised from the plasmid, in which it may be present as a single copy or multiple copies, by digestion with restriction endonucleases.
  • The modified mRNA that is contained in the pharmaceutical composition according to the invention may furthermore have a 5′ cap structure (a modified guanosine nucleotide). Examples of suitable cap structures include, but are not limited to m7G(5′)ppp (5′(A,G(5′)ppp(5′)A and G(5′)ppp(5′)G.
  • According to a further preferred embodiment of the present invention the modified mRNA comprises a poly-A tail of at least 50 nucleotides, preferably at least 70 nucleotides, more preferably at least 100 nucleotides and particularly preferably at least 200 nucleotides.
  • For efficient translation of the mRNA an productive binding of the ribosomes to the ribosome binding site [Kozak sequence: GCCGCCACCAUGG (SEQ ID NO: 13), the AUG forms the start codon] is generally required. In this regard it has been established that an increased A/U content around this site facilitates more efficient ribosome binding to the mRNA.
  • In addition, it is possible to introduce one or more so-called IRES (“internal ribosomal entry site”) into the modified mRNA. An IRES may act as the sole ribosome binding site, or may serve as one of the ribosome binding sites of an mRNA. An mRNA comprising more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes (“multicistronic mRNA”). Examples of IRES sequences that can be used according to the invention include without limitation, those from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV).
  • According to a further preferred embodiment of the present invention the modified mRNA comprises in the 5′ non-translated and/or 3′ non-translated regions stabilisation sequences that are capable of increasing the half-life of the mRNA in the cytosol.
  • These stabilisation sequences may exhibit 100% sequence homology with naturally occurring sequences that are present in viruses, bacteria and eukaryotic cells, or may be derived from such naturally occurring sequences (i.e., may comprise, e.g., mutations substitutions, or deletions in these sequences). Stabilising sequences that may be used in the present invention include, by way of non-limiting example, the untranslated sequences (UTR) of the β-globin gene of Homo sapiens or Xenopus laevis. Another example of a stabilisation sequence has the general formula (C/U)CCANxCCC(U/A)PyxUC(C/U)CC, which is contained in the 3′UTR of the very stable mRNAs that encode α-globin, α-(I)-collagen, 15-lipoxygenase, or tyrosine hydroxylase (C. F. Holcik et al., Proc. Natl. Acad. Sci. USA 1997, 94: 2410-2414). Obviously such stabilisation sequences may be used individually or in combination, as well as in combination with other stabilisation sequences known to a person skilled in the art.
  • For the further stabilisation of the modified mRNA it is preferred that the modified mRNA comprises at least one analogue of a naturally occurring nucleotide. This approach is based on the understanding that RNA-decomposing enzymes present in a cell preferentially recognise RNA comprising naturally occurring nucleotides as a substrate. The insertion of nucleotide analogues into an RNA molecule, therefore, retards decomposition of the RNA molecule so modified, whereas the effect of such analogs on translational efficiency, particularly when inserted into the coding region of the mRNA, may result in either an increase or decrease in translation of the modified RNA molecule.
  • The following is a non-limiting list of nucleotide analogues that can be used in accordance with the invention: phosphorus amidates, phosphorus thioates, peptide nucleotides, methylphosphonates, 7-deazaguanosine, 5-methylcytosine and inosine. The preparation of such analogues is known to the person skilled in the art, for example from U.S. Pat. No. 4,373,071, U.S. Pat. No. 4,401,796, U.S. Pat. No. 4,415,732, U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 4,668,777, U.S. Pat. No. 4,973,679, U.S. Pat. No. 5,047,524, U.S. Pat. No. 5,132,418, U.S. Pat. No. 5,153,319, U.S. Pat. No. 5,262,530 and U.S. Pat. No. 5,700,642. According to the invention such analogues may be present in non-translated and/or translated regions of the modified mRNA.
  • Furthermore the effective transfer of the modified mRNA into the cells to be treated or into the organism to be treated may be improved if the modified mRNA is associated with a cationic peptide or protein, or is bound thereto. In particular in this connection the use of protamine as polycationic, nucleic acid-binding protein is particularly effective. It is also possible to use other cationic peptides or proteins such as poly-L-lysine or histones. Procedures for stabilising mRNA are described in EP-A-1083232, whose relevant disclosure is incorporated herein in its entirety.
  • For gene therapy applications, for example, wherein a pharmaceutical composition of the invention is used, the modified mRNA therein codes for at least one biologically active peptide or polypeptide that is not formed or is only insufficiently or defectively formed in the patient to be treated. Administration of a modified mRNA encoding the at least one biologically active peptide or polypeptide or a composition thereof to such a patient, therefore, at least partially restores the expression and/or activity of the at least one biologically active peptide or polypeptide in the patient and thereby complements the patient's genetic defect. The direct introduction of a normal, functional gene into a living animal has been studied as a means for replacing defective genetic information. In such studies, nucleic acid sequences are introduced directly into cells of a living animal. The following references pertain to methods for the direct introduction of nucleic acid sequences into a living animal: Nabel et al., (1990) Science 249:1285-1288; Wolfe et al., (1990) Science 247:1465-1468; Acsadi et al. (1991) Nature 352:815-818; Wolfe et al. (1991) BioTechniques 11(4):474-485; and Feigner and Rhodes, (1991) Nature 349:351-352, which are incorporated herein by reference.
  • Accordingly, examples of polypeptides coded by a modified mRNA of the invention include, without limitation, dystrophin, the chloride channel, which is defectively altered in cystic fibrosis; enzymes that are lacking or defective in metabolic disorders such as phenylketonuria, galactosaemia, homocystinuria, adenosine deaminase deficiency, etc.; enzymes that are involved in the synthesis of neurotransmitters such as dopamine, norepinephrine and GABA, in particular tyrosine hydroxylase and DOPA decarboxylase, and α-1-antitrypsin, etc. Pharmaceutical compositions of the invention may also be used to effect expression of cell surface receptors and/or binding partners of cell surface receptors if the modified mRNA contained therein encodes for such biologically active proteins or peptides. Examples of such proteins that act in an extracellular manner or that bind to cell surface receptors include for example tissue plasminogen activator (TPA), growth hormones, insulin, interferons, granulocyte-macrophage colony stimulating factor (GM-CFS), and erythropoietin (EPO), etc. By choosing suitable growth factors, the pharmaceutical composition of the present invention may, for example, be used for tissue regeneration. In this way diseases that are characterised by tissue degeneration, for example neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, etc. and other degenerative conditions, such as arthrosis, can be treated. In these cases the modified mRNA, in particular that contained in the pharmaceutical composition of the present invention, preferably encodes, without limitation, a TGF-β family member, EGF, FGF, PDGF, BMP, GDNF, BDNF, GDF and neurotrophic factors such as NGF, neutrophines, etc.
  • A further area of application of the present invention is vaccination, i.e. the use of a modified mRNA for inoculation or the use of a pharmaceutical composition comprising a modified mRNA as an inoculating agent, or the use of a modified mRNA in the preparation of the pharmaceutical composition for inoculation purposes. Vaccination is based on introducing an antigen into an organism or subject, in particular into a cell of the organism or subject. In the context of the present invention, the genetic information encoding the antigen is introduced into the organism or subject in the form of a modified mRNA encoding the antigen. The modified mRNA contained in the pharmaceutical composition is translated into the antigen, i.e. the polypeptide or antigenic peptide coded by the modified mRNA is expressed, and an immune response directed against the polypeptide or antigenic peptide is stimulated. For vaccination against a pathogenic organism, e.g., a virus, a bacterium, or a protozoan, a surface antigen of such an organism maybe used as an antigen against which an immune response is elicited. In the context of the present invention, a pharmaceutical composition comprising a modified mRNA encoding such a surface antigen may be used as a vaccine. In applications wherein a genetic vaccine is used for treating cancer, the immune response is directed against tumour antigens by generating a modified mRNA encoding a tumour antigen(s), in particular a protein which is expressed exclusively on cancer cells. Such a modified mRNA encoding a tumour antigen may be used alone or as a component of a pharmaceutical composition according to the invention, wherein administration of either the modified mRNA or a composition thereof results in expression of the cancer antigen(s) in the organism. An immune response to such a vaccine would, therefore, confer to the vaccinated subject a degree of protective immunity against cancers associated with the immunizing cancer antigen. Alternatively, such measures could be used to vaccinate a cancer patient with a modified mRNA encoding a tumour antigen(s) expressed on the patient's cancer cells so as to stimulate the cancer patient's immune response to attack any cancer cells expressing the encoded antigen.
  • In its use as a vaccine the pharmaceutical composition according to the invention is suitable in particular for the treatment of cancers (in which the modified mRNA codes for a tumour-specific surface antigen (TSSA), for example for treating malignant melanoma, colon carcinoma, lymphomas, sarcomas, small-cell lung carcinomas, blastomas, etc. A non-limiting list of specific examples of tumour antigens include, inter alia, 707-AP, AFP, ART-4, BAGE, β-catenin/m, Bcr-abl, CAMEL, CAP-1, CASP-8, CDC27/m, CDK4/m, CEA, CT, Cyp-β, DAM, ELF2M, ETV6-AML1, G250, GAGE, GnT-V, Gp100, HAGE, HER-2/neu, HLA-A*0201-R170I, HPV-E7, HSP70-2M, HAST-2, hTERT (or hTRT), iCE, KIAA0205, LAGE, LDLR/FUT, MAGE, MART-1/melan-A, MC1R, myosin/m, MUC1, MUM-1, -2, -3, NA88-A, NY-ESO-1, p190 minor bcr-abl, Pml/RARα, PRAME, PSA, PSM, RAGE, RU1 or RU2, SAGE, SART-1 or SART-3, TEL/AML1, TPI/m, TRP-1, TRP-2, TRP-2/INT2 and WT1. In addition to the above application, the pharmaceutical composition of the invention may be used to treat infectious diseases, for example, viral infectious diseases such as AIDS (HIV), hepatitis A, B or C, herpes, herpes zoster (chicken pox), German measles (rubella virus), yellow fever, dengue fever etc. (flavi viruses), flu (influenza viruses), haemorrhagic infectious diseases (Marburg or Ebola viruses), bacterial infectious diseases such as Legionnaires' disease (Legionella), gastric ulcer (Helicobacter), cholera (Vibrio), E. coli infections, staphylococcal infections, salmonella infections or streptococcal infections, tetanus (Clostridium tetani), or protozoan infectious diseases (malaria, sleeping sickness, leishmaniasis, toxoplasmosis, i.e. infections caused by plasmodium, trypanosomes, leishmania and toxoplasma). Preferably also in the case of infectious diseases the corresponding surface antigens with the strongest antigenic potential are encoded by the modified mRNA. With the aforementioned genes of pathogenic vectors or organisms, in particular in the case of viral genes, this is typically a secreted form of a surface antigen. Moreover, according to the invention mRNAs preferably coding for polypeptides are employed, because polypeptides generally comprise multiple epitopes (polyepitopes). Polypeptides comprising polyepitopes include but are not limited to, surface antigens of pathogenic vectors or organisms, or of tumour cells, preferably secreted protein forms.
  • Moreover, the modified mRNA according to the invention may comprise in addition to the antigenic or therapeutically active peptide or polypeptide, at least one further functional region that encodes, for example, a cytokine that promotes the immune response (e.g., a monokine, lymphokine, interleukin or chemokine, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, INF-α, INF-γ, GM-CFS, LT-α or growth factors such as hGH).
  • Furthermore, in order to increase immunogenicity, the pharmaceutical composition according to the invention may contain one or more adjuvants. The term “adjuvant” is understood in this context to denote any chemical or biological compound that promotes or augments a specific immune response. Various mechanisms may be involved in this connection, depending on the various types of adjuvants. For example, compounds that promote endocytosis of the modified mRNA contained in the pharmaceutical composition by dentritic cells (DC) form a first class of usable adjuvants. Other compounds that activate or accelerate maturation of DC (for example, lipopolysaccharides, TNF-α or CD40 ligand) comprise a second class of suitable adjuvants. In general, any agent which is recognized as a potential “danger signal” by the immune system (LPS, GP96, oligonucleotides with the CpG motif) or cytokines such as GM-CSF, may be used as an adjuvant. Co-administration of an adjuvant enhances an immune response generated against an antigen encoded by the modified mRNA. The aforementioned cytokines are particularly preferred in this aspect. Other known adjuvants include aluminium hydroxide, and Freund's adjuvant, as well as the aforementioned stabilising cationic peptides or polypeptides such as protamine. In addition, lipopeptides such as Pam3Cys are also particularly suitable for use as adjuvants in the pharmaceutical composition of the present invention; see Deres et al, Nature 1989, 342: 561-564.
  • The pharmaceutical composition according to the invention comprises, in addition to the modified mRNA, a pharmaceutically compatible carrier and/or a pharmaceutically compatible vehicle. Appropriate methods for achieving a suitable formulation and preparation of the pharmaceutical composition according to the invention are described in “Remington's Pharmaceutical Sciences” (Mack Pub. Co., Easton, Pa., 1980), which is herein incorporated by reference in its entirety. For parenteral administration suitable carriers include for example sterile water, sterile saline solutions, polyalkylene glycols, hydrogenated naphthalene and in particular biocompatible lactide polymers, lactide/glycolide copolymers or polyoxyethylene/polyoxypropylene copolymers. Compositions according to the invention may contain fillers or substances such as lactose, mannitol, substances for the covalent coupling of polymers such as for example polyethylene glycol to inhibitors according to the invention, complexing with metal ions or incorporation of materials in or on special preparations of polymer compound, such as for example polylactate, polyglycolic acid, hydrogel or on liposomes, microemulsions, microcells, unilamellar or multilamellar vesicles, erythrocyte fragments or spheroplasts. The respective modifications of the compositions are chosen depending on physical properties such as, for example, solubility, stability, bioavailability or degradability. Controlled or constant release of the active component according to the invention in the composition includes formulations based on lipophilic depot substances (for example fatty acids, waxes or oils). Coatings of substances or compositions according to the invention containing such substances, namely coatings with polymers (for example poloxamers or poloxamines), are also disclosed within the scope of the present invention. Moreover substances or compositions according to the invention may contain protective coatings, for example protease inhibitors or permeability enhancers. Preferred carriers are typically aqueous carrier materials, in which water for injection (WFI) or water buffered with phosphate, citrate or acetate, etc., is used, and the pH is typically adjusted to 5.0 to 8.0, preferably 6.0 to 7.0. The carrier or the vehicle will in addition preferably contain salt constituents, for example sodium chloride, potassium chloride or other components that for example make the solution isotonic. In addition the carrier or the vehicle may contain, besides the aforementioned constituents, additional components such as human serum albumin (HSA), polysorbate 80, sugars or amino acids.
  • The concentration of the modified mRNA in such formulations may therefore vary within a wide range from 1 μg to 100 mg/ml. The pharmaceutical composition according to the invention is preferably administered parenterally, for example intravenously, intraarterially, subcutaneously or intramuscularly to the patient. It is also possible to administer the pharmaceutical composition topically or orally.
  • The invention thus also provides a method for the treatment of the aforementioned medical conditions or an inoculation method for the prevention of the aforementioned conditions, which comprises the administration of the pharmaceutical composition according to the invention to a subject or patient, in particular a human patient.
  • A typical regimen for preventing, suppressing, or treating a pathology related to a viral, bacterial, or protozoan infection, may comprise administration of an effective amount of a vaccine composition as described herein, administered as a single treatment, or repeated as enhancing or booster dosages, over a period up to and including between one week and about 24 months, or any range or value therein.
  • According to the present invention, an “effective amount” of a vaccine composition is one that is sufficient to achieve a desired biological effect. It is understood that nature and manner of the administration and the effective dosage may be determined by a medical practitioner based on a number of variables including the age, sex, health, and weight of the recipient, the medical condition to be treated and its stage of progression, the kind of concurrent treatment, if any, frequency of treatment, and the nature of the desired outcome. The ranges of effective doses provided below are not intended to limit the invention, but are provided as representative preferred dose ranges. However, the most preferred dosage will be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation. See, e.g., Berkow et al., eds., The Merck Manual, 16th edition, Merck and Co., Rahway, N.J., 1992; Goodman et al., eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edition, Pergamon Press, Inc., Elmsford, N.Y., (1990); Avery's Drug Treatment: Principles and Practice of Clinical Pharmacology and Therapeutics, 3rd edition, ADIS Press, LTD., Williams and Wilkins, Baltimore, Md. (1987), Ebadi, Pharmacology, Little, Brown and Co., Boston, Mass. (1985); and Katzung, ed. Basic and Clinical Pharmacology, Fifth Edition, Appleton and Lange, Norwalk, Conn. (1992), which references and references cited therein, are entirely incorporated herein by reference.
  • The present invention relates to the use of genetic material (e.g., nucleic acid sequences) as immunizing agents. In one aspect, the present invention relates to the introduction of exogenous or foreign modified DNA or RNA molecules into an individual's tissues or cells, wherein these molecules encode an exogenous protein capable of eliciting an immune response to the protein. The exogenous nucleic acid sequences may be introduced alone or in the context of an expression vector wherein the sequences are operably linked to promoters and/or enhancers capable of regulating the expression of the encoded proteins. The introduction of exogenous nucleic acid sequences may be performed in the presence of a cell stimulating agent capable of enhancing the uptake or incorporation of the nucleic acid sequences into a cell. Such exogenous nucleic acid sequences may be administered in a composition comprising a biologically compatible or pharmaceutically acceptable carrier. The exogenous nucleic acid sequences may be administered by a variety of means, as described herein, and well known in the art.
  • Such methods may be used to elicit immunity to a pathogen, absent the risk of infecting an individual with the pathogen. The present invention may be practiced using procedures known in the art, such as those described in PCT International Application Number PCT/US90/01515, wherein methods for immunizing an individual against pathogen infection by directly injecting polynucleotides into the individual's cells in a single step procedure are presented.
  • In one aspect, the present invention relates to methods for eliciting immune responses in an individual or subject which can protect the individual from pathogen infection. Accordingly, genetic material that encodes an immunogenic protein is introduced into a subject's cells either in vivo or ex vivo. The genetic material is expressed by these cells, thereby producing immunogenic target proteins capable of eliciting an immune response. The resulting immune response is broad based and involves activation of the humoral immune response and both arms of the cellular immune response.
  • This approach is useful for eliciting a broad range of immune responses against a target protein. Target proteins may be proteins specifically associated with pathogens or the individual's own “abnormal” or infected cells. Such an approach may be used advantageously to immunize a subject against pathogenic agents and organisms such that an immune response against a pathogen protein provides protective immunity against the pathogen. This approach is particularly useful for protecting an individual against infection by non-encapsulated intracellular pathogens, such as a virus, which produce proteins within the host cells. The immune response generated against such proteins is capable of eliminating infected cells with cytotoxic T cells (CTLs).
  • The immune response elicited by a target protein produced by vaccinated cells in a subject is a broad-based immune response which includes B cell and T cell responses, including CTL responses. It has been observed that target antigen produced within the cells of the host are processed intracellularly into small peptides, which are bound by Class I MHC molecules and presented in the context of Class I on the cell surface. The Class I MHC-target antigen complexes are capable of stimulating CD8+ T cells, which are predominantly CTLs. Notably, genetic immunization according to the present invention is capable of eliciting CTL responses (killer cell responses).
  • The CTL response is crucial in protection against pathogens such as viruses and other intracellular pathogens which produce proteins within infected cells. Similarly, the CTL response can be utilized for the specific elimination of deleterious cell types, which may express aberrant cell surface proteins recognizable by Class I MHC molecules.
  • The genetic vaccines of the present invention may be administered to cells in conjunction with compounds that stimulate cell division and facilitate uptake of genetic constructs. This step provides an improved method of direct uptake of genetic material. Administration of cell stimulating compounds results in a more effective immune response against the target protein encoded by the genetic construct.
  • According to the present invention, modified DNA or mRNA that encodes a target protein is introduced into the cells of an individual where it is expressed, thus producing the target protein. The modified DNA or RNA may be operably linked to regulatory elements (e.g., a promoter) necessary for expression in the cells of the individual. Other elements known to skilled artisans may also be included in genetic constructs of the invention, depending on the application.
  • As used herein, the term “genetic construct” refers to the modified DNA or mRNA molecule that comprises a nucleotide sequence which encodes the target protein and which may include initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal (for modified DNA) capable of directing expression in the cells of the vaccinated individual. As used herein, the term “expressible form” refers to gene constructs which contain the necessary regulatory elements operably linked to a coding sequence of a target protein, such that when present in the cell of the individual, the coding sequence is expressed. As used herein, the term “genetic vaccine” refers to a pharmaceutical preparation that comprises a genetic construct.
  • The present invention provides genetic vaccines, which include genetic constructs comprising DNA or RNA which encode a target protein. As used herein, the term “target protein” refers to a protein capable of eliciting an immune response. The target protein is an immunogenic protein derived from the pathogen or undesirable cell-type, such as an infected or transformed cell. In accordance with the invention, target proteins may be pathogen-associated proteins or tumour-associated proteins. The immune response directed against the target protein protects the individual against the specific infection or disease with which the target protein is associated. For example, a genetic vaccine comprising a modified DNA or RNA molecule that encodes a pathogen-associated target protein is used to elicit an immune response that will protect the individual from infection by the pathogen.
  • DNA and RNA-based vaccines and methods of use are described in detail in several publications, including Leitner et al. (1999, Vaccines 18:765-777), Nagashunmugam et al. (1997, AIDS 11:1433-1444), and Fleeton et al. (2001, J Infect Dis 183:1395-1398) the entire contents of each of which is incorporated herein by reference.
  • In order to test expression, genetic constructs can be tested for expression levels in vitro using cells maintained in culture, which are of the same type as those to be vaccinated. For example, if the genetic vaccine is to be administered into human muscle cells, muscle cells grown in culture such as solid muscle tumor cells of rhabdomyosarcoma may be used as an in vitro model for measuring expression levels. One of ordinary skill in the art could readily identify a model in vitro system which may be used to measure expression levels of an encoded target protein.
  • In accordance with the invention, multiple inoculants can be delivered to different cells, cell types, or tissues in an individual. Such inoculants may comprise the same or different nucleic acid sequences of a pathogenic organism. This allows for the introduction of more than a single antigen target and maximizes the chances for developing immunity to the pathogen in a vaccinated subject.
  • According to the invention, the genetic vaccine may be introduced in vivo into cells of an individual to be immunized or ex vivo into cells of the individual which are re-implanted after incorporation of the genetic vaccine. Either route may be used to introduce genetic material into cells of an individual. As described herein above, preferred routes of administration include intramuscular, intraperitoneal, intradermal, and subcutaneous injection. Alternatively, the genetic vaccine may be introduced by various means into cells isolated from an individual. Such means include, for example, transfection, electroporation, and microprojectile bombardment. These methods and other protocols for introducing nucleic acid sequences into cells are known to and routinely practiced by skilled practitioners. After the genetic construct is incorporated into the cells, they are re-implanted into the individual. Prior to re-implantation, the expression levels of a target protein encoded by the genetic vaccine may be assessed. It is contemplated that otherwise non-immunogenic cells that have genetic constructs incorporated therein can be implanted into autologous or heterologous recipients.
  • The genetic vaccines according to the present invention comprise about 0.1 to about 1000 micrograms of nucleic acid sequences (i.e., DNA or RNA). In some preferred embodiments, the vaccines comprise about 1 to about 500 micrograms of nucleic acid sequences. In some preferred embodiments, the vaccines comprise about 25 to about 250 micrograms of nucleic acid sequences. Most preferably, the vaccines comprise about 100 micrograms nucleic acid sequences.
  • The genetic vaccines according to the present invention are formulated according to the mode of administration to be used. One having ordinary skill in the art can readily formulate a genetic vaccine that comprises a genetic construct. In cases where intramuscular injection is the chosen mode of administration, for example, an isotonic formulation is generally used. As described in detail herein above, additives for isotonicity can include sodium chloride, dextrose, mannitol, sorbitol and lactose. Isotonic solutions such as phosphate buffered saline are preferred. Stabilizers can include gelatin and albumin.
  • In some embodiments of the invention, the individual is administered a series of vaccinations to produce a comprehensive immune response. According to this method, at least two and preferably four injections are given over a period of time. The period of time between injections may include from 24 hours apart to two weeks or longer between injections, preferably one week apart. Alternatively, at least two and up to four separate injections may be administered simultaneously to different parts of the body.
  • While this disclosure generally discusses immunization or vaccination in the context of prophylactic methods of protection, the terms “immunizing” or “vaccinating” are meant to refer to both prophylactic and therapeutic methods. Thus, a method for immunizing or vaccinating includes both methods of protecting an individual from pathogen challenge, as well as methods for treating an individual suffering from pathogen infection. Accordingly, the present invention may be used as a vaccine for prophylactic protection or in a therapeutic manner; that is, as a reagent for immunotherapeutic methods and preparations.
  • The amount of a modified nucleic acid sequence generated using the methods of the invention which provides a therapeutically effective dose in the treatment of a patient with, for example, cancer or a pathogen-related disorder can be determined by standard clinical techniques based on the present description. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances. However, suitable dosage ranges for intravenous administration are generally directed to achieve a concentration of about 20-500 micrograms of polypeptide encoded by the modified nucleic acid per kilogram body weight. Suitable dosage ranges for intranasal administration are generally directed to achieve a concentration of about 0.01 pg to 1 mg of polypeptide encoded by the modified nucleic acid per kg body weight. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • The compositions comprising the modified nucleic acid molecules of the invention can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a patient already suffering from a hyperproliferative disorder (such as, e.g., cancer) in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a “therapeutically effective amount or dose.” Amounts effective for this use will depend on the severity of the disease and the weight and general state of the patient.
