US20160018025A1 - System for holding in a conduit cables or ducts with different diameters - Google Patents

System for holding in a conduit cables or ducts with different diameters Download PDF

Info

Publication number
US20160018025A1
US20160018025A1 US14/602,432 US201514602432A US2016018025A1 US 20160018025 A1 US20160018025 A1 US 20160018025A1 US 201514602432 A US201514602432 A US 201514602432A US 2016018025 A1 US2016018025 A1 US 2016018025A1
Authority
US
United States
Prior art keywords
sleeves
sleeve
unit
units
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/602,432
Inventor
Johannes Alfred Beele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beele Engineering BV
Original Assignee
Beele Engineering BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beele Engineering BV filed Critical Beele Engineering BV
Assigned to BEELE ENGINEERING B.V. reassignment BEELE ENGINEERING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEELE, JOHANNES ALFRED
Publication of US20160018025A1 publication Critical patent/US20160018025A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/14Sealing for double-walled or multi-channel pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L7/00Supporting of pipes or cables inside other pipes or sleeves, e.g. for enabling pipes or cables to be inserted or withdrawn from under roads or railways without interruption of traffic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/02Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing
    • F16L3/04Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing and pressing it against a wall or other support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals
    • F16L3/223Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals each support having one transverse base for supporting the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals
    • F16L3/223Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals each support having one transverse base for supporting the pipes
    • F16L3/2235Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals each support having one transverse base for supporting the pipes each pipe being supported by a common element fastened to the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals
    • F16L3/23Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals for a bundle of pipes or a plurality of pipes placed side by side in contact with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/26Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting the pipes all along their length, e.g. pipe channels or ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/04Sealing to form a firebreak device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/10Sealing by using sealing rings or sleeves only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0406Details thereof
    • H02G3/0412Heat or fire protective means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0456Ladders or other supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • H02G3/0481Tubings, i.e. having a closed section with a circular cross-section
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • H02G3/0487Tubings, i.e. having a closed section with a non-circular cross-section
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/22Installations of cables or lines through walls, floors or ceilings, e.g. into buildings

Definitions

  • aspects relate to a system for holding in a conduit cables or ducts with different diameters.
  • a number of systems are well-known in the market place.
  • One system is often referred to as the “block system”. It was for instance installed on the Emma Maersk which according to the official accident report capsized in the Suez Canal in February, 2013, partly due to a failure of this block system.
  • That system comprises modular blocks for placement in a conduit.
  • a number of the blocks are provided with a hole for holding a cable.
  • the blocks are built up from two half blocks, each having a recess that forms half the hole.
  • the conduit may comprise a welded frame.
  • the conduit through which a number of cables of different diameters may extend, is filled up with the modular blocks (the blocks with a hole for a cable and the blocks without such a hole).
  • the wedged blocks are normally put between these modular blocks with the aim to make the construction of the modular blocks tight and firm.
  • the stay plates are fitted with layers of these blocks and aim to keep these blocks in the right position in the welded frame. As explained in the accident report the system failed on at least an individual component level.
  • the block system if employed, requires careful placement and balancing of the compression at the time of installation, making the system open to installation faults. There is no way of controlling the compression and it is likely that too much compression will be applied. Even when perfectly installed, if possible at all, the deterioration will, as explained above, immediately start and in the long run lead to an unreliable sealing system.
  • a configuration of the cables and the blocks would have to be designed beforehand, and will depend on the number of cables and the diameter of the various cables.
  • the block system can only be applied when the cables have been drawn through the conduit. In practice, it is often the case that unexpectedly a larger cable is drawn through the conduit. Then another, larger block may need to be applied, disturbing the configuration as planned, as well as the compression pattern, as originally aimed for.
  • WO 03/013658 A1 describes an alternative system comprising sleeves of a fire-resistant material and a sealant.
  • the system comprises single sleeves each having a longitudinal slit which allows for placing of the sleeve around a cable which already extends through a conduit.
  • the system may also comprise units of bonded sleeves.
  • sleeves of those bonded units do not have a slit extending over the length of the sleeve.
  • a problem of this system is that in practice, the positioning of the sleeves within the conduit tends to be random, particularly when differently sized cables and differently sized sleeves are applied.
  • a system for holding in a conduit cables and/or ducts with different diameters includes a plurality of rubbery or rubber-like sleeves for inserting in such a conduit.
  • the plurality of sleeves includes a number of units of bonded sleeves which are oriented parallel to each other.
  • the sleeves have corresponding outer dimensions, and at least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units.
  • the number of the units and the dimensions of the units are such that therewith a stack of units can be made.
  • each sleeve is also oriented parallel to any of the other sleeves.
  • the stack of units has a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.
  • a unit of a number of bonded sleeves for holding cables or ducts in a conduit is provided.
  • the sleeves are of a rubbery or rubber-like material.
  • the sleeves are oriented parallel to each other.
  • the sleeves are all positioned in one layer of the sleeves.
  • At least one sleeve is provided with a slit extending over a full length of that sleeve for placement of a cable or duct into that sleeve via the slit by moving a cable or duct and that sleeve relative to each other laterally toward a coaxial position.
  • a sleeve for holding cables or ducts in a conduit.
  • the sleeve is of a rubbery or rubber-like material.
  • the sleeve has a plurality of lumens which are oriented parallel to each other.
  • FIG. 1 shows schematically an embodiment of a system
  • FIG. 2 a shows schematically part of an embodiment of a system
  • FIG. 2 b shows schematically part of an embodiment of a system
  • FIG. 3 shows schematically an embodiment of a system
  • FIG. 4 shows schematically an embodiment of a system
  • FIG. 5 a shows schematically a part of an embodiment of a system
  • FIG. 5 b shows schematically a part of an embodiment of a system
  • FIG. 6 a shows schematically a part of an embodiment of a system
  • FIG. 6 b shows schematically a part of an embodiment of a system
  • FIG. 7 shows schematically a part of an embodiment of a system
  • FIG. 8 a shows schematically a part of an embodiment of a system
  • FIG. 8 b shows schematically the part shown in FIG. 8 a , in an opened position
  • FIG. 9 shows schematically an embodiment of a system
  • FIG. 10 shows schematically an embodiment of a system
  • FIG. 11 shows schematically an embodiment of a system
  • FIG. 12 shows schematically an embodiment of a system
  • FIG. 13 shows schematically an embodiment of a system
  • FIG. 14 shows schematically an embodiment of a system
  • FIG. 15 shows schematically a part of an embodiment of a system
  • FIG. 16 shows schematically a part of an embodiment of a system
  • FIG. 17 shows schematically an embodiment of a system
  • FIG. 18 shows schematically a part of an embodiment of a system
  • FIG. 19 shows schematically a part of an embodiment of a system
  • FIG. 20 shows schematically a part of an embodiment of a system
  • FIG. 21 shows schematically an embodiment of a system
  • FIG. 22 shows schematically an embodiment of a system.
  • the conduit needs to be sealed off so as to ensure that for instance water or gas will not flow from one compartment to another, or into or out of a compartment.
  • the sealing is also resistant to heat, particularly generated by a nearby fire. Sealing systems are often rated in terms of their performance under predescribed “catastrophic” conditions.
  • cables are replaced by tubes, particularly those provided with a sheathing. These tubes and other tubes, particularly thin, and somewhat flexible pipes, are captured by the term ducts.
  • cables and ducts are considered interchangeable, unless specifically indicated otherwise.
  • the sealing integrity should be optimal, particularly if and when the need arises (which could be many years after installation of the sealing system), in one embodiment, the installation of the system itself should also be relatively fast (to save labor costs); unlikely to lead to installation faults; and/or leave the conduit after installation in a condition suitable for adding or removing cables without jeopardizing the integrity of the system as placed in the conduit. Erroneously removing a cable could badly affect the operating of machinery which depends on the presence of these cables.
  • a system which allows for holding, in a conduit, cables of different diameters in a relatively easily recordable fashion.
  • a system which can relatively quickly be installed, and such that the cable positioning is easily recordable also in a situation wherein cables already extend through a conduit before the system is placed in the conduit.
  • a system is provided that is substantially free from applying compression onto the cables, at most applies only a minimal compression.
  • a system where installation that can be easily adapted on the spot if unexpectedly a cable with a larger diameter extends through the conduit.
  • a system for holding, in a conduit, cables and/or ducts with different diameters comprises a plurality of rubbery or rubber-like sleeves for inserting in such a conduit.
  • the plurality of sleeves comprises a number of units of bonded sleeves which are oriented parallel to each other. Within each unit the sleeves have corresponding outer diameters. At least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units.
  • the number of the units and the dimension of the units are such that therewith a stack of units can be made. In that stack of units each sleeve is oriented parallel to any of the other sleeves.
  • the stack of units has a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.
  • each sleeve can accurately be recorded, for instance in terms of coordinates related to an orthogonal coordination system having one axis coinciding with one side of the rectangular shape and another axis coinciding with another side of the rectangular shape of the stack of units.
  • the system can be installed in a conduit by placing unit by unit, instead of now and again a single sleeve, then a unit of sleeves and then again a few single sleeves, etc.
  • a unit of bonded sleeves consists of a number of sleeves joined together by bonds between the sleeves wherein the bonds are of the same material as the material of which the sleeves are made. Further “joined together by bonds” is to be understood such that preferably the orientations of the respective axes of the sleeves are stable relative to each other, unless the bonds are broken.
  • aspects relate to solving the problems associated with the prior art by employing a fundamentally different system.
  • a different system is free from the need to compress the blocks after positioning in the welded frame, i.e. in the conduit, avoiding the deterioration of these components, such as may occur due to time-related phenomena like creep and stress relaxation.
  • the lengths of the sleeves correspond to each other. This enhances stability of the stack of units and, in case the sleeves are designed to respond in case of a nearby fire, such a response will optimally take place within a conduit in which the stack has been installed.
  • the rectangular stack will then be a block-shaped stack. If the rectangular stack will be a square stack, then the stack can also be cube-shaped, depending on the length of the sleeves.
  • each unit the sleeves are all positioned in one layer of the sleeves.
  • this provides for flexibility in the building up of the stack of units and in the diameters of the sleeves available in a conduit. In this way, for almost each “composition” of a bundle of cables extending through a conduit, it will be possible to provide a suitable stack of units for holding in that conduit each and every cable, independent of the number and diameter.
  • At least one unit has layers of sleeves.
  • each unit has, apart from the height of the one or more layers, dimensions which correspond to the dimensions of any of the other units. This makes composing the stack of units straightforward and allows it also to be planned in advance, so that installation of the system can be carried out straightforwardly.
  • the recording of the position of sleeves and thus also of certain cables in the conduit it will, in the case where cables still have to be drawn, also be possible to design and control in advance a pattern according to which the cables should be positioned in the conduit. For instance, heavy cables could be positioned at a lower position in the conduit as compared to the position at which lighter cables are positioned in the conduit.
  • each sleeve is the same as the inner diameter for any other sleeve in that unit. This enhances the earlier mentioned recordability, the stability of the stack and has advantages for making an organized conduit through which many cables extend.
  • the system further includes at least one plate for placing in the stack of units between two units, for providing at least one surface against which at least one of the units can be positioned. Any “waviness” available on a side of a unit, onto which another unit should be placed, will due to the presence of such a plate no longer have an effect on the way the upper unit will be supported and thus be positioned. Such an embodiment of a system will allow for a very well organized, and very accurate, positioning of the sleeves and the respective cables in the conduit.
  • At least one plate is at each of at least two oppositely positioned rims provided with a number of ribs for facilitating insertion of the plate in a conduit in which the plate is positioned in a clamped fashion.
  • the plates can further impose a pattern, and/or further stabilize a pattern, of the units of sleeves.
  • At least one sleeve of at least one unit is provided with a slit extending over a full length of the sleeve for placement of a cable into a sleeve via the slit and by moving a cable and that sleeve relative to each other laterally toward a coaxial position.
  • a sleeve provided with a slit can easily be applied in a conduit through which a cable already extends. This is particularly useful when a previous sealing system has to be removed for instance because of its reduced sealing integrity or because a number of additional cables will have to be pulled through the conduit. Note that in case a system itself is already used in a conduit, pulling new cables through the conduit can take place without having to remove the earlier installed sleeves. All that needs to be present is the availability of sleeves through which as yet no cable extends.
  • each cable can occupy one sleeve of the unit, so that the cables remain close to each other but are still positioned in an easily recordable pattern.
  • At least one of the slits is shared by two neighboring sleeves of which one has two slits. It is for instance possible that of the sleeve which has two slits, one of the two slits is shared with a neighboring sleeve and the other one of the two slits is positioned opposite the slit which is shared with a neighboring sleeve. This allows for using one slit for letting a cable first enter one sleeve from which it can be moved over to the next sleeve. This is particularly useful when two cables extend closely parallel to each other, for instance when tie-wrapped. It allows for placing one cable in one of these neighboring sleeves and the other cable in the other one of these neighboring sleeves.
  • the sleeves may have a cross-section which is circular. This allows for some self-clamping of the units in a conduit.
  • At least one of the units has on its outside a flat surface which extends in a length direction of the sleeves and which extends in a layer direction of the sleeves in the unit. It is thus possible that in a unit each of the sleeves is considered to be block-shaped. At least one of the units may thus have a block-shaped outer shape. This facilitates stacking of the units and an even more accurate positioning of the sleeves in the conduit so that the recordability and/or planning of the patterning of cables in the conduit can be more accurate.
  • the outer shape of the sleeve may differ from the inner shape of the sleeve.
  • the sleeve may be block-shaped while the lumen provided by the sleeve has the shape of a cylinder.
  • An embodiment of a system may also comprise at least one single sleeve having an outer cross-sectional dimension suitable for inserting the at least one single sleeve in another sleeve of the system. Accordingly, the stability of the system as assembled in a conduit can be enhanced, which may be necessary when for instance upper units are provided with heavy cables and lower units are momentarily kept empty, i.e. free from cables.
  • the sleeves are made of a thermally expandable rubber-like material, insertion of such a single sleeve in a sleeve of a unit ensures that enough expandable material is present in the system as assembled into a stack of units.
  • the sleeves are made of a thermally expandable rubber-like material.
  • rubber-like is used to express that the rubber-like material may be vulcanizable and perhaps already partly vulcanized.
  • thermally expandable is used to express that the material comprises one or more components which will on exposure to heat cause the material to expand to a larger extent than it would do without the presence of these components.
  • the sleeves are made of a vulcanized thermally substantially un-expandable rubbery material.
  • thermally substantially un-expandable is used to express that the material is free from components which would, on exposure to heat, cause the material to expand to a larger extent than it would do without the presence of these components.
  • the system comprises at least one plate
  • at least one plate may be made of a thermally expandable rubber-like material or vulcanized thermally substantially un-expandable rubbery material, and is by construction or by material properties stiffer than the stiffness of any one of the units of sleeves as formed by a single layer of sleeves. Accordingly, it is possible to provide the system without dissimilar materials and thus without the chance of undesired interaction between the materials used for the conduit and the sleeves and/or plates. Such an undesired interaction could for instance be corrosion, in the case where the conduit and a plate are made of different metals.
  • the system may further comprise a conduit into which the stack of units can be assembled such that it snugly fits in the conduit. This will ensure that the dimensions of the conduit and the dimensions of the stack of units will be set to have optimal functioning of the system during installation and afterwards.
  • system further comprises a sealant for application against the stack of units at the ends of the sleeves when the stack is completed in a conduit and cables are held by a number of the sleeves.
  • a unit of a number of bonded sleeves for holding cables or ducts in a conduit may also be provided.
  • the sleeves are of a rubbery or rubber-like material.
  • the sleeves are oriented parallel to each other, and the sleeves are all positioned in one layer of the sleeves.
  • At least one sleeve is provided with a slit extending over a full length of that sleeve for placement of a cable or duct into that sleeve via the slit by moving a cable or duct and that sleeve relative to each other laterally toward a coaxial position.
  • a sleeve for holding cables or ducts in a conduit may also be provided.
  • the sleeves are of a rubbery or rubber-like material, the sleeve having a plurality of lumens which are oriented parallel to each other.
  • a unit of a number of such sleeves may also be provided.
  • FIG. 1 shows schematically a system for holding in a conduit cables with different diameters.
  • the system includes a plurality of rubbery or rubber-like sleeves 1 for inserting in such a conduit.
  • the plurality of sleeves 1 includes a number of units 2 of bonded sleeves 1 which are oriented parallel to each other. In FIG. 1 , and in many other figures, only the cross-section of the sleeves 1 is shown.
  • each unit 2 the sleeves 1 have corresponding outer dimensions.
  • the system shown in FIG. 1 comprises six units 2 .
  • the sleeves 1 have an inner diameter which differs from an inner diameter of the sleeves of at least one other unit 2 of the six units 2 .
  • the inner diameters of the sleeves of one unit 2 are preferably identical. However, it is not impossible that within one unit the sleeves have different inner diameters.
  • the sleeves within one unit of sleeves, the sleeves have different inner diameters.
  • at least one sleeve may be provided with multiple lumens. The latter may also be referred to as channels. Therefore, aspects described herein relate to such a sleeve, and a unit of such sleeves.
  • each sleeve 1 is also oriented parallel to any of the other sleeves 1 .
  • the stack of units 2 can have a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves 1 and of which each edge is in detail shaped by the presence of one, two or three of the sleeves. This will be further explained when FIG. 3 is discussed.
  • FIG. 1 presents a very workable embodiment in that with only six different units 2 many sleeves of different diameters can be provided and a rectangular stack of units can be made. The possible number of sleeves and the possible inner and outer dimensions of these sleeves (in millimeters) are indicated next to the respective units 2 .
  • each unit 2 the lengths of the sleeves 1 correspond to each other.
  • the sleeves 1 are all positioned in one layer of the sleeves 1 , as also shown in FIG. 1 . From reviewing FIG. 3 and FIGS. 5 and 6 , (the latter two being perspectives onto embodiments of the system in use, as seen from a direction perpendicular to the direction of the cables extending through the system), it will be clear that each unit may have, apart from the height of the one layer, dimensions which correspond to dimensions of one of the other units.
  • An embodiment of a system includes at least one plate 3 for placing in the stack of units 2 between two units 2 , for providing at least one surface 4 against which at least one of units 2 can be positioned.
  • the plate 3 has in two directions a dimension which corresponds to at least one of the dimensions of the stack of units 2 . Assuming that the sleeves 1 shown in FIG. 1 have a length of 110 mm, it can be seen that a plate 3 shown in FIGS. 2 a and 2 b is in correspondence with this preference.
  • the plate 3 has at each of at least two oppositely positioned rims 5 a number of ribs 6 for facilitating insertion and clamping of the plate 3 in a conduit 7 (see FIG. 3 ).
  • ribs 6 may for instance have the shape of a saw tooth.
  • the plate 3 shown in FIGS. 2 a and 2 b is suitable for insertion in a direction within the plane of the plate 3 . It is conceivable that the ribs have a shape which differs from the saw-tooth configuration.
  • a plate 3 is shown as provided with a stiff plate 3 a , for instance made of a hard plastic. This plate is suitable for an embodiment of a system that is intended to have many sleeves in a horizontal plane next to each other.
  • FIG. 3 shows schematically an embodiment of a system, ready for use.
  • the different units 2 are stacked to fill up the predominantly rectangularly-shaped conduit 7 .
  • the bottom corners 9 of the rectangularly-shaped stack of units 2 are in each of these bottom edges 9 in detail shaped by the presence of one sleeve 1 .
  • the two upper edges 10 of the rectangularly-shaped stack of units 2 are each in detail shaped by the presence of two sleeves 1 each belonging to a different unit 1 . It is also conceivable that an edge of a predominantly rectangularly-shaped stack of units 2 is in detail shaped by the presence of three sleeves.
  • FIG. 3 The embodiment shown in FIG. 3 is ready for use. That is, cables can be pulled through the respective sleeves 1 .
  • the numbers presented in the sleeves show the range of diameters of a cable that could be pulled through the respective sleeve 1 . Where the number 0 is placed in the sleeve, this is to be taken as an instruction that according to a predetermined planning no cable should be pulled through that sleeve. Such an empty sleeve will remain available for adding cables through the conduit 7 later on, i.e., at a moment in time after installation of the system.
  • the embodiment shown in FIG. 3 also includes single sleeves 8 having an outer cross-section or dimension for inserting at least one of these single sleeves 8 in another sleeve 1 of the system.
  • the sleeves 1 , 8 are made of a thermally expandable rubber-like material, insertion of such a single sleeve in the sleeve of a unit 2 ensures that enough expandable material is present in the system, so that the entire cavity provided by the larger sleeve will be closed off by the expandable material in case of a nearby fire.
  • a single sleeve 8 as inserted into a larger sleeve 1 will provide additional stability, stiffness and strength to the system, so that the rigidity of the system, and therewith the accurate recordability of positions of sleeves and cables will be maintained.
  • a number of single sleeves 8 can be inserted into a larger sleeve 1 , surrounding each other (shown right under) or next to each other (shown more toward the middle of the conduit).
  • the single sleeve is used for holding a cable extending through the conduit 7 .
  • the system comprises single sleeves having a cross-section as shown in FIGS. 6 a and 6 b .
  • Such a thicker-walled sleeve as shown in FIG. 6 b can be inserted in a sleeve having an inner diameter larger than the outer cross-sectional dimension of the thick-walled-sleeve.
  • a thick-walled sleeve replace a sleeve by tearing that sleeve out of the unit of which it was a part.
  • the same possibilities for use apply to a multilumen sleeve as shown in FIG. 6 b.
  • cables can be pulled in line with and at a predetermined position in a composed pattern of sleeves 1 .
  • the system in a conduit through which already cables extend.
  • each sleeve can be slit open in a length direction using for instance a sharp knife so that the respective sleeve can be put around the respective cable.
  • the sleeves may also be provided with a pre-cut slit.
  • At least one sleeve 1 of at least one unit 2 is provided with a slit (see FIG. 7 ) extending over the full length of the sleeve 1 for placement of a cable into a sleeve 1 via the slit 13 by moving a cable and that sleeve 1 relative to each other laterally toward a coaxial position.
  • a slit 13 may be provided for a number of adjacent sleeves 1 in one unit such a slit 13 may be provided.
  • FIGS. 8 a and 8 b it is also possible that one slit 13 is shared by two neighboring sleeves 1 of which one has two slits.
  • sleeve 1 which has two slits 13 , 14
  • one of the two slits 13 , 14 may be shared with a neighboring sleeve 1 and the other one of the two slits may be positioned opposite the slit which is shared with a neighboring sleeve 1 .
  • all but one of the sleeves 1 are provided with two slits 13 , 14 and that the one sleeve 1 a without two slits 13 , 14 only has a slit 13 which is being shared with a neighboring sleeve 1 .
  • the one sleeve 1 a with only one slit 13 may be situated at the end of the unit 2 of sleeves 1 .
  • the sleeves may have a cross-section which is circular.
  • the plates 3 may be included. Plates 3 have the function of providing a surface against which a unit 2 of sleeves 1 can be positioned, so that a layer of sleeves 1 will not adopt a somewhat buckled shape and negatively affect an accurate positioning of the respective sleeves.
  • the upper surface 4 of plate 3 provides a suitable surface for support of a unit laying on top of it.
  • the lower surface of plate 3 not necessarily makes contact with a unit 2 of sleeves 1 .
  • FIG. 4 shows another embodiment of a system ready for use in the sense that cables can be pulled through.
  • the width of the conduit is larger than the height.
  • the plates 3 may be provided with a stiffer plate 3 a.
  • An embodiment of a system that may be useful when no plates 3 are used may be provided. Particularly in an embodiment wherein at least one of the units has on its outside a flat surface which extends in a length direction of the sleeves 1 and which extends in a layer direction of the sleeves in the respective unit 2 , there may not be a need for having plates 3 .
  • the unit may have a block-shaped outer shape, so that there may not at all be a need for a plate 3 .
  • FIG. 5 a shows a unit 2 having sleeves 1 with a circular cross-section
  • FIG. 5 b shows a unit 2 having a block-shaped outer shape.
  • Each sleeve 1 of that unit may be considered to have a block-shaped cross-section.
  • the inner diameters of the sleeves 1 shown in FIG. 5 a and FIG. 5 b are identical.
  • cables extending through the system are unlikely to have a perfectly coaxial position relative to the respective sleeves 1 . Only when the sleeve 1 has an inner diameter that corresponds to the outer diameter of the cable, such a coaxial configuration may be present. This may also be achieved when a sleeve 1 having a slightly smaller inner diameter is provided with a slit 13 and placed over a cable having a slightly larger diameter so that the slit 13 remains unclosed and present. However, in the other configurations, the sleeves 1 somewhat loosely hold the cable, having the advantage that no forces are exerted onto the cables so that the sheathing is not deformed. Another advantage is that the cables do not necessarily have to extend in a strictly straight line through the conduit 7 . There is some flexibility in departing from such a straight line.
  • the stacked units of sleeves 1 provide a good structure against which a sealant 4 can be applied.
  • an embodiment of a system may include a sealant 11 for application against a stack of units 2 at the end of the sleeves 1 when the stack 2 is completed in a conduit 7 and cables 12 are held by a number of the sleeves 1 .
  • the sealant may only be such that the system becomes closed off for gas and water but also a special sealant may be applied in line with the nature of the material of which the sleeves are made.
  • a system may further include a conduit 7 into which the stack of units 2 can be assembled such that it snugly fits in the conduit 7 .
  • This does not mean that the length of the conduit 7 corresponds to the length of the sleeves 1 .
  • the sleeves 1 are shorter than the length of the conduit 7 , so that the sealant 11 can be applied against the ends of the sleeves 1 and still within conduit 7 .
  • the sleeves 1 already provide a function of defining a predetermined cavity through which a particular cable can extend through the conduit 7 , and as part of a stack snugly fitting in the conduit 7 provide a structure against which a sealant 11 can be applied, in an embodiment, the sleeves 1 are made of a thermally expandable rubber-like material to further enhance the functionality of the sleeves 1 . On exposure to heat reaching that material, either through the conduit 7 , or through cables 12 extending through the conduit 7 , this material will expand, therewith forming a complete closure of the conduit 7 . This closure may be in addition to the sealant 11 which may only be functioning as a seal against water and gas before a nearby fire starts having an influence on the system.
  • the sleeves may be made of a vulcanized thermally substantially unexpandable rubbery material, then the sleeves are functioning as described in WO 08104237 A1.
  • a plate may be made of a material that is similar to the material of which the sleeves are made. However, the plate is preferably by construction or by material properties stiffer than the stiffness of any one of the units of the sleeves that is formed by a single layer of sleeves.
  • FIGS. 9 and 10 provide further insights in possible examples of systems.
  • the dimensions provided are illustrative and by no means intended to be limiting, but do indicate possible dimensions for an embodiment.
  • FIG. 11 shows an embodiment of unit 2 , of which the sleeves have relatively small inner diameter as compared to the outer diameter. This improves the stiffness of the sleeves and consequently the stability of the unit and a stack in which the unit is placed.
  • FIG. 12 shows an embodiment of units 2 , having sleeves 1 with each a plurality of lumen.
  • FIG. 13 shows an embodiment of units 2 , of which each sleeve 1 is provided with a slit 13 , for allowing insertion in the respective sleeve a cable that already extends through a conduit.
  • FIG. 14 shows an embodiment of units 2 , very much like the units shown in FIGS. 8 a and 8 b .
  • FIG. 14 shows a number of units 2 , having mutually different dimensions due to the different inner and outer diameters of the sleeves 1 .
  • FIG. 15 shows another embodiment of a single sleeve 8 , having a star-shaped cross-section, suitable for insertion in a sleeve through which for the moment no cable extends.
  • the single sleeve 8 provides strength to that sleeve 1 of the unit 2 .
  • FIG. 16 shows an embodiment of a single sleeve viewed from a side, i.e. not viewed along its axis.
  • the sleeve is provided with a number of external ribs separated in circumferential direction for self-fixation after insertion in one of the other sleeves of the system. This allows for providing strength to the sleeve into which such a single sleeve is inserted so that the overall shape remains unaffected also when much weight is put on the sleeve, for instance by heavy cables in sleeves put on top of the respective sleeve.
  • such a single sleeve can easily be removed as not much friction is resisting such removal.
  • FIG. 17 shows a conduit 7 in which an embodiment of a system has been installed.
  • FIG. 18 shows an embodiment of units having a block-shaped outer shape, i.e. of which the sleeves have a block-shaped cross-section.
  • FIG. 19 shows an embodiment similar to the one shown in FIG. 18 .
  • the parts of the unit which are likely to face an inner side of a conduit are provided with a number of external ribs separated in axial direction for self-fixation itself within a confinement having a dimension that allows for such self-fixating.
  • FIG. 20 shows an embodiment of units 2 , having more than one layer of sleeves, and having a block-shaped outer shape.
  • FIG. 21 and FIG. 22 show embodiments of a system having spacers S for fixating the units 2 within a conduit 7 .
  • These spacers are also of a rubbery or rubber-like material, with a hardness different from the hardness of the material of units.
  • the spacers may, or may not, be provided with ribs.
  • a sealant is applied as also shown in FIGS. 9 and 10 , for instance referred to in WO 08104237 A1.
  • the rubbery or rubber-like material is a fire resistant grade.
  • a material that is purely very stable rubber for instance for applications in which the system has to withstand exposure to water, under low or relatively high pressure.
  • different units having different diameters of the sleeves 1 may be applied, provided that stacking of the units into a rectangular shape is still possible.
  • the sleeves 1 and the plates 3 are made of a thermally expandable rubber-like material it may be provided in a color that differs from black or grey, to ensure that no mixing will occur with sleeves 1 and/or units provided by a different supplier.
  • the system is flexible in terms of the number of cables and the size of cables that need to extend through the conduit 7 and the system. This system can also be used for conduits 7 through which bundles of relatively thin cables, tie-wrapped together, need to extend.
  • the system may comprise a conduit and still be free from an operable mechanism for mechanically putting the units under an enhanced pressure after installing the units in the conduit. That is, in one embodiment, the system is free from components for compressing the units in a direction perpendicular to the axial direction of the sleeves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Installation Of Indoor Wiring (AREA)
  • Supports For Pipes And Cables (AREA)
  • Details Of Indoor Wiring (AREA)

Abstract

A system for holding in a conduit cables and/or ducts with different diameters includes a plurality of rubbery or rubber-like sleeves for inserting in such a conduit. The sleeves include a number of units of bonded sleeves which are oriented parallel to each other. Within each unit, the sleeves have corresponding outer dimensions. At least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units. The number of the units and the dimensions of the units are such that therewith a stack of units can be made. In the stack of units, each sleeve is also oriented parallel to any of the other sleeves. The stack of units has a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims foreign priority benefits under 35 U.S.C. §119(a)-(d) or 35 U.S.C. §365(b) of Netherlands Application No. 1040892, filed Jul. 16, 2014, which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • 1. Field
  • Aspects relate to a system for holding in a conduit cables or ducts with different diameters.
  • 2. Discussion of Related Art
  • A number of systems are well-known in the market place. One system is often referred to as the “block system”. It was for instance installed on the Emma Maersk which according to the official accident report capsized in the Suez Canal in February, 2013, partly due to a failure of this block system. That system comprises modular blocks for placement in a conduit. A number of the blocks are provided with a hole for holding a cable. The blocks are built up from two half blocks, each having a recess that forms half the hole. There may also be wedge blocks with bolts, modular blocks without a hole for occupying surplus space in the conduit, and stay plates. The conduit may comprise a welded frame. The conduit, through which a number of cables of different diameters may extend, is filled up with the modular blocks (the blocks with a hole for a cable and the blocks without such a hole). The wedged blocks are normally put between these modular blocks with the aim to make the construction of the modular blocks tight and firm. The stay plates are fitted with layers of these blocks and aim to keep these blocks in the right position in the welded frame. As explained in the accident report the system failed on at least an individual component level.
  • With the block system, there is a need to compress the blocks after positioning in the welded frame, i.e. in the conduit. Compressing the components will, in the long run, result in deterioration of these components, due to time-related phenomena like creep and stress relaxation. Deterioration not only occurs on the level of the components, but also on the level of the sheathing of the cables. These can be irreversibly deformed by the applied compression of the blocks surrounding a cable. As a result of this, replacing an existing sealing system by a similar sealing system comprising blocks having a hole, is highly unlikely to work well as the diameter of the cable may have changed.
  • In line with this, now reference is also made to IEC 60079-14 (latest edition), particularly clause 9.1.4 which states that: “The connection of cables and conduits to the electrical apparatus shall be made in accordance with the requirements of the relevant type of protection”. It is indicated that “care should be taken when selecting a suitable cable entry device in conjunction with certain types of cable employing materials which can exhibit “cold flow characteristics”. The standard states by way of example that “cable entry devices not employing compression seals which act upon part(s) of the cable having cold flow characteristics” should be employed. The latest standard also states that “Low smoke and/or fire resistant cables usually exhibit cold flow characteristics” and that “cold flow can be more fully described as thermoplastic materials which flow when subjected to pressure at ambient temperature”.
  • Clearly, the block system, if employed, requires careful placement and balancing of the compression at the time of installation, making the system open to installation faults. There is no way of controlling the compression and it is likely that too much compression will be applied. Even when perfectly installed, if possible at all, the deterioration will, as explained above, immediately start and in the long run lead to an unreliable sealing system.
  • Apart from these fundamental problems with the block system, there are also practical problems related to the planning of the way the conduit should be fitted and the carrying out of that planning. A configuration of the cables and the blocks would have to be designed beforehand, and will depend on the number of cables and the diameter of the various cables. The block system can only be applied when the cables have been drawn through the conduit. In practice, it is often the case that unexpectedly a larger cable is drawn through the conduit. Then another, larger block may need to be applied, disturbing the configuration as planned, as well as the compression pattern, as originally aimed for.
  • WO 03/013658 A1 describes an alternative system comprising sleeves of a fire-resistant material and a sealant. The system comprises single sleeves each having a longitudinal slit which allows for placing of the sleeve around a cable which already extends through a conduit. For swiftly filling up the remaining space in the conduit, the system may also comprise units of bonded sleeves. As explained in WO 03/013658 A1, sleeves of those bonded units do not have a slit extending over the length of the sleeve. A problem of this system is that in practice, the positioning of the sleeves within the conduit tends to be random, particularly when differently sized cables and differently sized sleeves are applied. When a large number of cables extend through a conduit, the result, in the end, tends to look like an unorganized passing of cables through a sealed conduit. It does not allow for easily recording a position in the conduit for each and every cable. This makes replacement of an existing cable by a new cable difficult, particularly in a situation where most of the cables look the same.
  • SUMMARY
  • According to one aspect, a system for holding in a conduit cables and/or ducts with different diameters is provided. The system includes a plurality of rubbery or rubber-like sleeves for inserting in such a conduit. The plurality of sleeves includes a number of units of bonded sleeves which are oriented parallel to each other. Within each unit, the sleeves have corresponding outer dimensions, and at least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units. The number of the units and the dimensions of the units are such that therewith a stack of units can be made. In the stack of units, each sleeve is also oriented parallel to any of the other sleeves. The stack of units has a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.
  • According to another aspect, a unit of a number of bonded sleeves for holding cables or ducts in a conduit is provided. The sleeves are of a rubbery or rubber-like material. The sleeves are oriented parallel to each other. The sleeves are all positioned in one layer of the sleeves. At least one sleeve is provided with a slit extending over a full length of that sleeve for placement of a cable or duct into that sleeve via the slit by moving a cable or duct and that sleeve relative to each other laterally toward a coaxial position.
  • According to yet another aspect, a sleeve for holding cables or ducts in a conduit is provided. The sleeve is of a rubbery or rubber-like material. The sleeve has a plurality of lumens which are oriented parallel to each other.
  • Various embodiments provide certain advantages. Not all embodiments share the same advantages and those that do may not share them under all circumstances.
  • Further features and advantages, as well as the structure of various embodiments are described in detail below with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. Various embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 shows schematically an embodiment of a system;
  • FIG. 2 a shows schematically part of an embodiment of a system;
  • FIG. 2 b shows schematically part of an embodiment of a system;
  • FIG. 3 shows schematically an embodiment of a system;
  • FIG. 4 shows schematically an embodiment of a system;
  • FIG. 5 a shows schematically a part of an embodiment of a system;
  • FIG. 5 b shows schematically a part of an embodiment of a system;
  • FIG. 6 a shows schematically a part of an embodiment of a system;
  • FIG. 6 b shows schematically a part of an embodiment of a system;
  • FIG. 7 shows schematically a part of an embodiment of a system;
  • FIG. 8 a shows schematically a part of an embodiment of a system;
  • FIG. 8 b shows schematically the part shown in FIG. 8 a, in an opened position;
  • FIG. 9 shows schematically an embodiment of a system;
  • FIG. 10 shows schematically an embodiment of a system;
  • FIG. 11 shows schematically an embodiment of a system;
  • FIG. 12 shows schematically an embodiment of a system;
  • FIG. 13 shows schematically an embodiment of a system;
  • FIG. 14 shows schematically an embodiment of a system;
  • FIG. 15 shows schematically a part of an embodiment of a system;
  • FIG. 16 shows schematically a part of an embodiment of a system;
  • FIG. 17 shows schematically an embodiment of a system;
  • FIG. 18 shows schematically a part of an embodiment of a system;
  • FIG. 19 shows schematically a part of an embodiment of a system;
  • FIG. 20 shows schematically a part of an embodiment of a system;
  • FIG. 21 shows schematically an embodiment of a system; and
  • FIG. 22 shows schematically an embodiment of a system.
  • DETAILED DESCRIPTION
  • Systems are needed for sealing in a conduit the remaining space which surrounds cables that extend through that conduit. Such conduits can be found in all types of partitioning walls, for instance those separating one compartment from another or separating a compartment from outer atmospheric conditions.
  • The conduit needs to be sealed off so as to ensure that for instance water or gas will not flow from one compartment to another, or into or out of a compartment. In one embodiment, the sealing is also resistant to heat, particularly generated by a nearby fire. Sealing systems are often rated in terms of their performance under predescribed “catastrophic” conditions.
  • Throughout this specification reference is most often made to cables. However, often the information given would equally apply if the cables are replaced by tubes, particularly those provided with a sheathing. These tubes and other tubes, particularly thin, and somewhat flexible pipes, are captured by the term ducts.
  • Hence, as used herein, cables and ducts are considered interchangeable, unless specifically indicated otherwise.
  • Although on the one hand the sealing integrity should be optimal, particularly if and when the need arises (which could be many years after installation of the sealing system), in one embodiment, the installation of the system itself should also be relatively fast (to save labor costs); unlikely to lead to installation faults; and/or leave the conduit after installation in a condition suitable for adding or removing cables without jeopardizing the integrity of the system as placed in the conduit. Erroneously removing a cable could badly affect the operating of machinery which depends on the presence of these cables.
  • According to one aspect, a system is provided which allows for holding, in a conduit, cables of different diameters in a relatively easily recordable fashion.
  • According to another aspect, a system is provided which can relatively quickly be installed, and such that the cable positioning is easily recordable also in a situation wherein cables already extend through a conduit before the system is placed in the conduit.
  • According to an aspect, a system is provided that is substantially free from applying compression onto the cables, at most applies only a minimal compression.
  • According to an aspect, a system is provided where installation that can be easily adapted on the spot if unexpectedly a cable with a larger diameter extends through the conduit.
  • According to an aspect, a system for holding, in a conduit, cables and/or ducts with different diameters. The system comprises a plurality of rubbery or rubber-like sleeves for inserting in such a conduit. The plurality of sleeves comprises a number of units of bonded sleeves which are oriented parallel to each other. Within each unit the sleeves have corresponding outer diameters. At least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units. The number of the units and the dimension of the units are such that therewith a stack of units can be made. In that stack of units each sleeve is oriented parallel to any of the other sleeves. The stack of units has a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.
  • The position of each sleeve can accurately be recorded, for instance in terms of coordinates related to an orthogonal coordination system having one axis coinciding with one side of the rectangular shape and another axis coinciding with another side of the rectangular shape of the stack of units. Furthermore, the system can be installed in a conduit by placing unit by unit, instead of now and again a single sleeve, then a unit of sleeves and then again a few single sleeves, etc. To avoid any misunderstanding, a unit of bonded sleeves consists of a number of sleeves joined together by bonds between the sleeves wherein the bonds are of the same material as the material of which the sleeves are made. Further “joined together by bonds” is to be understood such that preferably the orientations of the respective axes of the sleeves are stable relative to each other, unless the bonds are broken.
  • Aspects relate to solving the problems associated with the prior art by employing a fundamentally different system. In one aspect, such a different system is free from the need to compress the blocks after positioning in the welded frame, i.e. in the conduit, avoiding the deterioration of these components, such as may occur due to time-related phenomena like creep and stress relaxation.
  • No additional compression is to be applied onto the system. No additional compression needs to be applied onto the system. The cables are not subjected to undesired forces. Should unexpectedly a cable have a larger diameter than was foreseen, then this cable can still be accommodated for without jeopardizing the entire structure of sleeves. A sleeve as present could cope with the larger cables. The inner diameter of the sleeves is not chosen to be snugly fitting around the cable. The cable is pulled through the sleeve so that each inner diameter will need to be oversized. Further, it is always possible to slit open a sleeve and apply the sleeve around the cable.
  • In one embodiment, in each unit, the lengths of the sleeves correspond to each other. This enhances stability of the stack of units and, in case the sleeves are designed to respond in case of a nearby fire, such a response will optimally take place within a conduit in which the stack has been installed. The rectangular stack will then be a block-shaped stack. If the rectangular stack will be a square stack, then the stack can also be cube-shaped, depending on the length of the sleeves.
  • In one embodiment, in each unit, the sleeves are all positioned in one layer of the sleeves. Advantageously, this provides for flexibility in the building up of the stack of units and in the diameters of the sleeves available in a conduit. In this way, for almost each “composition” of a bundle of cables extending through a conduit, it will be possible to provide a suitable stack of units for holding in that conduit each and every cable, independent of the number and diameter.
  • However, in an alternative embodiment at least one unit has layers of sleeves.
  • In one embodiment, each unit has, apart from the height of the one or more layers, dimensions which correspond to the dimensions of any of the other units. This makes composing the stack of units straightforward and allows it also to be planned in advance, so that installation of the system can be carried out straightforwardly. Instead of, or in addition to, the recording of the position of sleeves and thus also of certain cables in the conduit, it will, in the case where cables still have to be drawn, also be possible to design and control in advance a pattern according to which the cables should be positioned in the conduit. For instance, heavy cables could be positioned at a lower position in the conduit as compared to the position at which lighter cables are positioned in the conduit.
  • In an embodiment, it applies to at least one, and preferably to each unit, that the inner diameter of each sleeve is the same as the inner diameter for any other sleeve in that unit. This enhances the earlier mentioned recordability, the stability of the stack and has advantages for making an organized conduit through which many cables extend.
  • In an embodiment, the system further includes at least one plate for placing in the stack of units between two units, for providing at least one surface against which at least one of the units can be positioned. Any “waviness” available on a side of a unit, onto which another unit should be placed, will due to the presence of such a plate no longer have an effect on the way the upper unit will be supported and thus be positioned. Such an embodiment of a system will allow for a very well organized, and very accurate, positioning of the sleeves and the respective cables in the conduit.
  • In one embodiment of such a system, at least one plate is at each of at least two oppositely positioned rims provided with a number of ribs for facilitating insertion of the plate in a conduit in which the plate is positioned in a clamped fashion. Advantageously, the plates can further impose a pattern, and/or further stabilize a pattern, of the units of sleeves.
  • In an embodiment of a system at least one sleeve of at least one unit is provided with a slit extending over a full length of the sleeve for placement of a cable into a sleeve via the slit and by moving a cable and that sleeve relative to each other laterally toward a coaxial position. Such a sleeve provided with a slit can easily be applied in a conduit through which a cable already extends. This is particularly useful when a previous sealing system has to be removed for instance because of its reduced sealing integrity or because a number of additional cables will have to be pulled through the conduit. Note that in case a system itself is already used in a conduit, pulling new cables through the conduit can take place without having to remove the earlier installed sleeves. All that needs to be present is the availability of sleeves through which as yet no cable extends.
  • It is possible that in at least one unit a number of adjacent sleeves are provided with such a slit. This facilitates application of such a unit where a number of cables extend, or are meant to extend closely to each other through the conduit. Then, advantageously, each cable can occupy one sleeve of the unit, so that the cables remain close to each other but are still positioned in an easily recordable pattern.
  • More preferable is that at least one of the slits is shared by two neighboring sleeves of which one has two slits. It is for instance possible that of the sleeve which has two slits, one of the two slits is shared with a neighboring sleeve and the other one of the two slits is positioned opposite the slit which is shared with a neighboring sleeve. This allows for using one slit for letting a cable first enter one sleeve from which it can be moved over to the next sleeve. This is particularly useful when two cables extend closely parallel to each other, for instance when tie-wrapped. It allows for placing one cable in one of these neighboring sleeves and the other cable in the other one of these neighboring sleeves.
  • In an embodiment of a system, the sleeves may have a cross-section which is circular. This allows for some self-clamping of the units in a conduit.
  • As an alternative it is possible that at least one of the units has on its outside a flat surface which extends in a length direction of the sleeves and which extends in a layer direction of the sleeves in the unit. It is thus possible that in a unit each of the sleeves is considered to be block-shaped. At least one of the units may thus have a block-shaped outer shape. This facilitates stacking of the units and an even more accurate positioning of the sleeves in the conduit so that the recordability and/or planning of the patterning of cables in the conduit can be more accurate. Note that, in general, the outer shape of the sleeve may differ from the inner shape of the sleeve. For instance, the sleeve may be block-shaped while the lumen provided by the sleeve has the shape of a cylinder.
  • An embodiment of a system may also comprise at least one single sleeve having an outer cross-sectional dimension suitable for inserting the at least one single sleeve in another sleeve of the system. Accordingly, the stability of the system as assembled in a conduit can be enhanced, which may be necessary when for instance upper units are provided with heavy cables and lower units are momentarily kept empty, i.e. free from cables. In case the sleeves are made of a thermally expandable rubber-like material, insertion of such a single sleeve in a sleeve of a unit ensures that enough expandable material is present in the system as assembled into a stack of units.
  • In an embodiment of a system, the sleeves are made of a thermally expandable rubber-like material. The term rubber-like is used to express that the rubber-like material may be vulcanizable and perhaps already partly vulcanized. The term thermally expandable is used to express that the material comprises one or more components which will on exposure to heat cause the material to expand to a larger extent than it would do without the presence of these components.
  • In another embodiment of a system, the sleeves are made of a vulcanized thermally substantially un-expandable rubbery material. The term thermally substantially un-expandable is used to express that the material is free from components which would, on exposure to heat, cause the material to expand to a larger extent than it would do without the presence of these components.
  • In case the system comprises at least one plate, then that at least one plate may be made of a thermally expandable rubber-like material or vulcanized thermally substantially un-expandable rubbery material, and is by construction or by material properties stiffer than the stiffness of any one of the units of sleeves as formed by a single layer of sleeves. Accordingly, it is possible to provide the system without dissimilar materials and thus without the chance of undesired interaction between the materials used for the conduit and the sleeves and/or plates. Such an undesired interaction could for instance be corrosion, in the case where the conduit and a plate are made of different metals.
  • In an embodiment of a system, the system may further comprise a conduit into which the stack of units can be assembled such that it snugly fits in the conduit. This will ensure that the dimensions of the conduit and the dimensions of the stack of units will be set to have optimal functioning of the system during installation and afterwards.
  • In an embodiment of a system, the system further comprises a sealant for application against the stack of units at the ends of the sleeves when the stack is completed in a conduit and cables are held by a number of the sleeves.
  • A unit of a number of bonded sleeves for holding cables or ducts in a conduit may also be provided. The sleeves are of a rubbery or rubber-like material. The sleeves are oriented parallel to each other, and the sleeves are all positioned in one layer of the sleeves. At least one sleeve is provided with a slit extending over a full length of that sleeve for placement of a cable or duct into that sleeve via the slit by moving a cable or duct and that sleeve relative to each other laterally toward a coaxial position.
  • A sleeve for holding cables or ducts in a conduit may also be provided. The sleeves are of a rubbery or rubber-like material, the sleeve having a plurality of lumens which are oriented parallel to each other.
  • A unit of a number of such sleeves may also be provided.
  • Turning now to the figures, embodiments of the system will now be described. In the figures and the following description thereof, like parts are denoted by like reference signs. The embodiments which are now discussed are illustrative and are not to be understood as limiting unless clearly specified otherwise.
  • FIG. 1 shows schematically a system for holding in a conduit cables with different diameters. The system includes a plurality of rubbery or rubber-like sleeves 1 for inserting in such a conduit. The plurality of sleeves 1 includes a number of units 2 of bonded sleeves 1 which are oriented parallel to each other. In FIG. 1, and in many other figures, only the cross-section of the sleeves 1 is shown.
  • Within each unit 2 the sleeves 1 have corresponding outer dimensions. The system shown in FIG. 1 comprises six units 2. Within each unit 2, the sleeves 1 have an inner diameter which differs from an inner diameter of the sleeves of at least one other unit 2 of the six units 2. As can be seen, the inner diameters of the sleeves of one unit 2 are preferably identical. However, it is not impossible that within one unit the sleeves have different inner diameters. In one embodiment, within one unit of sleeves, the sleeves have different inner diameters. As will be discussed later, in some embodiments, at least one sleeve may be provided with multiple lumens. The latter may also be referred to as channels. Therefore, aspects described herein relate to such a sleeve, and a unit of such sleeves. The number of the units 2 and the dimensions of the units 2 are such that therewith a stack of units 2 can be made. This possibility can easily be derived from FIG. 1. In the stack of units 2 each sleeve 1 is also oriented parallel to any of the other sleeves 1. The stack of units 2 can have a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves 1 and of which each edge is in detail shaped by the presence of one, two or three of the sleeves. This will be further explained when FIG. 3 is discussed.
  • FIG. 1 presents a very workable embodiment in that with only six different units 2 many sleeves of different diameters can be provided and a rectangular stack of units can be made. The possible number of sleeves and the possible inner and outer dimensions of these sleeves (in millimeters) are indicated next to the respective units 2.
  • In one embodiment, in each unit 2, the lengths of the sleeves 1 correspond to each other. In one embodiment, in each unit 2, the sleeves 1 are all positioned in one layer of the sleeves 1, as also shown in FIG. 1. From reviewing FIG. 3 and FIGS. 5 and 6, (the latter two being perspectives onto embodiments of the system in use, as seen from a direction perpendicular to the direction of the cables extending through the system), it will be clear that each unit may have, apart from the height of the one layer, dimensions which correspond to dimensions of one of the other units.
  • An embodiment of a system includes at least one plate 3 for placing in the stack of units 2 between two units 2, for providing at least one surface 4 against which at least one of units 2 can be positioned. The plate 3 has in two directions a dimension which corresponds to at least one of the dimensions of the stack of units 2. Assuming that the sleeves 1 shown in FIG. 1 have a length of 110 mm, it can be seen that a plate 3 shown in FIGS. 2 a and 2 b is in correspondence with this preference.
  • Further, as shown in FIG. 2, in one embodiment, the plate 3 has at each of at least two oppositely positioned rims 5 a number of ribs 6 for facilitating insertion and clamping of the plate 3 in a conduit 7 (see FIG. 3). Such ribs 6 may for instance have the shape of a saw tooth. The plate 3 shown in FIGS. 2 a and 2 b is suitable for insertion in a direction within the plane of the plate 3. It is conceivable that the ribs have a shape which differs from the saw-tooth configuration. In FIG. 2 b a plate 3 is shown as provided with a stiff plate 3 a, for instance made of a hard plastic. This plate is suitable for an embodiment of a system that is intended to have many sleeves in a horizontal plane next to each other.
  • FIG. 3 shows schematically an embodiment of a system, ready for use. In a conduit 7 the different units 2 are stacked to fill up the predominantly rectangularly-shaped conduit 7. The bottom corners 9 of the rectangularly-shaped stack of units 2 are in each of these bottom edges 9 in detail shaped by the presence of one sleeve 1. However, the two upper edges 10 of the rectangularly-shaped stack of units 2 are each in detail shaped by the presence of two sleeves 1 each belonging to a different unit 1. It is also conceivable that an edge of a predominantly rectangularly-shaped stack of units 2 is in detail shaped by the presence of three sleeves.
  • The embodiment shown in FIG. 3 is ready for use. That is, cables can be pulled through the respective sleeves 1. The numbers presented in the sleeves show the range of diameters of a cable that could be pulled through the respective sleeve 1. Where the number 0 is placed in the sleeve, this is to be taken as an instruction that according to a predetermined planning no cable should be pulled through that sleeve. Such an empty sleeve will remain available for adding cables through the conduit 7 later on, i.e., at a moment in time after installation of the system.
  • As can be seen, the embodiment shown in FIG. 3 also includes single sleeves 8 having an outer cross-section or dimension for inserting at least one of these single sleeves 8 in another sleeve 1 of the system. In case the sleeves 1, 8 are made of a thermally expandable rubber-like material, insertion of such a single sleeve in the sleeve of a unit 2 ensures that enough expandable material is present in the system, so that the entire cavity provided by the larger sleeve will be closed off by the expandable material in case of a nearby fire. In case the sleeves are made of a vulcanized thermally substantially unexpandable rubbery material, such a single sleeve 8 as inserted into a larger sleeve 1 will provide additional stability, stiffness and strength to the system, so that the rigidity of the system, and therewith the accurate recordability of positions of sleeves and cables will be maintained. As can be seen, also a number of single sleeves 8 can be inserted into a larger sleeve 1, surrounding each other (shown right under) or next to each other (shown more toward the middle of the conduit). For each of these embodiments it is also possible that the single sleeve is used for holding a cable extending through the conduit 7.
  • In addition, or as an alternative to the single sleeves discussed so far, it is also possible that the system comprises single sleeves having a cross-section as shown in FIGS. 6 a and 6 b. Such a thicker-walled sleeve as shown in FIG. 6 b can be inserted in a sleeve having an inner diameter larger than the outer cross-sectional dimension of the thick-walled-sleeve. However, it is also envisaged that such a thick-walled sleeve replace a sleeve by tearing that sleeve out of the unit of which it was a part. The same possibilities for use apply to a multilumen sleeve as shown in FIG. 6 b.
  • Clearly, through the embodiments shown in FIG. 3, cables can be pulled in line with and at a predetermined position in a composed pattern of sleeves 1. However, it is also possible to use the system in a conduit through which already cables extend. For that purpose, each sleeve can be slit open in a length direction using for instance a sharp knife so that the respective sleeve can be put around the respective cable. By imposing the system onto a bundle of cables already extending through a conduit, it will be possible to force the cables to adopt a position in pattern that is more easily recordable than and expressed in a systematic way than it was before the system was installed. As will now be discussed, the sleeves may also be provided with a pre-cut slit.
  • In embodiments of a system, at least one sleeve 1 of at least one unit 2 is provided with a slit (see FIG. 7) extending over the full length of the sleeve 1 for placement of a cable into a sleeve 1 via the slit 13 by moving a cable and that sleeve 1 relative to each other laterally toward a coaxial position. For a number of adjacent sleeves 1 in one unit such a slit 13 may be provided. According to a further embodiment, such as for instance shown in FIGS. 8 a and 8 b, it is also possible that one slit 13 is shared by two neighboring sleeves 1 of which one has two slits. Of that sleeve 1 which has two slits 13, 14, one of the two slits 13, 14 may be shared with a neighboring sleeve 1 and the other one of the two slits may be positioned opposite the slit which is shared with a neighboring sleeve 1. It is possible that in one unit 2 all but one of the sleeves 1 are provided with two slits 13, 14 and that the one sleeve 1 a without two slits 13, 14 only has a slit 13 which is being shared with a neighboring sleeve 1. The one sleeve 1 a with only one slit 13 may be situated at the end of the unit 2 of sleeves 1. In such an embodiment it is possible that of all the sleeves 1, la of one unit 2 the upper halves can together be lifted up so that the distance between the upper halves and the lower halves of those sleeves 1, la is enhanced. The sleeve 1 a with only one slit 13 then functions as a hinge. A bundle of cables can then be spread out over the sleeves 1, la of that unit 2, after which the upper halves of the respective sleeves 1, la can be put back on the lower halves, so that each cable is enclosed by a sleeve 1, la. A unit as shown in FIGS. 8 a and 8 b can also be employed outside the context of the present system and as such, the present disclosure is not limited in this regard.
  • As shown in FIGS. 1 and 3, the sleeves may have a cross-section which is circular. In such an embodiment, the plates 3 may be included. Plates 3 have the function of providing a surface against which a unit 2 of sleeves 1 can be positioned, so that a layer of sleeves 1 will not adopt a somewhat buckled shape and negatively affect an accurate positioning of the respective sleeves. The upper surface 4 of plate 3 provides a suitable surface for support of a unit laying on top of it. The lower surface of plate 3 not necessarily makes contact with a unit 2 of sleeves 1.
  • FIG. 4 shows another embodiment of a system ready for use in the sense that cables can be pulled through. In this case, the width of the conduit is larger than the height. When cables are kept outside the conduit in a cable tray, then there is less need to allow for much slack in the cables, as the cables do not need to be fed into a sleeve 1 that is positioned much higher, or lower, than the cable tray. For this embodiment the plates 3 may be provided with a stiffer plate 3 a.
  • An embodiment of a system that may be useful when no plates 3 are used may be provided. Particularly in an embodiment wherein at least one of the units has on its outside a flat surface which extends in a length direction of the sleeves 1 and which extends in a layer direction of the sleeves in the respective unit 2, there may not be a need for having plates 3.
  • In an embodiment of a system the unit may have a block-shaped outer shape, so that there may not at all be a need for a plate 3. For the sake of completeness, FIG. 5 a shows a unit 2 having sleeves 1 with a circular cross-section and FIG. 5 b shows a unit 2 having a block-shaped outer shape. Each sleeve 1 of that unit may be considered to have a block-shaped cross-section. The inner diameters of the sleeves 1 shown in FIG. 5 a and FIG. 5 b are identical.
  • In practice, cables extending through the system are unlikely to have a perfectly coaxial position relative to the respective sleeves 1. Only when the sleeve 1 has an inner diameter that corresponds to the outer diameter of the cable, such a coaxial configuration may be present. This may also be achieved when a sleeve 1 having a slightly smaller inner diameter is provided with a slit 13 and placed over a cable having a slightly larger diameter so that the slit 13 remains unclosed and present. However, in the other configurations, the sleeves 1 somewhat loosely hold the cable, having the advantage that no forces are exerted onto the cables so that the sheathing is not deformed. Another advantage is that the cables do not necessarily have to extend in a strictly straight line through the conduit 7. There is some flexibility in departing from such a straight line.
  • The stacked units of sleeves 1 provide a good structure against which a sealant 4 can be applied. For this purpose, an embodiment of a system may include a sealant 11 for application against a stack of units 2 at the end of the sleeves 1 when the stack 2 is completed in a conduit 7 and cables 12 are held by a number of the sleeves 1. The sealant may only be such that the system becomes closed off for gas and water but also a special sealant may be applied in line with the nature of the material of which the sleeves are made.
  • For optimal dimensioning, a system may further include a conduit 7 into which the stack of units 2 can be assembled such that it snugly fits in the conduit 7. This, however, does not mean that the length of the conduit 7 corresponds to the length of the sleeves 1. Ideally, the sleeves 1 are shorter than the length of the conduit 7, so that the sealant 11 can be applied against the ends of the sleeves 1 and still within conduit 7.
  • Although the sleeves 1 already provide a function of defining a predetermined cavity through which a particular cable can extend through the conduit 7, and as part of a stack snugly fitting in the conduit 7 provide a structure against which a sealant 11 can be applied, in an embodiment, the sleeves 1 are made of a thermally expandable rubber-like material to further enhance the functionality of the sleeves 1. On exposure to heat reaching that material, either through the conduit 7, or through cables 12 extending through the conduit 7, this material will expand, therewith forming a complete closure of the conduit 7. This closure may be in addition to the sealant 11 which may only be functioning as a seal against water and gas before a nearby fire starts having an influence on the system.
  • Alternatively, the sleeves may be made of a vulcanized thermally substantially unexpandable rubbery material, then the sleeves are functioning as described in WO 08104237 A1.
  • If the system comprises one or more plates 2, then a plate may be made of a material that is similar to the material of which the sleeves are made. However, the plate is preferably by construction or by material properties stiffer than the stiffness of any one of the units of the sleeves that is formed by a single layer of sleeves.
  • FIGS. 9 and 10 provide further insights in possible examples of systems. The dimensions provided are illustrative and by no means intended to be limiting, but do indicate possible dimensions for an embodiment.
  • FIG. 11 shows an embodiment of unit 2, of which the sleeves have relatively small inner diameter as compared to the outer diameter. This improves the stiffness of the sleeves and consequently the stability of the unit and a stack in which the unit is placed.
  • FIG. 12 shows an embodiment of units 2, having sleeves 1 with each a plurality of lumen.
  • FIG. 13 shows an embodiment of units 2, of which each sleeve 1 is provided with a slit 13, for allowing insertion in the respective sleeve a cable that already extends through a conduit.
  • FIG. 14 shows an embodiment of units 2, very much like the units shown in FIGS. 8 a and 8 b. FIG. 14 shows a number of units 2, having mutually different dimensions due to the different inner and outer diameters of the sleeves 1.
  • FIG. 15 shows another embodiment of a single sleeve 8, having a star-shaped cross-section, suitable for insertion in a sleeve through which for the moment no cable extends. The single sleeve 8 provides strength to that sleeve 1 of the unit 2.
  • FIG. 16 shows an embodiment of a single sleeve viewed from a side, i.e. not viewed along its axis. The sleeve is provided with a number of external ribs separated in circumferential direction for self-fixation after insertion in one of the other sleeves of the system. This allows for providing strength to the sleeve into which such a single sleeve is inserted so that the overall shape remains unaffected also when much weight is put on the sleeve, for instance by heavy cables in sleeves put on top of the respective sleeve. However, such a single sleeve can easily be removed as not much friction is resisting such removal.
  • FIG. 17 shows a conduit 7 in which an embodiment of a system has been installed.
  • FIG. 18 shows an embodiment of units having a block-shaped outer shape, i.e. of which the sleeves have a block-shaped cross-section.
  • FIG. 19 shows an embodiment similar to the one shown in FIG. 18. However, the parts of the unit which are likely to face an inner side of a conduit are provided with a number of external ribs separated in axial direction for self-fixation itself within a confinement having a dimension that allows for such self-fixating.
  • FIG. 20 shows an embodiment of units 2, having more than one layer of sleeves, and having a block-shaped outer shape.
  • FIG. 21 and FIG. 22 show embodiments of a system having spacers S for fixating the units 2 within a conduit 7. These spacers are also of a rubbery or rubber-like material, with a hardness different from the hardness of the material of units. The spacers may, or may not, be provided with ribs.
  • As indicated earlier on, for a sealing off, ideally a sealant is applied as also shown in FIGS. 9 and 10, for instance referred to in WO 08104237 A1.
  • In one embodiment, the rubbery or rubber-like material is a fire resistant grade. However, it is also possible to have a material that is purely very stable rubber, for instance for applications in which the system has to withstand exposure to water, under low or relatively high pressure. Further, in one embodiment, within one layer of a stack of units, different units having different diameters of the sleeves 1, may be applied, provided that stacking of the units into a rectangular shape is still possible. In case the sleeves 1 and the plates 3 are made of a thermally expandable rubber-like material it may be provided in a color that differs from black or grey, to ensure that no mixing will occur with sleeves 1 and/or units provided by a different supplier. Such mixing could lead to undesired inaccurate recordability of the position of the sleeves 1 and cables 12, as well as a disfunctioning under catastrophic circumstances. The system is flexible in terms of the number of cables and the size of cables that need to extend through the conduit 7 and the system. This system can also be used for conduits 7 through which bundles of relatively thin cables, tie-wrapped together, need to extend.
  • In general, the system may comprise a conduit and still be free from an operable mechanism for mechanically putting the units under an enhanced pressure after installing the units in the conduit. That is, in one embodiment, the system is free from components for compressing the units in a direction perpendicular to the axial direction of the sleeves.
  • The invention is not limited by the embodiments shown. Many modifications are possible. Thus, it is to be appreciated various alterations, modifications, and improvements of the embodiments described herein will readily occur to those skilled in the art. Such alterations, modification, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the description and drawings herein are by way of example only.

Claims (54)

What is claimed:
1. A system for holding in a conduit cables and/or ducts with different diameters, the system comprising a plurality of rubbery or rubber-like sleeves for inserting in such a conduit, the plurality of sleeves comprising a number of units of bonded sleeves which are oriented parallel to each other, wherein within each unit the sleeves have corresponding outer dimensions, and wherein at least one unit has a sleeve having an inner diameter which differs from an inner diameter of a sleeve of at least one other unit of the number of units, wherein the number of the units and the dimensions of the units are such that therewith a stack of units can be made, in the stack of units each sleeve is also oriented parallel to any of the other sleeves, the stack of units having a rectangular shape of which each side is in detail shaped by the presence of a number of the sleeves and of which each edge is in detail shaped by the presence of one, two or three of the sleeves.
2. A system according to claim 1, wherein in each unit, the lengths of the sleeves correspond to each other.
3. A system according to claim 1, comprising at least one unit of which the sleeves are all positioned in one layer.
4. A system according to claim 1, comprising at least one unit having layers of sleeves.
5. A system according to claim 3, wherein each unit has, apart from the height of the one or more layers, dimensions which correspond to the dimensions of any of the other units.
6. A system according to claim 1, comprising at least one unit for which the inner diameter of the sleeves is for each sleeve the same.
7. A system according to claim 1, wherein the system comprises at least one plate for placing in the stack of units between two units, for providing at least one surface against which at least one of the units can be positioned.
8. A system according to claim 7, wherein each of the at least one plate has in two directions a dimension which corresponds to at least one of the dimensions of the stack of units.
9. A system according to claim 8, wherein the at least one plate is at each of at least two oppositely positioned rims provided with a number of ribs for facilitating insertion of the plate in a conduit and for facilitating positioning the plate in a clamped fashion.
10. A system according to claim 1, wherein at least one sleeve of at least one unit is provided with a slit extending over a full length of the sleeve for placement of a cable into a sleeve via the slit by moving a cable and that sleeve relative to each other laterally toward a coaxial position.
11. A system according to claim 10, wherein in at least one unit a number of adjacent sleeves are provided with such a slit.
12. A system according to claim 11, wherein at least one of the slits is shared by two neighboring sleeves of which one has two slits.
13. A system according to claim 12, wherein of the sleeve which has two slits, one of the two slits is shared with a neighboring sleeve and the other one of the two slits is positioned opposite the slit which is shared with a neighboring sleeve.
14. A system according to claim 1, wherein the sleeves have a cross-section which is circular.
15. A system according to claim 1, wherein at least one of the units has on its outside a flat surface which extends in a length direction of the sleeves and which extends in a layer direction of the sleeves in the respective unit.
16. A system according to claim 15, wherein at least one of the units has a block-shaped outer shape.
17. A system according to claim 1, wherein the system also comprises at least one single sleeve, having an outer cross-sectional dimension for inserting at least one of these single sleeves in another sleeve of the system.
18. A system according to claim 17, wherein the at least one single sleeve is provided with multiple lumens.
19. A system according to claim 17, wherein the single sleeve is provided with a number of external ribs separated in circumferential direction for self-fixation after insertion in one of the other sleeves of the system.
20. A system according to claim 19, having a block-shaped, a star-shaped or a circular cross-section.
21. A system according to claim 1, wherein the sleeves are made of a thermally expandable rubber-like material.
22. A system according to claim 1, wherein the sleeves are made of a vulcanized thermally substantially un-expandable rubbery material.
23. A system according to claim 7, wherein the at least one plate is made of a thermally expandable rubber-like material or vulcanized thermally substantially un-expandable rubbery material, and is by construction or by material properties stiffer than the stiffness of any one of the units of sleeves that is formed by a single layer of sleeves.
24. A system according to claim 1, wherein at least a part of an outer part of at least one unit is provided with ribs for facilitating insertion of the unit in a conduit and for facilitating positioning the unit in a self-fixating fashion.
25. A system according to claim 1, wherein the system is free from any wedge-shaped parts for inserting in the conduit and contributing to a clamping of the units.
26. A system according to claim 1, wherein the system is free from a controllable mechanism for mechanically putting the units under an enhanced pressure after installing the units in a conduit.
27. A system according to claim 1, further comprising a conduit into which the stack of units can be assembled such that it snugly fits in the conduit.
28. A system according to claim 1, further comprising a sealant for application against the stack of units at the ends of the sleeves when the stack is completed in a conduit and cables are held by a number of the sleeves.
29. A unit of a number of bonded sleeves for holding cables or ducts in a conduit, wherein the sleeves are of a rubbery or rubber-like material, wherein the sleeves are oriented parallel to each other, and wherein the sleeves are all positioned in one layer of the sleeves, at least one sleeve being provided with a slit extending over a full length of that sleeve for placement of a cable or duct into that sleeve via the slit by moving a cable or duct and that sleeve relative to each other laterally toward a coaxial position.
30. A unit according to claim 29, wherein in the unit a number of adjacent sleeves are each provided with such a slit.
31. A unit according to claim 29, wherein at least one of the slits is shared by two neighboring sleeves.
32. A unit according to claim 31, wherein at least one of the two neighboring sleeves has two slits.
33. A unit according to claim 32, wherein of the sleeve which has two slits, one of the two slits is shared with a neighboring sleeve and the other one of the two slits is positioned opposite the slit which is shared with a neighboring sleeve.
34. A unit according to claim 33, wherein one of the sleeves positioned at the end of the layer of sleeves is provided with only one slit which is shared with its neighboring sleeve.
35. A unit according to claim 29, wherein the sleeves have corresponding outer dimensions.
36. A unit according to claim 29, wherein at least one of the sleeves has an inner diameter which differs from an inner diameter of at least one of the sleeves.
37. A unit according to claim 1, wherein each of the sleeves is circular in its cross-section.
38. A unit according to claim 29, wherein the unit has on its outside a flat surface which extends in a length direction of the sleeve and which extends in a layer direction of the sleeves in the unit.
39. A unit according to claim 38, wherein the unit has a block-shaped outer shape.
40. A unit according to claim 29, wherein the sleeves are made of a thermally expandable rubber-like material.
41. A unit according to claim 29, wherein the sleeves are made of a vulcanized thermally substantially un-expandable rubbery material.
42. A sleeve for holding cables or ducts in a conduit, wherein the sleeve is of a rubbery or rubber-like material, the sleeve having a plurality of lumens which are oriented parallel to each other.
43. A sleeve according to claim 42, wherein the sleeve has for at least one lumen a slit extending over a full length of that lumen for placement of a cable or duct in that lumen via the slit by moving a cable or duct and that lumen relative to each other laterally toward a coaxial position.
44. A sleeve according to claim 43, wherein in that sleeve for each lumen a slit is provided for placement of a cable or duct in that lumen via the slit by moving a cable or duct and that lumen relative to each other laterally toward a coaxial position.
45. A sleeve according to claim 44, wherein each lumen has its own slit for placement of a cable or duct in that lumen via the slit by moving a cable or duct and that lumen relative to each other laterally toward a coaxial position.
46. A slit according to claim 43, wherein at least one of the slits is shared by two neighboring lumen.
47. A sleeve according to claim 46, wherein at least one of the two neighboring lumen has two slits.
48. A sleeve according to claim 47, wherein of the sleeve which has two slits, one of the two slits is shared with a neighboring lumen and the other one of the two slits is positioned opposite the slit which is shared with a neighboring lumen.
49. A sleeve according to claim 42, wherein the lumens have corresponding inner dimensions.
50. A sleeve according to claim 42, wherein at least one of the lumens has an inner diameter which differs from an inner diameter of at least one of the other lumens.
51. A sleeve according to claim 42, wherein the sleeve have a star-shaped, circular or block-shaped cross-section.
52. A sleeve according to claim 42, wherein the sleeve is made of a thermally expandable rubber-like material.
53. A sleeve according to claim 42, wherein the sleeve is made of a vulcanized thermally substantially un-expandable rubbery material.
54. A unit of a number of bonded sleeves according to claim 42.
US14/602,432 2014-07-16 2015-01-22 System for holding in a conduit cables or ducts with different diameters Abandoned US20160018025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1040892 2014-07-16
NL1040892A NL1040892B1 (en) 2014-07-16 2014-07-16 System for holding in a conduit cables or ducts with different diameters.

Publications (1)

Publication Number Publication Date
US20160018025A1 true US20160018025A1 (en) 2016-01-21

Family

ID=51846880

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/602,432 Abandoned US20160018025A1 (en) 2014-07-16 2015-01-22 System for holding in a conduit cables or ducts with different diameters
US15/326,117 Active US11280433B2 (en) 2014-07-16 2015-09-10 System for holding in a conduit cables or ducts with different diameters

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/326,117 Active US11280433B2 (en) 2014-07-16 2015-09-10 System for holding in a conduit cables or ducts with different diameters

Country Status (10)

Country Link
US (2) US20160018025A1 (en)
EP (1) EP3169923B1 (en)
JP (1) JP2017529494A (en)
KR (2) KR20160009478A (en)
CN (1) CN106716756B (en)
AU (1) AU2015289060A1 (en)
CA (1) CA2955264C (en)
ES (1) ES2708588T3 (en)
NL (1) NL1040892B1 (en)
WO (1) WO2016009092A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280433B2 (en) 2014-07-16 2022-03-22 Beele Engineering B.V. System for holding in a conduit cables or ducts with different diameters

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131355B (en) * 2017-05-24 2020-07-24 五冶集团上海有限公司 Method and device for replacing large-diameter overhead pipeline
NL1042540B1 (en) * 2017-09-11 2019-03-19 Beele Eng Bv Conduit through which at least one pipe or cable extends, and method for sealing such a conduit.
CN108539689A (en) * 2018-05-08 2018-09-14 广东电网有限责任公司 A kind of secondary cable grid facilitating closure
CN112648436B (en) * 2020-12-29 2022-03-22 中国石油大学(北京) Bundling submarine pipeline

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732226A (en) * 1956-01-24 Brattberg
US4733016A (en) * 1986-02-11 1988-03-22 Hawke Cable Glands Limited Transit for cables and pipes
US4889298A (en) * 1987-08-14 1989-12-26 Plastoform Gmbh & Co. Kg Wall feedthrough fitting
US5783776A (en) * 1991-10-29 1998-07-21 O-Z Gedney Company Llc Electrical cable penetration seal with compliant module
JP2000355993A (en) * 1999-06-17 2000-12-26 Tosetz Co Ltd Fire compartment penetrating method
US20060217791A1 (en) * 2005-03-23 2006-09-28 Arrow International, Inc. Multi-lumen catheter having external electrical leads
US8598472B2 (en) * 2009-06-18 2013-12-03 Roxtec Ab EMC protected compression unit and a sealing system comprising such compression unit
US20150001351A1 (en) * 2013-06-27 2015-01-01 Justin Krager Cable retention system
US8963010B2 (en) * 2010-09-10 2015-02-24 Phoenix Contact Gmbh & Co. Kg Frame for a cable penetration system, and bush therefor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683578A (en) * 1950-08-24 1954-07-13 Ford Motor Co High-tension wiring harness
US3489440A (en) * 1966-04-18 1970-01-13 Lyckeaborgs Bruk Ab Tight lead-through inlet frame device
US3695563A (en) * 1970-06-01 1972-10-03 Theodore D Evans Hydraulic line fitting support apparatus
US4419535A (en) * 1981-07-31 1983-12-06 Hara Robert J O Multi-cable conduit for floors and walls
NL8403650A (en) * 1984-11-30 1986-06-16 Johannes Alfred Beele TRANSIT DEVICE.
GB2186440B (en) * 1986-02-11 1990-03-14 Hawke Cable Glands Ltd Improved transit for cables and pipes
JPH0772249B2 (en) * 1987-08-11 1995-08-02 信越化学工業株式会社 Wire coating material
NL8901597A (en) * 1989-06-23 1991-01-16 Pidou Bv TRANSIT DEVICE.
DE9305975U1 (en) * 1993-04-20 1993-08-05 Reiku Gmbh, 51674 Wiehl, De
SE515160C2 (en) * 1999-10-08 2001-06-18 Roxtec Ab Cable entry
NL1018722C2 (en) * 2001-08-07 2003-02-10 Beele Eng Bv Fire-resistant system and method for passing at least one cable, tube or the like through an opening of a wall.
DE10227098A1 (en) 2002-06-18 2004-01-08 Schulte, Günter Unit of fire and/or smoke resistant channels, in particular, for taking cables through wall and ceiling elements comprises a block of form-stable noncombustible material with through channels
DE102005002879B4 (en) * 2005-01-21 2006-11-30 Schmid, Gabriele Modular bulkhead for the tight passage of round materials such as cables, hoses and round bars through components of all kinds
DE102005011286B3 (en) * 2005-03-11 2006-05-04 Hauff-Technik Gmbh & Co Kg Ducts for gas or water pipes or cables passing through walls comprise circular frame divided into three by radial bars, into which compressible seals fit which consist of flexible pads between two plates fastened together by bolts
FR2888512B1 (en) * 2005-07-18 2008-04-04 Frederic Raoul Marc Vigne SMOKE PROTECTION INFRASTRUCTURE TUNNEL FOR PEOPLE, CABLE NETWORKS AND SHEATHERS
GB0703886D0 (en) * 2007-02-28 2007-04-11 Beele Eng Bv System and method for sealing in a conduit a space between an inner wall of the conduit and at least one pipe or cable extending through the conduit
SE533468C2 (en) * 2009-02-04 2010-10-05 Roxtec Ab sealing systems
SE533465C2 (en) * 2009-02-04 2010-10-05 Roxtec Ab Continuous modules for pipe or cable feed-throughs
US9464735B2 (en) * 2009-08-25 2016-10-11 Asset Integrity Management Solutions, L.L.C. Systems and methods for supporting tubular members
JP5939237B2 (en) * 2013-11-29 2016-06-22 コベルコ建機株式会社 Cable holder for work machine
NL1040892B1 (en) 2014-07-16 2016-08-16 Beele Eng Bv System for holding in a conduit cables or ducts with different diameters.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732226A (en) * 1956-01-24 Brattberg
US4733016A (en) * 1986-02-11 1988-03-22 Hawke Cable Glands Limited Transit for cables and pipes
US4889298A (en) * 1987-08-14 1989-12-26 Plastoform Gmbh & Co. Kg Wall feedthrough fitting
US5783776A (en) * 1991-10-29 1998-07-21 O-Z Gedney Company Llc Electrical cable penetration seal with compliant module
JP2000355993A (en) * 1999-06-17 2000-12-26 Tosetz Co Ltd Fire compartment penetrating method
US20060217791A1 (en) * 2005-03-23 2006-09-28 Arrow International, Inc. Multi-lumen catheter having external electrical leads
US8598472B2 (en) * 2009-06-18 2013-12-03 Roxtec Ab EMC protected compression unit and a sealing system comprising such compression unit
US8963010B2 (en) * 2010-09-10 2015-02-24 Phoenix Contact Gmbh & Co. Kg Frame for a cable penetration system, and bush therefor
US20150001351A1 (en) * 2013-06-27 2015-01-01 Justin Krager Cable retention system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280433B2 (en) 2014-07-16 2022-03-22 Beele Engineering B.V. System for holding in a conduit cables or ducts with different diameters

Also Published As

Publication number Publication date
KR20160009478A (en) 2016-01-26
JP2017529494A (en) 2017-10-05
KR102367534B1 (en) 2022-02-24
NL1040892B1 (en) 2016-08-16
WO2016009092A3 (en) 2016-06-02
CN106716756B (en) 2019-09-24
WO2016009092A2 (en) 2016-01-21
KR20180040121A (en) 2018-04-19
US11280433B2 (en) 2022-03-22
CA2955264A1 (en) 2016-01-21
CN106716756A (en) 2017-05-24
EP3169923A2 (en) 2017-05-24
ES2708588T3 (en) 2019-04-10
CA2955264C (en) 2022-09-20
AU2015289060A1 (en) 2017-02-23
US20170198836A1 (en) 2017-07-13
EP3169923B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US11280433B2 (en) System for holding in a conduit cables or ducts with different diameters
JP5993071B2 (en) Assembly providing a sealing system for the opening
US8056868B2 (en) Conduit for vehicle system components
US9291268B2 (en) Line duct with a series of layers
JP2005513981A (en) Cable insertion device
KR20150119226A (en) System for sealingly holding cables which extend through an opening
US20110018210A1 (en) System for Dynamically Sealing a Conduit Sleeve Through Which a Pipe or Cable Extends
JP2012516976A (en) Assembly for sealing a circular tubular opening through which a tube, duct or cable extends
US20060102369A1 (en) Fire stop frame assembly
JP2016226275A (en) Retention assembly for stator bar using shim with stator wedge and related method
EP2348240A1 (en) Sealing system
CN109155513B (en) Insert half and insert comprising two of said insert halves
EP3353869B1 (en) A system and method for sealing one end of an existing conduit through which a number of cables extend
KR101647367B1 (en) A water proofing device of the entrance of the pipe line for Tube insertion type
EP3063448B1 (en) Method for providing a pipe transit system

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEELE ENGINEERING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEELE, JOHANNES ALFRED;REEL/FRAME:036214/0368

Effective date: 20150724

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION