US20150323044A1 - Dual Ratio Constant Mesh Gearbox - Google Patents

Dual Ratio Constant Mesh Gearbox Download PDF

Info

Publication number
US20150323044A1
US20150323044A1 US14/273,934 US201414273934A US2015323044A1 US 20150323044 A1 US20150323044 A1 US 20150323044A1 US 201414273934 A US201414273934 A US 201414273934A US 2015323044 A1 US2015323044 A1 US 2015323044A1
Authority
US
United States
Prior art keywords
drive mode
constant mesh
ratio constant
clutch assembly
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/273,934
Other versions
US9200697B1 (en
Inventor
Jean-Philippe Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atieva Inc
Original Assignee
Atieva Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atieva Inc filed Critical Atieva Inc
Priority to US14/273,934 priority Critical patent/US9200697B1/en
Priority claimed from US14/273,822 external-priority patent/US9228641B2/en
Priority claimed from US14/273,667 external-priority patent/US9109666B1/en
Assigned to ATIEVA, INC. reassignment ATIEVA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAUTHIER, Jean-Philippe
Priority to EP15166028.9A priority patent/EP2942546B1/en
Publication of US20150323044A1 publication Critical patent/US20150323044A1/en
Application granted granted Critical
Publication of US9200697B1 publication Critical patent/US9200697B1/en
Assigned to TRINITY CAPITAL FUND III, L. P. reassignment TRINITY CAPITAL FUND III, L. P. INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: ATIEVA, INC
Assigned to YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED reassignment YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATIEVA USA, INC, ATIEVA, INC.
Assigned to ATIEVA USA, INC., AVB METRICS, LLC, ATIEVA, INC. reassignment ATIEVA USA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TRINITY CAPITAL FUND III, L.P.
Assigned to ATIEVA USA, INC., AVB METRICS, LLC, ATIEVA, INC. reassignment ATIEVA USA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED
Assigned to AYAR THIRD INVESTMENT COMPANY reassignment AYAR THIRD INVESTMENT COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATIEVA, INC.
Assigned to ATIEVA, INC. reassignment ATIEVA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AYAR THIRD INVESTMENT COMPANY
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • F16H3/52Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears
    • F16H3/54Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears one of the central gears being internally toothed and the other externally toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/10Braking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/304Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force
    • F16H63/3043Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force comprising friction clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/087Arrangement and support of friction devices in planetary gearings, e.g. support of clutch drums, stacked arrangements of friction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3003Band brake actuating mechanisms
    • F16H2063/3006Band brake actuating mechanisms moved by a non-mechanical force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/304Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force
    • F16H2063/3059Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force using racks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2066Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using one freewheel mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • F16H2200/2082Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches one freewheel mechanisms

Definitions

  • the present invention relates generally to a vehicle and, more particularly, to a dual speed gearbox suitable for use with an electric motor.
  • While a single speed gearbox may be used with an electric vehicle, its use is not without drawbacks. For example, because of the maximum speed limit of the motor and the requirement in a high performance car to reach a certain top speed, the gear ratio is typically chosen to be longer than what would be optimal to provide crisp initial acceleration from a standstill. Additionally, due to torque ripple and vibrations, motor torque may be limited at very low rotating speeds. As a result, initial acceleration from a standstill in a typical electric vehicle is typically more sluggish than what would be expected given the drivetrain's characteristics.
  • a dual speed gearbox that may be optimized for the operating characteristics of an electric motor, thereby providing the desired level of performance throughout the vehicle's operating range.
  • the present invention provides such a dual speed gearbox.
  • the present invention provides a dual ratio constant mesh gearbox suitable for use with an automobile, and in particular suited for an electric vehicle.
  • the gearbox is comprised of (i) a housing, (ii) an input drive shaft coupled to the vehicle's propulsion electric motor, (iii) an externally toothed sun gear rigidly coupled to the input drive shaft, (iv) an internally toothed ring gear, (v) a set of planetary gears interposed between the sun and ring gears, where the set of planetary gears are in constant mesh with both the sun and ring gears, (vi) a planetary gear carrier coupled to the set of planetary gears and to an output drive shaft, where the output drive shaft is at least partially contained within the housing, (vii) a sprag clutch assembly contained within the housing, where the sprag clutch permits rotation of the ring gear in a first direction while preventing rotation of the ring gear in a second direction, (viii) a second clutch assembly separate and independent of the sprag clutch assembly, where
  • the gearbox may use a hollow output drive shaft and be configured to pass the input drive shaft through the hollow output drive shaft, where the input and output drive shafts are coaxial.
  • the second clutch assembly is preferably comprised of a multi-plate clutch assembly.
  • the second clutch assembly may include a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged; further, a positioning motor may be coupled to the pressure plate actuator, where the positioning motor controls the position of the pressure plate actuator.
  • the gearbox operates in a direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear, resulting in the sun gear, the ring gear and the set of planetary gears rotating within the housing as a single unit and causing the input drive shaft to be directly coupled to the output drive shaft and for the two drive shafts to rotate at the same rate.
  • the gearbox operates in an under drive reverse mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • the gearbox operates in an under drive reverse mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • the gearbox operates in an under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear.
  • forward input torque applied to the input drive shaft generates a reaction torque on the ring gear in the second direction, where rotation of the ring gear in the second direction is prevented by the sprag clutch assembly.
  • forward input torque applied to the input drive shaft causes forward vehicle torque to be applied to the vehicle's wheel(s) via the planetary gear carrier and the output drive shaft.
  • a controller coupled to the vehicle's propulsion motor is also coupled to a motor speed sensor and an output drive shaft speed sensor.
  • the controller is configured to increase the motor's speed based on the current output drive shaft speed and the under drive gear ratio.
  • a controller coupled to the vehicle's propulsion motor is also coupled to a motor speed sensor and an output drive shaft speed sensor.
  • the controller is configured to decrease the motor's speed based on the current output drive shaft speed and the under drive gear ratio.
  • the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, and (iv) a motor speed sensor coupled to the controller, where the controller is configured to automatically upshift from the under drive mode to the direct drive mode and to automatically downshift from the direct drive mode to the under drive mode based on current motor speed and a set of preprogrammed shift instructions, where the gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and where the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear.
  • a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged
  • a positioning motor coupled to the pressure plate actuator that controls
  • the gearbox may include a drive mode selector switch for selecting among a plurality of selectable drive modes, where each selectable drive mode corresponds to one of a plurality of shift instruction subsets, and where the set of preprogrammed shift instructions is comprised of the plurality of shift instruction subsets.
  • the gearbox may include a drive mode over-ride switch, where activation of the drive mode over-ride switch alters the set of preprogrammed shift instructions, for example forcing the gearbox to remain within the direct drive mode.
  • the gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, and (iv) an output drive shaft speed sensor coupled to the controller, where the controller is configured to automatically upshift from the under drive mode to the direct drive mode and to automatically downshift from the direct drive mode to the under drive mode based on current output drive shaft speed and a set of preprogrammed shift instructions, where the gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and where the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear.
  • a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged
  • a positioning motor coupled to the pressure plate
  • the gearbox may include a drive mode selector switch for selecting among a plurality of selectable drive modes, where each selectable drive mode corresponds to one of a plurality of shift instruction subsets, and where the set of preprogrammed shift instructions is comprised of the plurality of shift instruction subsets.
  • the gearbox may include a drive mode over-ride switch, where activation of the drive mode over-ride switch alters the set of preprogrammed shift instructions, for example forcing the gearbox to remain within the direct drive mode.
  • the gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, (iv) a user selectable under drive mode selector switch which, when selected, causes the controller to shift into the under drive mode, and (v) a user selectable direct drive mode selector switch which, when selected, causes the controller to shift into the direct drive mode.
  • a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged
  • a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator
  • a controller coupled to the vehicle's propulsion motor and to the positioning motor
  • a user selectable under drive mode selector switch which, when selected, causes the controller to shift into the under drive mode
  • a user selectable direct drive mode selector switch
  • the gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear.
  • the gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • FIG. 1 provides a cross-sectional view of a dual ratio gearbox in accordance with the invention
  • FIG. 2 provides a cross-sectional view of the gear assembly taken along plane A-A of FIG. 1 ;
  • FIG. 3 provides a view of the dual ratio gearbox of FIGS. 1 and 2 , configured to provide under drive, reverse torque to the wheels of the vehicle;
  • FIG. 4 provides a cross-sectional view of the gear assembly taken along plane B-B of FIG. 3 ;
  • FIG. 5 provides a view of the dual ratio gearbox of FIGS. 1-4 , configured to provide direct drive torque to the wheels of the vehicle;
  • FIG. 6 provides a view of the dual ratio gearbox of FIGS. 1-5 , with the inclusion of sensors to monitor input and output drive shaft speed;
  • FIG. 7 provides a view of the dual ratio gearbox of FIG. 6 , with the inclusion of a drive mode over-ride sensor;
  • FIG. 8 provides a view of the dual ratio gearbox of FIG. 6 configured for manual drive selection.
  • a first calculation could be termed a second calculation, and, similarly, a first step could be termed a second step, and, similarly, a first component could be termed a second component, without departing from the scope of this disclosure.
  • the gearbox described and illustrated herein is generally designed for use with devices requiring a two-speed transmission, and more specifically, for a vehicle using an electric motor, e.g., an electric vehicle (EV).
  • EV electric vehicle
  • input drive shaft 101 of gearbox 100 is coupled to the vehicle's electric motor 103 while output shaft 105 is coupled to one or more wheels of the vehicle.
  • output shaft 105 may be coupled directly to the vehicle's wheels, preferably it is coupled via a differential, not shown, to the wheels.
  • output shaft 105 is shown coupled to an output gear 107 .
  • output shaft 105 may also be coupled to an output gear located within gearbox housing 109 , for example at a location 111 .
  • Input drive shaft 101 which passes into gearbox housing 109 through hollow output shaft 105 , is rigidly coupled to a sun gear 111 .
  • sun gear 111 and input drive shaft 101 may be fabricated as a single component, i.e., from a single piece of stock, preferably and as illustrated a spline gear coupling is used to rigidly couple input drive shaft 101 to sun gear 111 .
  • a ring gear 113 is coupled to a ring gear carrier 115 .
  • Preferably ring gear 113 and ring gear carrier 115 are fabricated as a single component, i.e., from a single piece of stock.
  • a clutch assembly comprised of a sprag clutch 117 allows ring gear 113 to only rotate in a single direction within housing 109 .
  • sprag clutch assembly 117 allows the forward driving torque output of gearbox 100 to be adjusted regardless of whether the gearbox is operating in the indirect or direct drive mode, while only allowing reverse driving torque output when the gearbox is in the indirect drive mode.
  • planetary gears 119 Interposed between ring gear 113 and sun gear 111 , and in constant mesh with ring gear 113 and sun gear 111 , are planetary gears 119 .
  • a planetary gear carrier 121 is coupled to each of the planetary gears 119 via bearings 201 and pins 123 .
  • Gearbox 100 also includes a second clutch assembly, separate and independent of sprag clutch assembly 117 .
  • the clutch assembly which is preferably a multi-plate clutch, includes pressure plate 125 , discs 127 that are coupled to sun gear 111 , plates 129 that are coupled to ring gear 113 and ring gear carrier 115 , and compression spring 131 .
  • a spring mounting plate 130 is coupled to sun gear 111 using a plurality of bolts 132 .
  • pressure plate actuator 133 is controlled using an electric positioning motor 135 as shown.
  • Gearbox 100 also includes a band brake that is used to prevent rotation of ring gear 113 in the direction of rotation allowed by sprag clutch assembly 117 .
  • the band brake includes brake band 137 which surrounds ring gear 113 and its assembly.
  • An actuator 139 preferably an electric motor, is coupled to brake band 137 via brake band coupling member 141 .
  • brake band actuator 139 is controlled by controller 143 .
  • motor controller 143 is also coupled to, and controls, vehicle drive motor 103 and clutch controller 135 .
  • shaft bearings 145 and 147 are also shown.
  • FIG. 2 A cross-sectional view of the gear assembly, taken along plane A-A, is shown in FIG. 2 . Note that for clarity the individual gear teeth of sun gear 111 , planetary gears 119 and ring gear 113 are not shown, nor are the splines/grooves used to couple input drive shaft 101 to sun gear 111 .
  • This view of the planetary gear system also shows brake band 137 , along with band brake anchor 203 , actuator 139 , and brake band coupling member 141 .
  • controller 144 uses motor 135 to position actuator 133 and pressure plate 125 such that the clutch assembly is disengaged as shown in FIG. 1 .
  • sun gear 111 is allowed to rotate independently of ring gear 113 .
  • the input torque applied by motor 103 to input drive shaft 101 and thus to sun gear 111 , generates a reaction torque on ring gear 113 in the direction that is locked by sprag clutch assembly 117 .
  • forward torque is transmitted to the wheels of the vehicle by planetary gear carrier 121 and output drive shaft 105 .
  • controller 143 engages band brake 137 using actuator 139 while keeping the clutch assembly disengaged using motor 135 , actuator 133 and pressure plate 125 .
  • Engaging band brake 143 locks ring gear 133 to housing 109 .
  • ring gear 113 is locked into position relative to housing 109 and reverse torque is transmitted to the wheels of the vehicle by planetary gear carrier 121 and output drive shaft 105 .
  • FIGS. 3 and 4 provide similar views of gearbox 100 as shown in FIGS. 1 and 2 with band brake 137 engaged.
  • controller 143 uses motor 135 to position actuator 133 and pressure plate 125 such that the clutch assembly is engaged as shown in FIG. 5 .
  • ring gear 113 is locked to sun gear 111 and the entire planetary gear assembly, i.e., gears 111 , 113 and 119 will turn as a single unit.
  • sprag clutch assembly 117 permits motor 103 to apply either forward or reverse torque to input drive shaft 101 .
  • sprag clutch assembly 117 prevents ring gear 113 from rotating. While shifting to direct drive using the multi-plate clutch assembly (e.g., pressure plate 125 , discs 127 , plates 129 , compression spring 131 , and pressure plate actuator 133 ), the sprag clutch 117 continues to insure that the input torque applied by motor 103 generates forward torque at the wheels. As the clutch assembly becomes engaged, a friction zone is created that shifts the gearbox smoothly towards the direct drive mode. The shift to direct drive is completed once ring gear 113 and sun gear 111 are synchronized.
  • the multi-plate clutch assembly e.g., pressure plate 125 , discs 127 , plates 129 , compression spring 131 , and pressure plate actuator 133
  • controller 143 When gearbox 100 downshifts from direct drive to under drive while the car is accelerating, controller 143 allows the multi-plate clutch assembly to slip while bringing motor 103 up to the necessary speed for the under drive gear ratio.
  • controller 143 monitors both motor speed using sensor 601 and output drive shaft speed using sensor 603 (see FIG. 6 ), thus allowing controller 143 to quickly and efficiently increase the speed of motor 103 based on the under drive gear ratio and the current vehicle speed.
  • controller 143 monitors both motor speed and output drive shaft speed using sensors 601 and 603 as illustrated in FIG. 6 .
  • controller 143 By monitoring both the motor speed and the output drive shaft speed, when the shift from under drive to direct drive is initiated, controller 143 is able to quickly and efficiently lower the speed of motor 103 to match that of the output drive shaft, thereby minimizing motor speed mismatch and preventing undershoot. Similarly, downshifting from direct drive to under drive requires controller 143 to quickly and efficiently increase the speed of motor 103 in order to minimize mismatch and the shuddering that can accompany such mismatch.
  • shifting between under drive and direct drive is automatic and performed in accordance with a set of preprogrammed instructions that are either incorporated into controller 143 or input into a separate processor that is coupled to controller 143 .
  • Shifting is preferably based on motor speed, as monitored by sensor 601 , although other characteristics such as vehicle speed may be used to determine when to shift between drive modes.
  • the shift points between under drive and direct drive may be altered based on the input of switch 701 .
  • Switch 701 may monitor accelerator pedal movement, thus allowing the driver to alter shifting characteristics based on how rapidly and/or how far the accelerator pedal is depressed.
  • switch 701 may be a drive mode selector that allows the user to vary the drive mode, and thus the shifting characteristics, between multiple modes (e.g., sport, normal and efficiency).
  • switch 701 is associated with a gearbox over-ride function. When selected, the gearbox remains in direct drive regardless of motor and/or vehicle speed.
  • switch 701 monitors vehicle inclination and automatically switches the gearbox, via controller 143 , to direct drive when the car is stopped on an uphill incline greater than a preset angle.
  • the dual ratio gearbox of the invention is configured to be used as a manual gearbox.
  • controller 143 is coupled to a drive mode selector 801 , where the drive mode selector 801 determines when to shift between under drive and direct drive.
  • Drive mode selector 801 may be designed to look like a typical gear shift selector; alternately, drive mode selector 801 may be comprised of a button, toggle or other switching means mounted on the dash, central console or steering wheel; alternately, drive mode selector 801 may be comprised of a button or lever mounted to the floor, thus allowing the driver to shift gears by depressing or otherwise engaging the floor mounted switch means.

Abstract

A dual ratio constant mesh gearbox is provided that is suitable for use with an automobile, and particularly well-suited for an electric vehicle. The gearbox, which may be configured either as a manual or automatic gearbox, utilizes a planetary gear set and a pair of clutches to shift between under drive and direct drive modes.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 14/273,822, filed 9 May 2014, which is a continuation-in-part of U.S. patent application Ser. No. 14/273,667, filed 9 May 2014, the disclosures of which are incorporated herein by reference for any and all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates generally to a vehicle and, more particularly, to a dual speed gearbox suitable for use with an electric motor.
  • BACKGROUND OF THE INVENTION
  • In a typical electric vehicle a single speed gearbox is used between the traction motor and the differential. The ability to use a single speed gearbox rather than the multi-speed gearbox required in a conventional vehicle is the result of the wide useful operating range, both in terms of power and torque, of an electric motor versus that of an internal combustion engine.
  • While a single speed gearbox may be used with an electric vehicle, its use is not without drawbacks. For example, because of the maximum speed limit of the motor and the requirement in a high performance car to reach a certain top speed, the gear ratio is typically chosen to be longer than what would be optimal to provide crisp initial acceleration from a standstill. Additionally, due to torque ripple and vibrations, motor torque may be limited at very low rotating speeds. As a result, initial acceleration from a standstill in a typical electric vehicle is typically more sluggish than what would be expected given the drivetrain's characteristics.
  • Accordingly, what is needed is a dual speed gearbox that may be optimized for the operating characteristics of an electric motor, thereby providing the desired level of performance throughout the vehicle's operating range. The present invention provides such a dual speed gearbox.
  • SUMMARY OF THE INVENTION
  • The present invention provides a dual ratio constant mesh gearbox suitable for use with an automobile, and in particular suited for an electric vehicle. The gearbox is comprised of (i) a housing, (ii) an input drive shaft coupled to the vehicle's propulsion electric motor, (iii) an externally toothed sun gear rigidly coupled to the input drive shaft, (iv) an internally toothed ring gear, (v) a set of planetary gears interposed between the sun and ring gears, where the set of planetary gears are in constant mesh with both the sun and ring gears, (vi) a planetary gear carrier coupled to the set of planetary gears and to an output drive shaft, where the output drive shaft is at least partially contained within the housing, (vii) a sprag clutch assembly contained within the housing, where the sprag clutch permits rotation of the ring gear in a first direction while preventing rotation of the ring gear in a second direction, (viii) a second clutch assembly separate and independent of the sprag clutch assembly, where engaging the second clutch assembly locks the ring gear to the sun gear, and disengaging the second clutch assembly unlocks the ring gear from the sun gear, and (ix) a band brake translatable from at least a first position to a second position, where the band brake in the first position permits rotation of the ring gear within the housing, and where the band brake in the second position prevents rotation of the ring gear within the housing. The gearbox may use a hollow output drive shaft and be configured to pass the input drive shaft through the hollow output drive shaft, where the input and output drive shafts are coaxial. The second clutch assembly is preferably comprised of a multi-plate clutch assembly. The second clutch assembly may include a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged; further, a positioning motor may be coupled to the pressure plate actuator, where the positioning motor controls the position of the pressure plate actuator.
  • In one aspect, the gearbox operates in a direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear, resulting in the sun gear, the ring gear and the set of planetary gears rotating within the housing as a single unit and causing the input drive shaft to be directly coupled to the output drive shaft and for the two drive shafts to rotate at the same rate.
  • In another aspect, the gearbox operates in an under drive reverse mode when the second clutch assembly is disengaged and the band brake is in the second position. As a result, when reverse input torque is applied to the input drive shaft a reaction torque is generated on the ring gear in the first direction. While rotation of the ring gear in the first direction is permitted by the sprag clutch assembly, ring gear rotation is prevented by the band brake being in the second position, thereby causing reverse vehicle torque to be applied to the vehicle's wheel(s) when reverse input torque is applied to the input drive shaft.
  • In another aspect, the gearbox operates in an under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear. In this mode, forward input torque applied to the input drive shaft generates a reaction torque on the ring gear in the second direction, where rotation of the ring gear in the second direction is prevented by the sprag clutch assembly. As a result, forward input torque applied to the input drive shaft causes forward vehicle torque to be applied to the vehicle's wheel(s) via the planetary gear carrier and the output drive shaft.
  • In another aspect, a controller coupled to the vehicle's propulsion motor is also coupled to a motor speed sensor and an output drive shaft speed sensor. When a downshift from the direct drive mode to the under drive mode is initiated, the controller is configured to increase the motor's speed based on the current output drive shaft speed and the under drive gear ratio.
  • In another aspect, a controller coupled to the vehicle's propulsion motor is also coupled to a motor speed sensor and an output drive shaft speed sensor. When an upshift from the under drive mode to the direct drive mode is initiated, the controller is configured to decrease the motor's speed based on the current output drive shaft speed and the under drive gear ratio.
  • In another aspect, the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, and (iv) a motor speed sensor coupled to the controller, where the controller is configured to automatically upshift from the under drive mode to the direct drive mode and to automatically downshift from the direct drive mode to the under drive mode based on current motor speed and a set of preprogrammed shift instructions, where the gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and where the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear. The gearbox may include a drive mode selector switch for selecting among a plurality of selectable drive modes, where each selectable drive mode corresponds to one of a plurality of shift instruction subsets, and where the set of preprogrammed shift instructions is comprised of the plurality of shift instruction subsets. The gearbox may include a drive mode over-ride switch, where activation of the drive mode over-ride switch alters the set of preprogrammed shift instructions, for example forcing the gearbox to remain within the direct drive mode. The gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • In another aspect, the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, and (iv) an output drive shaft speed sensor coupled to the controller, where the controller is configured to automatically upshift from the under drive mode to the direct drive mode and to automatically downshift from the direct drive mode to the under drive mode based on current output drive shaft speed and a set of preprogrammed shift instructions, where the gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and where the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear. The gearbox may include a drive mode selector switch for selecting among a plurality of selectable drive modes, where each selectable drive mode corresponds to one of a plurality of shift instruction subsets, and where the set of preprogrammed shift instructions is comprised of the plurality of shift instruction subsets. The gearbox may include a drive mode over-ride switch, where activation of the drive mode over-ride switch alters the set of preprogrammed shift instructions, for example forcing the gearbox to remain within the direct drive mode. The gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • In another aspect, the gearbox may further comprise (i) a pressure plate actuator where the position of the pressure plate actuator determines whether the second clutch assembly is engaged or disengaged, (ii) a positioning motor coupled to the pressure plate actuator that controls the position of the pressure plate actuator, (iii) a controller coupled to the vehicle's propulsion motor and to the positioning motor, (iv) a user selectable under drive mode selector switch which, when selected, causes the controller to shift into the under drive mode, and (v) a user selectable direct drive mode selector switch which, when selected, causes the controller to shift into the direct drive mode. The gearbox operates in the under drive mode when the second clutch assembly is disengaged and the ring gear is unlocked from the sun gear, and the gearbox operates in the direct drive mode when the second clutch assembly is engaged and the ring gear is locked to the sun gear. The gearbox may further include (i) a second positioning motor coupled to the band brake and to the controller, where the second positioning motor controls whether the band brake is in the first or second position, and (ii) a reverse mode selector switch configured to be user selectable, where the controller is configure to shift into a reverse drive mode when the reverse mode selector switch is selected, and where the gearbox operates in the reverse drive mode when the second clutch assembly is disengaged and the band brake is in the second position.
  • A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • It should be understood that the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale. Additionally, the same reference label on different figures should be understood to refer to the same component or a component of similar functionality.
  • FIG. 1 provides a cross-sectional view of a dual ratio gearbox in accordance with the invention;
  • FIG. 2 provides a cross-sectional view of the gear assembly taken along plane A-A of FIG. 1;
  • FIG. 3 provides a view of the dual ratio gearbox of FIGS. 1 and 2, configured to provide under drive, reverse torque to the wheels of the vehicle;
  • FIG. 4 provides a cross-sectional view of the gear assembly taken along plane B-B of FIG. 3;
  • FIG. 5 provides a view of the dual ratio gearbox of FIGS. 1-4, configured to provide direct drive torque to the wheels of the vehicle;
  • FIG. 6 provides a view of the dual ratio gearbox of FIGS. 1-5, with the inclusion of sensors to monitor input and output drive shaft speed;
  • FIG. 7 provides a view of the dual ratio gearbox of FIG. 6, with the inclusion of a drive mode over-ride sensor; and
  • FIG. 8 provides a view of the dual ratio gearbox of FIG. 6 configured for manual drive selection.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises”, “comprising”, “includes”, and/or “including”, as used herein, specify the presence of stated features, process steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, process steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” and the symbol “/” are meant to include any and all combinations of one or more of the associated listed items. Additionally, while the terms first, second, etc. may be used herein to describe various steps, calculations, or components, these steps, calculations, or components should not be limited by these terms, rather these terms are only used to distinguish one step, calculation, or component from another. For example, a first calculation could be termed a second calculation, and, similarly, a first step could be termed a second step, and, similarly, a first component could be termed a second component, without departing from the scope of this disclosure.
  • The gearbox described and illustrated herein is generally designed for use with devices requiring a two-speed transmission, and more specifically, for a vehicle using an electric motor, e.g., an electric vehicle (EV). As shown in FIG. 1, input drive shaft 101 of gearbox 100 is coupled to the vehicle's electric motor 103 while output shaft 105 is coupled to one or more wheels of the vehicle. Although output shaft 105 may be coupled directly to the vehicle's wheels, preferably it is coupled via a differential, not shown, to the wheels. In FIG. 1, output shaft 105 is shown coupled to an output gear 107. Note that output shaft 105 may also be coupled to an output gear located within gearbox housing 109, for example at a location 111.
  • Input drive shaft 101, which passes into gearbox housing 109 through hollow output shaft 105, is rigidly coupled to a sun gear 111. Although sun gear 111 and input drive shaft 101 may be fabricated as a single component, i.e., from a single piece of stock, preferably and as illustrated a spline gear coupling is used to rigidly couple input drive shaft 101 to sun gear 111. A ring gear 113 is coupled to a ring gear carrier 115. Preferably ring gear 113 and ring gear carrier 115 are fabricated as a single component, i.e., from a single piece of stock. A clutch assembly comprised of a sprag clutch 117 allows ring gear 113 to only rotate in a single direction within housing 109. As described in detail below, sprag clutch assembly 117 allows the forward driving torque output of gearbox 100 to be adjusted regardless of whether the gearbox is operating in the indirect or direct drive mode, while only allowing reverse driving torque output when the gearbox is in the indirect drive mode.
  • Interposed between ring gear 113 and sun gear 111, and in constant mesh with ring gear 113 and sun gear 111, are planetary gears 119. A planetary gear carrier 121 is coupled to each of the planetary gears 119 via bearings 201 and pins 123.
  • Gearbox 100 also includes a second clutch assembly, separate and independent of sprag clutch assembly 117. The clutch assembly, which is preferably a multi-plate clutch, includes pressure plate 125, discs 127 that are coupled to sun gear 111, plates 129 that are coupled to ring gear 113 and ring gear carrier 115, and compression spring 131. A spring mounting plate 130 is coupled to sun gear 111 using a plurality of bolts 132. Although a variety of techniques, including a hydraulic control system, may be used to operate the second clutch assembly, preferably pressure plate actuator 133 is controlled using an electric positioning motor 135 as shown.
  • Gearbox 100 also includes a band brake that is used to prevent rotation of ring gear 113 in the direction of rotation allowed by sprag clutch assembly 117. The band brake includes brake band 137 which surrounds ring gear 113 and its assembly. An actuator 139, preferably an electric motor, is coupled to brake band 137 via brake band coupling member 141. Preferably operation of brake band actuator 139 is controlled by controller 143. In the preferred embodiment, motor controller 143 is also coupled to, and controls, vehicle drive motor 103 and clutch controller 135. In FIG. 1, shaft bearings 145 and 147 are also shown.
  • A cross-sectional view of the gear assembly, taken along plane A-A, is shown in FIG. 2. Note that for clarity the individual gear teeth of sun gear 111, planetary gears 119 and ring gear 113 are not shown, nor are the splines/grooves used to couple input drive shaft 101 to sun gear 111. This view of the planetary gear system also shows brake band 137, along with band brake anchor 203, actuator 139, and brake band coupling member 141.
  • Under Drive Mode—Forward Vehicle Travel
  • In order to achieve forward vehicle motion with the gearbox in under drive, controller 144 uses motor 135 to position actuator 133 and pressure plate 125 such that the clutch assembly is disengaged as shown in FIG. 1. As a result, sun gear 111 is allowed to rotate independently of ring gear 113. On forward torque transmission, the input torque applied by motor 103 to input drive shaft 101, and thus to sun gear 111, generates a reaction torque on ring gear 113 in the direction that is locked by sprag clutch assembly 117. As a result, forward torque is transmitted to the wheels of the vehicle by planetary gear carrier 121 and output drive shaft 105.
  • Under Drive Mode—Reverse Vehicle Travel
  • When the input torque applied by motor 103 to input drive shaft 101 and sun gear 111 is reversed, sprag clutch assembly 117 no longer locks the ring gear to housing 109. Accordingly in order to achieve reverse vehicle travel, controller 143 engages band brake 137 using actuator 139 while keeping the clutch assembly disengaged using motor 135, actuator 133 and pressure plate 125. Engaging band brake 143 locks ring gear 133 to housing 109. Then when reverse torque is applied by drive motor 103 to input drive shaft 101, ring gear 113 is locked into position relative to housing 109 and reverse torque is transmitted to the wheels of the vehicle by planetary gear carrier 121 and output drive shaft 105. Therefore in reverse, rather than using sprag clutch assembly 117 to lockup ring gear 113, band brake 137 locks the ring gear into place. As a result of this configuration, both forward and reverse torque can be applied to the vehicle's wheels when gearbox 100 is operating in the under drive mode. FIGS. 3 and 4 provide similar views of gearbox 100 as shown in FIGS. 1 and 2 with band brake 137 engaged.
  • Direct Drive Mode—Forward Vehicle Travel
  • In order to achieve forward vehicle motion with the gearbox in direct drive, controller 143 uses motor 135 to position actuator 133 and pressure plate 125 such that the clutch assembly is engaged as shown in FIG. 5. As a result, ring gear 113 is locked to sun gear 111 and the entire planetary gear assembly, i.e., gears 111, 113 and 119 will turn as a single unit. As long as ring gear 113 is rotating in the forward direction, sprag clutch assembly 117 permits motor 103 to apply either forward or reverse torque to input drive shaft 101.
  • During acceleration, shifting from under drive to direct drive using gearbox 100 is very smooth. As described above, when the gearbox is in the under drive mode and forward torque is being applied, sprag clutch assembly 117 prevents ring gear 113 from rotating. While shifting to direct drive using the multi-plate clutch assembly (e.g., pressure plate 125, discs 127, plates 129, compression spring 131, and pressure plate actuator 133), the sprag clutch 117 continues to insure that the input torque applied by motor 103 generates forward torque at the wheels. As the clutch assembly becomes engaged, a friction zone is created that shifts the gearbox smoothly towards the direct drive mode. The shift to direct drive is completed once ring gear 113 and sun gear 111 are synchronized.
  • When gearbox 100 downshifts from direct drive to under drive while the car is accelerating, controller 143 allows the multi-plate clutch assembly to slip while bringing motor 103 up to the necessary speed for the under drive gear ratio. Preferably controller 143 monitors both motor speed using sensor 601 and output drive shaft speed using sensor 603 (see FIG. 6), thus allowing controller 143 to quickly and efficiently increase the speed of motor 103 based on the under drive gear ratio and the current vehicle speed.
  • While coasting, when gearbox 100 shifts from under drive to direct drive the change in rotational speed of motor 103 may lead to lurching or shuddering as the multi-plate clutch assembly becomes engaged, and before the ring gear 113 and sun gear 111 are synchronized. Drive train shuddering may be aggravated during this period if motor 103 undershoots the desired motor speed. Accordingly, in at least one preferred embodiment controller 143 monitors both motor speed and output drive shaft speed using sensors 601 and 603 as illustrated in FIG. 6. By monitoring both the motor speed and the output drive shaft speed, when the shift from under drive to direct drive is initiated, controller 143 is able to quickly and efficiently lower the speed of motor 103 to match that of the output drive shaft, thereby minimizing motor speed mismatch and preventing undershoot. Similarly, downshifting from direct drive to under drive requires controller 143 to quickly and efficiently increase the speed of motor 103 in order to minimize mismatch and the shuddering that can accompany such mismatch.
  • In a typical configuration, shifting between under drive and direct drive is automatic and performed in accordance with a set of preprogrammed instructions that are either incorporated into controller 143 or input into a separate processor that is coupled to controller 143. Shifting is preferably based on motor speed, as monitored by sensor 601, although other characteristics such as vehicle speed may be used to determine when to shift between drive modes. Additionally in at least one embodiment of an automatic gearbox, and as illustrated in FIG. 7, the shift points between under drive and direct drive may be altered based on the input of switch 701. Switch 701 may monitor accelerator pedal movement, thus allowing the driver to alter shifting characteristics based on how rapidly and/or how far the accelerator pedal is depressed. Alternately, switch 701 may be a drive mode selector that allows the user to vary the drive mode, and thus the shifting characteristics, between multiple modes (e.g., sport, normal and efficiency).
  • Many drivers find it difficult to drive over hilly terrain. Such terrain is especially problematic when coupled with the stop and go traffic conditions associated with driving in the city. Under these conditions, accelerating away from a stop when the stop is on an uphill incline often leads to at least some backwards vehicle roll, which may make the driver nervous as well as potentially causing a minor collision if the vehicle rolls backwards and hits the car behind it. Accordingly, in one embodiment of the invention switch 701 is associated with a gearbox over-ride function. When selected, the gearbox remains in direct drive regardless of motor and/or vehicle speed. Although selecting this feature reduces acceleration from a dead stop, due to the locking effect of sprag clutch assembly 117, the car will not roll backwards when the brake is released, even when stopped on a steep incline. In an alternate embodiment, switch 701 monitors vehicle inclination and automatically switches the gearbox, via controller 143, to direct drive when the car is stopped on an uphill incline greater than a preset angle.
  • In an alternate embodiment illustrated in FIG. 8, the dual ratio gearbox of the invention is configured to be used as a manual gearbox. In this configuration controller 143 is coupled to a drive mode selector 801, where the drive mode selector 801 determines when to shift between under drive and direct drive. Drive mode selector 801 may be designed to look like a typical gear shift selector; alternately, drive mode selector 801 may be comprised of a button, toggle or other switching means mounted on the dash, central console or steering wheel; alternately, drive mode selector 801 may be comprised of a button or lever mounted to the floor, thus allowing the driver to shift gears by depressing or otherwise engaging the floor mounted switch means.
  • Systems and methods have been described in general terms as an aid to understanding details of the invention. In some instances, well-known structures, materials, and/or operations have not been specifically shown or described in detail to avoid obscuring aspects of the invention. In other instances, specific details have been given in order to provide a thorough understanding of the invention. One skilled in the relevant art will recognize that the invention may be embodied in other specific forms, for example to adapt to a particular system or apparatus or situation or material or component, without departing from the spirit or essential characteristics thereof. Therefore the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention.

Claims (21)

What is claimed is:
1. A dual ratio constant mesh gearbox, comprising:
a housing;
an input drive shaft coupled to a vehicle propulsion electric motor;
a sun gear rigidly coupled to said input drive shaft;
a ring gear;
a set of planetary gears interposed between said sun gear and said ring gear, wherein said set of planetary gears are in constant mesh with said sun gear and said ring gear;
a planetary gear carrier coupled to said set of planetary gears and to an output drive shaft, wherein said output drive shaft is at least partially contained within said housing;
a sprag clutch assembly contained within said housing, wherein said sprag clutch assembly permits rotation of said ring gear in a first direction within said housing and prevents rotation of said ring gear in a second direction within said housing;
a second clutch assembly separate and independent of said sprag clutch assembly, wherein engaging said second clutch assembly locks said ring gear to said sun gear, and wherein disengaging said second clutch assembly unlocks said ring gear from said sun gear; and
a band brake translatable from at least a first position to a second position, wherein said band brake in said first position permits rotation of said ring gear within said housing, and wherein said band brake in said second position prevents rotation of said ring gear within said housing.
2. The dual ratio constant mesh gearbox of claim 1, wherein said output drive shaft is hollow, wherein said input drive shaft passes through said output drive shaft, and wherein said input drive shaft is coaxial with said output drive shaft.
3. The dual ratio constant mesh gearbox of claim 2, said second clutch assembly comprising a multi-plate clutch assembly.
4. The dual ratio constant mesh gearbox of claim 2, said second clutch assembly further comprising a pressure plate actuator, wherein a position corresponding to said pressure plate actuator determines whether said second clutch assembly is engaged or disengaged.
5. The dual ratio constant mesh gearbox of claim 4, further comprising a positioning motor coupled to said pressure plate actuator, wherein said positioning motor controls said position of said pressure plate actuator.
6. The dual ratio constant mesh gearbox of claim 2, wherein said dual ratio constant mesh gearbox operates in a direct drive mode when said second clutch assembly is engaged and said ring gear is locked to said sun gear, wherein said sun gear and said set of planetary gears and said ring gear rotate within said housing as a single unit when said ring gear is locked to said sun gear, and wherein said input drive shaft is directly coupled to said output drive shaft causing said input and output drive shafts to rotate at the same rate when said ring gear is locked to said sun gear.
7. The dual ratio constant mesh gearbox of claim 2, wherein said dual ratio constant mesh gearbox operates in an under drive reverse mode when said second clutch assembly is disengaged and said band brake is in said second position, wherein reverse input torque applied by said vehicle propulsion electric motor to said input drive shaft when said dual ratio constant mesh gearbox is operating in said under drive reverse mode generates a reaction torque on said ring gear in said first direction, wherein rotation of said ring gear in said first direction is permitted by said sprag clutch and prevented by said band brake in said second position thereby causing reverse vehicle torque to be applied to at least one vehicle wheel by said planetary gear carrier and said output drive shaft.
8. The dual ratio constant mesh gearbox of claim 2, wherein said dual ratio constant mesh gearbox operates in an under drive mode when said second clutch assembly is disengaged and said ring gear is unlocked from said sun gear, wherein forward input torque applied by said vehicle propulsion electric motor to said input drive shaft generates a reaction torque on said ring gear in said second direction, wherein rotation of said ring gear in said second direction is prevented by said sprag clutch assembly causing forward vehicle torque to be applied to at least one vehicle wheel by said planetary gear carrier and said output drive shaft.
9. The dual ratio constant mesh gearbox of claim 2, further comprising:
a controller coupled to said vehicle propulsion electric motor;
a motor speed sensor coupled to said controller; and
an output drive shaft speed sensor coupled to said controller, wherein upon an initiation of a downshift from a direct drive mode to an under drive mode said controller is configured to increase a motor speed corresponding to said vehicle propulsion electric motor based on a current output drive shaft speed and an under drive gear ratio.
10. The dual ratio constant mesh gearbox of claim 2, further comprising:
a controller coupled to said vehicle propulsion electric motor;
a motor speed sensor coupled to said controller; and
an output drive shaft speed sensor coupled to said controller, wherein upon an initiation of an upshift from an under drive mode to a direct drive mode said controller is configured to decrease a motor speed corresponding to said vehicle propulsion electric motor based on a current output drive shaft speed.
11. The dual ratio constant mesh gearbox of claim 2, further comprising:
a pressure plate actuator, wherein a position corresponding to said pressure plate actuator determines whether said second clutch assembly is engaged or disengaged;
a positioning motor coupled to said pressure plate actuator, wherein said positioning motor controls said position of said pressure plate actuator;
a controller coupled to said vehicle propulsion electric motor and to said positioning motor; and
a motor speed sensor coupled to said controller, wherein said controller is configured to automatically upshift from an under drive mode to a direct drive mode and configured to automatically downshift from said direct drive mode to said under drive mode based on a current motor speed and a set of preprogrammed shift instructions, wherein said dual ratio constant mesh gearbox operates in said under drive mode when said second clutch assembly is disengaged and said ring gear is unlocked from said sun gear, and wherein said dual ratio constant mesh gearbox operates in a direct drive mode when said second clutch assembly is engaged and said ring gear is locked to said sun gear.
12. The dual ratio constant mesh gearbox of claim 11, further comprising a drive mode selector switch coupled to said controller, wherein said drive mode selector switch allows selection between a plurality of selectable drive modes, wherein corresponding to each of said plurality of selectable drive modes is one of a plurality of shift instruction subsets, and wherein said set of preprogrammed shift instructions is comprised of said plurality of shift instruction subsets.
13. The dual ratio constant mesh gearbox of claim 11, further comprising a drive mode over-ride switch coupled to said controller, wherein activation of said drive mode over-ride switch alters said set of preprogrammed shift instructions.
14. The dual ratio constant mesh gearbox of claim 13, wherein activation of said drive mode over-ride switch forces said dual ratio constant mesh gearbox to remain within said direct drive mode.
15. The dual ratio constant mesh gearbox of claim 11, further comprising:
a second positioning motor coupled to said band brake and to said controller, wherein said second positioning motor controls whether said band brake is in said first position or said second position; and
a reverse mode selector switch, wherein said reverse mode selector switch is configured to be user selectable, wherein said controller is configured to shift into a reverse drive mode when said reverse mode selector switch is selected, wherein said dual ratio constant mesh gearbox operates in said reverse drive mode when said second clutch assembly is disengaged and said band brake is in said second position.
16. The dual ratio constant mesh gearbox of claim 2, further comprising:
a pressure plate actuator, wherein a position corresponding to said pressure plate actuator determines whether said second clutch assembly is engaged or disengaged;
a positioning motor coupled to said pressure plate actuator, wherein said positioning motor controls said position of said pressure plate actuator;
a controller coupled to said vehicle propulsion electric motor and to said positioning motor; and
an output drive shaft speed sensor coupled to said controller, wherein said controller is configured to automatically upshift from an under drive mode to a direct drive mode and configured to automatically downshift from said direct drive mode to said under drive mode based on a current output drive shaft speed and a set of preprogrammed shift instructions, wherein said dual ratio constant mesh gearbox operates in said under drive mode when said second clutch assembly is disengaged and said ring gear is unlocked from said sun gear, and wherein said dual ratio constant mesh gearbox operates in a direct drive mode when said second clutch assembly is engaged and said ring gear is locked to said sun gear.
17. The dual ratio constant mesh gearbox of claim 16, further comprising a drive mode selector switch coupled to said controller, wherein said drive mode selector switch allows selection between a plurality of selectable drive modes, wherein corresponding to each of said plurality of selectable drive modes is one of a plurality of shift instruction subsets, and wherein said set of preprogrammed shift instructions is comprised of said plurality of shift instruction subsets.
18. The dual ratio constant mesh gearbox of claim 16, further comprising a drive mode over-ride switch coupled to said controller, wherein activation of said drive mode over-ride switch alters said set of preprogrammed shift instructions.
19. The dual ratio constant mesh gearbox of claim 18, wherein activation of said drive mode over-ride switch forces said dual ratio constant mesh gearbox to remain within said direct drive mode.
20. The dual ratio constant mesh gearbox of claim 2, further comprising:
a pressure plate actuator, wherein a position corresponding to said pressure plate actuator determines whether said second clutch assembly is engaged or disengaged;
a positioning motor coupled to said pressure plate actuator, wherein said positioning motor controls said position of said pressure plate actuator;
a controller coupled to said vehicle propulsion electric motor and to said positioning motor;
an under drive mode selector switch, wherein said under drive mode selector switch is configured to be user selectable; and
a direct drive mode selector switch, wherein said direct drive mode selector switch is configured to be user selectable, wherein said controller is configured to shift into an under drive mode when said under drive mode selector switch is selected, wherein said controller is configured to shift into a direct drive mode when said direct drive mode selector switch is selected, wherein said dual ratio constant mesh gearbox operates in said under drive mode when said second clutch assembly is disengaged and said ring gear is unlocked from said sun gear, and wherein said dual ratio constant mesh gearbox operates in a direct drive mode when said second clutch assembly is engaged and said ring gear is locked to said sun gear.
21. The dual ratio constant mesh gearbox of claim 20, further comprising:
a second positioning motor coupled to said band brake and to said controller, wherein said second positioning motor controls whether said band brake is in said first position or said second position; and
a reverse mode selector switch, wherein said reverse mode selector switch is configured to be user selectable, wherein said controller is configured to shift into a reverse drive mode when said reverse mode selector switch is selected, wherein said dual ratio constant mesh gearbox operates in said reverse drive mode when said second clutch assembly is disengaged and said band brake is in said second position.
US14/273,934 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox Active 2034-07-27 US9200697B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/273,934 US9200697B1 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox
EP15166028.9A EP2942546B1 (en) 2014-05-09 2015-04-30 Dual ratio constant mesh gearbox

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/273,822 US9228641B2 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox
US14/273,934 US9200697B1 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox
US14/273,667 US9109666B1 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/273,822 Continuation-In-Part US9228641B2 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox

Publications (2)

Publication Number Publication Date
US20150323044A1 true US20150323044A1 (en) 2015-11-12
US9200697B1 US9200697B1 (en) 2015-12-01

Family

ID=53015715

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/273,934 Active 2034-07-27 US9200697B1 (en) 2014-05-09 2014-05-09 Dual ratio constant mesh gearbox

Country Status (2)

Country Link
US (1) US9200697B1 (en)
EP (1) EP2942546B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199100A1 (en) * 2020-03-30 2021-10-07 株式会社ユニバンス Shifting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107933231B (en) * 2017-11-23 2019-09-03 吉林大学 A kind of chassis structure for wide-angle hub motor deflecting roller
US20240011533A1 (en) * 2022-07-08 2024-01-11 Woodward, Inc. Rotary electromagnetic locking actuator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US680825A (en) * 1896-06-08 1901-08-20 George Westinghouse Speed-changing gearing.
US2655820A (en) * 1949-06-03 1953-10-20 Rotax Ltd Power transmission mechanism
US3541886A (en) * 1969-04-14 1970-11-24 Ford Motor Co Two-speed transmission with two simple planetary gear units
US3898893A (en) * 1972-10-23 1975-08-12 Agency Ind Science Techn Speed change controlling device in an automatic transmission for an electric car
US5151068A (en) * 1988-03-11 1992-09-29 Zahnradfabrik Friedrichshafen Ag Driving mechanism with two speed clutch
US6719109B1 (en) * 2002-09-30 2004-04-13 Borgwarner Inc. Method for controlling a bi-directional clutch
US20060025278A1 (en) * 2000-11-17 2006-02-02 Roumen Antonov Transmission devices, for ground vehicles and more particularly for motors-cars
US7344471B2 (en) * 2003-05-19 2008-03-18 Honda Motor Co., Ltd. Automatic transmission
US7367910B2 (en) * 2005-09-22 2008-05-06 General Motors Corporation One-mode input-split electro-mechanical transmission with two fixed speed ratios
US8303459B2 (en) * 2009-06-18 2012-11-06 Toyota Jidosha Kabushiki Kaisha Forward-reverse switching device for vehicle
US8460152B2 (en) * 2008-04-04 2013-06-11 Litens Automotive Partnership Auto-selecting two-ratio transmission
US8506445B2 (en) * 2010-01-27 2013-08-13 GM Global Technology Operations LLC Selectable torque transmitting device
US9062744B2 (en) * 2013-03-13 2015-06-23 American Axle & Manufacturing, Inc. Two-speed drive module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1041047A (en) 1911-10-28 1912-10-15 Saver Clutch Company Ltd Gearing.
US2007304A (en) 1932-11-21 1935-07-09 Joseph E Padgett Automatic power transmitting mechanism
US4800782A (en) 1985-12-17 1989-01-31 G.E. Machine Tool Limited Accessory transmission
SE520945C2 (en) 2002-01-17 2003-09-16 Volvo Lastvagnar Ab Gearbox for motor vehicles
US8469855B2 (en) 2010-10-26 2013-06-25 GM Global Technology Operations LLC Two-speed transmission module with passive automatic shifting
DE102011007259A1 (en) * 2011-04-13 2012-10-18 Schaeffler Technologies AG & Co. KG Drive device with an electric machine
US20150158382A1 (en) 2013-12-05 2015-06-11 Avl Powertrain Engineering, Inc. Two-speed transmission for electric vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US680825A (en) * 1896-06-08 1901-08-20 George Westinghouse Speed-changing gearing.
US2655820A (en) * 1949-06-03 1953-10-20 Rotax Ltd Power transmission mechanism
US3541886A (en) * 1969-04-14 1970-11-24 Ford Motor Co Two-speed transmission with two simple planetary gear units
US3898893A (en) * 1972-10-23 1975-08-12 Agency Ind Science Techn Speed change controlling device in an automatic transmission for an electric car
US5151068A (en) * 1988-03-11 1992-09-29 Zahnradfabrik Friedrichshafen Ag Driving mechanism with two speed clutch
US20060025278A1 (en) * 2000-11-17 2006-02-02 Roumen Antonov Transmission devices, for ground vehicles and more particularly for motors-cars
US6719109B1 (en) * 2002-09-30 2004-04-13 Borgwarner Inc. Method for controlling a bi-directional clutch
US7344471B2 (en) * 2003-05-19 2008-03-18 Honda Motor Co., Ltd. Automatic transmission
US7367910B2 (en) * 2005-09-22 2008-05-06 General Motors Corporation One-mode input-split electro-mechanical transmission with two fixed speed ratios
US8460152B2 (en) * 2008-04-04 2013-06-11 Litens Automotive Partnership Auto-selecting two-ratio transmission
US8303459B2 (en) * 2009-06-18 2012-11-06 Toyota Jidosha Kabushiki Kaisha Forward-reverse switching device for vehicle
US8506445B2 (en) * 2010-01-27 2013-08-13 GM Global Technology Operations LLC Selectable torque transmitting device
US9062744B2 (en) * 2013-03-13 2015-06-23 American Axle & Manufacturing, Inc. Two-speed drive module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199100A1 (en) * 2020-03-30 2021-10-07 株式会社ユニバンス Shifting device
JP7305034B2 (en) 2020-03-30 2023-07-07 株式会社ユニバンス switching device

Also Published As

Publication number Publication date
EP2942546B1 (en) 2016-10-19
US9200697B1 (en) 2015-12-01
EP2942546A1 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP6420244B2 (en) Launch control
US10525828B2 (en) Transfer for a vehicle
JP5457495B2 (en) Vehicle control device
CN111328367B (en) Improvements in or relating to dual clutch transmissions
JP3270933B2 (en) Control device and method for executing selective shift
KR20140114065A (en) Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9227636B2 (en) Power transmission device
JP5854156B2 (en) Shift control device for electric vehicle
EP2942546B1 (en) Dual ratio constant mesh gearbox
EP1624231A2 (en) Transmission system gear shift selection and control
US9109666B1 (en) Dual ratio constant mesh gearbox
US9228641B2 (en) Dual ratio constant mesh gearbox
WO2015146385A1 (en) Flywheel regeneration system
JP2018108747A (en) Brake device of vehicle
JP6212581B2 (en) Automatic transmission and control method of automatic transmission
US11041534B2 (en) Method of controlling transmission in neutral
US10443713B2 (en) Control device for vehicle drive system
JP2006348984A (en) Control device of automatic transmission with auxiliary transmission
CN110529568B (en) Planetary gear type slope sliding prevention mechanism with relieving function
KR100427362B1 (en) continuous variable transmission for vehicle
US20230258264A1 (en) Method for controlling a powertrain of a vehicle having a dual-clutch transmission
JP4981463B2 (en) Driving transmission structure of work vehicle
JPS6357661B2 (en)
JP2001330142A (en) Control device for automatic transmission with lockup clutch
JP2021154952A (en) Hybrid drive device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATIEVA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAUTHIER, JEAN-PHILIPPE;REEL/FRAME:032859/0962

Effective date: 20140508

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TRINITY CAPITAL FUND III, L. P., ARIZONA

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ATIEVA, INC;REEL/FRAME:042125/0897

Effective date: 20170331

AS Assignment

Owner name: YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED, HONG KONG

Free format text: SECURITY INTEREST;ASSIGNORS:ATIEVA, INC.;ATIEVA USA, INC;REEL/FRAME:044457/0942

Effective date: 20171027

Owner name: YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED, HONG

Free format text: SECURITY INTEREST;ASSIGNORS:ATIEVA, INC.;ATIEVA USA, INC;REEL/FRAME:044457/0942

Effective date: 20171027

AS Assignment

Owner name: AVB METRICS, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRINITY CAPITAL FUND III, L.P.;REEL/FRAME:047529/0619

Effective date: 20180912

Owner name: ATIEVA, INC., CAYMAN ISLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRINITY CAPITAL FUND III, L.P.;REEL/FRAME:047529/0619

Effective date: 20180912

Owner name: ATIEVA USA, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRINITY CAPITAL FUND III, L.P.;REEL/FRAME:047529/0619

Effective date: 20180912

AS Assignment

Owner name: ATIEVA, INC., CAYMAN ISLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED;REEL/FRAME:047620/0451

Effective date: 20180914

Owner name: AVB METRICS, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED;REEL/FRAME:047620/0451

Effective date: 20180914

Owner name: ATIEVA USA, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:YINLONG ELECTRIC VEHICLE (HK) GROUP LIMITED;REEL/FRAME:047620/0451

Effective date: 20180914

AS Assignment

Owner name: AYAR THIRD INVESTMENT COMPANY, SAUDI ARABIA

Free format text: SECURITY INTEREST;ASSIGNOR:ATIEVA, INC.;REEL/FRAME:047199/0221

Effective date: 20180916

AS Assignment

Owner name: ATIEVA, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AYAR THIRD INVESTMENT COMPANY;REEL/FRAME:048811/0472

Effective date: 20190402

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8