  • Compositions comprising modified nucleic acid molecules of the invention can be administered alone, or in combination, and/or in conjunction with known therapeutic agents/compounds used for the treatment of a patient with a particular disorder. For the treatment of a patient with cancer, for example, a composition comprising at least one modified nucleic acid of the invention which encodes a tumour antigen, may be used in conjunction with one or more known cancer therapeutics, such as those described in the Physicians' Desk Reference, 54th Edition (2000) or in Cancer: Principles & Practice of Oncology, DeVita, Jr., Hellman, and Rosenberg (eds.) 2nd edition, Philadelphia, Pa.: J.B. Lippincott Co., 1985, wherein standard treatment protocols and dosage formulations are presented.
  • In addition a method is also provided for determining how to modify the sequence of an mRNA so as to generate a modified mRNA having altered properties, which may be used alone or in a pharmaceutical composition of the invention. In this connection, and in accordance with the invention, the modification of an RNA sequence is carried out with two different optimisation objectives: to maximize G/C content, and to maximize the frequency of codons that are recognized by abundantly expressed tRNAs. In the first step of the process a virtual translation of an arbitrary RNA (or DNA) sequence is carried out in order to generate the corresponding amino acid sequence. Starting from the amino acid sequence, a virtual reverse translation is performed that provides, based on degeneracy of the genetic code, all of the possible choices for the corresponding codons. Depending on the required optimisation or modification, corresponding selection lists and optimisation algorithms are used for choosing suitable codons. The algorithms are executed on a computer, normally with the aid of suitable software. In accordance with the present invention, a suitable software program comprises a source code of Appendix I. Thus, the optimised mRNA sequence is generated and can be output, for example, with the aid of a suitable display device and compared with the original (wild type) sequence. The same also applies with regard to the frequency of the individual nucleotides. The changes compared to the original nucleotide sequence are preferably emphasised. Furthermore, according to a preferred embodiment, naturally occurring stable sequences are incorporated therein to produce an RNA stabilised by the presence of natural sequence motifs. A secondary structural analysis may also be performed that can analyse, on the basis of structural calculations, stabilising and destabilising properties or regions of the RNA.
  • Also encompassed by the present invention are modified nucleic acid sequences generated using the above computer-based method. Exemplary modified nucleic acid sequences of the invention include SEQ ID NOs: 3-7, 10 and 11. The present invention also includes pharmaceutical compositions of modified nucleic acid sequences of the invention, including SEQ ID NOs: 3-7, 10 and 11.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-G show wild type sequences and modified sequences for the influenza matrix protein.
  • FIG. 1A (SEQ ID NO: 1) shows the wild type gene and FIG. 1B (SEQ ID NO: 2) shows the amino acid sequence derived therefrom (1-letter code). FIG. 1C (SEQ ID NO: 3) shows a gene sequence coding for the influenza matrix protein, whose G/C content is increased as compared to that of the wild type sequence. FIG. 1D (SEQ ID NO: 4) shows the sequence of a gene that codes for a secreted form of the influenza matrix protein (including an N-terminal signal sequence), wherein the G/C content of the sequence is increased relative to that of the wild type sequence. FIG. 1E (SEQ ID NO: 5) shows an mRNA coding for the influenza matrix protein, wherein the mRNA comprises stabilising sequences not present in the corresponding wild type mRNA. FIG. 1F (SEQ ID NO: 6) shows an mRNA coding for the influenza matrix protein that in addition to stabilising sequences also contains an increased G/C content. FIG. 1G (SEQ ID NO: 7) likewise shows a modified mRNA that codes for a secreted form of the influenza matrix protein and comprises, as compared to the wild type, stabilising sequences and an elevated G/C content. In FIG. 1A and FIGS. 1C to 1G the start and stop codons are shown in bold type. Nucleotides that are changed relative to the wild type sequence of FIG. 1A are shown in capital letters in 1C to 1G.
  • FIGS. 2A-D show wild type sequences and modified sequences according to the invention that encode for the tumour antigen MAGE1.
  • FIG. 2A (SEQ ID NO: 8) shows the sequence of the wild type gene and FIG. 2B (SEQ ID NO: 9) shows the amino acid sequence derived therefrom (3-letter code). FIG. 2C (SEQ ID NO: 10) shows a modified mRNA coding for MAGE1, whose G/C content is increased as compared to the wild type. FIG. 2D (SEQ ID NO: 11) shows the sequence of a modified mRNA encoding MAGE1, in which the codon usage has been optimised as frequently as possible with respect to the tRNA present in the cell and to the coding sequence in question. Start and stop codons are shown in each case in bold type.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following examples describe the invention in more detail and in no way are to be construed as restricting the scope thereof.
  • Example 1
  • As an exemplary embodiment of the process for determining the sequence of a modified mRNA according to the invention, a computer program was established that modifies the nucleotide sequence of an arbitrary mRNA in such a way as to maximise the G/C content of the nucleic acid, and maximise the presence of codons recognized by abundant tRNAs present in a particular cell(s). The computer program is based on an understanding of the genetic code and exploits the degenerative nature of the genetic code. By this means a modified mRNA having desirable properties is obtained, wherein the amino acid sequence encoded by the modified mRNA is identical to that of the unmodified mRNA sequence. Alternatively, the invention may encompass alterations in either the G/C content or codon usage of an mRNA to produce a modified mRNA.
  • The source code in Visual Basic 6.0 (program development environment employed: Microsoft Visual Studio Enterprise 6.0 with Servicepack 3) is given in the Appendix I.
  • Example 2
  • An RNA construct with a sequence of the lac-Z gene from E. coli optimised with regard to stabilisation and translational efficiency was produced with the aid of the computer program of Example 1. A G/C content of 69% (compared to the wild type sequence of 51%; C. F. Kalnins et al., EMBO J. 1983, 2(4): 593-597) was achieved in this manner. Through the synthesis of overlapping oligonucleotides that comprise the modified sequence, the optimised sequence was produced according to methods known in the art. The terminal oligonucleotides have the following restriction cleavage sites: at the 5′ end an EcoRV cleavage site, and at the 3′ end a BglII cleavage site. The modified lacZ sequence was incorporated into the plasmid pT7 Ts (GenBank Accession No. U26404; C. F. Lai et al., see above) by digestion with EcoRV/BglII. pT7 Ts contains untranslated region sequences from the β-globin gene of Xenopus laevis at the 5′ and 3′ ends. The plasmid was cleaved with the aforementioned restriction enzymes to facilitate insertion of the modified lacZ sequence having compatible 5′ and 3′ termini.
  • The pT7 Ts-lac-Z construct was propagated in bacteria and purified by phenol-chloroform extraction. 2 μg of the construct were transcribed in vitro using methods known to a skilled artisan and the modified mRNA was produced.
  • Example 3
  • The gene for the influenza matrix protein (wild type sequence, see FIG. 1A; derived amino acid sequence, see FIG. 1B) was optimised with the aid of the computer program according to the invention of Example 1. The G/C-rich sequence variant shown in FIG. 1C (SEQ ID NO: 3) was thereby formed. A G/C-rich sequence coding for a secreted form of the influenza matrix protein, which includes an N-terminal signal sequence was also determined (see FIG. 1D; SEQ ID NO: 4). The secreted form of the influenza matrix protein has the advantage of increased immunogenicity as compared to that of the non-secreted form.
  • Corresponding mRNA molecules were designed starting from the optimised sequences. The mRNA for the influenza matrix protein, optimised with regard to G/C content and codon usage, was additionally provided with stabilising sequences in the 5′ region and 3′ region (the stabilisation sequences derive from the 5′-UTRs and 3′-UTRs of the β-globin-mRNA of Xenopus laevis; pT7 Ts-Vektor in C. F. Lai et al., see above). See also FIG. 1E; SEQ ID NO: 5, which includes only stabilising sequences and 1F; SEQ ID NO: 6, which includes both increased G/C content and stabilising sequences. The mRNA coding for the secreted form of the influenza matrix protein was likewise also sequence optimised in the translated region and provided with the aforementioned stabilising sequences (see FIG. 1G; SEQ ID NO: 7).
  • Example 4
  • The mRNA encoding the tumour antigen MAGE1 was modified with the aid of the computer program of Example 1. The sequence shown in FIG. 2C (SEQ ID NO: 10) was generated in this way, and has a 24% higher G/C content (351 G, 291 C) as compared to the wild type sequence (275 G, 244 G). In addition, by means of alternative codon usage, the wild type sequence was improved with regard to translational efficiency by substituting codons corresponding to tRNAs that are more abundant in a target cell (see FIG. 2D; SEQ ID NO: 11). The G/C content was likewise raised by 24% by the alternative codon usage.

Claims (21)

What is claimed is:
1. A method of providing insulin expression in a subject comprising administering an effective amount of a pharmaceutical composition comprising a mRNA that encodes insulin to the subject, wherein the mRNA that encodes insulin comprises:
(i) an increased G/C content relative to a wild type RNA encoding for insulin; or
(ii) at least one codon of a wild-type sequence recognized by a rare cellular tRNA is replaced with a codon recognized by an abundant cellular tRNA, and wherein said rare cellular tRNA and said abundant cellular tRNA recognize the same amino acid.
2. The method of claim 1, wherein the pharmaceutical composition is administered by injection.
3. The method of claim 1, wherein the pharmaceutical composition is administered intravenously, intradermally, subcutaneously, intramuscularly, topically or orally.
4. The method of claim 3, wherein the pharmaceutical composition is administered intravenously.
5. The method of claim 1, wherein the mRNA that encodes insulin comprises an increased G/C content relative to a wild type RNA encoding for insulin.
6. The method of claim 1, wherein the mRNA encoding insulin comprises a sequence wherein at least one codon of a wild-type sequence recognized by a rare cellular tRNA is replaced with a codon recognized by an abundant cellular tRNA, and wherein said rare cellular tRNA and said abundant cellular tRNA recognize the same amino acid.
7. The method of claim 1, wherein the mRNA encoding insulin comprises at least one chemical modification of the mRNA.
8. The method of claim 1, wherein the mRNA encoding insulin comprises at least one nucleotide of the mRNA is substituted with an analog of the naturally occurring nucleotide.
9. The method of claim 1, wherein the mRNA encoding insulin comprises at least one nucleotide position replaced with a nucleotide analogue selected from the group consisting of phosphorus amidates, phosphorus thioates, peptide nucleotides, methylphosphonates, 7-deazaguanosine, 5-methylcytosine and inosine.
10. The method of claim 1, wherein the mRNA encoding insulin comprises a stabilizing 5′ untranslated region (UTR) or 3′ UTR.
11. The method of claim 1, wherein the mRNA comprises a 5′ cap structure.
12. The method of claim 1, wherein the mRNA comprises a poly-A tail of at least 50 nucleotides.
13. The method of claim 1, wherein the mRNA is dissolved in the aqueous carrier.
14. The method of claim 13, wherein the aqueous carrier is water for injection (WFI), a buffered solution or a salt solution.
15. The method of claim 14, wherein the salt solution comprises sodium chloride or potassium chloride solution.
16. The method of claim 1, wherein the pharmaceutical composition comprises a component selected from the group consisting of human serum albumin, a polycationic protein, polysorbate 80, a sugar and an amino acid.
17. The method of claim 16, wherein the pharmaceutical composition comprises a polycationic protein.
18. The method of claim 1, wherein the mRNA is provided in a liposome complex.
19. The method of claim 1, further comprising administering the pharmaceutical composition to the subject two or more times.
20. The method of claim 1, wherein the composition is administered by injection and wherein the mRNA is provided in a liposome complex.
21. The method of claim 1, wherein the subject has insufficient levels of insulin.
US15/005,808 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS Abandoned US20160136247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/005,808 US20160136247A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DEDE10127283.9 2001-06-05
DE10127283 2001-06-05
PCT/EP2002/006180 WO2002098443A2 (en) 2001-06-05 2002-06-05 Stabilised mrna with an increased g/c content and optimised codon for use in gene therapy
US10/729,830 US10188748B2 (en) 2001-06-05 2003-12-05 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US14/487,425 US11135312B2 (en) 2001-06-05 2014-09-16 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US15/005,808 US20160136247A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/487,425 Continuation US11135312B2 (en) 2001-06-05 2014-09-16 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions

Publications (1)

Publication Number Publication Date
US20160136247A1 true US20160136247A1 (en) 2016-05-19

Family

ID=7687266

Family Applications (14)

Application Number Title Priority Date Filing Date
US10/729,830 Active 2025-08-10 US10188748B2 (en) 2001-06-05 2003-12-05 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US12/787,566 Abandoned US20110077287A1 (en) 2001-06-05 2010-05-26 Pharmaceutical composition containing a stabilised mrna optimised for translation in its coding regions
US12/787,755 Abandoned US20100239608A1 (en) 2001-06-05 2010-05-26 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US13/185,119 Abandoned US20110269950A1 (en) 2001-06-05 2011-07-18 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US14/487,425 Active 2025-11-11 US11135312B2 (en) 2001-06-05 2014-09-16 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US14/994,913 Abandoned US20230181765A2 (en) 2001-06-05 2016-01-13 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,986 Expired - Lifetime US11369691B2 (en) 2001-06-05 2016-01-25 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US15/005,911 Abandoned US20160136258A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,753 Abandoned US20160136243A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,808 Abandoned US20160136247A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,950 Expired - Lifetime US10568972B2 (en) 2001-06-05 2016-01-25 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US15/005,863 Abandoned US20160136263A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/248,902 Abandoned US20160361438A1 (en) 2001-06-05 2016-08-26 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US16/116,320 Abandoned US20190134222A1 (en) 2001-06-05 2018-08-29 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US10/729,830 Active 2025-08-10 US10188748B2 (en) 2001-06-05 2003-12-05 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US12/787,566 Abandoned US20110077287A1 (en) 2001-06-05 2010-05-26 Pharmaceutical composition containing a stabilised mrna optimised for translation in its coding regions
US12/787,755 Abandoned US20100239608A1 (en) 2001-06-05 2010-05-26 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US13/185,119 Abandoned US20110269950A1 (en) 2001-06-05 2011-07-18 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US14/487,425 Active 2025-11-11 US11135312B2 (en) 2001-06-05 2014-09-16 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US14/994,913 Abandoned US20230181765A2 (en) 2001-06-05 2016-01-13 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,986 Expired - Lifetime US11369691B2 (en) 2001-06-05 2016-01-25 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US15/005,911 Abandoned US20160136258A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/005,753 Abandoned US20160136243A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/005,950 Expired - Lifetime US10568972B2 (en) 2001-06-05 2016-01-25 Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US15/005,863 Abandoned US20160136263A1 (en) 2001-06-05 2016-01-25 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US15/248,902 Abandoned US20160361438A1 (en) 2001-06-05 2016-08-26 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS
US16/116,320 Abandoned US20190134222A1 (en) 2001-06-05 2018-08-29 PHARMACEUTICAL COMPOSITION CONTAINING A STABILISED mRNA OPTIMISED FOR TRANSLATION IN ITS CODING REGIONS

Country Status (11)

Country Link
US (14) US10188748B2 (en)
EP (8) EP2305699B1 (en)
AT (5) ATE456959T1 (en)
AU (2) AU2007203181B2 (en)
CA (2) CA2457959C (en)
DE (5) DE50214801D1 (en)
DK (1) DK1857122T3 (en)
ES (5) ES2340499T3 (en)
FR (2) FR21C1008I1 (en)
PT (1) PT1857122E (en)
WO (1) WO2002098443A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4035659A1 (en) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosomes for delivery of therapeutic agents

Families Citing this family (402)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305699B1 (en) 2001-06-05 2014-08-13 CureVac GmbH Stabilised mRNA with increased G/C content which is optimised for translation in its coded areas for the vaccination against sleeping sickness, leishmaniosis and toxoplasmosis
DE10162480A1 (en) 2001-12-19 2003-08-07 Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
AU2003235707A1 (en) * 2002-01-18 2003-07-30 Curevac Gmbh Immunogenic preparations and vaccines on the basis of mrna
FR2845918A1 (en) * 2002-10-16 2004-04-23 Pasteur Institut New immunogenic preparation, useful for preparing a composition for treating or preventing infections caused by HIV, Hepatitis B or C virus, Rous-Sarcoma virus or Chlamydia pneumoniae
DK1519714T3 (en) 2002-06-28 2011-01-31 Protiva Biotherapeutics Inc Method and apparatus for preparing liposomes
DE10229872A1 (en) 2002-07-03 2004-01-29 Curevac Gmbh Immune stimulation through chemically modified RNA
AU2002953015A0 (en) * 2002-12-02 2002-12-12 Women's And Children's Hospital Modified lacz gene
DE10335833A1 (en) * 2003-08-05 2005-03-03 Curevac Gmbh Transfection of blood cells with mRNA for immune stimulation and gene therapy
DE10347710B4 (en) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
CA2572151A1 (en) 2004-06-30 2006-08-24 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a non-phosphate backbone linkage
DE102004035227A1 (en) * 2004-07-21 2006-02-16 Curevac Gmbh mRNA mixture for vaccination against tumor diseases
DE102004042546A1 (en) * 2004-09-02 2006-03-09 Curevac Gmbh Combination therapy for immune stimulation
US20060177839A1 (en) * 2004-09-17 2006-08-10 Didier Mazel Method for modulating the evolution of a polypeptide encoded by a nucleic acid sequence
DE102005023170A1 (en) * 2005-05-19 2006-11-23 Curevac Gmbh Optimized formulation for mRNA
SI3611266T1 (en) 2005-08-23 2023-02-28 The Trustees Of The University Of Pennsylvania Rna containing modified nucleosides and methods of use thereof
KR20080082956A (en) 2005-09-15 2008-09-12 노보솜 아게 Improvements in or relating to amphoteric liposomes
DE102005046490A1 (en) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz New nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency
DE102006035618A1 (en) * 2006-07-31 2008-02-07 Curevac Gmbh New nucleic acid useful as immuno-stimulating adjuvant for manufacture of a composition for treatment of cancer diseases e.g. colon carcinomas and infectious diseases e.g. influenza and malaria
EP2046954A2 (en) 2006-07-31 2009-04-15 Curevac GmbH NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
US20090047673A1 (en) * 2006-08-22 2009-02-19 Cary Robert B Miniaturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
US8980561B1 (en) * 2006-08-22 2015-03-17 Los Alamos National Security, Llc. Nucleic acid detection system and method for detecting influenza
CA2665783C (en) 2006-10-13 2015-12-15 Novosom Ag Improvements in or relating to amphoteric liposomes, a method of formulating an amphoteric liposome and a method of loading an amphoteric liposome
DE102006051516A1 (en) * 2006-10-31 2008-05-08 Curevac Gmbh (Base) modified RNA to increase the expression of a protein
DE102007001370A1 (en) 2007-01-09 2008-07-10 Curevac Gmbh RNA-encoded antibodies
DE102007029471A1 (en) 2007-06-20 2008-12-24 Novosom Ag New optional cationic sterols
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
US20110086904A1 (en) * 2007-09-17 2011-04-14 The Trustees Of The University Of Pennsylvania GENERATION OF HYPERSTABLE mRNAs
EP3222290A1 (en) 2007-10-09 2017-09-27 CureVac AG Composition for treating prostate cancer (pca)
WO2009046738A1 (en) * 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating lung cancer, particularly of non-small lung cancers (nsclc)
WO2009046739A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating prostate cancer (pca)
US20110038937A1 (en) * 2007-12-05 2011-02-17 Eyegate Pharma S.A.S. Methods for delivering siRNA via Ionthophoresis
AU2009210266B2 (en) 2008-01-31 2015-01-29 CureVac SE Nucleic acids comprising formula (NuGlXmGmGnNv)a and derivatives thereof as an immunostimulating agents/adjuvants
WO2009127230A1 (en) * 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
EP3067694A1 (en) * 2008-05-05 2016-09-14 Los Alamos National Security, LLC Lateral flow-based nucleic acid sample preparation device, integrated with passive fluid flow control
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
CN201397956Y (en) * 2009-03-23 2010-02-03 富士康(昆山)电脑接插件有限公司 Electric connector component
EP2823810B9 (en) 2009-07-09 2019-10-30 Novosom Verwaltungs GmbH Amphoteric liposomes comprising imino lipids
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
PL3338765T3 (en) 2009-12-01 2019-06-28 Translate Bio, Inc. Steroid derivative for the delivery of mrna in human genetic diseases
WO2011069528A1 (en) 2009-12-09 2011-06-16 Curevac Gmbh Lyophilization of nucleic acids in lactate-containing solutions
WO2011069529A1 (en) 2009-12-09 2011-06-16 Curevac Gmbh Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids
DK2591114T3 (en) 2010-07-06 2016-08-29 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
LT3243526T (en) 2010-07-06 2020-02-10 Glaxosmithkline Biologicals S.A. Delivery of rna to trigger multiple immune pathways
WO2012006378A1 (en) 2010-07-06 2012-01-12 Novartis Ag Liposomes with lipids having an advantageous pka- value for rna delivery
SI4005592T1 (en) 2010-07-06 2023-03-31 Glaxosmithkline Biologicals S.A. Virion-like delivery particles for self-replicating rna molecules
DK2449113T3 (en) 2010-07-30 2016-01-11 Curevac Ag Complex formation of nucleic acids with the disulfide cross-linked cationic components for transfection and immunostimulation
WO2012019168A2 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
DK2611461T3 (en) 2010-08-31 2022-05-16 Glaxosmithkline Biologicals Sa Pegylated liposomes to release RNA encoding immunogen
CA2821992A1 (en) 2010-10-01 2012-04-05 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012051211A2 (en) 2010-10-11 2012-04-19 Novartis Ag Antigen delivery platforms
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
WO2012089225A1 (en) 2010-12-29 2012-07-05 Curevac Gmbh Combination of vaccination and inhibition of mhc class i restricted antigen presentation
WO2012116715A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
WO2012113413A1 (en) 2011-02-21 2012-08-30 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
WO2012116714A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in elderly patients
WO2012130941A2 (en) 2011-03-31 2012-10-04 Schaefer Konstanze Perfluorinated compounds for the non-viral transfer of nucleic acids
DE12722942T1 (en) 2011-03-31 2021-09-30 Modernatx, Inc. RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS
US10519492B2 (en) 2011-04-20 2019-12-31 Mesa Biotech, Inc. Integrated device for nucleic acid detection and identification
NZ730355A (en) 2011-05-24 2022-10-28 Tron Translationale Onkologie An Der Univ Der Johannes Gutenberg Univ Mainz Gemeinnuetzige Gmbh Individualized vaccines for cancer
DK3473267T3 (en) * 2011-05-24 2021-10-18 BioNTech SE INDIVIDUALIZED CANCER VACCINES
CN111671918A (en) 2011-06-08 2020-09-18 川斯勒佰尔公司 Lipid nanoparticle compositions and methods for MRNA delivery
EP4014966A1 (en) 2011-07-06 2022-06-22 GlaxoSmithKline Biologicals S.A. Liposomes having useful n:p ratio for delivery of rna molecules
ES2656050T3 (en) 2011-07-06 2018-02-22 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3492109B1 (en) 2011-10-03 2020-03-04 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
JP2015501844A (en) 2011-12-16 2015-01-19 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified nucleosides, nucleotides and nucleic acid compositions
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
WO2013120498A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
EP2814961B1 (en) 2012-02-15 2018-01-03 CureVac AG Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen
WO2013120500A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen
PL2814962T3 (en) 2012-02-15 2018-11-30 Curevac Ag Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
WO2013120497A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein
WO2013120499A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
EP3404103B1 (en) 2012-02-15 2021-03-24 CureVac AG Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
EP3578659B1 (en) 2012-03-27 2023-11-01 CureVac SE Artificial nucleic acid molecules for improved protein or peptide expression
CA2859452C (en) 2012-03-27 2021-12-21 Curevac Gmbh Artificial nucleic acid molecules for improved protein or peptide expression
CN104220599A (en) 2012-03-27 2014-12-17 库瑞瓦格有限责任公司 Artificial nucleic acid molecules
JP6301906B2 (en) 2012-03-27 2018-03-28 キュアバック アーゲー Artificial nucleic acid molecule containing 5 'TOPUTR
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
AU2013243949A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
EP2833923A4 (en) 2012-04-02 2016-02-24 Moderna Therapeutics Inc Modified polynucleotides for the production of proteins
US8998977B2 (en) 2012-04-13 2015-04-07 Medtronic Vascular, Inc. Hollow drug-filled stent and method of forming hollow drug-filled stent
US9649208B2 (en) 2012-04-13 2017-05-16 Medtronic Vascular, Inc. Hollow drug-filled stent and method of forming hollow drug-filled stent
US20150267192A1 (en) 2012-06-08 2015-09-24 Shire Human Genetic Therapies, Inc. Nuclease resistant polynucleotides and uses thereof
EP2885419A4 (en) 2012-08-14 2016-05-25 Moderna Therapeutics Inc Enzymes and polymerases for the synthesis of rna
LT2922554T (en) 2012-11-26 2022-06-27 Modernatx, Inc. Terminally modified rna
WO2014082729A1 (en) 2012-11-28 2014-06-05 Biontech Ag Individualized vaccines for cancer
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
EP2765137A1 (en) 2013-02-07 2014-08-13 Sanofi Pasteur Induction of cross-reactive cellular response against rhinovirus antigens
EP2958588B1 (en) 2013-02-22 2017-08-23 CureVac AG Combination of vaccination and inhibition of the pd-1 pathway
SG11201506052PA (en) 2013-02-22 2015-09-29 Curevac Gmbh Combination of vaccination and inhibition of the pd-1 pathway
AU2014236305B2 (en) 2013-03-14 2019-01-17 Ethris Gmbh CFTR mRNA compositions and related methods and uses
EP2971010B1 (en) 2013-03-14 2020-06-10 ModernaTX, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
ES2708561T3 (en) 2013-03-14 2019-04-10 Translate Bio Inc Methods for the purification of messenger RNA
US20160032316A1 (en) 2013-03-14 2016-02-04 The Trustees Of The University Of Pennsylvania Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
EP4279610A3 (en) 2013-03-15 2024-01-03 ModernaTX, Inc. Ribonucleic acid purification
US10077439B2 (en) 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
EP2983804A4 (en) 2013-03-15 2017-03-01 Moderna Therapeutics, Inc. Ion exchange purification of mrna
WO2014180490A1 (en) 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
EP3567112A1 (en) 2013-06-13 2019-11-13 Translate Bio, Inc. Messenger rna based viral production
JP7019233B2 (en) 2013-07-11 2022-02-15 モデルナティエックス インコーポレイテッド Compositions and Methods of Use Containing Synthetic polynucleotides and Synthetic sgRNAs Encoding CRISPR-Related Proteins
EP3036330B1 (en) * 2013-08-21 2018-09-12 CureVac AG Method for increasing expression of rna-encoded proteins
WO2015024668A2 (en) 2013-08-21 2015-02-26 Curevac Gmbh Respiratory syncytial virus (rsv) vaccine
PL3035955T3 (en) 2013-08-21 2020-03-31 Curevac Ag Composition and vaccine for treating lung cancer
WO2015024665A1 (en) 2013-08-21 2015-02-26 Curevac Gmbh Rabies vaccine
CA2915730A1 (en) 2013-08-21 2015-02-26 Karl-Josef Kallen A combination rsv/influenza a vaccine
RU2733424C2 (en) * 2013-08-21 2020-10-01 Куревак Аг Method for increasing the expression of encoded rna proteins
EP3041934A1 (en) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052511A4 (en) 2013-10-02 2017-05-31 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
EP3052521A1 (en) 2013-10-03 2016-08-10 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
JP6506749B2 (en) 2013-10-22 2019-04-24 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド MRNA therapy for phenylketonuria
CN106413811A (en) 2013-10-22 2017-02-15 夏尔人类遗传性治疗公司 Mrna therapy for argininosuccinate synthetase deficiency
ES2806575T3 (en) 2013-11-01 2021-02-18 Curevac Ag Modified RNA with decreased immunostimulatory properties
EP3062798B1 (en) 2013-11-01 2020-05-06 CureVac AG Modified rna with decreased immunostimulatory properties
ES2715890T3 (en) 2013-11-01 2019-06-06 Pfizer Expression vectors of prostate associated antigens
EP3090053B1 (en) 2013-12-30 2018-11-21 CureVac AG Artificial nucleic acid molecules
WO2015101416A1 (en) 2013-12-30 2015-07-09 Curevac Gmbh Methods for rna analysis
CA2927254C (en) 2013-12-30 2023-10-24 Curevac Ag Artificial nucleic acid molecules
US11254951B2 (en) 2014-12-30 2022-02-22 Curevac Ag Artificial nucleic acid molecules
CN111304231A (en) 2013-12-30 2020-06-19 库瑞瓦格股份公司 Artificial nucleic acid molecules
EP3415629A1 (en) * 2013-12-30 2018-12-19 CureVac AG Artificial nucleic acid molecules
US10307472B2 (en) 2014-03-12 2019-06-04 Curevac Ag Combination of vaccination and OX40 agonists
CA2936286A1 (en) 2014-04-01 2015-10-08 Curevac Ag Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant
SG10201912038TA (en) 2014-04-23 2020-02-27 Modernatx Inc Nucleic acid vaccines
ES2750661T3 (en) 2014-04-25 2020-03-26 Translate Bio Inc Methods for purification of messenger RNA
US20180010136A1 (en) * 2014-05-30 2018-01-11 John Francis Hunt, III Methods for Altering Polypeptide Expression
CN106661621B (en) 2014-06-10 2020-11-03 库尔维科公司 Methods and means for enhancing RNA production
WO2015196128A2 (en) 2014-06-19 2015-12-23 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
WO2016011226A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
US10407683B2 (en) 2014-07-16 2019-09-10 Modernatx, Inc. Circular polynucleotides
JP6824594B2 (en) 2014-09-11 2021-02-03 Jnc株式会社 How to design synthetic genes
WO2016045732A1 (en) 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
US20170362627A1 (en) 2014-11-10 2017-12-21 Modernatx, Inc. Multiparametric nucleic acid optimization
WO2016077125A1 (en) 2014-11-10 2016-05-19 Moderna Therapeutics, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
WO2016086988A1 (en) * 2014-12-03 2016-06-09 Wageningen Universiteit Optimisation of coding sequence for functional protein expression
PL3708668T3 (en) 2014-12-12 2022-12-05 Curevac Ag Artificial nucleic acid molecules for improved protein expression
SG11201704681QA (en) 2014-12-30 2017-07-28 Curevac Ag Artificial nucleic acid molecules
WO2016128060A1 (en) 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
EP3283059B1 (en) 2015-04-13 2024-01-03 CureVac Manufacturing GmbH Method for producing rna compositions
US10780054B2 (en) 2015-04-17 2020-09-22 Curevac Real Estate Gmbh Lyophilization of RNA
EP3603661A3 (en) * 2015-04-22 2020-04-01 CureVac AG Rna containing composition for treatment of tumor diseases
SG10202005427PA (en) 2015-04-24 2020-07-29 Mesa Biotech Inc Fluidic test cassette
EP3289101B1 (en) 2015-04-30 2021-06-23 CureVac AG Immobilized poly(n)polymerase
WO2016180430A1 (en) 2015-05-08 2016-11-17 Curevac Ag Method for producing rna
BR112017017949A2 (en) 2015-05-15 2018-04-10 Curevac Ag initiation-booster regimens involving administration of at least one mrna construct
US20200317764A1 (en) * 2015-05-19 2020-10-08 Morphogenesis, Inc. Modified mrna for multicell transformation
US10517827B2 (en) 2015-05-20 2019-12-31 Curevac Ag Dry powder composition comprising long-chain RNA
US10729654B2 (en) 2015-05-20 2020-08-04 Curevac Ag Dry powder composition comprising long-chain RNA
US11608513B2 (en) 2015-05-29 2023-03-21 CureVac SE Method for adding cap structures to RNA using immobilized enzymes
EP4108769B1 (en) 2015-05-29 2023-08-30 CureVac Manufacturing GmbH A method for producing and purifying rna, comprising at least one step of tangential flow filtration
US10501768B2 (en) 2015-07-13 2019-12-10 Curevac Ag Method of producing RNA from circular DNA and corresponding template DNA
EP4218805A1 (en) 2015-07-21 2023-08-02 ModernaTX, Inc. Infectious disease vaccines
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
EP4029522A1 (en) 2015-08-28 2022-07-20 BioNTech SE Method for reducing immunogenicity of rna
CN108026537B (en) * 2015-08-28 2022-02-08 库瑞瓦格股份公司 Artificial nucleic acid molecules
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
AU2016324463B2 (en) 2015-09-17 2022-10-27 Modernatx, Inc. Polynucleotides containing a stabilizing tail region
HUE057613T2 (en) 2015-09-17 2022-05-28 Modernatx Inc Compounds and compositions for intracellular delivery of therapeutic agents
JP6990176B2 (en) 2015-10-05 2022-02-03 モデルナティエックス インコーポレイテッド Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017059902A1 (en) * 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
US11225682B2 (en) 2015-10-12 2022-01-18 Curevac Ag Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution
AU2016340183A1 (en) 2015-10-16 2018-04-19 Modernatx, Inc. mRNA cap analogs and methods of mRNA capping
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
US11866754B2 (en) 2015-10-16 2024-01-09 Modernatx, Inc. Trinucleotide mRNA cap analogs
EP4086269A1 (en) 2015-10-16 2022-11-09 ModernaTX, Inc. Mrna cap analogs with modified phosphate linkage
WO2017070622A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Respiratory syncytial virus vaccine
MX2018004916A (en) 2015-10-22 2019-07-04 Modernatx Inc Broad spectrum influenza virus vaccine.
BR112018008090A2 (en) 2015-10-22 2018-11-13 Modernatx Inc herpes simplex virus vaccine.
JP2018531290A (en) 2015-10-22 2018-10-25 モデルナティーエックス, インコーポレイテッド Sexually transmitted disease vaccine
HUE059127T2 (en) 2015-10-22 2022-10-28 Modernatx Inc Respiratory virus vaccines
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
WO2017070613A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
SG11201803360UA (en) 2015-10-22 2018-05-30 Modernatx Inc Nucleic acid vaccines for varicella zoster virus (vzv)
WO2017081110A1 (en) 2015-11-09 2017-05-18 Curevac Ag Rotavirus vaccines
WO2017081082A2 (en) * 2015-11-09 2017-05-18 Curevac Ag Optimized nucleic acid molecules
CA3009551C (en) 2015-12-22 2022-12-13 Curevac Ag Method for producing rna molecule compositions
DK3394030T3 (en) 2015-12-22 2022-03-28 Modernatx Inc COMPOUNDS AND COMPOSITIONS FOR INTRACELLULAR RELEASE OF FUNDS
EP3394280A1 (en) 2015-12-23 2018-10-31 CureVac AG Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof
BR112018014109A2 (en) 2016-01-11 2018-12-11 Verndari Inc microneedle compositions and methods of using them
US20210206818A1 (en) 2016-01-22 2021-07-08 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
EP4289965A3 (en) 2016-02-12 2024-02-21 CureVac SE Method for analyzing rna
SG11201806340YA (en) 2016-02-17 2018-09-27 Curevac Ag Zika virus vaccine
WO2017149139A1 (en) 2016-03-03 2017-09-08 Curevac Ag Rna analysis by total hydrolysis
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
EP3777881A1 (en) 2016-04-22 2021-02-17 CureVac AG Rna encoding a tumor antigen
WO2017186928A1 (en) 2016-04-29 2017-11-02 Curevac Ag Rna encoding an antibody
WO2017191258A1 (en) * 2016-05-04 2017-11-09 Curevac Ag Influenza mrna vaccines
WO2017191274A2 (en) 2016-05-04 2017-11-09 Curevac Ag Rna encoding a therapeutic protein
US11141474B2 (en) 2016-05-04 2021-10-12 Curevac Ag Artificial nucleic acid molecules encoding a norovirus antigen and uses thereof
MA45041A (en) 2016-05-18 2019-03-27 Modernatx Inc POLYNUCLEOTIDES CODING FOR GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE FOR THE TREATMENT OF TYPE 1 GALACTOSEMIA
EP3458107B1 (en) 2016-05-18 2024-03-13 ModernaTX, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
EP3458474B1 (en) 2016-05-18 2022-07-06 ModernaTX, Inc. Combinations of mrnas encoding immune modulating polypeptides and uses thereof
HRP20230050T1 (en) 2016-05-18 2023-03-03 Modernatx, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
JP7114485B2 (en) 2016-05-18 2022-08-08 モデルナティエックス インコーポレイテッド Polynucleotides encoding α-galactosidase A for the treatment of Fabry disease
CA3024500A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding relaxin
US20190298657A1 (en) 2016-05-18 2019-10-03 Modernatx, Inc. Polynucleotides Encoding Acyl-CoA Dehydrogenase, Very Long-Chain for the Treatment of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency
MY201498A (en) 2016-05-18 2024-02-27 Modernatx Inc Polynucleotides encoding citrin for the treatment of citrullinemia type 2
AU2017266948B2 (en) 2016-05-18 2024-07-04 Fundacion Para La Investigacion Medica Aplicada Polynucleotides encoding porphobilinogen deaminase for the treatment of acute intermittent porphyria
AU2017277731B2 (en) 2016-06-09 2021-02-18 CureVac SE Hybrid carriers for nucleic acid cargo
US20190336608A1 (en) 2016-06-09 2019-11-07 Curevac Ag Cationic carriers for nucleic acid delivery
WO2017212006A1 (en) 2016-06-09 2017-12-14 Curevac Ag Hybrid carriers for nucleic acid cargo
AU2017286606A1 (en) 2016-06-14 2018-12-13 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
US20190185859A1 (en) 2016-08-19 2019-06-20 Curevac Ag Rna for cancer therapy
WO2018041921A1 (en) 2016-08-31 2018-03-08 Curevac Ag Mixing device for the production of a liquid nucleic acid composition
AU2017345766A1 (en) 2016-10-21 2019-05-16 Modernatx, Inc. Human cytomegalovirus vaccine
IL266194B2 (en) 2016-10-26 2023-09-01 Curevac Ag Lipid nanoparticle mrna vaccines
EP3538067A1 (en) 2016-11-08 2019-09-18 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
US20200024347A1 (en) 2016-11-10 2020-01-23 Iomx Therapeutics Ag Or10h1 antigen binding proteins and uses thereof
US10925958B2 (en) 2016-11-11 2021-02-23 Modernatx, Inc. Influenza vaccine
WO2018096179A1 (en) 2016-11-28 2018-05-31 Curevac Ag Method for purifying rna
US11542490B2 (en) 2016-12-08 2023-01-03 CureVac SE RNAs for wound healing
WO2018104538A1 (en) 2016-12-08 2018-06-14 Curevac Ag Rna for treatment or prophylaxis of a liver disease
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
US11464847B2 (en) 2016-12-23 2022-10-11 Curevac Ag Lassa virus vaccine
EP3558355A2 (en) 2016-12-23 2019-10-30 CureVac AG Henipavirus vaccine
EP3558356A2 (en) 2016-12-23 2019-10-30 CureVac AG Mers coronavirus vaccine
SG11201906969PA (en) 2017-02-01 2019-08-27 Modernatx Inc Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides
US20200032274A1 (en) 2017-02-01 2020-01-30 Moderna TX, Inc. Polynucleotide secondary structure
MA47515A (en) 2017-02-16 2019-12-25 Modernatx Inc VERY POWERFUL IMMUNOGENIC COMPOSITIONS
WO2018157154A2 (en) 2017-02-27 2018-08-30 Translate Bio, Inc. Novel codon-optimized cftr mrna
EP3589290A4 (en) 2017-02-28 2020-12-30 Arcturus Therapeutics, Inc. Translatable molecules and synthesis thereof
KR102700956B1 (en) 2017-02-28 2024-09-03 사노피 therapeutic RNA
WO2018170270A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Varicella zoster virus (vzv) vaccine
US11752206B2 (en) 2017-03-15 2023-09-12 Modernatx, Inc. Herpes simplex virus vaccine
FI3596041T3 (en) 2017-03-15 2023-01-31 Compound and compositions for intracellular delivery of therapeutic agents
WO2018170245A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Broad spectrum influenza virus vaccine
EP3595713A4 (en) 2017-03-15 2021-01-13 ModernaTX, Inc. Respiratory syncytial virus vaccine
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation
WO2018167320A1 (en) 2017-03-17 2018-09-20 Curevac Ag Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy
WO2018170347A1 (en) 2017-03-17 2018-09-20 Modernatx, Inc. Zoonotic disease rna vaccines
US11739335B2 (en) 2017-03-24 2023-08-29 CureVac SE Nucleic acids encoding CRISPR-associated proteins and uses thereof
EP3600379B1 (en) 2017-03-31 2022-12-21 Accanis Biotech F&E GmbH & Co KG Prevention and treatment of non-melanoma skin cancer (nmsc)
WO2018187590A1 (en) 2017-04-05 2018-10-11 Modernatx, Inc. Reduction or elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
WO2018191657A1 (en) 2017-04-13 2018-10-18 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
EP3615054A4 (en) 2017-04-27 2021-03-24 The Trustees Of The University Of Pennsylvania NUCLEOSIDE-MODIFIED mRNA-LIPID NANOPARTICLE LINEAGE VACCINE FOR HEPATITIS C VIRUS
EP3624824B1 (en) 2017-05-16 2024-07-10 Translate Bio, Inc. Codon-optimized mrna encoding cftr for use in treating cystic fibrosis
EP3625246A1 (en) 2017-05-18 2020-03-25 ModernaTX, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
BR112019025224A2 (en) 2017-05-31 2020-12-08 Ultragenyx Pharmaceutical Inc. THERAPEUTIC FOR TYPE III GLYCOGEN STORAGE DISEASE
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
US10988754B2 (en) 2017-07-04 2021-04-27 Cure Vac AG Nucleic acid molecules
US20200362382A1 (en) 2017-08-18 2020-11-19 Modernatx, Inc. Methods of preparing modified rna
WO2019038332A1 (en) 2017-08-22 2019-02-28 Curevac Ag Bunyavirales vaccine
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
MA50253A (en) 2017-09-14 2020-07-22 Modernatx Inc ZIKA VIRUS RNA VACCINES
CN111630173A (en) 2017-10-19 2020-09-04 库瑞瓦格股份公司 Novel artificial nucleic acid molecules
CN111511924A (en) 2017-11-08 2020-08-07 库瑞瓦格股份公司 RNA sequence modulation
EP3723796A1 (en) 2017-12-13 2020-10-21 CureVac AG Flavivirus vaccine
CN111511928A (en) 2017-12-21 2020-08-07 库瑞瓦格股份公司 Linear double-stranded DNA coupled to a single support or tag and method for preparing the same
EP3508499A1 (en) 2018-01-08 2019-07-10 iOmx Therapeutics AG Antibodies targeting, and other modulators of, an immunoglobulin gene associated with resistance against anti-tumour immune responses, and uses thereof
WO2019148101A1 (en) 2018-01-29 2019-08-01 Modernatx, Inc. Rsv rna vaccines
CN108363904B (en) * 2018-02-07 2019-06-28 南京林业大学 A kind of CodonNX system and its optimization method for the optimization of xylophyta genetic codon
US20210361761A1 (en) 2018-04-05 2021-11-25 Curevac Ag Novel yellow fever nucleic acid molecules for vaccination
WO2019202035A1 (en) 2018-04-17 2019-10-24 Curevac Ag Novel rsv rna molecules and compositions for vaccination
US20220403001A1 (en) 2018-06-12 2022-12-22 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US20210260178A1 (en) 2018-06-27 2021-08-26 Curevac Ag Novel lassa virus rna molecules and compositions for vaccination
CN118421617A (en) 2018-08-24 2024-08-02 川斯勒佰尔公司 Method for purifying messenger RNA
US20220409536A1 (en) 2018-09-19 2022-12-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US20220047518A1 (en) 2018-09-19 2022-02-17 Moderna TX, Inc. Peg lipids and uses thereof
MA53652A (en) 2018-09-19 2021-07-28 Modernatx Inc HIGH PURITY PEG LIPIDS AND THEIR USES
EP3852728B1 (en) 2018-09-20 2024-09-18 ModernaTX, Inc. Preparation of lipid nanoparticles and methods of administration thereof
EP3870600A1 (en) 2018-10-24 2021-09-01 Obsidian Therapeutics, Inc. Er tunable protein regulation
ES2960692T3 (en) 2018-12-06 2024-03-06 Arcturus Therapeutics Inc Compositions and methods for the treatment of ornithine transcarbamylase deficiency
CN113454227A (en) 2018-12-19 2021-09-28 维萨梅布有限公司 RNA encoding protein
US20220040281A1 (en) 2018-12-21 2022-02-10 Curevac Ag Rna for malaria vaccines
WO2020160430A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Vortex mixers and associated methods, systems, and apparatuses thereof
EP4427739A3 (en) 2019-01-31 2024-10-16 ModernaTX, Inc. Methods of preparing lipid nanoparticles
CA3125511A1 (en) 2019-02-08 2020-08-13 Curevac Ag Coding rna administered into the suprachoroidal space in the treatment of ophthalmic diseases
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
EP3938379A4 (en) 2019-03-15 2023-02-22 ModernaTX, Inc. Hiv rna vaccines
EP3986452A1 (en) 2019-06-18 2022-04-27 CureVac AG Rotavirus mrna vaccine
US20220251577A1 (en) * 2019-06-24 2022-08-11 Modernatx, Inc. Endonuclease-resistant messenger rna and uses thereof
CA3146023A1 (en) 2019-07-05 2021-01-14 Iomx Therapeutics Ag Antibodies binding igc2 of igsf11 (vsig3) and uses thereof
JP2022544412A (en) 2019-08-14 2022-10-18 キュアバック アーゲー RNA combinations and compositions with reduced immunostimulatory properties
CN114599676A (en) 2019-10-24 2022-06-07 诺华康制药股份公司 Novel anti-Nogo-a antibodies
EP3822288A1 (en) 2019-11-18 2021-05-19 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Antibodies targeting, and other modulators of, the cd276 antigen, and uses thereof
CN114901360A (en) 2019-12-20 2022-08-12 库瑞瓦格股份公司 Novel lipid nanoparticles for delivery of nucleic acids
BR112022014837A2 (en) 2020-01-28 2022-09-27 Modernatx Inc RNA VACCINES AGAINST CORONA VIRUS
US11241493B2 (en) 2020-02-04 2022-02-08 Curevac Ag Coronavirus vaccine
US20240277830A1 (en) 2020-02-04 2024-08-22 CureVac SE Coronavirus vaccine
AU2021216658A1 (en) 2020-02-04 2022-06-23 CureVac SE Coronavirus vaccine
EP4100052A2 (en) 2020-02-07 2022-12-14 ModernaTX, Inc. Sars-cov-2 mrna domain vaccines
TW202204622A (en) 2020-04-09 2022-02-01 大陸商蘇州艾博生物科技有限公司 Nucleic acid vaccines for coronavirus
CN114206827B (en) 2020-04-09 2023-05-23 苏州艾博生物科技有限公司 Lipid nanoparticle compositions
GB202307565D0 (en) 2020-04-22 2023-07-05 BioNTech SE Coronavirus vaccine
WO2021222304A1 (en) 2020-04-27 2021-11-04 Modernatx, Inc. Sars-cov-2 rna vaccines
WO2021159130A2 (en) 2020-05-15 2021-08-12 Modernatx, Inc. Coronavirus rna vaccines and methods of use
CA3170740A1 (en) 2020-05-29 2021-12-02 Curevac Ag Nucleic acid based combination vaccines
WO2021245184A1 (en) 2020-06-02 2021-12-09 Neurimmune Ag HUMAN ANTIBODIES AGAINST SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2 (SARS-CoV-2)
US20220331414A1 (en) 2020-06-30 2022-10-20 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022008027A1 (en) 2020-07-06 2022-01-13 Iomx Therapeutics Ag Antibodies binding igv of igsf11 (vsig3) and uses thereof
WO2022023559A1 (en) 2020-07-31 2022-02-03 Curevac Ag Nucleic acid encoded antibody mixtures
JP2023537887A (en) 2020-08-20 2023-09-06 スージョウ・アボジェン・バイオサイエンシズ・カンパニー・リミテッド Lipid compounds and lipid nanoparticle compositions
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
EP4157344A2 (en) 2020-08-31 2023-04-05 CureVac SE Multivalent nucleic acid based coronavirus vaccines
WO2022067010A1 (en) 2020-09-25 2022-03-31 Modernatx, Inc. Multi-proline-substituted coronavirus spike protein vaccines
EP4203997A1 (en) 2020-10-26 2023-07-05 Pécsi Tudományegyetem Vaccine platform
CA3173151A1 (en) 2020-11-03 2022-05-12 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Target-cell restricted, costimulatory, bispecific and bivalent anti-cd28 antibodies
EP3992205A1 (en) 2020-11-03 2022-05-04 Rheinische Friedrich-Wilhelms-Universität Bonn Sars coronavirus-2 spike protein binding compounds
WO2022106205A1 (en) 2020-11-18 2022-05-27 Rheinische Friedrich-Wilhelms-Universität Bonn Corona virus spike protein binding compounds
WO2022106860A1 (en) 2020-11-20 2022-05-27 Pécsi Tudományegyetem Recombinant peptides for use in therapy
CA3205569A1 (en) 2020-12-22 2022-06-30 CureVac SE Rna vaccine against sars-cov-2 variants
CA3171051A1 (en) 2020-12-22 2022-06-30 Curevac Ag Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants
WO2022150717A1 (en) 2021-01-11 2022-07-14 Modernatx, Inc. Seasonal rna influenza virus vaccines
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2022155524A1 (en) 2021-01-15 2022-07-21 Modernatx, Inc. Variant strain-based coronavirus vaccines
WO2022155530A1 (en) 2021-01-15 2022-07-21 Modernatx, Inc. Variant strain-based coronavirus vaccines
CN112735525B (en) * 2021-01-18 2023-12-26 苏州科锐迈德生物医药科技有限公司 mRNA sequence optimization method and device based on divide-and-conquer method
US20240102065A1 (en) 2021-01-27 2024-03-28 CureVac SE Method of reducing the immunostimulatory properties of in vitro transcribed rna
WO2022177597A1 (en) * 2021-02-16 2022-08-25 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods to enhance rna stability and translation and uses thereof
KR20230150319A (en) 2021-03-01 2023-10-30 사이롬 게임베하 Humanized antibody against iRhom2
CA3210650A1 (en) 2021-03-03 2022-09-09 Winfried Wels Bispecific antibodies enhancing cell mediated immune responses
WO2022200575A1 (en) 2021-03-26 2022-09-29 Glaxosmithkline Biologicals Sa Immunogenic compositions
WO2022207652A1 (en) 2021-03-29 2022-10-06 Scirhom Gmbh Methods of treatment using protein binders to irhom2 epitopes
WO2022207862A2 (en) 2021-03-31 2022-10-06 Curevac Ag Syringes containing pharmaceutical compositions comprising rna
WO2022212784A1 (en) 2021-03-31 2022-10-06 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022214664A1 (en) 2021-04-09 2022-10-13 Philogen S.P.A. Improved interferon-gamma mutant
JP2024514182A (en) 2021-04-13 2024-03-28 モデルナティエックス インコーポレイテッド Respiratory virus combination vaccine
WO2022221440A1 (en) 2021-04-14 2022-10-20 Modernatx, Inc. Influenza-coronavirus combination vaccines
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
WO2022245888A1 (en) 2021-05-19 2022-11-24 Modernatx, Inc. Seasonal flu rna vaccines and methods of use
CA3211623A1 (en) 2021-05-24 2022-12-01 Bo YING Lipid compounds and lipid nanoparticle compositions
WO2023006999A2 (en) 2021-07-30 2023-02-02 CureVac SE Mrnas for treatment or prophylaxis of liver diseases
WO2023025404A1 (en) 2021-08-24 2023-03-02 BioNTech SE In vitro transcription technologies
CN118056013A (en) * 2021-08-31 2024-05-17 纽约大学 Compositions and methods for stepwise switching of antibiotic resistance markers for integration (mSwAP-In)
MX2024002726A (en) 2021-09-03 2024-03-20 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids.
WO2023031392A2 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine
EP4402121A1 (en) 2021-09-14 2024-07-24 Renagade Therapeutics Management Inc. Acyclic lipids and methods of use thereof
WO2023044333A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Cyclic lipids and methods of use thereof
US20230190805A1 (en) 2021-10-06 2023-06-22 Immatics Biotechnologies Gmbh Methods of identifying metastatic lesions in a patient and treating thereof
AR127312A1 (en) 2021-10-08 2024-01-10 Suzhou Abogen Biosciences Co Ltd LIPID COMPOUNDS AND LIPID NANOPARTICLE COMPOSITIONS
CN116064598B (en) 2021-10-08 2024-03-12 苏州艾博生物科技有限公司 Nucleic acid vaccine for coronavirus
CA3234127A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
EP4416274A2 (en) 2021-10-15 2024-08-21 BioNTech SE Pharmaceutical compositions for delivery of viral antigens and related methods
KR20240090727A (en) 2021-10-22 2024-06-21 세일 바이오메디슨스, 인크. mRNA vaccine composition
EP4422698A1 (en) 2021-10-29 2024-09-04 CureVac SE Improved circular rna for expressing therapeutic proteins
WO2023092069A1 (en) 2021-11-18 2023-05-25 Modernatx, Inc. Sars-cov-2 mrna domain vaccines and methods of use
CA3238764A1 (en) 2021-11-23 2023-06-01 Siddharth Patel A bacteria-derived lipid composition and use thereof
EP4444345A2 (en) 2021-12-08 2024-10-16 ModernaTX, Inc. Herpes simplex virus mrna vaccines
CA3241014A1 (en) 2021-12-20 2023-06-29 Munir MOSAHEB Mrna therapeutic compositions
WO2023122752A1 (en) 2021-12-23 2023-06-29 Renagade Therapeutics Management Inc. Constrained lipids and methods of use thereof
CN116332830A (en) 2021-12-23 2023-06-27 苏州艾博生物科技有限公司 Lipid compounds and lipid nanoparticle compositions
WO2023144193A1 (en) 2022-01-25 2023-08-03 CureVac SE Mrnas for treatment of hereditary tyrosinemia type i
AU2023212857A1 (en) 2022-01-27 2024-07-04 BioNTech SE Pharmaceutical compositions for delivery of herpes simplex virus antigens and related methods
WO2023144330A1 (en) 2022-01-28 2023-08-03 CureVac SE Nucleic acid encoded transcription factor inhibitors
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023196931A1 (en) 2022-04-07 2023-10-12 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
WO2023196914A1 (en) 2022-04-08 2023-10-12 Modernatx, Inc. Influenza nucleic acid compositions and uses thereof
WO2023213990A1 (en) 2022-05-05 2023-11-09 Etherna Immunotherapies Nv Multi-epitope construct
WO2023218431A1 (en) 2022-05-13 2023-11-16 BioNTech SE Rna compositions targeting hiv
WO2023230481A1 (en) 2022-05-24 2023-11-30 Modernatx, Inc. Orthopoxvirus vaccines
WO2023227608A1 (en) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide
WO2023230295A1 (en) 2022-05-25 2023-11-30 BioNTech SE Rna compositions for delivery of monkeypox antigens and related methods
WO2023249934A1 (en) * 2022-06-20 2023-12-28 The Board Of Trustees Of The Leland Stanford Junior University Methods of genetically modifying cells for altered codon-anti-codon interactions
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine
WO2024015890A1 (en) 2022-07-13 2024-01-18 Modernatx, Inc. Norovirus mrna vaccines
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024023246A1 (en) 2022-07-28 2024-02-01 Philogen S.P.A. Antibody binding to pd1
WO2024033362A1 (en) 2022-08-08 2024-02-15 Atb Therapeutics Humanized antibodies against cd79b
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles
WO2024050483A1 (en) 2022-08-31 2024-03-07 Modernatx, Inc. Variant strain-based coronavirus vaccines and uses thereof
WO2024063788A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of malaria antigens and related methods
WO2024064934A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of plasmodium csp antigens and related methods
WO2024064931A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of liver stage antigens and related methods
WO2024063789A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of malaria antigens and related methods
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer
WO2024083345A1 (en) 2022-10-21 2024-04-25 BioNTech SE Methods and uses associated with liquid compositions
WO2024089638A1 (en) 2022-10-28 2024-05-02 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine
WO2024089229A1 (en) 2022-10-28 2024-05-02 CureVac SE Improved formulations comprising lipid-based carriers encapsulating rna
WO2024097874A1 (en) 2022-11-03 2024-05-10 Modernatx, Inc. Chemical stability of mrna
GB202216449D0 (en) 2022-11-04 2022-12-21 Io Biotech Aps TGF-BETA1 vaccine
WO2024102434A1 (en) 2022-11-10 2024-05-16 Senda Biosciences, Inc. Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs
DE102022213056A1 (en) * 2022-12-05 2024-06-06 Universität Rostock, Körperschaft des öffentlichen Rechts Innovative antimicrobial therapy against Streptococcus pneumoniae using mRNA-encoded bacteriophage endolysins/autolysins
WO2024133940A2 (en) 2022-12-23 2024-06-27 Iomx Therapeutics Ag Cross-specific antigen binding proteins (abp) targeting leukocyte immunoglobulin-like receptor subfamily b1 (lilrb1) and lilrb2, combinations and uses thereof
WO2024141955A1 (en) 2022-12-28 2024-07-04 BioNTech SE Rna compositions targeting hiv
WO2024151687A1 (en) 2023-01-09 2024-07-18 Flagship Pioneering Innovations V, Inc. Genetic switches and their use in treating cancer
US20240238473A1 (en) 2023-01-09 2024-07-18 Beth Israel Deaconess Medical Center, Inc. Recombinant nucleic acid molecules and their use in wound healing
US20240252520A1 (en) 2023-01-09 2024-08-01 Beth Israel Deaconess Medical Center, Inc. Therapeutic agents and their use for treating chronic wounds
WO2024151811A1 (en) 2023-01-11 2024-07-18 Modernatx, Inc. Personalized cancer vaccines
WO2024159172A1 (en) 2023-01-27 2024-08-02 Senda Biosciences, Inc. A modified lipid composition and uses thereof
WO2024157221A1 (en) 2023-01-27 2024-08-02 BioNTech SE Pharmaceutical compositions for delivery of herpes simplex virus glycoprotein c, glycoprotein d, and glycoprotein e antigens and related methods
WO2024163465A1 (en) 2023-01-30 2024-08-08 Modernatx, Inc. Epstein-barr virus mrna vaccines
WO2024160936A1 (en) 2023-02-03 2024-08-08 Glaxosmithkline Biologicals Sa Rna formulation
GB202302092D0 (en) 2023-02-14 2023-03-29 Glaxosmithkline Biologicals Sa Analytical method
WO2024184500A1 (en) 2023-03-08 2024-09-12 CureVac SE Novel lipid nanoparticle formulations for delivery of nucleic acids
WO2024189146A1 (en) 2023-03-15 2024-09-19 Versameb Ag Rna encoding a protein
WO2024192291A1 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Delivery of gene editing systems and methods of use thereof
WO2024192277A2 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents
WO2024206835A1 (en) 2023-03-30 2024-10-03 Modernatx, Inc. Circular mrna and production thereof
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US4500707A (en) 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US5132418A (en) 1980-02-29 1992-07-21 University Patents, Inc. Process for preparing polynucleotides
US4668777A (en) 1981-03-27 1987-05-26 University Patents, Inc. Phosphoramidite nucleoside compounds
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4973679A (en) 1981-03-27 1990-11-27 University Patents, Inc. Process for oligonucleo tide synthesis using phosphormidite intermediates
US4401796A (en) 1981-04-30 1983-08-30 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4373071A (en) 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
US4737462A (en) 1982-10-19 1988-04-12 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6173986A (en) * 1984-09-19 1986-04-16 塩野義製薬株式会社 Gene codon sequence teaching aid
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US5017691A (en) 1986-07-03 1991-05-21 Schering Corporation Mammalian interleukin-4
US5091309A (en) 1986-01-16 1992-02-25 Washington University Sindbis virus vectors
US5153319A (en) 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US4879111A (en) 1986-04-17 1989-11-07 Cetus Corporation Treatment of infections with lymphokines
US5262530A (en) 1988-12-21 1993-11-16 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5047524A (en) 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5082767A (en) * 1989-02-27 1992-01-21 Hatfield G Wesley Codon pair utilization
US6673776B1 (en) 1989-03-21 2004-01-06 Vical Incorporated Expression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human
ATE165516T1 (en) 1989-03-21 1998-05-15 Vical Inc EXPRESSION OF EXOGENEOUS POLYNUCLEOTIDE SEQUENCES IN VERTEBRATES
US6214804B1 (en) * 1989-03-21 2001-04-10 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
SE9003978D0 (en) 1990-12-13 1990-12-13 Henrik Garoff DNA EXPRESSION SYSTEM BASED ON A VIRUS REPLICATION
CA2128616A1 (en) 1992-01-23 1993-08-05 Gary H. Rhodes Ex vivo gene transfer
US6174666B1 (en) * 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
EP0609739A1 (en) 1993-02-02 1994-08-10 American Cyanamid Company Method of reversing immunosuppression in vaccines
DE69533295T3 (en) * 1994-02-16 2009-07-16 The Government Of The United States Of America, As Represented By The Secretary, The Department Of Health And Human Services Melanoma-associated antigens, epitopes thereof and melanoma-containing vaccines
IL112820A0 (en) 1994-03-07 1995-05-26 Merck & Co Inc Coordinate in vivo gene expression
HUT76094A (en) 1994-03-18 1997-06-30 Lynx Therapeutics Oligonucleotide n3'-p5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
GB9406498D0 (en) * 1994-03-31 1994-05-25 Smithkline Beecham Biolog Novel compounds
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5786464C1 (en) * 1994-09-19 2012-04-24 Gen Hospital Corp Overexpression of mammalian and viral proteins
US5795737A (en) * 1994-09-19 1998-08-18 The General Hospital Corporation High level expression of proteins
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
US6051429A (en) 1995-06-07 2000-04-18 Life Technologies, Inc. Peptide-enhanced cationic lipid transfections
US6265387B1 (en) 1995-10-11 2001-07-24 Mirus, Inc. Process of delivering naked DNA into a hepatocyte via bile duct
US20030143204A1 (en) 2001-07-27 2003-07-31 Lewis David L. Inhibition of RNA function by delivery of inhibitors to animal cells
US6534312B1 (en) * 1996-02-22 2003-03-18 Merck & Co., Inc. Vaccines comprising synthetic genes
US6090391A (en) 1996-02-23 2000-07-18 Aviron Recombinant tryptophan mutants of influenza
US5853719A (en) 1996-04-30 1998-12-29 Duke University Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA
EP0912607A2 (en) 1996-06-21 1999-05-06 Merck & Co., Inc. Vaccines comprising synthetic genes
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
ATE292980T1 (en) 1996-10-11 2005-04-15 Univ California IMMUNO-STIMULATING OLIGONUCLEOTIDE CONJUGATES
EP0839912A1 (en) 1996-10-30 1998-05-06 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof
US6204250B1 (en) * 1996-11-22 2001-03-20 The Mount Sinai Medical Center Of The City Of New York Immunization of infants
EP0855184A1 (en) 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
CA2280195A1 (en) * 1997-02-07 1998-08-13 Merck & Co., Inc. Synthetic hiv gag genes
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6589940B1 (en) 1997-06-06 2003-07-08 Dynavax Technologies Corporation Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
EP2085090A3 (en) 1997-06-06 2012-05-02 The Regents of the University of California Inhibitors of DNA immunostimulatory sequence activity
WO1999002694A1 (en) * 1997-07-09 1999-01-21 The University Of Queensland Nucleic acid sequence and method for selectively expressing a protein in a target cell or tissue
EP2292771A3 (en) 1997-09-19 2011-07-27 Life Technologies Corporation Sense mRNA therapy
WO1999020766A2 (en) * 1997-10-20 1999-04-29 Genzyme Transgenics Corporation NOVEL MODIFIED NUCLEIC ACID SEQUENCES AND METHODS FOR INCREASING mRNA LEVELS AND PROTEIN EXPRESSION IN CELL SYSTEMS
EP1987845B1 (en) 1997-11-20 2012-03-21 Vical Incorporated Treatment of cancer using cytokine-expressing polynucleotides and compositions therefor.
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
IL125608A0 (en) * 1998-07-30 1999-03-12 Yeda Res & Dev Tumor associated antigen peptides and use of same as anti-tumor vaccines
US20090017533A1 (en) * 1998-09-29 2009-01-15 Shire Human Genetic Therapies, Inc., A Delaware Corporation Optimized messenger rna
US6924365B1 (en) 1998-09-29 2005-08-02 Transkaryotic Therapies, Inc. Optimized messenger RNA
US6734172B2 (en) * 1998-11-18 2004-05-11 Pacific Northwest Research Institute Surface receptor antigen vaccines
AU2221600A (en) * 1998-12-31 2000-07-31 Chiron Corporation Improved expression of hiv polypeptides and production of virus-like particles
AU2487300A (en) 1998-12-31 2000-07-31 Chiron Corporation Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof
JP2002540171A (en) 1999-03-26 2002-11-26 ウォルター リード アーミー インスティテュート オブ リサーチ Attenuated dengue type 4 virus vaccine
EP1165798A2 (en) * 1999-03-29 2002-01-02 Statens Serum Institut Nucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope
EP1196558A1 (en) 1999-06-08 2002-04-17 Aventis Pasteur Immunostimulant oligonucleotide
US6514948B1 (en) 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
IL147026A0 (en) * 1999-07-09 2002-08-14 American Home Prod Method and compositions for preventing the formation of aberrant rna during transcripting of a plasmid sequence
WO2001014416A2 (en) * 1999-08-25 2001-03-01 Merck & Co., Inc. Synthetic papillomavirus genes optimized for expression in human cells
US20050112141A1 (en) 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
US20040106567A1 (en) 1999-09-07 2004-06-03 Hagstrom James E. Intravascular delivery of non-viral nucleic acid
EP1083232B1 (en) 1999-09-09 2005-02-23 CureVac GmbH Transfer of mRNA using polycationic compounds
AU7398200A (en) 1999-09-17 2001-04-24 Aventis Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
WO2002064799A2 (en) 1999-09-28 2002-08-22 Transkaryotic Therapies, Inc. Optimized messenger rna
AU2001231245A1 (en) 2000-01-31 2001-08-07 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
EP1278550A4 (en) * 2000-04-07 2004-05-12 Univ California Synergistic improvements to polynucleotide vaccines
WO2001093902A2 (en) 2000-06-07 2001-12-13 Biosynexus Incorporated Immunostimulatory rna/dna hybrid molecules
WO2002000694A2 (en) 2000-06-23 2002-01-03 American Cyanamid Company Modified morbillivirus v proteins
WO2002002606A2 (en) 2000-07-03 2002-01-10 Chiron S.P.A. Immunisation against chlamydia pneumoniae
DK1301614T3 (en) * 2000-07-21 2007-04-02 Glaxo Group Ltd Codon-optimized papillomavirus sequences
GB0017990D0 (en) * 2000-07-21 2000-09-13 Glaxo Group Ltd Papilloma virus sequences
US20030092145A1 (en) * 2000-08-24 2003-05-15 Vic Jira Viral vaccine composition, process, and methods of use
AU2002211524B2 (en) 2000-10-04 2007-03-22 The Trustees Of The University Of Pennsylvania Highly expressible genes
DK1325138T3 (en) 2000-10-11 2013-10-21 Shire Human Genetic Therapies OPTIMIZED MESSENGER RNA
US20030077604A1 (en) 2000-10-27 2003-04-24 Yongming Sun Compositions and methods relating to breast specific genes and proteins
US20020132788A1 (en) 2000-11-06 2002-09-19 David Lewis Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
CN100471956C (en) 2001-03-09 2009-03-25 基因流股份有限公司 Novel expression vectors
AUPR446801A0 (en) * 2001-04-18 2001-05-17 University Of Queensland, The Novel compositions and uses therefor
DE10119005A1 (en) 2001-04-18 2002-10-24 Roche Diagnostics Gmbh Process for protein expression starting from stabilized linear short DNA in cell-free in vitro transcription / translation systems with exonuclease-containing lysates or in a cellular system containing exonucleases
DE10291734D2 (en) 2001-04-23 2004-05-27 Lorbach Elke Buffer solution for electroporation and methods comprising using the same
US20030039636A1 (en) * 2001-05-01 2003-02-27 Genetix Pharmaceuticals, Inc. Novel self-inactivating (SIN) lentiviral vectors
WO2002099035A2 (en) * 2001-05-31 2002-12-12 Chiron Corporation Chimeric alphavirus replicon particles
US20030232324A1 (en) * 2001-05-31 2003-12-18 Chiron Corporation Chimeric alphavirus replicon particles
EP2305699B1 (en) 2001-06-05 2014-08-13 CureVac GmbH Stabilised mRNA with increased G/C content which is optimised for translation in its coded areas for the vaccination against sleeping sickness, leishmaniosis and toxoplasmosis
US7785610B2 (en) 2001-06-21 2010-08-31 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—III
US7547551B2 (en) 2001-06-21 2009-06-16 University Of Antwerp. Transfection of eukaryontic cells with linear polynucleotides by electroporation
AR045702A1 (en) 2001-10-03 2005-11-09 Chiron Corp COMPOSITIONS OF ASSISTANTS.
DE10148886A1 (en) 2001-10-04 2003-04-30 Avontec Gmbh Inhibition of STAT-1
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
DE10162480A1 (en) 2001-12-19 2003-08-07 Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
AU2003235707A1 (en) 2002-01-18 2003-07-30 Curevac Gmbh Immunogenic preparations and vaccines on the basis of mrna
GB0202569D0 (en) * 2002-02-04 2002-03-20 Oxford Biomedica Ltd Delivery means
WO2003066649A1 (en) 2002-02-04 2003-08-14 Biomira Inc. Immunostimulatory, covalently lipidated oligonucleotides
EP1572941A4 (en) 2002-02-26 2009-03-18 Maxygen Inc Novel flavivirus antigens
NZ573064A (en) 2002-04-04 2011-02-25 Coley Pharm Gmbh Immunostimulatory G,U-containing oligoribonucleotides
DK1499348T3 (en) 2002-04-26 2015-01-05 Medimmune Llc PROCEDURE FOR PREPARING INFECTIOUS INFLUENZA B-VIRA IN CELL CULTURE
DE10229872A1 (en) 2002-07-03 2004-01-29 Curevac Gmbh Immune stimulation through chemically modified RNA
AU2003249208B2 (en) 2002-07-16 2010-03-04 Vgx Pharmaceuticals, Llc Codon optimized synthetic plasmids
EP1393745A1 (en) 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
US6943015B2 (en) * 2002-12-12 2005-09-13 Ilya Frolov Large scale production of packaged alphavirus replicons
WO2004058159A2 (en) 2002-12-23 2004-07-15 Dynavax Technologies Corporation Branched immunomodulatory compounds and methods of using the same
WO2004092329A2 (en) 2003-04-08 2004-10-28 Galenica Pharmaceuticals, Inc. Semi-synthetic saponin analogs with carrier and immune stimulatory activities for dna and rna vaccines
DK176326B1 (en) 2003-05-14 2007-08-13 Smidth As F L Device for dividing a stream of particulate or powdered material into partial streams
DE10335833A1 (en) 2003-08-05 2005-03-03 Curevac Gmbh Transfection of blood cells with mRNA for immune stimulation and gene therapy
DE102004035227A1 (en) 2004-07-21 2006-02-16 Curevac Gmbh mRNA mixture for vaccination against tumor diseases
DE102004042546A1 (en) 2004-09-02 2006-03-09 Curevac Gmbh Combination therapy for immune stimulation
WO2006116458A2 (en) 2005-04-26 2006-11-02 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhances immunostimulatory activity
SI3611266T1 (en) 2005-08-23 2023-02-28 The Trustees Of The University Of Pennsylvania Rna containing modified nucleosides and methods of use thereof
EP3041934A1 (en) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Chimeric polynucleotides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4035659A1 (en) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosomes for delivery of therapeutic agents

Also Published As

Publication number Publication date
CA2457959C (en) 2014-10-28
EP1604688B1 (en) 2010-02-03
DE50214201D1 (en) 2010-03-25
AU2009202873A8 (en) 2009-08-13
US20050032730A1 (en) 2005-02-10
PT1857122E (en) 2011-03-07
CA2457959A1 (en) 2002-12-12
US10188748B2 (en) 2019-01-29
ATE490267T1 (en) 2010-12-15
DK1857122T3 (en) 2011-03-21
EP1857122B1 (en) 2010-12-01
ES2340499T3 (en) 2010-06-04
CA2830887A1 (en) 2002-12-12
EP1392341B1 (en) 2005-03-30
US20150104476A1 (en) 2015-04-16
US20160136263A1 (en) 2016-05-19
DE50214801D1 (en) 2011-01-13
EP1832603B1 (en) 2010-02-03
EP1903054A3 (en) 2008-07-23
EP1832603A2 (en) 2007-09-12
DE50214379D1 (en) 2010-05-27
US20190134222A1 (en) 2019-05-09
ES2356934T3 (en) 2011-04-14
EP1857122A3 (en) 2008-11-19
US20160136258A1 (en) 2016-05-19
US11369691B2 (en) 2022-06-28
EP2842964A1 (en) 2015-03-04
ATE457029T1 (en) 2010-02-15
US20160136301A1 (en) 2016-05-19
DE50214200D1 (en) 2010-03-25
US20110077287A1 (en) 2011-03-31
US20160129105A1 (en) 2016-05-12
US20100239608A1 (en) 2010-09-23
FR21C1007I1 (en) 2021-03-26
EP1857122A2 (en) 2007-11-21
AU2007203181A1 (en) 2007-07-26
EP1800697B1 (en) 2010-04-14
EP1903054A2 (en) 2008-03-26
EP1800697A3 (en) 2007-10-31
AU2007203181B2 (en) 2011-01-06
EP2305699A1 (en) 2011-04-06
US20230181765A2 (en) 2023-06-15
US20160136243A1 (en) 2016-05-19
EP1800697A2 (en) 2007-06-27
EP1832603A3 (en) 2007-10-31
DE50202634D1 (en) 2005-05-04
ATE456959T1 (en) 2010-02-15
US20110269950A1 (en) 2011-11-03
ATE291925T1 (en) 2005-04-15
ES2344078T3 (en) 2010-08-17
WO2002098443A2 (en) 2002-12-12
US11135312B2 (en) 2021-10-05
ATE464317T1 (en) 2010-04-15
EP1604688A1 (en) 2005-12-14
FR21C1008I1 (en) 2021-03-26
US10568972B2 (en) 2020-02-25
US20160361438A1 (en) 2016-12-15
CA2830887C (en) 2016-11-29
ES2240745T3 (en) 2005-10-16
US20160136259A1 (en) 2016-05-19
AU2009202873B2 (en) 2012-08-16
ES2340532T3 (en) 2010-06-04
EP2305699B1 (en) 2014-08-13
EP1392341A2 (en) 2004-03-03
WO2002098443A3 (en) 2003-11-13
AU2009202873A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
US10568972B2 (en) Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US20120213818A1 (en) Combination therapy for immunostimulation
US20080171711A1 (en) Mrna Mixture For Vaccinating Against Tumoral Diseases
US20170211068A1 (en) Immunostimulation by chemically modified rna

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION