US20150329725A1 - Materials and Methods - Google Patents

Materials and Methods Download PDF

Info

Publication number
US20150329725A1
US20150329725A1 US14/655,091 US201214655091A US2015329725A1 US 20150329725 A1 US20150329725 A1 US 20150329725A1 US 201214655091 A US201214655091 A US 201214655091A US 2015329725 A1 US2015329725 A1 US 2015329725A1
Authority
US
United States
Prior art keywords
cellulose
substrate
polysaccharide
starch
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/655,091
Other languages
English (en)
Inventor
Zhe Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Melbourne
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to THE UNIVERSITY OF MELBOURNE reassignment THE UNIVERSITY OF MELBOURNE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, Zhe
Publication of US20150329725A1 publication Critical patent/US20150329725A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • C09D101/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • C09D101/06Cellulose hydrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/16Esters of inorganic acids
    • C09D101/18Cellulose nitrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/06Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/08Ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/10Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/14Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • Y10T428/1321Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31634Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate

Definitions

  • the present invention relates to anti-fouling coatings and to substrates and apparatus comprising such coatings.
  • the invention also relates to methods of coating substrates that serve to reduce or prevent the fouling on such coated substrates in comparison to equivalent uncoated substrates.
  • fouling is common in marine and aquatic environments, on substrates such as domestic appliances, glass or other surfaces. Heat exchangers and other machinery that come into contact with water (particularly hard water) will be subject to fouling or scaling over time and many components of food and beverage processing equipment and other industrial machinery or appliances will often experience unwanted plaque build-up or fouling.
  • fouling of substrates can be unsightly, can give rise to hygiene or health and safety issues, can necessitate costly down time of equipment and maintenance/cleaning costs as well as reducing the efficiency of equipment operation.
  • fouling agents such as food and beverages, industrial chemicals, water, milk and other dairy products, marine or aquatic environments, sewage and the like.
  • the dairy industry is one that is particularly affected by the fouling of equipment, requiring frequent and expensive cleaning steps to restore equipment performance following fouling. Not only are the cost of cleaning and the down time of equipment significant problems, but the necessary cleaning steps require the use of water, energy and chemical cleaning agents such as strong acids and/or alkali that are not environmentally friendly.
  • Milk fouling in the dairy industry is particularly severe due to the thermal instability of the milk system (Changani and Belmar-Beiny 1997).
  • the literature suggests that protein and minerals may be all involved in the occurrence of milk fouling, which starts with surface adsorption and involves different mechanisms under different conditions (temperature and flow pattern) (Burton 1968; Delsing and Hiddink 1983). Heat induced reactions then take place to build up fouling layers to eventually form milk stones (de Jong and Bouman 1992; Delplace, Leuliet et al. 1997; Chen and Bala 1998; Chen and Chen 2001; Bansal and Chen 2006).
  • Type A deposits are found at temperatures below 110° C., and consists of 50-60 wt % proteins and 30-35 wt % minerals, which are much higher proportions than those found in raw milk.
  • the Type A deposit is creamy and white and is known as protein fouling. However, if it is overcooked it can become brown in colour and very much harder.
  • Type B deposits are found at heating temperatures above 110° C., and consist of 15-20 wt % protein and up to 70 wt % minerals (Laisme, Tissier et al. 1984). The major mineral compound is understood to be calcium phosphate. This type of deposit is harder than the Type A deposits, is grey in colour and is known as mineral fouling (Burton 1968).
  • the unwanted deposition on the surfaces of heat exchanger apparatus (in both the dairy industry and in other contexts) represents an additional thermal resistance to heat transfer, which reduces the thermal-hydraulic performance for the heat transfer equipment.
  • a substrate intended in use to contact a fouling agent, said substrate including a coating comprising polysaccharide, which coating serves to reduce or prevent fouling of the substrate caused by contact from the fouling agent, in comparison to an equivalent uncoated substrate.
  • an anti-fouling coating for a substrate that is intended in use to contact a fouling agent, wherein said coating comprises polysaccharide and wherein the coating serves to reduce or prevent fouling of the substrate caused by contact from the fouling agent, in comparison to an equivalent uncoated substrate.
  • an apparatus comprising a substrate intended in use to contact a fouling agent, said substrate including a coating comprising polysaccharide, which coating serves to reduce or prevent fouling of the substrate caused by contact from the fouling agent, in comparison to an equivalent uncoated substrate.
  • a method of reducing or preventing fouling of a substrate intended in use to contact a fouling agent, in comparison to an equivalent untreated substrate which comprises treating the substrate with aqueous polysaccharide to produce a polysaccharide comprising coating on the substrate.
  • the polysaccharide comprises starch or modified starch, although it can also comprise a mixture of starches and/or modified starches.
  • the polysaccharide can comprise one or more of rice starch, maize starch, potato starch, dextrin starch, hydrolysed starch, octenyl succinic anhydride (OSA) starch, alkaline-modified starch, bleached starch, oxidised starch, enzyme-treated starch, monostarch sulphate, distarch phosphate, acetylated starch, hydroxypropylated starch, hydroxyethyl starch, cationic starch and carboxymethylated starch.
  • SAA octenyl succinic anhydride
  • the polysaccharide comprises cellulose, hemicellulose, hydrolysed cellulose or a cellulose derivative and the polysaccharide can comprise a mixture of celluloses, hemicelluloses, hydrolysed celluloses and/or cellulose derivatives.
  • the polysaccharide can comprise one or more of cellulose I ⁇ cellulose I ⁇ , cellulose II, cellulose III, cellulose IV, cellulose acetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose acetate butyrate, cellulose nitrate, cellulose sulphate, methyl cellulose, ethyl cellulose, ethylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose, ethylhydroxyethyl cellulose, carboxymethyl cellulose and acid hydrolysed cellulose.
  • the coating further comprises protein or polypeptide bound to the polysaccharide.
  • the protein or polypeptide can comprise one or more of whey protein or casein.
  • the polysaccharide comprises dextrin starch and octenyl succinic anhydride starch and the protein comprises casein.
  • the substrate can comprise one or more of metal, metal alloy, ceramic, glass, graphite, composite material, concrete or polymer and a specific example is stainless steel.
  • the apparatus can either be, or can be an element of, food, dairy or beverage processing equipment; a pump, pipe, conduit, connector or plumbing fitting; a heat exchanger, radiator, heating element, hot water service, kettle or jug; a commercial or domestic appliance, washing machine, dish washer, clothes washing machine, air conditioner; a marine or aquatic vehicle, structure or fixture; a window, windscreen, lens, bottle or storage vessel; a building component or vehicle panel.
  • the method comprises treating the substrate with aqueous polysaccharide using an aqueous mixture, dispersion or solution of polysaccharide of from about 0.5% to about 20% w/w, from about 1.0% to about 15% w/w, from about 2% to about 10% w/w or from about 4% to about 8% w/w.
  • treating the substrate with aqueous polysaccharide can be conducted using an aqueous mixture, dispersion or solution of polysaccharide with pH of from about 3 to about 10 or from about 6 to about 8.
  • the substrate can be treated with the aqueous mixture, dispersion or solution of polysaccharide at a temperature of from about 50° C. to about 150° C., from about 65° C.
  • the substrate can be treated with the aqueous mixture, dispersion or solution of polysaccharide for a period of from about 1 hour to about 48 hours or from about 4 hours to about 12 hours.
  • the aqueous mixture, dispersion or solution of polysaccharide is flowing at a rate of from about 5 L/min to about 100 L/min, such as from about 15 L/min to about 70 L/min.
  • the method further comprises treating the polysaccharide coated substrate with an aqueous mixture, dispersion or solution of protein or polypeptide, such as for example, one or more of whey protein and casein, such as ⁇ -, ⁇ - and k-casein.
  • the aqueous mixture, dispersion or solution of protein or polypeptide can comprise from about 2% to about 16%, such as from about 8% to about 14% w/w of protein and/or polypeptide and the aqueous mixture, dispersion or solution of protein and/or polypeptide can comprise milk or a casein comprising milk fraction.
  • the aqueous mixture, dispersion or solution of protein or polypeptide can, for example, have pH of from about 4 to about 10, such as from about 6 to about 8 and the hydrophilic polysaccharide coated substrate can for example be treated with the aqueous mixture, dispersion or solution of protein or polypeptide at a temperature of from about 65° C. to about 98° C., such as from about 75° C. to about 95° C.
  • the treatment with the aqueous mixture, dispersion or solution of protein or polypeptide can be for a period of from about 15 mins to about 6 hours, such as from about 1 hour to about 2 hours and the said aqueous mixture, dispersion or solution of protein or polypeptide can be flowing at a rate of from about 20 L/min to about 100 L/min, such as from about 30 L/min to about 70 L/min.
  • the method further comprises a step of rinsing with water or dilute alkali (such as NaOH), which can, for example, be conducted at a temperature of from about 20° C. to about 80° C. for a period of between about 5 mins and about 1 hour.
  • water or dilute alkali such as NaOH
  • a substrate intended in use to contact a fouling agent that has been treated to reduce or prevent fouling in comparison to an equivalent untreated substrate, according to the method outlined above.
  • apparatus comprising the substrates so produced.
  • FIG. 1 shows a graph of U* evaluation over time during milk fouling where ( ⁇ ) is the control (running water), ( ⁇ ) is the coated heat exchanger (milk processing) and ( ⁇ ) is the uncoated heat exchanger (milk processing);
  • FIG. 2 shows images of milk fouling before and after coating treatment following 8 h of thermal processing, wherein A show the heat exchanger inlet (left) and outlet (right) before coating treatment, B show the heat exchanger inlet (left) and outlet (right) after coating treatment, C is the heat exchanger plate before coating treatment and D is the heat exchanger plate after coating treatment;
  • FIG. 3 shows images of water scaling after one month of continuous thermal processing wherein the upper images, A are the cooling water tubes before coating treatment and the lower images, B, are the cooling water tubes after coating treatment;
  • FIG. 4 shows SEM Images of coated stainless steel 304, wherein A and B are partly etched coated surfaces; C is the bottom layer structure and D is the top layer structure;
  • the present inventor has conceived a novel coating technology that has application to reduce fouling in a variety of different contexts.
  • Potential advantages of the inventive approach may include that it utilises safe and readily available materials, is suitable for use in food/beverage production and in a range of other industrial or domestic settings, does not appear to give rise to any damage or degradation of treated materials and can impart a long term anti-fouling effect upon treated substrates.
  • the present invention is directed to a polysaccharide comprising coating and to substrates and apparatus comprising such a coating, which serves to reduce or prevent fouling of the substrate caused by contact from a fouling agent, in comparison to an equivalent uncoated substrate.
  • substrate is intended to be interpreted broadly to encompass any material or surface that is subject to the build up of fouling or deposition, upon contact to a fouling agent.
  • Such substrates can constitute single components, materials or elements or may constitute elements of a more complex apparatus.
  • the substrates to which coating technologies according to the invention can be applied can comprise one or more of metal, metal alloy, ceramic, glass, graphite, composite material, concrete or polymer.
  • metals and metal alloys include iron, steel, stainless steel, copper, gold, silver, platinum, brass, aluminium, nickel and tin.
  • Ceramic and glass substrates include crystalline and non-crystalline ceramics, silicate glass, glass-ceramic, amorphous metal glass, silicon dioxide and graphene oxide.
  • polymer as it is used herein is intended to encompass homo-polymers, co-polymers, polymer containing materials, polymer mixtures or blends, such as with other polymers and/or natural and synthetic rubbers, as well as polymer matrix composites, on their own, or alternatively as an integral and surface located component of a multi-layer laminated sandwich comprising other materials e.g. polymers, metals or ceramics (including glass), or a coating (including a partial coating) on any type of substrate material.
  • polymer encompasses thermoset and/or thermoplastic materials as well as polymers generated by plasma deposition processes.
  • polystyrene resin such as low density polyethylene (LDPE), polypropylene (PP), high density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), blends of polyolefins with other polymers or rubbers; polyethers, such as polyoxymethylene (Acetal); polyamides, such as poly(hexamethylene adipamide) (Nylon 66); polyimides; polycarbonates; halogenated polymers, such as polyvinylidenefluoride (PVDF), polytetra-fluoroethylene (PTFE) (TeflonTM), fluorinated ethylene-propylene copolymer (FEP), and polyvinyl chloride (PVC); aromatic polymers, such as polystyrene (PS); ketone polymers such as polyetheretherketone (PEEK); methacrylate polymers, such as polymethylmethacrylate (PMMA); polyesterstyrene (PS); ketone polymers such as polyetheretherketone
  • the substrates of the invention may include more than one of the types of materials outlined above, which may be in the form of bulk materials, processed, shaped, joined, moulded or otherwise formed materials that either are, or are components of, other apparatus.
  • apparatus including substrates that can be coated according to the invention include apparatus that is or are an element of food, dairy or beverage processing equipment; a pump, pipe, conduit, connector or plumbing fitting; a heat exchanger, radiator, heating element, hot water service, kettle or jug; a commercial or domestic appliance, washing machine, dish washer, clothes washing machine, air conditioner; a marine or aquatic vehicle, structure or fixture; a window, windscreen, lens, bottle or storage vessel; a building component or vehicle panel.
  • fouling agent is intended to encompass agents that, after a substrate has been exposed to them, result in the formation of build up, deposition or the like on the substrate surface. While the chemical and mechanical processes giving rise to fouling are likely to vary significantly depending upon the nature of the fouling agent, the substrate in question and the conditions to which they are exposed (such as temperature, pressure, pH, salt concentration) it is nonetheless understood, without wishing to be bound by theory, that coatings according to the invention can be effective to prevent or reduce fouling or deposition due to inhibition of initial adhesion of fouling agent derived species onto the substrate.
  • Fouling agents for example include water, particularly hard water, salt water, marine or aquatic environment (that may include water or salt water in combination with other agents such as bacteria, algae and other organisms), food and beverage, milk and other dairy derived substances such as milk fractions, yoghurt, cheese, cream, butter, ice-cream; raw or treated sewerage; industrial chemicals, petrochemicals, lubricants; fermentation broth and the like.
  • Fouling agents according to the invention will generally take the form of a fluid, but may also include some solid or semi-solid materials. The period of exposure of a fouling agent to a substrate required to cause fouling will depend upon the nature of the fouling agent in question, the substrate and the conditions to which they are exposed.
  • the coating according to the present invention has been shown to reduce or prevent fouling of the substrate caused by contact from the fouling agent.
  • the reduction or prevention of fouling is relative to the fouling that would be experienced by an equivalent substrate exposed to the same fouling agent under equivalent conditions. It is a simple matter for a skilled person to conduct such a comparative study to a substrate both with and without the coating of the invention.
  • the substrates treated according to the invention with polysaccharide will in many cases, although not necessarily, give rise to increased surface hydrophilicity.
  • the hydrophilic nature of the treated surface can readily be determined by conducting water drop contact angle analysis of both coated and uncoated surfaces.
  • a water droplet contact angle of less than about 90°, such as less than about 80°, less than about 50° or less than about 30° is indicative of a hydrophilic surface.
  • the coating according to the invention need not necessarily decrease the contact angle of the substrate relative to the uncoated form, although this is likely to happen in many cases.
  • the coatings according to the invention comprise polysaccharide and may additionally include other agents. Generally, however, polysaccharide will comprise a predominant component of a layer of the coating that is closely adjacent to the substrate. Other elements that may be included within the polysaccharide comprising layer or layers of the coating include, but are not limited to, oligosaccharide, ions such as calcium, sodium, potassium, hydroxide, and the like as well as protein and peptide. Particularly preferred polysaccharides that are incorporated into the coatings according to the invention include one or more of starch, modified starch, cellulose, hemicellulose, hydrolysed cellulose and cellulose derivatives.
  • the starch or modified starch can comprise one or more of rice starch, maize starch, potato starch, dextrin starch, hydrolysed starch, octenyl succinic anhydride (OSA) starch, alkaline-modified starch, bleached starch, oxidised starch, enzyme-treated starch, monostarch sulphate, distarch phosphate, acetylated starch, hydroxypropylated starch, hydroxyethyl starch, cationic starch and carboxymethylated starch.
  • SAA octenyl succinic anhydride
  • the cellulose, hydrolysed cellulose or cellulose derivative can comprise one or more of cellulose I ⁇ cellulose I ⁇ , cellulose II, cellulose III, cellulose IV, cellulose acetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose acetate butyrate, cellulose nitrate, cellulose sulphate, methyl cellulose, ethyl cellulose, ethylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose, ethylhydroxyethyl cellulose, carboxymethyl cellulose and acid hydrolysed cellulose.
  • the coating can include an additional layer or layers comprising protein and/or polypeptide that is bound to the base polysaccharide comprising layer.
  • Proteins or polypeptides that may be included within the coatings include one or more of whey protein and casein. Specific caseins that can be adopted include ⁇ -, ⁇ - and k-casein.
  • the protein comprises casein.
  • the polysaccharide comprises dextrin starch and/or octenyl succinic anhydride starch and in a further embodiment the coating comprises dextrin starch and/or octenyl succinic anhydride starch in combination with casein.
  • the invention in another broad aspect relates to a method of reducing or preventing fouling of a substrate intended in use to contact a fouling agent, in comparison to an equivalent untreated substrate, which comprises treating the substrate with aqueous polysaccharide to produce a polysaccharide comprising coating on the substrate.
  • aqueous polysaccharide By reference to treating the substrate with “aqueous polysaccharide” it is intended to outline that polysaccharide, as outlined above, can be included in aqueous solution or as a mixture or dispersion in water, depending upon the form that the polysaccharide takes. Generally, the aqueous polysaccharide will include from about 0.5% to about 20% by weight of the polysaccharide to weight of the water, for example 1.0% to about 15%, 2% to about 10% or about 4% to about 8%.
  • the aqueous polysaccharide may be provided within a receptacle or bath into which the substrate is immersed, the aqueous polysaccharide can be sprayed or otherwise projected onto the substrate or the aqueous polysaccharide can be pumped through apparatus comprising internal surfaces as substrate to be exposed to the coating treatment of the invention.
  • the aqueous polysaccharide can include other components such as buffering or pH adjusting agents such as lactic acid, hydrochloric acid and sodium hydroxide and can, in one embodiment be adjusted to pH of from about 3 to about 10, such as from about 5 to about 8.
  • the aqueous polysaccharide is temperature controlled during the treatment such that the treatment is conducted for example at a temperature from about 50° C. to about 150° C., such as from about 65° C. to about 140° C. or about 85° C. to about 120° C.
  • the treatment may be conducted, for example, for a period of from about 1 hour to about 48 hours, such as from about 4 hours to about 12 hours or from about 4 hours to about 6 hours.
  • the aqueous polysaccharide may be pumped through the apparatus for example at a rate of from about 5 L/min to about 100 L/min, such as from about 15 L/min to about 70 L/min or from about 20 L/min to about 40 L/min.
  • a rate of from about 5 L/min to about 100 L/min such as from about 15 L/min to about 70 L/min or from about 20 L/min to about 40 L/min.
  • dairy processing equipment including heat exchangers it is convenient to run the aqueous polysaccharide through the heat exchanger apparatus with the heat exchanger in operation to control temperature, for example within the ranges outlined above.
  • the treatment with aqueous polysaccharide is followed by a separate treatment with an aqueous mixture, dispersion or solution of protein or polypeptide, as outlined above.
  • Rinsing of the substrate with water can be conducted following the initial aqueous polysaccharide treatment and prior to treatment with aqueous protein or polypeptide.
  • the treatment with aqueous protein or polypeptide can be conducted in much the same way as the treatment with aqueous polysaccharide, for example by immersing the substrate to be treated in a receptacle comprising the aqueous protein or polypeptide, by spraying or flowing the aqueous protein or polypeptide through an apparatus comprising the substrate to be treated on its internal surfaces.
  • the aqueous mixture, dispersion or solution of protein or polypeptide for example whey protein or casein
  • milk fraction it is intended to refer to a casein comprising component derived from milk that may have had elements of normal milk partially or completely removed, such as fats, sugars, proteins or water. It is also possible to conduct the treatment with milk that has been diluted with other agents such as water or aqueous salt solution.
  • the pH of the aqueous protein or peptide is from about 4 to about 10, such as from about 6 to about 8 and the substrate can suitably be exposed to the aqueous protein or polypeptide at a temperature from about 65° C. to about 98° C. or from about 75° C. to about 95° C., such as from about 90° C. to about 95° C.
  • the aqueous protein or polypeptide will be maintained below 100° C.
  • the treatment can, for example, be conducted for a period of from about 15 minutes to about 6 hours, such as from about 30 minutes to about 4 hours or from about 1 hour to about 2 hours.
  • the flow rate can conveniently be from about 20 L/min to about 100 L/min, such as from about 30 L/min to about 70 L/min or from about 40 L/min to about 50 L/min.
  • rinsing with water is conducted following the treatment with aqueous protein or polypeptide and this rinsing can conveniently be conducted at a temperature of from about 20° C. to about 80° C., such as from about 25° C. to about 50° C. or about 30° C. to about 40° C., for a period of between about 5 mins and about 2 hours, such as from about 10 mins to about 1 hour. In another aspect rinsing can be conducted at a temperature of from about 20° C. to about 80° C., such as from about 25° C.
  • dilute alkali such as sodium hydroxide, potassium hydroxide or the like, for example at a concentration of from about 0.1 wt % to about 5 wt %, such as from about 0.5 wt % to about 2 wt %.
  • the invention relates not only to the coatings of the invention as discussed above and to substrates and apparatus comprising them and to the methods for producing such coatings, but also to the coatings and substrates and apparatus when produced by the methods outlined above.
  • Polysaccharide in this case, 35% dextrin starch was mixed with 65% OSA starch and the final concentration of the mixture in water was 8.5% (w/w) with the pH around 3.5) was dissolved in water at 55° C. and heated up to 85° C. Solution was pumped into the heat exchanger and circulated for 4 hours and temperature was kept at 95° C. with the flow rate of 17 L/min for the plate heat exchanger and 35-40 L/min for the UHT heat exchanger. The polysaccharide solution was drained after 4 hours. Protein solution (80% casein (containing calcium) was mixed with 20% whey proteins with the final concentration of 12% (w/w) in water, pH at 6.7) was dissolved below 50° C.
  • Protein solution 80% casein (containing calcium) was mixed with 20% whey proteins with the final concentration of 12% (w/w) in water, pH at 6.7
  • the plates were not taken apart from the processing line. Instead the coating solutions were pumped into the plate heat exchanger in both the product and the hot media side. In this way, the heat exchanger plates were exposed to full contact with the coating solutions to form anti-fouling film.
  • LMTD Logarithmic mean temperature difference
  • a UHT heat exchanger (Primo D, Tetra Pak, productivity 4 t/h) in Jinan Jiabo Milk Co., Ltd. was used to carry out cooling water anti-fouling tests. Direct energy saving on the cooling water side results were provided by Jinan Jiabo Milk Co., Ltd. During the test, tap water was used directly as the cooling media without any further treatment. The cooling water tubes were removed from the heat exchanger and tested each month.
  • a microscope slide sized stainless steel 304 chip surface coated according to the invention was imaged by a Philips XL30 field-emission scanning electron microscope in the School of Botany, University of Melbourne.
  • the composition of stainless steel was analysed based on the following Chinese National standard and NACIS standard: C, S: Infrared absorption method after combustion in an induction furnace (Standard: GB/T 20123-2006), Si: Inductively coupled plasma atomic emission spectroscopy (ICP-AES) (Standard: NACIS/C H 116: 2005), Mn, Ni: ICP-AES (Standard: NACIS/C H 008: 2005), P: ICP-AES (Standard: NACIS/C H 011: 2005), Cr: Ammonium Peroxydisulfate Titration (Standard: NACIS/C H 116: 2005), N: Thermal conductimetric method after fusion in a current of inert gas (Standard: GB/T 20124-2006/ISO 15351: 1999).
  • C C
  • S Infrared absorption method after combustion in an induction furnace
  • Si Inductively coupled plasma atomic emission spectroscopy
  • Mn
  • Test results were provided by the NACIS based on the method for analysis of hygienic standard of stainless steel of China (standard: GB/T 5009.81-2003), stainless steel slides with and without coatings were submerged in 4% (v/v) acetic acid and boiled for 90 min then kept in the acid at room temperature for 24 h. Dissolved elements in the acid were measured by inductively coupled plasma mass spectrometry (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometry
  • Cooling water fouling tests were carried out in Jinan Jiabao Milk Co., Ltd and a Tetra Pak UHT heat exchanger was used.
  • the anti water scaling data was provided by Jiabao Milk before and after the coating treatment. As shown in FIG. 3 , after the coating treatment the amount of water scaling on the cooling tubes decreased dramatically and cleaning frequency was able to be reduced from monthly to three monthly. At least 65 Kg 0.9 MPa saturated steam was saved for each cleaning process. The acid concentration dropped 30% compared to the untreated surface.
  • SEM images were taken from partly etched stainless steel slides coated according to the invention to look at the different layers of the coating film (shown in FIG. 4 ).
  • the bottom layer is relatively amorphous and includes complex structures, while the top layer is smooth.
  • the coating was tested as an anti-fouling technology in both in the contexts of milk fouling and water scaling. During thermal processing, the coated heat exchanger was shown to efficiently maintain heat transfer coefficient in comparison to the uncoated reference steel. Cleaning efficiency of the coated substrates was also significantly improved and there was no harm or alteration to the heat exchanger surfaces. The coating was also shown to provide some protection for the stainless steel substrates from acid induced degradation.
  • Polysaccharide in this case, 35% dextrin starch was mixed with 65% OSA starch and the final concentration of the mixture in water was 9% (w/w) with the pH around 3.5) was dissolved in water at 85° C. Solution was pumped into the heat exchanger and circulated for 5 hours and temperature was kept at 95° C. with the flow rate of 10 L/min for the Amotec-THE heat exchanger and 80 r/min stirring speed for the pot heat exchanger. The polysaccharide solution was drained after 5 hours. Protein solution (80% casein (containing calcium) was mixed with 20% whey proteins with the final concentration of 12% (w/w) in water, pH at 6.7) was dissolved below 50° C.
  • Protein solution 80% casein (containing calcium) was mixed with 20% whey proteins with the final concentration of 12% (w/w) in water, pH at 6.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US14/655,091 2012-12-25 2012-12-25 Materials and Methods Abandoned US20150329725A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087432 WO2014100976A1 (fr) 2012-12-25 2012-12-25 Matériaux et procédés

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087432 A-371-Of-International WO2014100976A1 (fr) 2012-12-25 2012-12-25 Matériaux et procédés

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/812,999 Continuation US10421871B2 (en) 2012-12-25 2017-11-14 Materials and methods

Publications (1)

Publication Number Publication Date
US20150329725A1 true US20150329725A1 (en) 2015-11-19

Family

ID=51019656

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/655,091 Abandoned US20150329725A1 (en) 2012-12-25 2012-12-25 Materials and Methods
US15/812,999 Expired - Fee Related US10421871B2 (en) 2012-12-25 2017-11-14 Materials and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/812,999 Expired - Fee Related US10421871B2 (en) 2012-12-25 2017-11-14 Materials and methods

Country Status (7)

Country Link
US (2) US20150329725A1 (fr)
EP (1) EP2938415A4 (fr)
CN (1) CN105120973A (fr)
AU (1) AU2012321097B2 (fr)
BR (1) BR112015015348A2 (fr)
CA (1) CA2896272A1 (fr)
WO (1) WO2014100976A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421871B2 (en) 2012-12-25 2019-09-24 The University Of Melbourne Materials and methods
CN115286958A (zh) * 2022-08-31 2022-11-04 陕西师范大学 一种生物质基防污材料及其应用
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
US12121829B2 (en) 2020-02-25 2024-10-22 Waters Technologies Corporation Chromatographic seal and coated flow paths for minimizing analyte adsorption

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214087A1 (fr) * 2017-05-25 2018-11-29 苏州睿研纳米医学科技有限公司 Revêtement d'adhésion de matrice extracellulaire anti-biologique et procédé de préparation associé et utilisation associée

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728127A (en) * 1970-08-18 1973-04-17 Foremost Mckesson Sodium caseinate-containing product and method for manufacturing
US3896753A (en) * 1966-07-26 1975-07-29 Nat Patent Dev Corp Hydrophilic polymer coating for underwater structures
US5336414A (en) * 1993-03-17 1994-08-09 Betz Laboratories, Inc. Methods for inhibiting the deposition of proteinaceous materials on heat transfer surfaces
US6191116B1 (en) * 1998-04-27 2001-02-20 National Starch And Chemical Investment Holding Corporation Highly soluble, hydratable, viscous, solution stable pyrodextrins, process of making and use thereof
US20040258655A1 (en) * 2003-06-19 2004-12-23 Hong Kong University Of Science And Technology Anti-fouling composition and method of production thereof
US6896928B2 (en) * 2002-06-07 2005-05-24 Corning Incorporated Two-layer protective coating system for LCD glass
US20060240159A1 (en) * 2005-03-17 2006-10-26 Cash Mary J Process of reducing fouling during heat processing of foods and beverages
US20070059273A1 (en) * 2005-09-15 2007-03-15 Price Ronald R Novel biodegradable biofouling control coating and method of formulation
US20070258940A1 (en) * 2006-05-04 2007-11-08 Willard Charlson Hamilton Hydrophilic fouling-release coatings and uses thereof
US20090188861A1 (en) * 2007-12-13 2009-07-30 Stc. Unm Preventing and cleaning fouling on reverse osmosis membranes
US20100278994A1 (en) * 2007-12-18 2010-11-04 Cargill, Incorporated Nosa-modified starch as an additive in dairy products
US20100305062A1 (en) * 2007-11-27 2010-12-02 Algipharma Ipr As Use of alginate oligomers in combating biofilms
US20110030578A1 (en) * 2009-08-05 2011-02-10 Katharina Schulz Microstructured multifunctional inorganic coating additives for preventing fouling (growth of biofilm) in aquatic applications
US20110070376A1 (en) * 2002-09-09 2011-03-24 Reactive Surfaces, Ltd. Anti-fouling Paints & Coatings
US20110240064A1 (en) * 2002-09-09 2011-10-06 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Cleaning a Surface
US20110253621A1 (en) * 2010-04-16 2011-10-20 Korea Institute Of Science And Technology Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method
US20110305909A1 (en) * 2010-06-09 2011-12-15 Weaver Douglas J K Articles having non-fouling surfaces and processes for preparing the same without altering bulk physical properties
US20130108819A1 (en) * 2010-07-02 2013-05-02 Ifremer (Institut Francais De Recherche Pour L'exploitation De La Mer) Exopolysaccharides for preventing and controlling the formation of biofilms
US20130334130A1 (en) * 2012-06-14 2013-12-19 Teledyne Scientific & Imaging, Llc Novel fouling resistant coating for filtration membranes and methods of producing and using same
US20140030534A1 (en) * 2012-07-24 2014-01-30 Empire Technology Development Llc Cellulosic material preservatives containing disaccharide
US20150010731A1 (en) * 2012-02-22 2015-01-08 Dexerials Corporation Antifouling layer, antifouling substrate, display device, and input device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2384010A1 (fr) * 1977-03-15 1978-10-13 Nal Pour Expl Oceans Centre Peinture antisalissure
JPS56102584A (en) * 1980-01-21 1981-08-17 Showa Netsugaku Kogyo Kk Corrosion inhibitor for galvanic anode method
AU2001255513A1 (en) 2000-04-20 2001-11-07 Cal-West Specialty Coatings, Inc Polysaccharide-based protective coating compositions and methods of use thereof
SE0101096D0 (sv) 2001-03-28 2001-03-28 Polysaccharide Ind Ab Protective coating
US6953598B2 (en) * 2001-12-28 2005-10-11 Wm. Wrigley Jr. Company Dairy-based candy production utilizing plate and frame assembly
WO2003090325A1 (fr) * 2002-04-19 2003-10-30 Fujitsu Limited Module de fibres dopees aux terres rares et procede de fabrication
JP2003326544A (ja) * 2002-05-16 2003-11-19 Fuji Photo Film Co Ltd 溶液製膜方法
US20090238811A1 (en) * 2002-09-09 2009-09-24 Mcdaniel C Steven Enzymatic Antimicrobial and Antifouling Coatings and Polymeric Materials
EP1776427A1 (fr) * 2004-07-01 2007-04-25 Biolocus A/S Compositions de revetement autolustrantes et antisalissure comprenant un enzyme
EP1630209A1 (fr) * 2004-08-10 2006-03-01 DSM IP Assets B.V. Composition de revêtement, revêtement lui-même et objet ainsi revêtu
WO2008064417A1 (fr) * 2006-11-28 2008-06-05 Calix Limited Matériau de revêtement
JP5254042B2 (ja) * 2007-01-18 2013-08-07 三菱電機株式会社 コーティング組成物及びその製造方法、熱交換器、並びに空気調和機
US7824557B2 (en) * 2007-08-08 2010-11-02 General Electric Company Method for controlling microbial biofilm in aqueous systems
ES2749224T3 (es) * 2007-11-12 2020-03-19 Aerogel Aps Composiciones de aerogel
WO2009103718A1 (fr) * 2008-02-18 2009-08-27 Dsm Ip Assets B.V. Composition de revêtement comprend un copolymère antimicrobien
JP2009235338A (ja) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp コーティング組成物、熱交換器、空気調和機
US20100000575A1 (en) * 2008-07-03 2010-01-07 Lurgi Psi, Inc. Method Of On-Line Cleaning Of A Heat Exchanger In An Ethanol Plant
JP5231362B2 (ja) * 2008-09-09 2013-07-10 日東電工株式会社 供給側流路材、及びスパイラル型分離膜エレメント
US20110094540A1 (en) * 2009-10-26 2011-04-28 E. I. Du Pont De Nemours And Company Starch purging material
SG189224A1 (en) * 2010-10-04 2013-05-31 Oasys Water Inc Thin film composite heat exchangers
SG190087A1 (en) * 2010-11-02 2013-06-28 Abbott Lab Stable concentrated liquid human milk fortifier
US20140170426A1 (en) * 2011-06-30 2014-06-19 Hempel A/S Novel fouling control coating compositions
DE102012103064A1 (de) * 2012-04-10 2013-10-10 AMiSTec GmbH & Co. KG Verbundmaterial mit einem Trägermaterial und einem antimikrobiell wirksamen Agens
EP2938415A4 (fr) 2012-12-25 2016-05-11 Univ Melbourne Matériaux et procédés
US20170156350A1 (en) * 2014-05-26 2017-06-08 Frieslandcampina Nederland B.V. Powder composition for an aerated food product

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896753A (en) * 1966-07-26 1975-07-29 Nat Patent Dev Corp Hydrophilic polymer coating for underwater structures
US3728127A (en) * 1970-08-18 1973-04-17 Foremost Mckesson Sodium caseinate-containing product and method for manufacturing
US5336414A (en) * 1993-03-17 1994-08-09 Betz Laboratories, Inc. Methods for inhibiting the deposition of proteinaceous materials on heat transfer surfaces
US6191116B1 (en) * 1998-04-27 2001-02-20 National Starch And Chemical Investment Holding Corporation Highly soluble, hydratable, viscous, solution stable pyrodextrins, process of making and use thereof
US6896928B2 (en) * 2002-06-07 2005-05-24 Corning Incorporated Two-layer protective coating system for LCD glass
US20110070376A1 (en) * 2002-09-09 2011-03-24 Reactive Surfaces, Ltd. Anti-fouling Paints & Coatings
US20110240064A1 (en) * 2002-09-09 2011-10-06 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Cleaning a Surface
US20040258655A1 (en) * 2003-06-19 2004-12-23 Hong Kong University Of Science And Technology Anti-fouling composition and method of production thereof
US20060240159A1 (en) * 2005-03-17 2006-10-26 Cash Mary J Process of reducing fouling during heat processing of foods and beverages
US20070059273A1 (en) * 2005-09-15 2007-03-15 Price Ronald R Novel biodegradable biofouling control coating and method of formulation
US20070258940A1 (en) * 2006-05-04 2007-11-08 Willard Charlson Hamilton Hydrophilic fouling-release coatings and uses thereof
US20100305062A1 (en) * 2007-11-27 2010-12-02 Algipharma Ipr As Use of alginate oligomers in combating biofilms
US20090188861A1 (en) * 2007-12-13 2009-07-30 Stc. Unm Preventing and cleaning fouling on reverse osmosis membranes
US20100278994A1 (en) * 2007-12-18 2010-11-04 Cargill, Incorporated Nosa-modified starch as an additive in dairy products
US20110030578A1 (en) * 2009-08-05 2011-02-10 Katharina Schulz Microstructured multifunctional inorganic coating additives for preventing fouling (growth of biofilm) in aquatic applications
US20110253621A1 (en) * 2010-04-16 2011-10-20 Korea Institute Of Science And Technology Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method
US20110305909A1 (en) * 2010-06-09 2011-12-15 Weaver Douglas J K Articles having non-fouling surfaces and processes for preparing the same without altering bulk physical properties
US20130108819A1 (en) * 2010-07-02 2013-05-02 Ifremer (Institut Francais De Recherche Pour L'exploitation De La Mer) Exopolysaccharides for preventing and controlling the formation of biofilms
US20150010731A1 (en) * 2012-02-22 2015-01-08 Dexerials Corporation Antifouling layer, antifouling substrate, display device, and input device
US20130334130A1 (en) * 2012-06-14 2013-12-19 Teledyne Scientific & Imaging, Llc Novel fouling resistant coating for filtration membranes and methods of producing and using same
US20140030534A1 (en) * 2012-07-24 2014-01-30 Empire Technology Development Llc Cellulosic material preservatives containing disaccharide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hill, Milk Properties and Characteristics, American Cheese Society, 2011 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421871B2 (en) 2012-12-25 2019-09-24 The University Of Melbourne Materials and methods
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
US12121829B2 (en) 2020-02-25 2024-10-22 Waters Technologies Corporation Chromatographic seal and coated flow paths for minimizing analyte adsorption
CN115286958A (zh) * 2022-08-31 2022-11-04 陕西师范大学 一种生物质基防污材料及其应用

Also Published As

Publication number Publication date
EP2938415A4 (fr) 2016-05-11
CA2896272A1 (fr) 2014-07-03
US10421871B2 (en) 2019-09-24
AU2012321097A1 (en) 2014-07-10
CN105120973A (zh) 2015-12-02
US20180134903A1 (en) 2018-05-17
WO2014100976A1 (fr) 2014-07-03
BR112015015348A2 (pt) 2017-07-11
AU2012321097B2 (en) 2016-06-30
EP2938415A1 (fr) 2015-11-04

Similar Documents

Publication Publication Date Title
US10421871B2 (en) Materials and methods
Goode et al. Fouling and cleaning studies in the food and beverage industry classified by cleaning type
Rosmaninho et al. Modified stainless steel surfaces targeted to reduce fouling–Evaluation of fouling by milk components
Marchand et al. Biofilm formation in milk production and processing environments; influence on milk quality and safety
Zouaghi et al. Biomimetic surface modifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion
Liu et al. Direct measurement of the force required to disrupt and remove fouling deposits of whey protein concentrate
AU2010254231B2 (en) Chlorinated alkaline pipeline cleaner with methane sulfonic acid
Wilson Fouling during food processing–progress in tackling this inconvenient truth
Memisi et al. CIP cleaning processes in the dairy industry
Al-Janabi et al. A criterion for the characterization of modified surfaces during crystallization fouling based on electron donor component of surface energy
Goode et al. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar
Benezech et al. A new test method for in-place cleanability of food processing equipment
Saget et al. A critical review on surface modifications mitigating dairy fouling
Cai et al. All treatment parameters affect environmental surface sanitation efficacy, but their relative importance depends on the microbial target
Rosmaninho et al. Protein–calcium phosphate interactions in fouling of modified stainless-steel surfaces by simulated milk
Gottschalk et al. Model food soils for investigating cleaning: A review
Zouaghi et al. Graphite-based composites for whey protein fouling and bacterial adhesion management
Balasubramani et al. Fouling Characteristics of Milk-Water system in a plate heat exchanger
Evans et al. Measurement of polyphenol–membrane interaction forces during the ultrafiltration of black tea liquor
Fan Fundamental Understandings and Optimization Strategies of in-place cleaning
Goode Characterising the cleaning behaviour of brewery foulants-to minimise the cost of cleaning in place operations.
Goode et al. Engineering considerations for cleaning and disinfection in the food industry
Toure et al. Soil model systems used to assess fouling, soil adherence and surface cleanability in the laboratory: a review
Ansari et al. Fouling of milk and cleaningin-place in the dairy industry
WO2004104271A1 (fr) Procedes et compositions empechant les salissures par les proteines

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE UNIVERSITY OF MELBOURNE, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, ZHE;REEL/FRAME:036782/0045

Effective date: 20150921

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION