US20160017882A1 - Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity - Google Patents

Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity Download PDF

Info

Publication number
US20160017882A1
US20160017882A1 US14/740,577 US201514740577A US2016017882A1 US 20160017882 A1 US20160017882 A1 US 20160017882A1 US 201514740577 A US201514740577 A US 201514740577A US 2016017882 A1 US2016017882 A1 US 2016017882A1
Authority
US
United States
Prior art keywords
fluid
inlet
outlet
dual
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/740,577
Inventor
Humberto V. Meza
Derrick T. Tran
Bernard L. PERKINS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flow Control LLC
Original Assignee
Flow Control LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flow Control LLC filed Critical Flow Control LLC
Priority to US14/740,577 priority Critical patent/US20160017882A1/en
Assigned to FLOW CONTROL LLC. reassignment FLOW CONTROL LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERKINS, BERNARD L., TRAN, DERRICK T., MEZA, HUMBERTO V.
Publication of US20160017882A1 publication Critical patent/US20160017882A1/en
Priority to US16/748,166 priority patent/US11898548B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • F04B53/1047Flap valves the valve being formed by one or more flexible elements
    • F04B53/1057Flap valves the valve being formed by one or more flexible elements the valve being a tube, e.g. normally closed at one end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections

Definitions

  • FIG. 1 shows a diaphragm pump having a pump manifold with spring-loaded or ‘umbrella’ valves, which is known in the art.
  • the spring is arranged between upper and lower umbrella valves.
  • Pump are also known in the art having fixed wiring. Shortcomings of the known diaphragm pump configurations may include one or more of the following:
  • Valve Types Spring loaded and umbrella style valves are limited to pumping low viscosity and “debris free” fluids. Liquids with high viscosity and/or particulates cause priming and performance issues on existing valve types.
  • Pumps having fixed wiring do not have the flexibility to quick connect/disconnect for servicing. Typical pumps have fixed wiring extending from the motor. If the user requires a connector that must be attached to the existing wires.
  • the present invention may include, or take the form of, a pump featuring a new and unique combination of upper and lower diaphragm pumping assemblies together with a manifold assembly.
  • the upper and lower diaphragm pumping assemblies may be configured for pumping fluid through the pump.
  • the manifold assembly may be configured or arranged between the upper and lower diaphragm pumping assemblies.
  • the manifold assembly may include or be configured with a combination of a manifold body, an inlet check valve assembly channel, upper and lower diaphragm pumping assembly orifices, an outlet check valve assembly channel and an outlet.
  • the manifold body may be configured with an inlet having at least one inlet port and an inlet chamber to receive the fluid from at least one fluid source.
  • the inlet check valve assembly channel may include an inlet duckbill check valve assembly arranged therein to receive the fluid from the at least one inlet port.
  • the upper and lower diaphragm pumping assembly orifices may include the upper and lower diaphragm pumping assemblies arranged therein to receive the fluid from the inlet duckbill check valve assembly via first upper and lower manifold conduits and provide the fluid from the upper and lower diaphragm pumping assemblies via second upper and lower manifold conduits.
  • the outlet check valve assembly channel may include an outlet duckbill check valve assembly arranged therein to receive the fluid from the upper and lower diaphragm pumping assemblies.
  • the outlet may include at least one outlet port and an outlet chamber to receive the fluid from the upper and lower diaphragm pumping assemblies and provide the fluid from the pump to at least one fluid outlet source.
  • the present invention may include one or more of the following features:
  • the at least one inlet port may include dual inlet ports configured to receive inlet port fitting connections, and the at least one outlet port may include dual outlet ports configured to receive outlet port fitting connections.
  • the inlet duckbill check valve assembly may include two duckbill check valves, and the outlet duckbill check valve assembly comprises two duckbill check valves.
  • the manifold assembly may include two manifold assembly covers or plates attached to upper and lower surfaces of the manifold body and configured with the first and second upper and lower manifold conduits for providing fluid from the inlet check valve assembly channel to the outlet check valve assembly channel.
  • the manifold body may include, or take the form of, a plastic injection molded integral structure.
  • the dual inlet ports may be configured or oriented orthogonal to one another; and the dual outlet ports are configured or oriented orthogonal to one another.
  • the dual inlet ports and the inlet chamber may be configured to receive the fluid from two fluid sources for mixing together in the inlet chamber; and the dual outlet ports and the outlet chamber may be configured to provide a mixed fluid to the at least one fluid outlet source, including where the at least one fluid outlet source includes two fluid outlet sources.
  • the inlet duckbill check valve assembly and the outlet duckbill check valve assembly may be configured to process a particle medium having up to 4 millimeters (mm) in diameter.
  • Either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports and the dual outlet ports may be configured to receive different port fitting connections, including where the different port fitting connections include a port fitting connection that allows the passage of the fluid either to or from the respective port, and a corresponding port fitting connection that does not allow the passage of the fluid either to or from the respective port.
  • the pump having the aforementioned diaphragm pumping and manifold assemblies according to the present invention solves problems that have plagued the prior art pump shown in FIG. 1 , and provides an important contribution to the state of the art.
  • FIG. 1 shows a front-to-back cross-sectional view of a pump that is known in the art.
  • FIG. 2 shows a perspective view of a pump having a single inlet and outlet, according to some embodiments of the present invention.
  • FIG. 2A shows a cross-sectional view of a lower half of the pump in FIG. 2 along lines and arrows 2 A- 2 A, according to some embodiments of the present invention.
  • FIG. 3 shows a top down plan view of the pump in FIG. 2 , according to some embodiments of the present invention.
  • FIG. 4 shows a side view of the pump in FIG. 2 , according to some embodiments of the present invention.
  • FIG. 4A shows a cross-sectional view of a left side of the pump in FIG. 2 along lines and arrows 4 A- 4 A, according to some embodiments of the present invention.
  • FIG. 5 shows a front-to-back cross-sectional view of the pump in FIG. 2 along lines and arrows 5 - 5 , according to some embodiments of the present invention.
  • FIG. 6 shows a top perspective view of a pump housing with multi-ports, including inlet ports and outlet ports, according to some embodiments of the present invention.
  • FIG. 7 shows a top perspective view of a pump housing with multi-ports including inlet ports and outlet ports, according to other embodiments of the present invention.
  • FIG. 7(A) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in left/right directions transverse to the longitudinal axis of the pump, according to other embodiments of the present invention.
  • FIG. 7(B) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in a front direction along the longitudinal axis of the pump, according to other embodiments of the present invention.
  • FIG. 7(C) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in the left/right directions and a dual outlet port fitting connection extending in a left/right direction and a front direction, according to other embodiments of the present invention.
  • FIG. 8 shows a back-to-front cross-sectional view of the pump in FIG. 2 along lines and arrows 8 - 8 , according to some embodiments of the present invention.
  • FIG. 9A shows a flowchart having steps for implementing control functionality for operating a pump arrangement or configuration like that shown in FIG. 9B , according to some embodiments of the present invention.
  • FIG. 9B shows part of a pump arrangement or configuration having a motor coupled via a printed circuit board assembly (PCBA) to a pressure switch, an on/off switch and a connector for receiving an input, for operating a pump, according to some embodiments of the present invention.
  • PCBA printed circuit board assembly
  • FIGS. 2 - 8 The Dual Diaphragm and Manifold Assembly
  • FIGS. 2-8 show a dual diaphragm pump generally indicated as 10 , according to some embodiments of the present invention.
  • FIGS. 1-5 show the dual diaphragm pump generally indicated as 10 having a single inlet/outlet configuration.
  • FIGS. 6-8 show configurations for a dual diaphragm pump having a multiple inlet/outlet configuration.
  • the dual diaphragm pump may be configured with a multipart pump housing, e.g., having a motor housing 11 a and a removable front cover 11 b, and may also include a pump stand or mount 11 c .
  • FIGS. 7A , 7 B, 7 C show a motor 13 and a motor shaft/diaphragm actuator assembly 15 arranged in the multipart pump housing, which couples to upper and lower diaphragm pumping assemblies generally indicated as 12 , 14 (see FIGS. 7A , 7 B and 7 C), e.g., that cooperate consistent with that described below.
  • FIGS. 7A , 7 B, 7 C also shows the dual diaphragm pump configured with a pressure sensor or switch module 50 (see also FIG. 9B ) that senses the pressure of the fluid being pumped, and provides a suitable pressure sensing signal containing information about the pressure sensed.
  • FIGS. 7A , 7 B and 7 C the front pump housing for covering the configuration of the multiport manifold assembly is not shown, e.g., which is analogous to element 11 b in FIGS. 1-5 .
  • the scope of the invention is not intended to be limited to how the multipart pump housing may be configured, combined or assembled together, etc., e.g., including the number of discrete parts in the configuration, combination or assembly.
  • FIGS. 2 through 4A and 8 show that the dual diaphragm pump may also be configured with a quick connector 60 (see also FIG. 9B ) for coupling to a corresponding connector for providing electrical power to the pump, e.g., including from a wall mounted transformer (not shown).
  • the quick connector 60 configured on the pump wiring allows a user to specify the connector they require, and the wiring from their system would be configured with a suitable mating connector and plug for coupling directly into the pump.
  • This quick connector configuration 60 allows for a quick and safe removal of a pump for a power source for the purpose of servicing.
  • Flexible wiring options may also be configured that also allow for remote mounting of signal input/output devices and a power input.
  • the diaphragm pump may include a manifold assembly like elements 20 and 20 ′, e.g., as shown in FIGS. 6 and 7 .
  • FIG. 7 shows the manifold assembly 20 equipped with internal input and output duckbill valves 30 , 32 , 40 , 42 that allow for the passing of solids and particulate in the liquid being pumped without fouling or clogging the internal duckbill valves 30 , 32 , 40 , 42 .
  • the integration of the internal duckbill valves 30 , 32 , 40 , 42 allows the diaphragm pump 10 to handle higher viscosity fluids with less restriction and is capable of passing a larger particle medium of sizes up to 4 millimeters (mm) in diameter, especially when compared to the prior art pump shown in FIG. 1 .
  • the internal input and output duckbill valves 30 , 32 , 40 , 42 can be reinforced with an internal support to prevent the respective valve from collapsing in applications that will generate higher back pressures during operation or when the pump is not running, e.g., consistent with that disclosed in U.S. Pat. No. 8,276,616 (Atty docket no. M-FLJ-0902//911-5.49-2) and U.S. Pat. No. 8,690,554 (Atty docket no. M-FLJ-1002//911-5.52-1), which are assigned to the assignee of the present application and hereby incorporated by reference in their entirety.
  • the diaphragm pump may include the upper and lower diaphragm pumping assemblies generally indicated as 12 , 14 in combination with the manifold assembly 20 , e.g., as shown in FIGS. 4A and 5 .
  • the upper and lower diaphragm pumping assemblies 12 , 14 may be configured with upper and lower diaphragm 12 a, 14 a, and upper and lower diaphragm assembly covers or plates 12 b, 14 b that are respectively fastened to the manifold assembly 20 , as shown. See the five (5) fasteners/screws like element f 1 in FIGS.
  • FIGS. 7A , 7 B and 7 C show the upper diaphragm pumping assembly 12 .
  • the upper and lower diaphragm pumping assemblies 12 , 14 may be configured for pumping fluid through the dual diaphragm pump 10 .
  • the upper diaphragm pumping assembly 12 may be configured to draw the fluid from the inlet chamber 20 a into the manifold assembly 20 , through the upper input duckbill valve 30 , through the upper output duckbill valve 40 , to the outlet chamber 20 b and from the manifold assembly 20 ; and the lower diaphragm pumping assembly 14 may be configured to draw the fluid from the inlet chamber 20 a into the manifold assembly 20 , through the lower input duckbill valve 32 , through the lower output duckbill valve 42 , to the outlet chamber 20 b and from the manifold assembly 20 , e.g., consistent with that shown in FIG. 5 .
  • the manifold assembly 20 may be configured or arranged between the upper and lower diaphragm pumping assemblies 12 , 14 and have components configured to operate as follows:
  • the manifold assembly 20 may also include or be configured with a combination of a one-piece integral manifold body 20 c, an inlet check valve assembly channel 20 d having upper diaphragm pumping assembly orifices, one such inlet orifice which is labeled 20 d ( 1 ), and an outlet check valve assembly channel 20 e having upper and lower diaphragm pumping assembly orifices, one such outlet orifice which is labeled 20 e ( 1 ).
  • the inlet 20 a may be configured with dual inlet ports generally indicated as 20 a ( 1 ), 20 a ( 2 ) to receive the fluid from at least one fluid source (not shown).
  • the dual inlet ports 20 a ( 1 ), 20 a ( 2 ) may be configured with inlet port channels 20 a ( 3 ), 20 a ( 4 ) to slidably receive inlet fitting couplers 20 a ( 5 ), 20 a ( 6 ) that couple inlet fittings 20 a ( 7 ), 20 a ( 8 ) to the dual inlet ports 20 a ( 1 ), 20 a ( 2 ) of the manifold assembly 20 .
  • the inlet check valve assembly channel 20 d may include an inlet duckbill check valve assembly arranged therein that may include the inlet duckbill check valve 30 , 32 , as well as one or more other inlet duckbill check valve assembly components like valve receiving members 30 ( 1 ), 32 ( 1 ), and internal supports (not shown) to prevent the valve from collapsing in applications that will generate higher back pressures during operation or when the pump is not running, e.g., consistent with that disclosed in U.S. Pat. No. 8,276,616 (Atty docket no. M-FLJ-0902//911-5.49-2) and U.S. Pat. No. 8,690,554 (Atty docket no. M-FLJ-1002//911-5.52-1).
  • the manifold body 20 c may include, or take the form of, a plastic injection molded integral structure, although embodiments are envisioned using other structures or configuration both now known and later developed in the future within the spirit on the underlying invention.
  • FIG. 5 shows a flowpath of fluid through the dual diaphragm pump, including an input partway of a fluid flow path FP, for fluid flowing into the inlet 20 a , an internal part for fluid flowing through the inlet check valve assembly channel 20 d , through the upper and lower diaphragm pumping assemblies 12 , 14 , and through the outlet check valve assembly channel 20 e, and an output flowpath FP out for fluid flowing from the outlet 20 b, e.g., consistent with that set forth herein.
  • the upper diaphragm pumping assembly inlet orifice 20 d ( 1 ) may be configured to be in fluidic communication with the upper diaphragm pumping assembly like element 12 arranged therein to receive the fluid from the inlet duckbill check valve 30 , as well as one or more other inlet duckbill check valve assembly components like valve receiving members 30 ( 1 ), provide (i.e. pump) the fluid via upper manifold conduits indicated by reference label 12 b ′, 12 b ′′, 12 ′′′, to the upper diaphragm pumping assembly orifice 20 e ( 1 ).
  • the motor shaft/diaphragm actuator assembly 15 together with the diaphragm 12 a may be configured in order to provide the liquid from the upper manifold conduit 12 b ′, through the upper manifold conduits 12 b ′′, and to the upper manifold conduit 12 ′′′.
  • the upper diaphragm pumping assembly outlet orifice 20 e ( 1 ) may be configured to be in fluidic communication with the outlet check valve assembly channel 20 e, for providing fluid to the outlet duckbill check valve 40 , as well as one or more other outlet duckbill check valve assembly components like valve receiving members 40 ( 1 ), and provide (i.e. pump) the fluid to the outlet 20 b.
  • the lower diaphragm pumping assembly 14 is configured to operate in a similar manner to the upper diaphragm pumping assembly 12 .
  • the outlet 20 b may be configured with dual outlet ports generally indicated as 20 b ( 1 ), 20 b ( 2 ) to provide the fluid the pump 10 to at least one fluid outlet source (not shown).
  • the dual outlet ports 20 b ( 1 ), 20 b ( 2 ) may be configured with outlet port channels 20 b ( 3 ), 20 b ( 4 ) to slidably receive outlet fitting couplers 20 b ( 5 ), 20 b ( 6 ) that couple outlet fittings 20 b ( 7 ), 20 b ( 8 ) to the dual outlet ports 20 b ( 1 ), 20 b ( 2 ) of the manifold assembly 20 .
  • FIGS. 7 , 7 A, 7 B and 7 C show multi-directional port configurations.
  • the present invention allows for many different inlet/outlet port connections which provide for flexibility in certain tight, fixed spaces.
  • mixing of two (2) different fluids may be made possible as well; and the dual discharge ports allow for two (2) dispensing valves/faucets.
  • the dual inlet ports 20 a ( 1 ), 20 a ( 2 ) may be configured or oriented orthogonal to one another; and the dual outlet ports 20 b ( 1 ), 20 b ( 2 ) are configured or oriented orthogonal to one another, although embodiments are envisioned using other types or kinds of geometric relationship between the dual inlet ports, the dual output ports, or both.
  • the dual inlet ports 20 a ( 1 ), 20 a ( 2 ) and the inlet chamber 20 a may be configured to receive the fluid from two fluid sources (not shown) for mixing together in the inlet chamber 20 a; and the dual outlet ports 20 b ( 1 ), 20 b ( 2 ) and the outlet chamber 20 b are configured to provide a mixed fluid to at least one fluid outlet source (not shown).
  • the inlet duckbill check valve assembly 20 d and the outlet duckbill check valve assembly 20 e may be configured to process a particle medium having up to 4 millimeters (mm) in diameter.
  • Either the dual inlet ports 20 a ( 1 ), 20 a ( 2 ), or the dual outlet ports 20 b ( 1 ), 20 b ( 2 ), or both the dual inlet ports 20 a ( 1 ), 20 a ( 2 ) and the dual outlet ports 20 b ( 1 ), 20 b ( 2 ), may be configured to receive different port fitting connections.
  • FIGS. 7A , 7 B and 7 C the part of the pump shown does not include, by way of example, the front pump housing analogous to element 11 b in FIG. 2 .
  • a person skilled in the art would appreciate how to configured such a front pump housing without undue experimentation, e.g., based on that disclosed herein.
  • FIG. 6 shows an alternative embodiment of the manifold assembly 20 ′, having parts and components thereof labeled similar to the parts and components of the manifold assembly 20 in FIG. 7 with the additional of a single quote “′”.
  • the manifold assembly 20 ′ is configured to operate in a manner substantially similar to the manifold assembly 20 ( FIG. 7 ).
  • FIGS. 9A and 9B The Controller
  • FIG. 9A shows a flowchart generally indicated as 100 having steps 100 a through 100 k for implementing control functionality according to the present invention for operating a pump, e.g., having at least some combination of the components shown in FIG. 9B , consistent with that set forth herein.
  • the electronics controller may include, or take the form of, an electronic PCBA 52 , e.g., that may be internal to the pump, as shown in FIG. 9B .
  • Food and Beverage dispensing/processing Fluid and chemical transfer and mixing, any application that may require moving liquid with high viscosity, particulates and/or solids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Diaphragm pump features upper/lower diaphragm pumping assemblies (U/LDPAs) for pumping fluid and a manifold assembly arranged therebetween. The manifold assembly include a manifold body having an inlet with dual inlet ports and an inlet chamber to receive the fluid from a source; an inlet check valve assembly channel having an inlet duckbill check valve assembly (DCVA) arranged therein to receive the fluid from the dual inlet ports; U/LDPAs orifices having the U/LDPA arranged therein to receive the fluid from the inlet DCVA via first upper/lower manifold conduits and provide the fluid from the U/LDPAs via second upper/lower manifold conduits; an outlet check valve assembly channel having an outlet DCVA arranged therein to receive the fluid from the U/LDPAs; and an outlet having dual outlet ports and an outlet chamber to receive the fluid from the U/LDPAs and provide the fluid from the pump to a outlet source.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit to provisional patent application Ser. No. 62/012,526, filed 16 Jun. 2014, which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a pump for providing fluid and particulate; and more particularly relates to a diaphragm pump having a manifold assembly for pumping viscous fluid having solids and particulates.
  • 2. Brief Description of Related Art
  • FIG. 1 shows a diaphragm pump having a pump manifold with spring-loaded or ‘umbrella’ valves, which is known in the art. In FIG. 1, the spring is arranged between upper and lower umbrella valves. Pump are also known in the art having fixed wiring. Shortcomings of the known diaphragm pump configurations may include one or more of the following:
  • a. Valve Types—Spring loaded and umbrella style valves are limited to pumping low viscosity and “debris free” fluids. Liquids with high viscosity and/or particulates cause priming and performance issues on existing valve types.
      • i. Umbrella type valves—Consistent with that shown in FIG. 1, these umbrella type valves typically easily clog due to particulates in the fluid. When the umbrella type valves are clogged/fouled, they will not seal properly and this prevents the pump from priming and building pressure.
      • ii. Spring loaded valves—Consistent with that shown in FIG. 1, the solids in the liquid being pumped typically become entangled in the spring mechanism and prevent the valve from opening and closing.
  • b. Pumps having fixed wiring do not have the flexibility to quick connect/disconnect for servicing. Typical pumps have fixed wiring extending from the motor. If the user requires a connector that must be attached to the existing wires.
  • c. Most pumps in the marketplace today usually have 1 inlet and 1 discharge ports from the left and right side of pump head. Therefore, they are limited to only 1 way of connecting the inlet/outlet fittings.
  • In view of this, there is a need in the industry for a pump that solves these shortcomings in the pumps that are known in art.
  • SUMMARY OF THE INVENTION
  • According to some embodiments, the present invention may include, or take the form of, a pump featuring a new and unique combination of upper and lower diaphragm pumping assemblies together with a manifold assembly.
  • The upper and lower diaphragm pumping assemblies may be configured for pumping fluid through the pump.
  • The manifold assembly may be configured or arranged between the upper and lower diaphragm pumping assemblies.
  • The manifold assembly may include or be configured with a combination of a manifold body, an inlet check valve assembly channel, upper and lower diaphragm pumping assembly orifices, an outlet check valve assembly channel and an outlet.
  • The manifold body may be configured with an inlet having at least one inlet port and an inlet chamber to receive the fluid from at least one fluid source.
  • The inlet check valve assembly channel may include an inlet duckbill check valve assembly arranged therein to receive the fluid from the at least one inlet port.
  • The upper and lower diaphragm pumping assembly orifices may include the upper and lower diaphragm pumping assemblies arranged therein to receive the fluid from the inlet duckbill check valve assembly via first upper and lower manifold conduits and provide the fluid from the upper and lower diaphragm pumping assemblies via second upper and lower manifold conduits.
  • The outlet check valve assembly channel may include an outlet duckbill check valve assembly arranged therein to receive the fluid from the upper and lower diaphragm pumping assemblies.
  • The outlet may include at least one outlet port and an outlet chamber to receive the fluid from the upper and lower diaphragm pumping assemblies and provide the fluid from the pump to at least one fluid outlet source.
  • The present invention may include one or more of the following features:
  • The at least one inlet port may include dual inlet ports configured to receive inlet port fitting connections, and the at least one outlet port may include dual outlet ports configured to receive outlet port fitting connections.
  • The inlet duckbill check valve assembly may include two duckbill check valves, and the outlet duckbill check valve assembly comprises two duckbill check valves.
  • The manifold assembly may include two manifold assembly covers or plates attached to upper and lower surfaces of the manifold body and configured with the first and second upper and lower manifold conduits for providing fluid from the inlet check valve assembly channel to the outlet check valve assembly channel.
  • The manifold body may include, or take the form of, a plastic injection molded integral structure.
  • The dual inlet ports may be configured or oriented orthogonal to one another; and the dual outlet ports are configured or oriented orthogonal to one another.
  • The dual inlet ports and the inlet chamber may be configured to receive the fluid from two fluid sources for mixing together in the inlet chamber; and the dual outlet ports and the outlet chamber may be configured to provide a mixed fluid to the at least one fluid outlet source, including where the at least one fluid outlet source includes two fluid outlet sources.
  • The inlet duckbill check valve assembly and the outlet duckbill check valve assembly may be configured to process a particle medium having up to 4 millimeters (mm) in diameter.
  • Either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports and the dual outlet ports, may be configured to receive different port fitting connections, including where the different port fitting connections include a port fitting connection that allows the passage of the fluid either to or from the respective port, and a corresponding port fitting connection that does not allow the passage of the fluid either to or from the respective port.
  • Advantages of the present invention may include one or more of the following:
      • a. Capability to pump high viscosity fluids.
      • b. Capable of handling solids and particulates in the fluid being pumped.
      • c. Reinforced duckbills prevent the check valve from collapsing during operations that generate higher back pressures.
      • d. Flexible wiring options for quick connect/disconnect for servicing allowing easier installation, servicing and general maintenance.
      • e. Multiple port pump housing or assembly that allows for flexibility of port fitting connections and dispensing/mixing.
  • In effect, the pump having the aforementioned diaphragm pumping and manifold assemblies according to the present invention solves problems that have plagued the prior art pump shown in FIG. 1, and provides an important contribution to the state of the art.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The drawing, which are not necessarily drawn to scale, includes the following Figures:
  • FIG. 1 shows a front-to-back cross-sectional view of a pump that is known in the art.
  • FIG. 2 shows a perspective view of a pump having a single inlet and outlet, according to some embodiments of the present invention.
  • FIG. 2A shows a cross-sectional view of a lower half of the pump in FIG. 2 along lines and arrows 2A-2A, according to some embodiments of the present invention.
  • FIG. 3 shows a top down plan view of the pump in FIG. 2, according to some embodiments of the present invention.
  • FIG. 4 shows a side view of the pump in FIG. 2, according to some embodiments of the present invention.
  • FIG. 4A shows a cross-sectional view of a left side of the pump in FIG. 2 along lines and arrows 4A-4A, according to some embodiments of the present invention.
  • FIG. 5 shows a front-to-back cross-sectional view of the pump in FIG. 2 along lines and arrows 5-5, according to some embodiments of the present invention.
  • FIG. 6 shows a top perspective view of a pump housing with multi-ports, including inlet ports and outlet ports, according to some embodiments of the present invention.
  • FIG. 7 shows a top perspective view of a pump housing with multi-ports including inlet ports and outlet ports, according to other embodiments of the present invention.
  • FIG. 7(A) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in left/right directions transverse to the longitudinal axis of the pump, according to other embodiments of the present invention.
  • FIG. 7(B) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in a front direction along the longitudinal axis of the pump, according to other embodiments of the present invention.
  • FIG. 7(C) shows a top perspective view of part of a pump having a pump assembly with the pump housing in FIG. 7 configured with inlet/outlet port fitting connections extending in the left/right directions and a dual outlet port fitting connection extending in a left/right direction and a front direction, according to other embodiments of the present invention.
  • FIG. 8 shows a back-to-front cross-sectional view of the pump in FIG. 2 along lines and arrows 8-8, according to some embodiments of the present invention.
  • FIG. 9A shows a flowchart having steps for implementing control functionality for operating a pump arrangement or configuration like that shown in FIG. 9B, according to some embodiments of the present invention.
  • FIG. 9B shows part of a pump arrangement or configuration having a motor coupled via a printed circuit board assembly (PCBA) to a pressure switch, an on/off switch and a connector for receiving an input, for operating a pump, according to some embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION FIGS. 2-8: The Dual Diaphragm and Manifold Assembly
  • FIGS. 2-8 show a dual diaphragm pump generally indicated as 10, according to some embodiments of the present invention. FIGS. 1-5 show the dual diaphragm pump generally indicated as 10 having a single inlet/outlet configuration. In contrast, FIGS. 6-8 show configurations for a dual diaphragm pump having a multiple inlet/outlet configuration. In either case, the dual diaphragm pump may be configured with a multipart pump housing, e.g., having a motor housing 11 a and a removable front cover 11 b, and may also include a pump stand or mount 11 c. FIG. 2A shows a motor 13 and a motor shaft/diaphragm actuator assembly 15 arranged in the multipart pump housing, which couples to upper and lower diaphragm pumping assemblies generally indicated as 12, 14 (see FIGS. 7A, 7B and 7C), e.g., that cooperate consistent with that described below. FIGS. 7A, 7B, 7C also shows the dual diaphragm pump configured with a pressure sensor or switch module 50 (see also FIG. 9B) that senses the pressure of the fluid being pumped, and provides a suitable pressure sensing signal containing information about the pressure sensed. Pressure sensors and/or switches are known in the art, and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future. In FIGS. 7A, 7B and 7C, the front pump housing for covering the configuration of the multiport manifold assembly is not shown, e.g., which is analogous to element 11 b in FIGS. 1-5. The scope of the invention is not intended to be limited to how the multipart pump housing may be configured, combined or assembled together, etc., e.g., including the number of discrete parts in the configuration, combination or assembly.
  • Moreover, FIGS. 2 through 4A and 8 show that the dual diaphragm pump may also be configured with a quick connector 60 (see also FIG. 9B) for coupling to a corresponding connector for providing electrical power to the pump, e.g., including from a wall mounted transformer (not shown). The quick connector 60 configured on the pump wiring allows a user to specify the connector they require, and the wiring from their system would be configured with a suitable mating connector and plug for coupling directly into the pump. This quick connector configuration 60 allows for a quick and safe removal of a pump for a power source for the purpose of servicing. Flexible wiring options may also be configured that also allow for remote mounting of signal input/output devices and a power input.
  • The Manifold Assembly 20, 20
  • The diaphragm pump may include a manifold assembly like elements 20 and 20′, e.g., as shown in FIGS. 6 and 7.
  • By way of example, FIG. 7 shows the manifold assembly 20 equipped with internal input and output duckbill valves 30, 32, 40, 42 that allow for the passing of solids and particulate in the liquid being pumped without fouling or clogging the internal duckbill valves 30, 32, 40, 42. The integration of the internal duckbill valves 30, 32, 40, 42 allows the diaphragm pump 10 to handle higher viscosity fluids with less restriction and is capable of passing a larger particle medium of sizes up to 4 millimeters (mm) in diameter, especially when compared to the prior art pump shown in FIG. 1. The internal input and output duckbill valves 30, 32, 40, 42 can be reinforced with an internal support to prevent the respective valve from collapsing in applications that will generate higher back pressures during operation or when the pump is not running, e.g., consistent with that disclosed in U.S. Pat. No. 8,276,616 (Atty docket no. M-FLJ-0902//911-5.49-2) and U.S. Pat. No. 8,690,554 (Atty docket no. M-FLJ-1002//911-5.52-1), which are assigned to the assignee of the present application and hereby incorporated by reference in their entirety.
  • The diaphragm pump may include the upper and lower diaphragm pumping assemblies generally indicated as 12, 14 in combination with the manifold assembly 20, e.g., as shown in FIGS. 4A and 5. By way of example, the upper and lower diaphragm pumping assemblies 12, 14 may be configured with upper and lower diaphragm 12 a, 14 a, and upper and lower diaphragm assembly covers or plates 12 b, 14 b that are respectively fastened to the manifold assembly 20, as shown. See the five (5) fasteners/screws like element f1 in FIGS. 7A, 7B and 7C, and the corresponding five (5) fastener openings like element o1 configured or formed in the manifold assembly 20 in FIG. 7. See also FIGS. 7A, 7B and 7C, which show the upper diaphragm pumping assembly 12.
  • In operation, the upper and lower diaphragm pumping assemblies 12, 14 may be configured for pumping fluid through the dual diaphragm pump 10. By way of example, the upper diaphragm pumping assembly 12 may be configured to draw the fluid from the inlet chamber 20 a into the manifold assembly 20, through the upper input duckbill valve 30, through the upper output duckbill valve 40, to the outlet chamber 20 b and from the manifold assembly 20; and the lower diaphragm pumping assembly 14 may be configured to draw the fluid from the inlet chamber 20 a into the manifold assembly 20, through the lower input duckbill valve 32, through the lower output duckbill valve 42, to the outlet chamber 20 b and from the manifold assembly 20, e.g., consistent with that shown in FIG. 5.
  • The manifold assembly 20 may be configured or arranged between the upper and lower diaphragm pumping assemblies 12, 14 and have components configured to operate as follows:
  • As best shown in FIGS. 5 and 7, in addition to the inlet chamber 20 a, and the outlet chamber 20 b, the manifold assembly 20 may also include or be configured with a combination of a one-piece integral manifold body 20 c, an inlet check valve assembly channel 20 d having upper diaphragm pumping assembly orifices, one such inlet orifice which is labeled 20 d(1), and an outlet check valve assembly channel 20 e having upper and lower diaphragm pumping assembly orifices, one such outlet orifice which is labeled 20 e(1).
  • The inlet 20 a may be configured with dual inlet ports generally indicated as 20 a(1), 20 a(2) to receive the fluid from at least one fluid source (not shown). The dual inlet ports 20 a(1), 20 a(2) may be configured with inlet port channels 20 a(3), 20 a(4) to slidably receive inlet fitting couplers 20 a(5), 20 a(6) that couple inlet fittings 20 a(7), 20 a(8) to the dual inlet ports 20 a(1), 20 a(2) of the manifold assembly 20.
  • The inlet check valve assembly channel 20 d may include an inlet duckbill check valve assembly arranged therein that may include the inlet duckbill check valve 30, 32, as well as one or more other inlet duckbill check valve assembly components like valve receiving members 30(1), 32(1), and internal supports (not shown) to prevent the valve from collapsing in applications that will generate higher back pressures during operation or when the pump is not running, e.g., consistent with that disclosed in U.S. Pat. No. 8,276,616 (Atty docket no. M-FLJ-0902//911-5.49-2) and U.S. Pat. No. 8,690,554 (Atty docket no. M-FLJ-1002//911-5.52-1).
  • By way of example, the manifold body 20 c may include, or take the form of, a plastic injection molded integral structure, although embodiments are envisioned using other structures or configuration both now known and later developed in the future within the spirit on the underlying invention.
  • FIG. 5 shows a flowpath of fluid through the dual diaphragm pump, including an input partway of a fluid flow path FP, for fluid flowing into the inlet 20 a, an internal part for fluid flowing through the inlet check valve assembly channel 20 d, through the upper and lower diaphragm pumping assemblies 12, 14, and through the outlet check valve assembly channel 20 e, and an output flowpath FPout for fluid flowing from the outlet 20 b, e.g., consistent with that set forth herein.
  • The upper diaphragm pumping assembly inlet orifice 20 d(1) may be configured to be in fluidic communication with the upper diaphragm pumping assembly like element 12 arranged therein to receive the fluid from the inlet duckbill check valve 30, as well as one or more other inlet duckbill check valve assembly components like valve receiving members 30(1), provide (i.e. pump) the fluid via upper manifold conduits indicated by reference label 12 b′, 12 b″, 12″′, to the upper diaphragm pumping assembly orifice 20 e(1). In operation, and as a person skilled in the art would appreciate, the motor shaft/diaphragm actuator assembly 15 together with the diaphragm 12 a may be configured in order to provide the liquid from the upper manifold conduit 12 b′, through the upper manifold conduits 12 b″, and to the upper manifold conduit 12″′. The upper diaphragm pumping assembly outlet orifice 20 e(1) may be configured to be in fluidic communication with the outlet check valve assembly channel 20 e, for providing fluid to the outlet duckbill check valve 40, as well as one or more other outlet duckbill check valve assembly components like valve receiving members 40(1), and provide (i.e. pump) the fluid to the outlet 20 b.
  • As a person skilled in the art would appreciate, the lower diaphragm pumping assembly 14 is configured to operate in a similar manner to the upper diaphragm pumping assembly 12.
  • The outlet 20 b may be configured with dual outlet ports generally indicated as 20 b(1), 20 b(2) to provide the fluid the pump 10 to at least one fluid outlet source (not shown). The dual outlet ports 20 b(1), 20 b(2) may be configured with outlet port channels 20 b(3), 20 b(4) to slidably receive outlet fitting couplers 20 b(5), 20 b(6) that couple outlet fittings 20 b(7), 20 b(8) to the dual outlet ports 20 b(1), 20 b(2) of the manifold assembly 20.
  • FIGS. 7, 7A, 7B and 7C
  • FIGS. 7, 7A, 7B and 7C show multi-directional port configurations. In effect, the present invention allows for many different inlet/outlet port connections which provide for flexibility in certain tight, fixed spaces. By way of example, with the dual inlet ports, mixing of two (2) different fluids may be made possible as well; and the dual discharge ports allow for two (2) dispensing valves/faucets.
  • As shown, the dual inlet ports 20 a(1), 20 a(2) may be configured or oriented orthogonal to one another; and the dual outlet ports 20 b(1), 20 b(2) are configured or oriented orthogonal to one another, although embodiments are envisioned using other types or kinds of geometric relationship between the dual inlet ports, the dual output ports, or both.
  • The dual inlet ports 20 a(1), 20 a(2) and the inlet chamber 20 a may be configured to receive the fluid from two fluid sources (not shown) for mixing together in the inlet chamber 20 a; and the dual outlet ports 20 b(1), 20 b(2) and the outlet chamber 20 b are configured to provide a mixed fluid to at least one fluid outlet source (not shown).
  • The inlet duckbill check valve assembly 20 d and the outlet duckbill check valve assembly 20 e may be configured to process a particle medium having up to 4 millimeters (mm) in diameter.
  • Either the dual inlet ports 20 a(1), 20 a(2), or the dual outlet ports 20 b(1), 20 b(2), or both the dual inlet ports 20 a(1), 20 a(2) and the dual outlet ports 20 b(1), 20 b(2), may be configured to receive different port fitting connections.
  • It is noted that in FIGS. 7A, 7B and 7C the part of the pump shown does not include, by way of example, the front pump housing analogous to element 11 b in FIG. 2. A person skilled in the art would appreciate how to configured such a front pump housing without undue experimentation, e.g., based on that disclosed herein.
  • FIG. 6 shows an alternative embodiment of the manifold assembly 20′, having parts and components thereof labeled similar to the parts and components of the manifold assembly 20 in FIG. 7 with the additional of a single quote “′”. The manifold assembly 20′ is configured to operate in a manner substantially similar to the manifold assembly 20 (FIG. 7).
  • FIGS. 9A and 9B: The Controller
  • FIG. 9A shows a flowchart generally indicated as 100 having steps 100 a through 100 k for implementing control functionality according to the present invention for operating a pump, e.g., having at least some combination of the components shown in FIG. 9B, consistent with that set forth herein.
  • Controller 52—The electronics controller may include, or take the form of, an electronic PCBA 52, e.g., that may be internal to the pump, as shown in FIG. 9B.
      • i. Steps 100 a and 100 b: Power may be applied to the pump via a power supply jack or an integral connector 60, which allows for direct power to the pump via the end user's source or from a wall mount transformer (not shown), so the On/Off switch 54 can be turned On.
      • ii. Steps 100 c and 100 d: The control circuit 52 then applies power to the motor 13 and allows a pre-designated time for priming. If the pump exceeds that time and there is a low/no current draw condition, then the control circuit 52 shuts the power off. The control circuit 52 then sends a signal indicating that the pump has shut down due to a run dry/no power condition. By way of example, the signal may take the form of an audio or visual alarm, as well as a wireless signal provided to a remote location, including a wifi signal transferred via the Internet to a remote (e.g., off site) access point.
      • iii. Steps 100 d, 100 e, 100 f: If the pump primes and is running, then the control circuit 52 monitors the current draw on the pump, and if the pump unit's current draw drops beneath a designated current range, whether by the fluid being pumped being exhausted or by some other issue, then the control circuit 52 will remove power to the motor 13. The control circuit 52 then sends a signal indicating that the pump has shut down due to a run dry/no power condition or an out-of-product being dispensed condition.
      • iv. Steps 100 h, 100 i, 100 j: If the pump experience a high current draw, e.g., exceeding a pre-designated range, then the control circuit 52 will remove power to the motor 13 and then sends a signal indicating that the pump has shut down due to an over-current condition.
      • v. By way of further example, if the power to the circuit board 52 should be removed by the pressure switch 50, e.g., due to an outlet (not shown) being shut off, then the control circuit 52 may be configured to remove power form the pump until the pressure is relieved at which time the control circuit 52 may be configured to automatically turn the pump back on and supply fluid.
      • vi. By way of further example, if the pump runs continuously for a specified period of time, then the circuit board 52 may be configured to remove the power from the motor and sends a signal indicating the pump has shut down due to a continuous running or time-out condition.
      • vii. By way of further example, the control circuit 52 may also be configured to precisely control the dispense amount and flow rate, e.g., by controlling the time and/or varying the voltage to the motor 13 using a pulse wave modulation (PWM) technique, or other method of motor speed control, including techniques both known in the art or later developed in the future.
      • viii. By way of further example, the control circuit 52 may also be used for storing, communicating, and/or remotely adjusting the pump operating parameters/settings, pump performance profiles with various fluids and media, error codes, flow rate, and dispensed quantity information, power consumption, etc.
  • Possible Applications:
  • Food and Beverage dispensing/processing, Fluid and chemical transfer and mixing, any application that may require moving liquid with high viscosity, particulates and/or solids.
  • The Scope of the Invention
  • Further still, the embodiments shown and described in detail herein are provided by way of example only; and the scope of the invention is not intended to be limited to the particular configurations, dimensionalities, and/or design details of these parts or elements included herein. In other words, a person skilled in the art would appreciate that design changes to these embodiments may be made and such that the resulting embodiments would be different than the embodiments disclosed herein, but would still be within the overall spirit of the present invention.
  • It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawings herein are not drawn to scale.
  • Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.

Claims (18)

What we claim is:
1. A pump, comprising:
upper and lower diaphragm pumping assemblies for pumping fluid through the pump; and
a manifold assembly arranged between the upper and lower diaphragm pumping assemblies, comprising:
a manifold body configured with an inlet having at least one inlet port and an inlet chamber to receive the fluid from at least one fluid source, configured with an inlet check valve assembly channel having an inlet duckbill check valve assembly arranged therein to receive the fluid from the at least one inlet port, configured with upper and lower diaphragm pumping assembly orifices having the upper and lower diaphragm pumping assemblies arranged therein to receive the fluid from the inlet duckbill check valve assembly via first upper and lower manifold conduits and provide the fluid from the upper and lower diaphragm pumping assemblies via second upper and lower manifold conduits, configured with an outlet check valve assembly channel having an outlet duckbill check valve assembly arranged therein to receive the fluid from the upper and lower diaphragm pumping assemblies, and an outlet having at least one outlet port and an outlet chamber to receive the fluid from the upper and lower diaphragm pumping assemblies and provide the fluid from the pump to at least one fluid outlet source.
2. A pump according to claim 1, wherein the at least one inlet port comprises dual inlet ports configured to receive inlet port fitting connections, and the at least one outlet port comprises dual outlet ports configured to receive outlet port fitting connections.
3. A pump according to claim 1, wherein the inlet duckbill check valve assembly comprises two duckbill check valves, and the outlet duckbill check valve assembly comprises two duckbill check valves.
4. A pump according to claim 1, wherein the manifold assembly comprises two manifold assembly plates attached to upper and lower surfaces of the manifold body and configured with the first and second upper and lower manifold conduits.
5. A pump according to claim 1, wherein the manifold body is a plastic injection molded integral structure.
6. A pump according to claim 2, wherein the dual inlet ports are configured or oriented orthogonal to one another; and the dual outlet ports are configured or oriented orthogonal to one another.
7. A pump according to claim 2, wherein the dual inlet ports and the inlet chamber are configured to receive the fluid from two fluid sources for mixing together in the inlet chamber; and the dual outlet ports and the outlet chamber are configured to provide a mixed fluid to the at least one fluid outlet source.
8. A pump according to claim 1, wherein the inlet duckbill check valve assembly and the outlet duckbill check valve assembly are configured to process a particle medium having up to 4 millimeters (mm) in diameter.
9. A pump according to claim 2, wherein either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports and the dual outlet ports are configured to receive different port fitting connections.
10. A pump, comprising:
upper and lower diaphragm pumping assemblies for pumping fluid through the pump; and
a manifold assembly arranged between the upper and lower diaphragm pumping assemblies, comprising:
a manifold body configured with an inlet having dual inlet ports and an inlet chamber to receive the fluid from one or more fluid sources, configured with an inlet check valve assembly channel having an inlet duckbill check valve assembly arranged therein to receive the fluid from the dual inlet ports, configured with upper and lower diaphragm pumping assembly orifices having the upper and lower diaphragm pumping assemblies arranged therein to receive the fluid from the inlet duckbill check valve assembly via first upper and lower manifold conduits and provide the fluid from the upper and lower diaphragm pumping assemblies via second upper and lower manifold conduits, configured with an outlet check valve assembly channel having an outlet duckbill check valve assembly arranged therein to receive the fluid from the upper and lower diaphragm pumping assemblies, and an outlet having dual outlet ports and an outlet chamber to receive the fluid from the upper and lower diaphragm pumping assemblies and provide the fluid from the pump to one or more fluid outlet sources.
11. A pump according to claim 10, wherein the dual inlet ports are configured to receive inlet port fitting connections, and the dual outlet ports are configured to receive outlet port fitting connections.
12. A pump according to claim 10, wherein the inlet duckbill check valve assembly comprises two duckbill check valves, and the outlet duckbill check valve assembly comprises two duckbill check valves.
13. A pump according to claim 10, wherein the manifold assembly comprises two manifold assembly plates attached to upper and lower surfaces of the manifold body and configured with the first and second upper and lower manifold conduits.
14. A pump according to claim 10, wherein the manifold body is a plastic injection molded integral structure.
15. A pump according to claim 10, wherein the dual inlet ports are configured or oriented orthogonal to one another; and the dual outlet ports are configured or oriented orthogonal to one another.
16. A pump according to claim 10, wherein the dual inlet ports and the inlet chamber are configured to receive the fluid from two fluid sources for mixing together in the inlet chamber; and the dual outlet ports and the outlet chamber are configured to provide a mixed fluid to one or more fluid outlet sources.
17. A pump according to claim 10, wherein the inlet duckbill check valve assembly and the outlet duckbill check valve assembly are configured to process a particle medium having up to 4 mm in diameter.
18. A pump according to claim 10, wherein either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports and the dual outlet ports are configured to receive different port fitting connections.
US14/740,577 2014-06-16 2015-06-16 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity Abandoned US20160017882A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/740,577 US20160017882A1 (en) 2014-06-16 2015-06-16 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity
US16/748,166 US11898548B2 (en) 2014-06-16 2020-01-21 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462012526P 2014-06-16 2014-06-16
US14/740,577 US20160017882A1 (en) 2014-06-16 2015-06-16 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/748,166 Continuation US11898548B2 (en) 2014-06-16 2020-01-21 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Publications (1)

Publication Number Publication Date
US20160017882A1 true US20160017882A1 (en) 2016-01-21

Family

ID=54936030

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/740,577 Abandoned US20160017882A1 (en) 2014-06-16 2015-06-16 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity
US16/748,166 Active US11898548B2 (en) 2014-06-16 2020-01-21 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/748,166 Active US11898548B2 (en) 2014-06-16 2020-01-21 Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Country Status (10)

Country Link
US (2) US20160017882A1 (en)
EP (1) EP3155263B1 (en)
JP (1) JP6813482B2 (en)
CN (1) CN106662096B (en)
AU (2) AU2015277372A1 (en)
CA (1) CA2952616C (en)
ES (1) ES2873199T3 (en)
MX (1) MX2016016757A (en)
RU (1) RU2717036C2 (en)
WO (1) WO2015195624A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016191731A1 (en) 2015-05-27 2016-12-01 Flow Control Llc. Cartridge pump
WO2020069003A1 (en) * 2018-09-25 2020-04-02 Sun Automation, Inc. Electric powered diaphragm ink pump apparatus and method
WO2021046507A1 (en) 2019-09-06 2021-03-11 Flow Control LLC Infusion/mixer pump system - pump with integrated gas liquid mixing valve in an enclosure
US11339768B2 (en) 2015-05-27 2022-05-24 Flow Control LLC Cartridge accumulator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221071A (en) * 1937-05-29 1940-11-12 Bendix Prod Corp Pump
US3775030A (en) * 1971-12-01 1973-11-27 Wanner Engineering Diaphragm pump
US5332372A (en) * 1992-04-20 1994-07-26 Warren Rupp, Inc. Modular double-diaphragm pump
US5391060A (en) * 1993-05-14 1995-02-21 The Aro Corporation Air operated double diaphragm pump
US20060159565A1 (en) * 2003-01-08 2006-07-20 Marco Sanwald Method and system for pumping powder, and powder coating apparatus
US20060283320A1 (en) * 2005-06-21 2006-12-21 Sonic Tractor Parts, Inc. Improved structure of pump
US20110002802A1 (en) * 2007-12-10 2011-01-06 Medrad, Inc. Continuous fluid delivery system
US20130017110A1 (en) * 2011-07-15 2013-01-17 Itt Manufacturing Enterprises, Inc. Diaphragm pump using duckbill and other types of valves
US20130331823A1 (en) * 2012-05-15 2013-12-12 Smith & Nephew Plc Negative pressure wound therapy apparatus
US20150226192A1 (en) * 2014-02-07 2015-08-13 Graco Minnesota Inc. Electric drive system for a pulseless positive displacement pump

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2764097A (en) * 1953-03-04 1956-09-25 Lindsay H Browne Pump
US2922854A (en) 1957-09-16 1960-01-26 Axel L Nielsen Sump pump control
US4478560A (en) * 1982-09-23 1984-10-23 The Warren Rupp Company Fluid-operated reciprocating pump
US4583920A (en) 1983-12-28 1986-04-22 M&T Chemicals Inc. Positive displacement diaphragm pumps employing displacer valves
US4605273A (en) 1984-12-17 1986-08-12 Horton Paul D Parallel-blade/twist-lock adapter plug
US4597721A (en) * 1985-10-04 1986-07-01 Valco Cincinnati, Inc. Double acting diaphragm pump with improved disassembly means
GB8708417D0 (en) 1987-04-08 1987-05-13 Eaton Sa Monaco Electric pump
US4936753A (en) * 1988-06-03 1990-06-26 The Aro Corporation Diaphragm pump with interchangeable valves and manifolds
US5071370A (en) 1990-12-04 1991-12-10 Metropolitan Pump Company Connector system for use with electrically operable pumps
EP0524820A3 (en) 1991-07-24 1993-10-27 Binks Bullows Ltd Diaphragm pump
CN2140463Y (en) * 1992-03-27 1993-08-18 唐永奎 Fluid mixer
US5304073A (en) 1992-06-05 1994-04-19 Carr-Griff, Inc. Electrical connector and pump assembly utilizing same
US5368452A (en) * 1993-07-20 1994-11-29 Graco Inc. Double diaphragm pump having two-stage air valve actuator
RU2068118C1 (en) * 1993-08-10 1996-10-20 Евгений Анатольевич Каушнян Fluid-pressure-operated diaphragm pump
IL115327A (en) 1994-10-07 2000-08-13 Bayer Ag Diaphragm pump
GB9423174D0 (en) * 1994-11-17 1995-01-04 Clarke Peter Diaphragm pump
RU2101567C1 (en) 1995-10-12 1998-01-10 Научно-производственное объединение "Искра" Double-action diaphragm pump
US5848878A (en) 1996-06-21 1998-12-15 Ingersoll-Rand Company Pump with improved manifold
JP4071334B2 (en) * 1998-01-09 2008-04-02 本田技研工業株式会社 Fluid pump
US6234823B1 (en) 1999-03-29 2001-05-22 Paul Martin Fuess Plug adapter having eccentric ring driving cord retention wedge
US6325932B1 (en) 1999-11-30 2001-12-04 Mykrolis Corporation Apparatus and method for pumping high viscosity fluid
US7156614B2 (en) * 2000-01-26 2007-01-02 The Gorman-Rupp Company Centrifugal pump with multiple inlets
US7390175B2 (en) * 2004-02-27 2008-06-24 Hypro, Llc Double action simplex plunger pump
US6863574B1 (en) 2004-04-05 2005-03-08 Johannes Cornelius N. Bosch Plug assembly
US7670479B2 (en) 2004-05-24 2010-03-02 PUR Water Purification, Inc. Fluid container having an additive dispensing system
US20090092507A1 (en) * 2005-08-05 2009-04-09 Ramirez Jr Emilio A Fluid pump systems
US8596992B2 (en) * 2006-08-18 2013-12-03 L•VAD Technology, Inc. Air supply mechanism for ventricular assist system
US7690342B2 (en) 2007-01-05 2010-04-06 Walbro Engine Management, L.L.C. Priming circuit for a fuel system
ES2438999T3 (en) 2007-04-03 2014-01-21 Dfine, Inc. Bone treatment systems
US8151885B2 (en) * 2009-04-20 2012-04-10 Halliburton Energy Services Inc. Erosion resistant flow connector
US20110081265A1 (en) 2009-10-06 2011-04-07 Williams Hansford R Pulse pump
US20110139825A1 (en) 2009-12-10 2011-06-16 Kao Brands Company Diaphragm-style bottle pump
US20110171045A1 (en) * 2010-01-14 2011-07-14 Briggs & Stratton Corporation Pressure washer pump
JP2012233465A (en) 2011-05-09 2012-11-29 Ricoh Co Ltd Fluid transferer, fluid filling apparatus and fluid transfer method
US20130094983A1 (en) 2011-10-13 2013-04-18 Gojo Industries, Inc. Diaphragm foam pump for foam dispensers and refill units
US20130184641A1 (en) 2011-11-18 2013-07-18 MiniPumps,LLC. Accurate flow control in drug pump devices
US20150217312A1 (en) * 2012-09-13 2015-08-06 Graco Minnesota Inc. Accumulator for airless sprayer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221071A (en) * 1937-05-29 1940-11-12 Bendix Prod Corp Pump
US3775030A (en) * 1971-12-01 1973-11-27 Wanner Engineering Diaphragm pump
US5332372A (en) * 1992-04-20 1994-07-26 Warren Rupp, Inc. Modular double-diaphragm pump
US5391060A (en) * 1993-05-14 1995-02-21 The Aro Corporation Air operated double diaphragm pump
US20060159565A1 (en) * 2003-01-08 2006-07-20 Marco Sanwald Method and system for pumping powder, and powder coating apparatus
US20060283320A1 (en) * 2005-06-21 2006-12-21 Sonic Tractor Parts, Inc. Improved structure of pump
US20110002802A1 (en) * 2007-12-10 2011-01-06 Medrad, Inc. Continuous fluid delivery system
US20130017110A1 (en) * 2011-07-15 2013-01-17 Itt Manufacturing Enterprises, Inc. Diaphragm pump using duckbill and other types of valves
US20130331823A1 (en) * 2012-05-15 2013-12-12 Smith & Nephew Plc Negative pressure wound therapy apparatus
US20150226192A1 (en) * 2014-02-07 2015-08-13 Graco Minnesota Inc. Electric drive system for a pulseless positive displacement pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016191731A1 (en) 2015-05-27 2016-12-01 Flow Control Llc. Cartridge pump
US11020695B2 (en) 2015-05-27 2021-06-01 Flow Control LLC Cartridge pump
US11339768B2 (en) 2015-05-27 2022-05-24 Flow Control LLC Cartridge accumulator
WO2020069003A1 (en) * 2018-09-25 2020-04-02 Sun Automation, Inc. Electric powered diaphragm ink pump apparatus and method
CN113167311A (en) * 2018-09-25 2021-07-23 太阳自动化股份有限公司 Electronic diaphragm ink pump apparatus and method
CN113167311B (en) * 2018-09-25 2023-02-17 太阳自动化股份有限公司 Electronic diaphragm ink pump apparatus and method
WO2021046507A1 (en) 2019-09-06 2021-03-11 Flow Control LLC Infusion/mixer pump system - pump with integrated gas liquid mixing valve in an enclosure

Also Published As

Publication number Publication date
JP2017519158A (en) 2017-07-13
NZ727587A (en) 2020-12-18
EP3155263B1 (en) 2021-03-17
WO2015195624A1 (en) 2015-12-23
MX2016016757A (en) 2017-06-26
CN106662096B (en) 2019-07-19
RU2016149520A3 (en) 2018-11-13
RU2717036C2 (en) 2020-03-17
US11898548B2 (en) 2024-02-13
AU2015277372A1 (en) 2017-01-12
CN106662096A (en) 2017-05-10
JP6813482B2 (en) 2021-01-13
US20200158105A1 (en) 2020-05-21
EP3155263A4 (en) 2018-01-24
RU2016149520A (en) 2018-07-16
EP3155263A1 (en) 2017-04-19
AU2019203247B2 (en) 2021-03-25
AU2019203247A1 (en) 2019-05-30
CA2952616A1 (en) 2015-12-23
ES2873199T3 (en) 2021-11-03
CA2952616C (en) 2020-11-10

Similar Documents

Publication Publication Date Title
US11898548B2 (en) Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity
US10302090B2 (en) Bilge pump arrangement having back flow preventer
KR101810719B1 (en) Customizable dispense system with smart controller
WO2008143983A3 (en) Submersible pumping systems and methods
US20060130884A1 (en) Pressure washer
CA2973872C (en) Electronic plumbing fixture fitting with electronic valve including piston and seat
WO2012016959A3 (en) Pump
JP2017519158A5 (en)
NZ727587B2 (en) Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity
WO2016074632A1 (en) Sensor integrated device
WO2016074633A1 (en) Filter
US11835148B2 (en) Compact controlled valve with integrated orifices for precise mixing
WO2006099745A8 (en) A pump with a motor for pumping fluids
KR101489065B1 (en) Underwater pump
US8800645B2 (en) High flow intake system for submersible pumps
JP4502651B2 (en) Valve and fluid system having the valve
US20070253869A1 (en) Chemical delivery system
EP3940274B1 (en) System and valve for liquid chromatography
EP3670927B1 (en) Pump unit and pump system
JP2023537113A (en) Pump assembly and liquid dispensing device
CN104144881A (en) Water cleaning system

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLOW CONTROL LLC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEZA, HUMBERTO V.;TRAN, DERRICK T.;PERKINS, BERNARD L.;SIGNING DATES FROM 20150702 TO 20150706;REEL/FRAME:036359/0343

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION